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Instructions

The goal is to design a crawler detector capable of pattern-based detection and scoring of data sensitivity
in an unknown database.

1. Explore possible ways of automated crawling of unknown databases for major database management
systems (MySQL/MariaDB, PostgreSQL, Oracle DBMS).
2. Define search patterns for sensitive data detection (based for example on the General Data Protection
Regulation and Telecommunications Act of Czech Republic).
3. Design architecture of a sensitive data detector in unknown databases focused on configurability of data
patterns.
4. Perform a prototype implementation of the designed architecture and perform tests of its ability to find
and score sensitive data in an unknown database.
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Abstrakt

Organizace po celém světě pracuj́ı se stále větš́ım množstv́ım citlivých dat
a dá se očekávat, že tomu tak bude i nadále. Aby nedošlo k jejich úniku či
zneužit́ı, je d̊uležité provádět pravidelné audity a úložǐstě citlivých dat ma-
povat. Jelikož je audit velké podnikové databáze časově velmi náročný, je
žádoućı mı́t k dispozici nástroj, který je schopný taková data v databázi de-
tekovat automaticky. V této práci je nejprve krátce zanalyzována legislativa,
která určuje, co lze za citlivá data považovat. Následně je diskutován výběr
vhodných technologíı k rozpoznáváńı těchto dat a vypracován návrh aplikace,
která bude detekci provádět na neznámé databázi, přičemž jedńım z hlavńıch
ćıl̊u je jej́ı modularita. Nakonec je tento návrh implementován a otestován na
dostupných datech.

Kĺıčová slova databáze, telekomunikace, crawling, citlivá data, audit da-
tabáźı, regulárńı výrazy, klasifikace dat, Intel Hyperscan
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Abstract

The amount of sensitive data stored by organizations throughout the world
is increasing, and this trend is likely to continue. To prevent data breaches
and misuse, it is necessary to maintain records of sensitive data storage and
conduct audits periodically. Given the fact that auditing a huge enterprise
database is very time-consuming, there is a need for automatic detection of
such data. The first part of this thesis is devoted to determining the definition
of sensitive data in the current legal environment. These definitions are then
used to select proper technologies and to design an application that is able
to detect this data in an unknown database where one of the main objectives
is modularity. Finally, this design is implemented and tested on available
datasets.

Keywords database, telecommunications, crawling, sensitive data, database
auditing, regular expressions, data classification, Intel Hyperscan
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Introduction

Over the past few years, we have grown more and more dependent on modern
technology and our habits have changed widely. Social media, online shopping,
location-based services, and much more have created a lasting trail of our
habits and preferences. While some of this may still be influenced by one’s
own behavior, there are many cases where opting out is not a possibility.

With an ever-growing amount of personal data being stored throughout
the world, organizations in charge of storage can quickly become overwhelmed.
This can lead to unintentional data leakage or even theft by cyber adversaries.
Since data breaches can affect nearly everyone, potentially involving extreme
cases such as identity theft, regulatory attempts have been made to address the
situation. With older, country-specific regulations for the telecommunication
industry or more recent ones, such as the General Data Protection Regulation,
companies are legally obligated to handle data accordingly.

To protect something (and therefore comply with these regulations), one
first must know where it is. For a larger organization, this may present a tough
challenge. As applications are being actively developed and infrastructure
maintained with each release cycle, update or change, personal data can easily
remain forgotten, waiting for a disaster to happen. In the telecommunications
industry, selected as the main field of interest for this thesis, one organization
can have as much as hundreds of different databases, that require maintenance.
The stakes here are high, as making a mistake can lead to enormous fines as
well as loss of customer trust.

One of the critical steps to keeping sensitive data well maintained and
protected is periodic auditing by designated company auditors. Of course,
auditing hundreds of large databases manually is nearly impossible, so there
is a need for tools that can help face these problems. The main goal of this
thesis is to design an application that could serve as a tool for auditing in such
environments.

The first part of this thesis explores the possibilities of sensitive data dis-
covery in such databases with a focus on regulatory requirements and a brief
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Introduction

look at the commercial tools available. Afterward, it focuses on the custom
solution. The goal of this thesis is to design an application that could serve
as a tool for auditing in the previously mentioned environments.

Goals

The goals of this thesis are as follows.

• Define sensitive and personal data
Based on the current regulatory environment for the telecommunica-
tions industry in the Czech Republic, define what records precisely (if
possible) can be considered personal/sensitive data.

• Explore ways of crawling a database
Find suitable algorithms and processes used to crawl an unknown database.

• Specify search patterns
Based on the definition of personal/sensitive data obtained previously,
specify search patterns to detect such data.

• Select appropriate technologies
Consider previous facts for choosing the most appropriate technologies
for the application. Selected technologies should have a license compat-
ible with the nature of the project, so at least unrestricted commercial
use should be allowed.

• Design application architecture
Design an application with a focus on modularity (users can add new
patterns easily) and performance.

• Implement the design
Create a prototype implementation of said application. It should be
cross-platform, with at least Microsoft Windows, Apple macOS, and
GNU/Linux operating systems supported.

• Evaluate performance
Test applications ability to detect sensitive/personal data in an unknown
database and create performance benchmarks. Evaluate both modular-
ity (how hard is it to add support for a new database or add a new
pattern) and the end-user experience.

2



Chapter 1
Information Privacy Law

In the past two decades, data breaches have become a relatively common oc-
currence. One could argue that it is already beyond what an average person
can keep track of. According to [3], in 2018, there have been over 1,200 re-
ported data breaches in the United States alone, exposing a total of 446 million
records. It is essential to emphasize the word “reported” - there may very well
be many more cases. The organizations affected by these data breaches span
widely across many different industries, as well as the list of methods used
in the attacks. Be it healthcare, business, education, or military; no industry
seems entirely safe from insider theft, hacking, employee negligence, or even
accidental internet exposure. For consumers, these statistics are alarming
since having one’s data exposed can be potentially devastating.

A good example would be the 2017 Equifax data breach. As described in
[7], Equifax, one of the three largest consumer credit reporting agencies in the
United States, lost the personal information of about 147 million people. The
lost data contained names, addresses, dates of birth, Social Security numbers,
drivers’ license numbers, and even credit card numbers. While this certainly
did not help customer trust, it also had more direct implications for the com-
pany. As of July 22, 2019, Equifax had agreed to a global settlement, which
included up to $700 million of which $425 million would be used directly to
help people affected by the data breach. [10]

And such financial damage to organizations is not uncommon. Accord-
ing to [2], the average total cost of a data breach is nearly $4 million, with
healthcare being by far the most expensive industry to date.

It is then no wonder that governments all across the world try to limit the
harm caused by irresponsible data management. The idea that the manipula-
tion with personal data should be regulated goes back to the late 1960s, long
before widespread internet access for most of the Western population. On 11
May 1973, Sweden’s Data Act was enacted as the world’s first comprehen-
sive national data protection law [14]. Since then, the legislation regarding
data protection has gone through a long journey. In January 2017, there were
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1. Information Privacy Law

a total of 120 national data privacy laws in place worldwide with more on
the way [13]. These laws create pressure on the organizations to handle data
accordingly, specifying the financial penalties incurred if they fail to do so.

In this thesis, the main focus is on the law regulating the Czech telecom-
munication industry from the personal data perspective. Currently, there are
two such laws in place: the Telecommunications Act of the Czech Repub-
lic and the Czech implementation of the General Data Protection Regulation
(GDPR). Each of these is being discussed separately in the upcoming sections.

1.1 Telecommunications Act of the Czech
Republic

The Telecommunications Act (127/2005 Sb.) [30] 1 was enacted in
March 2005, and since then, amended several times. Like its predecessor
(151/2000 Sb., as of now repealed), it is a comprehensive act regulating the
whole telecommunications industry in the Czech Republic. It specifies the
Czech Telecommunication Office as its primary enforcer. It also lists vari-
ous responsibilities for the office, such as the assignment of cellular frequency
bands and their monitoring, maintenance of phone number databases, cooper-
ation with the corresponding government departments on new law proposals,
and customer protection.

Rules for data protection and governance are mainly defined in chapter 1
of title 5, with corresponding violations and fees defined in § 118 of title 7. In
§ 87, it is stated that all rights and duties regarding personal data protection
not regulated in this section are governed by special (designated) regulations,
therefore from the perspective of data protection, subjects in the
telecommunications industry are regulated like any other subjects
unless stated otherwise. Up until 2018, this indirectly referred to the Data
Protection Act (101/2000 Sb.), which was then repealed and replaced by the
GDPR, both of which are discussed below.

Governance of data specific to telecommunications, such as mes-
sages, phone calls, and location data, are regulated directly by this
act, as specified in § 88, § 88a, and § 89. As this data is (arguably) of extraor-
dinary value, these sections specify that their storage must be well secured as
well as what actions the organization must take if it fails to do so. § 97 states
that such data must be stored only for a period of six months (for the needs of
law enforcement organizations) or if it is necessary for the correct operation of
the service (operational data). If none of the previous applies, data must be
either anonymized (see definition of anonymous data below) or disposed of.
Should the organization fail to protect the data or mishandle them, according

1Information regarding this and other Czech acts were translated by the author of this
thesis since no English translation was available
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1.2. General Data Protection Regulation

to § 118, it can be fined up to 50 000 000 CZK or 10 percent of its annual
revenue of the prior financial year, whichever is higher.

Data Protection Act (101/2000 Sb.) [28] was enacted in April 2000.
While at the time of enactment, only about 10 percent of Czech individuals
had access to the internet [24], this act shares many features with its 16
year younger successor, GDPR. The act applied to all data processing except
household or purely personal activities.

§ 4 specifies three types of data;

• personal data,

• sensitive data,

• and anonymous data.

Personal data is any piece of information related to an identified or identifi-
able data subject. The data subject is considered identified or identifiable if it
can be identified directly or indirectly based on a number, code or one or more
factors, specific to its physical, physiological, mental, economic, cultural or so-
cial identity. Sensitive data, being a subset of personal data, is any piece of
information related to national, racial or ethical origin, political views, trade
union membership, religion or beliefs, criminal convictions and offenses, med-
ical status, genetic status, and sexual orientation. Finally, anonymous data
is any data that, either in its original form or processed, cannot be matched
with any identified or identifiable data subject.

As one would expect, when storing data from the sensitive category, more
strict rules apply than when storing data purely from the personal category.
The fines for mishandling the data are also different.

The act was repealed in April 2019 and replaced with Personal Data
Processing Act (110/2019 Sb.) and the GDPR.

1.2 General Data Protection Regulation

Regulation (EU) 2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard to the process-
ing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC [22], in short, referred to as General Data Protection Reg-
ulation or GDPR, is a comprehensive data protection regulation applied in all
member countries of the European Union and European Economic Area. It
came into force in May 2018. Some national states also introduced their spec-
ification of the regulation to complement the GDPR as standalone national
acts. These acts can add small (permitted) modifications and specifications
of the regulation for the given country. Most of the time, these closely match
the GDPR and differ only in things like the age of consent.
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1. Information Privacy Law

In the case of the Czech Republic, the act in question is the Personal Data
Processing Act (110/2019) [29]. This act, for example, establishes the Czech
Telecommunication Office as its enforcer and specifies exemptions from the
regulation for use cases like academia. Since it does not introduce any new
definitions regarding sensitive or personal data in the private sector, this act
is not addressed further in this thesis.

In article 4 (definitions), GDPR defines these subsets of data;

• personal data,

• genetic data,

• biometric data,

• and data concerning health.

The terms genetic data, biometric data, and data concerning health are
used later in article 9. Genetic data is “personal data relating to the inherited
or acquired genetic characteristics of a natural person which give unique in-
formation about the physiology or the health of that natural person and which
result, in particular, from an analysis of a biological sample from the natu-
ral person in question”, biometric data is defined as “personal data result-
ing from specific technical processing relating to the physical, physiological or
behavioural characteristics of a natural person, which allow or confirm the
unique identification of that natural person, such as facial images or dactylo-
scopic data” and data concerning health is defined as “personal data related
to the physical or mental health of a natural person, including the provision of
health care services, which reveal information about his or her health status.”

