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Instructions

The task is to simulate selected multi-agent pathfinding (MAPF) algorithms on real robots. It is expected
that a group of faculty's OZOBOTs will be used for simulation. The important challenge is how to adapt
existing algorithms for the laboratory case of the multi-agent pathfinding problems for real robotic
hardware as we expect that the capabilities of OZOBOTs are limited. A direction we would like to
investigate is an on-line drawing of the environment and the planned path on the screen so that robots can
use their build-in localization functions when moving on the surface of the screen. The student should
complete the following tasks:

1. Study relevant literature on multi-agent pathfinding with a special focus on pathfinding in a physical
environment.
2. Explore the hardware and software capabilities of OZOBOTs.
3. Find a technique on how to implement the selected algorithm for a group of OZOBOTs.
4. Perform experimental evaluation and simulations.
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Abstract

The simulation of multi-agent pathfinding solutions is essential for research
but also in educational demonstrations. Most of the time, the simulation is
only displayed on a screen without the use of robotic agents. If robots are
used, they get a sequence of commands they need to execute, or they receive
the commands gradually, to follow their planned paths correctly. This work
proposes a novel approach to simulation of centralized multi-agent pathfinding
algorithms on physical agents called ESO-Nav. In this approach, the agents
are not part of the planning process, nor do they have any information about
their paths. The agents have a simple predetermined behavior in an envi-
ronment and navigate in it based on the environment outputs. A working
prototype of a simulator that utilizes this novel approach was implemented
for a group of Ozobot Evo robots.

Keywords multi-agent pathfinding, MAPF, simulation, navigation by en-
vironment outputs, centralized algorithms, ozobot, real robot, grid maps
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Abstrakt

Simulace řešení multi-agentího hledání cest je nezbytná pro výzkum, ale také
pro demonstrace v akademickém prostředí. Většinou se simulace pouze zob-
razuje na obrazovce bez použití robotických agentů. Používají-li se roboty,
obdrží posloupnost příkazů, které potřebují provést, nebo příkazy obdrží po-
stupně, aby správně sledovaly své naplánované cesty. Tato práce navrhuje
nový přístup k simulaci centralizovaných multi-agentných algoritmů pro hle-
dání cest na fyzických agentech s názvem ESO-Nav. V tomhle přístupu agenti
nejsou součástí plánovacího procesu, ani nemají o svých cestách žádné infor-
mace. Agenti mají jednoduché předdefinované chování v prostředí, v kterém
navigují na základě jeho podnetů. Pro skupinu robotů Ozobot Evo byl imple-
mentován funkční prototyp simulátoru, který využívá tento nový přístup.

Klíčová slova multi-agentní hledání cest, MAPF, simulace, navigace po-
mocí výstupů prostředí, centralizované algoritmy, ozobot, skutečný robot,
mřížkové mapy
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Introduction

Multi-agent pathfinding problem is a task of finding paths for multiple agents
from their initial positions to their goal positions while ensuring that the
agents do not collide at any point in their path execution. Due to its real-
world applications, multi-agent pathfinding has been deeply researched topic
over recent years. New variations of this problem, as well as approaches to
solving them, emerged, and new solving algorithms have been designed.

However, most of these solvers are tested and benchmarked in the virtual
environment of the computer’s memory, where there are no moving parts in-
volved, nor any laws of physics affecting the agents. Even though this type
of simulation is great for theoretical research and agile solver benchmarking,
it might not be the most exciting for students or someone interested in un-
derstanding this topic. Moreover, it is far from using physical robots, which
usually requires a fundamentally different approach to solving multi-agent
pathfinding problems.

This thesis aims to test a new approach to simulating the existing multi-
agent pathfinding algorithms using small robots. A group of Ozobots was
chosen for this task. If this approach proves capable of simulating multi-agent
pathfinding sufficiently, it could be utilized by different groups of people. It
will mostly help educators on their mission to showcase multi-agent pathfind-
ing more entertainingly, but can also be beneficial for researchers. They will
be able to simulate their findings and theoretical approaches in the physical
world, to improve their methods before utilizing the expensive machinery for
which their solution is intended. Hopefully, this approach will also unlock
new research paths that are yet to be explored.

Aim of the thesis
The main objective of this thesis is to create a prototype of a novel simulation
approach that is intended for simulation of centralized multi-agent pathfinding
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Introduction

algorithms on physical robots like Ozobots. This objective can be broken down
to several tasks like so:

• Explore Ozobots and their capabilities.

• Explain the selected approach and compare it to the already existing
work.

• Create a simulation prototype.

It is also important to mention that this thesis does not aim to develop a new
multi-agent pathfinding algorithm, nor modify existing algorithms to work
with real robots.

Expected outcome
The hypothesis is that the novel simulation approach proposed in this thesis
will prove to be versatile enough to simulate various types of multi-agent
pathfinding problems.

Structure of the thesis
The thesis firstly provides the reader with some theoretical background in the
first chapter. The second chapter explains Ozobots and their capabilities, and
how their behavior can be altered via their supported coding techniques. It is
a selection of valuable information from the Ozobot documentation, but also a
summary of crucial findings gathered from testing and playing with Ozobots.
The third chapter describes the chosen approach and compares it to previous
similar work. The chapter also anticipates some problems that might arise
with the selected approach. The fourth chapter is dedicated to the realization
of the simulation. All modules, as well as their interactions, are outlined, and
the simulation is iteratively refined. At the end of the chapter, the final version
of the simulator is presented. The fifth chapter then performs and evaluates
experiments on this simulation prototype. Lastly, the conclusion sums up
the work and findings of the thesis, evaluates the completion of goals, and
proposes future steps or research.
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Chapter 1
Theoretical background

In this chapter, the reader is provided with the required theoretical back-
ground concerning the task at hand. Firstly, a selection of terms from graph
theory is explained, and then the multi-agent pathfinding (MAPF) problem
can be formalized. Later sections compare different approaches to defining
and solving of MAPF problems, discuss complications that come with the real-
world application of MAPF, and present two state-of-the-art MAPF solvers.

1.1 Graph theory
Since MAPF problems are usually modeled on graphs, and some of the solving
approaches extensively use the tools and methods of graph theory, it would
be helpful that the reader was familiar with some of the terms that will be
used in this work. Because this thesis does not exploit any MAPF approach
or algorithm to great detail, it will be satisfactory to familiarize the reader
with only a handful of basic terms. Additional concepts can be found in [1],
from where most of the following definitions are taken.

1.1.1 Basic terminology
1.1.1.1 Graph

A graph1 is the fundamental concept of graph theory. In the most common
form, it is defined as an ordered pair G = (V, E) of sets such that E ⊆ [V ]2,
where:

• V is a non-empty finite set of vertices2 of the graph G.

• E is a set of edges of the graph G.

1Usually meant as an undirected graph, but the word “undirected” is omitted.
2Sometimes also referred to as nodes.
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1. Theoretical background

0

1 2 3 4

5
(a) Undirected graph G

0

1 2 3 4

5
(b) Directed graph H

Figure 1.1: Example of undirected and directed graphs

As denoted by E ⊆ [V ]2, E is a subset of all 2-element subsets of V .
In other words, edges are unordered pairs of vertices and an edge {x, y} is
usually written as xy. Two vertices are called adjacent or neighboring if they
are connected with an edge. The vertex set of a graph G is referred to as
V (G) and its edge set as E(G).
1.1.1.2 Directed graph

A directed graph is very similar to the undirected one, except for edges being
directed and usually represented as ordered pairs of vertices. Formally, the
directed graph is an ordered pair G = (V, E) together with two maps, init ∶
E → V and ter ∶ E → V , assigning to every edge an initial vertex init(e) and
a terminal vertex ter(e).
1.1.1.3 Graph visualization

Graphs are usually pictured by drawing a dot for each vertex and connecting
pairs of these dots with a line3 if the corresponding vertices form an edge. An
example of undirected graph

G = ({0, . . . , 5}, {{0, 2}, {0, 3}, {1, 3}, {2, 3}, {3, 4}, {3, 5}})
can be found in Figure 1.1a and an example of directed graph

H = ({0, . . . , 5}, {(0, 1), (2, 0), (2, 5), (3, 2), (3, 4), (4, 3), (5, 3)})
in Figure 1.1b. Often, there are many ways of picturing the same graph, and
how the dots and lines are drawn is considered irrelevant. The most important
information is which pairs of vertices form an edge and which do not.

3For directed graphs, an arrow is used.

6



1.1. Graph theory

1.1.1.4 Subgraph

Let there be two graphs G = (V, E) and G
′ = (V ′

, E
′). If V

′ ⊆ V and E
′ ⊆ E,

then G
′ is a subgraph4 of G, written as G

′ ⊆ G.

1.1.2 Graph types
There are different types of graphs, each having their specific properties and
uses. For this thesis, however, the most relevant graphs are a path and a
two-dimensional grid graph.

1.1.2.1 Path graph

A path is a non-empty graph P = (V, E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk} ,

where the xi are all distinct. A path is often referred to by the sequence of its
vertices, written as P = x0x1 . . . xk, and called as a path from x0 to xk. The
number of edges of a path is its length, and the path of length k is denoted
by P

k.

1.1.2.2 Two-dimensional grid graph

An n-dimensional p0–p1–. . .–pn-grid graph can be defined as a product of n
paths P

p0 , P
p1 , . . . , P

pn . The definition of a 2-dimensional grid graph [2] needs
to be slightly modified for more convenient use in this thesis. This modification
will prove useful later when working with grid size and vertex positions.

A two-dimensional grid graph5
Gm,n is a product of two paths P

m and
P

n, written as Gm,n = P
m □ P

n. Note that in this text, the grid graph Gm,n

will be referred to as x× y grid, where x = m+ 1 is the width of the grid, and
y = n+1 is the height of the grid. A 4×3 grid is pictured in Figure 1.2. When
referencing a specific vertex, notion (x, y) will be used, where x is the column,
and y is the row of the grid. Both coordinates start at 0. For example, the
index of vertex (0, 0) from Figure 1.2 is 0, and vertex 6 is at position (2, 1).
1.1.3 Searching in graphs
From the algorithmic point of view, searching in graphs is a well-researched
problem with countless applications in computer science and the real world.
There are numerous graph search algorithms, from simple graph traversals
algorithms like Depth-first search (DFS) and Breadth-first search (BFS), to more
sophisticated ones like the Bellman-Ford algorithm or Dijkstra’s algorithm. All

4And G is a supergraph of G
′.

5From now on, only “grid graph” will be used.
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1. Theoretical background

0 1 2 3

4 5 6 7

8 9 10 11

Figure 1.2: Grid graph G3,2

of these algorithms can be found in [3], and all can be used for finding a path
between two vertices in a graph. From the set of graph search algorithms,
A* algorithm [4] and its modern variations are extensively used for solving
pathfinding problems.

1.1.3.1 Pathfinding

A pathfinding problem [5, 6, 7] is closely related to the shortest path problem,
which is defined in several variants in [3]. It is a problem of finding a path
between two points, often vertices in a graph, such that the distance or cost6

is minimized. This problem can represent a situation where an agent wants to
move from its current position to its goal destination as efficiently as possible.
The agent can be a person, a robot, or an entity in a video game. Pathfinding
problems are being solved continuously all over the world, for example, in
online maps.

1.2 Multi-agent pathfinding
Multi-agent pathfinding [8, 9, 10] is a generalization of the pathfinding prob-
lem from Section 1.1.3.1 for multiple agents with distinct positions and des-
tinations. It can be inviting to divide such a problem into a set of simple
single-agent pathfinding problems, solve each of them using one of the graph
searching algorithms mentioned in Section 1.1.3, and execute the planned
paths simultaneously. However, this approach does not take into account
other agents and their positions in time, resulting in unwanted collisions.
Therefore, solving MAPF problems requires different techniques and modi-
fied algorithms.

At the beginning of this section, a MAPF problem is formalized. Then
some of the variations and state-of-the-art approaches are compared, and

6In graphs where the edges are weighted.
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1.2. Multi-agent pathfinding

lastly, some MAPF complications that arise from the real-world applications
are mentioned.

1.2.1 Problem formalization
In [11] and later in [12], Surynek provides a formal definition of two motion
problems on a graph. First, he formalizes the problem of pebble motion on
a graph [13, 14, 15], which is also known as the sliding box puzzle, and its
best-known variant is the 15-puzzle. He then provides a definition of the multi-
robot path planning7 problem [16, 17], representing a relaxed variant of the
pebble motion problem. Both problems are defined within an abstraction of
environments being modeled as undirected graphs. Each vertex of these graphs
is occupied by at most one agent, and agents can move between vertices along
the undirected edges. The definition of the multi-robot path planning problem
can be viewed as a formal definition of classical MAPF.

