
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 8, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Sheepless - An Open-source 2D Adventure Game in Unity

 Student: Ian Mustiats

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

Sheepless is an open-source art game about a Shepherdess from Prague. EbSynth is a state of the art image
synthesis technology developed at DCGI FEL CTU. This technology is intended to make a hand drawing
animation easier. A goal of this thesis is to explore how to take advantage of this technology to design a
prototype of a 2D game in Unity.

Steps to take:
- Review the EbSynth technology and Unity.
- Design game mechanics and game architecture.
- Create an open-source proof-of-concept implementation.
- Test and evaluate the proof-of-concept on real users.

References

Will be provided by the supervisor.

Bachelor’s thesis

Sheepless – An Open-source 2D Adventure
Game In Unity

Ian Mustiats

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

June 4, 2020

Acknowledgements

I would like to thank my supervisor Ing. Marek Skotnica for the support
during writing this thesis. I would also like to thank the Sheepless team.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on June 4, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Ian Mustiats. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mustiats, Ian. Sheepless – An Open-source 2D Adventure Game In Unity.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2020.

Abstrakt

Tato práce demonstruje hlavńı vývojové fáze dobrodružné 2D koncept hry.
Herńı engine Unity a program EbSynth byly hlavńımi technologiemi pro tvorbu
hry. V tomto projektu byly prozkoumány základńı prvky Unity a výhody tech-
nologie EbSynth, která byla použita k vytvářeńı animaćı ve hře. Dále tato
práce představuje nástroje pro vytvářeńı př́ıběh̊u a psańı scénář̊u, které mo-
hou usnadnit proces vytvářeńı hry. Pomoćı těchto programů a nástroj̊u byly
navrženy a implementovány herńı mechaniky. Pro tyto mechaniky byly rovněž
vytvořeny speciálńı pomocné prostředky pro Unity, které zlepšuj́ı práci s nimi.
Na základě vytvořených nástroj̊u a mechanik byl implementován koncept 2D
dobrodružné hry. Výsledky práce s nástroji a zdrojovým kódem jsou k dispo-
zici v online repozitáři.

Kĺıčová slova Unity, Dobrodružná hra, EbSynth, 2D, Sheepless

vii

Abstract

This thesis demonstrates the main development stages of the proof-of-concept
2D adventure game. Unity game engine and program EbSynth were the major
technologies for the game creation. In the thesis were researched the basic
Unity elements and advantages of EbSynth technology that was used to make
the animation in the game. Also, were presented the basic storytelling and
script writing tools that can facilitate the creation of the game. Using these
programs and tools were designed and implemented game mechanics. For
these mechanics were created special tools for Unity that improve convenience
work with them. Based on the created tools and mechanics were implemented
2D adventure concept game. The result of the work, along with tools and
source code, is available in the online repository.

Keywords Unity, Adventure game, EbSynth, 2D, Sheepless

viii

Contents

Introduction 1
Motivation and Objectives . 1
Problem statements . 2
Structure and Methodology . 2

1 Unity 3
1.1 Engine overview . 3

1.1.1 Common editor windows 3
1.1.2 Scene . 5
1.1.3 GameObject . 5
1.1.4 Components . 5
1.1.5 User Interface . 5
1.1.6 Scripting . 5

1.2 2D and 3D modes . 6
1.2.1 Physics . 6

1.3 Graphics . 7
1.3.1 Lighting . 8
1.3.2 Particle Systems . 8

1.4 Optimization . 9
1.4.1 Profiler . 9
1.4.2 Occlusion culling . 9

2 Stylized animation 11
2.1 Animation . 11
2.2 Image synthesis . 12

2.2.1 DeepDream . 12
2.2.2 StyleGAN . 13
2.2.3 StyLit . 14
2.2.4 EbSynth . 14

ix

3 Storytelling and script writing tools 17
3.1 Tools for Unity . 17

3.1.1 Fungus . 17
3.1.2 Adventure Creator . 19
3.1.3 Game Creator . 20

3.2 Script writing tools . 21
3.2.1 Twine . 21
3.2.2 Yarn Spinner and Editor 22

4 2D adventure game design workflow 25
4.1 Main concept . 25
4.2 Game mechanics and systems 26
4.3 Dialogue tools for Unity . 28
4.4 Gameplay . 30
4.5 Gameflow . 30
4.6 Game objects . 31

5 Proof of Concept 33
5.1 Used packages . 33
5.2 Dialogue Editor . 33
5.3 Twine Dialogue Parser . 36
5.4 EbSynth animation . 37
5.5 Sorting image layer . 38
5.6 Testing . 39

Conclusion 41

Bibliography 43

A Acronyms 49

B Contents of enclosed USB 51

x

List of Figures

1.1 Unity Editor with custom settings 4

2.1 Example of the Deep dream image [28] 13
2.2 Generated art works by GAN [33] 14
2.3 Translating video to the stylized animation in the EbSynth. Style

exemplars by Polina Akhmetzhanova © 2020 15

3.1 Flowchart window with Blocks (left) and Commands (right) 18
3.2 Twine Story ”Test” with passages 22

4.1 UML Class diagram of the Dialogue System 26
4.2 UML Sequence diagram of the Stages Manager 27
4.3 Design of the Dialogue Editor . 28
4.4 Flowchart diagram of transferring Twine Story to Unity 29
4.5 Game mechanics and reaction to them 31
4.6 Flowchart diagram of the concept game scenario 32

5.1 Created Twine Story called Sheep 36
5.2 Result of the parsing JSON file . 37
5.3 Animation states of the Player . 38

xi

Code list

5.1 Example of creating Node editor Window 34
5.2 Default Editor class . 35
5.3 ”The correct level is loaded” assertion 39

xiii

Introduction

This thesis is based on the results and achievements of the technical demo
game called Sheepless [1]. It is the open-source 2D art game about a Shep-
herdess from Prague. My colleagues, Jan Klicpera and Robert Badronov, also
developed different components for this game and the results are presented in
their theses[2, 3].

Motivation and Objectives

The gaming industry is one of the largest entertainment industries in the
world [4, 5]. Global revenues of the video game industry are growing for the
last 20 years [6] and suppose that by the 2025 year it will reach $300 billion [7],
that only increases the desire of independent developers to try themselves in
this direction. And they decide to make an independent product - a game.

The main development environment for each game is a game engine. And
several generally accepted engines are used by most developers. One of these
engines is Unity. It is one of the most popular engines of our time [8]. This
engine was chosen for creating my game concept. Unity has a lot of advantages
that will be discussed in chapter 1.

However, despite all its advantages, Unity is quite difficult to master for
people unfamiliar with programming and game development. That’s why in
the Unity exists capability to add ready-made solutions that will facilitate
development. In chapter 3, I explored existing storytelling and script writing
tools to choose the most suitable for my concept.

One of the most important elements of the game is a graphic style. This is
the first thing that players see in the game. The graphic should be unique or
interesting. For my concept game as the graphic style was chosen the hand-
drawn style. However, creating animation in such style is very difficult because
it requires excellent animation skills. And for me was very important to find
out whether it is possible to design and develop a 2D game without using

1

Introduction

traditional animation techniques. The alternative was artistic style transfer
technologies. A great example of such technology is EbSynth which is de-
scribed in chapter 2. This program allows transferring ordinary video into an
animation that looks like it was drawn by hand.

The main objective was to design and create a 2D proof-of-concept ad-
venture game in Unity using EbSynth technology for creating hand-drawn
animation.

Problem statements

2D adventure games have a variety of mechanics and game systems [9]. How-
ever, it is impossible to create and use each of them, as it will ruin the game or
greatly complicate the development. That’s why it’s very important to select
the appropriate mechanics and accurately determine the scale of the game.
And even when the necessary components of the game have been selected,
it is very important to choose or create suitable tools for creating and using
game mechanics. This problem is considered in chapter 4.

Structure and Methodology

The thesis is organized as follows:

• Chapter 1, the Unity engine and its main components are overviewed
with more details.

• Chapter 2, talks about the animation and its production using EbSynth
technology.

• Chapter 3, describes the selected tools for creating an adventure game
in the Unity engine.

• Chapter 4, game design workflow is more precisely defined.

• Chapter 5, demonstrates the implementation of the 2D proof-of-concept
adventure game.

• Conclusions, summarizes the current results and mentions further work.

2

Chapter 1
Unity

The whole game was implemented using the Unity game engine, which allows
creating 2D or 3D games and applications. Using this engine can be created
a wide variety of games for a large number of platforms. It’s possible thanks
to the rich tools that this engine provides.