Personal data is defined as “any information relating to an identified
or identifiable natural person (’data subject’); an identifiable natural person
is one who can be identified, directly or indirectly, in particular by reference
to an identifier such as a name, an identification number, location data, an
online identifier or to one or more factors specific to the physical, physiological,
genetic, mental, economic, cultural or social identity of that natural person.”
Note that apart from the genetic and biometric identity, the definition is very
similar to the previously mentioned Data Protection Act, which is nearly 20
years old.

Although not explicitly defined, article 9 indirectly specifies another set of
personal data with more restrictive rules for processing and storage. This data
is defined as “personal data revealing racial or ethnic origin, political opinions,
religious or philosophical beliefs, or trade union membership, and the process-
ing of genetic data, biometric data for the purpose of uniquely identifying a
natural person, data concerning health or data concerning a natural person’s
sex life or sexual orientation.” This is also nearly identical to the definition
of the sensitive data from the Data Protection Act. Note, however, that data
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about criminal convictions and offenses are not included. This is because, in
the GDPR, it is defined separately in article 10, which is rather clear about
who can store such data: “Any comprehensive register of criminal convictions
shall be kept only under the control of official authority.” For the needs of this
thesis, this is also included in the same data group.

When it comes to scoring the data based on sensitivity, the situation gets
more tricky. This is because fines for mishandling the data are not specified
in detail for each of these defined subsets. For most of the violations, in
theory, the organization can be fined “up to 20 000 000 EUR, or in the case
of an undertaking, up to 4 % of the total worldwide annual turnover of the
preceding financial year, whichever is higher.” Using imminent financial losses
as a factor when scoring is therefore difficult, if not impossible, and definitely
beyond the scope of this thesis.

1.3 Implications for Sensitive Data Patterns

As was discussed in the previous chapter, scoring sensitivity of the data based
on potential financial losses incurred, should it, for example, leak, is not an
option. GDPR, however, provides one clear distinction, and that is the differ-
ence between personal data and sensitive data (as defined in article 9). Since
manipulation with sensitive data is a lot more restrictive, it can be argued
that its leakage could be more severe, and therefore worse from the financial
standpoint. Data from the previous sections can then be divided into the
following groups based on their type and sensitivity.

• Data Specific to Telecommunications
The Telecommunications Act directly regulates manipulation of data
from this category. This data includes

– messages (SMS, MMS) and metadata about them (e.g., time sent
or time received),

– phone calls and metadata about them (who called whom and when,
for how long, etc.),

– internet usage (e.g., traffic logs or an IP address),
– and location data.

• Personal Data
This data is currently defined by the GDPR (see above). Since its def-
inition is so broad, there is no definitive list of what it can include. It
certainly includes

– first and last name (and maiden name),
– date of birth,
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– any government-issued ID like a passport or a drivers’ license,
– Social Security number or any national identification number,
– email address (non-personal address like info@company.xyz is most

likely not included),
– physical address or any part of it (city, zip code, etc.),
– phone number,
– credentials like username or password,
– banking information like a personal account number or credit card

number,
– financial information like an account statement, loan records or

property records
– web-related information like browser cookies, search and browsing

history or user ratings

It is important to note that this data has to relate to a person - a
company phone number does not require the same protection level as
a personal phone number. As stated before, the list presented is by no
means exhaustive.

• Sensitive Personal Data
This is a subset of personal data defined by the GDPR (articles 9 and
10, see above). While its definition is considerably more narrow, there
still is not a complete list available. In more general terms, it includes

– racial, national or ethnic origin,
– political opinions,
– religious or philosophical beliefs,
– genetic data,
– biometric data (e.g., a fingerprint or a face),
– data concerning health,
– data concerning a natural person’s sex life or sexual orientation,
– and data about criminal convictions and offenses.

Definitions of genetic data, biometric data, and data concerning health
can be seen above.

These groups are not disjunct. Data specific to telecommunications can also
fall into the personal data definition from the GDPR, and sensitive data is a
subset of personal data. The primary purpose of these groups is to create some
level of distinction (i.e., scoring) for the user of the application. In general,
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leaking personal email addresses is less damaging than leaking medical data
(at least according to the GDPR), and the application should present the
difference in severity accordingly.

When examining these data definitions, it is clear that some of them may
be easier to detect than others. Social Security numbers, email addresses,
or phone numbers have standardized forms and generally can be expected to
look the same and be handled in the same way. This gets a bit harder when it
comes to names or physical addresses. These should generally consist of some
known values, like all Czech first names or every possible city in the state of
Texas, but it highly depends on the cultural environment. For most of them,
it should be possible to tell, with some level of certainty, if the one-word string
in question is the first name or not. The last category of this hypothetical
division is data with no standard way of storage, like data concerning health
or criminal convictions. These can be stored in a lot of different ways, from
the weight as a number to a detailed description of the patient’s response to
experimental treatment. Most of the sensitive data (as described above), falls
within this category.

Let’s give these categories a more formal definition so they may be incor-
porated into the design of the application. These categories are also used later
for selecting the proper technologies.

• Defined Format
A piece of information that has one or a couple of formats in which it
can appear. It can be standardized, like an RFC 5322 email address,
or without an official standard, but expected to be stored in a similar
fashion, like a location.

• List of Known Values
Data that is expected to contain one or more defined substrings. The
obvious example is name or surname, a list of which can be obtained for
a specific country or nation. Another example would be a list of known
professions. It does not always have to produce a match, but more often
than not, it should.

• Unknown Format and Unknown Values
Information that could be stored in many ways and contain many dif-
ferent values. It has no standard nor can be reasonably expected to
look similar across different databases and use cases. A political opinion
could be a set of numbers as a result of a survey, coordinates on a po-
litical compass, or a political party preference. Much the same could be
said for trade union memberships. Sensitive data (as described above),
usually fall within this category.
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Chapter 2
Data Protection

Laws and regulations compliance is only a mere subset of the data security
field. The last decades of rapid development and research have lead to new
methodologies, terms, and even dedicated job positions. For most systems,
hypothetically, privacy is non-essential. Sure, loss of customer trust, legal
obligations, or ethical concerns are a factor, but in theory, the absence of
privacy by itself is not what causes the system to stop working. Privacy
engineering is defined in [6] as “the discipline of understanding how to include
privacy as a non-functional requirement in systems engineering.” It focuses on
risk models, privacy methodologies (privacy by policy, privacy by architecture
and technical point control), and even non-technical considerations of privacy,
such as how cultural and social norms affect it.

An example of privacy by policy would be laws and regulations compliance
mentioned at the beginning. In practice, this usually means gathering all
information about the regulatory environment the system will operate in and
then incorporating these requirements into the design. The goal of privacy by
architecture is to “provide a solution that performs the business function that
the system was built for and does so in a privacy preserving manner.” [6] One
of the measures of privacy by architecture is data anonymization. In [27],
it is defined as “the process of de-identifying sensitive data while preserving its
format and data type.” There are many reasons for using data anonymization,
one of which is legal - many privacy regulations require it in some form (see the
previous chapter). Another exemplary use case is a separation of testing and
production environments. Testers or contractors can then use the anonymized
version of the data to prevent leakage. Before any anonymization can take
place, one must know where the sensitive data is. While some anonymization
tools do this automatically, others require users to specify the data themselves.
Automatic detection arguably is not of the highest importance since all the
factors (and therefore, data inputs) are known in the design phase of the
project—the decision of what data should be anonymized, and how, can be
decided at the drawing board.
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The need for automatic detection arises in the third group of method-
ologies,i.e. technical point control. These methodologies attempt to reduce
privacy risks that cannot be mitigated by the architectural approach or were
not considered during the design phase. Data loss prevention (DLP) is
a comprehensive approach that identifies and protects data at rest, data in
use, and data in motion. [37] For these three kinds of data, DLP has corre-
sponding objectives. Keep in mind that this applies to all forms of data, not
just databases. Data at rest, for example, a database or a Word document
in cloud storage, should be located and cataloged. An organization should
know at all times where its data is and what information it comprises of.
Data in motion is any data that is being transferred from, to, or on the orga-
nization’s network. This includes data like emails, instant messages, or web
browsing. DLP systems should prevent or alert responsible personnel in case
of any unauthorized transfer of sensitive data. Note that sensitive data can
include information outside the regulatory definition - company know-how,
while not being protected by law, could definitely be labeled as sensitive from
the company’s perspective. Data at endpoints is usually labeled as data in
use. DLP systems responsible for data in use monitoring scan endpoints for
any sensitive data and their movement (e.g., transferring to a USB drive).

There are many DLP systems, both commercial and open source. Some
are cloud-based and offer realtime sensitive data detection APIs for a stream
of unknown data. Others integrate tightly with the workflow of the company.
Users can directly label sensitive documents in office suites with automatic
recommendations by the system. Solutions also differ in the way of detecting
data of interest. A list of conventional approaches to the data recognition task
follows. [32]

• Rule-based Recognition
This includes regular expressions, keywords, and other pattern matching
techniques. It is suitable for database records, files, and data blocks
where records are of similar structure.

• Database Fingerprinting
This method searches only for exact predefined matches, such as specific
credit card numbers. It has a low false positive rate but is not of much
use in general scenarios.

• Exact File Matching
This technique involves building a database of files labeled as sensitive
and then searching for hash values of these files. While easy to imple-
ment, its main drawback is that it only works for the identical file and
so any modified version will not be detected.

• Partial Document Matching
Similar to the previous technique, but can detect even modified files to
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some degree. It involves using multiple hashes for different parts of the
document. That way, for example, if a part of it is pasted into an email,
it can be detected.

• Conceptual/Lexicon
A combination of dictionaries, rules, and other analyses detect content
that cannot be strictly defined, such as insider trading. It is likely to
generate a lot of false positives and false negatives.

• Statistical Analysis
This technique uses machine learning, Bayesian analysis, and other sta-
tistical methods to find content that resembles sensitive data. It is use-
ful where similar, but not exact documents have to be detected, e.g., a
repository of engineering plans. Natural language processing (NLP) can
be used to take context into account regarding text-based data. It is suit-
able for detecting sensitive information in data like emails or contracts.
For example, the word ”cold” could indicate a medical condition or refer
to the temperature in the room. Some of these techniques are also used
for spam detection. While previous categories are unable to cope with
such situations, statistical analysis is not optimal for large amounts of
structured data (like databases) because of performance constraints.

The application developed in this thesis is on the border of privacy by
architecture, and technical point control focused on rule-based and conceptu-
al/lexicon data recognition. It can be used to verify that no sensitive data
has been added to the database after application deployment (after it was
designed with privacy in mind) or as a starting point for data anonymization
in an unknown database. Another use case would be to detect sensitive data
where they should not be according to company policy. Rule-based recogni-
tion, conceptual/lexicon recognition, and database fingerprinting were selected
as suitable concepts for detection based on the definitions of sensitive data in
the previous chapter.
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Chapter 3
Technology

3.1 Regular expressions

A regular expression (also regex or regexp) is a notation that defines sets of
character strings. When a particular string falls into the defined set, we say
that the regular expression matches the string. One way of describing a regu-
lar expression is a sequence of characters. There are many different standards
and variations that use different characters, and the same characters can have
a different meaning in them. The most notable are Perl Compatible Regular
Expressions (PCRE) and the IEEE POSIX standard (which in itself has dif-
ferent sets of compliance), but many programming languages have a syntax
of their own, although more often than not heavily influenced by any of the
two. The syntax can vary even across different versions of the same software.
More about the complex topic of regex capabilities on various platforms can
be found at [12]. Figure 3.1 shows an example of a PCRE regular expression.

Today, the term regular expression is used even when it actually does not
denote a regular language. This is because, over the years, regular expression
engines were augmented with additional features that allow them to recognize
languages that cannot be expressed by a classic regular expression. One of
these features is backreferences. Backreferences allow engines to use the result
of the previous capture in runtime (figure 3.2 shows an example). As these
additional features can make recognition significantly slower [8], it is essential
to check whether they are actually needed for the project and, if not, select
an engine that does not support them.

All regular expressions (in the original meaning of that term) can also

Figure 3.1: PCRE regular expression that matches any text with hexadecimal
number in it

(0x|0X)[A-Fa -f0 -9]+
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Figure 3.2: PCRE regular expression using backreferences. First capture
group (a|b) matches either a or b and then the token \2 matches whatever
the result was. This is then repeated with \1. In the end, either aaaa or bbbb
is matched.

