
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 25, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Advertising server using microservice architecture

 Student: Serhii Holovko

 Supervisor: Ing. Filip Glazar

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2021/22

Instructions

The goal of this work is to implement the prototype of a web application which will represent the
advertising server. Completed server-side part of the application will be the prototype of the real cars-
advertising platform like Cars.cz etc. The main functionality of the student’s platform will be searching,
comparing cars and creating user’s own advertisements. Student will implement the backend part in Java,
specifically in the Spring Boot. Implementation will aim on analyzing and designing the backend
architecture using microservices. The backend documentation will be created for later frontend
implementation.

1. Analyze existing solutions of similar implementations.
2. Based on conducted analysis design the backend part of the application.
3. Perform realization of this part of software.
4. Set up CI and provide the implementation of appropriate tests.
5. Estimate results of testing and usability of the application.
6. Design necessary modifications of the application for real use.

References

Will be provided by the supervisor.

Bachelor’s thesis

Advertising server using microservice
architecture

Serhii Holovko

Department of Web and Software Engineering
Supervisor: Ing. Filip Glazar

June 4, 2020

Acknowledgements

I would like to thank my supervisor Ing. Filip Glazar for his time and help
and my family which has been supporting me all my life.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 4, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Serhii Holovko. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Holovko, Serhii. Advertising server using microservice architecture. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.

Abstrakt

Tato práce popisuje hlavní zásady při návrhu a implementaci softwaru v rámci
architektury mikroslužeb. Po teoretické části následuje demonstrace skuteč-
ného procesu vývoje, což čtenáři umožňuje pochopit základy a vývoj distribu-
ované architektury. Dále jsou diskutovány výhody a nevýhody dané architek-
tury.

Klíčová slova mikroslužby, škálovatelnost, backend, webová aplikace, sys-
témový navrh, průběžná integrace

vii

Abstract

This thesis describes the microservice architecture essentials. The theoretical
part is followed by the real application development process demonstration
which makes the understanding of the distributed architecture deeper and en-
ables the creation of a similar microservice application quite effortless. More-
over, the disadvantages of such architecture are discussed as well as advantages
and the summarized opinion is demonstrated at the end of the thesis.

Keywords microservices, scalability, backend, web application, system de-
sign, continuous integration

viii

Contents

Introduction 1

1 Services collaboration 3
1.1 HTTP . 3
1.2 Network communication . 3
1.3 Service discovery . 4

2 Fault tolerance and resilience 7
2.1 Timeouts . 7
2.2 Retries . 7
2.3 Circuit Breaker . 8
2.4 Deadlines . 8

3 Testing 11
3.1 Monolithic testing . 11
3.2 Microservices testing . 13

4 Advantages of the microservice architecture 15
4.1 Distributed work . 15
4.2 Scalability . 15
4.3 Deployment . 16
4.4 Fault tolerance and resilience 16

5 Disadvantages of the microservice architecture 17
5.1 Complexity . 17
5.2 Culture . 17
5.3 Security . 18
5.4 Communication . 18

6 Practical part 19

ix

6.1 Design . 19
6.2 Technologies . 22
6.3 Data layer . 27
6.4 Implementation . 27

Conclusion 37

A Acronyms 39

B Contents of enclosed CD 41

Bibliography 43

x

List of Figures

1.1 HTTP communication . 4
1.2 Client-side service discovery pattern 5
1.3 Server-side service discovery pattern 5

2.1 Retries pattern . 8
2.2 Microservices chain communication diagram 9
2.3 Timeouts in microservices communication 9

6.1 Cars.cz technology stack . 20
6.2 Microservices’ data sources . 21
6.3 Autos backend rough model . 22
6.4 Eureka console . 28
6.5 Catalog relational model . 29
6.6 Rating relational model . 30
6.7 JWT structure . 33
6.8 Jenkins dashboard . 34
6.9 JMeter success result table . 35
6.10 JMeter fail result table . 36

xi

List of Tables

6.1 Catalog endpoints table . 29
6.2 Rating endpoints table . 30
6.3 Creation endpoints table . 31
6.4 Similarity endpoints table . 31
6.5 Gateway endpoints table . 32

xiii

List of Listings

6.1 Eureka main class . 24
6.2 Eureka application.properties 25
6.3 Eureka client application.properties 25
6.4 Eureka client pom.xml . 25

xv

Introduction

Nowadays creating an information system consists in building a web interface
also known as a web application. Almost every system uses a 3-tier archi-
tecture that is divided into 3 big components (client-side, server-side, and
data-side) each developed by a huge team. A lot of tools and additional soft-
ware products are trying to make developers’ work easier and applications
more efficient, nevertheless in some cases, it does not have such a huge impact
on the development process.

The implementation of a massive system requires teams of several, dozens
or even hundreds of developers. This is a challenging area for the collaboration
of a sizable amount of people. Moreover, applications are expanding due to
the shifting of final projects’ requirements and the system’s extension. That
is the case when developers have to rather understand the previous technical
solutions and improve it or to extend the existing software by a separate
“module”.

Furthermore, an application can be used by thousands of people and that
is why it has to be scalable. Modern solutions offer patterns for painless
horizontal scalability, which stands for “running” software on several physical
machines. Such a conception offers the ability to increase application efficiency
by adding extra servers but not increasing the performance of the individual
machine.

The thesis is logically divided into 2 big parts. The first one covers the
theoretical aspect of the microservice architecture describing at the beginning
problems of microservices communication and general concepts for achieving
services wiring. Then resilience issues and solutions are demonstrated. After
that, one of the most essential themes is explained in – testing patterns that
is followed by discussing the advantages and disadvantages of the microservice
architecture. The second part of the thesis describes the process of creating
real advertising backend software using approaches and concepts from the
theoretical section.

The primary aim of this thesis is to analyze the difference between the

1

Introduction

classic monolithic approach and the conception of decomposition software,
specifically the backend part of the application. In addition, the backend
separation process which is achieved by implementing the microservice archi-
tecture will be discussed in the thesis. As an example of this approach, the
realization of the backend part of the car selling application will be presented.
The advantages and disadvantages will be discussed as well as mistakes in
designing such a distributed system. Finally, performance testing results will
be demonstrated.

2

Chapter 1
Services collaboration

Individual services are in fact just separate backend servers that can com-
municate with each other. That is why when talking about microservices,
one of the first problems for discussion is a communication of different sys-
tem modules (services). In the regular monolithic application components’
binding is implemented by direct calling module’s functionality (working with
Java object, JavaScript function, etc.). However, microservices are frequently
not running on the same virtual machine and that is the reason why their
communication is performed through a network.

1.1 HTTP
HTTP stands for Hypertext Transfer Protocol. Nowadays it is a very popular
practice in communication between browsers and servers. The main concep-
tion lies in that data are usually stored on a server or accessible through it.
Most servers support HTTP protocol which makes it possible to communicate
with them and retrieve some information. The process of getting information
is achieved by making a HTTP request to a server and receiving a HTTP
response see Figure 1.1. The most typical case of using the HTTP protocol in
regular life is loading a web page from a browser [1].

1.2 Network communication
As previously mentioned, microservices communication is realized through
a network. Most of the existing solutions use the regular HTTP protocol for
services collaboration, which can be actually easily applied with the help of
existing frameworks. The first problem of communication using the HTTP
protocol is retrieving target URLs. This issue can be solved in hardcoding
URLs and requesting necessary services by their location. However, this ap-
proach has a lot of disadvantages.