Definition (problem of multi-robot path planning [11]). Let G = (V, E)
be an undirected graph. Next, let R = {r1, r2, . . . , rv} where v < ∣V ∣ be a set of
robots. The graph models an environment in which the robots are moving. The
initial configuration of the robots is defined by a uniquely invertible function
S

0
R ∶ R → V (that is, S

0
R(r) ≠ S

0
R(s) for every r, s ∈ R with r ≠ s). The goal

configuration of the robots is defined by another uniquely invertible function
S
+
R ∶ R → V (that is, S

+
R(r) ≠ S

+
R(s) for every r, s ∈ R with r ≠ s). A problem

of multi-robot path planning is the task to find a number µ and a sequence
SR = [S0

R, S
1
R, . . . , S

µ
R] where S

k
R ∶ R → V is a uniquely invertible function for

every k = 1, 2, . . . , µ. The following conditions must hold for the sequence SR:

(i) S
µ
R = S

+
R; that is, all the robots reach their destination vertices.

(ii) Either S
k
R(r) = S

k+1
R (r) or {Sk

R(r), S
k+1
R (r)} ∈ E for every r ∈ R and

k = 1, 2, . . . , µ − 1; that is, a robot can either wait in a vertex or move
to the neighboring vertex at each time step.

(iii) If S
k
R(r) ≠ S

k+1
R (r) (that is, the robot r moves between time steps k and

k + 1) and S
k
R(s) ≠ S

k+1
R (r)∀s ∈ R such that s ≠ r (that is, no other

robot s occupies the target vertex at time step k), then the move of r at
the time step k is called to be allowed (that is, the robot r moves into an
unoccupied neighbouring vertex - a leading robot). If S

k
R(r) ≠ S

k+1
R (r)

and there is s ∈ R such that s ≠ r ∧S
k
R(s) = S

k+1
R (r)∧S

k
R(s) ≠ S

k+1
R (s)

(that is, the robot r moves into a vertex that is being left by the robot s)
and the move of s at time step k is allowed, then the move of r at the
time step k is also allowed. All the moves of robots at all time steps must

7In literature, the same concept can also be referred to as cooperative pathfinding (CPF)
or MAPF, as it is usually used today.
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1. Theoretical background

be allowed. Analogically, this condition, together with the requirement on
unique invertibility of functions forming SR, implies that no two robots
can enter the same target vertex at the same time step.

The instance of the problem of multi-robot path planning is formally a
quadruple Σ = (G, R, S

0
R, S

+
R). The solution of the problem Σ will be sometimes

denoted as SR(Σ) = [S0
R, S

1
R, . . . , S

µ
R].

If the multi-robot path planning problem is viewed as a MAPF problem,
the robots are the agents8. In Figure 1.3, a simple MAPF problem instance
is depicted. The number µ in the definition is called the makespan [11] of
the solution. Makespan is the number of time steps required for all agents
to reach their goal destinations, and it is one of the most common objective
functions that is used to evaluate MAPF solutions. Another conventional
objective function is the sum of costs [18, 19], which is the sum of time steps
required by each agent to reach its target.

At each time step of the solution, every agent has two possible actions
from which it can choose. The agent can either wait in its current vertex or
move to one of the neighboring vertices if the move is allowed. In classical
MAPF, these are the only two actions that agents can perform. The solution
of a MAPF problem can also be represented as a sequence of moves for each
agent. These sequences of actions lead the agents through the graph from their
initial configuration to their goal configuration. Note that the definition does
not prohibit agents from staying in the same vertex for several time steps, nor
to visit one vertex multiple times. Therefore, an agent’s path is not necessarily
a path subgraph in the underlying graph that models the environment.

The problem of pebble motion on a graph is almost the same as the multi-
robot path planning problem. It has one additional constraint, which is that
agents can enter only currently unoccupied vertices. In other words, moving
into a vertex, from which another agent is leaving, is not considered an allowed
move. This constraint can create delays in the plans of the agents if they follow
the same path. A valid solution for an instance of the pebble motion problem
would also be a correct solution for the multi-robot path planning problem
on the same graph and with the same agent configurations. Although this
solution could have a larger makespan and thus be less efficient, it is considered
to be more robust [20].

A solution of a MAPF problem is valid if all the moves in every time step
are allowed and if no collision occurs. Different types of collisions can be
defined for different variations of MAPF problems. In this case, a collision
would occur if two agents try to enter the same vertex9, which is prevented
by definition. Another type of collision occurs when two agents attempt to

8For the problem of pebble motion on a graph, agents would be pebbles.
9This is referred to as a vertex collision.

10



1.2. Multi-agent pathfinding

Figure 1.3: MAPF problem instance with two agents (cars), moving from their
initial positions (left) to their goal positions (right)

use the same graph edge at the same time step10, usually because they plan
to swap positions.

1.2.2 Variations
All the variations of MAPF problems and approaches to solving these prob-
lems can often be divided into different categories. Each developed solver or
set of algorithms can then choose to solve a specific problem, which can be
defined with a subset of these categories. This section presents a few of these
categorizations of MAPF.

1.2.2.1 Optimal and suboptimal approach

The apparent goal of MAPF solvers would be to minimize the objective func-
tion and thus find the best possible solution for a given problem. Such a
solution that is valid, and there is no other solution of lower cost, is called
an optimal solution. Many of the state-of-the-art MAPF solvers are optimal,
meaning that they yield optimal solutions to given MAPF problems. For ex-
ample, Operator Decomposition and Independent Subproblems [19], Increasing
Cost Tree Search (ICTS) [21], Conflict-based Search (CBS) [22], and boolean
satisfiability problem (SAT) based MAPF solvers like solvers from [23] and
MDD-SAT [24], are all optimal solvers. However, finding an optimal solution
to this type of problem is known to be NP-hard [15, 25, 26], so these optimal
solvers are not very scalable. With the increasing number of agents and large
environments, these solvers usually take too long or fail to find a solution.

However, often it is not required to find an optimal solution, but a near-
optimal solution that can be found quickly is needed. It is possible to sacri-
fice some of the solution quality in exchange for fast or efficient computation.

10Usually referred to as an edge collision.
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Therefore, several suboptimal solvers that yield suboptimal solutions to MAPF
problems are available. These solvers are usually relaxations or other modifi-
cations of existing optimal solvers, like suboptimal CBS [27] and suboptimal
SAT solver [28]. Sometimes, it is needed to guarantee some quality of a subop-
timal solution, or the user wants to experiment with the trade-off of solution
quality and computational load of the solver. Bounded suboptimal solvers
can take a parameter that represents the guaranteed quality of the solution
compared to the cost of an optimal solution.

1.2.2.2 Centralized and decentralized setting

MAPF solvers can run in two distinct settings: centralized and decentralized.
In the centralized setting, the solver gets an instance of a MAPF problem and
performs a global search of the state space to find a solution from the initial
state to the goal state. The agents, if they were some entities that were then
to execute the found solution, would each get their pre-planned path from
this central solver. Performing a centralized search of a state-space can be
computationally exhaustive for large instances of a MAPF problem. There
are many MAPF algorithms with this centralized setting, and they can be
divided into three categories: search-based, reduction-based, and rule-based.
In the search-based category are algorithms like CBS [22] and its improved
variants [29], ICTS [21], or other algorithms based on A*. Reduction-based
solvers reduce the MAPF problem to another known problem that already
has a high-quality solver. These solvers utilize reduction to SAT problems
[23], answer set programming [30], or integer linear programming [31]. Rule-
based solvers work with specific agent movement rules, and examples are the
algorithms Push-and-Swap [32], BIBOX [33], and Push-and-Rotate [34].

On the other hand, the decentralized solvers decompose the problem into
a set of smaller searches, which provides better scalability for larger instances
of MAPF problem. However, these solvers usually do not guarantee to find
a solution, and the plans can be far from optimal. Examples of decentralized
algorithms would be Local Repair A*, Cooperative A*, Windowed Hierarchical
Cooperative A* [9], Flow Annotation Replanning [10], and MAPP algorithm [35].

1.2.2.3 Discrete and continuous approach

Almost all of the previous MAPF research and proposed solvers were built
on top of several assumptions about time. First, time is not continuous, but
rather discretized into time steps. Second, all actions that agents perform
take the same amount of time to execute, precisely one time step. Moreover,
a significant portion of the research was done on simple grid graphs, and agents
are usually entities of the same shape and size that fit into one graph vertex.
In [36], the authors propose a Continuous-time Conflict-based Search (CCBS)
algorithm that supports continuous time and agent actions that are of different
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durations. Agents even can have different speeds. The collision detection is
geometry-aware so that the algorithm can handle agents of different sizes and
shapes. The algorithm is optimal and complete.

1.2.2.4 Other approaches

Some other approaches have also been researched over the last years. Opposed
to the cooperative pathfinding (CPF) [9, 37], which is the same concept as the
classical MAPF, where agents aim to fulfill one global goal11 as effectively as
possible, there is adversarial cooperative pathfinding12 (ACPF) [38, 39]. In
ACPF, agents are divided into a finite number of teams that alter in turns
between time steps. The goal of ACPF is to find a winning solution for one
selected team of agents that reacts to moves of other, adversarial, groups of
agents. Additionally, ACPF can follow different tactics like offense or de-
fense. The adversarial approach to MAPF provided additional opportunities
for future research.

Another interesting variation of MAPF is multi-agent evacuation (MAE),
or evacuation planning. The goal in MAE is to move agents from a danger
zone into a safe zone. Agents usually do not have their specified goal positions,
meaning that they can finish at any location in the safe area, but they should
not prevent other agents from entering the zone. One of the recently published
MAE algorithms is Local Cooperative Multi-agent Evacuation [40].

1.2.3 Real-world complications
MAPF has many real-world applications in robotics [41], warehousing [42],
transport [43], or video games [44, 45], and each of the possible applications
most likely has its specific solution. However, most of the MAPF research
is done in theory and works within a specified abstraction. Unfortunately,
between theoretical study and real-world MAPF problems, there is a gap
that often needs to be overcome in order to apply existing solutions to these
situations. This gap is mainly a product of the abstraction used in MAPF,
which usually does not correspond to reality.

The environment is usually modeled as an unordered graph or a tiled grid.
Even though this can often be sufficient even for a real-world scenario, the
reality is not generally that easy to model. For example, maps in some video
games can benefit from not being grid-based but instead use polygons [44].

There are several assumptions for the agents in MAPF. Point agents are
usually used, where they are of the same size and shape and occupy a single
point in the environment representation. However, physical agents are geo-
metrical. They have their specific form, and they can collide in many differ-

11That is usually reaching their specified destinations in the environment.
12Adversarial cooperative pathfinding can also be referred to as adversarial pathfinding

or adversarial MAPF.
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ent ways. Different agent representation and collision detection are therefore
needed if pursuing a more realistic model. The CCBS algorithm mentioned in
Section 1.2.2.3 tries to combat this with supporting agents of different shapes
and using geometry-aware collision detection. Also, a study [46] solely around
this concept of geometrical agents was done. In that work, authors refer to
such agents as large agents, and they formalize and study a MAPF for large
agents, then propose a new algorithm for this problem.

The time assumptions mentioned in Section 1.2.2.3 are also a problem.
Actions of mechanical agents do not usually take the same time, and they do
not merely snap between positions in the environment instantaneously. The
agents require continuous movement to reposition. Continuous MAPF can
adequately accommodate this problem, but also other approaches might suf-
ficiently simulate the fluid transfer of agents. For example, solutions that are
finely discretized based on the agent movement and wait times, or that use
weighted graph edges as a representation of different time durations may imi-
tate continuity. Another assumption of abstract models is that all agent move-
ments are synchronous, but in reality, there can be many factors that might
introduce desynchronization into the plan execution. One of these factors is
the mentioned variety of move durations. Because every agent is executing
a different sequence of actions, their movements are desynchronized quickly.
Fortunately, this factor can be mitigated by using a suitable abstract solver,
but many factors cannot be anticipated. Some kind of monitoring of the ex-
ecution is needed, when weather, terrain, or other unexpected circumstances
might cause desynchronization.

It is essential to mention that a collision of agents in the real world could
damage them or have other real-world consequences. Moreover, the ability
of an agent to follow the planned path successfully can be dependant on the
environment or its hardware. The plans should, therefore, account for un-
expected mistakes and delays to prevent unanticipated collisions. For this,
k-robustness [20] can be introduced to the plan. A k-robust plan, besides the
classical MAPF plan, requires that after an agent leaves a position, no other
agent can enter it for the next k time steps. If agents were to move in a
train-like formation, there would be empty spaces between them.

