
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 22, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Adding a treewidth support to the Boost Graph Library

 Student: Václav Král

 Supervisor: RNDr. Ondřej Suchý, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

- Get familiar with the software policies of the Boost Graph Library [1].
- Get familiar with the concept of tree decomposition and tree-width [2].
- Analyze the possibilities to add support for tree decompositions and tree-width into the library, following
its software policies.
- Implement an algorithm for obtaining a tree decomposition.
- Implement an algorithm for turning an arbitrary decomposition into a nice one of the same width.
- Implement a simple algorithm that uses dynamic programming over tree decompositions.
- Keep the algorithms as generic as possible, using the template and hook approaches usual in the library.

References

[1] https://www.boost.org/doc/libs/1_66_0/libs/graph/doc/table_of_contents.html
[2] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,
Saket Saurabh: Parameterized Algorithms. Springer 2015, ISBN 978-3-319-21274-6, pp. 3-555

Bachelor’s thesis

Treewidth support for the Boost Graph
Library

Václav Král

Department of Software Engineering
Supervisor: RNDr. Ondřej Suchý, Ph.D.

May 6, 2020

Acknowledgements

First of all, I would like to thank my supervisor RNDr. Ondřej Suchý, Ph.D.
for all his advice, patience, and the time he dedicated to helping me with this
thesis. I would also like to thank my friends and my family who helped me
during my studies and provided psychological support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 6, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Václav Král. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Král, Václav. Treewidth support for the Boost Graph Library. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2020.

Abstract

The aim of this thesis is to extend the C++ Boost Graph Library (BGL) with
algorithms for obtaining a tree decomposition of a graph and an example of
an algorithm, that uses the tree decomposition. In this thesis the reader will
get familiar with not only the algorithms and their usage, but also with the
library itself. Further in this thesis the successful implementation of the algo-
rithms is discussed, where the main focus is the compliance with conventions
of BGL and rules of generic programming. The quality of implementation and
possible enhancements are discussed at the end of the thesis. The result is
a working extension of BGL.

Keywords Boost Graph Library extension, tree decomposition, treewidth,
weighted independent set, generic programming, C++

vii

Abstrakt

Ćılem této bakalářské práce je rozš́ı̌rit C++ knihovnu Boost Graph Library
(BGL) o algoritmy pro źıskáváńı stromové dekompozice grafu a př́ıklad algo-
ritmu, který využ́ıvá tuto stromovou dekompozici. V práci se čtenář seznámı́
nejen s jednotlivými algoritmy, ale i se samotnou knihovnou, která bude
rozšǐrována. Dále se práce zabývá samotnou úspěšnou implementaćı algo-
ritmů, kde je kladen d̊uraz předevš́ım na dodržeńı konvenćı knihovny BGL a
pravidel generického programováńı. Závěrem práce hodnot́ı kvalitu implemen-
tace a navrhuje možná zlepšeńı. Výsledkem práce je funkčńı rozš́ı̌reńı BGL.

Kĺıčová slova rozš́ı̌reńı Boost Graph Library, stromový rozklad, š́ı̌rka roz-
kladu, nezávislá vážená množina, generické programováńı, C++

viii

Contents

Introduction 1
Goals . 1
Structure . 2

1 Analysis 3
1.1 Boost Graph Library . 3
1.2 Notions of used algorithms . 7

2 Design 11
2.1 Requirement specification . 11
2.2 Architecture . 12
2.3 Algorithm for obtaining a tree decomposition 13
2.4 Algorithm for obtaining a nice tree decomposition 15
2.5 Representation of mutable bags 16
2.6 Maximum weighted independent set algorithm 18

3 Implementation 21
3.1 Algorithm for obtaining a tree decomposition 21
3.2 Algorithm for obtaining a nice tree decomposition 27
3.3 Concept InsertCollection . 29
3.4 Maximum weighted independent set algorithm 30

4 Testing and documentation 35
4.1 Testing . 35
4.2 Documentation . 41

Conclusion 43

Bibliography 45

ix

A Acronyms 49

B Installation instructions 51
B.1 Contents . 51
B.2 Requirements . 51
B.3 Usage example . 52
B.4 Make commands . 52

C Contents of enclosed SD card 53

x

List of Figures

1.1 The graph concepts and refinement relationships 5
1.2 Example of data representation used by class subgraph 6
1.3 Example of a graph and its tree decomposition 7
1.4 Example of a nice tree decomposition of the graph from Figure 1.3 9
1.5 Example of a graph and its maximum weighted independent set . . 10

2.1 Tree decomposition of a graph G created by connecting decompo-
sitions of the components of G . 13

2.2 UML activity diagram describing construction of the nice decom-
position . 16

2.3 Graphical illustration of data structure that represents bags 17

3.1 ”Simulating“ a vertex v with an edge v1v2 25

4.1 Structure of tests used in our library extension 36
4.2 Status of the pipeline and its stages 39
4.3 Example of the documentation generated from annotation pre-

sented in Code snippet 4.4 . 42

xi

List of code snippets

3.1 Interface of the function tree decomposition 21
3.2 Asserts of the function tree decomposition 22
3.3 Creation of new recursive calls of the function decompose . . . 24
3.4 Implementation of the function split set 25
3.5 Interface of the function nice tree decomposition 27
3.6 Asserts of the function nice tree decomposition 28
3.7 Definition of concept InsertCollection 29
3.8 Interface of the function max weighted independent set . . . 30
3.9 Asserts of the function max weighted independent set 32
3.10 Data structure used to store results of calls of calculate weight 33
4.1 File test/main test.cpp . 35
4.2 Example of a fixture that is ”injected“ into a Test suite 37
4.3 Testing of the function max flow sep 38
4.4 Annotation of the function tree decomposition 41

xiii

List of Tables

3.1 Summary of C++ Standard Library containers and their support
of the interface of method insert defined in InsertCollection concept 30

B.1 Available make commands used to build example and tests 52

xv

Introduction

Even to this day, there are many problems that we are still unable to deter-
ministically solve in polynomial time. While their computational complexity
remains very high, some of these problems can be solved more efficiently if the
input resembles a certain structure, e.g., the input graph is a tree. An example
of such a problem is the computation of the maximal independent set—naive
brute force algorithm has an exponential complexity [1], however if the input
graph is a tree, the problem can be solved in a linear time [2]. This raises the
question ”What if the input graph is almost a tree?“.