3

1. Services collaboration

Figure 1.1: HTTP communication

One of them is the demand for changing the target URLs when some
services modify their locations or ports. In that case, every microservice which
uses the actualized microservice has to change target endpoints. That can lead
to a huge amount of refactoring work.

Another disadvantage is the impossibility of deploying microservices with
hardcoded target URLs to a cloud environment. That is caused because of
the dynamic locations of applications in a cloud. So, it becomes impossible to
request a microservice in such format:
GET: https://myapplication/user:8080.

Furthermore, concerning load balancing hardcoding services’ endpoints
makes it much harder for any microservice to use other services, because it
is not longed clear to which URL (endpoint) send a request as a load balancer
creates several services with different locations [2].

In addition, one of the biggest disadvantages in hardcoding microservices’
URLs is the environment changes which lead to changing all target endpoints
in the whole application [2]. For example, when developing a distributed
system on the local machine, target endpoints are presented in such form:
https://localhost:8080/... However, after deploying on a server all ser-
vices’ locations will be changed and the complete application will need a lot
of refactoring.

1.3 Service discovery
The process of retrieving the services locations is called service discovery [3].
The main idea consists in using the discovery server pattern, what in fact
is just an additional layer between microservices which is implemented by an
individual server.

1.3.1 Discovery server
In the beginning, all services, which are required to be accessible for other
services, need to be registered in the discovery server. As a result, when

4

1.3. Service discovery

requesting any registered service, the first step is to retrieve the location of
the necessary service from the discovery server, and then call the server by its
URL. Furthermore, the discovery server very often supports load balancing
functionality. So, a microservice backend can become extremely efficient only
due to the use of this tool.

Moreover, registered microservices often has the ability to store other mi-
croservices locations in the cache. As a result, if the discovery server goes
down, microservices can continue communicating with each other for some
time using cached endpoints.

1.3.2 Discovery server concepts
By the way, discovery servers can be implemented in different ways. The first
concept is called “client side service discovery”. The main idea is that client
at first asks a discovery server, retrieves the target endpoint, and sends the
request to the particular URL see Figure 1.2.

Figure 1.2: Client-side service discovery pattern

The second approach lies in the concept of a proxy server. The client
service sends the request to the discovery server which then calls the necessary
microservice and returns a response to the client see Figure 1.3.

Figure 1.3: Server-side service discovery pattern

5

Chapter 2
Fault tolerance and resilience

The microservice architecture enables the system to behave flexibly due to
the behavior of individual services. Microservice may go down, be overloaded,
a data source can fall down or the network connection may be poor. A prob-
lem with an individual component should not lead to a complete application
collapse as in the monolithic approach. Moreover, each request processing
consumes one thread, that is why waiting for retrieving a microservice’s re-
sponse can lead to the client microservice overloading. Nevertheless, fault
tolerance behavior is very often ignored by many companies as it requires
a lot of additional work.

2.1 Timeouts
The main idea of this pattern focuses on that client does not have to wait
for a service’s response non-specified period of time. Instead of redundantly
waiting for any microservice to return a result, it is considered a much better
approach to close the connection and return an exception or any fake value
that can be cached response, mock value, or even another microservice’s re-
sponse [4].

2.2 Retries
This technique lies in the principle of retrying a request if a microservice
returns an error. It becomes necessary to set a number of attempts for retrying
services’ calls. However, this practice may lead to a redundant doubling of
requests. Assuming that all microservices has a defined number of retries
(3). If any service only returns errors, the component (C) which needs “error
service” will call it 3 times and if the component C was called by a component
B, B will receive an error from C and repeat the request to C 3 times, so the
“error service” will be called 3 ∗ 3 times ultimately. Moreover, if the B service

7

2. Fault tolerance and resilience

is called by another component A, A in case of negative responses from the B
service will make 3 requests to B. After every A request, B will call C 3 times,
and as a result on every B request C will call the “error service” 3 times what
leads to the exponential number of meaningless requests see Figure 2.1.

Figure 2.1: Retries pattern

That is the reason why a service doesn’t have to retry a request a defined
number of times, it needs rather check if the duplication of the same request
makes sense. For example, if a server returns a 404 response, repeating a re-
quest is quite redundant. However, sometimes retrying a request can lead to
a sending it by a load balancer to a more active server [4] or the response sta-
tus code can be in 5xx format what can be sometimes resolved by repeating
a call to service.

2.3 Circuit Breaker
Another pattern ensures that a service is not redundantly called if it is over-
loaded by requests or fallen down completely. The main conception consists in
that last N requests are considered to be analyzed in some way to determine
if the “error service” should be ignored for some time to recover from previous
requests [5, Chapter Circuit Breaker].

This conception allows developers to set the logic for finishing sending
requests to the “error service”. Firstly a developer has to set the number of
requests which are constantly analyzed (N). Then the amount of possible
failed requests is defined. As a result, responses are continuously inspected if
more then X requests failed during the last N calls.

2.4 Deadlines
This approach resolves the problem which can occur while the microservice
A request a B service with 200 ms timeout see Figure 2.2, however, B may
execute some business logic which takes 200 ms and then call the C service
what is redundant, because the initial microservice A is no longer interested
in the result, because of the defined timeout. This problem can cause re-
dundant resource consumption. However, this issue can be solved by passing
some metadata with services’ calls. As a result, microservices can be able to

8

2.4. Deadlines

Figure 2.2: Microservices chain communication diagram

determine if it is still necessary to proceed with logic execution or a client is no
longer interested in its response [5, Chapter Deadlines/distributed timeouts].

2.4.1 Timestamp
The timestamp approach focuses on establishing a deadline, after which service
does not have to proceed with any logic execution, because the client service
is not interested in the response. For example, if a service A calls a service
B and B calls a service C see Figure 2.2, the first consuming service which
makes a call (or frontend client) has to set a deadline for service B due to
the timeout: deadline = currentDatetime + Timeout. And the deadline
is sent as metadata to service B with a request. Then, the service B set
the deadline for a C service. However, a problem is that microservices are
frequently running on different servers which may have different time zones.
As a result, a service may immediately stop executing its logic because it
can improperly consider that the deadline is already passed. Furthermore,
a microservice may continue running thinking that a deadline is not passed
yet, what can be wrong if a server has the earlier current time. [5, Chapter
Timestamp].

2.4.2 Timeout

Figure 2.3: Timeouts in microservices communication

Another approach lies in the concept of setting timeouts for requested
services. For example, A service has a timeout 300 ms for waiting for a re-

9

2. Fault tolerance and resilience

sponse from B, so when B will have to call a C service after 100 ms of ex-
ecuting its logic, the timeout for the C service will be the C timeout minus
the time that the B has already consumed: timeoutForC = timeoutForB −
consumedT imeByB. So timeoutForC = 300 ms − 100 ms = 200 ms see 2.3.
But this conception has a disadvantage. Establishing a timeout for C may
not be a guarantee that the C service will finish its work in the determined
period after it is called, because we do not consider when the C service will
actually begin processing a request, so the real deadline of the C service may
be a little bit longer than the B service need it to be (because of the net-
work latency, waiting for starting processing a request in the queue due to the
server’s overloading, etc.).