Unity is distributed free if the annual income from the game does not ex-
ceed $100 000 [10]. In other cases, it is possible to choose from several paid
models that provide additional services (such as LiveOps analytic, custom
splash screen or premium courses). Also in February of 2020 Unity intro-
duced a new plan for students, which ”can get free access to the same tools
and workflows that professionals use on the job in industries like gaming,
architecture, engineering, automotive, and entertainment.” [11]

This section will tell about the main parts of Unity. Basic information
about the engine was obtained from the manual pages of Unity [12].

1.1 Engine overview

The game development takes place in two main parts of Unity: Unity Editor
and scripts editor. Unity Editor consists of areas, tabs, menus and buttons,
where developer ”put together” all game parts. As scripts editor could be any
code editor. To write a script uses the programming language C#.

1.1.1 Common editor windows

Unity editor composes of several windows based on a Drag and drop operations
and developer can quickly transfer an object from one window to another.

The most popular and important windows are Hierarchy window, Game
and Scene view, Inspector, Project window, Toolbar and there are a lot of
other windows in the editor.

3

1. Unity

Figure 1.1: Unity Editor with custom settings

Hierarchy window This window contains every GameObject in the
active scene. Also, it is possible to open more scenes in the Hierarchy window.
The main functions are a creation of new GameObjects or adding instances
of Prefabs, sorting them (Alphanumeric sorting) and grouping together (this
process is called Parenting).

Game view window Shows how a final rendered game looks like from
the camera(s) view in the scene. Using the Control bar of the window, you
may change resolution and aspect to simulate different display and check how
the game looks.

Scene view window It is an interactive window, which allows visually
to edit the scene. You can modify GameObjects, change their position, size,
rotation and navigate through the whole scene.

Inspector Allows modifying all the properties and settings of the se-
lected GameObject. For each GameObject you can add, remove or change
components.

Project window The window serves for displaying project files. It is
possible to create new files or import new Assets from the computer system.
An Asset is a representation of any object that can be used in the game.

Toolbar Provides important features for working with the editor. Here
you can start a game, pause it or load next frame during pausing. One of the
main features is editor layout, which allows customizing the workspace.

4

1.1. Engine overview

1.1.2 Scene

Scene in the Unity represents the 2D or 3D environment of the game, where
you can place new objects and decorations. An entire game could consist of
several scenes that will switch in a certain or random sequence.

1.1.3 GameObject

GameObject is a fundamental part of Unity because every object in the game
is a GameObject. However, a GameObject is just a base that is complemented
by components as needed.

Also, GameObject always has a Transform component (or RectTransform
component if it has User Interface components). Here could be changed the
position and orientation of the GameObject. This information is relative to
the Transform’s parent or to the world space if the Transform has no parent.

1.1.4 Components

Each GameObject has different components that could change representation
and behaviour of the object in a game. An important part of the Components
is flexibility. Different properties can be modified during building a game or
when a game is running. Be aware that component values don’t save when a
game is running.

1.1.5 User Interface

Unity provides 3 user interface toolkits for creating UI:

• UIElements: is a retained-mode UI framework for creating a user in-
terface. This toolkit is based on web technologies and lets developers
create own hierarchy and styling in the separate assets.

• Unity UI: It is a GameObject-based UI toolkit for creating in-game UI.
It can’t be used for creating Unity Editor UI. It allows changing style
and orientation of the user interface using components.

• Immediate Mode Graphical User Interface: It is a code-driven UI
toolkit for creating Unity Editor UI, like custom Inspectors for compo-
nents or new editor windows, or in-game debugging tools.

1.1.6 Scripting

The main language for creating scripts in Unity is C#, which allows control
of different aspects of the GameObject and his components. On the Unity
official website mentioned, that ”you don’t need to create the code that runs

5

1. Unity

the application, because Unity does it for you. Instead, you focus on the
gameplay in your scripts.” [13]

Also, scripts should derive a base class for their use as components.
Basic class in the Unity is MonoBehaviour which every in-game script

should inherit. It provides access to the game object, that have this script as a
component, but also afford some important methods, like Start or Update.
Start is called once when a script is enabled before the first call of Update
methods. Update is called every frame if a script is enabled.

Another base classes are Editor and EditorWindow. Editor class pro-
vides tools for creating custom Inspector or editor of the existing script. Edi-
torWindow class allows creating any number of custom windows.

1.2 2D and 3D modes

One of the features of my concept game is the combination of 2D and 3D. The
whole environment and every object in the scene are 3D. But all the objects
in the game are presented in the form of a picture - a Sprite.

Unity has different tools for 2D and 3D environment. However, some 2D
tools cannot be used with the 3D environment, like 2D Lights from Universal
Render Pipeline [14] or various 2D components.

1.2.1 Physics

Unity uses two different engines to handle game physics - Nvidia PhysX and
Box2D. PhysX is used for 3D physics and Box2D for 2D. Each physics engine
has its components that may not work in a different environment.

RigidBody

The main component that controls the position of the object is RigidBody.
When RigidBody is added, the object will be immediately realistically con-
trolled by the physical engine – the object will be affected by gravity and react
to collisions with other incoming objects, even without adding a piece of code.
GameObject required Collider component for checking collisions.

RigidBody component could be controlled by properties: mass, linear drag
or angular drag which help determine a physical behavior of each object.
Another important property called Is Kinematic. It controls whether physics
affects the rigidbody and allows to move the object from a script.

In the [15] recommends to use FixedUpdate function for any changes
through the script because ”physics updates are carried out in measured time
steps that don’t coincide with the frame update. FixedUpdate is called im-
mediately before each physics update and so any changes made there will be
processed directly.”

6

1.3. Graphics

Colliders

Collider components define the shape of a GameObject for physical collisions.
It’s invisible in the game scene and could be bigger or smaller than GameOb-
ject’s mesh.

In the Unity exist 3 primitive collider types:

• Box Collider: is a rectangular box and useful for walls, crates or chests.

• Sphere Collider: is a sphere-shaped primitive and can be used for
balls or other rolling objects.

• Capsule Collider: looks like two hemispheres connected by a cylinder.
The most popular use is a game character.

To create a more complex collider, is used Mesh collider which is based
on the GameObject’s mesh. But there are several limitations to using them. In
the manual mentioned, that ”these colliders are much more processor-intensive
than primitive types, so use them sparingly to maintain good performance.
Also, a mesh collider cannot collide with another mesh collider.” [12]

Also, colliders interact differently depending on the properties or Rigid-
body component. There are 4 important configurations:

• Static Collider: is a GameObject with Collider component but without
Rigidbody. It is used for level geometry (walls, ground, etc.) or any
static GameObjects because they never move.

• Rigidbody Collider: is a GameObject with Collider and normal Rigid-
body. This configuration allows a GameObject to react to collision and
different forces.

• Kinematic Rigidbody Collider: is same as Rigidbody Collider,
but Rigidbody is kinematic. This object won’t respond to collisions but
will register it and can be moved from a script by changing Transform
component. This property could be switched at any moment of the
game between kinematic and normal that that allows to change the
object from static to dynamic and back.

• Trigger: is a GameObject, where collider is using Is Trigger property.
It doesn’t behave like a solid object but will detect any collisions.

1.3 Graphics

Unity provides a large number of different tools and settings, thanks to which
it is possible to create completely different graphics for a game – from realistic
to hand-drawn.

7

1. Unity

1.3.1 Lighting

Lighting is a very important part of the game because it’s defining how a
scene is perceived. Different parameters of the lights could make the scene
more dramatic, scary or cheerful.

In the Unity, Lights are the GameObjects with a Light component. There
are 4 types of lights:

• Directional Light:is an environment light which illuminates an entire
scene (similar to the sun). A light object can be placed anywhere in the
scene, and all objects will be illuminated from the same directional.

• Spotlight: is a cone-shaped spot light. It works as flashlights or car’s
headlights.

• Point Light: is a spherical-like, omnidirectional light. In the [16] says
that ”the point light is the most common type of light for illuminating
interior areas.”

• Area Light is a baked-only light type that defined as a rectangle. This
feature exists for a process called lightmap baking and allows smooth,
realistic shading.

Lighting techniques

All lights in the games are more or less computational. And lighting can be
figured out by the machine in real-time or precomputed. For creating more
fascinating scene can be used both techniques in combination. But these
techniques have their opportunities and advantages.