((a|b)\2)\1

Figure 3.3: Regular expression a(bb)+a represented as a non-deterministic
finite automata (NFA) [8]

Figure 3.4: “From the graph it is clear that Perl, PCRE, Python, and Ruby are
all using recursive backtracking. The thick blue line is the C implementation of
Thompson’s algorithm, ..., Awk, Tcl, GNU grep, and GNU awk build DFAs.” [8]

be described as non-deterministic finite automata (NFA), and Thompson’s
construction algorithm can be used to convert any regular expression to NFA.
This fact often is used when implementing a regular-expression engine. The
part where a regular expression represented as a string is transformed into
NFA or deterministic finite automata (DFA) is usually called compilation.

Regex engines can also be implemented using different methods and algo-
rithms, one of which is backtracking. Backtracking is usually used to support
those previously mentioned additional features. As was already said, for some
regular expressions, it can be an order of magnitude slower [8]. These regu-
lar expressions are called pathological expressions, and on engines using such
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algorithms, they can require exponential time to process. Since there are no
regular expressions that are pathological for NFA based engines, some argue
that it is the best possible approach [8]. While implementation using Thomp-
son’s algorithm (NFA) requires O(n2) time, backtracking requires O(2n) time.
[8] As figure 3.4 shows, that can present a significant gap in performance. Reg-
ular expression engines today usually use some combination of NFA, DFA, or
backtracking together with custom optimizations. One should be aware of the
implications for performance when selecting a regex engine for their project.

Now to address some of the commonly occurring configurations (or flags).
Regex engines are, by default, greedy. This means that quantifiers like * match
as many characters as possible. The opposite of greedy is lazy (or ungreedy),
which matches the least number of characters possible. The behavior of the ˆ
(start) and $ (end) tokens can usually be altered with a multi-line flag. When
the multi-line flag is set, ˆ and $ also match the start and end of each line
of the input. The default behavior is only to match the start and end of the
input as a whole. A less intuitive flag is called single-line or dotall. When set,
any instance of the dot token matches newline characters. Some engines also
support stopping after the first match is found - single-match, the opposite of
which is the global flag.

3.2 Choosing a Suitable Regular-expression
Engine

Two main criteria were set for selecting the most suitable regex engine, with
the first being raw performance. The second requirement is that the engine
should support all patterns defined in chapter 1 and preferably no more. These
two requirements are more similar to each other than they might appear since,
as explained above, supporting more features leads to performance drawbacks,
and if they are not needed, they should be avoided. When closely examining
the patterns defined in chapter 1, it can be observed that there will not be a
need for any additional features like backreferencing, other than classic reg-
ular expressions denoting a regular language. All patterns can, therefore, be
processed into NFA or DFA, and the ideal regex engine will most likely use
one of them in its implementation.

Benchmarking a regular expression engine is a difficult task. The reason is
that modern engines can differ wildly in implementation details and optimiza-
tions. Therefore it is hard to come up with a combination of expressions that
are not favoring any particular engine and test all of their aspects, which is the
reason why the author decided not to do his own. The benchmark conducted
in [4] has found the Intel Hyperscan engine as by far the best performing
(figures 3.5 and 3.10). This benchmark was performed on a Ubuntu 16.04 op-
erating system with Intel Core i5-5300U mobile CPU. It is important to note
that the benchmark has received some criticism over the selection of regular
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Figure 3.5: Benchmark of various regex engines (lower is better). Hyperscan
is labeled as hscan. Note that Hyperscan is by far the fastest (approx. 3x less
time than the 2nd). [4]

Figure 3.6: Benchmark of various regex engines (higher is better). Hyperscan
is labeled as hscan. [4]

expressions and its conclusions, so the results should be taken with a grain of
salt. Nonetheless, it is evident that the engine performs rather well.

While Hyperscan supports PCRE syntax, it does not support features like
backreferences, and arbitrary lookaround asserts, which is good because, as
said before, it is not needed. Internally, it is using both NFA and DFA as well
as custom engines for special cases. It is also using single instruction, multiple
data (SIMD) to handle multiple states in automata in parallel. This, how-
ever, has some implications for the system requirements. While Hyperscan’s
minimal requirements consist only of an x86 based CPU (32 or 64bit) with
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Supplemental Streaming SIMD Extensions 3 (SSSE3) support, it can make
use of some other instruction sets as well. These consist of Intel Streaming
SIMD Extensions 4.2 (SSE4.2), the POPCNT instruction, Bit Manipulation
Instructions (BMI, BMI2), and also Intel Advanced Vector Extensions 2 (In-
tel AVX2) [15]. While these instructions have their AMD counterparts, it is
unclear whether the engine works correctly with them or if at all. To this
date, there are no known benchmarks of this engine on an AMD CPU, and
even its contributors state that Hyperscan works on AMD, but there could be
performance degradation [17]. Since one of the goals of this thesis is that the
application should be cross-platform, this question cannot be left unanswered.

Figure 3.7: Benchmark output on one of the tested systems.

C# Regex benchmark starting ...
Expressions compiled in 39.17 milliseconds
[EMAIL] Iteration 0 took 3335.15 milliseconds

<output omitted >
[EMAIL] Iteration 499 took 3062.56 milliseconds
[EMAIL] Average milliseconds for each iteration: 3550.65
[IPv4] Iteration 1 took 231.70 milliseconds

<output omitted >
[IPv4] Iteration 499 took 240.83 milliseconds
[IPv4] Average milliseconds for each iteration: 269.85

Hyperscan benchmark starting ...
[EMAIL] Compiled in 13.74 milliseconds
[EMAIL] Iteration 0 took 79.82 milliseconds

<output omitted >
[EMAIL] Iteration 499 took 74.59 milliseconds
[EMAIL] Average milliseconds for each iteration: 66.10
[IPv4] Compiled in 10.33 milliseconds
[IPv4] Iteration 0 took 20.32 milliseconds
...

A simple application was programmed in .NET Core (C#) to provide a
comparison between its native regular expression engine and Intel Hyperscan.
Note that the purpose is not to compare these engines themselves but rather
the difference in performance for Hyperscan on different CPUs where the
performance of the native engine is used as a base point. Two simple regular
expressions were constructed - IPv4 address and RFC 2822 email address,
and the input text file was obtained from [18]. Efforts were made to make
conditions for both engines as similar as possible. For C#, both expressions
were compiled (since Hyperscan does it), and the multi-line flag was set. In
Hyperscan, an additional left-most flag had to be set, because, by default,
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Figure 3.8: Benchmark results for all tested CPUs in milliseconds (lower is
better)

.NET Core Regex (ms) Hyperscan (ms)
CPU Email IPv4 Email IPv4 Combined

Intel i5-8300H 1,495.17 119.06 34.62 7.56 35.28
Intel Xeon E5-2630 v4 3,550.65 269.85 66.11 15.43 68.25
AMD Ryzen 3 3200G 1,870.14 139.06 36.58 10.29 38.97
AMD Ryzen 5 1600 2,128.40 161.26 39.99 10.08 42.51

it does not track the position of the matches as closely as C# engine does.
Encoding on both platforms was set to UTF-8. Hyperscan was compiled
from source to a shared object (.so) and loaded dynamically using Interop
Marshaling.

Four different CPUs were selected for benchmarking, of which two were
from Intel and two from AMD. The recognition ran 500 times for each ex-
pression and engine. Times for each iteration were then averaged into a single
value. The output for one of these runs is shown in figure 3.7. Table 3.8
shows complete results for each CPU, and figure 3.9 shows the relative perfor-
mance gap between Hyperscan and the native engine on different CPUs. As
the graph shows, on Ryzen 5, the performance gap was more significant than
on the 8300H (Hyperscan was relatively faster on AMD compared to .NET
Core regex in that very instance). Based on this simple benchmark, it can be
concluded, that the Intel Hyperscan engine works reasonably well even with
AMD CPUs. Also, as anticipated, Hyperscan was always significantly faster.

3.3 Databases

A database is an organized collection of structured data. Nowadays, databases
are usually accompanied and tightly integrated with a database management
system (DBMS). DBMS serves as a layer between the database and its users.
A database with a DBMS is referred to as a database system, or in short, a
database.

Databases can be divided into several categories based on how they rep-
resent the data in them. Probably the most notable would be the relational
database. It is based on collections of data with pre-defined relationships
between them. This data is usually modeled in rows and columns in a series
of tables. Each column can store only a single type of data, and each row
in a given table must have the same columns. Users can communicate with
the database through queries. Most of the relational database management
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Figure 3.9: Benchmark results show how many times faster Hyperscan is
compared to the native .NET Core regex engine on each CPU.

systems support the Structured Query Language (SQL), which is divided
into four categories. Data query language (DQL) can retrieve specific data
and cross-reference tables when doing so. Data definition language (DDL) is
used to define new structures in a database like tables, columns, views (stored
query), or indexes. Data manipulation language (DML) allows the user to add
(insert), modify (update), or delete the data. Finally, data control language
(DCL) is used to manage access control to a database. While there exists a
standard for SQL, it is hardly ever implemented precisely as standardized, and
although similar, SQL support differs across database management engines.

Closely related to relational databases is the concept of ACID, an acronym
for atomicity, consistency, isolation, and durability. Atomicity means that
each transaction is indivisible. Is either fails or succeeds as a whole as all
changes as reverted in case of failure. Consistency ensures that the database
must always be in a valid state after it is done. Valid state means that any
constrains and relationships between the data are complied with. While trans-
actions can be executed in parallel, isolation guarantees that the final state of
the database after all transactions are executed is the same as if they would
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have been executed sequentially. Durability requires a transaction, that has
once been committed, to remain committed even in case of a sudden failure.
The vast majority of relational databases comply with ACID.

The opposite of ACID is eventual consistency or BASE, the shorthand
for Basically Available, Soft state, Eventual consistency. Basically available
means that while read and write operations to a database are available, there’s
no guarantee of consistency (reads might not get the latest write and writes
might not persist). Soft state means that even when there are no write op-
erations currently being executed, the state of the database might still be
subject to change. Eventual consistency, as its name indicates, denotes that
at some point after the last write operation, the database will eventually be
in a consistent state.

While a BASE cannot offer the same reliability and consistency as ACID,
it allows a database to perform better. When an organization must work with
large amounts of unstructured data, a NoSQL database might be worth con-
sidering (most of the NoSQL databases do not comply with ACID, but there
are exceptions). NoSQL databases model data in other structures than tables
and columns. Databases that represent data as objects as in object-oriented
programming are called object-oriented databases. These databases usu-
ally support some form of a query language. Attempts were made to standard-
ize these languages as the Object Query Language (OQL). Another type of
NoSQL database is a graph database. In it, the data is represented in graph
structures with nodes and edges where nodes represent entities and edges rela-
tionships between them. Graph databases can also support a query language
similar to SQL. Document store or document-oriented database system
is a NoSQL database in which records have no uniform structure (records can
have different “columns”), and types of records of individual columns can be
different for each individual record. Records can also include records them-
selves (nested structure). These databases usually store and process data in
formats like XML and JSON. Key-value databases or key-value stores are
databases that can only store pairs of keys and values. They are not suitable
for more complex data storage needs since they cannot model any relation-
ships, but they can offer excellent performance for simple, more narrow use
cases like embedded devices. Wide column stores or extensible stores are
similar to key-value databases, with the exception that one key can have mul-
tiple values. These values are called columns, although they are not columns
in the sense that relational databases use it. For each value, there can be a
different number of columns with different names using different data types.
Wide column stores can be seen as two-dimensional key-value databases. The
last covered NoSQL database type in this list is a search engine database.
Databases for search engines use a specialized, non-standardized structure that
allows them to optimize search queries. In production, they can be accompa-
nied by a more conventional database, where the data is stored permanently
and then piped to a search engine database for indexation.
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A broader category of databases are databases targeted at storing big
data (large quantities of data). Database engines labeled as fit for big data are
usually able to distribute the load on many computational units (servers). Big
data storage solutions can usually fall into one or more categories of databases
defined in the previous paragraph (both relational and NoSQL).

Databases also differ in what kinds of data they can hold. These are
referred to as supported data types. The vast majority of databases supports
at least

• integers,

• floating-point numbers,

• strings and single characters,

• types storing date and time,

• and binary data types.

Each mentioned category usually has multiple data types that differ in size
and target use cases. Databases can support data types like location, images,
or even let end users define their own.