10

Chapter 3
Testing

In this chapter, the process of inspecting the application functionality cor-
rectness will be demonstrated. Before diving into how microservices should
be tested, common backend testing patterns will be discussed. After that,
distributed inspection techniques and issues will be explained.

3.1 Monolithic testing
The monolithic testing process enables to realize basic software inspection
techniques that are also used in testing microservices applications. This sec-
tion is divided into explaining unit, integration, system, and acceptance test
processes which are analyzed in corresponding subsections.

3.1.1 Unit testing
Testing of the smallest software piece independently from the rest of the appli-
cation is called unit testing. It can be performed by checking only a supposed
output of a function [6]. However, unit tests do not provide a guarantee that
the whole application works as expected, due to the possibility of problems
existence in the collaboration of different units of a system. For example, ob-
jects interaction can be set improperly, despite individual functionalities may
work correctly and be unit tested, but their wrong cooperation can cause the
whole application collapse. That is what integration testing is responsible for.

3.1.2 Integration testing
Assuming that separate system pieces are unit tested integration tests can be
performed. This approach consists in testing how correct separate modules in-
terfaces and data flows are configured [7, Chapter Example of Integration Test
Case]. Integration tests actually check if the result of several modules/services
collaborative work is the same as expected. Moreover, such way of testing can

11

3. Testing

be performed in different ways [7, Chapter Approaches, Strategies, Method-
ologies of Integration Testing]:

• Big Bang Approach

• Incremental Approach

3.1.2.1 Big Bang Approach

This approach stands for testing all the application modules wired together,
which have its advantages and disadvantages. Big Bang strategy is a very
convenient method of integrated testing for small application, because of its
simplicity. However, it may become extremely hard to detect a bug in a colos-
sal system this way. Moreover, all pieces of software should be implemented
to perform a testing process, which leads to redundant waiting of QA special-
ists [7, Chapter Big Bang Approach]. Furthermore, some critical situations
may not be tested because of trying to simulate all cases and that is why some
scenarios of secondary modules’ functionality can be missed [8].

Hence Big Bang testing approach is a very convenient way of testing
smaller systems, where the only aim of the testing process is checking if the
whole application works or not. But is not considered to be the best method
for looking for a bug or a broken service.

3.1.2.2 Incremental Approach

Instead of testing the whole application (using the Big Bang approach), it may
become much more convenient and efficient to wire two or several modules
together and to add necessary modules one by one [7, Chapter Incremental
Approach]. However, this way of testing can be divided into 3 categories:

• Top Down integration

• Bottom Up integration

• Hybrid/ Sandwich integration

The difference between the Top Down and the Bottom Up testing ap-
proach consists in that the Top Down method starts testing the main module
adding less significant modules and the Bottom Up design does the same but
in the opposite way. The Bottom Up approach starts with testing lower (more
specific) modules wiring them with higher (main) ones.

The Hybrid method of integration incremental testing is the mix of the
Top Down and Bottom Up testing approaches. Integration testing of bottom
modules is performed at the same time as higher modules testing. The testing
process is heading to the “middle” module layer to complete the final test of
the “bundled” system.

12

3.2. Microservices testing

3.1.3 System Testing

System testing is a process of inspection of the wired system with its exter-
nal dependencies [9], which is actually a process of inspection of the whole
application functionality. This way of testing is usually executed after unit
and integration tests and simulate the real application flow. System testing
is frequently performed using demo data and production environment.

It may become a little bit confusing how does the system testing differs
from the Big Bang integration testing. However, the difference is very clear,
Big Bang integration testing is the process of testing if wired modules work
together as expected, but not meeting business requirements. On the other
hand, the system testing tests specifications, if the application is implemented
due to the final prototype and found bugs are not considered as product failure.

3.1.4 Acceptance testing

Acceptance testing is the final stage of inspecting an application that deter-
mines if a system fulfills client requirements. It is considered to be the last
testing process before deployment. This testing phase inspects mostly the
application use-cases to provide the completed product. It is frequently per-
formed by a customer or some users who test the application. Actually, it
is the process of inspection if the application can be used by real users.

3.2 Microservices testing
The microservices testing differs a little bit from the monolith application test-
ing, whereas a lot of concepts and tools stay the same. Services’ entire logic
is inspected using unit testing and mocking responses from other services. The
integration testing focuses on reviewing how do microservices communicate
with each other and verifying real outputs, which has no difference with the
integration testing of a monolith system. However, end-to-end microservice
application testing can be extremely painful because of a system’s fragmen-
tation that differs from the monolithic approach in which the application can
be easily deployed to the localhost and be effortlessly tested.

3.2.1 Contract testing

Contract testing can be extremely useful when testing microservices. This ap-
proach lies in inspecting if the service (provider) which is assumed to return
some data, returns them in the consumer expecting format [10, Chapter Con-
tract Tests]. Such a process is considered to be a black-box approach. A tester
doesn’t need to know how a service is implemented, it is required only to verify
if the microservice’s response fulfills the consumer-provider contract.

13

3. Testing

3.2.2 End-to-end strategies
As previously mentioned, the end-to-end testing process is a serious issue in
the microservice world. In this section these problems will be discussed and
several testing strategies will be demonstrated.

3.2.2.1 The full stack in-a-box strategy

It becomes almost impossible to execute the system testing in the old school
way like testing on the local machine. If an application consists of 4–5 services,
it can be quite simple to run all these services together, but managing the right
branch of every repository (considering that every microservice is versioned in
the separate repository), pulling the latest version of the branch and constantly
starting services may lead to boilerplate work every time before beginning
a test process [11]. Moreover, starting a system of dozens microservices on
a local PC will likely make this machine useless for testing an application and
potential scalability.

3.2.2.2 Personal deployment strategy

The personal deployment strategy focuses on creating a cloud environment for
each tester where all services are deployed. Very frequently all QA specialists
have individual Amazon Web Services accounts what makes scalability of the
testing process much higher, because of the ability to run the system in the
cloud right away.

3.2.2.3 The shared testing instances strategy

The shared testing strategy is considered to be a mix of the full stack in-a-box
strategy and the AWS strategy (personal deployment strategy). Its concept
is based on the idea that not all the application microservices have to run on
the local machine, some services can be deployed to a remote server that can
reduce the local PC load.

14

Chapter 4
Advantages of the microservice

architecture

One of the initial steps in developing the information system consists in de-
ciding if the application will be developed monolithic or distributed. This
decision is one of the most important due to the complexity of converting the
system from one architecture to another. Therefore, in this section advantages
of the microservice architecture will be discussed.

4.1 Distributed work
The main advantage of using microservice architecture is the work distribu-
tion. Developing separate service becomes much more comfortable for pro-
grammers, they can easily realize their microservice in the programming lan-
guage they want and not being aware of the technologies their colleagues use.

Moreover, when services are separated it becomes easier to maintain them
because the team developing the separated microservice doesn’t have to under-
stand the whole logic of the application. When fixing some bugs, developers
focus on the small bunch of logic.

4.2 Scalability
Concerning the colossal system which has been developing for several years,
it becomes very hard to extend such application because it may be written
in Cobol or the logic is so complex that it becomes unbelievably difficult
to perform the extension. However, microservices let the developer just add
a separate backend which will enhance the existing application. Such approach
makes working with a legacy system much more comfortable, efficient and
cheaper, because it is not any longer necessary to seek specialists in concrete

15

4. Advantages of the microservice architecture

technology, furthermore a team can use any modern framework that improves
a system development.

