
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 22, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Android mobile application for personal safety

 Student: Bich Phuong Phamová

 Supervisor: Ing. Eliška Šestáková

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

Analyse existing mobile applications dealing with the problem of crime prevention in the Czech Republic
and worldwide (focus on personal safety applications). Based on this survey, design and implement a
prototype of your own personal safety application. Firstly, perform a detailed analysis of the requirements,
based on which design the functionality of the application. Furthermore, design a GUI and discuss the
architecture of the solution. Implement the prototype as an Android mobile app. Perform user testing of
the final implementation and suggest further possible development.

References

Will be provided by the supervisor.

Bachelor’s thesis

Android Mobile Application for Personal
Safety

Bich Phuong Phamová

Department of Software Engineering
Supervisor: Ing. Eliška Šestáková

May 6, 2020

Acknowledgements

First and foremost, I would like to pay special regards to my supervisor
Ing. Eliška Šestáková for her guidance and valuable advisement that led to
the completion of this thesis. I also wish to acknowledge the support of my
friends and family throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 6, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Bich Phuong Phamová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Phamová, Bich Phuong. Android Mobile Application for Personal Safety.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2020.

Abstract

This bachelor thesis deals with the design and implementation of a personal
safety mobile application for Android operating system. The final prototype
is carried out using standard development practices as well as modern tech-
nologies such as Google Maps and the Firebase platform. The application
provides users with the ability to call immediate help in critical situations.
In case a criminal offense is witnessed, it is possible to publish a report to
raise awareness. This thesis contains an analysis of existing solutions, require-
ments specification, design of the application’s architecture, implementation,
and usability testing. Possibilities of further development are discussed at the
end of the thesis.

Keywords mobile application, Android, Kotlin, Firebase, GPS, SOS, per-
sonal safety

vii

Abstrakt

Tato bakalářská práce se zabývá návrhem a implementací mobilní aplikace
osobní bezpečnosti pro operační systém Android. Jsou využity nejen stan-
dardní praktiky vývojového procesu nýbrž i moderní technologické služby jako
jsou Google Mapy či platforma Firebase. Výsledkem je funkční prototyp. Apli-
kace uživateli umožňuje přivolat okamžitou pomoc v krizové situaci. Naopak
v případě, že se uživatel stane svědkem protiprávního jednání, má schopnost
poslat hlášení varujíc tak své okolí. V práci je uvedena analýza současných
řešení, specifikace požadavků, návrh architektury aplikace, její implementace
a uživatelské testování. V poslední části jsou diskutovány možnosti budoucího
vývoje.

Klíčová slova mobilní aplikace, Android, Kotlin, Firebase, GPS, SOS, osobní
bezpečnost

ix

Contents

Introduction 1

1 State of the Art 3
1.1 Common Features . 3
1.2 Existing Solutions . 4

1.2.1 Záchranka . 4
1.2.2 Citizen . 5
1.2.3 BSafe . 6
1.2.4 Life360 . 7
1.2.5 Noonlight . 8

1.3 Summary . 9

2 Requirements Specifications 11
2.1 Functional Requirements . 11
2.2 Non-functional Requirements 13
2.3 Use Case Scenarios . 13

3 Design 17
3.1 Android Platform . 17

3.1.1 Versions . 17
3.1.2 Kotlin . 18
3.1.3 Gradle Kotlin DSL . 19
3.1.4 Base Components and Lifecycle 19

3.2 Multimodularisation . 20
3.3 Design Pattern . 22
3.4 Domain Description . 22
3.5 Database Structure . 23

4 UI Design 25
4.1 Material Design . 25
4.2 Google Maps Graphics . 26
4.3 Animations . 27
4.4 Features UI . 27

4.4.1 Onboarding . 27

xi

4.4.2 Signup . 28
4.4.3 Crime Reporting . 28
4.4.4 Map . 30
4.4.5 Alarm . 30
4.4.6 Contacts Management 30

5 Technologies 33
5.1 Firebase . 33

5.1.1 Authentication . 33
5.1.2 Cloud Firestore . 35
5.1.3 Cloud Storage . 35
5.1.4 Cloud Functions . 35
5.1.5 Firebase Cloud Messaging 37

5.2 Google Maps . 37
5.3 Koin . 38
5.4 Glide . 39

6 Implementation 41
6.1 Architecture Components . 41

6.1.1 LiveData . 42
6.1.2 ViewModel . 42
6.1.3 Room . 43

6.2 Data Binding . 43
6.3 Layout Views . 44

6.3.1 ConstraintLayout . 44
6.3.2 RecyclerView . 45

6.4 Asynchronous Tasks . 47
6.5 Permissions . 48

6.5.1 Location Updates . 49
6.5.2 SMS Management . 50

7 Testing 53
7.1 Test Categories . 53

7.1.1 Unit Tests . 53
7.1.2 Instrumented Tests . 54

7.2 Used Libraries . 54
7.2.1 Espresso . 55
7.2.2 Robolectric . 55

7.3 Firebase . 56
7.3.1 Google Analytics . 56
7.3.2 Crashlytics . 56
7.3.3 Test Lab . 57
7.3.4 Performance Monitoring 57

7.4 Usability Testing . 58

xii

7.4.1 Basic Operations . 58
7.4.2 Usability Results . 58
7.4.3 Supplementary Questions 59
7.4.4 The Police Review . 60
7.4.5 Summary . 61

8 Future Improvements 63

Conclusion 65

Bibliography 67

A Acronyms 71

B Contents of Enclosed SD Card 73

xiii

List of Figures

1.1 Záchranka screenshots . 5
1.2 Citizen screenshots . 6
1.3 BSafe screenshots . 7
1.4 Life360 screenshots . 8
1.5 Noonlight screenshots . 9

3.1 Android version distribution . 18
3.2 Example of Activities and Fragments on different devices 20
3.3 Activity lifecycle diagram . 21
3.4 MVVM communication model . 23
3.5 Conceptual model of the application domain 24

4.1 Material Design Components that were used and customized . . . 26
4.2 Onboarding UI design . 28
4.3 Signup UI design . 29
4.4 Crime reports UI design . 29
4.5 Map UI design . 31
4.6 Alarm UI design . 31
4.7 Contacts UI design . 32

5.1 Authentication flow . 34
5.2 Cloud Firestore data structure . 35

6.1 Data sources architecture . 44
6.2 The permission flow from Android 6.0 50

7.1 Analytics screenshots from Firebase console 56
7.2 Crashlytics screenshots from Firebase console 57
7.3 Performance Monitoring screenshot from Firebase console 57

xv

List of Tables

1.1 Functionalities coverage by existing solutions 10
1.2 Advantages coverage by existing solutions 10

2.1 Functionality coverage by use cases 16

3.1 A relative number of devices running a given Android version . . . 18

xvii

List of Listings

5.1 Firebase Authentication callback example 34
5.2 Cloud Firestore listener example 36
5.3 Cloud Storage query to upload report image 36
5.4 Cloud function Notification . 37
5.5 Nearby police search query according to Map Places 38
5.6 Koin injection example . 38
5.7 Glide image loading example 39
6.1 LiveData observing example . 42
6.2 Room components example . 45
6.3 Data binding with contact’s editing 46
6.4 Guideline example . 46
6.5 Coroutines example with a database operation 48
6.6 Camera permission request example 51
6.7 Location request example . 52
7.1 Unit test with Hamcrest example 54
7.2 Espresso test of the slider component 55

xix

Introduction

“But the chief problem in any community cursed with crime is not the pun-
ishment of the criminals, but the preventing of the young from being trained
to crime.” [1]

—William Edward Burghardt Du Bois

Even though criminality and violence are as old as humanity, this subject is
still considered to be one of the most relevant topics in the Czech Republic [2].
It cannot be completely eliminated, but at some decent level, it can be reduced
down.

How many times were you worried about your close ones, whether they had
safely arrived home, or wondered if they really were where they are supposed
to be? Have you ever felt scared when walking the city streets late at night?
Have you ever hesitated to call the police when you were a witness of an
unpleasant situation that another person was in, or did you walk by thinking
someone else will certainly help? These are the questions that led to the idea
of the application further described in this thesis.

In life-critical situations, even a second matters. It is essential for rescuers
to know the exact location of the incident to save lives as quickly as possible.
With the rapid development of technology, the world is open to new possibil-
ities on how to protect itself. Using smart devices could be the easiest way to
contact the rescue services, police officers, or a trusted group of people with
a simple touch, sending all the information the other side will need to act im-
mediately and precisely. Therefore, all the provided features, such as Global
Positioning System (GPS), contact database, camera, the Internet connection,
and more, should be taken advantage of at theirs utmost potential.

The goal of this thesis is to implement a crime prevention mobile appli-
cation, mainly focusing on personal safety. The final result will be a working
prototype on devices with Android operating system. One of the primary
aims is to perform a detailed analysis of existing solutions. Based on the re-
quirements specification, the final functionalities will be designed. Users will
be able to notify their emergency contacts in life-threatening situations, pro-
viding them with the exact location. In addition to that, it will be possible
to extend the database with crime reports to keep public awareness. Further-
more, the results of usability testing will be presented.

1

Introduction

The thesis begins with Chapter 1 that includes common features of per-
sonal safety applications and an analysis of existing solutions. In Chapter 2,
functional along with non-functional requirements are specified. The chapter
also contains the list of use case scenarios that describe the user’s behavior
and interactions with the application. Following is Chapter 3, where the ap-
plied architecture patterns are discussed. What is more, a description of both
domain and database structure is given here. Chapter 4 contains a graphical
design of individual application screens and functionalities. Its primary focus
is on simplicity and straightforwardness.

Chapter 5 along with Chapter 6 presents chosen technologies and develop-
ment practices used for implementation of the final prototype. Reasons, why
platforms such as Firebase and Google Maps are selected to integrate with
the application, are also stated in this chapter. Testing methods and results
of usability tests can be found in Chapter 7. In addition to that, the police
response to the application’s real usage is provided. And lastly, possible fu-
ture enhancements are discussed in Chapter 8. Some of the improvements,
such as an introductory tutorial or an offline alarm, were added based on the
usability tests.

2

CHAPTER 1
State of the Art

In general, applications regarding personal safety can be divided into two
categories—SOS1 applications and family locators. Each category can be
characterized by its common features. The architecture of the final prototype
will be designed based on a comparison of these functionalities. The main
components, as well as User Interface (UI) design of existing solutions on the
market, are provided in Section 1.2.

1.1 Common Features

There are two main application categories worth mentioning when it comes
to the topic of personal safety—SOS applications and family locators.

SOS applications In distress, SOS applications allow contacting bystanders
or a close group of people with features such as GPS, Short Message Ser-
vice (SMS), video, alerts, alarms, and more. Most often, the alarm is
represented as an in-app button that, after touching, sends all required
information to the emergency contacts in order for them to act immedi-
ately and precisely.

Family locators Locators target primarily small private circles, especially
families and friends. With locators, it is possible to exchange instant
messages, share real-time whereabouts among the members, and define
the most frequently visited places.

1SOS is an internationally recognized signal or request for help or rescue [3].

3

1. State of the Art

1.2 Existing Solutions
The aim of this section is to describe existing mobile applications that have
similar functionalities to the one designed in the thesis. The main purpose is to
find the most beneficial result and to avoid the obstacles the existing solutions
have encountered. The followings are five applications—chosen based on their
distinct functionalities and great popularity—for Android Operating System
(OS) with the description of their components, advantages, and disadvantages.
All of the listed applications have more than 500 thousands of downloads on
Google Play [4].

1.2.1 Záchranka
Záchranka [5] (or Ambulance in translation) is a mobile application officially
supported by the rescue services of the Czech Republic (see Figure 1.1). It
does not deal with crime prevention in the real sense of the word as it is mainly
connected with the medical field. However, the analysis was conducted since it
is the most popular life-saving mobile application in the country [5]. It is worth
mentioning that there are no similar applications like Záchranka available for
Czech citizens. The application consists of three primary components:

Alarm This element can be found on the main screen designed as an eye-
catching red button that on pressing is able to put the user in contact
with 155 emergency line or ski patrol. An SMS, with not only the exact
location but also the medical issues and battery status, is sent at the
same time. If the person is unable to talk or cannot hear, the application
also supports communication via SMS. Another essential advantage is
that no Internet connection is required. In this case, only the message
is sent.

Locator This component shows users’ exact GPS location and the nearest
automated defibrillator, rescue services, or pharmacy. The application
clearly displays points of interest with the option to navigate to their
location quickly.

First aid First aid is made interactive in a very intuitive way for various
health conditions from burns and bleeding to poisoning and uncon-
sciousness. Paramedics highly use this function in education all over
the country.

In the near future, Záchranka plans the City Crisis Management Depart-
ment to send notifications about the life-threatening situations in the area.
Users will be able to see them and avoid the potential danger. Support for
wearables2 can also be expected soon.

2Wearables are small computers or advanced electronic devices that are worn or carried
on the body as part of the clothes or as an accessory [3].