Realtime lighting is a basic way of lighting in Unity, and it’s the default
for directional, spot and point lights. It updates every frame and useful for
illuminating characters or any dynamic objects.

Backing technique, on the other hand, can process static lighting effects
(with the feature called Global Illumination) and results are written to the
texture maps – lightmaps. One of the greatest advantages of this technique is
that ”by saving the effect of lighting into a texture, we can boost performance
and improve the look of our game environments”. [17]

1.3.2 Particle Systems

For different effects like smoke, explosions, flames and enc. is used particle
system. Particles are small images or meshes that are emitted by a particle
system. Each particle represents a small part of the effect, but all of them are
changing and moving together.

8

1.4. Optimization

Unity Particle System is a component made of various modules. And
each module allows to change different parts of the particular system and
create a suitable effect.

1.4 Optimization

In our days most of the computers are powerful to run complex games or ap-
plications. About program optimization reasoned computer scientist Michael
A. Jackson: ”First rule: don’t do it. Second rule (for experts only): don’t
do it yet - that is, not until you have a perfectly clear and unoptimized so-
lution.” [18] This means that standard or naive solutions can be used in the
project without any problems. But if a game is developing for mobiles which
are not so powerful as computers, so there is some risk to create something un-
balance. In this case, Unity offers powerful tools to help with solving problems
with optimization.

1.4.1 Profiler

It’s a native tool that helps to examine how a game performs. Profiler gives
information about CPU and GPU usage, rendering, memory, physics, etc. for
each frame. By exploring the detailed information, it’s possible to determine
the component-level problem. One of the important function of this tool is
Deep Profile which can examine all script usage including function calls.

1.4.2 Occlusion culling

Another important feature in Unity that will optimize a scene with a lot of
geometry is Occlusion culling. With this feature, Unity won’t render static
objects that are not seen in the camera. An example will be building and
rooms inside. If the camera sees only external walls of the building, then all
the rooms inside won’t be rendered.

9

Chapter 2
Stylized animation

An especially important part of any game is the art style. It can be primitive,
fairy or realistic, and it depends on how the player will perceive the game and
how he can dive into the game’s world. And there are a lot of different styles:
from pixel art to anime, from low poly to high poly.

In my adventure prototype game was used the hand-draw style, where all
the objects look as ”from a real picture.” Creating such a style is a rather
difficult process. Each object and animation drew manually, increasing the
development time. Therefore, such a style is only capable of large teams or
very experienced artists.

However, we live in a time of technological, where each process is simplified
with the help of smart algorithms. And for creating animation can be used
image synthesis software.

2.1 Animation

Animation is a method that creates the illusion of movement to an audience
by the presentation of sequential images in rapid succession [19]. Exist a lot
of different types of animation, each of which has its own rules and methods
of creation. I’m going to focus on the most prominent.

Traditional animation

It’s one of the oldest technique where each frame is made individually. Also
called hand-drawn animation or cel animation. Traditionally animators draw
a sequence of animation on celluloid transparent sheet which is illuminated
from the backside. Thanks to this, the animator can see the previous frame
of the animation and can create the next one, one frame at a time [20]. But
in our days this technique is time-consuming and animators are using more
modern methods.

11

2. Stylized animation

Computer animation

It contains a variety of techniques where animation is created or generated
digitally on a computer [21]. Exist two basic techniques: 3D and 2D. 2D
technique is focused on image manipulation (2D bitmap or 2D vector graphics)
while 3D animation is using 3D objects that will be rendered to the frames.
For computer animation exists various programs that simplified animator’s
work and make it possible to create more realistic animation.

Stop-motion animation

Stop-motion animation is a technique in which animation created by moving
or changing real-world objects and filming them frame by frame [20]. The
most common objects are puppets with movable parts or plasticine figures
because they allow to change the movement of an object quickly and easily.

2.2 Image synthesis

Image synthesis is a process of generating new images from various data of
images or their description. Manipulations of data result in modifications of
the resulting image and knowledge of their relations is necessary for controlling
the process of generation [22]. Most often, the generation of synthetic images
happens through the use of artificial intelligence algorithms. And especially
are using the certain part of these algorithms – deep learning or deep
neural networks [23]. Deep learning refers to the architectures which contain
multiple layers to learn different features and improve with experience [24].
As a result, it’s possible to generate images with places or objects that don’t
exist in the real world.

2.2.1 DeepDream

DeepDream is a computer program developed by Google’s engineers[25] and
uses a Convolutional Neural Network (a class of deep neural networks).
A convolutional neural network is designed to analyze visual imagery and can
help to identify certain objects. Deep dream has expanded the capabilities of
this network and able to reproduce these objects based on images patterns.

Each layer of the network analyzes various details of an image. Some
layers detect borders and edges of an image, others identify colours and ori-
entation. And the final layers react to more complex objects like buildings,
trees, animals [26]. For example, an image can be identified to more ”cat-like”
and DeepDream will try to find cat patterns in an image. The code of the
program was published as open-source [27], due to which appeared a large
number of artworks that using this technology.

12

2.2. Image synthesis

Figure 2.1: Example of the Deep dream image [28]

2.2.2 StyleGAN

It’s a Style-Based architecture for Generative Adversarial Networks in-
troduced by NVIDIA researchers [29]. Generative Adversarial Networks is a
deep neural network architecture that is composed of two networks: generator
and discriminator. The generator produces new sample data and discrimina-
tor is trying to estimate if it was generated or it’s real. And through multiple
cycles, both networks train each other while trying to outwit each other [30].
After the training, the generator can be used to generate new samples.

The advantage of the StyleGAN is the ability to control style properties
of generated images. For the generator, all images are a collection of styles
and each style controls a certain effect superimposed on the generated image.
There are three basic layers:

1. Coarse styles (that changes a subject’s pose and shapes)

2. Middle style (affects finer objects features)

3. Fine style (governs color scheme and small features)

The main principle of StyleGAN is progressive training where the training
starts with very low-resolution images (coarse styles) and gradually adding a
higher resolution layer (middle and fine styles) [31]. As a result, you can get
images with resolution 1024x1024 pixels. This technology allows to create a
large number of pictures with unique objects, like fake people faces [32].

13

2. Stylized animation

Figure 2.2: Generated art works by GAN [33]

2.2.3 StyLit

StyLit demo is an interactive demonstration of StyLit algorithm that was in-
troduced by researches from Czech Technical University in Prague and Adobe
Research [34]. The system for the example-based stylization of 3D renderings
allows transforming art style from the painting to the 3D model. The algo-
rithm is based on light propagation in a simple 3D scene. It requires three
images:

1. An exemplar of the simple 3D scene with important illumination effects
(like direct diffuse, direct specular, global illumination, etc.)

2. A stylized example of this scene

3. Image of target 3D scene with the required object

The task of the algorithm is to transfer the style of stylized example to
the target picture, based on the light properties of the scene.

StyLit demo makes it easy to produce stylized pictures. As input, it re-
quires stylized example painting that program gets as live video input. So
example may be created by hand and captured by a camera or created with
using an image editor and caught by screen capture. As an output will be a
stylized image of one of ten provided objects.

2.2.4 EbSynth

EbSynth is a free application based on research from the Czech Technical
University in Prague and Adobe Research [35]. It’s Fast Example-based Im-
age Synthesizer algorithm, with which you can transform video into stylized
animation in the shortest time.

The program is easy to learn and doesn’t require special knowledge. First
of all, will need an image sequence of the video which will be transformed.

14

2.2. Image synthesis

Figure 2.3: Translating video to the stylized animation in the EbSynth. Style
exemplars by Polina Akhmetzhanova © 2020

Also, will require keyframe painting that will be the reference to the art style.
Based on the keyframe, the program transfers the style to the rest of the video.
It’s possible to add more keyframes for complex video content. But if video
frame contains objects that aren’t in the reference painting, then EbSynth
won’t work correctly [36].

Another important element of the EbSynth is the mask which marks an
area that will be stylized. It’s using to remove background from the video
frames, and EbSynth will focus on the video objects. Each element has a
parameter Weight that enhances the effect, whereby the result looks more
stylized or closer to the original video. After all the processing, you will receive
a sequence of frames in the new style that can be used in the project.

15

Chapter 3
Storytelling and script writing

tools

Game creation requires programs and tools to create sounds, images, 3D mod-
els, etc. The development of such programs is a laborious and long task, which
is suitable only for large companies. But most often, all the necessary pro-
grams for development already exist. You need to pick the right one and use
it.