So when implementing a massive application that will probably have to be
expanded in the future, it is a good choice to use a distributed architecture to
have a possibility for painless scalability.

4.3 Deployment
First of all, the deployment term has to be explained. When developing an ap-
plication the final stage assumes that the completed version will be published
to any place from where it could be accessed. In the case of web applications,
the software is usually launched on a server that is responsible for communi-
cating with clients. A deployment is a group of actions whose goal is to make
an application accessible from some environment [12].

Regarding the deployment, the microservice architecture enables the in-
crease of the delivery speed. In case of small changes, recompiling and rede-
ployment of the small service is much more efficient and less time consum-
ing than manipulating with a large monolithic application [13], because the
individual team can perform some repair and deploy their microservice inde-
pendently from other teams. That is why the delivery process becomes more
agile [14].

4.4 Fault tolerance and resilience
It is considered to be a serious advantage that microservice architecture can
be fault-tolerant and resilient. Unlike a monolithic approach where one fault
in the logic can cause the collapse of the whole application, well designed
distributed system can tolerate if one microservice goes down in such a way
that a client does not have to find out that fault happened [15]. The possibility
to avoid a single point of failure makes a system resilient. The main idea is that
when making a remote call from one microservice to another, the client service
can react to the failure of the second service and either retrieve the cached
response or mock the necessary value.

16

Chapter 5
Disadvantages of the

microservice architecture

Indeed, not every system needs to be implemented with microservice archi-
tecture [16]. This development choice may be redundantly very painful for
programming teams during the project implementation. Moreover, since such
a distributed way of developing is considered to be a very young approach,
there are not a lot of best practices and it becomes quite hard to find strict
microservices standards.

The aim of this chapter is to demonstrate the disadvantages of using the
distributed software approach. Complexity issues as well as companies’ cul-
ture, security, and microservices’ communication problems will be shown in
particular sections.

5.1 Complexity
Developing microservices is more complex than a monolithic application. Due
to the possibility of using several stack of technology, a distributed system
requires maintaining different frameworks, programming languages, database
schemes and so on [16, Chapter Disadvantage #1].

In addition, refactoring a huge legacy system from the monolith to mi-
croservice architecture will take a huge effort [16, Chapter Disadvantage #1].
This process can take some time and thereafter costs a lot of money.

5.2 Culture
Each microservice is developed by a separate team. That is why developers
in any team have to understand the full process of developing the applica-
tion [16, Chapter Disadvantage #2: Microservices Require Cultural Changes].
Each team has to have enough experience in creating, deploying, and testing

17

5. Disadvantages of the microservice architecture

microservice independently from other teams, that is why every team needs
DevOps specialists to be able to create reliable microservice and comfortable
workflow.

5.3 Security
Due to exposing communication to the network, security problems may be-
come a nightmare. Moreover, one weak place in the service is a dangerous
problem for the whole application, because of using the same logic in different
services frequently [16, Chapter Disadvantage #4: Microservices Can Present
Security Threats].

5.4 Communication
Communication of different application parts in the monolith architecture
is implemented by using classes and functions from the same code bunch. Such
an approach is a little bit faster compared to the microservice architecture,
where calls to individual services are performed remotely. Communication
inside such a distributed system has to be organized intelligently not to call
redundantly the same functionality several times. However, the microservice
approach is not considered to cause a huge delay because of the high actual
network performance.

The microservices communication problem causes the requirement of us-
ing a collaboration framework. It leads to the demand for maintaining an
additional piece of software what is another disadvantage.

18

Chapter 6
Practical part

In this chapter, the realization of the real advertising application will be shown.
The main idea of this section is the demonstration of using basic tools, pat-
terns, and frameworks for creating a complete distributed backend that can
be later expanded by a frontend client.

The main idea of the application consists in creating advertisements for
cars, retrieving them, looking for similar cars. The result of the realized system
will be fully working REST API.

6.1 Design
The design of the whole application will include functional requirements, non-
functional requirements, and the analysis of the cars.cz platform.

6.1.1 Functional requirements
Firstly, it is necessary to specify functional requirements to have a clear ap-
preciation of the system’s functionality.

• The system will be able to keep records of advertisements.

• The system will be able to assign a rate value to advertisements.

• The system will be able to recommend similar cars.

• The system will be able to return information about a seller.

6.1.2 Non-functional requirements
Then, non-functional requirements have to be specified to define the system’s
restrictions and facilities [17].

19

6. Practical part

• Scalability: The system has to be able to be easily extended by a new
functionality.

• High performance: The system has to be able to process 10000 users’
requests per second or to be implemented to have such performance
characteristics after some modifications.

• Network availability: The system has to be available through a network,
especially using the HTTP protocol.

6.1.3 Known approach

Figure 6.1: Cars.cz technology stack

20

6.1. Design

At the beginning of the thesis development, several analogous cars’ selling
information systems were supposed to be analyzed, however later the impossi-
bility of discovering the backend architecture was realized. That is the reason
why only one approach was investigated. As an example of a similar appli-
cation the cars.cz system was analyzed. The first step was to inspect this
platform with the wappalyzer.com web application which allows discover-
ing the technology stack of the site. The result of the analysis demonstrates
that cars.cz platform uses the Prototype JavaScript framework and that the
backend is probably written in Java see Figure 6.1.

The Nginx is a server that is able to perform proxy and load balancing
functionality [18]. Due to the fact that cars.cz uses the JavaScript framework,
load balancing, and has a backend written in Java the assumption is that this
web application is implemented using the distributed architecture.

As a result, a similar approach is used during the advertising server imple-
mentation. The backend will be separated into several microservices written
in Java, the proxy server will be implemented which can perform a load bal-
ancing functionality in the future.

6.1.4 Model

Firstly, the rough and very abstract model of the application was designed see
Figure 6.3. In this model, a service discovery problem and a database layer
are not shown. The main purpose is to demonstrate how do microservices rep-
resent the complete backend of the application. Then, data sources associated
with appropriate services are visualized see Figure 6.2.

Figure 6.2: Microservices’ data sources

21

6. Practical part

Figure 6.3: Autos backend rough model

6.2 Technologies

In this section used frameworks, tools and libraries will be shown and dis-
cussed. Furthermore, some basic concepts used in operating with various
tools will be shown.

6.2.1 Programming language

As a programming language for implementing the backend part was chosen
Java. The choice was affected by the popularity of this language and a big
community. The advantage of such a famous programming language is the
simplicity of looking for solutions for specific problems. However, Java is not
considered as the easiest programming language to learn, neither the most
painless way of implementing server-side software.

22

6.2. Technologies

6.2.2 Web framework

As the main platform for implementing microservice architecture was chosen
the Spring Boot framework. This framework is considered to be a very clear
solution for implementing a REST API with Java. Moreover, a huge ecosystem
has been developed around this platform. Many components of the Spring
environment will be used and discussed as well.

6.2.3 Security

Almost all microservices are going to be hidden from public access. This will
be ensured by the firewall tuning of individual services, nevertheless, this setup
will not be realized in the scope of this thesis. The idea lies in the concept
of communication through the proxy microservice which is called in this com-
munication as the API Gateway service. This particular application server
will collaborate with other services by forwarding all requests to concrete mi-
croservices and implement the registration and authentication functionality.

