FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Data Augmentation Using Generative Adversarial Networks
Student: Iveta Sarfyova

Supervisor: Ing. Magda Friedjungova

Study Programme: Informatics

Study Branch: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: Until the end of summer semester 2020/21

Instructions

One of the possible ways how to generate artificial training data is to use a generative adversarial network
(GAN) where one network is trained to generate real-looking training data (the generator), and the other is
trained to distinguish artificial-looking data (the discriminator). Both try to beat the other and at the end of
the training process, the generator network can be used for the purpose of new training datasets.

Survey common and state of the art algorithms for data augmentation. Implement at least two surveyed
algorithms using GAN and compare their performance to different approaches used in the data
augmentation domain (e.g. variational autoencoders and common techniques such as rotation, shift, etc.)
on publicly accessible image datasets. Comparison will be done using classification models learned on both,
original and synthetic data, and their combination. Examine particular errors and describe the limitations of
the algorithms used.

References

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks. ICCV 2017.

Andrew Brock, Jeff Donahue, Karen Simonyan. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR
2019

lan J. Goodfellow, Jean Pouget-Abadiet, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
Yoshua Bengio. Generative Adversarial Nets. NIPS 2014.

Ing. Karel Klouda, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague November 26, 2019

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Data Augmentation Using Generative
Adversarial Networks

Iveta Sdrfyovd

Department of Applied Mathematics

Supervisor: Ing. Magda Friedjungova

May 13, 2020

Acknowledgements

Firstly, I would like to express my profound gratitude to the supervisor of this
thesis, Ing. Magda Friedjungova, for her exceptional guidance and insightful
discussions. I could not wish for a better mentor for my bachelor thesis.

My sincere thanks also go to Toméas Halama for his support, encouragement
and daily supplies of chocolate. I am grateful for your patience and for bring-
ing a smile to my face.

Last but not least, I would like to thank my family and friends for supporting
me during my studies. I would never have been able to achieve this without
you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No.121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 13, 2020

Czech Technical University in Prague

Faculty of Information Technology

© 2020 Iveta Sarfyova. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Sarfyova, Iveta. Data Augmentation Using Generative Adversarial Networks.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2020.

Abstract

Most labelled real-world data is not uniformly distributed within classes, which
can have a severe impact on the prediction quality of classification models. A
general approach is to overcome this issue by modifying the original data to
restore the balance of the classes. This thesis deals with balancing image
datasets by data augmentation using generative adversarial neural networks.
The primary focus is on generating images of underrepresented classes in im-
balanced datasets, which is a process known as class balancing. The aim of this
thesis is to analyse and compare data augmentation techniques including stan-
dard methods, generative adversarial networks and autoencoders. Evaluation
is done using classifiers trained on the original, unbalanced and augmented
datasets. The results achieved suggest how the performance of the methods
proportionately deteriorates with increasing imbalance rate and diversity of
datasets.

Keywords data augmentation, imbalanced dataset, data preprocessing, class
balancing, neural network, generative adversarial network, autoencoder

vii

Abstrakt

Vétsina dat z redlného svéta neni rovnomeérné rozdélena do odpovidajicich ttid,
ale je nevyvazend, coz muze mit velky vliv na kvalitu predikce klasifika¢nich
modeli. Obecny pristup k feseni tohoto problému je modifikace ptvodnich
datovych sad tak, abychom dosdhli vyvazenosti jednotlivych trid. Tato prace
se zaobird vyvazenim obrazovych dat za pomoci generativnich adversarial-
nich siti. Primarni dtraz je kladen na generovani obrazovych dat nalezicich
do trid s nedostatecnym poctem reprezentantii, coz je proces znamy jako class
balancing. Prace se zabyva analyzou a porovnanim riznych technik pouziva-
nych pro rozsiteni dat, jako jsou geometrické metody nebo modely zalozené
na principu neuronovych siti. Vyhodnoceni je provedeno pomoci klasifika¢nich
modell, natrénovanych na ptivodnich, nevyvazenych i uméle vyvazenych dato-
vych sadach. Dosazené vysledky naznacuji, jak schopnost jednotlivych metod
rozsitit datové sady klesa se zvétsujici mirou nevyvazeni a rozmanitosti téchto

sad.

Klicova slova datovd augmentace, nevyvazeny dataset, predzpracovani dat,
vyvazovani tFid, neuronova sit, generativni adversarialni sité, autoenkodér

viii

Introduction

Motivation
Objectives oo

1 Data augmentation

1.1 Geometric transformations
1.2 Distance-based methods
1.3 Generative adversarial networks
1.4 Variational autoencoders

2 State-of-the-art

3 Implemented methods

3.1 Task definition
3.2 CVAE-GAN,
3.3 BAGAN

4 Implementation

4.1 Technologies.

4.2 Specifics of the CVAE-GAN implementation

4.3 Specifics of the BAGAN implementation . . .

5 Experiments

5.1 Datasets
5.2 Design of experiments
5.3 Evaluation.

6 Results and discussion

Conclusion

ix

Contents

11

15
.......... 15
.......... 16
.......... 19

23

.......... 23
.......... 24
.......... 26

29

.......... 29
.......... 31
.......... 31

35

39

Contributiono
Future work

Bibliography
A Acronyms
B Network architecture
C Experimental results

D Contents of enclosed SD card

43

49

51

61

65

1.1
1.2
1.3

3.1
3.2

5.1
5.2
5.3
5.4

6.1

List of figures

Application of geometric transformation to the original image. . . 5
The architecture of a GAN. 8
The architecture of a VAE. 10
The architecture of a CVAE-GAN. 17
Three stages of the BAGAN’s training. 20
Image samples from the MNIST dataset. 30
Image samples from the CIFAR-10 dataset. 30
Image samples from the Vehicles dataset. 30
Class distribution of the unbalanced MNIST train dataset with

75% of minority-class images. 32
Visualisation comparison of original and augmented images. 36

xi

List of tables

B.1 CVAE-GAN generator G for MNIST dataset.
B.2 CVAE-GAN dicsriminator D for MNIST dataset.
B.3 CVAE-GAN classifier C' for MNIST dataset.
B.4 CVAE-GAN encoder E for MNIST dataset.
B.5 BAGAN generator G and decoder A for MNIST dataset.
B.6 BAGAN discriminator D for MNIST dataset.
B.7 BAGAN encoder E for MNIST dataset.
B.8 Evaluation classifier for MNIST dataset.
B.9 Evaluation classifier for Vehicles dataset.
B.10 Evaluation classifier for CIFAR-10 dataset.

C.1 Measurement of SSIM of original and generated minority-class im-
age couples produced by models trained on datasets with 50% im-
balance.

C.2 Measurement of SSIM of original and generated minority-class im-
age couples produced by models trained on datasets with 75% im-
balance.

C.3 Evaluation of the dataset having 50% of minority-class images
dropped using the classifier network presented in Table B.8.

C.4 Evaluation of the dataset having 75% of minority-class images
dropped using the classifier network presented in Table B.8.

C.5 Evaluation of the dataset having 50% of minority-class images
dropped using the classifier network presented in Table B.10.

C.6 Evaluation of the dataset having 75% of minority-class images
dropped using the classifier network presented in Table B.10.

C.7 Evaluation of the dataset having 50% of minority-class images
dropped using the classifier network presented in Table B.9.

C.8 Evaluation of the dataset having 75% of minority-class images
dropped using the classifier network presented in Table B.9.

xiii

62

62

62

63

63

63

Introduction

Effective data processing has become highly desirable in today’s world. Over
the centuries, we have collected an enormous amount of data, which grows in
size day by day. However, the question that still stands is how to make them
useful. People eventually discovered that analysis of data could provide them
with valuable information from understanding the past to predicting future
processes. This discovery has started an era of vigorous exploration of various
techniques and tools for data analysis.

Motivation

Computer recognition and understanding of image data have become one of
the primary areas of interest. Research in computer vision and image analysis
has made tremendous progress over the last decade. It is not that long ago that
we were not able to detect an animal in a picture reliably. Today we can be
proud of the ability to generate faces of people who never existed or advanced
car assistance software with real-time object detection. Despite this progress,
we still face many difficulties when it comes to image classification. One of the
main factors causing problems for image classification models is the data itself.

During training, machine learning models require a vast amount of data that
we do not always have. One possible solution is to collect more data samples,
but this would take too much time. Another current problem are data privacy
policies, which forbid the use of any data from datasets containing personal
information.

Moreover, the majority of existing image datasets have a different number of
samples for each class, leading to what we call an imbalanced dataset. This
fact does not bother us as long as every class has approximately the same
size. It becomes a real problem when one of the classes contains a signifi-

INTRODUCTION

cantly smaller number of representatives. A model trained on such a dataset
can be heavily biased towards the overrepresented class. This is, for instance, a
quite frequent phenomenon in medical datasets. In many studies, researchers
collect and survey data from patients during various examinations. However,
only a small group of patients usually has the suspected disease, and therefore
most of the data comes from healthy people. Another common situation is
when the datasets contain only data from some specialised diagnostic medical
equipment, such as a medical scanner. In this case, the examined patients
typically already have a high possibility of having a disease. Consequently,
the majority of the gathered data contains information about ill patients.

A general approach to alleviating this problem is called data augmentation.
There are several possibilities of augmenting datasets, from simple standard
ones such as geometric transformations to more advanced approaches such as
generative adversarial networks. Since their introduction in 2014 [1], they have
become extremely popular thanks to their ability to generate artificial images
indistinguishable from the original images. The quality of pictures created
using generative adversarial networks has proven to be high, and they quickly
became one of the most attractive areas in the machine learning world.

Objectives
This thesis aims to:

e introduce widely used data augmentation methods, focusing on genera-
tive models and models derived from them,

e survey state-of-the-art techniques and algorithms used to restore balance
in imbalanced datasets,

e choose and reimplement two state-of-the-art generative adversarial net-
works based on the descriptions presented in their research papers. Ex-
perimentally compare the reimplemented algorithms and discuss their
limitations.

The thesis is organized into six chapters. First, Chapter 1 discusses both fun-
damental and advanced methods used for the augmentation of image data.
Next, Chapter 2 presents state-of-the-art techniques using deep learning mod-
els. A detailed introduction and implementation details of two generative
adversarial networks, on which this thesis focuses, can be found in Chapter 3
and Chapter 4, respectively. Finally, in the last two chapters, the achieved
experimental results are presented, and eventually, the contribution of this
thesis and future work are stated.

CHAPTER].

Data augmentation

In this chapter, both fundamental and advanced methods for image data aug-
mentation will be described.

Thanks to extensive research in the machine learning field, there is a variety of
models used for image-related problems such as image classification or image
detection. The architecture of these models quickly became more elaborate
and with the models’ complexity also increased the number of parameters,
which can reach up to several million. However, the models’ parameters need
to be adjusted to achieve reasonable results. This is done through training on
available data.

Sophisticated models (e.g., deep neural networks) require a significant amount
of data, which are crucial for training. Data augmentation techniques enable
us to expand our dataset by modifying the original images [2]. However, not
every method always provides us with plausible images. Augmented datasets
can greatly improve the model’s performance, but they can also deteriorate
it. The intention is to increase the amount of data with new samples relevant
to the dataset, which can be achieved by carefully applying these techniques
or their combinations.

Image data augmentation is not used solely for training complex models.
There are many reasons why the generation of artificial data is much needed.
Firstly, we often work with imbalanced datasets, where the targeted data
points form a minority, and the models often fail when it comes to classify-
ing them. Secondly, the data can contain personal information that cannot
be used (such as medical records), and therefore we need to recreate similar
data [3]. Other benefits of generating synthetic data include the reduction
of overfitting and the ability to avoid unsatisfactory generalisation, which are
both highly undesired when training a classifying model.

1. DATA AUGMENTATION

Given that this thesis focuses on imbalanced image datasets, in the following
sections, several popular approaches used to tackle this problem will be exam-
ined. Firstly, we will focus on more straightforward methods and gradually
move on to more sophisticated generative techniques. Furthermore, special
attention will be given to selected generative models.

Generative models are a subset of machine learning models which can pro-
duce new data similar to their training dataset. The models often require a
huge amount of data to approximate its distribution and to be able to retrieve
relevant samples from it. In general, the original distribution and learned
distribution do not need to be exactly the same in order for the generated
samples to be unrecognisable from the real data.

Several models are capable of achieving such results, but some of the most
interesting and promising for image data synthesis have proven to be genera-
tive adversarial networks (GAN) [1] and variational autoencoders (VAE) [4].
Both models are experiencing great success nowadays and will be elaborated
upon in the following text [5].

1.1 Geometric transformations

In this section, basic data augmentation methods used for minor dataset al-
ternations will be presented. Most of them consist of various geometric trans-
formations and some of them include modifications such as altering the colour
spectrum or adding noise. The listed techniques are highly popular because
they are easy to understand and simple to implement. Their usage acceler-
ated with the release of Python libraries [6, 7] for data science, which became
highly appealing for students and newcomers to the machine learning field.

The application of these methods provides us with new samples, where for
the creation of one new data point only a single sample from the original data
distribution is used. However, the expanded dataset does not contain any new
information, just new combinations of information that we already had [8].

1.1.1 Image flipping

Images can be flipped horizontally and vertically. However, the vertical flip
is used much less often because it may disrupt orientation-related features.
Applying a vertical flip to text recognition datasets or datasets containing
images with objects positioned on the ground or with the sky as a background
would not be very helpful. In most cases, horizontal flips make much more
sense within the context of the dataset.

1.1. Geometric transformations

Figure 1.1: Application of geometric transformation to the original image. The
figure illustrates, from left to right, the original image and its augmentations
using rotation, shifts and colour scaling.

1.1.2 TImage rotation

Rotational augmentation is done by rotating images clockwise or anticlock-
wise. The range can be between 0 and 360 degrees, but slight rotations, such
as can be seen in Figure 1.1, are more common than significant rotations.
Once again, a high rotation degree may not preserve the needed information.

Another problem that occurs after applying random rotations to images are
blank areas. Usually, we need to maintain the shape of the images, and
therefore we cannot just crop them. This topic will be discussed further below.