4

1.2. Existing Solutions

Figure 1.1: Záchranka screenshots [5]

1.2.2 Citizen
Citizen [6] is a social network as well as a mobile application first launched in
New York City in 2017 (see Figure 1.2). It is till now available only in some
parts of the United States of America. The main idea is that everyone should
have access to information. Furthermore, it is believed that transparency,
along with technology, are the keys to keep the citizens safe as well as aware
of the danger around them. Citizen provides users with:

Instant alerts As the incidents occur, 911 emergencies notify users in the
nearby area. Users can broadcast information in the form of images or
user-generated video streams to give incident details from start to finish.

Map of emergencies This component clearly displays the location of crime
incidents. They are designed as pinpoints which size depends on the
level of severity. This functionality can be beneficial for authorities to
determine the situation with the highest priority.

Community Along with proximity, the community is the number one pri-
ority in the application. Users can exchange instant messages with each
other and comment on posts.

However, according to reviews [6], there are also many issues. The UI layer
and navigation across the application are not well designed. Some unnecessary
elements make most of the users confused and lead away from the primary
goal of keeping awareness. Another problem is the number of notifications dis-
played in the case of the high post activity. Some can ask a question, whether
the popularity of the posts does not lead to seeking dangerous situations on
purpose in order to gain prominence.

5

1. State of the Art

Figure 1.2: Citizen screenshots [6]

1.2.3 BSafe
BSafe [7] (see Figure 1.3) origin lies in a horrifying personal story of the
company founder as his daughter was a victim of rape. With his daughter,
universities, and many well-known organizations3 by his side, he is leading the
community to a safe environment mainly without rape and sexual assaults.
Features such as voice activation, live streaming, and automatic audio and
video recording were developed based on her experience with the hope of
helping other youth worldwide. Major components of the application are:

SOS button This functionality can be activated by push or voice in order to
notify emergency contacts. The contacts will not only receive a specific
location but also automatically recorded audio and live video.

Timer alarm The timer defines the maximum amount of time required to
get to the exact location. If this period exceeds, the SOS button will be
triggered.

Security network With BSafe, it is possible to set up a private group of
people that shares live GPS location in stressed situations. This supports
the company’s motto “Never walk alone”.

Fake calls Users can receive fake phone calls in order to leave the unpleasant
companion or uncomfortable situations.

In-app sirene This functionality can be enabled with one touch and surely
keeps away an impending danger.

3the National Sexual Violence Resource Center, Pennsylvania Coalition Against Rape,
Infiniteshe and Beyond Harassment

6

1.2. Existing Solutions

Figure 1.3: BSafe screenshots [7]

1.2.4 Life360
This very popular and well-designed application (see Figure 1.4) with more
than 50 million downloads [8] has received multiple awards as the winner of
both Google Android Developer Challenge4, and Facebook fbFund5.

Besides the typical characteristic of the family locator (as mentioned in
Section 1.1) such as the ability to exchange instant messages and share real-
time whereabouts among the members, Life360 also provides users with:

Definition of frequently visited places The chosen circle of people is no-
tified whenever the user is arriving or leaving the known area—most
often it is home, school, or grocery store. This keeps the members in
constant synchronization and assures the user’s safety.

Driver support This component shows the driving speed of the member as
well as reports crash detections that alert emergency contacts and sends
an ambulance immediately. It can also be used in case of trouble on the
road, such as a flat tire or engine problem, in which case the Roadside
Assistance will help.

Crime reports The report’s purpose is to raise awareness in the user’s pri-
vate circle about the nearby crime offenses.

4Google Android Developer Challenge is an annual Google contest where best application
idea on Android OS with focus on specific technology is picked [9].

5Facebook fbFund provides micro-investments for companies developing websites and
applications related to Facebook [10].

7

1. State of the Art

Figure 1.4: Life360 screenshots [8]

Despite the application’s popularity, there are some disadvantages worth
mentioning. Crime reports, crash detection, emergency response, and road-
side assistant are supported in the United States of America only. Users are
required to keep the Internet connection at all times, which can lead to rapid
battery loss of the device. Furthermore, despite the application being closed,
a lot of unnecessary notifications were received. Applications such as Life360
can give children and parents a sense of security, but they also raise questions
about privacy and children’s autonomy.

1.2.5 Noonlight
Noonlight [11] is a company that is not only focused on the same-titled mobile
application but all Internet of Things (IoT)6 that have the ability to secure
end-users for instance wearables, smoke detectors, security cameras, and even
Artificial Intelligence (AI) assistants. The company is working towards a world
where homes, cars, and devices all work together to keep the community safe.

This simple, efficient, and well-designed application (see Figure 1.5) is
primarily focused on one functionality—to alarm the authorities in case of
an emergency. Similarly to all the existing solutions mentioned above, the
alarm system is designed as an in-app button on the main screen. The alarm
cannot only be initiated manually but also via an automatic trigger, such as
a car crash detected through smartphone sensors. Once an alarm is created,
the user will get into immediate contact with certified operators located in
monitoring centers. The alarm can be canceled with verification code at any
time.

6Internet of Things can be thought of as devices that are embedded in everyday objects
and are connected to the Internet [3].

8

1.3. Summary

Figure 1.5: Noonlight screenshots [11]

1.3 Summary
There are two categories in which most of the personal safety applications can
be divided into—SOS applications and family locators. SOS applications share
a person’s location and more via the alarm button in order to notify emergency
contacts or police officers. On the other hand, family locators target smaller
groups of people, providing them with instant messages exchange and the
ability to define frequently visited places. The five applications from Google
Play sharing the same purpose were described. Below is the list of highlights
for each application.

• Záchranka—the life-saving application in the Czech Republic.

• Citizen—the application mainly focused on crime reports.

• BSafe—a classic SOS application.

• Life360—the most popular family locator on Google Play.

• Noonlight—a simply designed SOS application.

In conclusion, all functionalities and main advantages that were mentioned
in the existing solutions can be found respectively in Table 1.1 and Table 1.2.
Based on testing on multiple devices with Android OS, out of all applications
described in this chapter, only Záchranka is fully supported in the Czech Re-
public and works correctly. Nevertheless, this application lacks crime reports,
deeper connection with emergency contacts, and live GPS tracking.

9

1. State of the Art

Functionality Záchranka Citizen BSafe Life360 Noonlight
alarm 3 3 3

contact management 3 3 3 3

live GPS tracking 3 3 3

crime reports 3 3

sirene 3

driver support 3 3

favourite places 3

Table 1.1: Functionalities coverage by existing solutions

Advantage Záchranka Citizen BSafe Life360 Noonlight
offline alarm 3

multiple languages 3

free of charge 3

connection with IoTs 3

Table 1.2: Advantages coverage by existing solutions

Here are other main disadvantages that should be pointed out from the
overall analysis:

• Paid versions are limiting important functionalities.

• A great number of unnecessary notifications are sent.

• Constant Internet connection is causing a rapid loss of battery.

• Disability to trigger the alarm when the application is turned off.

Based on the comparison, the requirements and core features for the fi-
nal application can be specified. Functionalities such as the alarm, contact
management, live GPS tracking, and crime reporting are included in the im-
plementation of the resulted prototype. In addition to that, it will be possible
to find the nearest police stations from the user’s current location.

10

CHAPTER 2
Requirements Specifications

This chapter specifies all functional and non-functional requirements essential
for the start of the development process. They are derived from the analysis
and comparison of features that are implemented in existing solutions.

2.1 Functional Requirements
Functional requirements define features or functions a software must perform.
They describe system behavior. [12] These requirements regard the core func-
tionalities of the application, such as the alarm, live GPS-tracking, crime
reporting, and contact management.

F1 Register new account To ensure data security, a person’s phone num-
ber will be required for signup. After the verification of both phone
number and confirmation code, the registration will be successful. From
this moment on, there will be no need for logging in after each start of
the application.

F2 Alarm With the application, it will be possible to activate an alarm in
case of a dangerous situation. On a single click of the in-app button,
emergency contacts will be notified immediately.

F3 Notify contacts On account of the alarm activation, emergency contacts
will be notified either with an SMS message or an in-app notification in
case they also have the application installed.

F4 Track user location In danger, the exact location will be shared with
the emergency contacts in real-time. If the contacts have the application
also installed, the position will be visible on a map.

11

2. Requirements Specifications

F5 Show directions With the application, it will be possible to select a
place on the map and show directions and the fastest route from the
user’s current location. This functionality will be especially beneficial
in situations where the location of a person calling for help is visible on
the map.

F6 Manage emergency contacts Users will be able to have as many con-
nections as they wish to. However, the created relation has to be ac-
knowledged by both sides. Moreover, contacts can be edited and even
deleted.

F7 Create crime reports Users will be allowed to send a crime report via
the application. The report will consist of a description, crime category,
level of severity, and an optional image.

F8 Show selected report on the map On a report’s click, the user will be
redirected to the map where the selected report is in focus. In addition
to that, its information, such as the report’s title and the street address,
will be visible.

F9 Display reports on the map The application will be able to display
all the reports on the map. Reported incidents will be represented as
pinpoints which size depends on the level of severity. The most pressing
will be the most visible.

F10 Display reports in a list The application will be able to show all the
reports in a list. Each item will contain the time passed, the exact loca-
tion of the incident, and the distance from the user’s current position.

F11 Sort reports It will be possible to sort reports by the time of posting,
the level of severity, and by the distance from the closest to the furthest
from the current location.

F12 Show the nearest police stations Users will be able to locate the
nearest police stations according to their current position. Stations will
be visible on the map with an option to quickly navigate to their loca-
tion.

F13 Change application language The application will be localized in two
languages for the user to choose from—English and Czech. However,
the application should be designed in a way any other language could
be easily added later.

F14 Introduction At the beginning of the application, a brief description of
the core functionalities will be provided to put users into context. After
signup, the introduction will no longer be displayed.

12

2.2. Non-functional Requirements

2.2 Non-functional Requirements
Non-functional requirements define the quality attribute of a software sys-
tem [12].

N1 Synchronization with the server The application will be able to re-
trieve actual data from the server in real-time. It is especially important
for GPS live-tracking functionality.

N2 Intuitive and straightforward design As the primary purpose of this
application is to ensure the user’s security, the design ought to be in-
tuitive and straightforward without redundant functionalities and mis-
leading elements.

N3 Security Each registration has to pass the verification process in order
to use the application.

N4 Wide coverage To reach as many people as possible, the application
will cover a wide range of Android devices, including various sizes and
different versions of the operating system.

N5 Usability The UI will be designed in a way both children and the elderly
have no difficulties with operating the application.

2.3 Use Case Scenarios
Based on functional requirements, use case scenarios that describe the user’s
behavior and interactions with the application are specified in this section.
The functional coverage by use cases is detailed in Table 2.1. The UI design
of individual components and screens is presented further in Chapter 4. The
followings are basic use case scenarios in the application:

UC1 User acquaints with the application

1. User installs and launches the application.
2. The application shows a welcome page.
3. The application briefly introduces the core functionalities such as

the alarm, crime reporting, and the nearest police stations search.

UC2 Change application language

1. User navigates to the device’s settings.
2. User selects the language in which the application will be displayed.
3. By default, if the language is not supported, the application will

be displayed in English.

13

2. Requirements Specifications

UC3 Signup

1. The application displays the signup screen.
2. User enters his/her phone number in full format.
3. User confirms the number by clicking the “Send” button.
4. If the verification is successful, SMS with a 6-digit code is sent.
5. User enters the received code.
6. The system automatically evaluates the code after the 6th digit.
7. If the code is correct, access to the core of the application is given.

Alternative flow: SMS auto-detection

5A The application automatically detects the received SMS.
6A Access to the core of the application is given.

UC4 Create crime report

1. User navigates to the top-level destination with the label “News”.
2. User clicks on the main action button to create a new crime report.
3. The application shows a report’s form.
4. User fills the description in, selects the crime category, and a pri-

ority value of the report.
5. User can enclose a photo.
6. User publishes the report on “Send” button click.
7. The new report is displayed on the main screen, and on selection,

it is visible on the map.

UC5 Display the newest/the most pressing/the nearest reports

1. User navigates to the top-level destination with the label “News”.
2. User selects the attribute by which the items will be sorted.
3. Reports are arranged from the newest to the oldest, from the most

pressing to the least important or from the nearest to the furthest
from the current location according to the selected attribute.

UC6 Call for help

1. User navigates to the top-level destination with the label “Alarm”.
2. User clicks on the SOS button.
3. The application shares the user’s location with his/her emergency

contacts via SMS or in-app notification.

14

2.3. Use Case Scenarios

UC7 Help the person in an emergency

1. User receives the SMS message from the person in danger.
2. The message contains the exact location of the caller along with

the battery status of his/her device.

Extended flow: The contact is registered in the application

3 User receives an in-app notification regarding the person in danger.
4 On the notification click, the application is opened.
5 User navigates to the top-level destination with the label “Map”.
6 The location of the person in danger is tracked and visible in real-

time on the map.
7 On location’s click, the user is provided with directions and the

fastest route to this position.
8 The nearest police stations are displayed on the tab “The Police”.