In classical MAPF, the agents can move in any direction for every time
step of the plan. Even though this might be true for some agents like drones,
this is not true for most wheeled agents moving on the ground. When an
agent wants to change the direction of movement, it is required to rotate
what takes some time and adds to the plan desynchronization. These rotation
movements can also be incorporated in the MAPF abstraction, as proposed in
[47]. The authors suggest splitting position vertices into directional vertices,
which represent the direction the agent is facing. Edges between these new
vertices represent rotation actions and original edges movements between the
original vertices. This change also requires a modification in the solver, namely
in conflict detection. The study’s primary purpose was to test the behavior
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Algorithm 1: High-level search of CBS algorithm
Input: MAPF problem instance Σ

1 R.constraints ← ∅
2 R.solution ← paths from low-level search
3 R.cost ← cost(R.solution)
4 insert R into OPEN
5 while OPEN ≠ ∅ do
6 N ← node from OPEN with lowest cost
7 validate N.solution until a conflict is found
8 if N.solution has no conflicts then
9 return N.solution // it is a valid solution

10 C ← first conflict (ai, aj , v, t) found in N.solution
11 foreach a in {ai, aj} do
12 N

′ ← new constraint tree node
13 N

′
.constraints ← N.constraints ∪ {(a, v, t)}

14 N
′
.solution ← N.solution

15 update N
′
.solution for agent a with low-level search

16 if N
′
.solution was found then

17 N
′
.cost ← score(N ′

.solution)
18 insert N

′ into OPEN

of several defined MAPF models when executed on physical robots. The
experiments concluded that classical MAPF plans are not suitable for such
use, and some of the other proposed models yielded better results than the
classical one. Since this study used Ozobots to simulate the execution of the
plans, it is further discussed in Section 3.1.

1.2.4 Optimal centralized algorithms in discrete space

In its practical part, this work is utilizing only discrete centralized MAPF
algorithms that are optimal. In this section, two state-of-the-art representative
solutions are presented in a high-level overview, namely the principles of CBS
and SAT-based solver.

1.2.4.1 CBS algorithm

The Conflict-based Search [22] is a two-level optimal MAPF algorithm that de-
composes the MAPF problem into several constrained single-agent pathfinding
problems that are easier to solve. The algorithm is composed of two searches:
high-level search and low-level search.
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The high-level search is performed on a binary constraint tree that is ex-
panding during the search until a valid solution is found. Each node of the
constraint tree holds a set of constraints, a found solution, and a cost. All
constraints are tuples (ai, v, t), meaning that the agent ai cannot be at the
vertex v at time step t. Each node inherits the set of constraints from its
parent and adds only one extra constraint for a specific agent. The solution
in a node is a set of paths for all agents found by the low-level search. Each of
the paths is restricted by the constraints for the given agent. The cost of the
node is the cost of the found solution. In Algorithm 1, the pseudocode of the
high-level search of CBS is shown. At the beginning of the search, the root
of the constraint tree is initialized. The set of constraints in the root node is
empty, and the solution is a set of shortest paths for each agent. The tree
is searched in a best-first manner, meaning that in each iteration, the lowest-
cost node from the open nodes is processed and expanded. A solution of the
currently processed node is checked for conflicts between agents in their paths.
If there is no conflict, the solution is valid, and these paths are returned. If
a conflict is found, two new constraints are added to the constraint tree for
this conflict. The conflict is a tuple (ai, aj , v, t), meaning that both agents ai

and aj occupy vertex v at time step t. The node is split into two child nodes,
each introducing a new constraint for one of the conflicted agents and hold
an updated solution. For example, for agent ai, a new constraint (ai, v, t) is
added. Then the path of the agent ai from the previous solution is replanned
with the low-level search that uses the new set of constraints. If the low-level
search founds a valid path for this agent, the node is added to the set of open
nodes.

The low-level search performs a simple single-agent pathfinding search for a
given agent while making sure the solution does not break any constraints con-
cerning the agent. In this low-level of CBS, any optimal single-agent pathfind-
ing algorithm can be used. The constraints that the algorithm needs to handle
ensure that none of the previously-detected conflicts in the high-level search
is repeated in the new path.

1.2.4.2 SAT-based solver

The principle of reduction-based solvers is different from other approaches to
solving MAPF problems. The SAT-based solver [23, 24] transforms an instance
of a MAPF problem into a propositional formula. This formula is satisfiable
only if the MAPF problem is solvable and can be consulted with an already
existing state-of-the-art SAT solver. If the formula can be satisfied, and the
solver finds a satisfying assignment, the solution of the MAPF problem can
be reconstructed from this assignment. Therefore, the main challenge is the
encoding of the MAPF problem into a propositional formula. The benefit of
this approach is that if there is any progress in solving SAT problems, it can
increase the efficiency of solving MAPF problems.
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Algorithm 2: SAT solving framework for MAPF problems
Input: MAPF problem instance Σ

1 solution ← set of shortest paths for all agents
2 µ ← makespan of solution
3 while true do
4 F(µ) ← encode(Σ, µ)
5 assignment ← SAT-solver(F(µ))
6 if assignment ≠ UNSAT then
7 solution ← extract MAPF solution from assignment
8 return solution

9 µ ← µ + 1

The primary concept, allowing the encoding of a MAPF problem into a
propositional formula, is a time expansion graph (TEG) of the original graph
from the problem instance. The TEG is created by duplicating all vertices
from the original graph for all time steps from 0 to a given bound µ

13. This
can be imagined as a layered graph where each layer of vertices represents an
individual time step. Then all possible actions are represented by directed
edges between consecutive layers. An edge between corresponding vertices in
two layers represent a wait action, while an edge between neighboring vertices
in the layers represent a move action. This TEG is created for each agent.
In the encoding, a propositional variable is introduced for each of the vertices
of these new graphs. The variable is true if the agent occupies the vertex at
the time step that the variable represents. Similarly, each directed edge is
encoded, and other constraints are added so that the found satisfying assign-
ments correspond to a valid MAPF solution. However, because of the bound
µ of the TEG, the encoded formula can only be satisfied if a solution that
takes up to µ time steps exists. Note that this corresponds to the makespan
of the solution.

The pseudocode of an optimal SAT-based solving framework is in Algo-
rithm 2. The optimal solver operates in a way that repeatedly asks the SAT
solver, if a solution of a certain makespan, which is incremented in a loop,
exists. When it finally finds a solution, this solution has the lowest possible
makespan and therefore is optimal. This process could start from makespan
µ = 0, but that would be inefficient. First, a lower bound makespan of the
MAPF solution is determined, from which the incremental consulting begins.
This can be done by finding the optimal single-agent pathfinding solutions for
each agent, which can be done very efficiently. The makespan of the MAPF
solution cannot be lower than the longest path of these agents. For each

13We have to set a bound because if we were to duplicate the set of vertices to infinity,
we would run out of memory.

17



1. Theoretical background

makespan, the problem is encoded into a propositional formula F(µ). This
formula is consulted with the SAT solver, and an assignment is returned. If
the formula could not be satisfied, the makespan is incremented, and a new
formula is created. If a satisfying assignment has been found, the MAPF so-
lution is extracted from this assignment and returned. The framework, how
it is described in Algorithm 2, is not complete because if a solution to given
MAPF instance does not exist, the solver would never stop. The existence of
a solution is usually checked with another algorithm, for example, Push-and-
Rotate.
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Chapter 2
Ozobots

This chapter analyzes the Ozobot and its capabilities to a considerable depth.
The Ozobot, though it might seem like a simple line-following bot, is full of
sensors and functionalities. Should a group of Ozobots be used for a task like
a simulation of MAPF, all their capabilities need to be put into consideration.

Most of the information on how to use Ozobots can be found on the Ozobot
website [48]. Even a better source of guides and manuals is the Ozobot Class-
room [49], where a comprehensive training for educators can be accessed.
Although this would give an Ozobot user a complete overview of the basics,
the specific details are often hard to find, if at all possible. Therefore the
best way to learn about Ozobots and their capabilities is through testing and
playing with them.

2.1 What is Ozobot?
Ozobot is a small, award-winning robot developed by Evollve Inc., whose
primary goal is to inspire children to be creative with technology. With tens
of thousands of classrooms utilizing Ozobots, it is not only used for teaching

Figure 2.1: Ozobot Evo (photo from [50])
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Figure 2.2: Sensor layout of Ozobot Bit (photo from [52])

Figure 2.3: Sensor layout of Ozobot Evo (photo from [52])

computer science and coding, but also for demonstrating other theoretical
concepts. Ozobot is also great for creating games and puzzles that are being
shared through the Ozobot community.

At this moment, Ozobot can be bought in two versions: Ozobot Bit and
Ozobot Evo. The Ozobot Bit was created in 2014, and it is the older and sim-
pler version of the two bots. The creator of the Ozobot Bit has also written
a detailed guide for parents and teachers [51], containing setup and mainte-
nance instructions as well as short tutorials. Even though this guide is written
specifically for Ozobot Bit, most of the information applies to both versions of
Ozobot. Ozobot Evo, created in 2016, is very similar to its predecessor and can
do everything that Bit can. The main difference is that Evo is packed with
even more hardware, providing the user with more capabilities than the lighter
version of Ozobot. A visual breakdown of both Ozobot Bit and Ozobot Evo
can be found in Figures 2.2, 2.3, and 2.4.

Since the robots selected for this work are the Evo versions of Ozobot, the
text will only refer to the Ozobot Evo model, from now on. An image of the
Ozobot Evo can be found in Figure 2.1.
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Figure 2.4: Breakdown of Ozobot Evo (left) and Ozobot Bit (right) (photo
from [52])

2.2 Capabilities
This section provides an overview of the Ozobot Evo and its hardware with
a particular focus on the capabilities that it provides. The capabilities of the
robot are further discussed in more detail later in the section. The default
behavior of Ozobot can also be altered, and it can be done in two different
ways. The first one is using Color Codes that are covered in Section 2.3. The
second, more advanced, is coding in the visual programming editor OzoBlockly
that is covered in Section 2.4.

2.2.1 Hardware

The body of Ozobot has almost a shape of a spherical dome with a flat base
at the bottom. The diameter of the base and its height are around three cen-
timeters, making it a tiny robot. Evo is equipped with a considerable amount
of useful programmable sensors and other hardware inside its polycarbonate
protective shell.

The most crucial part that is providing Ozobot with the movement is its
motor and wheels. The wheels are shifted towards the back of the robot. That
makes some of its mass to rest on a small protrusion located in the front of
the base. The wheels have a rubber surface that makes it easier for the bot
to move on smooth surfaces like a tablet display. Ozobot turns by moving the
wheels separately at different speeds.

21



2. Ozobots

Under the base of the Ozobot are several line sensors arranged in an array
and one optical color sensor. The purpose of the line sensors is to detect lines
and intersections, so the robot knows what direction to follow or if it is time to
choose a new one. On the other hand, the color sensor can detect the color of
the surface on which the Ozobot is standing. The sensor can distinguish eight
different colors: red, green, blue, cyan, magenta, yellow, white, and black.
Ozobot classifies any color like one of these eight. For example, all shades of
red are classified as red color. However, a color like orange would be classified
either as yellow or red, depending on its shade. Ozobot is highly dependant
on the color sensor because it allows the robot to read Color Codes14, and
it is also used to load programs into the Ozobot’s memory15. Evo also has
four infrared proximity sensors: two in the front and two in the back. These
sensors can be used to detect an object as far as 10 centimeters from the robot.

The robot does not only have sensors for getting information from the
environment, but it also has a few output devices. Namely, it is a speaker
and seven LED lights: one on top, one in the back, and five in the front. Evo
can use the speaker to play any note from four octaves16, 128 MIDI notes, as
well as some prerecorded words or emotions. The lights are standard RGB
LEDs that can produce almost any color. The intensity spectrum of each color
component is scaled down from 0–255 to 0–127. That technically means that
only half of the colors can be reproduced, but a typical user will never notice.

Ozobot Evo is also equipped with Bluetooth, making it able to connect
to other devices. However, connecting to other devices is only useful with
a selection of applications that have been developed specifically for the bot.
Evo holds a built-in 135 mAh LiPo battery that can be charged with a micro
USB cable and provides the bot with enough power to run for approximately
60 minutes. This time is variable and depends on the selected brightness of
Ozobot’s LED lights, the usage of the speaker, and the surface the bot is
operating on. It is easier for the robot to move on a smooth display surface
than on a paper. Last, the bot has a power button located on the side that is
used not only for powering the robot on and off but also for running loaded
programs and calibrating the sensors.

In comparison with Ozobot Bit, Evo is more sophisticated. The lighter
version of Ozobot does not have Bluetooth, proximity sensors, nor a speaker,
and has only one LED light on top compared to seven that Evo has.

2.2.2 Movement and line following
Ozobot is very good at following lines, and it is the default functionality the
user gets every time the robot is turned on. However, the default behavior of
Ozobot is not as simple as following black lines on white paper. When turned

14Explained in Section 2.3
15Explained in Section 2.4
16Octaves 5, 6, 7, and 8.
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on, the bot does not move unless it founds a line to follow. When there is a
line under Ozobot, it follows it at a default speed of 30 m/s. The motor and
wheels provide the movement, and turning is executed by rotating both wheels
separately at different speeds. Thus Ozobot can also follow curved lines, turn
at intersections, or do a U-turn. When the bot finds itself at an intersection,
it chooses one of the possible directions17 at random, with all the possibilities
having the same probability of being chosen. It is important to know that
Ozobot does not register a 90-degree turn as an intersection. When the robot
finds an end of the line, it stops its motor. While following lines, Ozobot will
also read and execute Color Codes if found. Color Codes will be explained in
Section 2.3.