However, choosing the wrong technology at the planning stage can cause
many problems during development. For example, the game will not be opti-
mized or will not be completed at all [37]. Therefore, I would like to tell about
the most suitable tools that will allow you to create a 2D adventure game.

3.1 Tools for Unity

Unity Asset Store is a library of free and commercial assets created by
Unity Technologies or members of the community. It contains a huge number
of different assets - from textures and models to add-ons and tools. You can
get to the Asset Store using either a browser or Unity, which has a separate
window for the store.

Assets greatly facilitate the development of the game, so you can focus
on other parts of the project. A good example is toolkits that extend the
functionality of Unity and can be used to create 2D or 3D games without
coding.

3.1.1 Fungus

Fungus is free and open source tool for creating interactive games in Unity [38].
This tool allows to create a lot of different games, like visual novels, hidden
objects of RPGs.

17

3. Storytelling and script writing tools

Figure 3.1: Flowchart window with Blocks (left) and Commands (right)

A fundamental concept of Fungus is the Flowchart. Flowchart in the
game represents a specific sequence of actions that make up the game logic.
It is a component which is controlled through the window. Flowchart win-
dow is a node-based editor where each node is a Block. Blocks are another
fundamental part of the Fungus.

Exist 3 types of Blocks:

1. Event Block is a blue node that triggered by an event. There are
different types of events (such as Game Started, Key Pressed, Message
Received and others).

2. Branching Block is an orange node which can transfer control to other
Blocks.

3. Standard Block is a yellow node that represents a simple Block with
no events and can pass control only to the next Block.

When the Block starts, are sequentially launched Commands. Each
Command can be considered as an action that occurs during the game. There-
fore there are a large number of Commands to operate the camera, Blocks,
events, sprites and so on.

For sharing data between Flowcharts, Commands and Blocks are used
Variables. This concept is familiar with scripted variables which contain
different data depends on the type. Variables don’t save and restore values
between game sessions, however, they can be used for this mechanism. Types
of Variables can be both: standard (like in the C#) and Unity types (Vectors,
Image, Texture, GameObject etc.).

Fungus is simple to use tool and ideal for teaching game development or
using in the game jams. With it, you can quickly create interactive dialogue

18

3.1. Tools for Unity

system (with characters, effects and localization) or drag-and-drop system for
interacting with game items. Also, Fungus Asset contains a large number of
demo scenes where you can take a closer look at using this tool.

3.1.2 Adventure Creator

Adventure Creator, or ”AC”, is a toolkit that provides foundation and
instruments for creating 2D, 2.5D and 3D adventure games [39]. AC contains
ready-made solutions for inventory, dialogues, movement and other systems
without the need to coding them.

All the main elements of development using AC are controlled by managers
which control various aspects of the project. At the beginning should be
created own managers of the project with New Game Wizard feature. It
consists of a few simple steps with the basic options which will set up the
game.

After determining the project settings, they can be modified through eight
managers.

Scene Manager This manager shows unique settings for each scene
and allows to create different AC objects. It organises a ”regular” Unity scene
into an ”AC” with new hierarchy. Here it’s possible to change default scene
settings, set up cutscenes, create attributes and add AC prefabs to the scene.

Settings Manager Here are defined major settings of the project. This
manager consists of 15 sub-sections that cover almost every aspect of the
project, like Interface, Movement, Audio, Inventory, Cutscenes, etc.

Actions Manager It provides a list of Actions of the project. Action
is the main block of AC’s visual scripting system where each Action has a
different task. Game logic and cutscenes are formed of a sequence of Actions.
There are over a hundred basic Actions and can be more by creating custom
Actions.

Variables Manager Variables have the same function as in Fungus –
keep track of progress and share data between game scenes. In the Variables
Manage can be defined different variables.

Inventory Manager During adventure games, the player can find items
and use them depending on the game mechanics. Through this manager,
it’s possible to create game items and define categories, item’s properties or
crafting recipe.

Speech Manager It used to control the representation of the speech in
the game and how it sounds. Also, the manager handles translations of the
languages. It even has Lip syncing that can help to synchronize animation
of the lips with the speech.

19

3. Storytelling and script writing tools

Cursor Manager The manager will define the graphics of the cursor
while the player is interacting with NPCs, inventory or other active objects.
The cursor can also be turned off during cutscenes.

Menu Manager In this manager can be constructed game’s UI. Default
interface provides a list of menus for inventory, game menu or options, di-
alogues and other. An interface can be rendered with AC’s system or with
Unity UI.

Adventure Creator is a very powerful toolkit with a lot of different features
that can be used in the game. In addition to the mentioned features, it
contains others that allow working with game characters, cameras or different
interactions. However, some tools can be used only with a specific game (2D,
3D or 2.5D). For better understanding, AC has demos where it’s possible to
see how these tools are using in the 2D or 3D games. AC also provides API,
so its capabilities can be expanded.

3.1.3 Game Creator

Game Creator is a set of tools that provides different features to create
any game of any genre [40]. This toolkit represents a base that can also be
supplemented by Modules.

Game Creator consists of different components that are used together and
implement the main logic of the game. The following components are respon-
sible for interactive events in the world:

• Actions are a list of commands that run sequentially. They allow to
work with the camera, animation, game status and so on..

• Conditions have a similar function as Actions, but they also check
execution conditions. Whole process is based on the if/else statement.

• Triggers are run Actions nad Conditions when player perform a spe-
cific action, like pressing a key or entering a certain area.

Among other things, other components are used in the game world. Game
Creator offers Character and Player components with fully animated hu-
manoid 3D model. Components allow simply change default model to custom
character model or add new animation states. Like the previous toolkits, that
one has Variables for processing and storing data during the game.

Game Creator have special systems for more complex games, like Event
System that can control Triggers and Actions for better flexibility. It is a
translator that keeps a list of objects which can be notified from another game
object. But most of them complements Unity systems, like UI or Timeline
(using for creating cutscenes).

20

3.2. Script writing tools

But the biggest advantage of this toolkit are Modules that are distributed
separately from the Game Creator. These are ready-to-use mechanics that
add new features to the basic tools. Can be found next modules: Dialogue,
Inventory, Quests, Stats, Behaviour, Shooter and Melee. One of the interesting
modules is Behaviour. It helps create and organize AI systems in the node-
based Behaviour Graph where each node is an object’s state. Or Shooter
module. It adds new animations, Actions and allows to create a top-down
or third-person perspective shooters. Melee module expands Game Creator
with new melee combats and new cold weapon assets.

Game creator can offer a wide selection of mechanics and systems, but
some are not included in the base version. This toolkit is in the developing,
so it will be evolved and supplemented. Game creator and its modules have
open API that allows to extend all functionalities.

3.2 Script writing tools

From the beginning, games were created just for fun. They had no thoughtful
characters or dialogues [41]. The plot was indicated by the simple goal of the
game - to kill everyone, not die, collect all the parts and so on.

However, in our days it’s hard to imagine a big game without thoughtful
characters and plot. And some of them can contain more than a million words
in the game [42]! And for writing complex dialogues are using special tools
that make their creation easier.

3.2.1 Twine

Twine is an open-source tool for making interactive stories [43]. The program
allows creating hypertext that leads to another hypertext. And the main
feature is the ability to choose between them. The main element of the Twine
editor is a passage, where the main elements are text and link to other
passages [44]. Twine supports different types of displaying links, however,
each link should be placed in square brackets and contain the name of another
passage.

In Twine, you can create your own variables and write macros to work with
them. This allows making the story more complex and nonlinear. It doesn’t
require knowledge of any programming languages for such things. However,
newer version Twine 2 supported JavaScript and CSS to expand the func-
tionality of working with story. Another main feature of this version is that
it’s web-based and can be launched on different systems through a browser.

Twine offers several story formats through which the story will be pub-
lished to a file. Each format has its own syntax and user interface but using
one excludes the ability to switch to another [45]. There are 4 standard story
formats in Twine 2:

21

3. Storytelling and script writing tools

Figure 3.2: Twine Story ”Test” with passages

• Harlowe The default format in Twine 2 that is is easy to learn.

• Snowman More advanced format aimed at creating story using JavaScript
and CSS. It doesn’t use macros and uses variables window.story and
window.passage.

• SugarCube It comes from Twine 1. It has more functionality but also
requires some programming skills.

• Chapbook A format that is divided into inserts (cause text to appear)
and modifiers (affect story structure or passage text)

Also, to the Twine can be imported another story formats with which will
be changed the resulting file [46].