This part was realized by using the Spring Security framework. However,
during the development, the complexity of this solution was realized and only
basic functionality was used.

6.2.4 Object Relationship Mapping

As the application has to persist data in some way, using individual database
rows as objects make the business logic implementation much easier. Never-
theless, the technique of manual mapping every retrieved data result to the
Java object is considered as the archaic approach because of the existence of
many frameworks solving this problem. For the development of this applica-
tion was chosen Hibernate framework, which is the default JPA implementa-
tion bundled with the Spring framework.

Spring Data JPA: Spring environment provides a very convenient mech-
anism for working with ORM frameworks. Spring Data JPA uses Hiber-
nate entirely and provides a feature for a convenient working with a data
source called “Repository”. This mechanism allows to create an interface,
which would inherit the CrudRepository interface and then to define the
method in such way: Optional<Car> findByCarId(int carId); Then when
autowiring such interface, Spring would provide the concrete bean with im-
plemented methods which should be only defined in the interface.

6.2.5 Project management system

Maven management tool was chosen for the project administration. It is con-
sidered to be a default system for managing Java projects. It is very easy
to use, nevertheless, Maven’s building process is not simply configured. Its

23

6. Practical part

build-cycle is rather determined by Maven’s convention than set up by a de-
veloper [19]. Maven build process consists of 3 life-cycles: default, clean, and
site. Each has its own list of phases, which are responsible for specific build
aspect.
Default: the default stage of the build is the main Maven group of phases. It
consists of 23 phases and covers almost all necessary steps for building a Java
program.
Clean: the clean life-cycle is responsible for removing all redundant files cre-
ated by previous Maven build processes and has 3 phases.
Site: the site life-cycle has 4 phases whose goal is to create documentation
for a Java software [20].

6.2.6 Service discovery
One of the advantages of using the Spring platform is the simplicity of adding
all necessary functionality for operating with microservice architecture. One
of the most significant microservice tools is the Eureka server, which was
developed by Netflix and is widely used. This concrete technology was chosen
because of its simplicity, convenience, and popularity.

Firstly, it is necessary to start a Spring Boot application and add the
necessary Spring Cloud and Eureka dependencies. In the pom file basic Spring
Boot and Spring Cloud dependencies are added, which makes the application
ready to be launched.

Then the main Spring class should be annotated with
@EnableEurekaServer and finally may look like in Listing 6.1.

1 @SpringBootApplication
2 @EnableEurekaServer
3 public class DiscoveryServerApplication {
4

5 public static void main(String[] args) {
6 SpringApplication
7 .run(DiscoveryServerApplication.class, args);
8 }
9 }

Listing 6.1: Eureka main class

Nevertheless, some additional properties can be specified in the
application.properties.yml file. It is the configuration place for proper-
ties of specific Spring classes [21]. The application.properties file of the
configured Eureka server is demonstrated in Listing 6.2.

Server port: Port of the discovery server is explicitly established due to
the possibility of appearing the conflict of ports. For example, if the port of the
Eureka server is not set, the default 8080 port would be used. As a result, when

24

6.2. Technologies

1 server.port=8761
2 eureka.client.register-with-eureka=false
3 eureka.client.fetch-registry=false

Listing 6.2: Eureka application.properties

starting another Spring application without the established port number, the
exception will be thrown with the message: “Web server failed to start. Port
8080 was already in use”.

Another two properties tell the Eureka server not to be registered in any
other Eureka server as a client. After this configuration process is finished the
Eureka server can be launched and its the graphical interface is available at
http://localhost:8761 where all registered clients are displayed.

6.2.7 Eureka client

After setting up the Eureka discovery server, the next step is creating a mi-
croservice which will be registered in the Eureka server. A basic application.properties
file has to contain 2 properties and is shown on the example 6.3.

1 server.port=8081
2 spring.application.name=cars-catalog-service

Listing 6.3: Eureka client application.properties

The server port number sets the port on which the application is running.
The second property specifies the name of the service which is the identi-
fier of the application which is used by the Eureka server. When a service
is requested, it is called by its name and the discovery server determines the
location and returns it, after that the request is sent to the particular Spring
application.

Then, the Eureka client dependency has to be added to the pom file
as shown in Listing 6.4. It is supposed that the Eureka client Maven project
is inherited from the Spring Boot project.

1 <dependency>
2 <groupId>org.springframework.cloud</groupId>
3 <artifactId>
4 spring-cloud-starter-netflix-eureka-client
5 </artifactId>
6 </dependency>

Listing 6.4: Eureka client pom.xml

25

6. Practical part

The main application class has to be annotated with the
@EnableEurekaClient annotation. After that, a microservice will be regis-
tered in the discovery server as an Eureka client. Then the main class may be
simply started and the microservice will be ready to process requests.

6.2.8 Unit and integration testing tools

For performing unit and integration testing the JUnit framework was used.
This is considered to be the most popular framework for testing the Java
code. [22] However, 2 JUnit widely used versions exist and the latest JUnit
5 framework was chosen because of its more capacious functionality which
allows the test development to be more expandable in the future.

During the unit testing process, only limited logic blocks are inspected,
that is why some related functionalities have to be mocked. As a result,
additional dependency called Mockito was added to perform objects mocking.

6.2.9 Load testing tool

At the final stage of developing the application, performance tests were ex-
ecuted. This process was implemented by testing the load abilities of the
backend. The main idea was to execute a lot of HTTP requests to test the
abilities of the completed application what was achieved by using the JMeter
tool. The results of this testing process will be shown and discussed in later
sections.

6.2.10 Git

As the information system developed in the scope of this thesis is a software
product the source code needs to be saved in storage and versioned in some
way. That is why Git tool is discussed in this section.

Git is a distributed version control system, which means that almost all
operations are performed on the local repository. As a result, it is not neces-
sary to even have the Internet connection to manage the project. The state of
the project is not controlled as states of individual files like in the Subversion,
however individual snapshots are stored in the memory. Snapshots represent
all source files in the time when the commit operation was performed [23,
Chapter 1: Getting Started].

As the place for staging the Git repository the GitHub platform was used
which allows to store and manage Git projects for free. The biggest advantage
of keeping files on the remote server (in case of this thesis) is the ability to
easily share the project with the tutor to continuously receive feedback.

26

6.3. Data layer

6.3 Data layer
Due to the conception of loosely coupling, individual microservice is considered
to operate with a separate data domain of a system. Therefore, each service
has to have a personal data source that is responsible for the concrete data
field [24]. Nevertheless, in the advertisement application, some microservices
will persist data in shared data sources, because of the application’s simplicity.

6.3.1 Database Management System
As the Database Management System (DBMS) for the application was chosen
MySQL because of its simplicity, but any similar relational DBMS can be
applied for similar application development purposes.

6.3.2 Database design tool
The process of the creation and extension of the data layer will be performed
with the help of the MySQLWorkbench tool. This software will help to perform
any database modifications as changing a model, manipulating with data,
modification of the schema.

6.4 Implementation
The application implementation lies in realizing the backend part of the ad-
vertising server and testing it in a proper way, which will be demonstrated
in this section. Nevertheless, some realization details are not shown in this
section and are described in the documentation.