Ozobot can follow lines either on a paper or on display, and it can also
transfer between these two surfaces. If using a monitor, Evo behaves cor-
rectly on both matte and glossy types of display. Nevertheless, it is always
recommended to calibrate Ozobot before every use to ensure the correct func-
tionality of its optical sensors. This is especially true when there is a change
in the display brightness or the surrounding light conditions. The calibration
can be done in two ways. If a display is used for calibration, the user needs
to press and hold the power button for two seconds. The top light will start
flashing white, which signalizes that the bot needs to be put on a white back-
ground. The bot performs its calibration and signalizes a success by top light
flashing green. Red light signalizes a failed calibration. If a white paper is
used for the calibration instead, the user needs to draw a black circle slightly
bigger than the Ozobot and use it for the process. The steps are the same,
but this time the bot is placed on the black circle. The robot performs a full
rotation and exits the circle in order to calibrate.

Even though Evo might seem reasonably tolerant when it comes to the
quality of lines, there are a few recommendations to ensure the best accuracy.
The color of the following line does not matter as long as it contrasts enough
to the white background. The thickness and regularity of the line matter
the most, and the recommended thickness for the following line is around 5
millimeters. The bot will also follow thinner or thicker lines, but the problems
might come with turns and intersections, which might not be detected. The
same goes for lines of irregular thickness. The angle of a turn might also affect
the performance of the robot. Broad curves and 90-degree or wider turns work
perfectly. However, when using very sharp angles, the bot might not detect
the turn. The design of intersections is can also be crucial for Ozobot. The
intersections work the best when lines meet at a right angle. This is not always
necessary, but when more than four lines meet at a point, the chances are that
Ozobot will be unable to detect one or more of the directions.

Both movement and line-following behavior can be modified via OzoBlockly.
OzoBlockly will be explained in Section 2.4.

17Except for going back from where it came.

23



2. Ozobots

2.2.3 Lights and sounds
As mentioned in Section 2.2.1, Evo has one speaker and seven LED lights.
The bot is using these output components to express its personality or to re-
act to something. If the speaker is not muted, what can be done in the official
application for Ozobot Evo, it will make a sound every time turned on, cali-
brated, or if a program was successfully loaded into its memory. Nevertheless,
the capabilities of the speaker are beyond those few sounds. Via OzoBlockly
programming, the speaker can be used to play prerecorded words or different
notes. Evo can say any number between −127 and +127, each of the eight
supported colors, four directions, and four different emotions. Other emotions
and sounds are also available in the official application for Ozobot Evo.

Ozobot usually uses its lights to imitate the color of the surface on which
it is standing. The lights are also used for signalization. When a calibration
of optical sensors or program loading fails, the top light flashes red, and if
successful, it flashes green. The lights flash and change colors according to the
battery status when the robot is charging. Red color means low, green color
means almost charged. When the robot is fully charged, the flashing stops
and the color remains green. All lights except the back one are programmable
and can be accessed via OzoBlockly. The only purpose of the back LED light
is to signalize a low battery.

2.2.4 Object detection
Evo can use its proximity sensors to detect objects behind or in front of it.
By default, this function is disabled. Should there be an obstacle in front of
the robot, it will collide with the obstruction. However, all four proximity
sensors are programmable via OzoBlockly, so the user can use them if wanted.
Note that object detection works best on a flat, even surface. If the surface
is uneven, false detection might be triggered, but this can be suppressed by
configuring the sensitivity of the sensors.

2.2.5 Programmability
Due to the primary goal of Ozobot, programmability is an essential aspect
of the tiny robot. Almost all of its sensors and functionalities are accessible
to the user via a high-level abstraction. No knowledge in robotics is needed,
and people are encouraged to develop original games or applications for the
bot. There are mainly two ways to code with Ozobots: Color Codes and
OzoBlockly. Both of these methods will be explained in Sections 2.3 and 2.4.

2.2.6 Applications
There are currently three applications for Ozobot available for both Android
and iOS: Ozobot Bit, Ozobot Bit Groove, and Evo by Ozobot. The first two
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have been developed for Ozobot Bit and are not compatible with Ozobot Evo.
However, the Ozobot Bit application can be useful for Ozobot Evo to some
extent.

2.2.6.1 Application Ozobot Bit

This application is the main application for Ozobot Bit, and it is designed
for tablets only. There are several minigames and challenges available for
Bit. The most useful mode, which can also be useful for Evo, is Freedraw.
This mode allows the user to draw the following lines on the screen and to
use Color Codes. It is an excellent sandbox for exploring Color Codes and
testing the behavior of the robot. Besides the different modes available in
this application, there is also a feature called Ozobot Tuneup, where the user
can perform a sensor calibration, and set some options for Ozobot Bit, like
LED color or movement speed. From these features, only the calibration is
compatible with Evo.

2.2.6.2 Application Ozobot Bit Groove

Ozobot Bit Groove can be used to design a dance for Ozobot Bit. The dance
can be loaded into several Ozobots placed on the screen and executed si-
multaneously. The loading is done by Flash Loading, which is explained in
Section 2.4. The application is designed for tablets only and is not compat-
ible with Ozobot Evo at all. It also has the same Ozobot Tuneup feature as
application Ozobot Bit.

2.2.6.3 Application Evo by Ozobot

The application Evo by Ozobot is more sophisticated than the other two
applications, and it is incompatible with Bit. In this application, the user
can create or sign in with an account that is also used on the OzoBlockly
website [53]. Ozobots can be connected to the application via Bluetooth, and
all of them can be managed from here. Ozobot ownership can be claimed via
this account, and also Evo’s firmware updates are done from the application.
The user has the ability to rename the bot, mute its speaker and change the
brightness of its LEDs. Other Ozobot users with this account can be added
as friends.

The application can serve as a remote control for connected Ozobots. Most
importantly, the OzoBlocky environment is included, and the code can be
loaded and executed on multiple Ozobots at once, all done via Bluetooth
connection. Unfortunately, Ozobots need to have over half of their battery
charged in order to perform this loading, and the code cannot be loaded with
Flash Loading like it would be done in the browser version of OzoBlockly.
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BACKWALK

FAST GO LEFT GO RIGHT

U-TURN U-TURN (LINE END)

Figure 2.5: A selection of available Color Codes (adapted from [54])

2.3 Color Codes
The Color Codes are a unique way to tell Ozobot what to do, and it is referred
to as a screen-free coding because the standard way of using Color Codes is
with paper and markers. Since Ozobot has an optical sensor, it can recognize
different colors, and the concept of Color Codes is based around this capability.
A Color Code is a sequence of colors that the bot can read and react to during
its movement on a line.

Color Codes use four colors: red, green, blue, and black. They can be
drawn with classic markers, but are also available in a sticker format. The set
of Color Codes and what they do is predefined. There are almost 30 Color
Codes that Ozobot understands. They are mostly sequences of three or four
colored rectangles in a row. Only three of the Color Codes are sequences of
two colors and are only used at the end of a line. Some of the Color Codes are
also symmetrical, and Ozobot can read them from both sides. However, other
codes have different meanings depending on the side from which the Ozobot
reads them. A selection of Color Codes can be found in Figure 2.5. Note that
all Color Codes displayed in this work are read from left to right.

Just as for line quality, there are some recommendations for Color Codes
as well, to make sure Evo can read them correctly. The essential requirement
is to use white paper18 and black lines. Color Codes should not be placed on
colored lines or intersections. The different colors of a Color Code should not
overlap, nor should there be a white space between them. It is also advised
that all colored sections have the same size. If the colored sections are too
long, Ozobot will think that it is only a change of line color and will not
execute the command. If the sections are too short, some colors might not be
detected at all. The recommended length of a color section is the same as the
thickness of the following line.

2.3.1 Flashing Color Codes
A special kind of Color Codes can be found in the Freedraw mode of Ozobot Bit
application, where the user can also use the classic Color Codes while drawing.

18Alternatively, white background if using a display.
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When the Color Codes are placed on the screen, the user can tap on them, and
they change into a circular point that is rapidly changing colors. This type of
Color Codes has the same effect on Ozobot, but they work differently. First,
a different set of colors is used: red, blue, black, cyan, magenta, and yellow.
Each command is coded into a sequence of several colors, and the sequence is
flashing in a loop very quickly. However, Evo cannot directly drive through
this flashing point and read it. The robot needs to stop on the point for a
split second to read the whole sequence, only then the command is executed.

Unfortunately, this type of Color Codes has no documentation, and a
human eye cannot register the color sequence. However, if the flashing is
captured in slow-motion, the color sequence can be decoded. For example,
the U-turn Color Code has a sequence of red, yellow, cyan, and yellow colors.
When played in a loop at a rate of twenty flashes per second, Evo can easily
decode the command.

2.4 OzoBlockly
OzoBlockly is a visual programming editor, powered by Google’s Blockly li-
brary. The editor represents coding concepts as interlocking blocks, with
which a program for an Ozobot can be built. The program can then be loaded
into the bot’s memory either via Bluetooth or Flash Loading. OzoBlockly can
be accessed and used at the OzoBlockly website [53], but also in the official
Ozobot Evo application and the Ozobot Classroom. The editor provides five
skill levels, each adding more advanced coding concepts and block to use for
a program. The first level only has a few basic blocks with pictographs of
simple Ozobot moves, and the fifth level allows almost full control over the
robot and its components. The OzoBlockly editor can be connected with the
Ozobot account mentioned in Section 2.2.6, and up to twelve programs can
be saved for the account. The programs can also be saved as a file in XML
format and loaded back to OzoBlockly later on.

An example of a simple program in OzoBlockly editor can be found in
Figure 2.6. When an Ozobot starts the execution of this program, it changes
its top light color to cyan and starts its movement cycle. In each iteration, the
bot reads the surface color from the optical color sensor. If the surface color is
green, it changes the top light color to green, plays a happy emotion, breaks
out of the loop, and terminates the program changing its state to idle. If the
surface color is not green, the robot changes its top light color to red and plays
a sad emotion. At the end of the loop, it turns the top light back to cyan and
moves 20 millimeters forward. In other words, Ozobot moves forward until it
finds a green surface.

In this work, all OzoBlockly programs will be rewritten into text for read-
ability and consistency. The code for the program from Figure 2.6 is rewritten
in Algorithm 3. Note that it is almost the same syntax as with the OzoBlockly
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Figure 2.6: An example of Ozobot program in OzoBlockly editor

Algorithm 3: Ozobot program example
1 top light color ← aqua
2 while true do
3 if get surface color = surface color green then
4 top light color ← green
5 play happy
6 else
7 top light color ← red
8 play sad
9 top light color ← aqua

10 move distance: 20 mm speed: 30mm/s
11 terminate program and switch to idle

code blocks, and it can be used as pseudocode.

2.4.1 Flash Loading

Flash Loading is a method used for loading programs from OzoBlockly into the
Ozobot. Both Bit and Evo support this method, which is possible because
of their optical color sensors. First, the OzoBlockly program is encoded as
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a color sequence using all eight colors that the bot can identify19. The bot
is placed on a designated spot, where the sequence will be run. When the
loading starts, the sequence is flashing at a rate of twenty colors per second,
and Ozobot can read every color of the sequence, decode the program, and
save it into its memory. The length of the sequence depends on the complexity
of the program. Thus the loading can take anywhere between a few seconds
to several minutes. The same concept is used for Flashing Color Codes that
are explained in Section 2.3.

2.5 Limitations
Unfortunately, Ozobot cannot do everything, and some limitations come with
it. The following limitations might even have a significant impact on the
realizations of such tasks as MAPF simulation.

2.5.1 Ozobot communication
The Ozobot’s proximity sensor is a pair of infrared emitter and receiver. How-
ever, there is currently no way to establish an infrared communication between
two bots. Even though the proximity sensors are programmable, the only
functionality available is to detect objects and alter their sensitivity through
OzoBlockly. Evo also has Bluetooth to connect to other devices, but it is
impossible to make a connection between the bots and transfer data.

This lack of ability to communication means that a group of Ozobots
cannot share information about their status, nor the environment. Using
Ozobots for simulation of MAPF that allows agents to exchange information
about the environment, for example, is impossible.

2.5.2 Custom Color Codes
One of the unique features of Ozobot is the Color Codes. It provides an
ability to tell Ozobot what to do via the environment. The analogy of Color
Codes could be traffic signs, for example, and it could be beneficial for some
applications in artificial intelligence. However, the significant limitation is
that there are only a few predefined Color Codes, which are great for creating
Ozobot racing tracks, but not as much for research. Unfortunately, there is
currently no way of designing additional Color Codes.

2.5.3 OzoBlockly blocking operations
Most of the commands and operations in OzoBlockly are blocking, and Ozobot
executes them one by one, but not in parallel. This creates a limitation for

19The colors are: red, green, blue, cyan, magenta, yellow, white, and black.
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creating a modified line following behavior. While the bot is executing a com-
mand follow line to next intersection or line end, other commands
like read proximity sensor or get surface color cannot be executed. So,
for example, if a user wants the bot to use proximity sensors while moving,
parallelism has to be simulated by iterating through small movements and
proximity sensor readings. However, this is not always possible for every sce-
nario, and some other workaround might be needed.