3.2.2 Yarn Spinner and Editor

Yarn Spinner and Editor are tools for creating interactive dialogues in games [47].
Dialogues are written using the Yarn language. It’s a simple text-based format
that is designed to make dialogue in games a snap [48]. Yarn Spinner read the
dialogues line by line and provides lines to the game, which decides what to
do with each line. Just like Twine, Yarn Spinner allows to use commands,

22

3.2. Script writing tools

options and variables to create a complex dialogues. Besides, there are also
shortcut options, which let you add answer options for the player without
creating separate dialogue.

All dialogues are stored in the Yarn Editor where they can be conveniently
edited. Yarn Editor is a node-based visual tool where each dialogue is a node.
Text in the dialogues is divided by characters, so at the beginning of each
phrase is indicated the name of the character who pronounces it.

An important feature of this tool is the ability to integrate it with the
Unity. Main parts of it are:

• Yarn Programs It is the compiled representation of the Yarn file.

• Dialogue Runner Unity component that takes Yarn Programs and
read its contents.

• Dialogue UI Another component that deliver content from Dialogue
Runnder to the player.

• Variable Storage It is responsible for storing variables of the dialogues.

23

Chapter 4
2D adventure game design

workflow

Game development always begins with its design. You should select and accu-
rately determine the work of game mechanics. Also, it’s important to identify
the tools and programs with which these mechanics will be made.

In this chapter, I would like to tell about the basic game design workflow,
the main components of the 2D adventure concept game and used tools for
their making.

4.1 Main concept

The main objective was to create a proof-of-concept 2D adventure game. For
this purpose was used Unity engine 2019.2. This technology is enough to
create all the basic components of an adventure game. As a graphic style have
been chosen hand-drawn style. Animation of the game was created using the
EbSynth technology in another thesis [2] and the results were used in this 2D
adventure game.

The main elements of the game are dialogues, interactive story and inter-
action with the environment (more in section 4.2). To design simple dialogues
and game plot, the Twine 2 program was used. To transfer dialogues from
Twine to Unity were developed a tool for Unity called Twine Parser. For
manipulations with dialogues in Unity was created another tool Dialog Editor
(more in section 4.3).

Based on these elements, was created an ”escape the room” game where
the player should leave the level solving the simple quest.

25

4. 2D adventure game design workflow

4.2 Game mechanics and systems

Game mechanics are an important aspect of the game. For their proper oper-
ation inside the game, were created managers and entire systems. Also, such
systems can control the game logic to launch certain actions in the right time.

Dialogue system

Dialogues in the game look like comics, where a bubble with words appeared
above the character’s head. During player responses, a small menu appears
on the screen that provides various responses options for the player. Commu-
nication between different components in the system can be seen in the image
4.1.

Figure 4.1: UML Class diagram of the Dialogue System

26

4.2. Game mechanics and systems

The important component is the Dialogue Manager, which launches the
dialogue sequence and stores the object of Bubble Spawner and Response
Buttons Controller. Bubble Spawner is responsible for the appearance of
Bubbles with the text. Response Buttons Controller displays an answer
menu on the screen with answer option buttons.

The Dialogue itself contains the necessary information in the Sentence
Wrapper, as the text, place of appearance and type of actor (NPC or Player).
Each Dialogue leads to the next Dialogue or to several Dialogues at once. Also,
at the beginning or ending of the Dialogue can be activated Actions.

To activate any Dialogue, should be accepted Activation Condition of
the Dialogue Activation. After which Dialog Activation will send a start
Dialogue to Dialogue Manager.

Stage Manager

A game may have a large number of elements that must be launched in a
given sequence after certain conditions are satisfied. In my concept game, it
is used for loading between scenes or to control the states of sheep and called
Stage Manager.

Figure 4.2: UML Sequence diagram of the Stages Manager

27

4. 2D adventure game design workflow

The system starts with the Stages Manager, who receives the first Stage
from the Stage Collection. After that, Stage is initialized and each frame is
updated. When the condition for the end is satisfied, Stage will return control
to the Stage Manager which immediately starts the next stage. This sequence
takes place until the manager reaches the last Stage (see image 4.2).

An example of such a system is Sheep Stage Manager. It contains two
stages: Wait and Walk. The manager is supplemented with the ”Repeat”
function, so after the last stage is completed, the sequence will start from the
beginning again.

4.3 Dialogue tools for Unity

Dialogues in games can be very long, complex and variable, with a large
number of endings. And for easier creation and editing of Dialogues, for
Unity was created separate tools for working with them.

Dialogue Editor

Dialog Editor is an node-based editor where every node is a Dialog (see
image 4.3.

Figure 4.3: Design of the Dialogue Editor

28

4.3. Dialogue tools for Unity

Dialogue node has a text box and a drop-down menu with actors. In
the text box will be dialogue’s phrases which will pronounce the actor from
the drop-down menu. Each node can be freely moved, connected with other
nodes or delete unnecessary connections. All actions that can be launched in
the Dialogue Editor window are located in the mouse context menu. The
window is opened through another component called Dialogue Handler.
This component will store a list of all active actors for these Dialogues.

Dialogue node data will not be stored as a file but will be saved directly
in the scene, so after creating or editing Dialogues, they can be immediately
used in the game.

From Twine to Unity

Since the Twine program is used to create dialogues, a special tool has been
developed that allows transferring the Twine Story to Unity in the form of the
Dialogue System.

Figure 4.4: Flowchart diagram of transferring Twine Story to Unity

29

4. 2D adventure game design workflow

To do this, each passage in Twine is a text with links to the next passage.
The text is divided into a phrase, where at the beginning is indicated the name
of the actor who pronounces this phrase. Twine Story should be exported as
JSON file using special Twine Story Format [49]. After adding the file to
Unity, it could be parsed using the tool Twine Dialogue Parser. This
tool will separate each phrase and link into separate Dialogues, connect them
together and add a finished dialogue sequence to the scene. As a result, will be
obtained the GameObject with a Dialogue Handler component in the current
scene. Also, these Dialogues can be immediately saved as Prefab to the project
(see image 4.4).

4.4 Gameplay

The game focused on two main mechanics: interaction with the items or
objects and interactive dialogues with different NPCs.

Dialogues begin only when certain conditions are met. During dialogues,
the player may be given the opportunity to select an answer or different actions
may be activated. Interaction with objects works in a similar way. After
successful activation, a game action sequence is launched that changes the
state of the game (see image 4.5). Interactions and Dialogues can influence
each other through actions and because of it, player’s manipulations change
a game state.

The main character have the ability to walk freely in four different direc-
tions: left, right, back and front. And can be in two different states:

1. Idle The player stands and no animation is played.

2. Walking The player walks around the scene and the movement anima-
tion is played, depending on the chosen direction of movement.

4.5 Gameflow

The game consists of one level, where the player appears immediately after
launch. He sees trees, sheep and NPC around him. He can go to the NPC
and activate the Dialogue. The player will receive information about the world
from the NPC and the main goal – to find the Item to exit the island. After
searching for it by level and finding, the hero can return to the NPC and speak
with him again. The NPC will notice the player’s item and offer to leave the
level. The player will be able to choose whether to stay on the island or not.
If the player will choose to leave the island, the game ends. The main scenario
of the game can be seen in the image 4.6.

30

4.6. Game objects

Figure 4.5: Game mechanics and reaction to them

4.6 Game objects

The following types of objects exist in the game:

1. Environment objects These objects fill the game scene and the player
cannot interact with them (except restricting movement in the space of
these objects). They can be either static (such as trees or houses), or
dynamic (moving objects or characters).

2. Interactive objects The player can interact with these objects and will
be activated certain actions. In this concept, these can be NPCs with
which can be activated a dialogue, or interactive objects.

3. Visual objects These objects don’t affect the game scene but simply
complement it. They are out of the player’s moving range.

31

4. 2D adventure game design workflow

Figure 4.6: Flowchart diagram of the concept game scenario

32

Chapter 5
Proof of Concept

In this chapter, I would like to tell about the implementation of the Dialogue
Editor and Twine Parser tools, as well as the creation of some elements of the
2D adventure concept game.

5.1 Used packages

Unity offers a large number of Packages that are not included in the Unity
program but can be added to each project individually. Each package contains
features that improve and make easier development of different aspects of the
project.

Were used the following ready-made solutions:

• Navmesh The navigation system allows controlling a character who can
find the path to a given point in the scene. Used to navigate the sheep
in the scene.