1.1.3 Image shifts

Image shifts move images left, right, up or down. This method has proven to
be useful for datasets where images need to be centred (face recognition), but
also when we need to force our model to look at the edges (object detection).
As the original image is shifted in one direction, part of the image is being
cut off, and the opposite side needs to be filled with meaningful pixels as
illustrated by Figure 1.1.

1.1.4 Image cropping

This method is primarily used for resizing the dataset and replacing original
images. One of the reasons why this transformation is applied is that the
dataset may contain images of different shapes; another reason is that we
need the images to be a specific size. In this case, filling is usually not needed,
because images are normally resized to smaller dimensions.

1.1.5 Image colour scaling

The resulting colour of images is basically a combination of the colour chan-
nels. By separating them, changing them and bringing them back together,
the dataset can be expanded with new tinted samples. These samples can vary
in different ways, such as brightness (as shown in Figure 1.1) or contrast. This

5

1. DATA AUGMENTATION

technique also enables more advanced changes such as whitening, highlighting
and many other desirable image enhancements.

1.1.6 Gaussian noise injection

When the model is not successful in learning global patterns, adding Gaussian
noise to the dataset is a widespread technique, which can enhance its perfor-
mance. This so-called noise injection is a method in which a matrix of random
values with zero mean is added to the original image. The applied amount of
noise needs to be chosen carefully, as many pixels not initially belonging to the
original picture may result in the model’s incapability to learn any features at
all.

1.1.7 Fill strategies

After applying geometric strategies such as rotations or shifts, part of the
image is removed and the other part needs to be completed with reasonable
content. To preserve the original shape, it would be sufficient to fill the blank
areas with some random colour. Most of the tools fill the missing edges with
black. This is typically not enough as the transformed images are used for
the training of the model. There are several approaches to making assump-
tions of the blank areas [9]. The following strategies are available within the
fill_mode argument in the ImageDataGenerator class [7].

e Constant —Filling the edges with a constant value is the default strat-
egy, but mostly inappropriate. Images containing landscape or com-
plex structures demand better assumptions, on the contrary, using this
technique on MNIST images or photographs of objects set in a simple
environment would be sufficient. The constant value is modifiable, and
often it is most sensible to choose the background colour.

e Nearest —This method duplicates pixels neighbouring with edges of
blank areas.

e Reflect —The boundary between missing pixels and the image forms
an imaginary mirror, which can at first glance create an illusion of an
ordinary image.

e Wrap — Every blank space is filled with pixels located near the opposite
area of missing pixels.

1.2. Distance-based methods

1.2 Distance-based methods

Oversampling minority-class, in its basic form, means creating exact copies of
these images, which results in classes of the same size. However, this brings us
no new information. More complex oversampling methods are the synthetic
minority over-sampling technique (SMOTE) [10] and the adaptive synthetic
sampling approach (ADASYN) [11], which both generate new synthetic ex-
amples by combining neighbouring samples of minority-class [3].

The SMOTE is a technique, which generates new samples using under-sampled
class examples and its k-nearest neighbours. Usually, only some of the near-
est neighbours are used depending on the number of synthetic samples that
we need. A single synthetic sample is obtained by calculating the difference
between the feature vectors of the sample and its nearest neighbour. The
resulting vector is multiplied by a constant between 0 and 1, and then added
to the feature vector of the sample. Generating the new sample is achieved
by moving the original sample in the direction of its neighbour [10].

The ADASYN method is based on the idea of SMOTE and other algorithms
derived from it. The main improvement is that most synthetic data is gen-
erated from minority-class samples, which the model finds hard to classify [11].

The opposite method to oversampling is undersampling, which cuts down
images of majority-class. Although our dataset is balanced, this leaves us
with even less information.

1.3 Generative adversarial networks

Goodfellow et al. [1] introduced GAN as a model based on the min-max game
theory. The framework is resembling a two-player zero-sum game, the solution
of which is known as Nash equilibrium. In our case, the players are two neural
networks called generator and discriminator. As we already know what the
GAN abbreviation stands for, one can assume that this game is competitive,
instead of cooperative.

The generator, a generative model, has noise from some distribution on the
input, and it outputs a sample from the model distribution. This noise is usu-
ally a vector from Gaussian distribution, which has proven to be beneficial.
The generator learns to map the input distribution into the model distribu-
tion, which is done via adversarial training. His task is to learn the mapping
well enough to sample data from the model distribution, which are indistin-
guishable from the real data.

1. DATA AUGMENTATION

z— G x> D —y
Figure 1.2: The architecture of a GAN. Source: [12]

The discriminative model’s responsibility is to verify the authenticity of the
data. On its input, the discriminator may receive both original and generated
data. The goal is to predict whether the data are real or artificial. However,
the output is not a binary answer, but rather the probability that the input
originates from the real data distribution.

GAN’s training is a simultaneous process in which both of the networks try
to improve their performance. As usual for training machine learning models,
the training consists of epochs in which GAN goes through the whole dataset.
The original data are split into batches, which are evaluated in individual
steps. For each step, a batch of vectors z is randomly generated from the
latent space p,. The generator G receives noise z on the input and generates
a sample G(z) from the generative distribution py. This sample is fed into the
discriminator D for its evaluation. At the same time, it also receives samples
from the real data . The discriminator yields a number between 0 and 1,
which represents the network’s confidence in the data authenticity.

Both generator G and discriminator D parameters are being tweaked via back-
propagation with an intention to improve their performance. The discrimina-
tor D is led to differentiate between the original & and generated data G(z),
in other words, to maximise the probability that data are correctly classified.
On the contrary, the generator G is trying to minimise this probability. Based
on the discriminator’s D opinion, generator G determines how to improve the
credibility of the produced data G(z). Both networks simultaneously optimise
the following function F":

F(D,G) = Egpppa(@) [l0g D(@)] + oy, () [log (1 — D(G(2)))] (1.1)

Even though the type of data is not restricted, the author himself trained the
GAN on image datasets. The original architecture includes fully connected
networks, which were replaced by convolutional layers with the introduction of
deep convolutional generative adversarial networks (DCGAN) [13]. They are
built on top of convolutional neural networks (CNN) [14] that contribute to the
success of computer vision tasks. The DCGAN architecture has proven to be
more appropriate for image data because convolutions are capable of finding
spatial correlations. Nowadays, when talking about GAN concerning image
datasets, we often mean a DCGAN based model, as it became a standard for
extensions of the GAN architecture.

1.4. Variational autoencoders

1.4 Variational autoencoders

An autoencoder is a model capable of converting the input data into an in-
ternal latent space representation and reconstructing them. Depending on
the size of the dimension of the internal latent space, we can divide autoen-
coders into two categories: overcomplete and undercomplete. We will focus on
undercomplete autoencoders, which transform the input data into a smaller
dimension. This process is handled by two parts of the network: encoder and
decoder [2].

The encoder E transforms the data sample x to a vector z from lower dimen-
sional space by finding and extracting only the most substantial information.
The decoder G receives this vector z on its input and puts together the con-
tained information. Decoder’s output @’ has the same format as the original
data @, which has the encoder E on its input. The only difference is that the
output data were compressed and then decompressed by passing through a
bottleneck latent layer. Due to the reduction of dimension, we essentially lose
some of the less significant information.

Autoencoders belong to the category of unsupervised learning methods, which
means that both networks need to learn the transformations by themselves.
During the training, the encoder E learns how to perceive the information and
shrink it into a hidden lower-dimensional representation, and the decoder G
learns to use this information in order to re-create the input data . They use a
reconstruction loss L(x, G(E(x))), which tells them how much the data differ.

For calculating the dissimilarity between the original and reconstructed data,
various reconstruction loss functions £ can be used, such as binary cross-
entropy or mean squared error. Information from such loss functions is dis-
tributed using backpropagation, which pushes the networks in the direction
of reducing the loss value. Over time, they improve their performance and
effectively generate data from their compressed form. Considering that the
data x’ are usually lower-quality approximations rather than duplicates, an
autoencoder can be understood as a lossy compression function. These ap-
proximations can still be nearly indistinguishable from the real data to the
human eye.

One of the variations of the autoencoder architecture is a variational autoen-
coder (VAE) [15], which, unlike the vanilla (i.e. standard as was described
above) autoencoder, can generate synthetic data. Several changes had to be
made to make this possible.

In order to be able to generate diverse data, we need to have a distribution to
sample from. Thus, it would be useful for the hidden latent space to act like

9

1. DATA AUGMENTATION

x— F —z— G —x’
Figure 1.3: The architecture of a VAE. Source: [12]

a normal distribution. This is achieved by the encoder F yielding two sets of
parameters: a vector of means p and a vector of standard deviations . To en-
sure that the distribution on the encoder’s output N (u, o) approximates the
standard normal distribution N (0,1), we use a measure called KL-divergence
[16] as another loss function (Equation 1.2). KL-divergence measures the simi-
larity of two probabilistic distributions, in our case, we minimise the difference
between N (u, o) and N(0,1) [15, 17].

Dir(N(p, o) [|N(0,1)) =Y of + p; —logo; — 1 (1.2)
=1

We sample from N (u, o), but because the process of sampling a latent vec-
tor z ~ N(m,o) is stochastic, we cannot run backpropagation through it.
This problem is resolved by sampling from € ~ A(0,1) and transforming
the sample to N (u, o). Using the reparametrisation trick, we represent z as
z = p+ o ® e. This makes it possible to differentiate the sampling operation
and backpropagate through the whole network.

The decoder G learns to transform the sampled vector z to an output, which
resembles the input data point . Moreover, thanks to KL-divergence loss,
once the model is trained and we want to generate new samples we can simply
sample z from N(0, 1), with no need for additional reparametrisation.

10

CHAPTER 2

State-of-the-art

This chapter contains a theoretical overview of the surveyed state-of-the-art
image data augmentation techniques based on deep learning. The methods
will be presented chronologically according to the year they were introduced.

The restricted Boltzmann machine (RBM) [18], also known as a harmonium,
is one of the earliest graphical probabilistic models used for deep learning.
The architecture of RBMs consists of only two layers, so they do not meet the
criteria for being deep models themselves. However, they are used as compo-
nents of other deep models. The layers in RBM models are one of two types,
either a visible layer or a hidden one. The connections between the model’s
units are analogous to an undirected bipartite graph. In other words, the units
in the visible layer are connected to every unit in the hidden layer, but the
layer’s units are not connected among themselves. The model is derived from
the Boltzmann machine (BM) [19], which is basically a network of visible and
invisible nodes with connections among all nodes. In this sense, the RBM can
be understood as a restricted variation of the BM. Another difference is that
RBMs are categorized as generative models [2].

There are many extensions of RBMs, which contain duplicated layers, mod-
ified connections or other changes compared to the original architecture [2].
Moreover, the RBMs are often compared to GANs and VAEs, with which
they share a similar idea. It should be noted that even though the mentioned
models are more recent, RBMs can still outperform them in some cases [20].

The success and growth of generative models served as an impulse for de-
veloping techniques for sampling and visualising the latent space. Several
captivating ideas can be found in [21], where the author proposes the follow-
ing methods. One of the frequently used techniques to demonstrate a model’s
effectiveness is linear interpolation within the latent space. The problem is

11

2. STATE-OF-THE-ART

that it traverses between locations that are highly unlikely considering the
prior distribution. As a solution, the author proposes to use spherical linear
interpolation. To find and visually represent analogies, the author devised a
tool called J-Diagram. Moreover, it can be useful in comparing the generated
results over epochs during training. Another problem that arises when training
generative models, is that the manifold of latent projections of trained sam-
ples is usually only a small subset of the latent space. This leads to a sparse
latent space, which contains many reoccurring dead zones. To forego this
situation, we can precompute dense locations on the manifold and then dis-
cover the nearest known neighbours in the latent space. Manifold interpolated
neighbour embedding (MINE) combines this strategy with an interpolation
mechanism, which enables discovering new data points in latent space with
good structure and visualising them [21].

One of the many tasks that generative models are used for is mapping images
from one representation to another. However, it is unpleasant that for every
variation of image translation between two domains, we need to design a new
model for these specific domains even if it is essentially the same problem in all
cases. This obstacle inspired the authors of pix2pix [22], a model with a gen-
eral approach to image-to-image translations. The model is fed with a labelled
input image from one domain and expected to generate an output image from
the other domain. This is the reason why the framework is highly influenced
by the architecture of a conditional GAN [23], which has the ability to learn
the conditional generative model of data. The framework achieved sound re-
sults with no need to hand-engineer the loss functions. Thanks to the available
interactive demo, the idea behind pix2pix also attracted the broad public [22].

The authors of cycle consistent GAN (CycleGAN) [24] took image-to-image
translation one step further. They are aware of the lack of paired image
datasets, so the model is built to be trained on unpaired training data. In-
stead of learning the mapping between the specific images, the model learns
to capture the characteristics of domains. Moreover, the model has another
impressive enhancement; it achieves cycle consistency of translation between
domains — the ability to translate the images to the target domain and con-
vert them back to the source domain. In order to deliver this consistency, the
authors tailored the cycle consistency loss. There are two losses of this kind
used in the model, one forward and one backward consistency loss. The model
consists of two generators and two discriminators. The losses encourage these
networks so that the translations between the domains are inverse to each
other. Combined with an adversarial loss, the CycleGAN achieved impressive
results [24].

Another generative model that builds upon the idea of conditional GANs [23]
is called data augmentation generative adversarial network (DAGAN) [25].

12

The main aim of the proposed model is to improve learning for some specific
problem thanks to learning on other similar ones. DAGAN enables training
in low-data regimes by pre-training the network on a source domain with a
large number of data points and generating new data for the target domain
with fewer representants. With the aim of not being limited by the classes
of the source domain, the generator is not supplied with the image’s label.
Instead of learning the manifold for a specific class, the generator learns only
on features present in the image, not influenced by the class label. Images
from the same class are generated by sampling from the learned manifold. As
a result of being independent of the classes, the model can capture cross-class
transformations and be used to obtain data for unseen novel classes [25].