6.4.1 Microservices
In this section individual microservices implementation processes will be shown
and discussed, and that their collaboration will be demonstrated as well. Each
microservice is a registered Eureka client that allows to call them by retrieving
their endpoints from the discovery server what was discussed in Section Ser-
vice discovery.

6.4.1.1 Eureka service

The first microservice to be established is the service discovery server with
the help of the Eureka library. Its launch is similar to launching a classic
Spring Boot application. However it is necessary to add several dependencies,
annotate the main class with @EnableEurekaClient,
@SpringBootApplication and set necessary properties in the
application.properties file what as was shown in section Service discov-
ery. After the discovery server is launched its console is available at the port

27

6. Practical part

Figure 6.4: Eureka console

defined in the application.properties file. When opening the browser at
http://localhost:8761 the Eureka console is visible see Figure 6.4 Nev-
ertheless, no services are started so far, that is why the application section
contains the string “No instances available”.

6.4.1.2 Catalog service

The main purpose of the Catalog microservice is to retrieve cars’ advertise-
ments. As the first step in developing this backend part of the application
is defining corresponding REST API endpoints see Table 6.1.

The /adv endpoint returns all advertisements, the /adv/{id} sends back
the detailed information about the advertisement. The /adv/{id}/author end-
point is responsible for retrieving data about the author of the concrete ad-
vertisement.

28

http://localhost:8761

6.4. Implementation

GET: /adv
GET: /adv/{id}
GET: /adv/{id}/author

Table 6.1: Catalog endpoints table

Figure 6.5: Catalog relational model

The start of creating the microservice is considered in establishing the
data source. For this purpose, MySQL database management system was
used. Using MySQLWorkbench tool the relational model was created see
Figure 6.5. After that, the MySQL server is launched and the model is wired
with it. The connection between the model and the data source makes possible
the continuous synchronization between the model and the database.

After setting up the database, the Spring application is starting to be
developed. First of all, necessary dependencies are added and data source
properties are configured. Then, the Eureka client settings are set and the
microservice becomes registered.

29

6. Practical part

Figure 6.6: Rating relational model

6.4.1.3 Rating service

The Rating microservice is responsible for assigning the value from 0 to 10 to
a particular car. A separate data source was established for the possibility to
retrieve the information about the quality of particular gearboxes, engines, and
specific cars. First of all, the relational model was created see Figure 6.6 and
connected with the MySQL server. The data model describes the concept that
each engine, gearbox, and car which is present is corresponding tables has to
have the rating attribute which is retrieved by the Spring Rating application.

This Spring project has only one endpoint which receives the information
about a car and returns a rating see Table 6.2.

POST: /rating

Table 6.2: Rating endpoints table

The Spring controller obtains from the POST request such data: car brand,
car model, engine brand, engine model, engine volume, gearbox brand, gear-
box model, gearbox type. In case that any of three entities is not found the
particular entity rating value is 0. For example, if a retrieved engine is not
present in the database, then its value is 0. The final result of the calculation
is described by the formula:

(generalCarRating + engineRating + gearboxRating)/3.0

Each rating value varies from 0 to 10 and that is why the final sum is di-
vided by 3. The response contains the result of the rating calculation in the

30

6.4. Implementation

response body.

6.4.1.4 Creation service

The Creation service is responsible for inserting a new advertisement to the
database. Its data source is the same database as the Catalog microservice
uses. The most interesting aspect of this service is the fact that for the inser-
tion of a new advertisement it calls the Rating service to assign a rating value
to the new advertisement. The communication between services is achieved
through the Eureka server and the RestTemplate bean which is responsible
for communicating with the discovery server and the Rating microservice.

The only endpoint in the Creation microservice is of type POST and takes
the information about the advertisement, engine, gearbox, car and the author
see Table 6.3.

POST: /adv

Table 6.3: Creation endpoints table

6.4.1.5 Similarity

The Similarity service is the microservice which was designed to look for sim-
ilar advertisements and as a result, the GET endpoint was created see Ta-
ble 6.4. The data source of this Spring application is the same as the data
source of Catalog and Creation service as the logic lies in retrieving necessary
advertisements. Similarity criteria are the rating value and the price. The
only necessary information for retrieving similar cars is the id of the car to
which analogous autos is looked for.

GET: /similar

Table 6.4: Similarity endpoints table

6.4.1.6 API Gateway

Another microservice solution used in the Advertising server is the conception
of the API Gateway. This approach lies in requesting only the API Gateway
microservice. Clients call only this proxy server which then retrieves individual
microservice endpoints to which requests are forwarded. The framework which
realizes such proxy-server behavior is called Zuul which was developed by
Netflix and has many other features besides the proxy functionality [25].

The second problem which the API Gateway solves is the security issues.
Due to the fact that all requests are going through the proxy server, only API

31

6. Practical part

Gateway issues have to be resolved. Therefore, 2 endpoints are established
for registering new users and authentication see Table 6.5.

POST: /register
POST: /authenticate

Table 6.5: Gateway endpoints table

Before demonstrating authentication, registering, and proxy functionality
JWT tokens need to be discussed. The conception of JSON tokens lies in
passing signed information at first from server to client and then from client
to server with every request. Every JWT encoded string consists of 3 parts:
header, payload, and signature, divided by a dot see Figure 6.7. The Header
part describes the algorithm which was used for singing the token, the second
part of the token is a payload and contains all necessary data which generally
contains a username, user id but nothing private as passwords, cards’ numbers,
etc. Due to the fact that header and payload are just data encoded in base64,
no confidential data have to be passed by a JWT token. Nevertheless, the
server has to verify passed data in some way that is achieved by checking the
3-rd part of a token [26]. When creating a token, a signature is passed as the
last part of a JWT. That is why in case of creating a token on the client-side
by a hacker, the signature part cannot be faked because a hacker doesn’t know
the secret key to create a signature for the particular payload.

Register: the register endpoint is responsible for signing up new users.
The controller receives username and password credentials in the POST re-
quest body, insert them to the database in case that the same username
doesn’t exist yet and returns a token.

Authenticate: the authenticate endpoint is related to checking in the
database if the user credentials passed in the request body are valid and re-
turning the JWT token.

One of Spring Security features is filtering. The API Gateway filters in-
spect every request coming through it, verify a JWT token, check if the user-
name is present in the database (what can be considered as redundant but in
this application, it is the additional security verification step) and forward the
request to the particular microservice.

6.4.2 Continuous integration
First of all, continuous integration techniques need to be discussed. Contin-
uous integration is the concept of having a 100% valid tested code that can
be deployed at any time [27]. The high quality of source code is achieved by
an immediate build and testing after pushing to the repository [28]. The big
advantage is that the application is built not only once a day but continuously
after each contribution.

32

6.4. Implementation

Figure 6.7: JWT structure

Jenkins: Jenkins is one of the most popular tools for CI. However, only
the basic features of Jenkins are used in this thesis. This tool allows to create
a separate server that can react to the changes made in the repository and then
build, test, and return a result if integration manipulations were successful but
for this purpose, a real server has to be established but not the local one. That
is why the microservices integration process was completed by manual forcing
Jenkins to build and run the “maven test” command.

Each item checks out the common Git repository which contains all mi-
croservices and runs the build and testing process of the particular microser-
vice. The dashboard of the configured Jenkins build and test results of indi-
vidual microservices is shown in Figure 6.8.