• Cinemachine Package of modules for working with the Unity Camera.

• TextMesh Pro Multifunctional text solutions with lots of tools for
styling and texturing text. Used for dialogue bubbles text and responses
text.

5.2 Dialogue Editor

To create any window in Unity, you need to inherit the EditorWindow class
and implement the static method with the MenuItem attribute (see code
5.1). Due to this attribute, the window can be opened via the context menu
Window or other.

The first implementation of the node editor was class NodeBasedEditor
based on creating Windows as nodes using GUI.Window function. The

33

5. Proof of Concept

public class NodeBasedEditor : EditorWindow
{

[MenuItem("Window/Node editor")]
static void ShowEditor()
{

NodeBasedEditor editor =
EditorWindow.GetWindow<NodeBasedEditor>();

}
}

Code 5.1: Example of creating Node editor Window

class has OnGUI method where all elements are drawn. To create a scroll
view used GUI.BeginScrollView function. However, due to the interaction
of Windows with scrolling view, the mouse position is incorrectly registered.

Therefore, based on the achievements of the first implementation, was
created the NodeEditor generic class. To register various events (like a
mouse click or mouse drag) is used the HandleEvent method. This time, the
main element of the window is the Node class, which stores all the necessary
information about the position in the window, style and various actions. The
class has methods for Moving, Drawing and Holding events. Scrolling
view was implemented using the dragging mouse where all Nodes moves in the
same direction as the mouse. Also, Node is constraining the generic parameter
to the NodeEditor class.

Each Node has two points with which can be connected with different
Nodes. The class NodeConnectioPoint implements this point. Points can
be of two types – input and output. And only two points of different types
can be connected. As soon as a point-button is pressed, an action OnClick-
Action is called.

For the connection between two points is responsible NodeConnection
class which contains information about two interconnected NodeConnectio-
Points. All connections are stored in the NodeEditor. To draw the connection
between these points was used the function Handles.DrawBezier.

NodeEditor’s method OnGUI calls only one time per event. Because of it
all elements of the window don’t update correctly and occurs ”freezing” effect.
To solve this problem was used the function Repaint. Each time when the
user manipulates with the window, this function will update it.

To create the Dialogue Editor were implemented classes NodeEdi-
torDialogue and NodeDialogue that inherit the classes NodeEditor and
Node respectively.

NodeDialogue has the Dialogue property to which it refers. A field of
text was implemented using GUI.TextArea function and popup menu with

34

5.2. Dialogue Editor

current Actors using EditorGUI.Popup function. All changes to the node
are immediately saved in the Dialogue.

After closing the window, the object is immediately deleted and all infor-
mation is lost with it. To avoid this, were added DialogueEditorData and
DialoguesHandler classes.

DialogueEditorData stores information about nodes and the connections
between them. Since the base classes used with the NodeEditor do not save
data after closing the window, were created new serializable classes Node and
Connection. When the window is opened, all information is read and added
to the editor window. And when the window closes - all relevant information
is overwritten to the DialoguesHandler object.

public abstract class DefaultEditor<T> : Editor
where T : MonoBehaviour

{
bool showDefaultInspector = false;

private void OnEnable()
{

OnCustomEnable();
}

public override void OnInspectorGUI()
{

showDefaultInspector = EditorGUILayout.Toggle(
"Show the default editor",
showDefaultInspector);

if (showDefaultInspector)
base.OnInspectorGUI();

else
OnCustomInspectorGUI();

}

public abstract void OnCustomInspectorGUI();

public abstract void OnCustomEnable();
}

Code 5.2: Default Editor class

DialoguesHandler class stores DialogueEditorData object and has List of
all active Actors. Actor has Name, Actor Type and Object Transform
where will be spawning Bubbles. Also, for DialoguesHandler was created

35

5. Proof of Concept

Custom Editor which replaces the default layout. DialoguesHandlerEditor
inherits DefaultEditor abstract class (see code 5.2) and adds new features
for DialoguesHandler: opening the Dialogue Editor window as well as adding
or removing new Actors. When this component is enabled, it checks if the
dialogue sequence already exists for the active GameObject and loads data
about Dialogues.

If the project is restarted, then all data will be lost without any warnings.
Therefore, during every user action with the Dialogue Editor are called func-
tions EditorUtility.SetDirty and EditorSceneManager.MarkSceneDirty
that mark the scene as unsaved.

For the appearance of Dialogues in the game, should be added Dialogue-
Activation component to the NPC and chosen required DialogueHandler and
Activation Condition.

5.3 Twine Dialogue Parser

After creating a new Twine Story and saving it to the JSON format, it should
be imported to the Unity. The class TwineParser is responsible for trans-
lating this file into DialoguesHandler. TwineParser creates a new window
”Twine Parser Dialogue” where should be chosen new Dialogue GameObject
name and required JSON file.

Figure 5.1: Created Twine Story called Sheep

As soon as the ”Complete” button is pressed, will be created an object
TwineDialogue from its JSON representation. After that, based on each

36

5.4. EbSynth animation

Passage, will be created a separate Dialogue GameObject with the text from
the Passage. Then the text is divided into more Dialogues using class Di-
alogueTextParser which separates all links and phrases. Regular expres-
sions were used to identify key words in the text. DialogueTextParser
returns ParsedDialogue object which has two List properties: NPCText
and PlayerText. And based on this data, are created additional Dialogues.

The main idea is that the Passages always have a similar text structure,
where NPC phrases go first, and then player’s answers in the form of links to
other Passages.

In the end, should be properly configured the actors in the DialogueHan-
dler and positions for the Bubbles to appear. And Dialogues will be ready to
use in the game.

Figure 5.2: Result of the parsing JSON file

5.4 EbSynth animation

The PlayerMovement class is responsible for the player’s movement. Move-
ment occurs using the Rigidbody component. Based on the pressed keys, it
calculates the Direction of movement and transfers it to the MovePosi-
tion function. Since the movement is using physics, it is constantly called
from the LateUpdate method to avoid incorrect behaviour. Also, instead of
LateUpdate, could be used FixedUpdate.

37

5. Proof of Concept

Figure 5.3: Animation states of the Player

The PlayerAnimationManager class controls the animation of the player
based on its movement. The player has four directions for animation: left,
right, back and forward. And as soon as the player stops moving, the Idle
animation will be played based on the previous animation. It is implemented
using the Animator (see image 5.3). Each animation state is a sequence of
images that were previously made using EbSynth.

Movement and animation are launched through the singleton class Play-
erManager .

5.5 Sorting image layer

In the scene, all game objects are Sprites that are rotated 45 degrees to the
camera. Each sprite has a rendering order in a particular type of layer.
Since some objects are dynamic, their rendering order changes. For such
purposes was created the class SortingLayerController.

Each GameObject that has DynamicSpriteSortLayer and SpriteRen-
derer components is added to the List of the SortingLayerController. And
every 0.01 seconds, this controller changes their rendering order based on the
invert value Z of the position. Static objects must be configured in the same
way but rendering order for them is static. To do this, StaticSpriteSort-
Layer component is added to environment objects.

38

5.6. Testing

5.6 Testing

Were created automated unit tests to make sure that the game works properly.
I have created unit tests that check individual parts of the code that run during
the game. Other tests check the certain actions that a player can perform
during the game. All tests work during the PlayMode.

To verify that the game can be completed were created unit test Com-
pleteLevelSuit. The goal of the game is to find the item and give it to
the NPC. Therefore, the unit test checks if the item exists in the scene using
"Assert.NotNull(apple)". Then the test activates item actions and begins
required dialogue with the NPC. When the player has a choice of answer, a
positive answer is selected and the final scene is loaded. In the end, it checks
if the correct scene was loaded using code 5.3.

Assert.AreEqual(SceneManager.GetSceneByName("EndScene"),
SceneManager.GetActiveScene());

Code 5.3: ”The correct level is loaded” assertion

39

Conclusion

The main objective of this thesis was to design and create an open-source
proof-of-concept 2D adventure game. The game was developed in the Unity
game engine and for creating the animation was used the program EbSynth.

I have researched all the basic components of the Unity engine. Therefore, I
quickly resolved problems during the implementation of the game components.
I’ve also explored various artistic style transfer techniques and programs for
image synthesis, especially EbSynth. I reviewed various storytelling and game
script creating tools with which can be facilitated the game development.