UC8 Add emergency contact

1. User navigates to the top-level destination with the label “Contact”.
2. User clicks on the primary action to add a new emergency contact.
3. The application shows a contact’s form.
4. User fills the name and the phone number of the contact.
5. User can enclose a photo.
6. User saves the contact on “Create” button click.
7. The new contact is visible in the list of emergency contacts.
8. The user’s phone number is automatically added to the contact’s

list of wards.

UC9 Delete emergency contact

1. User navigates to the top-level destination with the label “Contact”.
2. User selects a contact item that he/she wants to remove from the

list of emergency contacts.
3. The application shows a contact’s form.
4. User deletes the contact on “Delete” button click.
5. The contact is removed from the list of emergency contacts, and

the user’s location is no more shared with this person.
6. The user’s phone number is automatically removed from the con-

tact’s list of wards.

15

2. Requirements Specifications

UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9
F1 3

F2 3

F3 3 3

F4 3 3

F5 3

F6 3 3

F7 3

F8 3

F9 3

F10 3 3

F11 3

F12 3

F13 3

F14 3

Table 2.1: Functionality coverage by use cases

16

CHAPTER 3
Design

At the beginning of this chapter, Android platform is introduced along with
Kotlin language as it gained Google’s support in the last years. The following
sections give further details on the project structure and architecture. Lastly,
the domain and database model is described.

3.1 Android Platform

Android is a Linux-based OS mostly developed by Google. It powers not only
mobile devices but also tablets, watches, and even some types of car equip-
ment. Android has been the best-selling OS for smartphones worldwide. [13]
With a wide range of price rates along with various designs and functionalities
manufactured by many companies, users can choose what suits them the best.
This flexibility has allowed Android to grow incredibly quickly as a platform.

3.1.1 Versions

Android has seen numerous updates that have incrementally improved the
operating system. Each major release is named in alphabetical order after
a dessert or a sugary treat. However, this practice is ending with the latest
stable version Android 10, which is simply named as Android Q. As one of
the non-functional requirements is extensive coverage, the application will
support Android devices with minimal Application Programming Interface
(API) version of 19 (namely KitKat), which corresponds to 96.2 percent of
all active devices. The supported versions are highlighted in Table 3.1 and
Figure 3.1. The minimal version was also chosen due to its text messages
management.

17

3. Design

Codename API Distribution
Gingerbread 10 0.3%
Ice Cream Sandwich 15 0.3%
Jelly Bean 16–18 3.2%
KitKat 19 6.9%
Lollipop 21–22 14.5%
Marshmallow 23 16.9%
Nougat 24–25 19.2%
Oreo 26–27 28.3%
Pie 28 10.4%

Table 3.1: A relative number of devices running a given Android version [14]

0% 5% 25%20%15%10%

Gingerbread

Ice Cream Sandwich

Pie

Oreo

Nougat

Marshmallow

Lollipop

KitKat

Jelly Bean

Figure 3.1: Android version distribution [14]

3.1.2 Kotlin

Kotlin is an open-source language developed by JetBrains, which is also a
company behind the Android Studio Integrated Development Environment
(IDE). It was never fully acknowledged until Google introduced Kotlin as an
official language for Android development along with Java and C++ at its
annual developer conference in 2017 [15]. Two years later, Google announced
that the development would go Kotlin-first, and with that, it became the
recommended choice for Android development. Nowadays, over 50 percent of
professional Android developers write their code in Kotlin [15].

Kotlin provides safe and concise yet expressive programming in comparison
to the verbosity of Java language. However, Kotlin is designed to interoperate
fully with Java. Both Java and Kotlin classes can work side by side in a project
and compile without any issues.

18

3.1. Android Platform

Followings are reasons why Kotlin was selected as an implementation lan-
guage of the application:

• Nullpointer exception safety—Kotlin does not allow null assignment to
variables by default.

• Extension functions that represent the ability to extend new functional-
ity without having to create a class.

• Coroutines (more in Section 6.4) which provides simple multi-threads
managing.

• Functional programming such as lambdas and lazy operations are sup-
ported.

• Manual definition of constructors, getter alongside with setter methods
and further class functions is no more required.

• Explicit type specification of a variable while declaring is not necessary.

• It drastically reduces the amount of boilerplate code.

3.1.3 Gradle Kotlin DSL
Kotlin can also be integrated into the Gradle build system for Android. It
replaces the traditional Groovy language and allows detachment of depen-
dant libraries, plugins, modules, and versions into a separate file. This isola-
tion makes the dependencies easier to maintain and refactor in the future as
changes are updated from one place.

3.1.4 Base Components and Lifecycle
In this section, two crucial building blocks of every Android application are
introduced. The Activities and Fragments are fundamental parts of an
application model (see the visual representation in Figure 3.2). They are
essentially what the user sees on a screen and can interact with. Both of these
components are lifecycle aware, which means they go through several specific
stages during configuration changes.

Activities Activity can be mostly thought of as a full-screen or a floating
window where all the UI is laid out. Generally, one Activity represents
a container for a group of screens that shares the same context.

Fragments Fragments are very similar to Activities. However, they pro-
vide an additional concept of modularity. They are used to create a re-
sponsive layout as well as scale the application between small and large
devices. [16] Each Fragment is included in the Activity. Furthermore,
both of their lifecycles are closely attached.

19

3. Design

Selecting an item

updates Fragment B

Activity A contains

Fragment A and Fragment B

Activity B contains

Fragment B

Activity A contains

Fragment A

Selecting an item

starts Activity B

Figure 3.2: Example of Activities and Fragments on different devices [16]

Lifecycle

The order in which the Activities are displayed to the user is implemented
as a stack with a running Activity on top. When a user navigates to a
different screen, previous Activity will transfer below it and will be waiting
to be resumed later on. And when the application is closed or crashes, then
the Activity is destroyed and cleared from the memory. These stages are all
part of the lifecycle that is visualized in the diagram in Figure 3.3.

3.2 Multimodularisation
Multimodularisation refers to the process of isolating logical components or
functionality of a project into separate modules that are distinct and inde-
pendent [18]. Thus, modules are parts of an application that hold discrete
responsibilities but can interact with each other. Although it requires more
effort, the reasons why the modularization was chosen are:

• Build time is faster.

• Dependency control is less complex.

• Codebase is cleaner.

• Future refactoring is simpler.

• There is a possibility for dynamic features7.
7Dynamic feature can be installed on demand. Therefore, making the core of the appli-

cation much smaller in size.

20

3.2. Multimodularisation

onCreate()onCreate()

onStart() onRestart()

onDestroy()

onStop()

onPause()

onResume()

Activity

launched

App process

killed

Activity

shut down

Activity

running

User navigates

to the activity

Apps with higher priority

need memory

The activity is finishing or

being destroyed by the system

User navigates

to the activity

Another activity comes

into the foreground User returns

to the activity

The activity is

no longer visible

Figure 3.3: Activity lifecycle diagram [17]

21

3. Design

There are a few ways to split the project structure—by feature, by layer,
or both. By “layer”, it is meant: database, network client, repository, or a
user interface. Splitting by feature provides encapsulation. Components that
work together are all in one place. That is why splitting by feature was chosen
for this application. The main functionalities will be presented as individual
modules. Therefore, the main project modules are authentication, alarm,
reports, map, and a contact management module.

3.3 Design Pattern
There are many architectural patterns used in Android development. Some
of the well-known are Model View Controller (MVC), Model View Presenter
(MVP), and Model View ViewModel (MVVM). All of them are striving to
follow a common principle—the Separation of Concerns8. Their goal is to
detach the UI from the database model, and business logic as much as possible
in order to create loose decoupled classes, robust projects that are easier to
maintain and test. [19]

Besides the author’s knowledge and MVVM being the recommended choice
(MVVM flow is illustrated in Figure 3.4), there are two other significant rea-
sons why it was determined this pattern would suit the application architec-
ture:

• The pattern supports two-way data binding between the view properties
and the model, which leads to an immediate update of UI when data
changes (more about data binding in Section 6.2).

• ViewModel (read more in Section 6.1.2) is not aware of the view—it does
not hold the reference to it. Instead, it only broadcasts the changes, and
individual subscribers will handle the data separately. This respects the
lifecycle of individual observers.

3.4 Domain Description
The underlying concept of the application is to enhance the awareness about
dangerous situations around as well as to provide the ability to call for help
in case of an emergency. The conceptual model of a domain using Unified
Modeling Language (UML) classes can be seen in Figure 3.5.

Upon application installation, every user has to go through a verification
process. The access is provided only upon successful validation of the person’s
phone number. The core of the application consists of the map and the news
component that displays the crime reports (see their UI design in Section 4.4).

8Separation of Concerns is a principle which idea is to avoid co-locating different respon-
sibilities within the code [19].

22

3.5. Database Structure

View ModelViewModel

Model Change
Events

ViewModel data

Data Change
Events

UI Events

Receive Data

Send Data

Figure 3.4: MVVM communication model [20]

Users can alarm their emergency contacts via application notifications or
SMS messages on a single click of a button. The person’s phone number,
battery status, and current location are an essential part of the sent message.
On the contrary, when witnessing a crime scene, a report can be sent to keep
the surrounding informed. The report can be found on the map as well as in
the news. The necessary attributes of the report are title, crime category, and
priority specification.

3.5 Database Structure
The application data are stored in a local as well as a remote database. Lo-
cal being the device’s storage and remote refers to the databases provided
by Firebase (see more in Section 5.1.2). This approach is chosen to make al-
ready loaded reports available even when there is no Internet connection. The
database structure for the current scope of the application is rather simple as
the only stored entities are Contacts, Wards and Reports.

Contacts and Wards
Contacts and Wards share common attributes such as a name, phone num-
ber, and an optional profile picture. However, from the user’s perspective, a
Contact can be thought of as an emergency contact that will be notified in
case of danger, whereas Ward is a person on the opposite side that notifies and
shares the location with the user when needed.

Reports
Report entity represents the crime report that is shared among the users. Its
fundamental properties are description, exact location, category specification,
priority level, and lastly, the time of posting. An optional image resource can
be enclosed.

23

3. Design

«kind»
News

«relator»
Location	area

«role»
Guardian

«relator»
Guardian	request

«mediation»

1

0..*

«role»
User

«kind»
Person

«kind»
Map

«kind»
Application

«kind»
Report

«kind»
Situation

{disjoint,	complete}

«phase»
Dangerous

«phase»
Safe

/triggers	▶

«material»
1 1

«relator»
Signal

«mediation»

0..*

1

/is	in	contact	list	of
«material»

1..*0..*

«mediation»

1

1..*

/have	to	be	▶

«material»

1..*

1

{essential}
1

1

1

1

«category»
Alert

/contains	▶

«material»

1

1

«quality»
Crime	category

«kind»
Message

phoneNumber:	String	[1]

batteryStatus:	Int	[1]

«quality»
Priority

«mediation»

0..*

1

«mixin»
Emergency	contact

«kind»
Police

«role»
User	in	danger

«mediation»

1

0..*

/are	listed	in	
«material»

0..*

0..*

/posts	▶

«material»

0..*

1

«phase»
Verified

«phase»
Not	validated

«phase»
In	process {disjoint,	complete}

«kind»
Verification

/is	in
«material»1..*

0..*

«mediation»

0..*

1

{essential,	
inseparable} 1

1

«subkind»
Mobile	application	
for	personal	safety

{essential}

«characterization»

1

1

«characterization»

1

1
«Kind»

App	notification

«Kind»
SMS

«kind»
GPS	location

{essential,	
inseparable}

11..*

Figure 3.5: Conceptual model of the application domain

Crime Category

To shorten the time user has to spend with creating a report, a set of predefined
crime categories is provided. The initial list of category keywords includes
weapon, abuse, theft, terrorism, and fire.

Priority

The priority attribute represents the report’s level of severity ranged from
low to high. Furthermore, this value serves as a filter option or to visually
distinguish the reports on the map (see the features UI design in Section 4.4).

24

CHAPTER 4
UI Design

As the application does not target a specific group of age, the design focuses
on welcoming anyone, including children and the elderly. The UI ought to be
simple and straightforward, but most importantly, understandable. With this
concept in mind, a lot of minimalistic informative illustrations are provided
all over the application, and unnecessary elements that would only distract
the user were avoided. In this chapter, the description of the chosen UI com-
ponents and individual screens is presented.

4.1 Material Design
Material is a UI design standard in the Android development that provide
guidelines and tools to support the best practices [21]. It is Google’s visual
language, inspired by the physical world and its textures. It focuses on how
individual components reflect light and cast shadows.

The application UI follows the Material system as it is consistent, has
Google’s support, and millions of users are already familiar with its princi-
ples. Material Design specific Components that were used and customized
(see Figure 4.1) for the overall application theme are:

Buttons Buttons allow users to take actions and make choices with a single
tap. The design depends on the emphasis of the button’s action. The
more important the action is, the more the button is distinct.