2.5.4 Text-based programming language
Although a visual editor like OzoBlockly is good for comprehending basic cod-
ing principles, it is very inconvenient for the implementation of complicated
algorithms or the development of extensive programs. OzoBlockly editor can
show a preview of the current program in JavaScript syntax and even highlight
the code representation of the selected block. Unfortunately, there is no way
to write the code for Ozobot in JavaScript or other text-based programming
language and import it into OzoBlockly, or even straight to the Ozobot. Some
projects have tried or aim to develop a text-based interface for Ozobot pro-
gramming. However, they are usually intended for Ozobot Bit and therefore
support only basic commands for the bot. One of the used approaches is to
construct the programs in a specific XML format that OzoBlockly uses and
can be loaded into the editor.

2.5.5 Online reprogramming
The process of loading programs into the memory of a group of Ozobots is
relatively complicated. When using the Flash Loading, only a small number
of robots can be programmed at once, and they have to be manually moved
to loading spots on display. Even the execution of the program has to be
activated with the power button located on Ozobot. Bluetooth loading and
execution make this process easier. However, this method requires the Ozobots
to be almost fully charged. Otherwise, it is impossible to transfer the program
into their memory. This makes it impossible to reprogram Ozobots instan-
taneously while they are executing another program, or change instructions
they are following.

Let us assume a MAPF simulation solution that is transforming all planned
paths into a set of instructions for each Ozobot agent, is implemented. These
paths would be loaded into each agent and executed simultaneously. It would
be impossible for this solution to support replannings during the execution
because the reprogramming cannot be performed in such a manner.

2.5.6 Other limitations
There are also some other minor limitations, which should not affect scien-
tific research or algorithm development utilizing Ozobots. For example, the
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Figure 2.7: Kilobot (photo from [55])

inability to record custom sounds for the Ozobot to play, or that the back
LED light is not programmable.

2.6 Alternative robots
Ozobots were chosen to be used in this work mainly because the faculty pro-
vided a group of these robots for the study. Another critical factor is their
affordability compared to other similar robots, which makes it easier for other
researchers to get access to a group of these tiny bots. For some, a positive
fact might be that all capabilities of Ozobots are available without the need
for any knowledge in robotics or low-level programming. There are several
other robots available on the market and are also being utilized in research.
This section explores a few of these robots.

2.6.1 Kilobot

Kilobot was developed at Harward University and is now being produced by
K-Team. It is a small bot almost identical in size as Ozobot. Kilobot is being
used in research, especially in swarm simulation, because of its tiny size, low
price, and capabilities. The price of one Kilobot is about a seventh of the price
of Ozobot Evo. However, a group of ten Kilobots can be bought at the same
price as a group of twelve Evos. This is because a special Kilobot Controller,
which is used for controlling a group of Kilobots simultaneously, and a Kilobot
Charger are included in the package. The cost-efficiency of Kilobot shows
with big groups of robots. A photo of Kilobot can be found in Figure 2.7.
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Figure 2.8: Two Khepera IV robots with different expansion modules (photo
from [56])

The capabilities of Kilobot are more limited compared to Evo. The most
crucial capabilities are the ability to communicate with different Kilobots in a
seven-centimeter radius and a sense of distance from its neighbors. The robot
can also sense ambient light and has one RGB light. These capabilities make
Kilobot a perfect choice for simulating swarms, but MAPF would not be that
easy to simulate with them.

2.6.2 Khepera IV

Khepera is another robot for education and research that is being produced
by K-Team. This one, however, is a very robust and sophisticated robot. It
has a shape of a puck with a diameter of 14 centimeters, a height of almost 6
centimeters, and weighs over half a kilogram. This robot has a lot of sensors
and considerable computing power. The bot can use its sensors to follow lines
and detect obstacles as far as 25 centimeters from the robot. The robot has
speakers, microphones, and even an integrated color camera that can be used
for advanced object detection and recognition. The most interesting feature of
Khepera IV is its modularity. Different expansion modules can be added to the
robot, as shown in Figure 2.8. It can even move a payload of two kilograms.
The robot can run native on-board applications written in C/C++, which
makes it very convenient for development.

With its capabilities, it should be no surprise that Khepera IV is suitable
for experiments in navigation, artificial intelligence, real-time programming,
and MAPF simulation. However, one Khepera IV robot costs over three
thousand dollars, which makes any multi-agent system very expensive.
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Figure 2.9: E-puck 2 (photo from [57])

2.6.3 E-puck
Another robot very similar to Khepera would be E-puck. It is less complex
and smaller than Khepera, but still powerful enough to be used in the research
of multi-agent systems. Although it is considered a low-cost robot, its price
crosses a thousand dollars per unit. The E-puck robot is shown in Figure 2.9.
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Chapter 3
Simulation of MAPF

Simulation or execution of planned paths is beneficial in MAPF because it
helps the researchers to visualize the plans of their algorithms and solvers. An
algorithm usually yields a solution to a given problem in the form of position
or step sequences for all agents. For larger problem instances, it is often
impossible to imagine the movements of agents in the environment to confirm
the correctness of the found solution. Therefore, a simple animated simulation
can be used to aid debugging processes or demonstrations.

This chapter explores the simulation of MAPF, especially one particular
research that has been done with the use of Ozobots. Then a novel approach
that this work chose to analyze and realize is presented.

3.1 Previous work
MAPF simulators are not usually published along with the main work of a
research paper, but they can be used to create visualizations for a publication.
These are often simple programs that take a generated plan as input and
animate the agent execution on a computer screen. The simulator can be as
simple as a grid that swaps agent icons between neighboring cells in each time
step or as polished as a fully continuous animation of agent representations in
an aesthetically pleasing environment. Either way, the simulator is developed
on top of a similar abstraction as the solver, and the solution is rarely executed
with physical robots. Therefore, the practical usability of a given abstract
solution is usually unknown.

In [47], the authors used Ozobot Evo to simulate MAPF. That work aimed
to study how suitable MAPF plans are for a real-robot execution. First, the
authors had to figure out how to simulate abstract MAPF solutions with
Ozobots, and then how the quality of these plans affect the execution of the
bots. The study did not focus on solving MAPF problems, but rather on the
simulation and practicality of the obtained solutions. Therefore, an optimal
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SAT-based solver implemented in Picat programming language [58] was chosen
for the study. This choice was partially made because of the ability of this
solver to modify or extend the core model easily. The authors utilized this
feature and tested three different models20: classical, robust, and split actions
model.

The classical MAPF model is the same, as explained in Section 1.2. The
solution using this model was directly translated into the movement primitives
the robots can perform, such as rotation and movement. For the robust model,
k-robustness [20], which is mentioned in Section 1.2.3, was incorporated in the
model. The authors chose k to be 1, and the 1-robust plan was translated into
agent actions in the same way as for the classical model. The split actions
model that the authors presented in this study is mentioned as one of the
solutions to real-world MAPF complications in Section 1.2.3. This model rep-
resents directions and rotations of the agents as additional vertices and edges
in the environment representation. Because the study uses a grid graph as the
representation of the environment, each position vertex in the original graph
is split into four directional vertices. These new vertices represent the orien-
tation of the agent in the current position. Edges between these new vertices
represent a change of orientation of the agent, which is a result of rotation
action of the physical robot. The edges between neighboring positions in the
original graph remain and represent the movement of the robot. The collision
detection of the model had to be also modified. A collision would occur if any
two agents were to occupy any of the four directional vertices of a single po-
sition. The authors also presented two other modifications to this split model
in order to minimize the potential desynchronizations. These models were
tested on a single map with four Ozobot agents, and the experiments con-
cluded that the classical MAPF plans are not practical for physical robots.
Other proposed models proved to be more suitable for this type of robot, and
the solutions resulted in shorter execution times and fewer collisions.

For this work, it is more relevant to analyze how the simulation with
Ozobots was done. The approach that the authors chose is simple. They
have utilized the movement primitives that Ozobot provides through the
OzoBlockly editor. These primitives influenced the physical environment rep-
resentation as well as the simulation process. In Figure 3.1, a map of the
tested problem instance from the study can be found. The physical envi-
ronment was modeled as a grid of following lines, where each intersection
represented a position vertex in the abstract representation. The following
lines between intersections represent edges in the original abstract graph. If a
vertex is removed from the abstract representation, an intersection is removed
from the map. However, the adjacent lines cannot be entirely removed, be-
cause Ozobot might not recognize the neighboring positions as intersections.

20Six models were tested because the three mentioned models were also modified in order
to try keeping the agents synchronized.
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Figure 3.1: A map of the problem instance from [47] used to simulate MAPF
on Ozobots

This map would then be correctly scaled and printed on a paper for the
Ozobots. The thickness of the lines was chosen to be five millimeters, as
it is recommended, and the length oh the line between two intersections was
chosen to be 5.2 centimeters, so as the Ozobots could safely reside in neigh-
boring intersections. With this map representation, authors were able to use
Ozobot commands like follow line to next intersection or line end,
rotate left, or rotate right to navigate the environment.

The abstract plan obtained from the solver can be directly translated into
these primitives for Ozobots. The sequence of actions is then loaded into
Ozobot as a program. So technically, each of the robotic agents has memorized
its path for the execution. The solution can then be simulated by placing the
bots on their starting intersections in the correct orientation and running their
programs. The issue is that the plan has to start synchronously, meaning that
all agents have to start their program execution at the same time. With
Ozobots and their capabilities, there is no simple way of doing this in this
approach. It is unreliable to start the programs simultaneously by hand,
and the bots cannot communicate in order to synchronize their initial move.
The authors resolved this by using the proximity sensors of the robots at the
beginning of their programs. Before the simulation, obstacles are placed in
front of the bots to prevent their plan execution. When all agents are at their
position and ready to start the simulation, all obstacles are removed at once.
This workaround, however, still requires manual interference and can result
in minor desynchronization. Overall, this approach is minimal in terms of the
utilization of Ozobot capabilities and works well for the study.

Later in [59], the authors presented software allowing users to utilize this
simulation approach and to create their MAPF scenarios. The users can design
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their own MAPF instance, and the map can be printed or displayed on the
screen for the Ozobot execution. The system provides several MAPF models
and the ability to add custom models written in Picat programming language,
which are then used for solving the MAPF problems. The solutions found by
these models can be either visualized on the screen or exported as an Ozobot
program in XML format with user-specified configurations.

3.2 Novel approach
The previous solution from [47] and [59] mentioned in Section 3.1 is simple
and works fine for the comparison of MAPF models. However, because of how
that approach utilizes Ozobots, there is not much that can be done to enhance
the simulation or expand the usability to other MAPF variations. Moreover,
it has several issues or drawbacks that could be solved by using a different
simulation strategy. In this section, a new approach for MAPF simulation is
proposed, compared with the previous solution, and the previous drawbacks
are explained as well as how the new approach solves them. At the end of the
section, some problems that might arise with this approach are anticipated.

3.2.1 Navigation by environment surface outputs (ESO-Nav)
The main idea of this novel MAPF simulation approach is to have agents that
have predetermined behavior, and an environment that can output information
for the agents, affecting the behavior. The environment is a physical repre-
sentation of a given MAPF problem instance that can navigate the agents in
itself by showing them the planned paths as well as additional information.
The plans are obtained from a centralized MAPF solver and then processed
for the simulation in the environment. On the other hand, the agents need
to know how to read and translate the information outputted by the environ-
ment. Note that the agents do not need to know anything about their planned
paths and do not participate in the planning process. Therefore, they can be
simplistic and entirely modular to the multi-agent system. This means that
agents can participate in any problem instance simulation without changing
their programming.

In this work, the agents are Ozobots with their ability to follow lines, and
the environment is a computer or television screen. On the screen, a map of
a MAPF problem instance can be displayed, and the planned paths animated
for the robots. The behavior of the agents can be determined with a simple
OzoBlockly program loaded into each bot. This approach provides freedom of
creating a more sophisticated and highly customizable MAPF simulation. In
Chapter 4, a working prototype of a MAPF simulator using this approach is
implemented, and all aspects of this solution are explained in greater detail.
For the MAPF problem solving, a classical discrete centralized MAPF solver
will be used to showcase that it can also be simulated with this approach.
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ESO-Nav approach could also be used in a variety of real-life applications
like intelligent evacuation systems or transportation around amusement parks
or in buildings and warehouses. For example, let us have a shopping mall as an
environment with a floor that could display the following lines. A monitoring
system could determine the positions of individuals or groups of people in the
building. With a map of the mall and the positions of people and entrances,
a MAPF problem instance can be created. Such an instance can be solved
during an emergency. A centralized solver could find an optimal or near-
optimal evacuation plan that could be animated on the floor. In this scenario,
people are agents with behavior affected by stress and fear, which can lead to
disorientation and inability to solve problems. Therefore, they are limited to
follow only simple instructions that are provided by the environment.