Based on the selected technologies were designed and implemented major
game mechanics of the 2D adventure game: Dialogue System and Interac-
tion with the environment. For easier and more clear work with the Dialogue
System, were developed practical tools: Dialogue Editor and Twine Parser.
Dialogue Editor allows changing dialogues in the game quickly and comfort-
ably. Twine Parser gives the opportunity to transfer dialogues from the Twine
program to Unity in Dialogue System format.

In the end, based on the mechanics, I created the concept of a simple 2D
adventure game. And in this game, I managed to demonstrate all advantages
of EbSynth technology with which was made wonderful and unique anima-
tions. This game, along with created tools and source code, can be found in
the online repository [50].

The purpose of this project was to create a concept game. However, based
on the developed mechanics and tools, it will be possible to develop a full-
fledged 2D game. To do this, should be written a game plot, added additional
components for working with sound and music. Dialogue Editor needs to
be supplemented with new elements, like Actions, so all manipulations with
dialogues would be possible through the Dialogue Editor only. Twine Parser
should be expanded with other Twine commands.

41

Bibliography

1. THE SHEEPLESS ONE [online]. 2019 [visited on 2020-05-30]. Available
from: http://sheepless.one/.

2. KLICPERA, Jan. Sheepless – An Open-source 2D AdventureGame in
Unity. 2020. Bachelor’s Thesis. Czech technical university in Prague.
Supervisor: Ing. Marek Skotnica.

3. BADRONOV, Robert. Sheepless – An Open-source 2D AdventureGame
in Unity. 2020. Bachelor’s Thesis. Czech technical university in Prague.
Supervisor: Ing. Marek Skotnica.

4. STEWART, Samuel. Video game industry silently taking over entertain-
ment world. EJINSIGHT [online]. 2019 [visited on 2020-03-17]. Available
from: http://www.ejinsight.com/20191022-video-game-industry-
silently-taking-over-entertainment-world/.

5. OPPENHEIMERFUNDS. Investing in the Soaring Popularity of Gam-
ing. Reuters [online]. 2018 [visited on 2020-03-17]. Available from: https:
//www.reuters.com/sponsored/article/popularity-of-gaming?
utm_source=reddit.com.

6. NAKAMURA, Yuji. Peak Video Game? Top Analyst Sees Industry Slump-
ing in 2019. Bloomberg [online]. 2019 [visited on 2020-03-17]. Available
from: https://www.bloomberg.com/news/articles/2019- 01- 23/
peak-video-game-top-analyst-sees-industry-slumping-in-2019.

7. Video Games – Thematic Research [online]. GlobalData UK Ltd., 2019.
Available also from: https://store.globaldata.com/report/gdtmt-
tr-s212--video-games-thematic-research/. Technical report.

8. TOFTEDAHL, Marcus. Which are the most commonly used Game En-
gines? Gamasutra [online]. 2019 [visited on 2020-03-17]. Available from:
https://www.gamasutra.com/blogs/MarcusToftedahl/20190930/
350830/Which_are_the_most_commonly_used_Game_Engines.php.

43

http://sheepless.one/
http://www.ejinsight.com/20191022-video-game-industry-silently-taking-over-entertainment-world/
http://www.ejinsight.com/20191022-video-game-industry-silently-taking-over-entertainment-world/
https://www.reuters.com/sponsored/article/popularity-of-gaming?utm_source=reddit.com
https://www.reuters.com/sponsored/article/popularity-of-gaming?utm_source=reddit.com
https://www.reuters.com/sponsored/article/popularity-of-gaming?utm_source=reddit.com
https://www.bloomberg.com/news/articles/2019-01-23/peak-video-game-top-analyst-sees-industry-slumping-in-2019
https://www.bloomberg.com/news/articles/2019-01-23/peak-video-game-top-analyst-sees-industry-slumping-in-2019
https://store.globaldata.com/report/gdtmt-tr-s212--video-games-thematic-research/
https://store.globaldata.com/report/gdtmt-tr-s212--video-games-thematic-research/
https://www.gamasutra.com/blogs/MarcusToftedahl/20190930/350830/Which_are_the_most_commonly_used_Game_Engines.php
https://www.gamasutra.com/blogs/MarcusToftedahl/20190930/350830/Which_are_the_most_commonly_used_Game_Engines.php

Bibliography

9. ADAMS, Ernest. Fundamentals of Adventure Game Design. Peachpit
Press, 2014. ISBN 9780133812329.

10. Plans and pricing [online]. Unity Technologies, 2020 [visited on 2020-04-
30]. Available from: https://store.unity.com/#plans-individual.

11. WONG, Nichole. Introducing the Unity Student plan: Start creating
like a pro. Unity Technologies Blog [online]. 2020 [visited on 2020-03-
17]. Available from: https://blogs.unity3d.com/ru/2020/02/25/
introducing-the-unity-student-plan-start-creating-like-a-
pro/.

12. Unity User Manual [online]. Unity Technologies, 2020 [visited on 2020-04-
30]. Available from: https://docs.unity3d.com/2019.2/Documentation/
Manual/index.html.

13. Learning C# and coding in Unity for beginners [online]. Unity Technolo-
gies, 2020 [visited on 2020-04-30]. Available from: https://unity3d.
com/learning-c-sharp-in-unity-for-beginners.

14. About the Universal Render Pipeline: Universal RP: 7.1.8 [online]. Unity
Technologies, 2020 [visited on 2020-04-30]. Available from: https : / /
docs.unity3d.com/Packages/com.unity.render-pipelines.universal@
7.1/manual/index.html.

15. NORTON, Terry. Learning C# by developing games with Unity 3D be-
ginner’s guide : learn the fundamentals of C# to create scripts for your
GameObjects. Birmingham: Packt Publishing, 2013. ISBN 9781849696586.

16. GEIG, Mike. Sams teach yourself Unity 2018 game development in 24
hours. 3rd ed. Indianapolis, Indiana: Sams, 2018. ISBN 978-0-13-499813-
8.

17. LINTRAMI, Tommaso. Unity 2017 Game Development Essentials. 3rd ed.
Birmingham: Packt Publishing, 2018. ISBN 978-1-78646-939-7.

18. JACKSON, M. A. Principles of program design. London New York: Aca-
demic Press, 1975. ISBN 978-0123790507.

19. CHONG, Andrew. Digital animation. Lausanne, Switzerland New York,
N.Y: AVA Academia Distributed in the USA & Canada by Watson-
Guptill Publications, 2008. ISBN 2-940373-56-6.

20. LAYBOURNE, Kit. The animation book : a complete guide to animated
filmmaking–from flip-books to sound cartoons to 3-D animation. New
York: Three Rivers Press, 1998. ISBN 0517886022.

21. CULHANE, Shamus. Animation from script to screen. New York: St.
Martin’s Press, 1988. ISBN 978-0-312-05052-8.

22. BRET, Michel. Image Synthesis. Dordrecht: Springer Netherlands, 1992.
ISBN 978-94-010-5133-0.

44

https://store.unity.com/#plans-individual
https://blogs.unity3d.com/ru/2020/02/25/introducing-the-unity-student-plan-start-creating-like-a-pro/
https://blogs.unity3d.com/ru/2020/02/25/introducing-the-unity-student-plan-start-creating-like-a-pro/
https://blogs.unity3d.com/ru/2020/02/25/introducing-the-unity-student-plan-start-creating-like-a-pro/
https://docs.unity3d.com/2019.2/Documentation/Manual/index.html
https://docs.unity3d.com/2019.2/Documentation/Manual/index.html
https://unity3d.com/learning-c-sharp-in-unity-for-beginners
https://unity3d.com/learning-c-sharp-in-unity-for-beginners
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/index.html

Bibliography

23. HEMANTH, D. Deep learning for image processing applications. Ams-
terdam, Netherlands: IOS Press, 2017. ISBN 978-1-61499-821-1.

24. WANI, M. A. Advances in deep learning. Singapore: Springer, 2020. ISBN
978-981-13-6793-9.

25. ALEXANDER MORDVINTSEV, Christopher Olah; TYKA, Mike. Deep-
Dream - a code example for visualizing Neural Networks. Google Re-
search Blog [online]. 2015 [visited on 2020-05-14]. Available from: https:
//web.archive.org/web/20150708233542/http://googleresearch.
blogspot.co.uk/2015/07/deepdream-code-example-for-visualizing.
html.

26. CHANDLER, Nathan. How Google Deep Dream Works. HowStuffWorks
[online]. 2015 [visited on 2020-05-14]. Available from: https://computer.
howstuffworks.com/google-deep-dream.html.