Database management systems usually offer multiple ways of connecting
to the database, both proprietary and standardized. Open Database Con-
nectivity (ODBC) is a widely supported API standard for database con-
nectivity. It is meant to expose most of the functionalities of a database
management system. If ODBC is implemented in a database engine, we call
the part responsible for translating API calls to native requests ODBC driver.
The sole presence of an ODBC driver on a DMBS does not guarantee any
functionality expected from a standard-compliant implementation. Different
technologies have different capabilities, so many ODBC drivers do not imple-
ment all functionalities required by the standard or, conversely, implement
more. While using the ODBC API for connecting to a database might be
a preferred option (code reusability and simple implementation), one must
consider other factors as well. The driver might not always be exposed, or
its use restricted because of security concerns - in such cases, one must first
enable it manually in DMBS. Also, compared to a native connection method,
the performance of an ODBC driver might be worse because of the translation
layer.

Many other standards exist with similar goals. Usually, they are more
vendor-specific and do not have the same broad reach as ODBC does. Java
Database Connectivity (JDBC) was developed on the basis of the ODBC,
mainly targeted for use with the Java programming language (as opposed
to ODBC, which is multi-language). JDBC can be used to connect to a
database with ODBC support over JDBC-to-ODBC bridges and vice-versa
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Figure 3.10: Open Database Connectivity (ODBC) architecture [39]

through ODBC-to-JDBC bridges. However, one should expect performance
drawbacks when using such bridges. Object Linking and Embedding Database
(OLE DB) is an API standard designed by Microsoft that allows accessing
data from various data sources. Apart from products developed by Microsoft,
it was also supported by Oracle and many others. OLE DB was announced
as deprecated by Microsoft in 2011 and then undeprecated in 2017 since it
remained popular despite its deprecation.

3.3.1 Target Database Management Systems

Several database management systems were selected for examination. Post-
greSQL, MySQL/MariaDB, and Oracle DBMS are included because they are
specified in the assignment. The selection of the rest was based on the usage
and popularity from [9]. All of the engines bellow provide ODBC connectivity.

• MySQL
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MySQL is an open-source relational database. It also supports docu-
ment store as its secondary data model. Regular expressions are sup-
ported “similar to those used by Unix utilities such as vi, grep, and
sed.” [20] This means that all patterns specified as regexes can be eval-
uated directly by the database engine which increases performance. In
2010, when acquired by Sun (later Oracle Corporation), it was forked
by its original author to create the MariaDB project. While there are
some differences between the two, they are not relevant from the point
of sensitive data detection. For the sake of simplicity, MariaDB is not
discussed any further in this thesis.

• PostgreSQL (Postgres)
PostgreSQL is also an open-source relational database with a document
store as its secondary data model. It is owned and developed by its
community. It supports POSIX regular expressions with some features
added on top. [26] Regular expressions with fewer features are also
supported when using LIKE and SIMILAR TO operators.

• Oracle DMBS
Oracle Database is a proprietary database management system owned
and developed by the Oracle company. While its primary data model
is relational, it also supports document store and graph store. Regular
expressions support is compliant with the POSIX Extended Regular
Expression. [21] Columns that contain sensitive data can be labeled as
such together with a degree of confidentiality.

• MSSQL Server
Microsoft SQL Server, like Oracle DMBS, is a proprietary database with
its primary model being relational and its secondary models being doc-
ument store and graph store. Regex support is, however, rather limited
[23]. Using the LIKE keyword, one can use only a small subset of fea-
tures of the likes of POSIX regular expressions. The result is that even
something as simple as an IPv4 address cannot be specified appropri-
ately. Support for advanced regular expression can be obtained, but
only through a custom CLR function. Since specifying a CLR function
essentially means writing to a database, it is deemed unsuitable for au-
diting. As well as Oracle DMBS, MSSQL also supports labeling columns
as sensitive.

• MongoDB
MongoDB is an open-source NoSQL database owned and developed by
the MongoDB company, with document store being its primary data
model. It supports PCRE regular expressions [19] and has some features
of a search engine database.
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• Hive
Apache Hive is an open-source data warehouse focused on big data built
on top of the Hadoop framework. Its only data model is relational.
HiveQL, its query language, is an SQL-like language with regex support
through its RLIKE operator. RLIKE has the full support of Java regular
expressions. [31]

Companies nowadays offer databases in the cloud. Usually, these are either
the same or slightly modified (optimized for distributed workloads) versions of
“classic” database management systems. For example, Azure SQL is a cloud
counterpart of MSSQL Server. From the standpoint of database crawling
and sensitive data detection, these differences are not essential and are not
addressed further in this thesis.

3.4 Database Crawling

To crawl (search) a database, one must first know its structure. For relational
databases (or their relational parts), this is simple since database schema
(structure) is known at all moments. Problems might arise when discovering
the structure of a NoSQL database. Since the data does not have to be
structuralized, even the database management system might not have the
schema at its disposal. In such cases, the only option is to acquire the necessary
amount of data to construct the schema on one’s own. Performance must
be taken into consideration, as any unnecessary operation could prolong the
discovery beyond a reasonable timespan. In the following lines, previously
selected databases are analyzed from the standpoint of schema discovery. Note
that only original data sources like tables and columns are of interest. Data
derived from them like views or virtual columns are not considered since they
are necessarily based on the original data. Also, any information regarding
relationships between entities is ignored, because the relationships themselves
cannot be the storage of the sensitive data either.

MySQL
Since MySQL is a relational database, schema discovery is rather easy. In
database metadata, table INFORMATION SCHEMA.TABLES holds a list of
all tables for a particular database, and INFORMATION SCHEMA.COLUMNS,
as would one expect, holds all columns. Figure 3.11 shows an SQL query for
obtaining a list of all tables and then a list of all columns for one particular
table.

PostgreSQL (Postgres)
Postgres makes information about tables and columns available in system
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Figure 3.11: Query that obtains a list of all tables for database “db” and lists
all columns for the table named “table” in MySQL

#Get all tables
SELECT table_name
FROM INFORMATION_SCHEMA.TABLES
WHERE table_schema = 'db';

#Get all columns for table 'table '
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'db' AND TABLE_NAME = 'table ';

catalogs, in particular pg catalog.pg tables, information schema.tables and in-
formation schema.columns. Figure 3.12 demonstrates a practical example in
SQL.

Figure 3.12: Query that obtains a list of all tables for database “db” and lists
all columns for the table named “table” in PostgreSQL

#Get all tables
SELECT tablename from pg_catalog.pg_tables
WHERE schemaname = 'db';

#Get all columns for table 'table '
SELECT information_schema.columns
WHERE table_schema = 'db' AND table_name = 'table ';

Oracle DMBS
When listing all tables in Oracle DMBS, one must ensure that the necessary
privileges are obtained. The example query shown in figure 3.13 assumes that
the user can access the dba tables and ALL TAB COLUMNS tables. Note
that virtual columns are ignored when ALL TAB COLS is used. They are
only shown if ALL TAB COLUMNS is used.

MSSQL Server
The list of tables and columns is stored in
<database name>.INFORMATION SCHEMA.TABLE and
<database name>.INFORMATION SCHEMA.COLUMNS tables. The table
type has to be filtered so that only BASE TABLE tables are selected. This
ensures that views are ignored. Figure 3.14 shows an example query.
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Figure 3.13: Query that obtains a list of all tables and lists all non-virtual
columns for the table named “table” in Oracle DBMS

#Get all tables
SELECT table_name FROM dba_tables;

#Get all columns for table 'table '
SELECT COLUMN_NAME
FROM ALL_TAB_COLUMNS
WHERE TABLE_NAME='table ';

Figure 3.14: Query that obtains a list of all tables and lists all columns for
the table named “table” in MSSQL. BASE TABLE ensures, that no views are
selected.

#Get all tables
SELECT TABLE_NAME
FROM 'db'.INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE = 'BASE␣TABLE'

#Get all columns for table 'table '
SELECT COLUMN_NAME
FROM 'db'.INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'table '

MongoDB
MongoDB is a typical example of a NoSQL database with document store
model, so as expected, the database structure is not as easily available. Using
the listCollections command, one can obtain collections (analogy of tables).
In collections, MongoDB stores documents, and each of these documents can
have its own fields (analogy of columns). Fields can have a nested structure
(similar to JSON objects) and also a different data type for each document.
Getting a complete schema (including nested structures) is a non-trivial task,
so much so that open-source projects emerged with that goal in mind. [38]
Figure 3.15 shows an example of discovering all fields for one collection without
the support for nested types in the Mongo shell.

Hive
Hive is built on relational principles (although it is not a relational database),
so obtaining a schema is not as hard as for typical NoSQL database. Since
version 3.0.0, INFORMATION SCHEMA is supported as long as one has
access to its metadata database (metadata are stored in a separate relational
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Figure 3.15: Code snippet in Mongo shell that gets a list of all fields on the
first level of depth for the collection named “collection” [11]

db.collection.aggregate ([
{ "$project": {

"data": { "$objectToArray": "$$ROOT" }
}},
{ "$project": { "data": "$data.k" }},
{ "$unwind": "$data" },
{ "$group": {

"_id": null ,
"keys": { "$addToSet": "$data" }

}}
])

database). [16] In that case, requesting a list of tables and columns would be
similar to MySQL (shown in figure 3.14). If the metadata database cannot be
accessed, the Beeline shell can be used instead (figure 3.16).

Figure 3.16: Listing all tables in database “db” and then all columns for table
“table” in Beeline shell (Apache Hive)

#Get all tables
use db;
show tables;

#Get all columns for table 'table '
show columns in 'table ';

3.5 C# programming language and .NET Core
Framework

C# is a cross-platform type-safe and object-oriented programming language,
currently owned and developed by Microsoft. It is commonly used with .NET
Framework, which runs primarily on the Microsoft Windows operating system.
Its free, open-source, and cross-platform counterpart, .NET Core, runs on
macOS, GNU/Linux, and MS Windows.

While .NET Core supports GUI frameworks like Windows Presentation
Foundation (WPF) and Universal Windows Platform (UWP), these frame-
works themselves are not cross-platform. Therefore to create a cross-platform
application with GUI, one must resort to third-party frameworks and libraries.
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Well established frameworks like Qt or GTK are stable and offer high perfor-
mance, but other problems arise. In the case of Qt, it is problematic (expen-
sive) licensing for commercial projects. GTK, on the other hand, is entirely
free but looks alien (at least by default) on other platforms than GNU/Linux.
Platforms like Electron are simple to integrate and easily portable, but very
resource-heavy since they need an entire web browser to run. Avalonia frame-
work is free for commercial use, cross-platform, provides easy to use XAML
dialect similar to WPF and the .NET Foundation (founded by Microsoft) sup-
ports its development. However, at the time of writing, it still has not reached
the production-ready stage, mainly due to insufficient documentation. For this
reason, GTK was selected as the most optimal UI framework to achieve the
goals of this thesis.

.NET Core supports ODBC through a simple to use OdbcConnection class,
and MSSQL Server can be accessed natively using the optimized SqlConnec-
tion class. Packages providing additional features and capabilities can be
obtained through the NuGet package manager, which also manages updates.
All target databases from the list above can be connected to from .NET Core
application with either a package from NuGet, a connector from a vendor’s
website, or a generic ODBC connection. NuGet offers packages MySql.Data
for Mysql, Npgsql for PostgreSQL, ODP.NET for Oracle DMBS, to name but
a few.

If there is a need to call native code from a dynamic-link library (or a
shared object), .NET Core (C#) has that covered as well through DllImpor-
tAttribute. Interop Marshaling governs how data is transferred between man-
aged and unmanaged memory during calls. While relatively simple for built-
in data types like integers and booleans, problems might arise with custom
classes and pointers. Instead of resorting to unsafe code, which potentially
introduces security risks, one should rather create proper wrappers around
imported functions and objects and let the language runtime handle the mem-
ory. Since doing this correctly might be tedious and time-consuming, projects
like [25] were created to help with the process.

3.6 Producer-consumer Pattern

Producer-consumer is a synchronization problem, where several threads ex-
change data through a shared memory with limited speed and capacity (a
buffer). These threads can be divided into two groups, called producers and
consumers. Producers fill the buffer with equally sized blocks of data until
there are no more data blocks to produce. If the buffer reaches its capacity,
producers wait. Consumers remove data blocks from the buffer to process
them, and, by analogy, if there’s no data in it, they wait until there is. In the
end, producers notify consumers that no more data will be produced. There
may be additional requirements on the order in which data blocks are being
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produced or consumed.