Floating Action Buttons (FAB) A FAB is often presented as a rounded
button with an icon in its center that is connected with a primary action
on the screen. It has the highest elevation as it should be the most visible
element. [21] FAB should perform a constructive action. Hence it found
its place in crime report creations and contact items editing.

25

4. UI Design

Send SEND

TimeTime Distance
Your emergency contacts were notified

Map Alarm ContactsNews

Buttons FAB

Snackbar

Tabs

Bottom Navigation

Slider

Chips

Figure 4.1: Material Design Components that were used and customized

Chips The chips’ primary purpose is to provide a collection of choices, content
filters, or action triggers [21]. In the application, these elements are used
for reports sorting. A sorting attribute can be the time of publishing,
priority, or distance from the current location.

Tabs Tabs present the distinct content that can be switchable on the screen [21].
This component helps to differentiate the types of markers on the map
and to also navigate between the list of emergency contacts and wards.

Snackbars Snackbars are brief temporary messages at the bottom of the
screen that informs the user about application processes. The message
can be, for example, “Your crime report was successfully published.”, or
“Your location is now being tracked.”.

Bottom Navigation This component allows navigation across the applica-
tion’s primary destinations [21]. It serves as a connection hub between
the individual features making each one of them accessible from any-
where in the application.

Sliders Sliders allow users to select a value from a range of values along a
bar. The selection is adjusted by dragging the finger along the track. In
the application, it is used to determine the report’s severity from low to
high.

4.2 Google Maps Graphics
Besides the access to Google Maps servers, data downloading, map display,
and response to map gestures, the Google Maps API also provides a set of
graphical objects [22]. Followings are graphics that were used and customized
in the application:

Markers Markers represent the crime reports, wards in danger, and the near-
est police stations on the map. The markers were customized in a way
not only info windows but also the map toolbar appear on an event click.

26

4.3. Animations

Info Windows Each marker is tied with an info window that contains text
and an optional image. The view is displayed as a pop-up window over-
laying the map. [22] Additional information on the marker such as a
crime report’s title, name of a ward or police facility, phone number, or
the location address can be found in the info window’s content.

Clusters Marker clustering is a process used when a large number of data
points on the map are required on different zoom levels. It is making
the map easier to read by displaying only the amount of markers that it
is covering.

Shapes Google Maps offers a few simple ways to add basic shapes to the map.
The location pin of the ward in danger was designed with animating
circle objects replacing the marker.

With the Maps API, the way users can interact with the map was also
defined. Some of the built-in UI components were determined to appear on
the map, such as the map toolbar buttons. These buttons provide access to a
map view, or directions request in the Google Maps native mobile app.

4.3 Animations
To illustrate what is happening on the screen, visual actions like animations
can be used. They are particularly valuable when reflecting UI changes. [23]
To indicate whether the alarm button has been pushed, and thus the location
has been tracked, the pulsing animation was applied. The animation looks
like as if the button was broadcasting signals which complements the actual
act of calling for help (see the button’s design in Figure 4.6). For consistency
purposes, this visual effect can also be seen on the map.

4.4 Features UI
Based on the analysis of existing solutions, it was determined that the appli-
cation would primarily include four features—crime reporting, map display,
alarm in emergencies, and contacts management. Each of these functions was
designed into a separate group of screens representing the top-level navigation
destination.

4.4.1 Onboarding
The purpose of onboarding screens, which can be seen in Figure 4.2, is to
describe the application’s features briefly. Users can skip the whole introduc-
tion or swipe until the end, where they can further navigate to the signup.
Once the user approaches the signup process, the onboarding is not further
displayed in application future launches.

27

4. UI Design

Skip

Tell us what you see

Report a crime you are witnessing
to keep your surrounding save

Skip

Signal in danger
Notify your emergency contacts

with a single push of a button

Go to signup

Find nearest help
Know where the nearest police
stations are in case of danger

Figure 4.2: Onboarding UI design

4.4.2 Signup

Signup consists of only two screens that can be seen in Figure 4.3. The first
screen contains a phone number field. If the device is not instantly verified by
the Firebase Authentication (read more in Section 5.1.1), the SMS message
with a 6-digit code is generated and sent. The code input is automatically
validated after the 6th digit, and if correct, the access is given to the central
core of the application. In future application launches, as the phone number is
saved in the database, the user is instantly redirected to the main application
features.

4.4.3 Crime Reporting

The main screen of this feature (see Figure 4.4) contains a list of all pub-
lished crime reports and can be found behind the “News” label on the bottom
navigation bar. The individual report’s attributes are well-arranged for the
purpose of readability. The priority of the report is represented by the number
of red dots—three are for the most pressing situations. The sorting attributes
are presented as chips that are hidable on scrolling. On a click event, the user
will be redirected to the map where the selected report is in focus.

There is a FAB located in the bottom right corner, which on tap displays
the form to create a new crime report. All attributes are designed in a way
so that quick interaction is possible. Crime categories are presented as single
selection buttons, and the priority value is determined by a slider.

28

4.4. Features UI

Figure 4.3: Signup UI design

Figure 4.4: Crime reports UI design

29

4. UI Design

4.4.4 Map
For the group of map screens (see Figure 4.5), the Google Maps API was
used. Its native components were customized to suit the application context.
There are tabs located on the top of the layout for navigation purposes. Each
of the tabs represents a different type of map—to be exact different types of
markers. The map levels are:

Reports map This kind of map presents all the published crime reports as
pins placed on the reported location. Further information and direc-
tion to this place can be seen on a pin tap. If a particular zoom level
causes the pins to accumulate in one place, making them overlap each
other, they are replaced by a cluster (as described in Section 4.2) for
transparency reasons.

Wards map In this level, it is possible to track the location of the ward in
danger in real-time. The pin marker is designed as a pulsing circle that
updates its position in a matter of seconds with the ward’s name and
the phone number as its description. Once more, all Google Maps native
functions—such as directions—are available on pin’s interaction.

Police map This map option displays all the police stations within a radius
of two km from the actual location of the device. See the implementation
in Section 5.2. The name of the facility and the street address is provided
along with the marker.

4.4.5 Alarm
The essential element of the alarm (see Figure 4.6) is an eye-catching red
button. On a single tap, it can notify emergency contacts in case of danger
with both an SMS message and an in-app notification. As mentioned earlier,
if contacts have the application installed, they can see the user’s real-time
location on the map feature. The process of active tracking is characterized
by a pulsing animation.

4.4.6 Contacts Management
Users can find two classes of contacts list in this part of the application (see
Figure 4.7)—the emergency contacts list and wards list. Users can switch
between the contents using tabs that are located on the top of the screen.

The contact’s form consists of a name and a phone number field. An
optional image can be enclosed. On a selection, the emergency contacts can
be edited and even deleted.

30

4.4. Features UI

Figure 4.5: Map UI design

Figure 4.6: Alarm UI design

31

4. UI Design

Figure 4.7: Contacts UI design

32

CHAPTER 5
Technologies

This chapter presents the fundamental technologies used in the application.
Platform Firebase is chosen to integrate into the authentication, database,
and notification solutions. Google Maps allow to visually mark the reports
and user’s current location on the map. Both Firebase and Maps fall within
Google’s competence, thus are preferred among other alternatives as the reli-
ability and smooth cooperation with the Android OS is ensured.

5.1 Firebase
Firebase is a powerful platform for the rapid mobile and web development
acquired by Google in 2014 [24]. The platform provides many backend services
that are hosted in the cloud, including databases, file storage, authentication,
analytics, A/B testing, push messaging, and the list goes on. All of these
products are designed to work well together. The administrative access is
provided through the Firebase console. Individual products that were used in
the application are further described in the following subsections.

5.1.1 Authentication
Firebase Authentication takes care of restricting access to per-user data sim-
ply and securely. It supports identification using passwords and email, phone
numbers, popular identity providers such as Google or Facebook, and more. [25]
For successful signup into the application, only a phone number is requested
(see Listing 5.1). Users can be instantly verified, or they can receive a 6-digit
verification code via SMS message for further validation. The whole process
of authentication is visualized in Figure 5.1. On some devices, Google Play
services can automatically detect the incoming verification SMS and perform
authentication without further user action.

33

5. Technologies

Validate code

Sign in the user

Send the 6-digit
verification code

U
se

r
F
ir

eb
as

e
A

ut
h

Type in phone number Type in verification code

Validate phone number

Is number valid?

no no

no

yes yes

yes

Can device be
instantly verified?

Is code correct?

:Phone number :SMS with code :Verification code

Figure 5.1: Authentication flow

private val auth = FirebaseAuth.getInstance()

/**
* Validate the provided verification code. Sign in or register
* the user if the process is successful.
*
* @param activity the context for callbacks
* @param credential the combination of verification code and id
*/

fun signInWithPhoneCredential(activity: Activity,
credential: PhoneAuthCredential)

{
auth.signInWithCredential(credential)

.addOnCompleteListener(activity) { task ->

// Register the user if the signup is successful
if (task.isSuccessful) {

if (task.result?.additionalUserInfo?.isNewUser ==
true) {↪→

listener.onNewUserRegistered()
}

}
}

}

Listing 5.1: Firebase Authentication callback example

34

5.1. Firebase

 “Na CVUT byl vyhlasen pozarni poplach.”

 “FIRE”

 “Thakurova 7”

 50.0990366

 14.3985636

 February 16, 2020 at 11:55:22 AM UTC+1

 “https://firebasestorage.googleapis.com/picture1”

 2

title:

category:

address:

latitude:

longitude:

created_at:

image_uri:

priority:

report1

report2

reports

...

 “+420777424242”

 false

 true

 null

 null

 “soKAjsh8a6dNap9sk”

 “phone_number2”

 “phone_number5”

 null

phone_number:

is_in_danger:

is_user:

latitude:

longitude:

notification_key:

contact_ids:

ward_ids:

phone_number1

phone_number2

users

...

Figure 5.2: Cloud Firestore data structure

5.1.2 Cloud Firestore
Firebase provides two types of non-relational databases—Firebase Realtime
Database and Cloud Firestore [26]. Both databases allow to store and sync
data between users in real-time using listeners that gets invoked every time
a change is observed. The main difference and the reason why the Firestore
was chosen is that the data are more structured. Data in Realtime Database
are stored in one JavaScript Object Notation (JSON) tree, whereas Firestore
contains documents and collections which provide better querying (see the ex-
ample in Listing 5.2). The application’s data structure, as stored in Firestore,
can be seen in Figure 5.2. Reports and Users correspond to collections and
the instances with ids report1 or phone_number2 are called documents.

5.1.3 Cloud Storage
Cloud Storage is built to directly upload and download files such as images,
audio, video, or other user-generated content [27]. In the application, it is
primarily used when creating a crime report enclosing a photo (see Listing 5.3).
The Cloud Storage will return the photo location path, which is then stored
in a Firestore document of a given report.

5.1.4 Cloud Functions
With Cloud Functions for Firebase, it is possible to write and deploy code that
automatically responds to events coming from other Firebase products [28].
The application notifications are sent to all emergency contacts whenever the
attribute stored in Firestore, saying whether the user is in danger or not, up-
dates (see Listing 5.4). The source code of the function is written in language
JavaScript and is stored in Google’s cloud, so there is no need for self-managing
servers.

35

5. Technologies

import com.google.firebase.firestore.DocumentChange.Type

private val firestore = FirebaseFirestore.getInstance()

// Listen to Reports collection changes
firestore.collection("REPORTS").addSnapshotListener { snap, _ ->

snap?.documentChanges?.let { changesList ->
for (change in changesList) {

when (change.type) {
Type.REMOVED -> // The report was removed
Type.ADDED -> // The report was added
Type.MODIFIED -> // The report was modified
else -> throw

RuntimeException("Change type not recognized.")↪→

}
}

}
}

Listing 5.2: Cloud Firestore listener example

val storage = FirebaseStorage.getInstance()

/**
* Upload the image as a file (named as the last path segment
* of the image address) to the Reports folder on Cloud Storage.
*
* @param imageUri the image address on device storage
*/

fun uploadReportImage(imageUri: Uri) {
// Reference to the Reports folder on Cloud Storage
val reportsRef = storage.reference.child("REPORTS")
val lastPathSegment = imageUri.lastPathSegment
val photoRef = reportsRef.child(lastPathSegment)

photoRef.putFile(imageUri)
.continueWithTask { photoRef.downloadUrl }
.addOnCompleteListener { task ->

if (task.isSuccessful) {
// Upload of report image was successful
val imageDownloadUrl = task.result

} else {
// Upload of report image failed

}
}

}

Listing 5.3: Cloud Storage query to upload report image

36

5.2. Google Maps

// Listens for user updates in Firestore at users/:userPhoneNumber
exports.alarmNotification = functions.firestore

.document('users/{phoneNumber}')

.onUpdate((change, context) => {

// Check whether the user is in danger and send a notification
// to everyone in his list of emergency contacts

}

Listing 5.4: Cloud function Notification

5.1.5 Firebase Cloud Messaging
With Firebase Cloud Messaging, it is possible to send battery-efficient ac-
knowledgments and notifications to client devices [29]. The recipient could be
an individual, a group of users, or subscribers, which makes it easier to de-
liver relevant information according to the user’s needs. This key functionality
keeps the user engaged and connected. On the client-side, Firebase Messaging
Service class is implemented to handle the received notifications and to cus-
tomize the message content further. To deliver a notification, a unique device
token is generated upon the application’s installation and stored in Firestore
database.