Both generative models presented in the previous chapter, GAN and VAE,
were extended and combined into a model called CVAE-GAN [12]. By class
conditioning a VAE we get an extension called conditional variational autoen-
coder (CVAE) [26]. Using additional label information, we are able to direct
the model to generate samples for a given class. To improve the quality of the
generated pictures, the authors added two networks. One for discriminating
the authenticity of images and the other for classifying them. In addition
to reconstruction loss, we try to match the features of reconstructed images
against the genuine image features during the model’s training. The authors
achieve competitive results even for challenging tasks such as face genera-
tion [12].

An innovative idea for data augmentation was introduced by balancing GAN
(BAGAN) [27], which can generate high-quality images even when trained
with an imbalanced dataset. Authors solve the problem by using all (both
majority and minority) images during training, where the model learns fea-
tures from majority classes and uses them to produce minority-class images. A
major architectural enhancement consists of the initialising GAN using an au-
toencoder. Authors first train the autoencoder to learn characteristic features
of all images in the dataset. The next training step involves transferring the
autoencoder’s knowledge into the GAN. The generator is initialised with the
weights of the decoder and the discriminator with the weights of the encoder.
The last step is the adversarial training itself. This combination of GAN and
autoencoder enables class conditioning and helps avoid mode collapse [27].

Transferring knowledge by pre-training and fine-tuning the discriminative net-
works served as inspiration for trying this technique with generative models.
Authors of transferring GANs [28] have studied the domain adaptation and
came to several conclusions. During the network’s configuration, multiple
combinations of the pre-trained generator and discriminator were tried. The
experiments have shown that the best results are obtained by pre-training both
of the GAN’s networks. While transferring only the discriminator improved

13

2. STATE-OF-THE-ART

the results, transferring only the generator degraded the GAN’s performance.
Moreover, this configuration made training more stable. The authors also ex-
amined various source and target domains and concluded that it is better to
choose a dataset with few densely sampled classes as a source domain. Fur-
thermore, the paper’s results suggest that the density of the dataset is more
important than its diversity. As stated before, it is recommended to choose
a dataset with one or few densely sampled classes as a source domain rather
than diverse datasets. The paper has proved that images generated by already
pre-trained GANs are of higher quality, even within a shorter training time
and limited datasets [28].

Data augmentation using deep learning models is undoubtedly a popular area
of research. The already large group of models is expanding daily with new
frameworks and techniques. Many of them present innovative ideas and origi-
nal approaches to the problem of limited data. There is an increasing amount
of up-to-date research papers, but their detailed introduction is beyond the
scope of this thesis. Based on the surveyed algorithms and a consultation with
the supervisor we decided to focus on CVAE-GAN and BAGAN.

14

CHAPTER

Implemented methods

In this chapter we will discuss the two image data augmentation methods we
decided to focus on. Their brief description can already be found in the previ-
ous chapter introducing the state-of-the-art methods surveyed within this the-
sis. Both of them have complex architectures and present advanced concepts,
which is why they deserve further examination and a detailed introduction.
The thesis assumes the reader has a fundamental understanding of machine
learning concepts; hence we will leave out their explanation, which can be
found in [29].

3.1 Task definition

Imbalanced datasets have become a concerning problem and have been exten-
sively studied recently. The aim of this study is to examine and demonstrate
the application of deep learning models derived from GANs on a class bal-
ancing task. Based on the survey, we use CVAE-GAN and BAGAN to gen-
erate minority-class images. The models are implemented according to the
framework presented in [12, 27| and tailored to suit our datasets. Both these
networks enable class-conditioning, which is the key characteristic needed for
generating images of a specific class. The uniform distribution of images be-
tween the classes is ensured by augmenting the imbalanced dataset with the
created minority-class images. As a result, we obtain a balanced dataset,
which is more suitable for further use, for instance, the training of predictive
and classification models. We decided to present the possible benefits by in-
vestigating the accuracy of classifiers trained on the augmented datasets.

15

3. IMPLEMENTED METHODS

3.2 CVAE-GAN

CVAE-GAN [12] was not designed for the imbalanced dataset problem in par-
ticular, but it can suit the balancing task appropriately. Initially, the model
was constructed to generate highly-detailed, super-resolution images, e.g., hu-
man faces, flowers and birds. For this purpose, the authors took inspiration
from two advanced deep learning models, VAE [4] and GAN [1]. They merged
them into one framework under a conditioned generative process, as illustrated
in Figure 3.1. In addition, the model comes with several novel ideas. The im-
age is modelled as a combination of label and latent attributes representing
image features. Secondly, the authors adopt sophisticated loss functions tai-
lored to push the model towards its best performance.

The model’s framework consists of four networks: encoder F, generator G,
discriminator D and classifier C. No architectural changes disrupting the ini-
tial framework are applied to the networks themselves. The general task that
each of the networks had in the original models (VAE and GAN) remains but
is not sufficient. To make the training more stable, the authors introduced
two mean feature matching objectives for the generator GG. Both use a feature
representation acquired through the other network’s layers.

Another common problem appearing in relation to generative adversarial net-
works is mode collapse. The encoder F and the generator G are given a new
objective to prevent this problem. They are used to obtain a mapping be-
tween the original @, and reconstructed x; image samples, analogous to the
VAE approach. After acquiring this mapping, we are able to calculate the
difference between x, and x; using L reconstruction loss and a pair-wise
feature matching loss using features from the other network’s layers. Both of
the above mentioned novel feature matching mechanisms will be presented in
more detail further in the text. The main reason for their introduction was to
make the training converge faster and to increase its stability.

3.2.1 Training

As usual, during the training, the images are processed in batches. Although
this time, we differentiate between three distinct types of image batches, where
the first type is the original pictures @, themselves. The second category is
represented by the reconstructed images x5 = G(z,¢,), where z = E(x,, c;)
and ¢, is the class label of x,. The last batch type consists of images x, =
G(zp, cp) generated using random samples. Two parameters are needed for
the generation of a single image, a vector randomly sampled from the normal
distribution z, ~ N(0,1) and a randomly generated class label cp.

16

3.2. CVAE-GAN

, 7 € —c
.

x— FE —z— G —x

! f

- y

C -

Figure 3.1: The architecture of a CVAE-GAN. Source: [12]

Due to the presented feature matching mechanisms, the generator’s G train-
ing process changes significantly. The rest of the networks keep the training
the same as in VAE and GAN. However, because of having to differentiate
between reconstructed and generated outputs xy and x;, a slight adjustment
is necessary. Moreover, we newly use these networks as a source for the values
needed for the computation of several loss functions.

As presented in Section 1.3, the training of the GAN’s components can be
seen as a min-max game. Such a relationship between two networks can be
described with a shared loss function defined in Equation 1.1. The discrim-
inator’s D loss function remains almost unchanged. The function used in
CVAE-GAN is only extended through the inclusion of x,, so we end up with
a loss function L£p as described in Equation 3.1.

Lp = —(log(D(zy)) +log(1 — D(z¢)) + log(1l — D(zp))) (3.1)

Since the introduction of the mean feature matching objective for the generator
G, the network G does not preserve the loss function used in GAN. Instead, its
new task is to minimise the difference between the discriminator D’s features
of real and generated image samples, fp(x,) and fp(xp), respectively. These
features fp(x) are obtained from the intermediate layer of the network D.
Therefore, the generator G tries to minimise

2

; (3.2)
2

Lap = 3|3 folen) = =3 folw,)

where m is the batch size. The loss function Lgp might suggest that the
mean features are estimated using the images from the current batch only.
However, the calculated centres of features are biased with the data from the
previous epochs using the moving average method in order to make the means
of the features more meaningful.

The proposed mean feature matching for conditional image generation brought
another loss function LG, which the network G tries to minimise (Equa-
tion 3.3). Its role is to drive the generator G towards reducing the difference
between the features of the original and the synthesised images. The features

17

3. IMPLEMENTED METHODS

fc(x) are extracted from the intermediate layer of the classifier C. These fea-
tures are not simply averaged through the whole batch, like in the previously
mentioned mean feature objective. Both image batches are broken down into
groups according to their class. With &k being the number of classes in the
dataset, we end up having two sets of k groups, one set containing real images
x, and the other generated images x,. After obtaining the corresponding
features, the mean of features f& () of the images from the specific class c are
calculated by averaging the features within one group only. Since a uniform
distribution of classes within the batch is not ensured, the relevant feature
means are achieved using moving averages again. Let us define Lg¢ as:

2

1&E Ter 1 o
Z fé(mr) — p— Z fé(xp)

5G0=5Z

c

(3.3)

‘ 1

Me,

2

Here, m,, stands for the number of real images @, with label ¢, and m,, for
the number of synthesised images x, with label c,.

As presented in Section 1.4, to ensure the mapping between the original x,
and the reconstructed images ¢, we first need to obtain a mapping between
the real pictures «, and vectors z from latent space. For this purpose, the
encoder F is assigned with the loss function Lg analogous to Equation 1.2.
Once again, the principles of the reparametrisation trick apply in this scenario
as well. After obtaining this mapping, we can produce the reconstructions x ¢
using the generator network G, jointly training both of the networks together.
Having both types of images x,, s, we can measure their difference using Lo
reconstruction loss and pair-wise feature matching loss. The encoder E and
generator G minimise this difference using the L loss function.

Lo = 5(ler — 24l + () — plen) B+ | fown) - fo(zlB) (3.4

In summary, the generative network G attempts to diminish the value of three
loss functions: Lgp, Lao and Lg. The encoder network F is affected by loss
functions Lx, and Lg.

The network C' receives an original image x, on its input and outputs the
probability of the sample belonging to each of k classes. The improvement of
its capability to classify the images into the correct category ¢, is ensured by
using Lo loss.

Lo = —log(P(cr|xr)) (3.5)

To sum up, the model is trained end-to-end and aims to minimise:
L=Lp+Lc+MLkgr+ X La+ ALap + MLac, (3.6)

where J; is tunable and influences the weights of the particular loss functions.

18

3.3. BAGAN

3.3 BAGAN

Unlike the previously presented model, the BAGAN [27] was explicitly de-
signed for restoring balance in image datasets. The traditional approach to
training generative models consists of gathering the minority-class images and
only using them to create new ones. Nevertheless, minority-class images are
mostly small in number, which leads to the models being provided with an
insufficient amount of information. Consequently, it is hard to train GANs
to generate new diverse images. Since the images within the dataset are typi-
cally related, the BAGAN proposed to utilise the information from all available
classes in order to train a generative model.

This is guaranteed by coupling the GAN with an autoencoder. After the au-
toencoder’s training, the knowledge about the image features is transferred
into a GAN. This handover of information is achieved thanks to GAN being
initialised with the autoencoder’s weights. Such initialisation is provided by
re-using the autoencoder’s networks architecture analogously in the GAN’s
networks as presented in Figures 3.2a and 3.2b. The decoder A and the gen-
erator G share the exact same topology. At the same time, the discriminator
D matches its first layers D, with the encoder E and completes them with
a dense layer followed by an activation function D., as depicted in Figure
3.2b. Moreover, the initialisation helps to prevent some problems occurring
during the training of vanilla GANs, such as mode collapse. In addition, a
novel mechanism for class-specific latent vector generation, which enables us
to class-condition the generative process, is introduced. We will discuss this
mechanism in detail in the following paragraphs.

However, the mentioned enhancements are still not sufficient to make the
BAGAN architecture suitable for a class-balancing task. At this point, in an
attempt to fool the discriminator, the generator would instead focus on pro-
ducing the majority-class images. Having more information about them, the
generated images from majority-class would be more realistic, and the value
of the adversarial loss function would decrease faster. In order to avoid this
behaviour, the generator is forced to generate images from all classes during
training uniformly.

Furthermore, artificial pictures are required to look real and match the class la-
bel at the same time. In this case, the authors took inspiration from ACGAN’s
[30] discriminator, which has two outputs. One for judging the authenticity
of an image, and the other for determining its class. However, using the very
same discriminator architecture has proven to be inappropriate. The BAGAN
discriminator has been adjusted to output a single vector, which represents
the discriminator’s opinion of the image. The discriminator can either label
the image with a corresponding class or discard it as being artificially gener-

19

3. IMPLEMENTED METHODS

Original Autoencoder Reconstructed

data ncoder Decode
Latent
vector
Z

(a) Autoencoder training.

c GAN
Oriai |instances Generato
riginal - p Laten Fake
data rri:]-’ I~ Class- | vecio @ mage
: | conditional £ Discriminato X
N, | latent vector g

T“i generator |Mage
Cn

instances

(b) GAN initialisation.
GAN

Class- Generat
|ass| conditional Latent/m—‘ Fake
N TS'|atentvectorvectord<fmage
Original generator | Z,

data |

Real

see
k images D a
— oc,

Discriminato

(¢) Training of the GAN.

Figure 3.2: Three stages of the BAGAN’s training. Source: [27]

ated. As a result, the generator is penalised for not matching the class label,
even if the image looks real.

3.3.1 Training

Apart from the mentioned architectural changes, BAGAN differs from the
vanilla GANs in its training process as well. The training is divided into three
stages shown in Figure 3.2.

The first step consists of the autoencoder’s training. The autoencoder receives
all images without their labels, and its only task is to learn to reconstruct them
as illustrated in Figure 3.2a. The reconstructions get better in quality thanks
to making use of the Lo loss function.

The second stage incorporates the GAN initialisation and the preparation of
the class-conditional latent vector generator. The setting described in the
previous paragraphs allows the weights of the already trained autoencoder to

20

3.3. BAGAN

be transferred to the GAN. After doing so, the discriminator D possesses in-
formation about relevant features, which are substantial in the classification
process. Due to the decoder A and generator G having the same network
architecture, the vectors on their inputs z are equivalent. The authors have
taken advantage of this fact and introduced a function called class-conditional
latent vector generator. Firstly, all pictures in the dataset are separated into
groups X, according to their class label ¢ (Figure 3.2b). One by one, every
group is processed by the encoder E(X,). For each group two values describ-
ing the distribution N, of the encoder’s outputs z. = E(X,) are computed.
These values are a mean vector p. and a covariance matrix ¥.. By random
sampling from the corresponding normal distribution N, = (pte, X¢) this func-
tion later supplies the generator with plausible latent vectors Z. appropriate
for the creation of images of a specific class c.