Figure 3.17: Producer-consumer pattern (one producer, one consumer)

The producer-consumer pattern is used in many programs, one of which is
the piping mechanism in Unix based operating systems. When two programs
are divided by a pipe, one produces data, and the other consumes them, for
example, “cat file.txt | grep text” in GNU Bash. Program cat reads file.txt and
fills the buffer with text and program grep processes this data the moment it
is available.

There are many ways in which the pattern can be implemented. In-
correct implementations can suffer from race conditions, deadlocks, or in-
troduce bottlenecks due to improper usage of threading capabilities on the
given system (busy waiting). In .NET and .NET Core, one can utilize the
TPL Dataflow Library by Microsoft. It works on all target platforms spec-
ified in the goals of this thesis and takes care of many problems internally.
Using Dataflow.ITargetBlock<TInput> and ISourceBlock<TOutput> objects,
one can easily share data between producer and consumer methods. After
the producer is finished, it calls the Complete method to let the consumer
method know that no more data will be produced. Figure 3.18 shows a simple
template for one producer and one consumer exchanging bytes.
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Figure 3.18: A template for a simple producer-consumer pattern in C# .NET
[1]

// Produce data
static void Produce(ITargetBlock <byte[]> target)
{

while (...)
{

...
target.Post(buffer );
...

}
target.Complete ();

}

// Consume data
static async Task <int > ConsumeAsync(ISourceBlock <byte[]> source)
{

while (await source.OutputAvailableAsync ())
{

...
byte[] data = source.Receive ();
...

}
return bytesProcessed;

}

static void Main(string [] args)
{

var buffer = new BufferBlock <byte [] >();
var consumer = ConsumeAsync(buffer ); //start consuming
Produce(buffer ); // produce data
consumer.Wait ();

}

32



Chapter 4
Commercial Solutions

A few commercial solutions available for searching sensitive data in a database
were selected for examination, mainly for confirmation, that the algorithm
designed in this thesis is the best possible approach performance-wise. As
was already mentioned, compared to other database engines, Microsoft SQL
(MSSQL) Server has considerably poorer regular expression support. There
is a way of enabling better regex support (user-defined CLR function), but it
involves writing to the database which, in any auditing, should be avoided.

As one would expect, selecting all data and evaluating them locally is
notably slower than using the power of a database engine to do the evaluation.
And since with MSSQL, it is impossible to use regex to match something as
simple as an IP address, it will be used as a primary platform for evaluation. If
there’s a way to avoid evaluating all data locally, it is reasonable to expect that
professional solutions will surely do so, as it would be a lot faster. Products
to be tested were selected based on popularity (highest ranking in the search
engines) and also in consideration of how hard it was to obtain a free trial
version to test its capabilities. In a few cases, the sales representatives of the
respective companies required the author of the thesis to sign an NDA before
providing the software. Since this would prevent him from reverse-engineering
it or publishing any results from research, these requests were politely declined.

The target database for all three test subjects has been chosen to be the
AdventureWorks2017 database [5]. This is a sample published by Microsoft
to show how to design a database. Since it contains a lot of sensitive data
like names, birthdates, and email addresses, any tools that claim the ability
to scan a database for such information should be able to detect it. To ensure
that the tool scans the content and not just column names, two versions of
the database are to be used. The original is to be left unchanged, and the
second one is to have its columns renamed to arbitrary names by the author
of this thesis. One can easily capture queries sent to the MSSQL server using
the SQL Server Management Studio (SSMS) XEvent Profiler. These captured
queries are then to be used to determine what data left the server.
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Figure 4.1: Queries sent by the Data Discovery & Classification tool - SQL
Server Management Studio XEvent Profiler (cutout)

The first solution to test is the Data Discovery & Classification tool
from Microsoft for MSSQL Server. It is built-in since the 2012 version and
available for free in the SQL Server Management Studio (SSMS). The de-
scription on the product page states that “the classification engine scans your
database and identifies columns containing potentially sensitive data. It then
provides you an easy way to review and apply the appropriate classification
recommendations, as well as to manually classify columns” [36]. That sounds
promising; based solely on that description, it could be a solution for the task
of this thesis on its own. Let us verify these claims.

For the database with original column names, the tool reported 56 columns
as recommended for classification. This meant that it indeed detected these
columns as potential carriers of sensitive data. Inspection of the captured SQL
queries showed that except for some metadata, it received table and column
names onlu; not any content of the columns themselves (figure 4.1). For
verification, the second classification session was launched on the database
with renamed columns. As expected from the capture, the tool failed to
detect any sensitive data at all. It is, therefore, safe to state, that the Data
Discovery & Classification tool is not suitable for sensitive data detection in an
unknown database on its own, and there are no valuable crawling algorithms
or techniques to be discovered observing it.

Much the same could be said about the second examined solution, the
Idera SQL Column Search, which is available as part of the Idera SQL
Compliance Manager package [35]. Just as with the previous test case, it
was tested on both original and renamed versions of the sample database,
and its queries were captured. From the SQL queries alone, it is evident
that the tool only searches column names (figure 4.2). Regular expressions
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Figure 4.2: One of the queries captured when analyzing Idera SQL Column
Search. Note expressions like %credit% or %card%

1 SELECT
2 db_name () as DatabaseName , SCHEMA_NAME(t.schema_id)
3 +'.'+t.name AS SchemaTable ,(SUM(a.used_pages) * 8.0 )
4 / 1024.0 AS UsedDataSpaceMB , COUNT(DISTINCT c.Name) AS
5 MatchedColumns , (SELECT SUM(row_count) FROM
6 sys.dm_db_partition_stats ps WHERE ps.object_id =

OBJECT_ID(SCHEMA_NAME(t.schema_id )+'.'+t.name ) AND
7 (index_id = 0 or index_id = 1)) AS RowsCount FROM
8 sys.tables AS t INNER JOIN sys.columns c ON t.OBJECT_ID
9 = c.OBJECT_ID INNER JOIN sys.indexes i ON t.OBJECT_ID

10 = i.object_id INNER JOIN sys.partitions p ON i.object_id
11 = p.OBJECT_ID AND i.index_id = p.index_id INNER JOIN
12 sys.allocation_units a ON p.partition_id = a.container_id
13 WHERE
14 ( c.name LIKE '%date%' COLLATE Latin1_General_CI_AS
15 or c.name LIKE '%dob%' COLLATE Latin1_General_CI_AS
16 or c.name LIKE '%dob%' COLLATE Latin1_General_CI_AS
17 or c.name LIKE '%email%' COLLATE Latin1_General_CI_AS
18 or c.name LIKE '%code%' COLLATE Latin1_General_CI_AS
19 or c.name LIKE '%credit%' COLLATE Latin1_General_CI_AS
20 or c.name LIKE '%card%' COLLATE Latin1_General_CI_AS

such as %credit%, %card%, or %email% used in the query mean, that any
column with a name containing these words will be flagged. This fact has
been confirmed by comparing columns detected when analyzing the renamed
version of the database. Whereas for the original 143 columns were identified
using the default settings, none were identified when analyzing the renamed
one.

The last inspected product is the Sensitive Data Discovery Solution
by DataSunrise [33], and it is arguably the most advanced of the three. Its
web interface presents the user with a wide range of settings and preferences
like security standards (e.g., GDPR or HIPAA) or which particular patterns
to search for. It can also be specified as to how many rows to search for each
column and the minimal amount of matches required for the column to be
flagged (figure 3). The user is also able to add patterns of their own using
regular expressions (figure 4) or lexicons like a list of world cities. As expected,
the tool was able to detect sensitive data even in the database with renamed
columns and tables. From the captured queries (figure 5), it can be observed
that most of the data is pulled from the database server and evaluated locally.
If the user selects a 100 rows to be searched from each column, the software
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Figure 4.3: Some of the queries captured when analyzing Sensitive Data Dis-
covery. C[number] and T[number] are the names of the renamed columns and
tables.

1 ...
2 declare @p1 int set @p1=NULL exec sp_prepare @p1
3 output ,NULL , N'SELECT␣TOP␣100␣[C1],CAST([C2]␣as␣char)
4 AS␣[C2],[C3],[C4],[C5],[C7],[C8],[C9],[C10],[C11],[C12],
5 [C13],[C14],[C15],[C16],[C17],[C18],[C19],[C20]␣FROM
6 [DBO].[T6]',1 select @p1 exec
7 sp_execute 105
8 exec sp_unprepare 105 declare @p1
9 int set @p1=NULL exec sp_prepare @p1 output ,NULL ,

10 N'SELECT␣TOP␣100[C1],[C2],[C3]␣FROM␣[DBO ].[T7]',1
11 select @p1
12 exec sp_execute 106
13 exec sp_unprepare 106
14 declare @p1 int set @p1=NULL exec sp_prepare @p1
15 output ,NULL ,N'SELECT␣TOP␣100␣[C1],[C2],[C3],[C4],[C5],
16 [C6],[C7],[C8],[C10],CAST([C11]␣as␣char)␣AS␣[C11],
17 CAST([C12]␣as␣char)␣AS␣[C12],[C13],[C14],[C15],[C16],
18 [C17],[C18],[C20],[C21],[C22],[C23],[C24],[C27],
19 CAST([C28]␣as␣char)␣nAS␣[C28],CAST([C29]␣as␣char)
20 AS␣[C29],[C30]␣FROM␣[DBO ].[T8]',1
21 select @p1
22 ...

request 100 top rows, rather than 100 random rows. Consider the wide variety
of data stored in any database; this might not be the best choice as the top
n rows may not be representative of the whole column. The aforementioned
aside, the tool seems to be very capable and could fulfill at least some of the
tasks set by this thesis.

In conclusion, it is evident that there most likely is no way to search an
MSSQL database thoroughly without processing at least some data locally. It
also seems that patterns specified as regular expressions represent the right
balance between user-friendliness, extensibility, and performance. This simple
analysis also served the author of this thesis as inspiration for class and UI
design.
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Figure 4.4: Setting up a new search using DataSunrise Sensitive Data Discov-
ery

Figure 4.5: Adding new pattern in DataSunrise Sensitive Data Discovery [34]
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Chapter 5
Design

5.1 Design Objectives

• Pattern Versatility
Users should be able to specify patterns in a universal and unified man-
ner. If support for a new database is added, patterns that have already
been specified should work on that new database without the need to edit
them. E.g., if there is already a pattern for an IP address and it is work-
ing for MySQL server, after adding support for Oracle Database, this
very pattern should work for it too. This also applies for all metadata
that the pattern holds, like security standard or percentage of matches
required.

• Extensibility
Adding support for new databases should not require any of the code to
be rewritten, only added. E.g., if the application does not support the
SQLite database, a programmer should be able to add its support with
the least possible effort, and all of the previously defined configurations,
for example patterns, should work with it.

• Computation Offloading
Routes all computationally intensive operations to the target database.
E.g., instead of selecting all rows, and then evaluating them locally,
construct a query that returns just the results.

5.2 Patterns and Crawling Algorithms

As shown previous, crawling a database mainly consists of discovering its
data structure. When this structure is discovered, one can start searching the
content itself. The first idea was to search entities considering the presence
of other entities. In practice, this would mean that a location pattern could
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be defined as a rule, where two decimal columns with the same precision and
range are in the same table. Alternatively, a table that contains a column
with first names is arguably more likely to contain columns with last names,
however this idea was dropped as location detection was the only meaningful
example the author could manifest. After all, if there were a way of detecting
a column with names in the first place, the surname column would likely
be detected using that very method as well thus rendering the post-analysis
useless. Also, some of the patterns defined might not be easily transferable
to other database types begging the question how the location example would
scale in case of a document store database where each entity may have different
record types? Finally, this idea could also lead to exponential time complexity
(comparing all columns to all columns), and complicated design with uncertain
benefits.

The second approach is noticeably more straightforward: all entities should
be searched separately with results from one having no impact on the other.
This simplifies the architecture significantly and also allows defined patterns to
be used on different database types unaltered (pattern versatility). More-
over, searching an entity for established patterns can usually be executed
directly on a database using an appropriate query, fulfilling the computa-
tional offloading requirement. For a relational database, it essentially means
searching each column’s content for all applicable patterns.