5.2 Google Maps
With 99 percent of the world coverage, Google Maps are definitely a num-
ber one map service. This platform comes with a wide variety of features for
instance satellite imagery, robust UI controls, location tracking, and location
markers. [30] To integrate the Maps into the application, Maps Software De-
velopment Kit (SDK) had to be enabled, and the unique API key to access
the service had to be generated in the Google Developer Console9. Followings
are the leading products of Google Maps platform that were used:

Maps This product gives users the ability to use zoom, rotate, and tilt with
simple gestures to adjust the map according to their needs. It provides
numerous types of map stylization along with a set of custom graphical
elements that were described in Section 5.2.

Places According to the documentation, the library has over 150 million
points of interest in its database. To ensure the information is always
up-to-date, the data are open for the millions of daily active users to
change. [30] With this product, the application can find the nearest po-
lice stations and provide their names, addresses, and contact information
(see the search query in Listing 5.5).

9Google Developer Console stores all the project’s settings, credentials, and APIs.

37

5. Technologies

"https://maps.googleapis.com/" +
"maps/api/place/nearbysearch/json?" + // Request for JSON file
"location=${latitude}," + // User's location latitude
"${longitude}" + // User's location longitude
"&radius=2000" + // Within a radius in meters
"&type=police" + // Type of data
"&key=$APP_KEY" // The application key

Listing 5.5: Nearby police search query according to Map Places

// Launch DI and initialize the modules
class BaseApplication : Application() {

override fun onCreate() {
super.onCreate()
startKoin {

androidContext(this@Application),
modules(listOf(firebaseModule))}

}
}

// Define entities which will be injected at some point in the app
val firebaseModule: Module = module {

single { FirebaseFirestore.getInstance() }
}

// Inject an instance when needed
private val firestore : FirebaseFirestore by inject()

Listing 5.6: Koin injection example

5.3 Koin

Koin is a lightweight Dependency Injection (DI)10 framework written in pure
Kotlin [31]. It is suitable for this application, especially due to its simplic-
ity (see the example in Listing 5.6). It is also easier to test and has better
documentation than other DI frameworks such as Dagger or Kodein.

Furthermore, the DI concept fits the multimodular structure of the appli-
cation. Submodules are only aware of the interfaces but not specific imple-
mentations that may be located elsewhere. The actual instances are injected
by Koin.

10Dependency Injection is a design pattern that allows the creation of dependent objects
outside of a class that depends on them [19].

38

5.4. Glide

// Load the report's image into the view container
Glide.with(context)

.load(report.imageUri))

.transform(CenterCrop(), RoundedCorners(14))

.into(vImage)

Listing 5.7: Glide image loading example

5.4 Glide
Glide is a robust Android framework that provides media management and
image loading [32]. In the application, it is essentially used for displaying and
resizing images that are fetched from the Firebase Storage as it efficiently uses
media decoding, memory, and disk caching (see the example in Listing 5.7).

There is a similar library called Picasso. In comparison, Picasso is smaller
in size, yet the first image load can take much longer. In this case, efficiency is
preferred above the memory capacity. This choice is not excluded from future
discussions as of this moment, the application does not contain a large amount
of data.

39

CHAPTER 6
Implementation

This chapter contains the description of development practices used for the
final prototype implementation. The solution was carried out with Android ar-
chitecture components such as LiveData, ViewModel, and a persistence library
Room. Further in the chapter, the answer to how UI updates, asynchronous
tasks, and permission requests that plays a crucial role in the application can
be found.

6.1 Architecture Components

There were times when all the code was written in the Activity class mak-
ing it a so-called God component. As time went by, a different approach
is followed. The Activity should essentially be only aware of its lifecycle
rather than the business logic. In 2017 Google announced its recommended
approach for solving this Separation of Concerns with Android architecture
components [33]. The main elements introduced are a persistence library
Room, LiveData and ViewModel where the main logic is moved to. The ma-
jor benefits of using these components are:

• Application structure is easy to refactor.

• UI is instantly and automatically updated upon data changes.

• Data survives on configuration changes, and there are no memory leaks.

• The boilerplate code related to SQLite database is reduced.

41

6. Implementation

class ReportViewModel(private val reportsRepo: ReportsRepo) :
BaseViewModel() {

// The list of all reports from the database
val allReports: LiveData<List<Report>> = reportsRepo.allReports

}

class ReportsFragment : BaseFragment() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

// Observe the LiveData holding the list of all reports
viewModel.allReports.observe(this) { reports ->

// Do something with updated data here
}

}
}

Listing 6.1: LiveData observing example

6.1.1 LiveData
To put it plainly, LiveData are data holders following the Observer pat-
tern11 [19]. The meaning behind the name LiveData is that they are aware
of the lifecycle of the interested observer. This ensures that only active sub-
scribers are updated, which leads to no memory leaks and crashes to configu-
ration changes. This feature takes much work from programmers’ hands. Ob-
servers can then propagate the current data state into the UI layout. LiveData
are designed to work well with ViewModels (see the example in Listing 6.1).

6.1.2 ViewModel
The main purpose of the ViewModel is to hold and manage UI-related data
in the separation, which are then exposed usually through LiveData or data
binding (read more about data binding in Section 6.2). Same as LiveData, it is
lifecycle conscious, which makes data survive configuration changes, including
screen rotations and keyboard availability. [19]

It communicates with both Activities and data repositories allowing
to have not only user inputs but also data loaded from the database in one
place. The data can be observed by multiple screens that share the same func-
tionality. In the application, there is AuthViewModel accessible from both
PhoneNumberFragment and VerificationCodeFragment (see signup UI de-
sign in Section 4.4.2).

11The data holder does not know where to send the updates. However, subscribers will
automatically get the changes as soon as they are accessible. [19]

42

6.2. Data Binding

6.1.3 Room

Room is a persistence library that allows simple interactions over a robust
database such as SQLite [34]. It provides an abstraction layer that maps
the database entities into SQLite readable Plain Old Java Objects (POJOs)
using elementary annotations. It reduces the amount of boilerplate code that
traditionally follows the operations with database connection. Room can also
validate the Structured Query Language (SQL) queries at compile time.

As mentioned before, it creates seamless integration with other architec-
ture components. How the data sources architecture was designed can be seen
in Figure 6.1. The application contains three main Room components (see the
code example in Listing 6.2):

Entity Room creates a table within a database for each class that has @Entity
annotation. The fields in the class will correspond to columns in the ta-
ble. The names can be customized or generated by Room by default.
Another annotation, such as @PrimaryKey, specifies the unique id of the
object. According to the application’s database model, the entities are
Report, Contact, and Ward.

Data Access Object (DAO) This component is responsible for defining
methods that communicate with the database. Once more, queries can
be build using explicit annotations in a DAO class such as @Insert or
@Delete without any additional attributes.

Database Database serves as the main access point for the underlying con-
nection to the application’s persisted data. To create a database, an
abstract class that extends RoomDatabase has to be defined. The an-
notation @Database, including the contained entities and the DAO that
have access to the database, has to be declared.

6.2 Data Binding

To further simplify the development of UI, the data binding concept is incor-
porated into the application. The architecture components are included in
the layout, which allows views to communicate directly with the ViewModel
objects. This ensures the UI logic is moved out of the layout, which leads to
easier testing, and at the same time, it reduces the number of UI calls in the
Activities. Furthermore, the view attributes can listen to the ViewModel
and propagate data source changes instantly into the UI (see data binding
example in Listing 6.3).

43

6. Implementation

Remote Data Source

Activity / Fragment

Firebase

Local Data Source

Room

ViewModel

Repository

LiveData

SQLite

Figure 6.1: Data sources architecture

6.3 Layout Views

Devices running the Android OS are very distinct regarding the wide variety of
sizes and resolutions. That is the reason why hardcoded values are considered
a bad approach when it comes to UI implementation, as the layout may not
look the same on different devices. The application uses ViewGroups such as
ConstraintLayout that supports working with percentages and scaled dimen-
sions as much as possible. Moreover, to correctly display items in a scrolling
list, the ViewGroup RecyclerView is presented in this section.

6.3.1 ConstraintLayout

ConstraintLayout is a ViewGroup that can build large and complex layouts
with a flat view hierarchy, which is beneficial to not only readability but
also the efficiency of the layout display. The view’s position is outlined by
its relations to other sibling and parent views. [35] At least two constraints
(horizontal and vertical) have to be defined in order to anchor the view. What
is more, ConstraintLayout supports chaining the views in numerous styles.

44

6.3. Layout Views

@Dao
interface ReportsDAO {

// Get the list of all reports sorted by time by default
@Query("SELECT * FROM reports ORDER BY timeAgo DESC")
fun getAllReports(): LiveData<List<Report>>

}

// The Room database for storing Report entities
@Database(entities = [Report::class], version = 1)
abstract class ReportsDatabase : RoomDatabase() {

// Reports data access object for database interactions
abstract fun reportsDAO(): ReportsDAO

}

// The crime report that is shared among the users
@Entity(tableName = "REPORTS")
data class Report(

// The report's unique id used as a primary key in database
@PrimaryKey
val id: String

)

Listing 6.2: Room components example

Guidelines

Guidelines are helper objects that are not visible by default. They serve
as constraints or borders for views inside the ConstraintLayout. They can
be oriented either horizontally or vertically, and positioned by defining the
percent value of the screen (see the example in Listing 6.4).

6.3.2 RecyclerView

There are various practices for displaying a scrolling list of elements of a
large amount or that changes frequently. One of the solutions is to use
RecyclerView. The main reason why this component was chosen is that
it creates only as many view containers as are needed to display on the screen
plus a few extra for smooth scrolling. As a user scrolls the items, views are
not destroyed and recreated but are reused and rebinded to the new con-
tent, which leads to a faster response. [36] As the previously visible views are
stored in a cache for later reuse, the performance is drastically improved. To
bind the content with the views, RecyclerView has to be connected with the
RecyclerView Adapter.

45

6. Implementation

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto">

<data>
<variable

name="vm"
type="cz.cvut.fit.phamobic.safety.ContactViewModel" />

</data>

<androidx.constraintlayout.widget.ConstraintLayout
style="@style/Layout">

<cz.cvut.fit.phamobic.safetyUI.PrimaryButton
style="@style/PrimaryButton"
android:onClick="@{_ -> vm.savePerson()}"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"/>

</androidx.constraintlayout.widget.ConstraintLayout>
</layout>

Listing 6.3: Data binding with contact’s editing

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
style="@style/Layout">

<androidx.constraintlayout.widget.Guideline
android:id="@+id/vGuidelinePhoto"
style="@style/Layout.Wrapped"
android:orientation="vertical"
app:layout_constraintGuide_percent="0.7" />

<ImageView
android:layout_height="0dp"
android:layout_width="0dp"
app:layout_constraintDimensionRatio="1:2"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintStart_toStartOf="@id/vGuidelinePhoto"
android:layout_margin="@dimen/scaled_dimension_size_8dp"/>

</androidx.constraintlayout.widget.ConstraintLayout>

Listing 6.4: Guideline example

46

6.4. Asynchronous Tasks

Adapter

The elements in the list are represented by view holder objects. These are
managed by the RecyclerView Adapter. It binds the views with correspond-
ing data based on its list position. [36] It also supports connection with click
listeners on individual items. In the application, adapters are used for both
reports and contacts correct display. On a click, reports redirect the user
to the map screen where the selected report is in focus. On the other hand,
contacts on a click event display the contact’s form for editing.

6.4 Asynchronous Tasks
There are many different approaches on how to handle heavy and long-running
tasks such as network calls or database operations that should be moved to
the background to not overload the main UI thread. The programmers are
familiar with AsyncTasks and RxJava. With AsyncTasks comes a lot of po-
tential issues such as memory leaks. Therefore, they are not further supported.
RxJava is a compelling yet both heavy and complex library, and therefore in
this manner, it would be very inefficient to use only for threading purposes.
Hence for this application, the coroutines were found as the most suitable
option.

Google introduced coroutines in 2018 as a new way of writing asynchronous
and non-blocking code [37]. Coroutines are written in pure Kotlin and can
be thought of as a light-weight thread (see the example in Listing 6.5). Fol-
lowing are the coroutines characteristics and benefits that they bring to the
application:

• Coroutines are very simple to read and also understand as they are
written sequentially as a non-asynchronous operation. No code nesting
is required.

• Coroutines can be safely terminated if the application process is de-
stroyed. They fit naturally in a ViewModel scope, which is aware of the
lifecycle.

• Like threads, coroutines can run in parallel, wait for each other and
communicate. However, in contrast, coroutines are very cheap, almost
free. A great number of coroutines can be created within a single thread,
and with a small price in terms of performance.