The final step is the adversarial training of the generator G and the discrim-
inator D, as illustrated in Figure 3.2c. The training consists of epochs, in
which the data are processed in batches. The generator G is provided with
a batch of latent vectors z. obtained by the class-conditional latent vector
generator, which receives a batch of labels on its input. This batch has an
even amount of vectors of each class. Therefore, the generator G can produce
a batch of images uniformly distributed between n classes. The generator
G is optimised to fool the discriminator D, so that the synthetic images are
matching the class labels ¢ instead of being labelled as fake. The amount of
improvement needed to increase the quality of generated images is calculated
using a sparse categorical cross-entropy loss function.

The discriminator D receives all of the counterfeit pictures for evaluation, but
it learns only from a part of them. The batch learnt by the discriminator
cannot be larger than the batch learnt by the generator. Consequently, the
fake images make up only ﬁ of the discriminator’s batch size. The rest
consists of real images from the dataset. These two subsets each have images
uniformly distributed between classes, so the discriminator D receives both
fake and real representatives of each class. Again, the discriminator D learns
using the same loss function as the generator (G. However, the goal is to
recognize whether the image is synthetic or a real sample from a specific
class c.

21

CHAPTER 4

Implementation

In this chapter, the used technologies and implementation details of this thesis
will be discussed and summarised.

4.1 Technologies

There is a wide range of various technologies that can be used for developing
machine learning projects. One of the first and most important decisions is
the selection of a programming language that will meet the requirements for
the specific project.

To fulfil the purpose of this thesis, we opted for Python, one of the leading
programming languages in the machine learning field. Python has simple syn-
tax and good readability, which are one of the main reasons why this language
is often the choice of newcomers to this field. However, Python is also appeal-
ing to skilled developers for many more reasons. It has become widely used
thanks to the release of tools and libraries suitable for data science.

In the machine learning world, we usually work with large datasets. To go
through each data point in order to get a clear idea about its content would
be challenging and time-consuming. Instead, it is well-established to describe
the dataset in a summarising table or visualise the information it contains.
Visualising the data is also used during preprocessing or after obtaining the
results. Powerful Python libraries for data visualisation are Matplotlib! and
its extensional derivative Seaborn?. We mainly used Matplotlib, which is eas-
ier to use and provides clear and informative visualisations.

"https://matplotlib.org/
“https://seaborn.pydata.org/

23

https://matplotlib.org/
https://seaborn.pydata.org/

4. IMPLEMENTATION

The NumPy? library is popular for its intuitive interface, which enables both
basic and complex numerical operations. Besides the available operations with
multidimensional arrays and matrices, the library also contains many scien-
tific computational tools used for various transformations and linear algebra.

A popular technology we use is Tensorflow [6], which has an ecosystem of
machine and deep learning tools. Their availability and ease of use simplifies
the development of new methods. One of the most popular technologies built
on top of Tensorflow is Keras? high-level API. Tools available within the Keras
library are explicitly designed for deep neural networks.

4.2 Specifics of the CVAE-GAN implementation

In this section we will discuss the implementation details of the CVAE-GAN
[12] model. Besides describing our specific changes, we will also provide a
comparison against the original implementation.

As already stated before in Section 3.2, the authors of CVAE-GAN focused on
complex images of high resolution. Therefore, they reached for models with
robust architectures. Since we work with different datasets and we are limited
by computational power, we chose to use a simplified architecture. We built
three CVAE-GAN models, each tailored for the generation of images from
different datasets described in Section 5.1. The replication of the same model
structure presented in the original paper is beyond the scope of this thesis.

For the encoder E, the authors adapted GoogleNet [31], the winning architec-
ture of the renowned ImageNet Large Scale Visual Recognition Competition
(ILSVRC), which took place in 2014. The model was also extended by a batch
normalisation layer applied after each convolutional layer. Our encoder net-
work E is a simplified version of the convolution network VGG16 [32], which
placed second in the very same competition.

The encoder E is built with components, one of which consists of a convolu-
tion layer followed by an activation function and a batch normalization layer.
These modules are then cascaded together, and some of them also followed
by a max pooling layer. The encoder E receives on its input an image x
and its label ¢, which are concatenated together. In the original implementa-
tion, this merging is done in the last fully connected layer. We followed the
same methodology in our implementation of the CVAE-GAN for generating
MNIST [33] images, which is shown in Table B.4.

Shttps://numpy.org/
“https://keras.io/

24

https://numpy.org/
https://keras.io/

4.2. Specifics of the CVAE-GAN implementation

The generator G is described in the paper as a model consisting of two fully
connected layers followed by six sequences, each made up of a transposed con-
volutional layer with a batch normalisation layer and an upsampling layer. In
the convolutional layers, the number of channels gradually decreases from 256
to 3 while the filter size increases from being size 3 x 3 to 5 x 5.

However, our adaptation of the model contains fewer layers and different pa-
rameters. The model G receives two values, a label ¢ and a latent vector z,
which are merged in the first layers. Transposed convolutional layers with
activation functions form the rest of the model architecture, as presented in
Table B.1.

For the discriminator D network, both the original implementation and our
implementation followed the architectural guidelines presented in DCGAN
[13], as can be seen in Table B.2. Among the recommendations is to avoid
fully connected and pooling hidden layers. It is also suggested to include batch
normalisation layers and to use the leaky rectified linear unit (Leaky ReLU)
[34] as the activation function. Moreover, we included a few dropout layers
in the network D used in our model implemented for the CIFAR-10 [35] and
Vehicles [36] datasets.

The original architecture used for the classifier C' is based on Alexnet [37],
which won the ILSVRC competition in 2012. The same properties which
GoogleNet holds apply here, the architecture is sophisticated and requires a
long training. Our set up is once again reminiscent of the VGG16 network,
which results in it being more or less identical to our encoder E network. A
thorough overview of our classifier C for one of the datasets is presented in
Table B.3.

Unfortunately, the source code for the CVAE-GAN model is unpublished, and
the paper provided us with only little information about the hyperparameters.
Their choice of optimisers was unknown to us, so we experimented with the
Adam [38] and RMSprop [39] optimisers with varying learning rates. In our
case, it turned out that RMSprop subjectively outperformed the other in each
of the three CVAE-GAN models. Within a single model, we set the same
learning rate for every submodel’s optimiser. We have discovered that good
learning rates are 0.0002 for the MNIST and Vehicles datasets and 0.0003 for
the CIFAR-10 dataset.

In the paper, the experiments were done on datasets having high resolution
images, so they set the latent vector to be from 256-dimensional space. Our
configuration of the latent vector dimension is set to 55 for the MNIST and
128 for the CIFAR-10 and Vehicles datasets.

25

4. IMPLEMENTATION

The parameters in the loss function £, as shown in Equation 3.6, were orig-
inally fixed to A\ = 3, Ao = 1, A3 = 1073 and Ay = 10~3. We found this
configuration inappropriate, primarily because of the low emphasis on min-
imising the Lx loss described in Equation 1.2. We had difficulties estab-
lishing the distribution described by the encoder’s outputs to approximate a
standard normal distribution N'(0,1). Consequently, we could not just sam-
ple a latent vector z from N'(0,1) and feed them into the generator because
the synthesised images were of insufficient quality and did not resemble orig-
inal images from the dataset. Therefore, we tested the efficiency of higher Ay
values. Sound results were achieved with A; being 300, 50 and 100 for the
MNIST, CIFAR-10 and Vehicles datasets respectively.

We lack the information about the number of epochs needed for the network
to converge. We tried several configurations and found it was adequate to
train the networks for 1500, 5000 and 3000 epochs for the MNIST, CIFAR-10
and Vehicles datasets respectively. We set the batch size to 300, 256 and 200
image samples.

4.3 Specifics of the BAGAN implementation

This section will describe the BAGAN [27] architectural details and differences
between ours and the original implementation.

As opposed to the model presented in the previous section, the authors did
not aim at generating images of fine-grained categories. The performed ex-
periments were focused on restoring balance in imbalanced datasets, some of
which were the same as ours. The implementation source code is publicly
available in the GitHub repository®. This fact enabled us to examine the orig-
inal architecture in detail. The acquired information helped us understand
the model and re-implement it more accurately.

We followed the same procedure seen in the provided code and firstly prepared
the shared encoder part. Its architecture consists of blocks, each containing
a convolutional layer, a Leaky ReLU activation function and a dropout layer.
The features at the output of the last layer are fed into the dense layer, which
provides us with a complete encoder architecture, as detailed in Table B.7.
The encoder E has a single input, a picture «, and a single output, a latent
vector z.

As previously explained in Section 3.3, the decoder A and the generator G are
equivalent A = G. The first layer is a dense layer with a rectified linear unit
(ReLU) activation function [40], which inputs the latent vector z. The rest

Shttps://github.com/IBM/BAGAN/

26

https://github.com/IBM/BAGAN/

4.3. Specifics of the BAGAN implementation

of the architecture is made up of transposed convolutional layers with ReLLU
activations. For the datasets normalised between —1 and 1 the last layer has a
tanh activation function, as indicated in Table B.5. Since the model is trained
in the role of decoder first, it starts its training as a generator already pre-
trained.

The discriminator D’s architecture consists of a shared encoder part and a
dense layer with a softmax activation function [2], as presented in Table B.6.
The number of neurons in the dense layer depends on the number of classes
in the given dataset. However, the discriminator D also does not start train-
ing from the very beginning. The shared encoder part is already initialised
with the weights of the encoder, which was trained in the first training step
of BAGAN, as illustrated in Figure 3.2.

Thanks to the code being published, we could inspect the values of the hy-
perparameters. They decided to use Adam with a learning rate of 0.00005 as
an optimiser and also changed the values of some other optimiser parameters.
We tried out this setup for optimisers and learning rates and found it to be
sufficient, but we left the other parameters at their default values. However,
for the Vehicles [36] dataset the training was done using RMSprop optimisers
with a learning rate of 0.0002.

The dimensionality of the latent vector z was set to 100 by default in the orig-
inal implementation. We empirically set the dimension to 10, 40 and 20 for
the MNIST [33], CIFAR-10 [35] and Vehicles datasets respectively reflecting
their subjective complexity.

In the first training stage the model was trained for 300, 800 and 1200 epochs
and in the last stage for 800, 2000 and 2500 epochs for the MNIST, CIFAR-10
and Vehicles datasets respectively. The batch size was 275 for the MNIST and
CIFAR-10 datasets and 220 for the Vehicles dataset.

27

CHAPTER 5

Experiments

One of the aims of this thesis is to reimplement and apply two state-of-the-art
generative models in the task of balancing an imbalanced dataset. The imple-
mented models, CVAE-GAN [12] and BAGAN [27], were trained to generate
images of three datasets described in Section 5.1. For the comparison, we also
created images using CVAE [26] and geometric transformations. In this chap-
ter we will provide the conducted experiments and evaluation of the mentioned
techniques.

5.1 Datasets

The experiments were conducted using three publicly available datasets. Two
of them contain thousands of images and are easily accessible within the Keras
library [7]. The third dataset is smaller and was manually assembled and
preprocessed.

5.1.1 MNIST

The MNIST [33] is a well-known and widely used dataset in the machine
learning world. The dataset overall contains 70, 000 grayscale images of hand-
written digits in range 0 to 9. The representatives of these categories are
uniformly distributed within the dataset. All images are of size 28 x 28 pixels.

5.1.2 CIFAR-10

The CIFAR-10 [35] also belongs among popular machine learning datasets.
It has a total of 60,000 colour images of 10 classes. Each class has 6000
representatives and depicts objects of categories such as horse, ship or car.
The resolution of CIFAR-10 images is 32 x 32 pixels.

29

5. EXPERIMENTS

Figure 5.3: Image samples from the Vehicles dataset.

5.1.3 Vehicles

The Computational Vision Group at Caltech has images they used for their
experiments published on their web page [36], and we found some of them
interesting. Vehicles is the name given to the dataset we created by joining
other smaller datasets. We created a dataset containing 2552 images overall
by merging four sets of pictures called Cars 2001 (Rear), Cars 199 (Rear) 2,
Motorcycles 2001 (Side) and Airplanes (Side) into three classes of vehicles.
The images are of various sizes, so we resized them to 64 x 64 to suit our
purpose.

30

5.2. Design of experiments

5.2 Design of experiments

We manually imbalanced each original dataset by selecting and dropping a
subset of a single specific class. Firstly, the datasets were split into train and
test data in a ratio of 70:30. Addressing the amount of minority-class images,
we kept two scenarios. In the first case, we dropped 50% and in the second,
75% of pictures of the selected class in the train data.

Since we use three datasets (MNIST, CIFAR-10 and Vehicles), three types of
network architectures (CVAE, CVAE-GAN and BAGAN) and two imbalance
scenarios, counting all the possible combinations gives us two groups of nine
models. Each model in the first group is trained on data with minority-class
containing circa 50% of original images. The second group of nine models is
trained on data, where the minority-class is reduced to approximately 25% of
original class representatives. Train data used for one group of models differs
from the train data in the other group only in the amount of minority-class
samples.

In the MNIST dataset, we decided to drop the representatives of the fourth
class formed by handwritten number four. For the unbalanced CIFAR-10
dataset we have dropped representatives of the eighth class containing photos
of ships. From the Vehicles dataset, the samples from the class containing
images of cars were removed. The dropped images were selected at random.
Nevertheless, to ensure that train and test datasets have the same composi-
tion, we always used the same random seed values. This way, the dataset split
was deterministic.

All the trained models are applied to generating images of minority-class to
restore the balance in the unbalanced datasets used for their training. Cre-
ating images using geometric transformations does not require training any
model. The augmented datasets are evaluated using methods presented in the
following section.

5.3 Evaluation

In the course of the experiments, we analyse the datasets using two methods.
For the images of one dataset, we examined the original, unbalanced and four
augmented variations of the dataset.