A minimal amount (percentage) of records matched can be used to deal
with false positives. For example, a column would be labeled as sensitive only
when at least 10 percent of its rows contain first names. On the other hand,
for a credit card number, this would be zero, since a credit card number is
unique and less prone to false positives.

Based on the data categorized and described in chapter 1, several pat-
tern classes have been defined. These were also inspired by the commercial
solutions analyzed in chapter 4.

• Regex Pattern (content)
A regular expression specifies this pattern. Any data with defined struc-
tures, such as phone numbers or email addresses, can be detected with
a given regular expression. The pattern can hold multiple regular ex-
pressions, each specialized for different database management systems.
In the following text, such patterns are referred to as specialized pat-
terns. By the nature of regular expressions, this pattern is targeted
on character-based data types. Still, it can also be used on other data
types like numbers as numbers can be converted into character strings.
As conversion to string is usually slow, this ability should be used with
caution.

• Structure Name
Since structure names can sometimes give more information than the
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content itself (e.g., a column named birthdate), this pattern is used
for this very case. As in the previous example, a regular expression is
suitable for the detection of any possible structure names.

• Lexicon
This pattern defines a list of possible values that the value may contain
for it to be recognized as a match. Think of a list of all medical conditions
to detect sensitive medical data or a list of cities to detect a physical
address. Execution directly on a database should be preferred, but if it
is not possible (or slower), the list can be converted to regular expression
for local evaluation.

• Integer Range
Sensitive data can also take the form of integers. While generally frowned
upon, data like phone numbers can be stored as integers instead of
strings, and the tool must be able to detect them. This pattern speci-
fies the range in which the number must be in order to be recognized.
For example, a valid Czech mobile phone number (without the national
prefix) ranges from 600,000,000 to 609,000,000 or from 720,000,000 to
799,000,000. This pattern can be executed directly on a database and
is always faster than conversion to string with regular expression evalu-
ation.

• Decimal Range
Previously mentioned location could be detected using this pattern. It
allows both value range specification (min and max value) and also the
range for the decimal places. Location is usually specified as latitude
(value from -90 to 90) and longitude (-180 to 180) with decimal places
ranging from 5 to 9.

• Date Range
This pattern can be used to detect dates that are generally expected to
fall within defined range. Depending on a country’s demographics, most
adult birth dates fall between 1950 and 2000 (at the time of writing).
This helps the pattern to distinguish from, for example, a date when an
employment contract was signed.

It is important to note that these patterns have some disadvantages. One
of them is the inability to work with checksums. For example, the Interna-
tional Mobile Equipment Identity (IMEI) number uses the Luhn algorithm to
calculate its last verification digit. Because a 15 digit number is (arguably)
unique and IMEI is frequently used without the last digit, the author of this
thesis did not consider it essential.

To effectively manage a more extensive collection of these patterns, one
needs metadata to label them and nested structures to group them. This
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is solved using pattern groups. One group can store multiple patterns of
different kinds. For example, an email address group could store a struc-
tural pattern to detect column names containing the word “email” and also
a corresponding regex pattern for the content. One level above is informa-
tion type, which can store multiple groups (e.g., information type “Personal”
stores pattern groups “email” and “phone number”). For each pattern, the
target language can be specified. Multiple compliance standards, like
“GDPR - sensitive,” can be assigned to each group.

Figure 5.1: Remote evaluation

5.3 Database Structure and Results
Representation

After the database structure is discovered, it has to be stored. For that, a
suitable representation that fits all target database management systems is
required. The first idea was to have a structure that is general enough to
contain both relational and NoSQL databases, and while it appeared feasible
at first, it was dismissed after a few design attempts. The main issue with
this approach is that these technologies are fundamentally different, with data
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being stored, defined, and accessed in incompatible ways. One output format
would not work for both relational and NoSQL, as it would make things very
confusing for the user. Even worse, one unified structure could have a neg-
ative impact on performance since it would make some optimizations hard
or impossible to implement. Consider a MongoDB’s document store nested
structure that has to be “flattened” into single tables with all distinct fields
enumerated as columns. While the end result resembles a relational database
(and thus a unified structure is achieved), it would have been far better to
process it in its native way without the overhead.

For these reasons, it was decided that while patterns can be used easily by
any database type, implementations of different database types should
be separated. Because of time constraints, only relational database sup-
port is designed and implemented in this thesis.

Replicating a relational database structure is rather simple. As it always
consists of tables and columns, objects with the same names and hierarchy
can be used to store them. Results can then be attached to each column since
they are searched separately.

5.4 Search Dispatcher and Database Handlers

In order to satisfy the extensibility requirement, the design must separate
the parts responsible for the connection to databases, as these are subject
to change or extension. This is solved using the database handlers and
the central dispatcher. Database handlers present an intermediate layer
between a particular database management system and other parts of the
application. They provide a unified interface for the dispatcher, a central layer
that manages the search process and holds all information related to it. For the
separation to work correctly, all database handlers must be indistinguishable
from the perspective of the dispatcher. Figures 5.1 and 5.2 show the two main
functions of the dispatcher.

The first function provides the handler with a pattern that is to be executed
on the target database for the particular column. The handler then returns
results, and these are processed, stored, and interpreted by the dispatcher
(remote evaluation). The second function is the local pattern evaluation.
A dispatcher requests the handler to start producing data (rows) for the given
column into the shared buffer. This data is then processed simultaneously (and
in parallel for each pattern) by the dispatcher using the Intel Hyperscan engine
(local evaluation). This was described earlier as the producer-consumer
pattern. The dispatcher is also responsible for searching the database structure
names (evaluating structural patterns) as the structure is in its possession.

Since it is not uncommon for enterprise databases to contain billions of
rows, searching all of it in a reasonable time-span is not a realistic expectation
to have. The database handler is responsible for providing a statistically sound
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(representative) sample for the requested percentage of data. Results from
searching this sample can then be used as if the entire column was reached.

Finally, figure 5.3 outlines the whole database scanning process in different
stages.

Figure 5.2: Local evaluation
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Figure 5.3: Scan process
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Chapter 6
Implementation

6.1 Patterns

The class diagram in figure 6.2 shows the implemented classes and enumerators
related to patterns and their management in the prototype application. A
more detailed description of these objects follows.

A ColumnDataType enumerator serves as a generalization of proprietary
data types on different databases. For example, all text-based data types, like
varchar or XML, should be labeled as a string, and all types with decimal
places like float, smallmoney, or real should be labeled as a decimal. This is
important for pattern versatility. Users should not be bothered with different
data types on various platforms when defining a pattern.

An abstract class Pattern was implemented to hold all of the common
properties of previously defined patterns. This includes case sensitivity, per-
cent of matches required, target language, and whether the pattern is enabled
(active). Each of those patterns then has a dedicated class that dervives from
it. Regular expressions are stored as strings in PatternStructure, Pattern-
Regex, and PatternLexicon (fallback) classes. PatternRegex class also contains
a HashSet of ColumnDataTypes as the AlternativeDataTypes property. As the
name suggests, this can be used to specify which data types (apart from the
string) the pattern should be evaluated on. The Dictionary-based property
SpecializedPatterns can store one specialized pattern for each database han-
dler.

PatternLexicon uses a string array to store the list of values. In case the
database execution is not available or preferred, fallback to the previously
mentioned regex property can be used instead. PatternInteger and Pattern-
Double classes store their range properties as BigIntegers to make sure that
data types on any database will fit. PatternDouble also has range for decimal
places. Finally, PatternDate uses the DateTime type for its range since C#
doesn’t have a dedicated type just for date.

Patterns can be grouped using PatternGroup classes. The Compliance-
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Figure 6.1: Overriding the Equals and GetHashCode methods. This ensures,
that when two PatternGroup objects are compared in structures like the Hash-
Set or the Dictionary, they are compared based on the property Name. All
classes related to patterns override these method similarly.

public class PatternGroup
{

...

public override bool Equals (object obj)
{

if (!( obj is PatternGroup patternGroup ))
return false;

else if (this.Name == patternGroup.Name)
return true;

return false;
}
public override int GetHashCode ()
{

return System.HashCode.Combine (Name);
}

}

Standards class provides the ability to assign compliance standards to these
groups. PatternGroup stores them in a HashSet to ensure easy lookup. Lastly,
the InformationType class is used to group PatternGroups by their usage.

All classes mentioned in this subchapter always have the Name and De-
scription properties defined as strings. They also overload Equals and GetH-
ashCode methods to guarantee uniqueness when used in a HashSet or Dictio-
nary. These methods are used for default comparisons and are based entirely
on the property Name, effectively making this property unique (figure 6.5).
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Figure 6.2: Class diagram of patterns and related classes (some methods and
properties are omitted)
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6.2 Database Structure and Results

The internal database structure is implemented in step with what was sug-
gested in the design phase. The DatabaseStructureRelational class contains
Table objects in a List, and by analogy, the Table class contains a List of
Column objects. It is also possible to get back to the top using properties
ParentTable in a Column and ParentDatabase in a Table. For calculating
the percentage of data that should be searched, the Table object holds the
total number of rows. The Column class contains the previously introduced
ColumnDataType to help the dispatcher decide what searching operations to
execute. The ExecuteLexiconDB property can be used to flag columns, that
are unfit for large-scale lexicon evaluations to be evaluated locally instead.

The Result class stores the search result for one pattern and one searched
column or table (name). Note that it has properties RowsMatched and RowsSearched.
While the RowsSearched property might seem redundant because the number
of rows is already stored in the Table object, it has its purpose. Any row
searched that is null should not be counted to prevent skewing the minimal
required percentages. Think of a newly introduced column in an old database
that is just starting to get populated with sensitive data. Since most of this
column’s values are nulls, patterns that define some minimal percentage of
matches required could (falsely) not be recognized.

The Column class stores Result objects in a ConcurrentBag. This col-
lection, in contrast with List, allows thread-safe addition and removal. Pat-
terns that are being evaluated in parallel can, therefore, be easily added to
the collection right away without worrying about race conditions and similar
problems. Figure 6.3 shows a class diagram containing all classes mentioned
in this subchapter.
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Figure 6.3: Class diagram of the database structure and results (all methods
and some properties are omitted)

Dispatcher

6.3 Intel Hyperscan Wrapper

Since Hyperscan is a C library and no wrapper for the C# language currently
exists, the author of this thesis had to write his own. The project does not
release any binaries (all releases are source code only), so one must build their
own. As different operating systems use different formats of dynamic (shared)
libraries, at least three such libraries have to be produced. For Microsoft Win-
dows, the output format needed is DLL (Dynamic-link library), GNU/Linux
requires a shared object (commonly with .so extension), and Apple macOS
uses a dynamic library (.dylib). This means that Hyperscan has to be built
on these three systems and binaries produced then bundled with at least three
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different versions of the final product.

Figure 6.4: The hs compile error structure from Hyperscan’s C source ported
to C to be used as function argument

[System.Runtime.InteropServices.StructLayoutAttribute
(System.Runtime.InteropServices.LayoutKind.Sequential )]
public struct hs_compile_error
{

/// char*
[System.Runtime.InteropServices.MarshalAsAttribute
(System.Runtime.InteropServices.UnmanagedType.LPStr )]
public string message;

/// int
public int expression;

}

The wrapper uses the DllImportAttribute and Interop Marshalling to call
functions from the library and manage the memory of the passed arguments.
Some structures in the Hyperscan source, like enumerators, had to be repli-
cated in the C# code to make method arguments more readable. No unsafe
code is used in the wrapper, and all native methods are separated in the Na-
tiveMethods class, as per convention. Figures 1 and 2 show exemplary snippets
from the implementation.

The wrapper code itself can be left unchanged on all three platforms men-
tioned above because the DllImportAttribute works with all three dynamic
library formats without any changes.

In the final implementation, only a portion of all functions that Hyperscan
offers are used. These are encapsulated in the C# class called Hyperscan. The
first of these functions is hs valid platform, which has been wrapped in the
ValidArchitecture method. As the name suggests, this method is used at the
start of the application to verify CPU support (if the SSSE3 instruction set
is present). Other functions, like hs compile multi and hs alloc scratch used
in the BuildDatabase method, unsurprisingly, are used to build Hyperscan’s
database using patterns provided as arguments (pattern compilation). Finally,
Scan encapsulates the hs scan function. All errors returned as error codes are
also handled by the class and converted to exceptions. All allocated memory
is freed in the destructor. UTF-8 flag is set globally for all arguments passed
to Hyperscan because .NET Core uses UTF-8 encoding by default.