• A thread can suspend a coroutine to work on a different task with higher
priority. The coroutine process can then be resumed later on, or another
thread could even take over.

47

6. Implementation

class ContactViewModel(private val personRepo: PersonRepo) :
BaseViewModel() {

// Delete the selected contact from the database
fun onDeleteContactClicked() {

selectedContact?.id.let { contactId ->
viewModelScope.launch {

personRepo.deleteContactById(contactId)
}

}
}

}

class PersonRepoImpl(private val contactsDAO: ContactsDAO) :
PersonRepo, CoroutineScope {

// The coroutine scope that defines used threads
override val coroutineContext = SupervisorJob() + Dispatchers.IO

override suspend fun deleteContactById(contactId: Long) {
contactsDAO.deleteContactById(contactId)

}
}

@Dao
interface ContactsDAO {

// Suspend modifier says it has to be executed using coroutines
@Query("DELETE FROM contacts WHERE id =:contactId")
suspend fun deleteContactById(contactId: Long)

}

Listing 6.5: Coroutines example with a database operation

6.5 Permissions
With the announcement of Android Marshmallow (SDK 23), a new runtime
permission model (see Figure 6.2) was introduced [38]. Not only the permis-
sions have to be declared in the application manifest as before, but now they
also have to be requested at runtime (see the example in Listing 6.6). This
solution gives users full control over the application permissions and enough
context on why they are needed. Permissions can be divided into two groups:

Normal permissions These permissions do not directly affect the user’s pri-
vacy. If the permission is listed in the application manifest, then it is
automatically granted by the system upon installation. Unlike danger-
ous permissions, they do not have to be checked at runtime.

48

6.5. Permissions

Dangerous permissions These permissions give the application access to
the user’s sensitive data such as location, camera, contacts, or storage
access. They can potentially affect the system and other apps. Not only
they have to be listed in the manifest, but the user has to give permission
to use them explicitly.

Before this concept, the user had to grant all the permissions before the
installation. However, now, when the user does not accept a permission check,
the application should still be working even with the limited set of functional-
ities. As the user can manually revoke the approval at any time in the device’s
settings, permissions have to be checked every time the dangerous functional-
ity is required. For the features’ proper behavior, four dangerous permissions
are listed in the application manifest:

Access Fine Location This permission allows the API to fuse the data from
all available location providers, including the GPS, as well as Wi-Fi and
mobile cell data, to return as precise location as possible [39]. This is the
key permission for locating both users calling for help and crime reports
published by the users.

Write External Storage With this permission, the application is able to
write to the external storage of the device [39]. It is especially requested
upon saving the contacts profile pictures into the device’s photo gallery.

Camera This permission is required to access the camera hardware of the
device and other related features [39]. It is requested upon optional
enclosing of the reports images and contacts profile pictures.

SMS SMS permission allows the application to receive, read, and send SMS
messages regarding the alarm button. All the emergency contacts receive
an SMS that contains the user’s current location and battery status of
the device.

6.5.1 Location Updates

The purpose of LocationRequests is, as the name suggests, to ask for the
location of the device. As shown in Listing 6.7, many attributes can be cus-
tomized according to application needs, such as the accuracy level, the update
interval, or the amount of power consumed by requests. The location is re-
trieved with a FusedLocationProviderClient under Google API. When the
system is not running, the location updates are removed. To use this feature,
the location permission has to be granted, and also GPS turned on.

49

6. Implementation

Need permisssion

Request permission

Proceed

Handle permission result
(Granted, Denied)

Is SDK < 23?

Has the user
already been asked
this permission?

Is permission
already granted?

Has “Don’t ask again”
been checked?

yes

yes

yes

yes

no

no

no

no

Figure 6.2: The permission flow from Android 6.0 [40]

6.5.2 SMS Management
With SmsManager, sending and receiving SMS messages is very simple. This
feature is tightly connected with the alarm button. If the appropriate per-
missions are granted, an SMS is sent to all user’s emergency contacts with
not only the current location address but also a percentage status of the de-
vice’s battery. As the content’s length dynamically vary, the message content
is split into multiple messages if the text is too long. An enhancement that
would allow users to choose a time interval in which the SMS would be sent
repeatedly can be discussed in the future.

50

6.5. Permissions

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
if (ContextCompat.checkSelfPermission(it, CAMERA) ==

PERMISSION_DENIED || ContextCompat.checkSelfPermission(it,
WRITE_EXTERNAL_STORAGE) == PERMISSION_DENIED) {

↪→

↪→

// Permissions not granted, show Permission Request dialog
val permissions = arrayOf(CAMERA, WRITE_EXTERNAL_STORAGE)
requestPermissions(permissions, CAMERA_PERMISSION_CODE)

}
}

// Called upon ALLOW or DENY press from Permission Request dialog
override fun onRequestPermissionsResult(requestCode: Int, permissions:

Array<out String>, results: IntArray) {↪→

if (requestCode == CAMERA_PERMISSION_CODE) {
if (results.isNotEmpty() &&

results[0] == PERMISSION_GRANTED) {
// Permission granted, capture a photo

}
}

}

Listing 6.6: Camera permission request example

51

6. Implementation

val client: FusedLocationProviderClient? =
LocationServices.getFusedLocationProviderClient(context)↪→

// Request location updates and get current position of the user.
override fun startTrackingLocation(callback: LocationCallback) {

client?.requestLocationUpdates(getLocationRequest(), callback,
null)↪→

}

// Stop location updates and clear the user's current location.
override fun stopTrackingLocation(callback: LocationCallback) {

client?.removeLocationUpdates(callback)
}

// Get the location updates with following options:
// interval -> the update interval in ms
// fastestInterval -> the rate of updates
// priority -> the balance between power consumption and accuracy
private fun getLocationRequest(): LocationRequest {

return LocationRequest().apply {
interval = 10000
fastestInterval = 5000
priority = LocationRequest.PRIORITY_HIGH_ACCURACY

}
}

Listing 6.7: Location request example

52

CHAPTER 7
Testing

In this chapter, individual test categories and third-party libraries that were
used to ensure the code correctness and functional behavior are provided.
Among the applied frameworks, there is also Firebase platform. Its close in-
tegration with Android Studio helped connect the application with several
valuable test tools such as Analytics, Crashlytics, and Performance Monitor-
ing. Lastly, usability tests are performed on a group of people—two of them
being police officers. Along with supplementary questions and results, they
are stated at the end of this chapter.

7.1 Test Categories

Android Studio acquires built-in testing functionality to ease the process in
full measure. Depending on the test location in source code directories and
the environment in which the test will be running, Android Studio identifies
two types of tests—Unit and Instrumented tests. [41]

7.1.1 Unit Tests

Unit tests, also called local tests, run entirely in machine’s local Java Virtual
Machine (JVM), meaning no emulator or a real device is required. Generally,
they test the internal logic where the Android framework dependencies are
not necessary (see the example in Listing 7.1). Thus, leading to faster perfor-
mance. On the other hand, they do not consider the conditions of the physical
device. Hence, they do not reflect the real world. Unit tests are written with
JUnit, a standard unit testing framework for Java.

53

7. Testing

@RunWith(RobolectricTestRunner::class)
class ReportViewModelTest {

@Test
fun testOnCrimeCategorySelected() {

val categoryAbuse = CategoryView(getApplicationContext())
val categoryTheft = CategoryView(getApplicationContext())

reportViewModel.apply {
// At the beginning nothing is selected
assert(checkedCategory == null)

// 1. Select category Abuse - it should be checked
onCrimeCategorySelected(categoryAbuse)
assertThat(checkedCategory, `is`(categoryAbuse))
assertThat(checkedCategory?.isChecked, `is`(true))
assertThat(categoryAbuse.isChecked, `is`(true))
assertThat(categoryTheft.isChecked, `is`(false))

// 2. Select category Theft - it is the only checked
// 3. Select category Theft again - nothing is changed

}
}

}

Listing 7.1: Unit test with Hamcrest example

7.1.2 Instrumented Tests

Instrumented tests, often called as Android tests, which may be confusing,
require a hardware device or an emulator. Interactions regarding the test
operations are visually drawn on the screen. In the vast majority of cases,
they are written to test the application integrity, the correctness of the UI
functionality, and to automate user interactions. In the application, most
of the instrumentation tests are written with Espresso library (see more in
Section 7.2.1).

7.2 Used Libraries

Android platform supports several different kinds of testing frameworks and
libraries. In this manner, application test capabilities are further extended
with frameworks such as Espresso, Robolectric, and Hamcrest, which converts
the test code into a more readable language acting more as documentation.
All of the mentioned libraries are industry-standards in the Android world.
With the recommendation by Google [42], they are an obvious choice.

54

7.2. Used Libraries

@RunWith(AndroidJUnit4ClassRunner::class)
class ReportDialogFragmentTest : KoinTest {

@Before
fun setUp() {

launchFragmentInContainer<ReportDialogFragment>(null,
R.style.AppTheme)↪→

}

@Test
fun testPrioritySliderWorks() {

onView(withId(R.id.vPrioritySeekbar))
.check(matches(isDisplayed()))
.check(matches(withSeekbarProgress(0)))
.perform(setProgress(2))

onView(withId(R.id.vPrioritySeekbar))
.check(matches(isDisplayed()))
.check(matches(withSeekbarProgress(2)))

}
}

Listing 7.2: Espresso test of the slider component

7.2.1 Espresso

As an emulator or a hardware device is required to perform Espresso tests,
they are instrumented by nature. The tests are written based on what a user
might do while interacting with the application, including clicking buttons,
sliding a bar, or even entering data. [43]

Espresso tests can be compared to a robot that listens to a script of ac-
tions. First, it must find a given view on the screen. Second, perform a task
which will often trigger a response. Finally, check the corresponding result or
content. If it is unable to finish any of the steps properly, or the results do
not meet the expectations, the test fails. The example of individual steps can
be seen in Listing 7.2.

7.2.2 Robolectric

When particular Android dependencies are needed while testing, a simulated
Android environment, rather than the emulator or real device, can be preferred
as it runs faster. Robolectric library creates such an environment for both unit
and instrumented tests and is usually practiced with integration tests, where
application context is required. [44]

55

7. Testing

Figure 7.1: Analytics screenshots from Firebase console

7.3 Firebase
It is no surprise that even the testing category falls into Firebase responsibili-
ties. With its close cooperation with Android Studio, it is possible to integrate
Firebase testing products directly through the development environment sim-
ply. Associate logs are visible in the IDE as well as the Firebase console.
The testing products that were used to ensure the application’s quality are
described in the following sections.

7.3.1 Google Analytics
With Google Analytics for Firebase, it is possible to log application events
in order to understand appealing content and choose user properties to iden-
tify the characteristics that distinguish the behavior of different groups of
users [45]. With all this information, Analytics allows sending targeted notifi-
cations or functionalities regarding optimizations. By default, Analytics logs
several key user properties such as language, location, device model, and OS
version (see Figure 7.1). Custom properties are not adopted yet as the only
information the prototype requires is a user’s phone number. However, in the
future, if the user is willing to provide demographic information, statistics on
the most vulnerable segment of users could be obtained.

7.3.2 Crashlytics
With Crashlytics, it is easy to detect common issues that impact a larger
amount of users (see Figure 7.2). Furthermore, it collects many device char-
acteristics such as a battery level or network connection in order to maximize
the chance of fixing the problem. [46] Crashlytics are generally used for a pro-
duction code, where there is no possibility to debug the device locally. Cus-
tom logs were integrated into the main application features regarding reports,
alarm, authentication, and SMS sending to further understand the context of
the error.

56

7.3. Firebase

Figure 7.2: Crashlytics screenshots from Firebase console

Figure 7.3: Performance Monitoring screenshot from Firebase console

7.3.3 Test Lab

As mentioned before, instrumented tests written with Espresso are primarily
to test the correctness of the UI. However, programmers rarely have the re-
sources to run tests on multiple devices with various sizes and different versions
of OS. Furthermore, working with emulators can often be time-consuming.
With a few configurations in Android Studio, Test Lab provides a direct
connection to a wide range of devices that are operated right from Google’s
cloud [47]. Test results can be reviewed in the Firebase console along with
performance and even a record, including screenshots.

7.3.4 Performance Monitoring

Firebase Performance Monitoring provides an insight into how long it takes the
application to complete a specific task. By default, it automatically measures
attributes regarding the application lifecycle, such as the time period between
when the application is opened and when it becomes responsive. [48] The
application traces the performance of specific parts of the code associated with
the police search and reports sending that includes an image. It is assumed,
these two operations will take the longest time as they both execute heavy
network tasks. Their median duration can be seen in Figure 7.3.

57

7. Testing

7.4 Usability Testing
A small group of people was chosen to provide feedback on the application.
Each of them had a different level of technical knowledge. The participants
consisted of experienced programmers, students, a married couple, and two
members of the police force. They were divided into smaller groups and tested
simultaneously as it is assumed, the application will be used at least in pairs.
The whole communication was carried out online through video conferencing
tools, where the testers’ devices were mirrored onto the screen12.