The basic Jenkins functionality is used to build and run tests processes of
particular microservices. However, the real use of such CI tool should look
a little differently. First of all, Jenkins has to be running on some server to
be able to react to the changes pushed to the repository as Jenkins usually
receives a notification from a Git hosting environment as GitHub. Another
useful feature which can be applied in the future is called the Jenkins pipeline.
Essentially it is a set of plugins used for executing commands for delivering
the code from the repository environment to the final stage (QA environment,
production environment) [29] which usually reacts to a “push” to a repository
and execute predefined processes (build, test, etc.).

33

6. Practical part

Figure 6.8: Jenkins dashboard

6.4.3 Performance testing
As part of the thesis, performance tests have been completed. The specifi-
cation of this type of test is called stress testing which approach lies in the
unreal loading the system [30]. In the case of the advertising server applica-
tion, the performance test was ensured by sending an enormous number of
requests through the API Gateway service to the catalog microservice.

The strategy for the stress performance testing is to detect the critical
number of requests in which microservices are available to process and to
define future modifications for the system scalability. The main parameters
for executing such tests are the number of requests and the Ramp-Up Period
which defines the period for sending all requests. For the first test, the number
of calls to the microservice is 500 and the Ramp-Up Period is 3 seconds. The
JMeter has the ability to execute such tests and to demonstrate results in
a table see Figure 6.9. After inspecting the result of the testing, the successful
outcome has been detected.

After such a result the more serious load process can be performed. The
new number of requests is 10000 and the Ramp-Up Period stays the same
(3 seconds). The result clearly illustrates that the capabilities of the service
are not enough for processing such a high number of calls see Figure 6.10
However, almost all requests were completed and according to several tests the
maximum number of calls for successful processing was determined as 4000.

Nevertheless, microservices can be duplicated as well as data sources can
be modified for processing a higher amount of requests. The API Gateway
can implement the load balancing logic as well as the discovery server. How-
ever such adjustments are not realized in the scope of this thesis but can be
performed in the case that the system will be extended by a front-end client
and the demand for scalability would be detected in the future.

34

6.4. Implementation

Figure 6.9: JMeter success result table

35

6. Practical part

Figure 6.10: JMeter fail result table

36

Conclusion

In the scope of this thesis, the complete research of the microservice architec-
ture was performed. Many concepts and patterns of such an approach have
been demonstrated and a wide determination of the idea of a distributed in-
formation system was presented. Moreover, the real application development
process was realized and tools used during this process were shown as well.

The thesis consists of 2 big components. The aim of the first one is to
present different approaches in a theoretical manner. This part describes con-
cepts of the microservice architecture in a quite fundamental way, however,
some techniques were not explained because of their hugeness. One of them
is the fallback strategy problem which is considered to be extremely intrigu-
ing and not even been solved in many companies that use the microservice
approach.

The second part of the thesis is explaining the advertising server devel-
opment process. The final results of testing demonstrated the ability of this
project to be immediately used in the production in case that a frontend
client would be provided. Even the performance modifications were explained
what makes it possible to use the backend in the highly loaded system after
providing some adjustments.

The thesis is considered to fulfill all requirements established at the be-
ginning. Nevertheless, the final opinion regarding applying the microservice
architecture in the real world is not so univocal. The approach chosen by
a company or a group of developers about the application architecture has to
be elected after performing some analysis and after realizing requirements and
potential future evolutionary processes.

37

Appendix A
Acronyms

API Application Programming Interface

AWS Amazon Web Services

CI Continuous Integration

DBMS Database Management System

GUI Graphical user interface

HTTP Hypertext Transfer Protocol

JPA Java Persistence API

JSON JavaScript Object Notation

JWT JSON Web Token

PC Personal computer

QA Quality assurance

REST Representational State Transfer

URL Uniform Resource Locator

39

Appendix B
Contents of enclosed CD

src... the directory of source codes
autos .. implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

doc the directory of documentation
index.html....................Documentation generated by Swagger

41

Bibliography

1. GOURLEY, David; BRIAN TOTTY, Marjorie Sayer; AGGARWAL,
Anshu; REDDY, Sailu. HTTP: The Definitive Guide: Understanding
Web Internals. In: Sebastopol: O’Reilly Media, 2002, pp. 3–4. ISBN 978-
1-56592-509-0.

2. Service Discovery in a Microservices Architecture. DZone [online] [vis-
ited on 2020-05-17]. Available from: https://dzone.com/articles/
service-discovery-in-microservice-ecosystem.

3. Service Discovery Definition. Avi Networks [online] [visited on 2020-05-
17]. Available from: https://avinetworks.com/glossary/service-
discovery/.

4. BEHARA, Samir. Making your Microservices Resilient and Fault
Tolerant. Samih Behara [online] [visited on 2020-05-17]. Avail-
able from: https : / / samirbehara . com / 2018 / 08 / 06 / making -
your-microservices-resilient-and-fault-tolerant/.

5. PERIKOV, Igor. 5 patterns to make your microservice fault-tolerant.
Medium [online] [visited on 2020-05-17]. Available from: https : / /
itnext . io / 5 - patterns - to - make - your - microservice - fault -
tolerant-f3a1c73547b3.

6. Unit Testing. Software Testing Fundamentals [online] [visited on 2020-
05-17]. Available from: http://softwaretestingfundamentals.com/
unit-testing/.

7. Integration Testing: What is, Types, Top Down & Bottom Up Example.
Guru99 [online] [visited on 2020-05-17]. Available from: https://www.
guru99.com/integration-testing.html.

8. Big Bang Integration Testing. ProfessionalQA.com [online] [visited on
2020-05-17]. Available from: https://www.professionalqa.com/big-
bang-integration-testing.

43

https://dzone.com/articles/service-discovery-in-microservice-ecosystem
https://dzone.com/articles/service-discovery-in-microservice-ecosystem
https://avinetworks.com/glossary/service-discovery/
https://avinetworks.com/glossary/service-discovery/
https://samirbehara.com/2018/08/06/making-your-microservices-resilient-and-fault-tolerant/
https://samirbehara.com/2018/08/06/making-your-microservices-resilient-and-fault-tolerant/
https://itnext.io/5-patterns-to-make-your-microservice-fault-tolerant-f3a1c73547b3
https://itnext.io/5-patterns-to-make-your-microservice-fault-tolerant-f3a1c73547b3
https://itnext.io/5-patterns-to-make-your-microservice-fault-tolerant-f3a1c73547b3
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
https://www.guru99.com/integration-testing.html
https://www.guru99.com/integration-testing.html
https://www.professionalqa.com/big-bang-integration-testing
https://www.professionalqa.com/big-bang-integration-testing

Bibliography

9. What is System Testing? Types & Definition with Example. Guru99
[online] [visited on 2020-05-17]. Available from: https://www.guru99.
com/system-testing.html.

10. GHAHRAI, Amir. Testing Microservices – A Beginner’s Guide.
DevQA.io [online] [visited on 2020-05-17]. Available from: https :
//devqa.io/qa/testing-microservices-beginners-guide/.

11. LUMETTA, Jake. These are the most effective microservice testing
strategies, according to the experts. freeCodeCamp [online] [visited
on 2020-05-17]. Available from: https : / / www . freecodecamp . org /
news / these - are - the - most - effective - microservice - testing -
strategies-according-to-the-experts-6fb584f2edde/.