The PInvoke Interop Assistant project [25] was used to help with creating
the wrapper.
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Figure 6.5: Making the hs compile multi function available from C# (types
in the comments above the function signature are the original C types for
comparison)

/// Return Type: hs_error_t ->int
/// expressions: char**
/// flags: int*
/// ids: int*
/// elements: unsigned int
/// mode: unsigned int
/// platform: hs_platform_info_t*
/// db: hs_database_t **
/// error: hs_compile_error_t **
[System.Runtime.InteropServices.DllImportAttribute
(libhs , EntryPoint = "hs_compile_multi",
CallingConvention = CallingConvention.Cdecl)]
public static extern int hs_compile_multi (

[In , Out , MarshalAs (UnmanagedType.LPArray ,
ArraySubType = UnmanagedType.LPStr)] string [] expressions ,
[In , Out] uint[] flags , [In, Out] uint[] ids , uint elements ,
uint mode , IntPtr platform ,
ref System.IntPtr db , [In , Out] hs_compile_error [] error );

6.4 Dispatcher and Database Handlers

DatabaseHandlerRelational is an abstract class meant to incorporate all op-
erations related to a particular database management system. All classes
that perform any direct communication with a database should derive from
this class and override all methods it presents. The first five of these meth-
ods (SearchColumnSpecial, SearchColumnLexicon, SearchColumnInteger, etc.)
are used for remote evaluation. They accept the target column and pattern
as arguments and are expected to handle everything necessary to return the
result (or throw an exception if an error occurs). The ProduceColumnData
method should follow the scheme (figure 4) from the design and fill the ITar-
getBlock¡string¿ buffer passed in the with requested column data. Conversion
to string is also left up to this method. This should most preferably be han-
dled directly by the database, but if no such option is available, it can resort
to language’s ability to process the conversion.

Database structure acquisition should be managed by the method Get-
DatabaseStructure. This method fills its property DatabaseStructureRelational
or throws an exception if something went wrong. Finally, methods Test-
Connection and InitializeUI (also see below) are used by user interfaces to
help the user with database connection setup. Properties MinSearchRecords,
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MaxSearchRecords, and SearchPercent enable the user to control the number
of rows processed or returned by any of the previous methods. All of these
methods should be aware of them. If needed, this awareness can be disabled
for queries evaluated directly on a database by setting the EnforceSearchLim-
itsOnDB property to false.

The DispatcherRelational class manages the whole database scan process
and requires a DatabaseHandlerRelational object to be as its Handler property.
Only through this handler, the dispatcher accesses any databases. As shown
in figure 4, the first phase of the scan consists of discovering the database
structure. For the dispatcher, this translates into calling the handler’s Get-
DatabaseStructure method. The next step, pattern grouping, is handled in
the SetPatterns method, which accepts a List of InformationType and is used
for setting patterns for searching. These groups are then compiled into in-
ternal Hyperscan’s databases, which are later used for evaluation. After the
patterns are set, divided into groups, and compiled, the searching process can
be started using the method Start. This method executes both remote and
local evaluations in parallel. The execution can be stopped by setting the Stop
property to true (since bool is atomic in C#, it can be used this way). Both
evaluation types essentially consist of looping through all tables and evalu-
ating patterns for each column based on its data type. In local evaluation,
this also means consuming the buffer filled by the handler’s ProduceColum-
nData method and forwarding this data directly to Hyperscan. By default,
specialized patterns are preferred over local regex fallback, but this behavior
can be changed by setting the UseSpecializedPatterns property to false. The
last phase is the interpretation of the results, which mainly consists of filtering
results based on the percentage of rows matched. Figure 6.6 shows the class
diagram of the DispatcherRelational and DatabaseHandlerRelational classes
with some exemplary handlers inherited.
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Figure 6.6: Class diagram of the dispatcher and handlers (some methods and
some properties are omitted)

6.5 XML Serialization

Because the application uses XML in both input and output (see below), some
classes require additional code. For most properties and data types, XML
serialization is rather straightforward in C. Using the XmlSerializer class,
one can serialize/deserialize many objects by calling the Serialize/Deserialize
methods. In some cases, however, attributes, overloads, or proxy properties
need to be added in order to resolve issues.
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Figure 6.7: Proxy property for RowsMatched. XmlElement ensures consistent
naming in the XML file and EditorBrowsable (EditorBrowsableState.Never)
hides the property from IDE.

[XmlIgnore] // BigInteger is not serializable ,
//so a proxy property has to be used

public BigInteger RowsMatched { get; set; }

#region XML_PROXY
//Proxy property for RowsMatched
[XmlElement (" RowsMatched ")]
[EditorBrowsable (EditorBrowsableState.Never )]
public string RowsMatchedProxy
{

get { return RowsMatched.ToString (); }
set { RowsMatched = BigInteger.Parse (value ); }

}
...

Loading and saving an XML configuration of a database handler should be
made possible by overloading the ImportSettingsXML and ExportSettingsXML
methods. As the database structure isn’t a setting (it is not needed for con-
necting to the database), it has to be labeled using the XmlIgnore attribute.
Problems arise when attempting to serialize the BigInteger properties like
MinSearchRecords. Since BigInteger doesn’t implement the IXmlSerializable
interface, serialization will return empty values. This can be resolved in two
ways. The first is modifying the BigInteger class and making it implement the
interface manually. Considering that modifying the class could cause problems
later (e.g., when the language/framework is updated in the future), introduc-
ing a proxy property was perceived as a better solution. Proxy property is a
property through which serialization of the underlying property is made pos-
sible while the underlying property is hidden using the XmlIgnore attribute.
An example of a proxy property is shown in 6.7. This is used everywhere
where a BigInteger needs to be serialized/deserialized.

Proxy property is also used to handle the serialization of the Results prop-
erty. Since ConcurrentBag will only be serialized after it is not being accessed
or modified anymore, there are no potential issues with thread safety. This
means that a proxy property can be a simple List with appropriate getters
and setters. Figure 6.9 shows the complete solution.

However, the proxy property wasn’t a suitable solution for the Specialized-
Patterns property based on the Dictionary collection. Instead, the well-known
code for the SeriazableDictionary from [40] was used.

Finally, all classes that are serialized need to implement parameterless
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Figure 6.8: Proxy property for Results

[XmlIgnore] // ConcurrentBag is not serializable ,
//so a proxy property has to be used

public ConcurrentBag <Result > Results { get; set; }

#region XML_PROXY
//Proxy property for Results
[XmlElement (" Results ")]
[EditorBrowsable (EditorBrowsableState.Never )]
public List <Result > ResultsProxy
{

get
{

List <Result > tempResults = new List <Result > ();
foreach (var result in Results)

tempResults.Add (result );
return tempResults;

}
set
{

Results.Clear ();
foreach (var result in value)

Results.Add (result );
}

}
#endregion XML_PROXY

constructors. These constructors can be made private, so they don’t disrupt
the design.

All pattern imports and exports from XML are made possible through
ImportPatternXML and ExportPatternsXML methods of the IntormationType
class. They serialize and deserialize a List of InformationTypes with all nested
patterns and groups. This allows the XML configuration to be deserialized
and passed to the dispatcher in that very form.

6.6 Database Handlers

Microsoft SQL Server was selected as an ideal candidate for a sample imple-
mentation, as it is arguably the most problematic (lack of regex support).
Other handlers were created just as dummy values to demonstrate the capa-
bilities of the UI.
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6.6.1 Microsoft SQL Server

When it comes to connecting to an MSSQL Server, the .NET Framework is
well equipped. Its SqlConnection class is optimized just for this particular
database management system without generalization. Testing the connection
is as simple as creating a new object with a connection string as a parameter
and calling the Open method. If no exception is thrown, the connection has
succeeded.

Since regular expressions aren’t supported, the handler can only offer eval-
uation using the LIKE operator. Since its abilities are limited, it can be ex-
pected that local evaluation will play a more significant role. To verify whether
a column contains any of the words from the lexicon pattern, at least two op-
tions can be used. The first is the CONTAINS operator. While being very
fast, it requires the full-text index to be present for the given column. The
other option is chaining the LIKE operator using the OR operators. Simple
benchmarking has shown, that for columns that are not indexed, it is signif-
icantly faster to evaluate them locally rather than use the remote evaluation
with the LIKE operator chain. For this reason, columns that aren’t indexed
have their ExecuteLexiconOnDB property set to false in the structure discov-
ery phase. And the trouble with the LIKE operator isn’t over, as it cannot
process some text-based types like XML. These types have to be converted
to a nvarchar using the CAST operator, which slows down the process even
further. Support for other patterns (like decimal range) was implemented in a
standard way without any problems, as it always consists of sending a simple
query to a database and receiving the results count.

The last minor challenge was in implementing the random sample function-
ality correctly. The key is to avoid iterating through all of the values in a table
(as even counting the rows can be time-consuming for large tables). There-
fore, using conventionally recommended solutions such as “SELECT TOP 10
PERCENT” is not an option. Instead, one can utilize the TABLESAMPLE
operator. Its main advantage is that it does not go through all records in a
table. This is balanced out with the fact that samples on a small data (thou-
sands of rows) are clustered based on their storage and hence not statistically
sound. It also does not always return the amount of records it was requested
to return precisely. Since this feature is expected to be used on enormously
large databases and the number of results is known, and can be adjusted for,
the author of this thesis does not consider it an obstacle.
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Figure 6.9: Producing column data and filling the buffer for the MSSQL
Server

//Init connection , build query
...
using (SqlCommand commandReadColumn

= new SqlCommand (commandGetColumn , connection ))
{

using (SqlDataReader columnReader
= commandReadColumn.ExecuteReader ())

{
while (columnReader.Read ())
{

//if row is null , don 't count it
if (! columnReader.IsDBNull (0))
{

//If DB cannot handle the conversion to string
if (convertManually)
{

object nonString = columnReader [0];
columnBuffer.Post (nonString.ToString ());

}
else

columnBuffer
.Post (columnReader.GetString (0));

recordsProduced ++;
}

}
}

}
columnBuffer.Complete ();
return recordsProduced;

6.7 Output

While the input differs based on the way the user chooses to interact with the
application, the output produced is always the same. The first output format
is an XML file. After the scan is finished, the whole database structure object
can be serialized thanks to the previously configured classes (figure 6.10).
The purpose of the XML output is mainly machine readability so that other
applications can process the results.

The other output format is an Excel (.xlsx) file. This is meant to be the
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primary format for the end-user. The first sheet in the file contains an overview
of what database was searched, and when, how many columns were identified,
what types of data were found, and so on (figure 6.14). The chart on the right
side, summarizing the recognized compliance standards, was generated using
the plot library ScottPlot (figure 6.13). Below this info, there is a complete
list of all results. Users also have the ability to view each table’s results, as
each table in the database has a corresponding sheet created in the Excel file
(figure 6.15). This sheet contains all columns together with their data types
for the particular table. For each of these columns, a list of patterns matched,
along with match percentages, is shown.

The output Excel file is generated with the help of the ClosedXML library.

Figure 6.10: Serializing results to XML after search is finished

public void ExportResultsXML (string path)
{

XmlSerializer serializer = new XmlSerializer
(typeof (DatabaseStructureRelational ));

TextWriter writer = new StreamWriter (path);
serializer.Serialize (writer , Handler.Database );
writer.Close ();

}

Figure 6.11: Example of an XML serialized result

<Name >BirthDate </Name >
<DataType >Date </DataType >
<ExecuteLexcionOnDB >false </ ExecuteLexcionOnDB >
<Results >
<PatternMatch xsi:type=" PatternDate">

<Name >Birth date - range </Name >
<Enabled >true </Enabled >
<TargetLanguage >

<Name >International </Name >
</TargetLanguage >
<RegexCaseSensitivity >CaseInsensitive </ RegexCaseSensitivity >
<MatchPercent >80</ MatchPercent >
<RangeMin >1950 -01 -01 </ RangeMin >
<RangeMax >2000 -01 -01 </ RangeMax >

</PatternMatch >
<RowsSearched >18484 </ RowsSearched >
<RowsMatched >17159 </ RowsMatched >
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Figure 6.12: Excel output (overview)

Figure 6.13: Excel output (chart)
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Figure 6.14: Excel output (statistics)

Figure 6.15: Excel output (particular table)
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6.8 User interface

6.8.1 Command-line

The application has a simple command-line interface. It needs two XML files
as an input - patterns and handler configuration. Two previously introduced
output files are produced, and their path may or may not be specified (the
current working directory will be used). Figure 6.16 shows the usage example.