The first technique was used to measure the variety of the minority-class
images called the structural similarity (SSIM) index [41]. There are several
parameters that can be adjusted, but we used the standard SSIM implemen-
tation, as shown in Equation 5.3, which is available within the TensorFlow

31

5. EXPERIMENTS

5000 -

H

o

o

o
1

3000 A

Number of images

2000 -

1000 A

0 1 2 3 4 5 6 7 8 9
Classes

Figure 5.4: Class distribution of the unbalanced MNIST train dataset with
75% of minority-class images.

ecosystem. This metric takes two images «,y, each with N components, as
its input and outputs a number between —1 and 1 representing how similar
the images are. Nevertheless, the negative values are obtained in cases when
the local image structures are inverted [42]. Otherwise, the values on the
output are between 0 and 1. The closer the score is to zero, the smaller the
resemblance between the images.

e = — Y & (5.1)

%zdﬁégym—wv (5.2)

The mean value and standard deviation are calculated analogously for the
components of the image y.

(2papty + C1) + 200y + Cs)

SSIM(z, y) = ,
@ Y) = 02 412 + C)(o2 1 02 + o)

(5.3)

where p, is the mean value of components of computed as shown in Equa-
tion 5.1, py is the mean value of components of y, 04y is the covariance of
components of & and y, o2 is the variance of components of & computed as
shown in Equation 5.2 and 012! is the variance of components of y. C7 and Cs

are adjustable hyperparameters.

32

5.3. Evaluation

Instead of calculating the SSIM for a pair of images, we needed to obtain
the SSIM value for the entire sets of images. To achieve this goal, we ran-
domly paired the images used to balance the dataset, calculated SSIM for
each pair and averaged the values. We interpret the result as the capability
of the model, that created the evaluated images, to generate diverse samples.
Moreover, to have a reference point for the results, we measured the SSIM of
the original minority-class images. To calculate their average SSIM, we used
the same number of images as was used to balance the unbalanced datasets.

The second evaluation method depends on using a classifier. For each type of
dataset (MNIST, CIFAR-10 and Vehicles), we constructed a simple classifier
architecture and trained one classifier for each of the six mentioned dataset
variations. The architecture details of the classifiers can be found in Tables B.8
to B.10. The classifier networks for the MNIST and Vehicles datasets are in-
spired by a Tensorflow tutorial®. The classifier for CIFAR-10 is based on the
classifier network used for this dataset in CVAE-GAN.

Firstly, we split the original dataset into train and test data the same way we
did when training the generative models. In addition, we split the training
data, so that we use 75% of them as the train set for the first classifier, and
the rest forms the validation set.

The second classifier needed to be trained on the unbalanced dataset. For
this purpose, we employed the same data as we used to train the generative
models. In other words, the train data were deprived of minority-class images
using the same seed as we used before. Again, 25% of this data was used as
a validation set.

For each of the other classifiers, we followed the same method of data prepara-
tion. We balanced the unbalanced dataset, which was previously used to train
the generative models, using geometric transformations, CVAE, CVAE-GAN
and BAGAN. Altogether, we have four balanced datasets, each augmented
using a different method. Each dataset was split into train and validation
data in a ratio of 75:25. Every pair of train and validation data is used to
train and tune one classifier.

For each dataset, we train one classifier on original balanced data (MNIST,
CIFAR-10 and Vehicles) and two classifiers on original unbalanced data. One
for 50% and one for 75% imbalance scenario. Moreover, in every scenario, we
train four classifiers within one dataset. In total, we have 3 classifiers trained
on original balanced data, 6 classifiers trained on unbalanced data and 24

Shttps://www.tensorflow.org/tutorials/images/cnn

33

https://www.tensorflow.org/tutorials/images/cnn

5. EXPERIMENTS

classifiers trained on augmented data. The classifiers’ ability to correctly
classify the test data is measured using two metrics, accuracy and F1 score.

correct predictions

accuracy = (5.4)

all predictions

2 - precision - recall

F1 score = (5.5)

precision + recall ’

where the recall is the ratio of true positives and the sum of true positives and
false negatives. The precision is calculated as the number of true positives
divided by the sum of true positives and false positives.

The accuracy represents the classifier’s ability to classify the images from
the test dataset correctly. The F1 score is computed as a harmonic mean
of precision and recall for the minority-class. This metric is considered to
be suitable for imbalanced datasets. For the evaluation, we always used the
balanced test set containing original images.

34

CHAPTER 6

Results and discussion

This chapter presents the obtained results along with their possible interpreta-
tion. The main objective of the experiments was to analyse the quality of im-
ages generated by our reimplemented models, CVAE-GAN [12] and BAGAN
[27], and compare them against original images and images produced using
other methods.

The experimental results are of two types as follows. The first type surveys
the diversity of groups of images produced by different methods. In our tables,
the SSIM index [41] represents the diversity of images within one group. The
obtained values for 50% imbalance scenario are compared in Table C.1, and
for 75% imbalance scenario in Table C.2.

It is noteworthy that the diversity of geometrically transformed images is
higher in almost every case than the diversity of original images. This phe-
nomenon might be caused by creating a less homogenous dataset, especially
when talking about MNIST [33] images. The handwritten digits are initially
positioned into the centre of the images, so slight transformations such as ro-
tations and shifts move them to more unusual locations. In CIFAR-10 [35] and
Vehicles [36], the transformations have a lesser impact because the datasets
themselves are more heterogeneous than the MNIST dataset.

The SSIM values also suggest a poor performance of CVAE [26] models. The
results are not bad enough to suggest a mode collapse as the cause, but rather
the CVAE architecture apparently was unable to discover many underlying
features and incorporate them into the generated images. Besides, as can be
seen in Figure 6.1, the images are significantly blurred. Using CVAE, we ob-
tained worse results than with other methods except for one case, which was
generating CIFAR-10 images. In this situation, the CVAE model was even
able to outperform some more elaborate models.

35

6. RESULTS AND DISCUSSION

(a) Original (b) Geomet- (c) CVAE (d) (e) BAGAN
images ric transfor- CVAE-GAN
mation

Figure 6.1: Visualisation comparison of original images (a), geometricly trans-
formed images (b) and images generated by CVAE (c), CVAE-GAN (d) and
BAGAN (e). The models were trained on data with 50% of the minority-class
missing.

However, the diversity of images generated by CVAE-GAN is not excellent
either. We faced many difficulties during building, training and tuning of the
model, which likely reflected on its performance. Producing CIFAR-10 images
was especially troublesome, likely caused by the dataset not being as homoge-
nous as the other two datasets.

The BAGAN model performed surprisingly well for this metric. The diversity
of generated images is close to the degree of the diversity of the original im-
ages. Moreover, the created images visually quite resemble the real ones, as
illustrated in Figure 6.1. Indeed, the BAGAN images did not beat the images
augmented by geometric transformations, which look almost indistinguishable
from the original images.

The comparison of measurements of original images between Table C.1 and
Table C.2 indicates that with an increasing number of images, the variety
of the MNIST dataset samples decreases while the diversity of the CIFAR-10
dataset samples increases. As we already stated before, the CIFAR-10 dataset
is more diverse than the MNIST dataset. The SSIM values from the Vehicles
dataset remain almost the same for both imbalance scenarios.

36

The second evaluation type studies how the datasets balanced with augmented
images impact the performance of classifiers trained on them. We summarised
the results for each combination of dataset and imbalance scenario, which are
provided in Tables C.3 to C.8.

As expected, the highest accuracy and F1 score values were measured on clas-
sifiers for the MNIST dataset. The values never dropped under 0.97, not
even the F1 score of a classifier trained on an unbalanced dataset with 25%
of minority-class images. It should be pointed out, that classifiers trained on
datasets where their imbalance was restored using BAGAN performed almost
as well as the classifiers trained on original data. The images created using
other techniques were also of sufficient subjective quality, resembling the real
samples.

The Vehicles classifiers also provided sound results, despite the fact that the
dataset contains real-life photos. We interpret the cause of this to be the
dataset having only three classes and the photos within one class being sim-
ilar. Motorcycles and airplanes are mostly depicted from the side, the cars
from the rear. Their surroundings are also usually consistent within a class,
e.g. the airplanes usually have the sky or an airport as a background, and
cars are mainly placed on a road.

The CVAE model, the simplest of the three types of generative models, gen-
erated blurred non-realistic images. The objects resembled true samples but
looked like they were behind an opaque curtain or a frosted glass. It is impor-
tant to note that even though the images of cars produced by CVAE are of
low quality, the classifiers trained on datasets balanced with CVAE-GAN per-
formed slightly worse. The synthesised images did not remind us of the photos
of cars. Nevertheless, because the accuracy and F1 score were still close to the
measurements of other methods, the necessary information is likely encoded
in the generated images despite us being unable to see them. Once again, the
BAGAN outperformed the two other generative models and provided us with
plausible images.

The classification of CIFAR-10 images is a challenging task. Predictably, we
were not as successful as with the other datasets. The classifier trained on
original balanced data achieved accuracy of 0.7177, which is the highest ac-
curacy that was measured. Furthermore, the minority-class F1 score achieved
using this classifier is 0.8312, while the F1 score values measured with MNIST
and Vehicles classifiers never dropped under 0.9333.

Not only classifying but also generating CIFAR-10 images is a difficult task.

We spent much time training and tuning the generative models, even though
we consider the produced images disappointing. We did not expect that CVAE

37

6. RESULTS AND DISCUSSION

would give us plausible results, but it was especially CVAE-GAN, that we
assumed would perform excellently. According to the paper, the model is
supposed to learn and produce complex images with many details [12]. As
illustrated in Figure 6.1, our results do not align with this statement.

Surprisingly, even though our results are not visually appealing, the measured
values are higher than expected. However, the differences between the F1
score columns for CIFAR-10 in Tables C.5 and C.6 are more significant than
in tables for other datasets. This might be caused by the models not being
able to encompass and generalise all the important features, which are vital
for the classifier’s learning process.

Finally, we would like to summarise our empirical findings and what we expe-
rienced with the CVAE-GAN and BAGAN models. The designing, training
and tuning of CVAE-GAN models was troublesome. The proposed network’s
parts were too intricate for us to replicate in this thesis. We had to tailor
a similar, but simpler architecture for each dataset. Apart from that, it was
hard to minimise the loss function consisting of six parts. The purpose of the
proposed lambda weight values was to tune the emphasis for each of the loss
functions. For instance, we had to find a balance between good reconstruc-
tions and a well structured latent space, both of which are needed to generate
plausible images.

We consider the combination of CVAE-GAN and the CIFAR-10 dataset to
be especially unfortunate. As we already pointed out, the dataset has colour-
ful images divided into ten classes representing various real-life objects. The
images vary greatly both inter-class and intra-class. We observed that CVAE-
GAN has problems with synthesising images of datasets with high diversity.
To confirm our suspicion, we verified that the datasets used in the original
experiments were heavily preprocessed, to the point of being consistent with
the spatial placement of all the crucial features.

One of the significant advantages of BAGAN is definitely the available code.
Moreover, the published architecture was designed for MNIST and CIFAR-
10, which suited our needs. Thanks to this fact, we did not have to improvise
as much as with CVAE-GAN during the implementation. Still, we had to
make some educated guesses. We struggled with finding a suitable dimension
of latent vectors, which carry the encoded information, as we had to take in
consideration the complexity and variance of the datasets.

During the training of these models, we encountered some problems such as

mode collapse or the networks being unable to converge. These issues were
mitigated using hyperparameter tuning or minor architectural changes.

38

Conclusion

The main focus of this thesis was data augmentation using generative ad-
versarial networks. Specifically, we addressed the task of restoring balance
in imbalanced datasets and surveyed up-to-date techniques that can be used
to tackle this obstacle. We dived into the problem and applied two state-of-
the-art methods, CVAE-GAN and BAGAN. Our contribution lies in adapting
these techniques and comparing them on multiple datasets. In the following
text, we would like to review the steps that we took to fulfil our goals and
propose possible future work directions.

Contribution

As stated at the beginning of the thesis, we declared three main goals. This
section discusses their fulfilment and reviews the work that was done.

The first goal was to introduce widely used data augmentation methods. In
the first chapter of this thesis, we have made an introduction to this field,
presenting both simple and advanced methods. Among the more straightfor-
ward techniques used to produce image samples, there are numerous types of
geometric transformations. Some of the mentioned transformations were used
in the experimental part of this thesis to obtain new images. Nevertheless, as
a result of this thesis focusing on generative models and models derived from
them, we put an emphasis on presenting the concepts of GAN and VAE.

The second stated objective involves the survey of state-of-the-art techniques
and algorithms that might have the potential to be used to restore balance in
imbalanced datasets. After the preceded study of currently used techniques,
we examined the most relevant of them, which can be found in Chapter 2.
For each technique, we gave a brief introduction of its objective.

39

CONCLUSION

Another goal that we established was to reimplement two of the introduced
state-of-the-art GANs based on the descriptions presented in their research
papers. The decision was made to implement the CVAE-GAN and BAGAN
models. We presented their architecture, training process and their imple-
mentation details along with the changes we used to tailor the models to suit
our needs in Chapters 3 and 4. We demonstrated their ability to generate
images on various datasets and compared them with other data augmentation
methods.

As expected, the most realistic images are mostly those augmented using geo-
metric transformations. On the other hand, the images generated using CVAE
are significantly blurred. Considering that CVAE was the simplest of the gen-
erative models that we used, it is not surprising. The images obtained using
CVAE-GAN and BAGAN are of reasonable quality. However, CVAE-GAN

requires more training and tuning.

Future work

Due to the temporal restrictions and computational limitations, many exper-
iments are still left to be perforned. The following section suggests several
ideas that can be realised to extend this thesis.

There is a significant number of state-of-the-art methods appropriate for the
balancing task, and we tested only two of them. We consider that some other
models are also worth being examined and applied to balance our datasets.
We also acknowledge that using only two metrics for the evaluation of such a
complex task might not be sufficient. Addressing this issue, we suggest using
more techniques to evaluate the applicability of the generated images, e.g. the
Inception Score [43] or the Fréchet Inception Distance [44].