7.4.1 Basic Operations
To cover most of the application’s functionality during the testing process, a
list of most significant user interactions and flows was prepared in advance.
First, a brief description of the application was given to put testers into con-
text. Then, after successful signup, they had a minute to get quickly ac-
quainted with the application design and navigation. Following is the list of
all the basic operations testers had to complete:

1. Sign up with your own or a test phone number.

2. You see a man hiding a bomb under a jacket. Create and send a report.

3. Display this report on a map.

4. Sort the reports by the distance from your current location.

5. Find the nearest police stations in your area.

6. Choose members of the group and add them to your contact list.

7. Change and delete some of your contacts.

8. Call for help when others have the application in the foreground.

9. Call for help when others have closed the application.

10. Find the caller on the map and display directions to him/her.

7.4.2 Usability Results
The very first problem that occurred with the first group of testers was that
they were unable to sign up with their own phone numbers. It was due to
missing release key in Firebase configurations. This issue was fixed and did
not arise later on with the following testers.

12Usability tests were not performed in person due to government orders during the
COVID-19 pandemic [49].

58

7.4. Usability Testing

Another problem that appeared was that on devices with higher resolution,
the UI elements inside the report form had incorrect sizes, although they
worked properly. Operations regarding the reports, such as creating one,
sorting, and displaying a specific report on the map, were performed without
difficulties. Testers knew what to do immediately as well as there were no
issues from the technical point of view.

The hardest task appeared to be finding the directions on the map to a
person calling for help. As the person’s location was already in focus with all
additional information displayed, it was not intuitive for the testers to also
click on the place marker to show the native Google Map functions such as di-
rections. One of the testers had even uninstalled the Google Map application,
so this functionality was disabled to him.

The rest of the operations were successfully completed. However, some of
them were not carried out straightforwardly, and a number of uncertainties
were discovered. Thus, leaving room for improvements. Followings are issues
that were unclear:

• At first sight, testers did not know what individual map tabs represent.

• At first, they were uncertain of what exactly the alarm button does.

• They were not sure what is the difference between the emergency contact
and a ward until the alarm was triggered.

• Even though a text hint was provided, testers were not sure whether to
type the phone number in a full format, including the country calling
code.

• If a person was calling for help and the emergency contact had the
application in the foreground. It was not clear that the caller can be
found on the map.

7.4.3 Supplementary Questions
After all the functionalities were tested, a couple of supplementary questions
were asked. Most of them were answered positively. Testers had a variety of
constructive suggestions and ideas for future improvements. Followings are
the questions of the survey:

• Is the application’s design clean and understandable?

• What functionalities are you missing?

• Did you find any issues with the performance of the application?

• Would you consider using the application for personal needs? If not,
please explain why.

59

7. Testing

All of the testers agreed on the UI design being clear as they did not find
any unnecessary elements. However, some of the testers would appreciate
additional labels on tabs or more information on the alarm. This requirement
of a clear design is a crucial part of the thesis as it is the main condition for
the elderly to be able to use the application. Except for times when uploading
a report that included an image was rather lengthy, there were no issues with
the performance. All testers would consider using the application, assuming
that only the reports that are relevant to them are displayed, and they are
correctly validated. Followings are some of the suggested functionalities that
were found especially valuable and are taken into consideration:

• Putting an application link directly inside the alarm SMS message. This
would primarily benefit emergency contacts that do not have the appli-
cation installed yet.

• At the moment, all emergency contacts are notified in a situation where
the user is in danger. Testers suggested notifying only selected people
of the user’s choice.

• Adding a notification that a ward is in danger directly into the applica-
tion screens.

• Assigning a priority value to individual crime categories to more specify
the overall severity.

7.4.4 The Police Review
This thesis obtained an immense opportunity to test two of the current mem-
bers of the Police of the Czech Republic. One of them working as a patrol
that is deployed to the crime scenes by the integrated centers operating on
national emergency line 158. The other one being a criminalist that is respon-
sible, among other things, for conducting investigations. As the video call
could not be managed due to the officers’ busy schedule, a document with ap-
plication specifications, and all possible interactions was made and sent them
for a review. The text is in Czech language and is enclosed in this thesis.
Moreover, a few additional questions regarding the police were attached.

• Do you find the application useful? Would you consider using it for
personal needs? If not, please state why.

• Does the application have the potential to help the police department
assuming that reports are correctly validated, and no duplicates appear?

• What is your opinion on adding functionality that would allow police
forces to react on reports’ situation or even create an area alarm them-
selves?

60

7.4. Usability Testing

The police response was very comprehensive and helpful. Both stated that
the application would be taken into consideration regarding violent crimes,
including murders, bodily harms, thefts, and rapes. However, violent crimes
take up a tiny percentage of the overall reports. Moreover, according to their
statement, 90 percent of the time, they are committed by an acquaintance.
The vast majority of crimes composes of offenses against the property where
the offender cannot be found on the crime scene. Thus, reports are not sub-
stantial in this case. Followings are other reasons why the application would
be rather a burden for the police department:

• In the present moment, the police department has no resources to ap-
propriately react to the crime reports that would be acknowledged in
the application nor to create its own announcement.

• By law, police officers have to invest and physically check every crime
report. There is no other way how to filter the reports, nor can no one
be in charge of whether to send a patrol or not. It has to be sent every
time.

• Moreover, spread about wrongdoings in the user’s surroundings could
have an opposite effect. It could lead to civil unrest and panic.

Although the police officers do not see the possibility of the application’s
integration, they would consider using it for personal needs regarding the
alarm button. They believe it is particularly convenient in situations where
people want to make sure their close ones, especially children and the elderly,
are safe. However, implementing an offline alarm is a must condition for them
as people in stress situations rarely have a clear mind, and their manipulation
skills are often limited.

7.4.5 Summary
To perform usability tests, a group of testers was selected to complete a series
of application’s basic operations. Testers had devices with various versions of
OS and different screen resolutions. Hence, device coverage was also tested.
Supplementary questions were answered at the end of the session.

Technical issues that occurred during the testing, such as the inability to
sign up and UI layout being incorrectly displayed, are fixed and are no longer
detected in the final prototype. In addition to that, it is ensured that when
users delete an emergency contact, their location is no longer tracked and
shared with this person. Based on the test results, a few testers’ suggestions,
such as an introductory tutorial and an automatic recognition of a country
calling code, are more described in Chapter 8. The tutorial would answer
most of the questions and solve misunderstandings that had occurred.

61

7. Testing

One of the most valuable parts in this section is the police point of view
and their opinion on the application’s usage in the Czech Republic. Although
integration with the police forces does not seem feasible, there were positive
responses to the alarm function of the application. With this insight, future
enhancements will be focused on the process of calling for help in emergencies.

The testing process showed that the application works very well under the
simultaneous usage of multiple testers. Especially the location tracking as it
was observed to be accurate and swift. Furthermore, it was proven that the
UI is clean and understandable. Many testers found the application valuable
and would consider using it. Overall, the usability test was a success as no
significant issues, that were not immediately fixed, were found.

62

CHAPTER 8
Future Improvements

To satisfy the basic requirements of the final prototype, only core features
were implemented. The additional enhancements were not in the scope of the
application but are definitely essential for the future release into the public
community.

Introductory tutorial Based on confusions that appeared during the user-
testing, an introductory tutorial should be displayed upon application
installation. Although onboarding screens provide a simple description
of basic functionalities, they did not prevent the misunderstandings that
occurred inside the application core. The tutorial would include detailed
information on individual map tabs, the difference between an emer-
gency contact and a ward, as well as a specification on what exactly
happens when the alarm is triggered.

Offline alarm In the application, the user can call for help with a single tap
of a button. To go a little bit further, the time spent interacting with the
application before the actual notification of contacts can be shortened
up. In the future, the alarm could go off even when the application is
not on the foreground. It could be triggered by pressing a combination
of system buttons such as a long press on both of the volume buttons,
by device shake, or on a key phrase of user’s choice.

Crime reports filter The crime reports should be filtered by the locality
as the ones that are not in the user’s surrounding might be irrelevant.
Moreover, an algorithm that would distinguish false or improper reports
could be implemented. One of the solutions is to mark these reports by
the users themselves or ban the authors from the application. Another
enhancement that would improve the application’s quality is the ability
to identify reports duplicates based on the comparison of key phrases
contained in the title, location, or the crime category.

63

8. Future Improvements

Video and audio recordings To provide users with the maximum infor-
mation, the audio-visual elements should be more integrated within the
application. They could be attached to crime reports or the alarm.
This feature would probably lead to communication channels such as
chat rooms between the users where the recordings would be uploaded
in case of an emergency. Giving the assumption that the application will
be most of the time used outside, the slow internet connection should
be taken into consideration.

Contacts requests The current state of the application allows users to add
anyone as their emergency contact. To avoid the misusage, the contact
requests should be implemented for both parties to agree to the location
tracking. They will also have the possibility to remove or even block one
another without the other’s permission.

Auto recognition of country calling codes The application should be able
to automatically recognize a phone country code and, by default, suggest
it as a first option to the user. This will take the necessity of writing the
full phone number from the user’s hands. Furthermore, the emergency
numbers for medical help and the police could be detected according to
the device’s location.

More languages support Now the application supports only two languages—
English and Czech. In the future, the translation to the top most spoken
languages such as Chinese, Spanish, or French should be added, to ap-
proach as many people as possible. As the application was designed to
adapt to other languages, this feature should be the easiest to include.

IOS version As of today, devices running on iPhone OS take up approxi-
mately one-third of the whole mobile operating system market, which
is a significant portion [50]. Thus, in the future, it should be ensured
that this platform is also supported. A solution, where source code that
is already written on the Android side is shared between both of the
platforms, should be taken into consideration.

64

Conclusion

One of the purposes of this thesis was to analyze existing mobile applica-
tions dealing with the problem of crime prevention in the Czech Republic and
worldwide with a focus on personal safety applications. This part has been
fulfilled in Chapter 1. Furthermore, based on the applications’ comparison, a
detailed analysis of requirements was performed.

Subsequently, application design has been created based on established
requirements. What is more, the description of the selected architecture pat-
terns was given. The UI design was composed in a way it follows the Material
Design concept and is clean to the greatest extent.

Successful implementation of the functional prototype was carried out us-
ing standard mobile development practices and applying well-known modern
technologies such as Firebase platform and Google Maps interface. The final
application contains an in-app alarm to notify emergency contacts in danger
as well as functionality to create and display crime reports. The map also
plays a crucial role in the application, as it is the place where the user in
danger is tracked in real-time. Moreover, the nearest police stations can be
found here. The rest of the requirements were also accomplished.

Another aim was to perform usability testing, which was carried out with a
chosen group of people from various fields. In addition to that, the application
was reviewed by two of the members of the Police of the Czech Republic. It
was discovered that the integration with the police forces is unlikely as they
do not have enough resources to manage the application. However, using the
application regarding the alarm was stated promising. Based on testing, future
improvements such as an introductory tutorial, offline alarm, or support for
iPhone OS are discussed in the last chapter of the thesis.

65

Bibliography

1. Writings. 7th print. New York City: Library of America, [© 2007]. ISBN
978-0-940450-33-2.

2. V ČR loni vzrostla kriminalita o 3,5 procenta, přibylo i vražd [Last year
in the Czech Republic, criminality increased by 3.5 percent, the number
of homicides has also increased] [online]. Česká tisková kancelář, © 2018
[visited on 2020-04-29]. Available from: https://www.ceskenoviny.cz/
zpravy/-v-cesku-loni-vzrostla-kriminalita-o-3-5-procenta-
na-199-221-cinu/1842856.

3. Lexico [online]. Oxford University Press, 2019 [visited on 2019-11-17].
Available from: www.lexico.com.

4. Google Play [online]. Google Inc., © 2019 [visited on 2019-12-02]. Avail-
able from: https://play.google.com/store.

5. Záchranka [online]. Brno: Záchranka s.r.o., 2016 [visited on 2019-12-02].
Available from: https://www.zachrankaapp.cz/en.

6. Citizen [online]. Sp0n Inc., 2017 [visited on 2019-11-14]. Available from:
https://play.google.com/store/apps/details?id=sp0n.citizen.

7. BSafe: Never walk alone [online]. Mobile Software AS, © 2019 [visited on
2019-11-14]. Available from: https://getbsafe.com.

8. Life360, GPS Tracker [online]. Life360, 2010 [visited on 2019-12-05].
Available from: https://play.google.com/store/apps/details?
id=com.life360.android.safetymapd%5C&hl=en_US.

9. Android Developer Challenge: helpful innovation, powered by On-Device
Machine Learning + you! [online]. Google Inc. [visited on 2020-04-29].
Available from: https://developer.android.com/dev-challenge.

10. Announcement: fbFund [online]. Facebook Inc., © 2020 [visited on 2020-
04-29]. Available from: https : / / about . fb . com / news / 2007 / 09 /
announcement-fbfund/.