3.2.2 Improvements from the previous approach

Most of the drawbacks of the previous approach came from how the Ozobot
capabilities were utilized. Another factor was that the agents had to memorize
the paths before execution. The novel approach solves some of these drawbacks
by using different simulation strategy. The previous issue with synchronization
of the execution start can be easily solved. Before the start of the simulation,
no paths are displayed on the map for the agents. They have nothing to follow,
and their behavior can initiate waiting in that situation. In the previous
solution, the map of the problem instance was constructed from the following
lines, which leads Ozobots into movement. This environment structure is also
hard to modify or extend to other variations of MAPF. In contrast, the ESO-
Nav provides more flexibility in environment representation and map design,
since the planned paths are only a piece of extra information on the map. The
novel approach can be, for example, used for simulating environments that are
not grid-based, and the paths could be continuous curves instead of straight
lines between positions.

The fact that the paths need to be loaded into the Ozobots before each
simulation makes the previous approach less efficient in transitions between
different problem instances simulations. Robots need to be manually repro-
grammed if the map changes, and that cannot be done instantaneously. In the
ESO-Nav approach, the robots can be quickly used on different maps without
changing their programming. The paths can even be replanned during the
execution without the agents noticing. This allows simulation of sub-optimal
MAPF solutions that are being optimized during the agent execution, or re-
planning can be performed if agents fail to follow their paths. Moreover,
different behaviors of agents can be tested and compared with this simulation
strategy.
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3. Simulation of MAPF

3.2.3 Expected problems
Most of the real-world complications from Section 1.2.3 are still concerning
this novel approach, but the complications can be mitigated by correct path
processing and outputting. Nevertheless, only the prototype constructed in
Chapter 4 will discover the potential issues and if they can be solved. The
agent collisions can still be an issue, even if a MAPF solver finds a valid solu-
tion. The environment needs to be designed so that agents can move around
each other without any contact. Incorrect path processing and outputting
can also introduce conflicts that are unanticipated and would interrupt the
simulation. The biggest challenge remains the fact that different robot move-
ments take different time durations, creating desynchronization in the plan
execution. However, the ESO-Nav approach with the use of Ozobots provides
different ways of solving this desynchronization issue without modifying the
MAPF solver nor the problem abstraction.
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Chapter 4
Prototype realization

In this chapter, a working prototype of the ESO-Nav approach to MAPF sim-
ulation that utilizes Ozobots is presented. The prototype can take a MAPF
problem instance in the form of a map and perform a simulation of the solu-
tion. In Section 4.1, the basic idea of the prototype functionality is described,
and all modules of the prototype and interactions between them are explained
in greater detail. In Section 4.2, several versions of the main simulation mod-
ule are incrementally improved. These versions gradually discuss and solve
different issues of the simulation process that arise from various Ozobot limi-
tations. Lastly, Section 4.3 presents the final version of the prototype.

4.1 Overview
The prototype application is written in Python and could be divided into
several modules that interact with each other during the simulation process.
Most of these modules should be easy to modify or extend to simulate different
MAPF models or situations. The program takes a map file that contains the
MAPF problem instance to be simulated. The problem is passed to a MAPF
solver, that yields a solution. This solution contains paths for all agents
that should be outputted to the environment. However, before this solution
is passed to the simulator, it might require some processing depending on
the MAPF solver used. The main simulator module then takes the obtained
solution and ensures a correct environment outputting for the agents.

4.1.1 Agents
This simulator prototype is specially built for Ozobot Evo robots, which are
used as agents in the system. All capabilities and limitations of these bots
are carefully examined and described in Chapter 2. As mentioned in Sec-
tion 3.2, the agents in the ESO-Nav approach to MAPF simulation do not
hold any information about their planned paths. The agents instead act based
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4. Prototype realization

Figure 4.1: An example of a map displayed on the screen before the simulation

on their programmed behavior. The behavior of Ozobot can be changed with
an OzoBlockly program loaded to the bot. However, in the first versions of the
simulator, the default behavior of Ozobot is used without any modifications.

In later versions of the simulator, the default Ozobot behavior is not ad-
equate for the task and needs to be changed. The behavior modifications
and their justifications are presented in the version subsection that introduces
them.

4.1.2 Environment
During the simulation, the abstract environment representation needs to be
transformed into the physical environment. This is done by displaying the map
on a computer screen on which the Ozobots can move. For this prototype,
grid-based maps were chosen to be used, so as they can be represented as
grid graphs for a MAPF solver, and graphically displayed as tiled maps. As
the abstract representation of the environment is a graph, it needs to be
converted into a more suitable representation for displaying, along with the
solution found by the solver.

When the solution is ready, the map is stored as a tiled grid. Each tile
of this grid can be accessed by the simulator and shown on the screen. An
example of a map is shown in Figure 4.1. If there is not an edge between
two neighboring vertices in the original graph, a wall is displayed on the map
between the corresponding tiles. The walls are also displayed all around the
map to indicate the perimeter. If a particular tile is a start or goal position
of any agent, the tile is colored green or red color, respectively. If there is a
start and also a goal position on a single tile, the tile is filled with both colors
using a checker pattern. Note that the colors need to have very low opacity, so
as the Ozobots do not register them as following lines. Before the simulation,
Ozobots are placed on all green tiles, as shown in Figure 4.2, and at the end
of the simulation, they should stand on the red tiles. When all bots are in
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4.1. Overview

Figure 4.2: The map example with Ozobots ready to execute paths

place, the following lines are displayed on the map as well by the simulation
module.

The drawing on the screen is implemented in pyGame [60], around which
a simple graphical module was created. The module provides a set of various
objects and methods that the simulator can use to display all elements of the
map. Since all screens have different sizes and resolutions, and the Ozobots
depend on the output, it is crucial to ensure the correct scaling of the map
elements. Therefore, the screen parameters need to be provided in a configu-
ration file so as the application knows how to scale the map elements. These
parameters also limit the maximum size of a map that can fit on the screen.
Because of this configuration, the application can be easily used on different
devices, including television screens, where extensive maps can be simulated.

In the configuration, the user can also set the width of different line types
and the size of the tiles in millimeters. For this prototype, the tile size was
set to five centimeters, the following line thickness to five millimeters, and the
wall line thickness to two millimeters. The wall line is thick enough to be
detected by an Ozobot, but the robot should never cross or come close to it.
Note that all of these dimensions are converted to pixels and rounded, and
therefore the actual displayed dimensions might slightly vary.

4.1.3 MAPF Solver
The solver module provides a simple interface to implement a custom MAPF
solver, but in this work, no new MAPF solver is created. The prototype
uses already existing program boOX [61] that implements several MAPF al-
gorithms. Namely, algorithm SMT-CBS [62], which combines the SAT-based
solving principle and the CBS algorithm, is used. All algorithms in this pro-
gram are implemented under the sum of costs objective function and can also
produce 1-robust plans. The role of this module in the prototype is to run the
boOX program as a subprocess and obtain the found solution for simulation.
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0 [s1] 1

2 [g2] 3

4 5 [s2,g1]

(a) Underlying graph of the
map example

(b) The example map dis-
played by simulator

Figure 4.3: An example map in graph representation (left) and how it is
displayed by the simulator (right)

4.1.4 Maps

The maps are stored as graphs in text files. In Figure 4.3, there is a simple
map example in graph representation as well as how the simulator displays it.
The s1 and s2 in the graph indicate the start positions of agent one and agent
two. Analogically, g1 and g2 are their goal positions. In Figure 4.4, the text
representation of this problem instance that would be stored in a map file can
be found. On lines 2–7 are listed all vertices of the graph in format (v, s, g),
where v is the index of the vertex. The s and g are indices of agents that have
their start and goal positions in this vertex. If the agent index is 0, there is
no agent’s start nor goal position. On lines 9–13, all edges are listed in format{vi, vj}, where both vi and vj are vertex indices. Line 1 and line 8 state the
beginning of the vertex list and edge list, respectively.

From both the graph in Figure 4.3 and the text representation from Fig-
ure 4.4, it is visible, which start and goal positions correspond to which agents.
However, in the graphical representation displayed by the simulator, this in-
formation is missing. All Ozobots moving on the screen are considered to be
anonymous and indistinguishable, and the information would have no added
value for the simulation.

The boOX program also supports this map format. Therefore the simu-
lator can directly pass the text file with the problem instance into the boOX
subprocess for solving.
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1 V =
2 (0,1,0)
3 (1,0,0)
4 (2,0,2)
5 (3,0,0)
6 (4,0,0)
7 (5,2,1)
8 E =
9 {0,1}

10 {1,3}
11 {2,4}
12 {3,5}
13 {4,5}

Figure 4.4: Text representation of a MAPF problem instance

Figure 4.5: An example of a map displayed in the map editor

4.1.5 Simulator
The main and most sophisticated module of the application is the simulator.
It takes the loaded map of the problem and an obtained solution from the
solver module and is responsible for simulating the paths for Ozobots. The
configuration is also accessible to the simulator because it is in charge of
outputting the map elements on the screen. This module is described and
iteratively modified in Chapter 4.2, where the problems of simulating MAPF
on Ozobots are encountered and solved.

4.1.6 Map editor
Creating MAPF problem instances in a text editor directly in the text repre-
sentation would be very inconvenient. Therefore a map editor is incorporated
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4. Prototype realization

in the prototype. When the map editor starts, the user can define the new
map’s width and height, as well as the number of agents that will be simu-
lated. After that, an empty tile grid is displayed with the map borders, that
can be modified. In Figure 4.5, the example map from Figure 4.1 is displayed
in the map editor. The editor operates in three modes: wall placement, start
placement, and finish placement. These modes can be activated by pressing
the w, s, and f keys, respectively.

The wall placement mode is activated from the start of the map editor.
In this mode, the user can toggle walls on and off by clicking the mouse on
the tile borders. By doing this, the whole map can be designed. The start
placement and finish placement modes can be used to place or remove the
agent’s start and goal positions. This is done by mouse-clicking on the tiles
while having the correct mode activated. The positions of agents are being
placed in ascending order until all agents have their position. Every time an
agent position is placed, it is assigned to an agent with the lowest index that
has not been placed yet.

4.2 Simulator versions
The core of this solution is the simulator module. It is responsible for trans-
forming the discrete solution obtained from the solver module into continuous
following lines for Ozobots, and displaying them for the bots into their phys-
ical environment. This section goes over several versions of this module, each
using a different plan outputting method, and each encountering and solving
various simulation issues.

The process of performing a simulation is the same for every version of the
module, only the path outputting differ. First, when the simulator obtains a
solution from the solver, a map preview is displayed on the screen, as shown
in Figure 4.1. The robots are then placed on their initial positions. When
all agents are ready, the user can start the path outputting that should make
the bots execute their planned paths without any manual interference. As
mentioned in Section 4.1.1, the first versions of the simulator are used with
the default Ozobot behavior.

4.2.1 ESO-OzoNav 0: Full paths
The simplest solution for the path outputting would be to display the whole
plan at once. This version of the simulator takes the solution, which is a set
of positions in each time step of the execution for every agent and draws the
following lines between the corresponding tiles in the map. This way, the full
path is displayed from the beginning of the execution, and the Ozobots can
freely move on it. Figure 4.6 shows how the paths are displayed on the map.
However, this simple outputting method creates several problems, which make
it unusable for Ozobots.
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Figure 4.6: Full agent paths displayed in the map

Figure 4.7: Initial agent orientation indicator displayed in the map preview

4.2.1.1 Initial orientation problem

The first problem that has to be solved in this prototype is the correct initial
orientation of the robots. The problem is that the solver has no information
about the initial agent orientations, nor does the user know how the plan looks
before it is displayed. If the Ozobots face the wrong direction, they will be
unable to detect the following line or move in the wrong direction, which will
lead to an immediate loss of the line.

Because there is no monitoring system that could detect the initial ori-
entations of the agents and feed that information into the solver, a correct
orientation has to be ensured according to their individual planned paths.
These initial orientation can be determined from the plan since it is found in
advance and not during the simulation. These orientations are displayed in
the map preview before the execution in the form of arrow indicators, as shown
in Figure 4.7. Therefore, the user can place the Ozobots on their initial posi-
tions with the correct orientation based on these indicators. In Figure 4.8, the
example map’s preview is shown with the orientation arrow indicators. These
indicators are incorporated in the following simulator versions as well.
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Figure 4.8: The example map preview with orientation indicators

4.2.1.2 Random direction problem

When paths of at least two agents cross, an intersection is created in the
displayed following lines. An example of such a situation can be seen in
Figure 4.6, where the tile (3, 1)21 contains an intersection. As mentioned in
Section 2.2.2, when an Ozobot comes to an intersection, it chooses its direction
randomly. Nevertheless, in the plan execution, only one direction leads to the
position, where the agent should be in the next time step. Failing to choose
the correct direction would most likely lead to a collision or other execution
failure. Generally, a plan where agents visit the same subset of positions in
different time steps cannot be simulated this way.

One way to solve this is to program the correct direction choice into the
robot’s memory for all intersections that are present on its path. However,
in the ESO-Nav approach to MAPF simulation, this is unwanted. This issue
indicates that the paths cannot be displayed fully.

4.2.1.3 No wait problem

The ability to wait at a specific position is one of the two main actions an
agent can make. Unfortunately, when the paths are fully displayed, Ozobot
will stop only when it finds a line end. The wait action cannot be indicated,
which will undoubtedly lead to large desynchronization and collisions.