Even though we found images produced by CVAE-GAN slightly disappoint-
ing and its training troublesome, it is desirable to verify the results presented
in its paper. Authors worked in a different setting, focusing on synthesising
images of homogenous datasets with fine details. We suggest building a more
robust architecture and training the model on a significantly pre-processed
dataset with high-resolution images.

Unlike what we experienced with CVAE-GAN, designing and tuning BAGAN
was more manageable. The results obtained from the evaluation metrics met
our expectations, and the generated images were visually appealing. This
finding is quite encouraging and can serve as an incentive for further research.
Future investigations could experiment with modifications to the model’s ar-
chitecture and applying them to more challenging datasets.

40

Future work

It is generally known that training deep learning models on big data is time-
consuming and requires high computational power. We hope for future work
without time limitations that would allow encompassing data from the real
world.

41

Bibliography

GOODFELLOW, Ian et al. Generative Adversarial Nets. In: GHAHRA-
MANI, Z.; WELLING, M.; CORTES, C.; LAWRENCE, N. D.; WEIN-
BERGER, K. Q. (eds.). Advances in Neural Information Processing Sys-
tems 27. Curran Associates, Inc., 2014, pp. 2672-2680. Available also
from: http://papers.nips.cc/paper/5423-generative-adversarial-
nets.pdf.

GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
learning. MIT press, 2016. ISBN 0262035618.

TANAKA, Fabio Henrique Kiyoiti dos Santos; ARANHA, Claus. Data
augmentation using GANs. arXiv preprint arXiv:1904.09135. 2019. Avail-
able also from: https://arxiv.org/abs/1904.09135.

KINGMA, Diederik P; WELLING, Max. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114. 2013. Available also from: https://
arxiv.org/abs/1312.6114.

YEH, Raymond. Variational Autoencoders and Generative Adversarial
Network [online]. 2016 [visited on 2020-03-03]. Available from: https :
//courses.engr.illinois.edu/eceb44na/fa2016/guest_lectured.
pdf.

ABADI, Martin et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015. Available also from: https://www.tensorflow.
org/.

CHOLLET, Francois et al. Keras [software]. 2015. Available also from:
https://keras.io.

SHORTEN, Connor; KHOSHGOFTAAR, Taghi M. A survey on image
data augmentation for deep learning. Journal of Big Data. 2019, vol. 6,
no. 1, pp. 60. Available from DOI: 10.1186/s40537-019-0197-0.

43

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/1904.09135
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://courses.engr.illinois.edu/ece544na/fa2016/guest_lecture4.pdf
https://courses.engr.illinois.edu/ece544na/fa2016/guest_lecture4.pdf
https://courses.engr.illinois.edu/ece544na/fa2016/guest_lecture4.pdf
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
https://doi.org/10.1186/s40537-019-0197-0

BIBLIOGRAPHY

9. NanoNets, Machine Learning API [online] [visited on 2020-03-21]. Avail-
able from: https://nanonets.com/blog/data-augmentation-how-
to-use-deeplearning-when-you-have-limited-data-part-2/.

10. CHAWLA, Nitesh V; BOWYER, Kevin W; HALL, Lawrence O; KEGELMEYER,
W Philip. SMOTE: synthetic minority over-sampling technique. Journal
of artificial intelligence research. 2002, vol. 16, pp. 321-357. Available
from DOI: 10.1613/jair.953.

11. HE, Haibo; BAI, Yang; GARCIA, Edwardo A; LI, Shutao. ADASYN:
Adaptive synthetic sampling approach for imbalanced learning. In: 2008
IEEEFE international joint conference on neural networks (IEEE world
congress on computational intelligence). 2008, pp. 1322-1328. Available
from DOI: 10.1109/IJCNN.2008.4633969.

12. BAO, Jianmin; CHEN, Dong; WEN, Fang; LI, Houqgiang; HUA, Gang.
CVAE-GAN: fine-grained image generation through asymmetric train-
ing. In: Proceedings of the IEEE International Conference on Computer
Vision. 2017, pp. 2745-2754. Available from DOI: 10.1109/ICCV.2017.
299.

13. RADFORD, Alec; METZ, Luke; CHINTALA, Soumith. Unsupervised
Representation Learning with Deep Convolutional Generative Adversar-
ial Networks. In: BENGIO, Yoshua; LECUN, Yann (eds.). 4th Interna-
tional Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016. Avail-
able also from: http://arxiv.org/abs/1511.06434.

14. O’SHEA, Keiron; NASH, Ryan. An Introduction to Convolutional Neural
Networks. CoRR. 2015, vol. abs/1511.08458. Available from arXiv: 1511.
08458.

15. DOERSCH, Carl. Tutorial on Variational Autoencoders. arXiv preprint
arXiv:1606.05908. 2016. Available also from: https://arxiv.org/abs/
1606.05908.

16. KULLBACK, Solomon; LEIBLER, Richard A. On information and suf-
ficiency. The annals of mathematical statistics. 1951, vol. 22, no. 1, pp.
79-86. Available from DOI: 10.1214/aoms/1177729694.

17. GARAY-MAESTRE, Unai; GALLEGO, Antonio-Javier; CALVO-ZARAGOZA,
Jorge. Data Augmentation via Variational Auto-Encoders. In: Iberoamer-
ican Congress on Pattern Recognition. 2018, pp. 29-37. Available from
DOI: 10.1007/978-3-030-13469-3_4.

18. SMOLENSKY, P. Information Processing in Dynamical Systems: Foun-
dations of Harmony Theory. In: Parallel Distributed Processing: FExplo-

rations in the Microstructure of Cognition, Vol. 1: Foundations. Cam-
bridge, MA, USA: MIT Press, 1986, pp. 194-281. ISBN 026268053X.

44

https://nanonets.com/blog/data-augmentation-how-to-use-deeplearning-when-you-have-limited-data-part-2/
https://nanonets.com/blog/data-augmentation-how-to-use-deeplearning-when-you-have-limited-data-part-2/
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1109/ICCV.2017.299
https://doi.org/10.1109/ICCV.2017.299
http://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/978-3-030-13469-3_4

Bibliography

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

HINTON, Geoffrey E; SEJNOWSKI, Terrence J; ACKLEY, David H.
Boltzmann machines: Constraint satisfaction networks that learn. Carnegie-
Mellon University, Department of Computer Science Pittsburgh, 1984.
Available also from: http://www.csri.utoronto.ca/~hinton/absps/
bmtr.pdf.

MARONAS, Juan; PAREDES, Roberto; RAMOS, Daniel. Generative
Models For Deep Learning with Very Scarce Data. In: Iberoamerican
Congress on Pattern Recognition. 2018, pp. 20-28. Available from DOI:
10.1007/978-3-030-13469-3_4.

WHITE, Tom. Sampling Generative Networks: Notes on a Few Effec-
tive Techniques. CoRR. 2016, vol. abs/1609.04468. Available from arXiv:
1609.04468.

ISOLA, Phillip; ZHU, Jun-Yan; ZHOU, Tinghui; EFROS, Alexei A.
Image-to-Image Translation with Conditional Adversarial Networks. CoRR.
2016, vol. abs/1611.07004. Available from arXiv: 1611.07004.

MIRZA, Mehdi; OSINDERO, Simon. Conditional Generative Adversar-
ial Nets. CoRR. 2014, vol. abs/1411.1784. Available from arXiv: 1411.
1784.

ZHU, Jun-Yan; PARK, Taesung; ISOLA, Phillip; EFROS, Alexei A.
Unpaired Image-to-Image Translation using Cycle-Consistent Adversar-
ial Networks. CoRR. 2017, vol. abs/1703.10593. Available from arXiv:
1703.10593.

ANTONIOU, Antreas; STORKEY, Amos; EDWARDS, Harrison. Data
Augmentation Generative Adversarial Networks. 2017. Available from
arXiv: 1711.04340.

SOHN, Kihyuk; LEE, Honglak; YAN, Xinchen. Learning Structured Out-
put Representation using Deep Conditional Generative Models. In: Ad-
vances in Neural Information Processing Systems 28. Curran Associates,
Inc., 2015, pp. 3483-3491. Available also from: http://papers.nips.
cc/paper /5775 - learning - structured - output - representation-
using-deep-conditional-generative-models.pdf.

MARIANI, Giovanni; SCHEIDEGGER, Florian; ISTRATE, Roxana; BEKAS,

Costas; MALOSSI, A. Cristiano I. BAGAN: Data Augmentation with
Balancing GAN. CoRR. 2018, vol. abs/1803.09655. Available from arXiv:
1803.09655.

WANG, Yaxing et al. Transferring GANs: generating images from limited
data. CoRR. 2018, vol. abs/1805.01677. Available from arXiv: 1805 .
01677.

MURPHY, Kevin P. Machine learning: a probabilistic perspective. MIT
press, 2012. ISBN 0262018020.

45

http://www.csri.utoronto.ca/~hinton/absps/bmtr.pdf
http://www.csri.utoronto.ca/~hinton/absps/bmtr.pdf
https://doi.org/10.1007/978-3-030-13469-3_4
https://arxiv.org/abs/1609.04468
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1711.04340
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
https://arxiv.org/abs/1803.09655
https://arxiv.org/abs/1805.01677
https://arxiv.org/abs/1805.01677

BIBLIOGRAPHY

30.

31.

32.

33.

34.

35.

36.

37.

38.

46

ODENA, Augustus; OLAH, Christopher; SHLENS, Jonathon. Condi-
tional Image Synthesis with Auxiliary Classifier GANs. In: PRECUP,
Doina; TEH, Yee Whye (eds.). Proceedings of the 34th International Con-
ference on Machine Learning. International Convention Centre, Sydney,
Australia: PMLR, 2017, vol. 70, pp. 2642-2651. Proceedings of Machine
Learning Research. Available also from: http://proceedings . mlr .
press/v70/odenal7a.html.

SZEGEDY, C. et al. Going deeper with convolutions. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp- 1-9. Available from DOI: 10.1109/CVPR.2015.7298594.

SIMONYAN, Karen; ZISSERMAN, Andrew. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In: BENGIO, Yoshua; LE-
CUN, Yann (eds.). 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. 2015. Available also from: http://arxiv.org/abs/
1409.1556.

LECUN, Yann; CORTES, Corinna. MNIST handwritten digit database.
2010. Available also from: http://yann.lecun.com/exdb/mnist/.

MAAS, Andrew L; HANNUN, Awni Y; NG, Andrew Y. Rectifier non-
linearities improve neural network acoustic models. In: Proc. icml. 2013,
vol. 30, p. 3. No. 1. Available also from: https://ai.stanford.edu/
~amaas/papers/relu_hybrid_icml2013_final.pdf.

KRIZHEVSKY, Alex; HINTON, Geoffrey, et al. Learning multiple layers
of features from tiny images. University of Toronto. 2009. Available also
from: https://www.cs.toronto.edu/~kriz/learning-features-
2009-TR.pdf.

Computational Vision: Archive [online] [visited on 2020-04-05]. Available
from: http://www.vision.caltech.edu/html-files/archive.html.

KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E. Im-
agenet classification with deep convolutional neural networks. In: Ad-
vances in neural information processing systems. 2012, pp. 1097-1105.
Available from DOI: 10.1145/3065386.

KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic
Optimization. In: BENGIO, Yoshua; LECUN, Yann (eds.). 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015. Available
also from: http://arxiv.org/abs/1412.6980.

http://proceedings.mlr.press/v70/odena17a.html
http://proceedings.mlr.press/v70/odena17a.html
https://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://yann.lecun.com/exdb/mnist/
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.vision.caltech.edu/html-files/archive.html
https://doi.org/10.1145/3065386
http://arxiv.org/abs/1412.6980

Bibliography

39.

40.

41.

42.

43.

44.

TIELEMAN, Tijmen; HINTON, Geoffrey. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude. COURSERA:
Neural networks for machine learning. 2012, vol. 4, no. 2, pp. 26-31.
Available also from: https://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf.

XU, Bing; WANG, Naiyan; CHEN, Tianqi; LI, Mu. Empirical Evalu-
ation of Rectified Activations in Convolutional Network. CoRR. 2015,
vol. abs/1505.00853. Available from arXiv: 1505.00853.

WANG, Zhou; BOVIK, Alan C; SHEIKH, Hamid R; SIMONCELLI,
Eero P. Image quality assessment: from error visibility to structural sim-
ilarity. IEEE transactions on image processing. 2004, vol. 13, no. 4, pp.
600—612. Available from DOI: 10.1109/TIP.2003.819861.

WANG, Zhou; BOVIK, Alan C; SIMONCELLI, Eero P. Structural ap-
proaches to image quality assessment. Handbook of Image and Video
Processing. 2005, vol. 7, pp. 18. Available from DOI: 10.1016/B978-
012119792-6/50119-4.

BARRATT, Shane; SHARMA, Rishi. A Note on the Inception Score.
2018. Available from arXiv: 1801.01973.

HEUSEL, Martin; RAMSAUER, Hubert; UNTERTHINER, Thomas;
NESSLER, Bernhard; HOCHREITER, Sepp. GANs Trained by a Two
Time-Scale Update Rule Converge to a Local Nash Equilibrium. In:
GUYON, I. et al. (eds.). Advances in Neural Information Processing
Systems 30. Curran Associates, Inc., 2017, pp. 6626—6637. Available also
from: http://papers . nips . cc/paper /7240 - gans - trained - by -
a-two-time-scale-update-rule-converge-to-a-local-nash-
equilibrium.pdf.

47

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1505.00853
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1016/B978-012119792-6/50119-4
https://doi.org/10.1016/B978-012119792-6/50119-4
https://arxiv.org/abs/1801.01973
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf

APPENDIX A

Acronyms

ADASYN Adaptive synthetic sampling approach

BAGAN Balancing generative adversarial network

BM Boltzmann machine

CNN Convolutional neural network

CVAE Conditional variational autoencoder

CycleGAN Cycle consistent generative adversarial network
DAGAN Data augmentation generative adversarial network
DCGAN Deep convolutional generative adversarial network
FID Fréchet Inception Distance

GAN Generative adversarial network

ILSVRC ImageNet Large Scale Visual Recognition Competition
IS Inception Score

Leaky ReLU Leaky rectified linear unit

MINE Manifold interpolated neighbour embedding

ReLU Rectified linear unit

RBM Restricted Boltzmann machine

SMOTE Synthetic minority over-sampling technique

SSIM Structural similarity

VAE Variational autoencoder

49

APPENDIX

Network architecture

The following tables are generated using the code from the publicly available
GitHub repository”.