12. LEE, Roger. Software Engineering Research, Management and Applica-
tions: Studies in Computational Intelligence. In: Berlin: Springer, 2008,
p. 30. ISBN 978-3-540-70561-1.

13. HAMRLA, Lukáš. Zajištění škálovatelnosti webových aplikací s využitím
architektury mikroslužeb. Prague, 2018. Master’s thesis. Czech Technical
University in Prague.

14. KUPRENKO, Vitaly. 6 Key Benefits of Microservices Architecture.
Stackify [online] [visited on 2020-05-17]. Available from: https : / /
stackify.com/6-key-benefits-of-microservices-architecture/.

15. Making Your Microservices Resilient and Fault Tolerant. DZone [online]
[visited on 2020-05-17]. Available from: https://dzone.com/articles/
making-your-microservices-resilient-and-fault-tole-1.

16. WITTMER, Phil. The Top Microservices Disadvantages & Advantages.
Tiempo Development [online] [visited on 2020-05-17]. Available from:
https : / / www . tiempodev . com / blog / disadvantages - of - a -
microservices-architecture/.

17. Non-functional Requirements: Examples, Types, How to Approach. Al-
texSoft [online] [visited on 2020-05-17]. Available from: https://www.
altexsoft.com/blog/non-functional-requirements/.

18. What Is Nginx? A Basic Look at What It Is and How It Works. Kinsta
[online] [visited on 2020-05-28]. Available from: https://kinsta.com/
knowledgebase/what-is-nginx.

19. BUT, Colin. Ant vs Maven vs Gradle. Medium [online] [visited on 2020-
05-17]. Available from: https://medium.com/@Colin_But/ant-vs-
maven-vs-gradle-801fde21af80.

20. BAELDUNG. Maven Goals and Phases. Baeldung [online] [visited on
2020-05-24]. Available from: https : / / www . baeldung . com / maven -
goals-phases.

44

https://www.guru99.com/system-testing.html
https://www.guru99.com/system-testing.html
https://devqa.io/qa/testing-microservices-beginners-guide/
https://devqa.io/qa/testing-microservices-beginners-guide/
https://www.freecodecamp.org/news/these-are-the-most-effective-microservice-testing-strategies-according-to-the-experts-6fb584f2edde/
https://www.freecodecamp.org/news/these-are-the-most-effective-microservice-testing-strategies-according-to-the-experts-6fb584f2edde/
https://www.freecodecamp.org/news/these-are-the-most-effective-microservice-testing-strategies-according-to-the-experts-6fb584f2edde/
https://stackify.com/6-key-benefits-of-microservices-architecture/
https://stackify.com/6-key-benefits-of-microservices-architecture/
https://dzone.com/articles/making-your-microservices-resilient-and-fault-tole-1
https://dzone.com/articles/making-your-microservices-resilient-and-fault-tole-1
https://www.tiempodev.com/blog/disadvantages-of-a-microservices-architecture/
https://www.tiempodev.com/blog/disadvantages-of-a-microservices-architecture/
https://www.altexsoft.com/blog/non-functional-requirements/
https://www.altexsoft.com/blog/non-functional-requirements/
https://kinsta.com/knowledgebase/what-is-nginx
https://kinsta.com/knowledgebase/what-is-nginx
https://medium.com/@Colin_But/ant-vs-maven-vs-gradle-801fde21af80
https://medium.com/@Colin_But/ant-vs-maven-vs-gradle-801fde21af80
https://www.baeldung.com/maven-goals-phases
https://www.baeldung.com/maven-goals-phases

Bibliography

21. Common Application properties. Spring Boot Reference Documentation
[online] [visited on 2020-05-17]. Available from: https : / / docs .
spring.io/spring-boot/docs/current/reference/html/appendix-
application-properties.html.

22. KOTHAGAL, Koushik. JUnit 5 Basics 1 - Introduction and agenda.
In: Youtube [online]. 2019 [visited on 2020-05-21]. Available from:
https : / / www . youtube . com / watch ? v = 2E3WqYupx7c & list = PLqq -
6Pq4lTTa4ad5JISViSb2FVG8Vwa4oc. Free Java and JavaScript Courses
and Tutorials.

23. CHACON, Scott; STRAUB, Ben. Pro Git: EVERYTHING YOU NEED
TO KNOW ABOUT GIT. In: New York: apress, 2014, vol. 2, p. 31. ISBN
978-1-4842-0076-6.

24. SITAPARA, Jay. Data Management Patterns for Microservices Architec-
ture. DATAVERSITY Education [online] [visited on 2020-05-17]. Avail-
able from: https : / / www . dataversity . net / data - management -
patterns-for-microservices-architecture/#.

25. SALERNO, Rafael. Get to Know Netflix’s Zuul. DZone [online] [vis-
ited on 2020-05-25]. Available from: https://dzone.com/articles/
spring-cloud-netflix-zuul-edge-serverapi-gatewayga.

26. Introduction to JSON Web Tokens. JWT [online] [visited on 2020-05-25].
Available from: https://jwt.io/introduction/.

27. ROSSEL, Sander. Continuous Integration, Delivery, and Deployment:
Reliable and faster software releases with automating builds, tests, and
deployment. In: Birmingham: Packt Publishing, 2017, chap. 1: Contin-
uous Integration, Delivery, and Deployment Foundations. ISBN 978-1-
78728-661-0.

28. CONTINUOUS INTEGRATION ESSENTIALS. CodeShip [online]
[visited on 2020-05-26]. Available from: https : / / codeship . com /
continuous-integration-essentials.

29. Pipeline. Jenkins [online] [visited on 2020-05-31]. Available from: https:
//www.jenkins.io/doc/book/pipeline/.

30. MATAM, Sai; JAIN, Jagdeep. Pro Apache JMeter: Web Application
Performace Testing. In: New York: apress, 2017. ISBN 978-1-4842-2961-
3.

45

https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://www.youtube.com/watch?v=2E3WqYupx7c&list=PLqq-6Pq4lTTa4ad5JISViSb2FVG8Vwa4oc
https://www.youtube.com/watch?v=2E3WqYupx7c&list=PLqq-6Pq4lTTa4ad5JISViSb2FVG8Vwa4oc
https://www.dataversity.net/data-management-patterns-for-microservices-architecture/#
https://www.dataversity.net/data-management-patterns-for-microservices-architecture/#
https://dzone.com/articles/spring-cloud-netflix-zuul-edge-serverapi-gatewayga
https://dzone.com/articles/spring-cloud-netflix-zuul-edge-serverapi-gatewayga
https://jwt.io/introduction/
https://codeship.com/continuous-integration-essentials
https://codeship.com/continuous-integration-essentials
https://www.jenkins.io/doc/book/pipeline/
https://www.jenkins.io/doc/book/pipeline/

	Introduction
	Services collaboration
	HTTP
	Network communication
	Service discovery

	Fault tolerance and resilience
	Timeouts
	Retries
	Circuit Breaker
	Deadlines

	Testing
	Monolithic testing
	Microservices testing

	Advantages of the microservice architecture
	Distributed work
	Scalability
	Deployment
	Fault tolerance and resilience

	Disadvantages of the microservice architecture
	Complexity
	Culture
	Security
	Communication

	Practical part
	Design
	Technologies
	Data layer
	Implementation

	Conclusion
	Acronyms
	Contents of enclosed CD
	Bibliography