27. GOOGLE. deepdream [online]. GitHub, 2015 [visited on 2020-06-04].
Available from: https://github.com/google/deepdream.

28. Deep Dream Generator [online]. Deep Dream Generator, 2020 [visited on
2020-05-31]. Available from: https://deepdreamgenerator.com/.

29. KARRAS, Tero; LAINE, Samuli; AILA, Timo. A Style-Based Generator
Architecture for Generative Adversarial Networks. CoRR [online]. 2018
[visited on 2020-05-16]. Available from: http://arxiv.org/abs/1812.
04948.

30. AHIRWAR, Kailash. Generative adversarial networks projects : build
next-generation generative models using TensorFlow and Keras. Birm-
ingham, UK: Packt Publishing, 2019. ISBN 978-1-78913-667-8.

31. YIN, Kayo. How to Train StyleGAN to Generate Realistic Faces. To-
wards Data Science [online]. 2019 [visited on 2020-05-16]. Available from:
https://towardsdatascience.com/how- to- train- stylegan- to-
generate-realistic-faces-d4afca48e705.

32. thispersondoesnotexist.com [online]. Philip Wang, 2019 [visited on 2020-
05-16]. Available from: http://thispersondoesnotexist.com.

33. thisartworkdoesnotexist.com [online]. Michael Friesen, 2019 [visited on
2020-05-16]. Available from: https://thisartworkdoesnotexist.com.

34. FIŠER, Jakub; JAMRIŠKA, Ondřej; LUKÁČ, Michal; SHECHTMAN,
Eli; ASENTE, Paul; LU, Jingwan; SÝKORA, Daniel. StyLit: Illumination-
Guided Example-Based Stylization of 3D Renderings. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2016). 2016, vol. 35, no. 4, pp.
92.

45

https://web.archive.org/web/20150708233542/http://googleresearch.blogspot.co.uk/2015/07/deepdream-code-example-for-visualizing.html
https://web.archive.org/web/20150708233542/http://googleresearch.blogspot.co.uk/2015/07/deepdream-code-example-for-visualizing.html
https://web.archive.org/web/20150708233542/http://googleresearch.blogspot.co.uk/2015/07/deepdream-code-example-for-visualizing.html
https://web.archive.org/web/20150708233542/http://googleresearch.blogspot.co.uk/2015/07/deepdream-code-example-for-visualizing.html
https://computer.howstuffworks.com/google-deep-dream.html
https://computer.howstuffworks.com/google-deep-dream.html
https://github.com/google/deepdream
https://deepdreamgenerator.com/
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://towardsdatascience.com/how-to-train-stylegan-to-generate-realistic-faces-d4afca48e705
https://towardsdatascience.com/how-to-train-stylegan-to-generate-realistic-faces-d4afca48e705
http://thispersondoesnotexist.com
https://thisartworkdoesnotexist.com

Bibliography

35. JAMRIŠKA, Ondřej; SOCHOROVÁ, Šárka; TEXLER, Ondřej; LUKÁČ,
Michal; FIŠER, Jakub; LU, Jingwan; SHECHTMAN, Eli; SÝKORA,
Daniel. Stylizing Video by Example. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2019). 2019, vol. 38, no. 4, pp. 107.

36. NEMIRC. Turn your footage into digital paintings with EbSynth. Ren-
derosity Magazine [online]. 2019 [visited on 2020-05-17]. Available from:
https://magazine.renderosity.com/article/5386/turn- your-
footage-into-digital-paintings-with-ebsynth.

37. SCHREIER, Jason. Blood, sweat, and pixels : the triumphant, turbulent
stories behind how video games are made. New York: Harper, 2017. ISBN
978-0062651235.

38. Fungus [online]. Fungus, 2020 [visited on 2020-06-04]. Available from:
https://fungusgames.com/.

39. Adventure Creator [online]. ICEBOX Studios, 2020 [visited on 2020-06-
04]. Available from: https://www.adventurecreator.org.

40. Game Creator [online]. Catsoft Studios, 2020 [visited on 2020-06-04].
Available from: https://docs.gamecreator.io/.

41. MILDORF, Jarmila. Dialogue across media. Amsterdam Philadelphia:
John Benjamins Publishing Company, 2017. ISBN 978-90-272-1045-6.

42. WRIGHT, Landon. Disco Elysium’s Script Is Over A Million Words
Long. GamingBolt [online]. 2020 [visited on 2020-05-17]. Available from:
https://gamingbolt.com/disco- elysiums- script- is- over- a-
million-words-long.

43. Twine is an open-source tool [online]. Interactive Fiction Technology
Foundation, 2020 [visited on 2020-06-04]. Available from: https : / /
twinery.org/.

44. SMALLWOOD, Carol. Teaching technology in libraries : creative ideas
for training staff, patrons and students. Jefferson, North Carolina: Mc-
Farland & Company, Inc., Publishers, 2017. ISBN 978-1-4766-6474-3.

45. MAYER, Brian. Create iInteractive stories in Twine. New York: Rosen
YA, Rosen Publishing Gorup, 2020. ISBN 9781725340183.

46. DEMARCO, M.C. A Catalog of Twine Story Formats [online]. 2019 [vis-
ited on 2020-05-18]. Available from: http://mcdemarco.net/tools/
hyperfic/twine/catalog/.

47. Yarn Spinner tool [online]. Secret Lab and Yarn Spinner Contributors,
2020 [visited on 2020-06-04]. Available from: https://yarnspinner.
dev/.

48. Yarn Spinner [online]. Secret Lab, 2016 [visited on 2020-05-18]. Available
from: https://www.secretlab.com.au/blog/2016/2/10/yarn-
spinner.

46

https://magazine.renderosity.com/article/5386/turn-your-footage-into-digital-paintings-with-ebsynth
https://magazine.renderosity.com/article/5386/turn-your-footage-into-digital-paintings-with-ebsynth
https://fungusgames.com/
https://www.adventurecreator.org
https://docs.gamecreator.io/
https://gamingbolt.com/disco-elysiums-script-is-over-a-million-words-long
https://gamingbolt.com/disco-elysiums-script-is-over-a-million-words-long
https://twinery.org/
https://twinery.org/
http://mcdemarco.net/tools/hyperfic/twine/catalog/
http://mcdemarco.net/tools/hyperfic/twine/catalog/
https://yarnspinner.dev/
https://yarnspinner.dev/
https://www.secretlab.com.au/blog/2016/2/10/yarn-spinner
https://www.secretlab.com.au/blog/2016/2/10/yarn-spinner

Bibliography

49. AZERWALKER. Twison [online]. GitHub, 2017 [visited on 2020-05-27].
Available from: https://github.com/lazerwalker/twison.

50. MUSTIATS, Ian. Adventure concept game [online]. GitHub, 2020 [vis-
ited on 2020-06-04]. Available from: https://github.com/mustiian/
Adventure-concept-game.

47

https://github.com/lazerwalker/twison
https://github.com/mustiian/Adventure-concept-game
https://github.com/mustiian/Adventure-concept-game

Appendix A
Acronyms

3D Three dimensional

2D Two dimensional

AI Artificial intelligence

API Application Programming Interface

JSON JavaScript Object Notation

GUI Graphical user interface

NPC Non-playable character

UI User interface

49

Appendix B
Contents of enclosed USB

readme.txt the file with USB contents description
game...........................the directory with the Unity game build
src.......................................the directory of source codes

unity...............the directory with Unity implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

51

	Introduction
	Motivation and Objectives
	Problem statements
	Structure and Methodology

	Unity
	Engine overview
	Common editor windows
	Scene
	GameObject
	Components
	User Interface
	Scripting

	2D and 3D modes
	Physics

	Graphics
	Lighting
	Particle Systems

	Optimization
	Profiler
	Occlusion culling

	Stylized animation
	Animation
	Image synthesis
	DeepDream
	StyleGAN
	StyLit
	EbSynth

	Storytelling and script writing tools
	Tools for Unity
	Fungus
	Adventure Creator
	Game Creator

	Script writing tools
	Twine
	Yarn Spinner and Editor

	2D adventure game design workflow
	Main concept
	Game mechanics and systems
	Dialogue tools for Unity
	Gameplay
	Gameflow
	Game objects

	Proof of Concept
	Used packages
	Dialogue Editor
	Twine Dialogue Parser
	EbSynth animation
	Sorting image layer
	Testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed USB