11. Noonlight [online]. Noonlight Inc., [2013] [visited on 2019-12-02]. Avail-
able from: https://www.noonlight.com.

67

https://www.ceskenoviny.cz/zpravy/-v-cesku-loni-vzrostla-kriminalita-o-3-5-procenta-na-199-221-cinu/1842856
https://www.ceskenoviny.cz/zpravy/-v-cesku-loni-vzrostla-kriminalita-o-3-5-procenta-na-199-221-cinu/1842856
https://www.ceskenoviny.cz/zpravy/-v-cesku-loni-vzrostla-kriminalita-o-3-5-procenta-na-199-221-cinu/1842856
www.lexico.com
https://play.google.com/store
https://www.zachrankaapp.cz/en
https://play.google.com/store/apps/details?id=sp0n.citizen
https://getbsafe.com
https://play.google.com/store/apps/details?id=com.life360.android.safetymapd%5C&hl=en_US
https://play.google.com/store/apps/details?id=com.life360.android.safetymapd%5C&hl=en_US
https://developer.android.com/dev-challenge
https://about.fb.com/news/2007/09/announcement-fbfund/
https://about.fb.com/news/2007/09/announcement-fbfund/
https://www.noonlight.com

Bibliography

12. Functional and Nonfunctional Requirements: Specification and Types [on-
line]. AltexSoft, © 2020 [visited on 2020-04-30]. Available from: https:
/ / www . altexsoft . com / blog / business / functional - and - non -
functional-requirements-specification-and-types/.

13. What is Android [online]. Google Inc. [visited on 2019-11-26]. Available
from: https://www.android.com/what-is-android/.

14. Distribution Dashboard [online]. Google Inc., 2016 [visited on 2020-04-20].
Available from: https://developer.android.com/about/dashboards.

15. CARTER, Kristen. How Android App Development Became Kotlin-
first? [online]. Hackernoon, 2015 [visited on 2019-11-26]. Available from:
https://hackernoon.com/how-android-app-development-became-
kotlin-first-bh28929gu.

16. Fragments [online]. Google Inc. [visited on 2020-04-13]. Available from:
https://developer.android.com/guide/components/fragments.

17. Activity [online]. Google Inc. [visited on 2020-04-13]. Available from:
https : / / developer . android . com / reference / android / app /
Activity.

18. RAFEEZADEH, Alireza. Modularization by Feature and Layer with
Android Architecture Components [online]. A Medium Corporation,
2012 [visited on 2019-11-26]. Available from: https://medium.com/
swlh / modularization - by - feature - and - layer - with - android -
architecture-components-80bf317d737.

19. Guide to App Architecture [online]. Google Inc. [visited on 2020-04-13].
Available from: https://developer.android.com/jetpack/docs/
guide.

20. SALEH, Hazem. MVVM architecture, ViewModel and LiveData (Part
1) [online] [visited on 2020-04-29]. Available from: https : / /
proandroiddev.com/mvvm-architecture-viewmodel-and-livedata-
part-1-604f50cda1.

21. Material Design [online]. Google Inc., 2020 [visited on 2020-03-13]. Avail-
able from: https://material.io.

22. Maps SDK for Android [online]. Google Inc., 2020 [visited on 2020-
03-14]. Available from: https : / / developers . google . com / maps /
documentation/android-sdk/intro.

23. Introduction to animations [online]. Google Inc., 2020 [visited on 2020-
03-13]. Available from: https://developer.android.com/training/
animation/overview.

24. Firebase [online]. Google Inc. [visited on 2020-03-11]. Available from:
https://firebase.google.com.

68

https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.android.com/what-is-android/
https://developer.android.com/about/dashboards
https://hackernoon.com/how-android-app-development-became-kotlin-first-bh28929gu
https://hackernoon.com/how-android-app-development-became-kotlin-first-bh28929gu
https://developer.android.com/guide/components/fragments
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://medium.com/swlh/modularization-by-feature-and-layer-with-android-architecture-components-80bf317d737
https://medium.com/swlh/modularization-by-feature-and-layer-with-android-architecture-components-80bf317d737
https://medium.com/swlh/modularization-by-feature-and-layer-with-android-architecture-components-80bf317d737
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://proandroiddev.com/mvvm-architecture-viewmodel-and-livedata-part-1-604f50cda1
https://proandroiddev.com/mvvm-architecture-viewmodel-and-livedata-part-1-604f50cda1
https://proandroiddev.com/mvvm-architecture-viewmodel-and-livedata-part-1-604f50cda1
https://material.io
https://developers.google.com/maps/documentation/android-sdk/intro
https://developers.google.com/maps/documentation/android-sdk/intro
https://developer.android.com/training/animation/overview
https://developer.android.com/training/animation/overview
https://firebase.google.com

Bibliography

25. Get Started with Firebase Authentication on Android [online]. Google Inc.
[visited on 2020-04-06]. Available from: https://firebase.google.
com/docs/auth/android/start.

26. Choose a Database: Cloud Firestore or Realtime Database [online]. Google
Inc. [visited on 2020-04-06]. Available from: https://firebase.google.
com/docs/database/rtdb-vs-firestore.

27. Cloud Storage [online]. Google Inc. [visited on 2020-04-29]. Available
from: https://firebase.google.com/docs/storage.

28. Cloud Functions for Firebase [online]. Google Inc. [visited on 2020-04-29].
Available from: https://firebase.google.com/docs/functions.

29. Firebase Cloud Messaging [online]. Google Inc. [visited on 2020-04-
29]. Available from: https://firebase.google.com/docs/cloud-
messaging.

30. Google Maps Platform [online]. Google Inc., 2020 [visited on 2020-03-14].
Available from: https://cloud.google.com/maps-platform.

31. Koin: What is KOIN? [online] [visited on 2020-04-29]. Available from:
https://start.insert-koin.io/%5C#/.

32. About Glide [online]. Mountain View: Bump Technologies, 2020 [visited
on 2020-03-10]. Available from: https://bumptech.github.io/glide/.

33. Announcing Architecture Components 1.0 Stable [online]. Google Inc.
[visited on 2020-04-01]. Available from: https://android-developers.
googleblog.com/2017/11/announcing-architecture-components-
10.html.

34. Room Persistence Library [online]. Google Inc. [visited on 2020-04-01].
Available from: https://developer.android.com/topic/libraries/
architecture/room.

35. ConstraintLayout [online]. Google Inc. [visited on 2020-04-01]. Avail-
able from: https://developer.android.com/reference/androidx/
constraintlayout/widget/ConstraintLayout?hl=fr.

36. Create a List with RecyclerView [online]. Google Inc. [visited on 2020-04-
29]. Available from: https://developer.android.com/guide/topics/
ui/layout/recyclerview.

37. Kotlin 1.3 Released with Coroutines [online]. JetBrains s.r.o. [visited on
2020-04-01]. Available from: https://blog.jetbrains.com/kotlin/
2018/10/kotlin-1-3/.

38. Android 6.0 Changes [online]. Google Inc. [visited on 2020-04-01]. Avail-
able from: https : / / developer . android . com / about / versions /
marshmallow/android-6.0-changes.

69

https://firebase.google.com/docs/auth/android/start
https://firebase.google.com/docs/auth/android/start
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/functions
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging
https://cloud.google.com/maps-platform
https://start.insert-koin.io/%5C#/
https://bumptech.github.io/glide/
https://android-developers.googleblog.com/2017/11/announcing-architecture-components-10.html
https://android-developers.googleblog.com/2017/11/announcing-architecture-components-10.html
https://android-developers.googleblog.com/2017/11/announcing-architecture-components-10.html
https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout?hl=fr
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout?hl=fr
https://developer.android.com/guide/topics/ui/layout/recyclerview
https://developer.android.com/guide/topics/ui/layout/recyclerview
https://blog.jetbrains.com/kotlin/2018/10/kotlin-1-3/
https://blog.jetbrains.com/kotlin/2018/10/kotlin-1-3/
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes

Bibliography

39. Manifest permission [online]. Google Inc. [visited on 2020-04-30]. Avail-
able from: https://developer.android.com/reference/android/
Manifest.permission.

40. BIRCH, Joe. Exploring the new Android Permissions Model [online] [vis-
ited on 2020-04-29]. Available from: https://labs.ribot.co.uk/
exploring-the-new-android-permissions-model-ba1d5d6c0610.

41. Test your app [online]. Google Inc., 2020 [visited on 2020-04-14]. Available
from: https://developer.android.com/studio/test.

42. Fundamentals of Testing [online]. Google Inc. [visited on 2020-04-24].
Available from: https://developer.android.com/training/testing/
fundamentals.

43. Espresso [online]. Google Inc. [visited on 2020-04-24]. Available from:
https://developer.android.com/training/testing/espresso.

44. Robolectric [online]. © 2010–2017 [visited on 2020-04-24]. Available from:
http://robolectric.org/.

45. Google Analytics [online]. Google Inc. [visited on 2020-04-24]. Available
from: https://firebase.google.com/docs/analytics.

46. Firebase Crashlytics [online]. Google Inc. [visited on 2020-04-24]. Avail-
able from: https://firebase.google.com/docs/crashlytics.

47. Firebase Test Lab [online]. Google Inc. [visited on 2020-04-24]. Available
from: https://firebase.google.com/docs/test-lab.

48. Firebase Performance Monitoring [online]. Google Inc. [visited on 2020-
04-24]. Available from: https://firebase.google.com/docs/perf-
mon.

49. Measures adopted by the Czech Government against coronavirus [online].
Government of the Czech Republic, © 2009–2020 [visited on 2020-04-
27]. Available from: https://www.vlada.cz/en/media- centrum/
aktualne/measures-adopted-by-the-czech-government-against-
coronavirus-180545/.

50. Mobile Operating System Market Share Worldwide [online]. Statcounter,
© 1999–2020 [visited on 2020-04-24]. Available from: https : / / gs .
statcounter.com/os-market-share/mobile/worldwide.

70

https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://labs.ribot.co.uk/exploring-the-new-android-permissions-model-ba1d5d6c0610
https://labs.ribot.co.uk/exploring-the-new-android-permissions-model-ba1d5d6c0610
https://developer.android.com/studio/test
https://developer.android.com/training/testing/fundamentals
https://developer.android.com/training/testing/fundamentals
https://developer.android.com/training/testing/espresso
http://robolectric.org/
https://firebase.google.com/docs/analytics
https://firebase.google.com/docs/crashlytics
https://firebase.google.com/docs/test-lab
https://firebase.google.com/docs/perf-mon
https://firebase.google.com/docs/perf-mon
https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545/
https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545/
https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

APPENDIX A
Acronyms

AI Artificial Intelligence

API Application Programming Interface

DAO Data Access Object

DI Dependency Injection

FAB Floating Action Button

GPS Global Positioning System

IDE Integrated Development Environment

IoT Internet of Things

JSON JavaScript Object Notation

JVM Java Virtual Machine

MVC Model View Controller

MVP Model View Presenter

MVVM Model View ViewModel

OS Operating System

POJO Plain Old Java Object

SDK Software Development Kit

SMS Short Message Service

71

A. Acronyms

SQL Structured Query Language

UI User Interface

UML Unified Modeling Language

72

APPENDIX B
Contents of Enclosed SD Card

readme.md.......the file with SD card contents description in MD format
apk...............................the directory with executable APK file
src...the directory of source codes

implementation..............the directory of implementation sources
thesis...............the directory of LATEX source codes of the thesis

text......................................the directory of the thesis text
thesis.pdf............................the thesis text in PDF format

samples.......................... the directory with application samples
screenshots...............the directory with application screenshots
sample.mov.............the application sample video in MOV format

test............................ the directory of usability tests resources
safety_cs.pdf.............. the application overview in PDF format

73

	Introduction
	State of the Art
	Common Features
	Existing Solutions
	Záchranka
	Citizen
	BSafe
	Life360
	Noonlight

	Summary

	Requirements Specifications
	Functional Requirements
	Non-functional Requirements
	Use Case Scenarios

	Design
	Android Platform
	Versions
	Kotlin
	Gradle Kotlin DSL
	Base Components and Lifecycle

	Multimodularisation
	Design Pattern
	Domain Description
	Database Structure

	UI Design
	Material Design
	Google Maps Graphics
	Animations
	Features UI
	Onboarding
	Signup
	Crime Reporting
	Map
	Alarm
	Contacts Management

	Technologies
	Firebase
	Authentication
	Cloud Firestore
	Cloud Storage
	Cloud Functions
	Firebase Cloud Messaging

	Google Maps
	Koin
	Glide

	Implementation
	Architecture Components
	LiveData
	ViewModel
	Room

	Data Binding
	Layout Views
	ConstraintLayout
	RecyclerView

	Asynchronous Tasks
	Permissions
	Location Updates
	SMS Management

	Testing
	Test Categories
	Unit Tests
	Instrumented Tests

	Used Libraries
	Espresso
	Robolectric

	Firebase
	Google Analytics
	Crashlytics
	Test Lab
	Performance Monitoring

	Usability Testing
	Basic Operations
	Usability Results
	Supplementary Questions
	The Police Review
	Summary

	Future Improvements
	Conclusion
	Bibliography
	Acronyms
	Contents of Enclosed SD Card