When the Ozobot agent is required to stop and wait, no following path
can be displayed under the robot. This is also a reason why the full path
outputting is not suitable for the simulation with Ozobots.
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(a) t = 2.0s (b) t = 2.8s

(c) t = 3.7s (d) t = 4.5s

Figure 4.9: Path segments displayed in the map after t seconds from the start
of the execution

4.2.2 ESO-OzoNav 1: Simple path animation
Both the random direction problem and no wait problem can be solved by
displaying the agent paths partially. This version of the simulator outputs
only a short segment of the path, that is continuously animated under the
Ozobot as it moves across the map. The paths use sharp turns, and line ends
are located in the middle of the map tiles, as in the previous version of the
simulator. Though this time, during each screen update, a different segment
of the line is displayed. The segment is selected based on the time that has
passed from the beginning of the execution. This style of path drawing is
shown in Figure 4.9.

The path segment can be defined by two components: head and tail. The
head of the segment is the first point on the displayed line in the direction of
movement. It is the theoretical position, where the agent should be located at
a given time of execution if it were perfectly synchronized with the path. The
tail of the segment is the line displayed from the head back in the direction

21Recall the position referencing in a grid from Section 1.1.2.2.

49



4. Prototype realization

Figure 4.10: Two paths of the same length but one has turns

through where it was moving. The tail provides a limited length of following
line for the Ozobot, should it fall behind the head of the path segment due
to desynchronization. Ideally, the Ozobot should move in the middle of the
displayed path segment. If the bot were located at the head of the segment,
it would not be able to detect turns as they are not yet displayed at the head
position.

Each time the screen is updated, both head and tail are updated, and thus
the path segment slightly moves. The wait action can be simulated by not
displaying the path segment. The head is not updated, and the tail starts to
shrink towards it. When the agent should start to move again, the head is
being moved forward, and the tail gradually grows to its full size.

The speed of the animation is given by a configurable time duration that
takes the agent to transfer between two neighboring tiles. The segment length
can also be configured. It is crucial to ensure that the line speed matches the
speed of Ozobot. If the path segment moves too fast, the agent will lose it.
On the other hand, if the line moves slowly, the robot would not detect turns
and lose the line.

4.2.2.1 Desynchronization problem

Let there be two following lines of the same length, but one of them has turns,
and the other is straight, as depicted in Figure 4.10. If Ozobots were to follow
these lines simultaneously, one on each line, the one on the straight line would
be at the end slightly sooner than the other bot. This is because the second
robot has to perform extra rotations on the turns, and desynchronization is
introduced into the execution. The desynchronization creates complications
for this simulation approach as well.

If the path of an Ozobot is too complicated, it will fall behind the path
segment animated under it and thus lose the line and fail the execution. Using
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curved turns instead of sharp ones would minimize the desynchronization and
likely solve this problem.

4.2.2.2 Kiss problem

When an Ozobot loses the following line, usually because it is at the line
end, it does not stop immediately. The robot travels a short distance before
stopping completely. Therefore, when the path segment ends in the middle of
a tile, the robot stops close to the border.

If two paths end in neighboring tiles and the robots finish on those tiles
facing each other, they collide with each other while stopping. Even though
this collision does not fail the whole path execution, it is a collision none the
less. This could easily be solved by stopping the path segment before the
middle of the tile. When the Ozobot encounters the end of the following line,
it will stop nearly in the middle.

4.2.2.3 Wait on a turn problem

The issue with Ozobot’s stopping described in the kiss problem also creates a
different complication in the simulation. When an agent is required to stop
and wait at a particular tile, the path segment also stops in the middle of it.
As already mentioned, this way, the Ozobot is unable to stop in the middle of
that tile. If the tile also contains a turn, it is a problem. When the waiting
is over, the path segment will start its movement from the middle of the tile,
but the Ozobot is not there to detect the line and follow it.

Unfortunately, this problem cannot be solved as the kiss problem. Even if
the Ozobot would stop with its optical sensors precisely above the middle of
the tile, it is missing the information that it needs to turn as the path shows
up. Therefore, it will only move slightly forwards, losing the line immediately.
Hypothetically turns displayed as curved lines could solve this problem. When
the Ozobot stops on such a line, it should be sufficiently angled to continue
when the line reappears under it.

4.2.2.4 No U-turn problem

Sometimes during the plan execution, agents need to turn around to continue
in the direction from which they have come. An example of such a situation
is a map in Figure 4.11, where agents need to swap their positions in a narrow
corridor. The only way the agents can perform this swap is to have one
of them to park in tile (2, 0) and wait for the other agent to go through.
Then the parked agent can get back into the corridor and continue to its goal
destination. Sometimes during the waiting period, the bot has to turn around
in order to continue its movement. However, in this version of the simulator,
there is no way to tell the Ozobot to turn around, and therefore, it will not
detect the line animating the rest of its path.

51



4. Prototype realization

Figure 4.11: Narrow corridor map, where agents need to swap their positions

(a) t = 1.5s (b) t = 3.5s

(c) t = 6.0s (d) t = 7.0s

Figure 4.12: Path segments with curves displayed in the map after t seconds
from the start of the execution

Fortunately, Ozobots can use Color Codes, which were explained in Sec-
tion 2.3, and could be utilized in the simulation. Namely, the U-turn Color
Code can be displayed for the Ozobot to solve this problem.

4.2.3 ESO-OzoNav 2: Path animation
This version of the simulator aims to solve the problems from the previous
one. Turns in the paths are displayed as curves, as shown in Figure 4.12. If
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(a) t = 1.5s (b) t = 2.0s

(c) t = 4.0s (d) t = 6.2s

Figure 4.13: Path segments displayed in the map during waiting on curve after
t seconds from the start of the execution

the robot needs to stop and wait on a tile, the path segment stops before the
middle of that tile. This way, the bot stops its movement in the middle of
the tile, which is more aesthetically pleasing but also solves the kiss problem.
Flashing Color Codes can also be displayed in this simulator version. Namely,
the U-turn Color Code is implemented, so the Ozobots can be turned around
if needed.

Even though the no U-turn problem and the kiss problem were solved by
the changes made in this simulator version, other problems remain. Moreover,
the curved turns introduced new complication that needs to be solved.

4.2.3.1 Wait on a turn problem

The curved turns did not solve the wait on a turn problem as it was expected.
The reason for this is that when Ozobot loses the curved line, it does not
continue in its circular motion before stopping, but rather moves forwards in
the facing direction as with the straight line. Therefore, the Ozobot moves
away from the curve, and when it reappears on the tile again, the robot cannot
detect it.

This problem, therefore, requires a different workaround. When the robot
stops, its optical sensors have to be above the position, where the following
line will reappear. It also has to be sufficiently rotated towards the next
movement direction. To help Ozobots achieve this waiting position on a turn,
the simulator displays a following guiding line for the bot, as shown in Fig-
ure 4.13. This guiding line forces the bot to stop in the correct position with
the correct orientation for its next move. This workaround is also applied in
the next simulator version.
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(a) Ideal gradient colored path (b) Path segment divided into colored parts

Figure 4.14: Two versions of colored path segments

4.2.3.2 Curve following problem

Each discrete time step of the plan is assigned an execution time at which
an agent should stand in the middle of the corresponding position tile. The
path segment animation between two tiles assures the continuous transfer of
the agent between two positions. The duration of this transfer is given by the
configured speed of the line movement, and it is the same for every move. The
curved turns have a shorter line length than the sharp turns, which means they
have a slower animation speed. The speed of the Ozobot, on the other hand,
does not change. Therefore, the Ozobot overtakes the path segment during
the turn and loses the line. As it was explained in the wait on a turn problem,
the bot will continue in the facing direction and lose the line completely. To
solve this problem, the Ozobot has to follow the curve at a slower speed.

4.2.4 ESO-OzoNav 3: Colored paths

The previous version of the simulator module failed to mitigate the desyn-
chronization of the path execution since the curved turns introduced a new
issue. Therefore, this version of the module needs to solve the curve following
problem and also the desynchronization.

These two problems can be solved with a variable speed of the robots.
Generally, the robot should stay in the middle of the path segment displayed
under it to follow the path correctly. Currently, the Ozobot is unable to do
so due to the desynchronization and introduction of curved turns. When the
bot falls behind the path segment, it needs to increase its following speed to
keep up with the following line. On the other hand, when Ozobot gets close
to the head of the path segment, speed needs to be decreased. It also has to
follow the curved lines at a slower speed, as explained in the curve following
problem. A modification of the Ozobot’s behavior is required to change its
following speed during the path execution. Because the bot needs to know
when and how to change its movement speed, the environment outputs need
to convey this information.

This could be achieved by displaying colored path segments and having
the Ozobots change their movement speed based on the colors. Ideally, the
color of the path segment would gradually change along the tail’s length. For
example, from blue color at the head position to red color at the end of the
tail, as shown in Figure 4.14a. The Ozobot, moving on the following line,
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Figure 4.15: Full straight path with artificial intersections

would continually read the line color underneath its optical color sensor, and
gradually change its movement speed. The speed would be increased towards
the red color and decreased towards the blue color, forcing the robot to stay
in the middle of the path segment.

However, this ideal path segment representation and agent behavior are
not achievable due to the Ozobot’s limitations. As mentioned in Section 2.2.1,
Ozobot cannot read the exact values of color channels, but instead recognizes
eight different colors. Therefore, a color gradient could not be fully exploited,
and the path segment had to be divided into a few colored parts, as shown
in Figure 4.14b. Another drawback is the limitation of Ozobot programs,
explained in Section 2.5. The bot cannot read from its optical sensors while
executing a different command. This limitation means that the robot needs
to follow the line in small movements to perform the color reading between
them. Unfortunately, the only line-following command that the OzoBlockly
editor provides is follow line to next intersection or line end. This
command blocks the program execution until the Ozobot finds an intersection
or an end of the line, and so no color readings can be done. To solve this
problem, artificial intersections have been added to the paths to interrupt the
line-following command in order to perform color readings. A path with these
artificial intersections is depicted in Figure 4.15.

The final version of the environment outputs and agent behavior is ex-
plained in more detail in the Section 4.3, collectively with the fundamental
features included from previous versions.

4.3 ESO-OzoNav
This section describes the final version of the simulation prototype for Ozobot Evo
robots. The environment outputs and agent behavior are explained in detail,
including the changes from Section 4.2.4.

4.3.1 Environment outputs
The environment outputs are colored path segments displayed on the map,
on which the Ozobots are moving. These colored path segments are depicted
in Figure 4.16. Turns in paths are drawn as curves to make the turning of
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(a) t = 2.5s (b) t = 4.5s

(c) t = 6.0s (d) t = 7.0s

Figure 4.16: Colored path segments displayed in the map after t seconds from
the start of the execution

the robots smooth. The path segments are divided into three colored parts
representing three different movement speeds: slow, normal, and fast. The
slow speed is represented by the blue color and corresponds to the speed of
curve animation on a turn. The blue part of the line is located at the head
of the path segment. Also, all curves are colored blue to indicate the slow
speed of the agent movement. The normal speed is represented by the black
color. The robot’s speed on a black line matches the speed of the straight
line animation. The black part of the line is located in the middle of the tail.
Lastly, the fast speed is indicated by the red color. The red part of the line is
located at the end of the tail and informs the agent to speed up in order to
keep up with the path segment.

Artificial intersections are indicated on the paths, where the Ozobots per-
form color readings and change their movement speed accordingly. These
intersection indicators have to have a sufficient length, cannot be displayed
on the curved lines, and there has to be adequate separation between them.
Otherwise, the Ozobot would fail to detect them during the movement. Keep-
ing this in mind, only three intersection indicators are placed in a tile, unless
the agent should wait at the position, or there is a turn. The indicators
are shifted towards the direction of the agent’s movement. The reason for
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Figure 4.17: Illustration of Ozobots following colored path segments on a map

this is, that if Ozobot enters the tile from a curve, it needs to straighten its
movement before encountering an intersection to avoid unwanted behavior.
Another benefit is that if a curve is following after the current tile, Ozobot’s
speed is updated closer to the turn. The color of the intersection indicator22

changes according to the path segment color at its location. The only excep-
tion is the intersection before a turn, which will always remain blue to slow
the Ozobot down before the curve.

If the agent has to stop at a specific position, the path segment stops before
the middle of the corresponding tile. The Ozobot then stops in the middle of
the tile. The exception is when the robot needs to wait on a turn. In that
situation, the following guiding line is displayed to bring the Ozobot into a
correct orientation. This ensures that the bot can continue on its path when
the path segment reappears underneath it.

During the Ozobot’s movement on the colored path segment, it can still
read the Flashing Color Codes. If the robot should wait at a tile, and the
next movement direction is the same as the direction from where it entered,
the U-turn Color Code is displayed upon the robot’s arrival to the tile.

An illustration of Ozobots navigating on the path segments is shown in
Figure 4.17.