Table B.1: CVAE-GAN generator G for MNIST dataset.

Ne Layer (Type) Output shape Config #Parameters Inbound layers
0 (1) 0
1 embedding_1 (1, 55) 550
(Embedding)
reshape_2 (Reshape) (55,) 0 embedding_1
(55) 0
concatenate_1 (110,) Axis: -1 0 reshape_2,
(Concatenate)
flatten_1 (Flatten) (110,) 0 concatenate 1
6 dense_2 (Dense) (3136,) #Neurons: 3136 348096 flatten 1
Activation: linear
re_lu (ReLU) (3136,) Activation: relu 0 dense_2
reshape_3 (Reshape) (7,7, 64) 0 re_lu
conv2d_transpose (7,7, 64) Activation: linear 36928 reshape 3
(Conv2DTranspose) Kernel Size: [3, 3]
Stride: [1, 1]
10 re_lu_1 (ReLU) (7,7, 64) Activation: relu 0 conv2d_transpose
11 conv2d_transpose_1 (14, 14,32) Activation: linear 18464 re_lu_1
(Conv2DTranspose) Kernel Size: [3, 3]
Stride: [2, 2]
12 re_lu_2 (ReLU) (14,14,32) Activation: relu 0 conv2d_transpose_1
13 conv2d_transpose_2 (28,28,16) Activation: linear 4624 re_|u_2
(Conv2DTranspose) Kernel Size: [3, 3]
Stride: [2, 2]
14 re_lu_3 (ReLU) (28,28,16) Activation: relu 0 conv2d_transpose_2
15 conv2d_transpose_3 (28, 28, 1) Activation: tanh 401 re_lu_3
(Conv2DTranspose) Kernel Size: [5, 5]
Stride: [1, 1]

"https://github.com/fablukm/keras-reports

o1

https://github.com/fablukm/keras-reports

B. NETWORK ARCHITECTURE

Table B.2: CVAE-GAN dicsriminator D for MNIST dataset.

Ne Layer (Type) Output shape Config #Parameters Inbound layers
0 input_5 (InputLayer) (28, 28, 1) 0
1 conv2d_7 (Conv2D) (13,13, 64) Activation: linear 640 input 5
Kernel Size: [3, 3]
Stride: [2, 2]
2 leaky_re_lu_7 (13, 13,64) Activation: leakyrelu 0 convad_7
(LeakyReLU) Alpha: 0.3
3 batch_normalization_7 (13,13, 64) 256 leaky_re |u_7
(BatchNormalization)
4 conv2d_8 (Conv2D) (6, 6, 128) Activation: linear 73856 batch _normalization_7
Kernel Size: [3, 3]
Stride: [2, 2]
5 leaky_re_lu_8 (6, 6, 128) Activation: leakyrelu 0 conv2d_8
(LeakyReLU) Alpha: 0.3
6 batch_normalization_8 (6, 6, 128) 512 leaky_re |u_8
(BatchNormalization)
7 convad_9 (Conv2D) (2, 2, 256) Activation: linear 2905168 batch_normalization 8
Kernel Size: [3, 3]
Stride: [2, 2]
8 leaky_re_lu_9 (2, 2, 256) Activation: leakyrelu 0 conv2d_9
(LeakyRelLU) Alpha: 0.3
9 batch_normalization_9 (2, 2, 256) 1024 leaky_re_lu_9
(BatchNormalization)
10 max_pooling2d_3 (1,1, 256) Pool size: [2, 2] 0 batch_normalization_9
(MaxPooling2D) Strides: [2, 2]
11 flatten_2 (Flatten) (256,) 0 max_pooling2d_3
12 dropout (Dropout) (256,) Dropout Rate: 0.3 0 flatten_2
13 dense_3 (Dense) (1,) #Neurons: 1 257 dropout

Activation: sigmoid

02

Table B.3: CVAE-GAN classifier C' for MNIST dataset.

N2 Layer (Type) Output shape Config #Parameters Inbound layers
0 input_6 (InputLayer) (28, 28, 1) 0
1 conv2d 10 (Conv2D) (26, 26,32) Activation: linear 320 input 6
Kernel Size: [3, 3]
Stride: [1, 1]
2 re_lu_4 (ReLU) (26, 26,32) Activation: relu 0 conv2d_10
3 batch_normalization_10 (26, 26, 32) 128 re_lu_4
(BatchNormalization)
4 conv2d_11 (Conv2D) (24, 24,32) Activation: linear 9248 batch_normalization_10
Kernel Size: [3, 3]
Stride: [1, 1]
5 re_lu_5 (ReLU) (24, 24,32) Activation: relu 0 convad_11
6 batch_normalization_11 (24, 24, 32) 128 re_lu_5
(BatchNormalization)
7 max_pooling2d_4 (12,12,32) Pool size: [2, 2] 0 batch_normalization_11
(MaxPooling2D) Strides: [2, 2]
8 conv2d_12 (Conv2D) (10, 10,64) Activation: linear 18496 max_pooling2d_4
Kernel Size: [3, 3]
Stride: [1, 1]
re_lu_6 (ReLU) (10,10,64) Activation: relu 0 conv2d_12
10 batch_normalization_12 (10, 10, 64) 256 re_lu_6
(BatchNormalization)
11 conv2d_13 (Conv2D) (8, 8, 64) Activation: linear 36928 batch_normalization_12
Kernel Size: [3, 3]
Stride: [1, 1]
12 re_lu_7 (ReLU) (8, 8, 64) Activation: relu 0 conv2d_13
13 batch_normalization_13 (8, 8, 64) 256 re lu 7
(BatchNormalization)
14 max_pooling2d_5 (4, 4, 64) Pool size: [2, 2] 0 batch_normalization_13
(MaxPooling2D) Strides: [2, 2]
15 conv2d_14 (Conv2D) (2,2,128) Activation: linear 73856 max_pooling2d_5
Kernel Size: [3, 3]
Stride: [1, 1]
16 re_lu_8 (ReLU) (2,2,128) Activation: relu 0 conv2d_14
17 batch_normalization_14 (2,2,128) 512 re_lu_8
(BatchNormalization)
18 conv2d_15 (Conv2D) (2,2,128) Activation: linear 147584 batch_normalization_14
Kernel Size: [3, 3]
Stride: [1, 1]
19 re_lu_9 (ReLU) (2,2, 128) Activation: relu 0 conv2d_15
20 batch_normalization_15 (2,2,128) 512 re_lu_9

(BatchNormalization)

93

B. NETWORK ARCHITECTURE

Table B.3 Continued: CVAE-GAN classifier C' for MNIST dataset.

Ne Layer (Type) Output shape Config #Parameters Inbound layers
21 conv2d_16 (Conv2D) (2,2,128) Activation: linear 147584 batch_normalization_15
Kernel Size: [3, 3]
Stride: [1, 1]
22 re_lu_10 (RelLU) (2,2,128) Activation: relu 0 conv2d_16
23 batch_normalization_16 (2,2,128) 512 re_lu_10
(BatchNormalization)
24 max_pooling2d_6 (1,1,128) Pool size: [2, 2] 0 batch_normalization_16
(MaxPooling2D) Strides: [2, 2]
25 flatten_3 (Flatten) (128,) 0 max_pooling2d_6
26 dropout_1 (Dropout) (128,) Dropout Rate: 0.3 0 flatten_3
27 dense_4 (Dense) (10,) #Neurons: 10 1290 dropout_1
Activation: linear
activation (Activation) (10,) Activation: softmax 0 dense_4

o4

Table B.4: CVAE-GAN encoder E for MNIST dataset.

N2 Layer (Type) Output shape Config #Parameters Inbound layers
0 input_1 (InputLayer) (28, 28, 1) 0
1 conv2d (Conv2D) (26, 26,32) Activation: linear 320 input_1
Kernel Size: 3, 3]
Stride: [1, 1]
2 leaky_re_lu (26, 26, 32) Activation: leakyrelu 0 convad
(LeakyRelLU) Alpha: 0.3
3 batch_normalization (26, 26, 32) 128 leaky_re lu
(BatchNormalization)
4 conv2d_1 (Conv2D) (24, 24,32) Activation: linear 9248 batch_normalization
Kernel Size: [3, 3]
Stride: [1, 1]
5 leaky_re_lu_1 (24, 24,32) Activation: leakyrelu 0 conv2d 1
(LeakyRelLU) Alpha: 0.3
6 batch_normalization_1 (24, 24, 32) 128 leaky_re lu_1
(BatchNormalization)
7 max_pooling2d (12,12,32) Pool size: [2, 2] 0 batch_normalization_1
(MaxPooling2D) Strides: [2, 2]
8 conv2d_2 (Conv2D) (10, 10,64) Activation: linear 18496 max_pooling2d
Kernel Size: [3, 3]
Stride: [1, 1]
9 leaky_re_lu_2 (10, 10, 64) Activation: leakyrelu 0 conv2d 2
(LeakyReLU) Alpha: 0.3
10 batch_normalization_2 (10, 10, 64) 256 leaky_re_lu_2
(BatchNormalization)
11 conv2d_3 (Conv2D) (8, 8, 64) Activation: linear 36928 batch_normalization_2
Kernel Size: [3, 3]
Stride: [1, 1]
12 leaky_re_lu_3 (8, 8, 64) Activation: leakyrelu 0 conv2d 3
(LeakyReLU) Alpha: 0.3
13 batch_normalization_3 (8, 8, 64) 256 leaky_re_lu_3
(BatchNormalization)
14 max_pooling2d_1 (4, 4, 64) Pool size: [2, 2] 0 batch_normalization_3
(MaxPooling2D) Strides: [2, 2]
15 conv2d_4 (Conv2D) (2,2,128) Activation: linear 73856 max_pooling2d_1
Kernel Size: [3, 3]
Stride: [1, 1]
16 leaky_re_lu_4 (2,2,128) Activation: leakyrelu 0 conv2d 4
(LeakyReLU) Alpha: 0.3
17 batch_normalization_4 (2,2,128) 512 leaky_re_lu_4

(BatchNormalization)

95

B. NETWORK ARCHITECTURE

Table B.4 Continued: CVAE-GAN encoder E for MNIST dataset.

Ne Layer (Type) Output shape Config #Parameters Inbound layers
18 conv2d_5 (Conv2D) (2,2,128) Activation: linear 147584 batch_normalization_4
Kernel Size: [3, 3]
Stride: [1, 1]
19 leaky_re_lu_5 (2,2, 128) Activation: leakyrelu 0 conva2d 5
(LeakyReLU) Alpha: 0.3
20 batch_normalization_5 (2,2,128) 512 leaky_re_lu_5
(BatchNormalization)
21 conv2d_6 (Conv2D) (2,2, 128) Activation: linear 147584 batch_normalization_5
Kernel Size: [3, 3]
Stride: [1, 1]
22 leaky_re_lu_6 (2,2,128) Activation: leakyrelu 0 conv2d_6
(LeakyRelLU) Alpha: 0.3
23 input_2 (InputLayer) (1) 0
24 batch_normalization_6 (2,2,128) 512 leaky_re_lu_6
(BatchNormalization)
25 embedding (1,128) 1280 input 2
(Embedding)
26 max_pooling2d_2 (1,1,128) Pool size: [2, 2] 0 batch_normalization_6
(MaxPooling2D) Strides: [2, 2]
27 reshape (Reshape) (128, 1) 0 embedding
28 reshape_1 (Reshape) (128, 1) 0 max_pooling2d_2
29 concatenate (128, 2) Axis: -1 0 reshape, reshape_1
(Concatenate)
30 flatten (Flatten) (256,) 0 concatenate
31 dense (Dense) (55,) #Neurons: 55 14135 flatten
Activation: linear
32 dense_1 (Dense) (55,) #Neurons: 55 14135 flatten

Activation: linear

Table B.5: BAGAN generator G and decoder A for MNIST dataset.

Ne Layer (Type) Output shape Config #Parameters Inbound layers
0 input_1 (InputLayer) (10) 0
1 dense (Dense) (3136,) #Neurons: 3136 34496 input_1
Activation: linear
2 re_lu (ReLU) (3136,) Activation: relu 0 dense
3 reshape (Reshape) (7,7, 64) 0 relu
4 conv2d_transpose (7,7, 64) Activation: linear 36928 reshape
(Conv2DTranspose) Kernel Size: [3, 3]
Stride: [1, 1]
5 re_lu_1 (ReLU) (7,7, 64) Activation: relu 0 conv2d_transpose
6 conv2d_transpose_1 (14,14,32) Activation: linear 18464 re_lu_1
(Conv2DTranspose) Kernel Size: [3, 3]
Stride: [2, 2]
7 re_lu_2 (ReLU) (14,14,32) Activation: relu 0 convad_transpose_1
8 conv2d_transpose_2 (28,28,16) Activation: linear 4624 re_lu_2
(Conv2DTranspose) Kernel Size: [3, 3]
Stride: [2, 2]
9 re_lu_3 (ReLU) (28,28,16) Activation: relu 0 conv2d_transpose_2
10 conv2d_transpose_3 (28, 28, 1) Activation: tanh 401 re lu 3
(Conv2DTranspose) Kernel Size: [5, 5]

Stride: [1, 1]

o6

Table B.6: BAGAN discriminator D for MNIST dataset.