Figure 6.16: Command-line interface usage. First two arguments are manda-
tory, others are optional.

>SensDetect {Patterns.xml} {DBConfig.xml} [out.xml] [out.xlsx]

6.8.2 GUI

The main reason for introducing a graphical user interface is that creating
and maintaining patterns in XML configuration files by hand is tedious and
error-prone. The interface is based on the GtkSharp project and allows the
user to add and edit patterns, pattern groups, and information types. These
patterns can then be saved to an XML configuration file that is also accepted
by the command-line version. A new scan can also be configured and started
from the interface.

Figure 6.17: Obtaining friendly names of all subclasses of the DatabaseHan-
dlerRelational class at runtime

//Get all subclasses of DatabaseHandlerRelational
Type parentType = typeof (DatabaseHandlerRelational );
Assembly assembly = Assembly.GetExecutingAssembly ();
Type[] types = assembly.GetTypes ();
IEnumerable <Type > subclasses = types.Where

(t => t.IsSubclassOf (parentType ));

//Get all friendly names
foreach (Type type in subclasses)
{

var instance = (DatabaseHandlerRelational)
Activator.CreateInstance (type);

PropertyInfo pi = type.GetProperty (" FriendlyName ");
var name = (string) propertyInfo.GetValue (instance );
DatabaseTypes.Add (name , type);

}
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The main window consists of two parts. The tree view on the left presents
the user with information types, groups, and patterns, nested according to the
defined structure. In it, the user can enable or disable them using checkboxes
(disabled patterns are ignored during the search). When any item in the tree
view is clicked, all its properties show on the right side where the user can
edit them. New objects can be added using buttons at the top toolbar.

From the menu bar, patterns can be imported or exported, and a new scan
can be started. When starting a new scan, the user is presented with a list
of handlers. This list is obtained at runtime using reflection (code is shown
in figure 6.17). This same reflection is also used when determining the list of
handlers available for special patterns. When the user selects to continue, the
handler’s method InitializeUI is called. If it was not overridden, a message
box with an error is shown, and the application returns back to the main
window. Otherwise, the user can set up the connection to the database, select
output file locations, and start the scan. Through the process of scanning,
progress bars are used to help the user track the progress. If the user wishes
to terminate the scan prematurely, they can click the stop button.

The following figures show parts of the interface with commentary about
its usage.

Figure 6.18: Main window. This is shown right after the application is
launched.
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Figure 6.19: The right side of the main window that allows the user to view
and edit selected objects from the tree view. In total, there are 8 variations
of this panel. )

Figure 6.20: Edit description dialog. Since editing a description in a small
textbox can be confusing, the user can open a dedicated edit window with the
button on the right side of the textbox.

65



6. Implementation

Figure 6.21: Combo box for setting the pattern’s target language

Figure 6.22: Alternative data type edit window. The user is able to add
and remove alternative data types that the pattern is evaluated on. Values
(checkboxes) are acquired directly from the ColumnDataType enumerator us-
ing reflection in runtime.

Figure 6.23: Specialized patterns edit window. The list of handlers is also
acquired by reflection.
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Figure 6.24: Edit window for compliance standards. It can be opened from
the right side once a group is selected in the tree view.

Figure 6.25: Main toolbar for creating new patterns, pattern groups and infor-
mation types. All of these items can also be deleted using the delete button.
Button sensitivity changes based on the tree view selection.

Figure 6.26: Dialog that shows when the user clicks the toolbar button to
create a new pattern

Figure 6.27: Standards menu bar that is used to import and export patterns
into XML
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Figure 6.28: This dialog is shown when the new scan button is clicked from
the menu bar. As explained in the text above, reflection is used for getting
the list of available handlers,

Figure 6.29: Database handler setup window. What is shown in this windows
is based entirely on the InitializeUI method from the handler. All information
that the handler needs for the database connection and its operation should
be asked here. This includes search limits and percentages.
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Figure 6.30: Finally, on the last screen, the user is able to set output paths
for reports and start scanning. Patterns that require conversion of other data
types to string can be disabled using the toggle button. Progress bars and
labels are used to display the current progress of the search.

Figure 6.31: When the user attempts to save an invalid value, the application
shows a message box with an error message.
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Figure 6.32: Application on Windows (top) and macOS operating system
(bottom). Notice one of the main disadvantages of Gtk - foreign look on other
platforms
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Chapter 7
Evaluation

7.1 Performance and Detection Ability

To evaluate the performance of an application, one usually needs another
application as a reference. This is a problem because other solutions that the
author was able to obtain (chapter 4) either use different (unknown) methods
or consider only parts of data. Therefore, any comparison drawn between
these applications would be inherently biased. The author had two datasets
at his disposal: the previously mentioned AdventureWorksDW2017 sample
database and testing dataset by the security experts from Deutsche Telekom
(see below). Even with multiple patterns defined, both were processed on
a laptop in a matter of seconds, which makes any reasonable benchmarking
focused on the raw performance difficult. For these reasons, no performance
benchmarks were conducted.

A few testing patterns were selected to verify the application’s ability to
detect sensitive data; the list follows.

• Structure
Email address, IPv4 address

• Regex (content)
Email address, IPv4 address

• Lexicon
English first name (top 30)

• Integer
International Mobile Equipment Identity (IMEI), both 14 and 15 digits

• Decimal
Location (both latitude and longitude)
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• Date
Birthdate

The first name, birthdate, IPv4, and email addresses were all identified
multiple times. While the name pattern detected a few false positives, these
were filtered out since at least 20 percent matches were required. IMEI and
location were not detected since the database does not contain them. Figure
7.1 shows a reduced list of patterns identified with matched percentages. Both
patterns and the complete results can be found in the digital attachment.

Figure 7.1: Identified columns

7.2 Modularity

The goal of the following lines is to assess how difficult it is to extend or modify
the application’s different parts.

• New Pattern
A pattern can be added or edited in two ways. One can directly edit
the configuration file and then use the file as input in both versions of
the application. This file can also be edited in the graphical interface,
effectively making it possible to add and modify patterns through this
interface. No code needs to be changed or added.

• New Database Support
Adding new database support is possible through an inherited class. A
programmer needs to create a class that inherits from the DatabaseHan-
dlerRelational class and overrides 11 methods to guarantee full func-
tionality. Six methods are dedicated to pattern evaluation, one of them
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being required only to fill the buffer with column data. Two meth-
ods are used to import and export connection database settings used in
the command-line version of the application. One method must fill the
database structure object, and the last two methods are used to test the
connection and manage a GUI window. The GUI input window method
is not mandatory, as the user will be automatically notified to use the
command-line interface if this method is not available.
No other changes, even to the GUI, are required because reflection is used
to detect new handler classes at runtime and add them in all places that
require them.
It is essential to add that the above only applies to relational databases,
as was discussed in the design phase. A similar architecture could be cre-
ated for NoSQL databases with a dedicated dispatcher, database struc-
ture, and output.

• New Pattern Type
While a new pattern type can be added by inheriting from the Pattern
class and most of the features will work for it, there may be other issues.
Each pattern type is evaluated in a different way, and that requires the
code to be branched in many places. Some patterns require compilations
and grouping in special structures; others can be passed to the handler
without any other processing. Adding a new pattern class could, there-
fore, require adjustments in multiple locations in the code, depending
on how the new pattern should be evaluated. The system was not built
with this use case in mind.

In conclusion, it could be said that the system is modular to the extent required
in the assignment and the goals set at the beginning. Adding new pattern
types was not considered important in the design phase as it would likely
bring small to no benefit. As discussed below, currently defined patterns
types are flexible enough to detect the target data.

7.3 Expert Opinion

The application and its internals were demonstrated to security experts from
Deutsche Telekom (T-Mobile), one of whom regularly conducts database au-
dits in the production environment. The application’s performance was ex-
amined on the data that they had provided explicitly for this test. Since the
author of this thesis was kindly asked not to publish this data, this thesis or its
digital attachment does not contain it. After the demonstration, the auditor
was asked the following series of questions:
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7. Evaluation

• Can the established pattern categories cover the data defined
by regulations?
Yes, the range of data detectable by the application is wide enough.
With the right pattern combination, one is able to comply with the
target regulations.

• Is the application’s design modular enough?
New patterns can be defined without any changes to the code, and the
support for new databases can be introduced easily; thus, the application
meets the requirements for modularity.

• How would you rate the performance of the application on the
testing dataset?
The application was able to detect all data it was meant to detect, and
it did so in a reasonable time span.

• Does the graphical user interface meet your expectations?
The interface appears to contain all the necessary functionalities that
are required for reasonable usage.

In conclusion, it is safe to state that the application has met the expecta-
tions. However, it’s important to add that more extensive testing, preferably
on a production database, will be needed to evaluate the application thor-
oughly.

7.4 Future Work

The first thing that should be addressed before deploying the application in
production is the absence of unit and integration tests. Even though they
were planned to be a part of the initial release, the priorities shifted mid-
development towards the unplanned GUI. Apart from conventional unit tests,
the original idea was to develop a set of integration tests together with a
testing database in the form of SQL queries so that it could be used in different
database management systems. A programmer adding new database support
could then verify their implementation with a set of integration tests. These
tests would check whether particular values from the testing database were
received. This would make adding new database support easier.

After the tests cover all of the code, refactoring the GUI code needs to
take place. Since the author of this thesis had previous experience only with
Windows-specific frameworks like WPF, he had to learn the Gtk on the go
rather than understanding it comprehensively. This negatively impacted the
code quality.

New GUI features should be added to make manipulation with patterns
easier. The ability to filter patterns based on compliance standards and lan-
guage would help to manage more extensive pattern collections. This could
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7.4. Future Work

be added as a new item in the menu bar. Users should be alerted when leav-
ing unsaved changes to prevent data loss. The validity of regex patterns is
currently being verified only before each new scan, but it could also help to
verify them right before they are saved.

Finally, the support for all kinds of NoSQL databases should be added.
This would require the creation of a new dispatcher, database structure, and
handler classes, as well as a more suitable output format.
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Conclusion

The main goal of this thesis was to develop an application that searches an
unknown database for sensitive/personal data. This, as a whole, was broken
down into several separate tasks specified in the introductory chapter. The
following summarizes the fulfillment of these goals.

In the first part, it was defined what the terms sensitive and personal data
mean in the regulatory environment of the Czech Republic’s telecommunica-
tions industry. This definition was then used to specify search patterns for this
data. Various ways of crawling an unknown database were explored. Before
the decision of which one to use was made, simple reverse engineering of a
few commercial solutions helped to determine the best approach. Afterward,
suitable technologies were selected.

Patterns can be specified using regular expressions or platform-specific
queries. These patterns are then matched using either the Intel Hyperscan dy-
namic library or native commands executed directly on the particular database
engine. The application is very modular, meaning that a developer interested
in adding support for a new data source can implement an inherited class with
a couple of overridden methods, and the core of the application will take care
of the rest for them. The end-user is then able to add new patterns easily
without any changes to the code. Finally, the performance of the application
was evaluated based on available testing databases.
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Appendix A
Acronyms

GUI Graphical user interface

UI User Interface

DLP Data Loss Prevention

API Application Programming Interface

NFA Deterministic Finite Automaton

DBMS Database Management System

SQL Structure Query Language

WPF Windows Presentation Foundation

MSSQL Microsoft SQL
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Appendix B
Contents of enclosed CD

readme.md.........................the file with CD contents description
release.................................... the directory with binaries
sample config.............the directory with sample configuration files

MSSQL config.xml.................MSSQL handler configuration file
Patterns.xml.....................default patterns configuration file

scan results....................the directory with sample scan results
source..............................the directory with the source code
text ................................. the directory with the thesis text

thesis.pdf...........................the thesis text in PDF format
thesis.zip ...............LATEX source code of the thesis (archived)
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