4.3.2 Agent behavior
Ozobots need to follow the lines outputted by the environment, but also change
their movement speed according to the surface color of the lines. This modified

22And also a small neighborhood around the intersection.
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Algorithm 4: Ozobot behavior program
1 while true do
2 set line-following speed: getSpeedFromLineColor() mm/s
3 if there is way straight then
4 pick direction: straight
5 else
6 stop motors
7 follow line to next intersection or line end

Algorithm 5: Function reading line color and returning speed
1 Function getSpeedFromLineColor()
2 color ← get surface color
3 if color = surface color red then
4 speed ← 37
5 else if color = surface color black then
6 speed ← 30
7 else if color = surface color blue then
8 speed ← 23
9 else

10 speed ← 21
11 return speed

behavior can be written as an Ozobot program in the OzoBlockly editor and
loaded to all robots simultaneously.

The program can be found in Algorithm 4. The main loop runs until
the program is manually terminated. As can be seen on line 7 of the code,
the robot is moving on the path segments between the artificial intersections
or until it loses the following line. When an intersection or a line end is
encountered, the line-following speed is updated on line 2. Because the Ozobot
naturally wants to choose a random direction at any intersection, line 4 makes
it always go straight. However, if the movement was interrupted and there is
no line under the robot, line 6 stops it from moving.

The function getSpeedFromLineColor from line 2 is shown in Algorithm 5.
First, the function reads the surface color from the Ozobot’s optical color
sensor on line 2. On lines 3–10, the speed is chosen according to the color,
and on line 11, it is returned. The speed on the black colored path corresponds
to the straight path animation speed, and the blue line’s speed was chosen to
match the curve animation speed. Line 10 is executed, when the surface color
is white, meaning there is no line under the robot. This situation usually
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(a) Agent getting behind another agent (b) Agent getting in front of another agent

Figure 4.18: Two situations where the agents can touch during the path exe-
cution

happens when the Ozobot is waiting on a path segment to appear under it.
The speed is therefore set to a lower value so the robot would not lose the line
immediately and the path segment could take the lead.

4.3.3 Limitations
During the development of the final prototype version, a few limitations of
the system were discovered. The most impactful is the occurrence of agent
oscillation between two positions in a plan. The oscillation is a situation when
in one time step, an agent enters a position, and in the following time step, it
returns to the previous one. Even though this maneuver is valid in the MAPF
solution, for robots like Ozobot, it is impossible to perform a U-turn in such
a short time. In the plans from the boOX program, these oscillations occur
because of the sum of costs objective function. In the sum of costs, the cost of
a path is increased even during the wait actions. Therefore agents can freely
move back and forth between two positions without any cost penalization.
Utilization of a fuel objective function23 would solve this problem. For the
use in the simulator prototype, these agent oscillations had to be manually
removed from the plans before simulation.

Another drawback of the prototype is minor agent collisions. These col-
lisions can occur when an agent moving on a curve is trying to get right in
front of or behind another agent. This situation is depicted in Figure 4.18.
The agents usually only touch or scratch against each other, and the collision
does not impact the plan execution. This problem could be solved by using a
bigger tile size and configuring the animation and Ozobot speeds accordingly.
This issue does not concern the 1-robust plans, because of the extra spacing
between the agents.

The optical color sensors of Ozobot Evo can be very dependant on the sur-
rounding light conditions. With even a slight difference in the light conditions

23Where the cost is increased only when an agent moves to a different position.
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4. Prototype realization

that can occur during the day, the accuracy of Ozobot’s sensors can change
considerably. The sensors need to be calibrated occasionally, or else the bots
may fail to read the colors or follow curves correctly. This inaccuracy often
leads to loss of the following line. It seems that this problem cannot be fully
removed, but it can be mitigated with the sensor calibrations. The robots
also seem to have a problem with shadows and lighting coming from only one
direction. When the Ozobots are calibrated with a direct light falling at them,
introducing shadows makes them believe that they are detecting a following
line. A directional light source that is not directly above the map can cause
that some parts of the map are darker than others. Ozobot will, therefore,
behave differently on these parts of the map.
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Chapter 5
Experiments

In this chapter, the final version of the prototype is tested and evaluated. In
the first section, the maps created for the testing are shown and discussed.
The critical parts for each plan are also addressed. In the second section, the
results of the experiments are summarized.

Each of the problem instances, represented by a map, is solved with both
the classical and 1-robust MAPF solver24. If there are any agent oscillation25

present in any of the plans, they are manually removed, as they would result
in almost certain failure of the execution. Each of the plans is executed on
the prototype 32 times.

5.1 Maps
For the experiments, six maps were created. Some of the maps aim to test a
specific feature or a critical maneuver of the system, others provide a balanced
scenario for the execution. All of the maps are listed in Table 5.1 and the editor
previews of these maps are shown in this section. For each map, its width,
height, and the number of agents are provided in the table.

Figure 5.1: Experiment map: The snake

24For some maps, these two plans are identical, and only one of them is experimented on.
25Agent oscillations are described in Section 4.3.3.

61



5. Experiments

Figure 5.2: Experiment map: The rotation

In Table 5.2, all plans for these maps are listed. Both classic and the 1-
robust plan26 for each map were constructed, with the exception of the rotation
map, where both plans would be identical. For each plan, some maneuvers
that could be problematic for the robots are counted. Namely, the number
of turns without waiting, the number of Color Codes displayed (CC), and the
number of wait on a turn positions (WoT).

Figure 5.3: Experiment map: The swap

5.2 Evaluation
Every plan was executed 32 times with the implemented prototype. The
execution is marked as successful if all Ozobots reach their goal positions. If
at least one loses the following line and does not reach the goal, the execution
is marked as a failure. The results of the experiments are summarized in

26The name of the 1-robust plan has a suffix ”_robust”.
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Figure 5.4: Experiment map: The ordering

Table 5.1: Maps created for experiments

Map name Width Height Agents Image of the map
The snake 10 2 6 In Figure 5.1
The rotation 5 5 4 In Figure 5.2
The swap 8 3 6 In Figure 5.3
The ordering 5 3 3 In Figure 5.4
The evacuation 10 5 6 In Figure 5.5
The roundabout 9 5 6 In Figure 5.6

Table 5.3. During the testing, five different reasons for execution failure were
recorded. The occurrence of these failures was counted and is presented in the
table of results.

As mentioned in Section 4.3.3, Ozobots can sometimes touch during the
executions. Sometimes, however, a severe collision (SC) can occur, where the
robots push against each other or lift their wheels from the surface. This

Figure 5.5: Experiment map: The evacuation
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Figure 5.6: Experiment map: The roundabout

Table 5.2: Plans executed with the prototype

Plan name Map Turns CC WoT
snake The snake 12 0 0
snake_robust The snake 12 0 0
rotation The rotation 20 0 0
swap The swap 10 0 1
swap_robust The swap 9 0 3
ordering The ordering 5 1 0
ordering_robust The ordering 3 1 2
evacuation The evacuation 26 0 1
evacuation_robust The evacuation 25 0 1
roundabout The roundabout 33 0 0
roundabout_robust The roundabout 30 0 1

collision results in an execution failure because the robots lose their following
lines and are unable to continue. This problem does not occur very often and
is non-existent in the 1-robust plans.

On the other hand, more frequent was the failure due to missed intersec-
tion (MI). Sometimes, an Ozobot failed to update its speed at an intersection
because it was not detected by its sensors. This almost always resulted in
an execution failure if the agent did not slow down before a turn. The first
experiments showed that the success rate of an Ozobot to detect an intersec-
tion correctly fluctuates with changing light conditions and performing cali-
brations. However, results from the plan executions on the roundabout map
suggest that the complexity of the paths might also affect the frequency of
these mistakes.
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Table 5.3: Results of the experiments

Plan name Success Fail SC MI CC WoT EC
snake 32 0 0 0 0 0 0
snake_robust 32 0 0 0 0 0 0
rotation 29 3 0 3 0 0 0
swap 30 2 0 1 0 1 0
swap_robust 30 2 1 0 1 0 0
ordering 30 2 1 0 1 0 0
ordering_robust 24 8 0 0 4 3 1
evacuation 28 4 2 0 0 2 0
evacuation_robust 30 2 0 2 0 0 0
roundabout 23 9 0 9 0 0 0
roundabout_robust 19 13 0 8 0 3 2

The maneuvers as Color Code execution (CC) and wait on a turn (WoT)
also caused a few execution failures. To fail to execute the U-turn, the bot can
either arrive at the tile too soon or too late. If it arrives too soon, it fails to
read the whole code and does not rotate at all. If it arrives too late, it reads
the code twice and makes two rotations ending up in the original orientation.
Both of these scenarios ensure the failure of plan execution. Performing the
wait on a turn maneuver, the robot sometimes makes a U-turn at the end of
the following guiding line. This behavior is most likely triggered when Ozobot
loses the following line without detecting a line end.

The last problem noticed during the experiments was Ozobot failing to
exit a curve (EC). Even though this was a rare occurrence, sometimes, when
the bot passed through a curved turn, it was unable to detect the following
line correctly and lost the path.

5.3 Summary of results
Overall, these experiments demonstrated the ability of the ESO-Nav to be
used for simulation of MAPF solutions that are even constructed on top of
the classical abstract model. The prototype implemented with Ozobot Evo
robots also shown, that this ability to perform the simulation correctly is
highly dependant on the physical agents and their ability to read and respond
to the environment outputs. As for the Ozobots, their main weakness is the
variable accuracy of optical sensors with different light conditions. To improve
this prototype, the wait on a turn maneuver and Color Code displaying should
be refined, and adequate and stable light conditions would need to be ensured.
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Conclusion

This work has introduced a novel approach to simulation of centralized MAPF
algorithms called ESO-Nav that was tested on a group of Ozobot Evo robots.
The simulation prototype created in this work showed that even centralized
MAPF algorithms that use classical discrete model could be simulated on
physical robots.

In Chapter 1, the reader was familiarized with the theoretical background
and previous MAPF research that has been done. Chapter 2 provided an
extensive overview of Ozobot Evo, including its hardware, capabilities, and
limitations. Chapter 3 discussed previous work concerning MAPF simulation
on real robots that used Ozobots and proposed the novel approach. In Chap-
ter 4, a prototype of a MAPF simulator for Ozobot Evo was presented. This
chapter also explained various issues that were discovered and solved during
the prototype implementation.

The prototype showed that the ESO-Nav approach is capable of simula-
tion of various MAPF scenarios with physical agents. It could be used for
visualization in research or academics, as well as in real-world applications
like intelligent evacuation system or indoor transporter navigation. The pro-
totype itself can be used for educational MAPF demonstrations, and it could
be extended for use in other research.

Review of the thesis aims
All of the goals that were set in the introduction of this work were also met.
These goals were the following:

• Explore Ozobots and their capabilities.

• Explain the selected approach and compare it to the already existing
work.

• Create a simulation prototype.
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Conclusion

The first goal was completed in Chapter 2, where the Ozobot Evo was ana-
lyzed. The findings showed that Ozobots are very simple and limited bots.
Although they are programmable to a large extent, the programmability pro-
vided with a visual editor like OzoBlockly is very impractical. At the end
of the chapter, alternative robots were also reviewed. Chapter 3 completed
the second goal by defining the ESO-Nav approach. This approach also got
around the impracticality of Ozobot programming by utilizing their reactive
behavior. The novel approach was then compared to the previous approach of
MAPF simulation on Ozobots. In Chapter 4, the completion of the last goal
was described. The simulator prototype faced the challenge of combining a
discrete solver with robots that have continuous movement. This combination
posed several problems that needed to be solved during the implementation
process. The prototype was then tested on experiments from Chapter 5.

Future work
There are several ways how the prototype from Chapter 4 can be improved or
extended. Also, ESO-Nav provides new opportunities for research. Here are
some examples:

• A video camera could be added to the system for detecting conflicts or
incorrect path execution. With such monitoring, agents could support
imperfect behavior that would lead to mistakes, and the pats would
require replanning. Collision prediction would also be possible.

• Other maps than grid-based maps could be used, and agents could move
on continuously curved paths. These features would require the use of
a continuous solver like CCBS.

• A different line-following robot could be used instead of the Ozobot.

• The impact of different agent behaviors on path execution could be
studied.
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Appendix A
Acronyms

ACPF Adversarial cooperative pathfinding

BFS Breadth-first search

CBS Conflict-based search

CCBS Continuous-time conflict-based search

CPF Cooperative pathfinding

DFS Depth-first search

ICTS Increasing cost tree search

LED Light-emitting diode

MAE Multi-agent evacuation

MAPF Multi-agent pathfinding

RGB Red, green, blue (color model)

SAT Boolean satisfiability problem

TAG Time expansion graph

XML Extensible markup language
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Appendix B
Contents of enclosed SD card

readme.txt....................the file with SD card contents description
src.........................................the directory of source codes

ozonav.............................. implementation of the prototype
README.md...........the file with information about the prototype

boox.......................................boOX program repository
thesis...............the directory of LATEX source codes of the thesis

visdoc...............................the visual documentation directory
text............................................ the thesis text directory

thesis.pdf............................the thesis text in PDF format
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