N Layer (Type) Output shape Config #Parameters Inbound layers
0 (28,28, 1) 0
1 conv2d_4 (Conv2D) (14,14,32) Activation: linear 320
Kernel Size: [3, 3]
Stride: [2, 2]
2 leaky_re_lu_4 (14,14, 32) Activation: leakyrelu 0 convad 4
(LeakyReLU) Alpha: 0.3
3 dropout_4 (Dropout) (14, 14,32) Dropout Rate: 0.3 0 leaky_re lu_4
4 conv2d_5 (Conv2D) (7,7, 64) Activation: linear 18496 dropout_4
Kernel Size: [3, 3]
Stride: [2, 2]
5 leaky re_lu_5 (7,7, 64) Activation: leakyrelu 0 conv2d_ 5
(LeakyReLU) Alpha: 0.3
dropout_5 (Dropout) (7,7, 64) Dropout Rate: 0.3 0 leaky_re_lu_5
conv2d_6 (Conv2D) (4, 4,128) Activation: linear 73856 dropout_5
Kernel Size: [3, 3]
Stride: [2, 2]
8 leaky_re_lu_6 (4, 4,128) Activation: leakyrelu 0 conv2d_6
(LeakyReLU) Alpha: 0.3
9 dropout_6 (Dropout) (4, 4,128) Dropout Rate: 0.3 0 leaky_re_lu_6
10 conv2d_7 (Conv2D) (2, 2, 256) Activation: linear 205168 dropout_6
Kernel Size: [3, 3]
Stride: [2, 2]
11 leaky_re_lu_7 (2, 2, 256) Activation: leakyrelu 0 convad 7
(LeakyReLU) Alpha: 0.3
12 dropout_7 (Dropout) (2, 2, 256) Dropout Rate: 0.3 0 leaky_re lu_7
13 flatten_1 (Flatten) (1024,) 0 dropout_7
14 dense_1 (Dense) (11,) #Neurons: 11 11275 flatten_1

Activation: sigmoid

o7

B. NETWORK ARCHITECTURE

Table B.7: BAGAN encoder E for MNIST dataset.

N2 Layer (Type) Output shape Config #Parameters Inbound layers
0 (28,28, 1) 0
1 conv2d (Conv2D) (14,14,32) Activation: linear 320
Kernel Size: [3, 3]
Stride: [2, 2]
2 leaky_re_lu (14, 14,32) Activation: leakyrelu 0 conv2d
(LeakyRelLU) Alpha: 0.3
3 dropout (Dropout) (14, 14,32) Dropout Rate: 0.3 0 leaky_re_lu
4 conv2d_1 (Conv2D) (7,7, 64) Activation: linear 18496 dropout
Kernel Size: [3, 3]
Stride: [2, 2]
5 leaky_re_lu_1 (7,7, 64) Activation: leakyrelu 0 convad_1
(LeakyReLU) Alpha: 0.3
6 dropout_1 (Dropout) (7,7, 64) Dropout Rate: 0.3 0 leaky_re_lu_1
conv2d_2 (Conv2D) (4, 4,128) Activation: linear 73856 dropout_1
Kernel Size: [3, 3]
Stride: [2, 2]
8 leaky_re_lu_2 (4, 4,128) Activation: leakyrelu 0 convad 2
(LeakyReLU) Alpha: 0.3
dropout_2 (Dropout) (4, 4,128) Dropout Rate: 0.3 0 leaky_re_lu_2
10 conv2d_3 (Conv2D) (2, 2, 256) Activation: linear 2905168 dropout_2
Kernel Size: [3, 3]
Stride: [2, 2]
11 leaky re_lu_3 (2, 2, 256) Activation: leakyrelu 0 conv2d_3
(LeakyRelLU) Alpha: 0.3
12 dropout_3 (Dropout) (2, 2, 256) Dropout Rate: 0.3 0 leaky re lu_3
13 flatten (Flatten) (1024,) 0 dropout_3
14 dense (Dense) (10,) #Neurons: 10 10250 flatten

Activation: linear

o8

Table B.8: Evaluation classifier for MNIST dataset.

Ne Layer (Type) Output shape Config #Parameters Inbound layers
0 (28, 28, 1) 0
1 conv2d_3 (Conv2D) (14,14,32) Activation: linear 320
Kernel Size: [3, 3]
Stride: [2, 2]
2 re_lu_4 (RelLU) (14, 14,32) Activation: relu 0 conv2d 3
3 conv2d_4 (Conv2D) (7,7, 64) Activation: linear 18496 re lu 4
Kernel Size: [3, 3]
Stride: [2, 2]
re_lu_5 (ReLU) (7,7, 64) Activation: relu 0 conv2d 4
conv2d_5 (Conv2D) (4, 4, 64) Activation: linear 36928 re_|lu_5
Kernel Size: [3, 3]
Stride: [2, 2]
6 re_lu_6 (ReLU) (4,4, 64) Activation: relu 0 conv2d 5
7 flatten_1 (Flatten) (1024,) 0 reluéb
8 dense_2 (Dense) (64,) #Neurons: 64 65600 flatten_1
Activation: linear
9 re_lu_7 (ReLU) (64,) Activation: relu 0 dense_2
10 dense_3 (Dense) (10,) #Neurons: 10 650 re_lu_7
Activation: linear
activation_1 (10,) Activation: softmax 0 dense_3
(Activation)
Table B.9: Evaluation classifier for Vehicles dataset.
Ne Layer (Type) Output shape Config #Parameters Inbound layers
0 (64, 64, 3) 0
1 conv2d_4 (Conv2D) (32,32,32) Activation: linear 896
Kernel Size: [3, 3]
Stride: [2, 2]
2 re_lu_5 (ReLU) (32,32,32) Activation: relu 0 convad 4
conv2d_5 (Conv2D) (16, 16,32) Activation: linear 9248 re_lu_5
Kernel Size: [3, 3]
Stride: [2, 2]
re_lu_6 (ReLU) (16,16,32) Activation: relu 0 conv2d 5
conv2d_6 (Conv2D) (8, 8, 64) Activation: linear 18496 re_lu_6
Kernel Size: [3, 3]
Stride: [2, 2]
6 re_lu_7 (ReLU) (8, 8, 64) Activation: relu 0 conv2d 6
7 conv2d_7 (Conv2D) (4, 4, 64) Activation: linear 36928 re lu 7
Kernel Size: [3, 3]
Stride: [2, 2]
8 re_lu_8 (ReLU) (4, 4, 64) Activation: relu 0 convad_7
9 flatten_1 (Flatten) (1024,) 0 relu8
10 dense_2 (Dense) (64,) #Neurons: 64 65600 flatten_1
Activation: linear
11 re_lu_9 (ReLU) (64,) Activation: relu 0 dense 2
12 dense_3 (Dense) (10,) #Neurons: 10 650 re lu_9
Activation: linear
activation_1 (10,) Activation: softmax 0 dense 3
(Activation)

99

B. NETWORK ARCHITECTURE

Table B.10: Evaluation classifier for CIFAR-10 dataset.

Ne Layer (Type) Output shape Config #Parameters Inbound layers
0 input_2 (InputLayer) (32, 32, 3) 0
1 conv2d_4 (Conv2D) (16, 16, 128) Activation: linear 3584 input 2
Kernel Size: [3, 3]
Stride: [2, 2]
2 leaky re lu 4 (16,16, 128) Activation: leakyrelu 0 conv2d 4
(LeakyReLU) Alpha: 0.3
3 batch_normalization_ 4 (16, 16, 128) 512 leaky_re_lu_4
(BatchNormalization)
4 dropout_4 (Dropout) (16, 16, 128) Dropout Rate: 0.3 0 batch_normalization_4
5 conv2d_5 (Conv2D) (8, 8, 256) Activation: linear 205168 dropout_4
Kernel Size: [3, 3]
Stride: [2, 2]
6 leaky_re_lu_5 (8, 8, 256) Activation: leakyrelu 0 conv2d_5
(LeakyRelLU) Alpha: 0.3
7 batch_normalization_5 (8, 8, 256) 1024 leaky_re_lu_5
(BatchNormalization)
8 dropout_5 (Dropout) (8, 8, 256) Dropout Rate: 0.3 0 batch_normalization_5
9 max_pooling2d_1 (4, 4, 256) Pool size: [2, 2] 0 dropout_5
(MaxPooling2D) Strides: [2, 2]
10 conv2d_6 (Conv2D) (2, 2, 256) Activation: linear 590080 max_pooling2d_1
Kernel Size: [3, 3]
Stride: [2, 2]
11 leaky re_lu_6 (2, 2, 256) Activation: leakyrelu 0 conva2d_6
(LeakyReLU) Alpha: 0.3
12 batch_normalization_6 (2, 2, 256) 1024 leaky_re_lu_6
(BatchNormalization)
13 dropout_6 (Dropout) (2, 2, 256) Dropout Rate: 0.3 0 batch_normalization_6
14 conv2d_7 (Conv2D) (1,1,512) Activation: linear 1180160 dropout_6
Kernel Size: [3, 3]
Stride: [2, 2]
15 leaky_re lu_7 (1,1,512) Activation: leakyrelu 0 conv2d 7
(LeakyRelLU) Alpha: 0.3
16 batch_normalization_7 (1,1,512) 2048 leaky_re_lu_7
(BatchNormalization)
17 dropout_7 (Dropout) (1,1,512) Dropout Rate: 0.3 0 batch_normalization_7
18 flatten_1 (Flatten) (512,) 0 dropout_7
19 dense_2 (Dense) (64,) #Neurons: 64 32832 flatten_1
Activation: linear
20 re_lu_1 (ReLU) (64,) Activation: relu 0 dense_2
21 dense_3 (Dense) (10,) #Neurons: 10 650 re_lu_1
Activation: linear
activation_1 (10,) Activation: softmax 0 dense 3
(Activation)

60

APPENDIX C

Experimental results

Table C.1: Measurement of SSIM of original and generated minority-class
image couples produced by models trained on datasets with 50% imbalance.

Generated images using

Dataset | Original images | ¢ oo CVAE CVAE-GAN BAGAN
MNIST 0.1678 01265 02350 02058 0.1727
CIFAR-10 0.0322 0.0275 00380 _ 0.0746 _ 0.0343
Vehicles 0.1079 0.0860 03632 02030 0.1627

Table C.2: Measurement of SSIM of original and generated minority-class
image couples produced by models trained on datasets with 75% imbalance.

Generated images using

Dataset | Original images | ¢ oo CVAE CVAE-GAN BAGAN
MNIST 0.1744 01255 02131 0.2091 0.1686
CTFAR-10 0.0278 0.0318 00394 00762 0.039
Vehicles 0.1031 0.0909 03499 0.2041 0.1510

61

C. EXPERIMENTAL RESULTS

Table C.3: Evaluation of the dataset having 50% of minority-class images
dropped using the classifier network presented in Table B.8.

MNIST
Test data
Dataset type Accuracy | F1 score
Unbalanced original 0.9845 0.9813
Balanced original 0.9860 0.9858
geom. trans. 0.9839 0.9731
. CVAE 0.9834 0.9774
Balanced with =5 GAN [0.9846 | 0.0833
BAGAN 0.9830 0.9842

Table C.4: Evaluation of the dataset having 75% of minority-class images
dropped using the classifier network presented in Table B.8.

MNIST
Test data
Dataset type Accuracy | F1 score
Unbalanced original 0.9820 0.9793
Balanced original 0.9860 0.9858
geom. trans. 0.9833 0.9789
. CVAE 0.9819 0.9735
Balanced with =g s GAN | 0.9831 | 0.9745
BAGAN 0.9842 0.9806

Table C.5: Evaluation of the dataset having 50% of minority-class images
dropped using the classifier network presented in Table B.10.

CIFAR-10
Test data
Dataset type Accuracy | F1 score
Unbalanced original 0.7074 0.8021
Balanced original 0.7177 0.8312
geom. trans. 0.6974 0.8035
. CVAE 0.6892 0.7797
Balanced with |- 5 GAN | 0.6866 | 0.7823
BAGAN 0.7039 0.8043

62

Table C.6: Evaluation of the dataset having 75% of minority-class images
dropped using the classifier network presented in Table B.10.

CIFAR-10
Test data
Dataset type Accuracy | F1 score
Unbalanced original 0.7023 0.7484
Balanced original 0.7177 0.8312
geom. trans. 0.7175 0.7936
. CVAE 0.6966 0.7544
Balanced with =G GAN | 0.6882 | 0.7530
BAGAN 0.7054 0.7547

Table C.7: Evaluation of the dataset having 50% of minority-class images
dropped using the classifier network presented in Table B.9.

Vehicles
Test data
Dataset type Accuracy | F1 score
Unbalanced original 0.9661 0.9491
Balanced original 0.9726 0.9561
geom. trans. 0.9817 0.9741
. CVAE 0.9739 0.9574
Balanced with -G 5 AN | 0.9700 | 0.0547
BAGAN 0.9765 0.9632

Table C.8: Evaluation of the dataset having 75% of minority-class images
dropped using the classifier network presented in Table B.9.

Vehicles
Test data
Dataset type Accuracy | F1 score
Unbalanced original 0.9661 0.9457
Balanced original 0.9726 0.9561
geom. trans. 0.9621 0.9482
. CVAE 0.9661 0.9496
Balanced with == GAN | 00560 | 0.9333
BAGAN 0.9687 0.9556

63

APPENDIX D

Contents of enclosed SD card

readme.tXt......coviiiiii., the file with SD card contents description
T o o P the directory of source codes
evaluation.....ovvviiineeeeennnn. the directory of evaluated methods
implementation................. the directory of implemented models
VEehicleS . vvveniii i the directory of Vehicles dataset

I] =5 P the thesis text directory
Lthesis.pdf the thesis text in PDF format

	Introduction
	Motivation
	Objectives

	Data augmentation
	Geometric transformations
	Distance-based methods
	Generative adversarial networks
	Variational autoencoders

	State-of-the-art
	Implemented methods
	Task definition
	CVAE-GAN
	BAGAN

	Implementation
	Technologies
	Specifics of the CVAE-GAN implementation
	Specifics of the BAGAN implementation

	Experiments
	Datasets
	Design of experiments
	Evaluation

	Results and discussion
	Conclusion
	Contribution
	Future work

	Bibliography
	Acronyms
	Network architecture
	Experimental results
	Contents of enclosed SD card