The similarity of a graph and a tree can be formally described by the
concept of treewidth—the smaller the treewidth, the more the graph resembles
a tree. Treewidth is defined by something called a tree decomposition. We will
get more familiar with both of these terms in the first chapter.

Goals

Many natural problems can be solved in linear time if the input graph has
a small treewidth. In this thesis we will focus on extending the C++ library
Boost Graph Library (BGL) with algorithms that are used to compute the
treewidth of a graph or use the computed treewidth to run more efficiently.
BGL was chosen because it is the most established graph library in the C++
community and it provides all the necessary tools that will help us to imple-
ment our algorithms. We will put large emphasis on:

1. Generic programming. We will be using the C++ templates to max-
imize the code reuse and provide more generic interface.

2. Testing. To ensure the correctness of provided algorithms, we will be
using Unit tests.

3. Documentation. Interface of provided functions will be documented
in order to provide a reference guide for the potential users.

1

Introduction

Structure

Structure of this thesis follows the traditional Software Development Life Cycle
(SDLC)—Analysis, Design, Implementation, Testing, and Documentation.

In the first part of Chapter 1 we will get familiar with BGL, its charac-
teristics and behaviour. In the second part we will describe some of the key
notions that are necessary to understand treewidth or tree decomposition.

In Chapter 2 we will discuss requirements and code architecture. Also we
will introduce the algorithms provided by our library extension (their core and
used data structures).

In Chapter 3 we will be fulfilling requirements presented in previous chap-
ter. It will be divided into three sections (one for each algorithm). In each of
these sections we will discuss the interface along with the implementation of
the function.

Chapter 4 will be divided into two parts. In the first one we will take a
look at the testing of functions provided by our library extension. Also we will
review the fulfilment of the requirements presented in Chapter 2. The second
part is dedicated to the documentation of those functions.

2

Chapter 1
Analysis

In the first part of this chapter, we will discuss characteristics and behaviour
of the Boost Graph Library.

In the second part, we will introduce some key notions to help under-
stand the algorithms. Their implementation will be described in the next
chapter—those are algorithms for obtaining (nice) tree decomposition and for
the maximum weighted independent set problem.

1.1 Boost Graph Library

Boost Graph Library (BGL) is a part of Boost—a large set of libraries (ranging
from math utility, pseudo-random number generator (PRNG), or multi-thread
to filesystem or testing libraries) written in C++. Several of those libraries
have been accepted into the C++11 [3] or C++17 [4] standards. Most of
them are licensed under the Boost Software License, which is free and open-
source license.

BGL itself is a library focusing on graphs and graph algorithms, which are
mathematical abstractions used to solve many types of problems. It provides
not only a large collection of interfaces for such algorithms, but also vary-
ing data structures used for representing the graphs—we will discuss those
later on.

Important feature of this library is that it does not need to be built in order
to be used, because it is header-only library.

We will now describe the key aspects of the library.

1.1.1 Genericity

BGL puts heavy emphasis on genericity of its algorithms. Each algorithm and
container is written in a data structure neutral way in order to give user full
control over data structures he wants to work with. This leads to a reduction
of code size of the library from O(A ·D) to O(A + D), where A is a number of

3

1. Analysis

algorithms and D is a number of data structures. In real situation, where we
have 40 algorithms and 10 data structures that would mean difference between
400 functions and 50 functions, which is quite notable. There are three ways
in which BGL is generic [5]:

Algorithm/Data Structure Interoperability. Interface of algorithms ab-
stracts away details of particular data structure. For example, there are three
different ways of traversing over graph—traversal of all vertices, of all edges,
and along the adjacencies of vertices1. Each of these patterns has a sep-
arate iterator. Thanks to this generic interface template functions such as
depth first search()2 are allowed to work on a variety of graph data struc-
tures, where each of them has different ways of storing vertices or edges.

Extension through Visitors. BGL uses notion of visitors, which are func-
tion objects with multiple methods, that are triggered at specific event points
of traversal (e.g., discovering vertex, examining vertex, finishing vertex).

Vertex and Edge Property Multi-Parametrization. In order to asso-
ciate values (”properties“) with either vertices or edges, we have to define
corresponding container, that will hold such values. This container is called
Property Map, which is an abstraction over existing containers like std::map,
std::vector, etc. Each property has its own separate Property Map.

1.1.2 Graph concepts

Graphs are the core data structure of the library. Their interface is designed
to define how a certain type of graph should be manipulated with in a data
structure neutral fashion. This is the reason why graph interface is not a
single graph concept, instead, it is factored in smaller pieces where each piece
summarizes requirements for a particular algorithm. Another motivation to
factor graph concepts into smaller pieces is that most of the algorithms require
only a small subset of all possible graph operations. This way the users can
choose which of these smaller graph concepts fits their needs better while
using only the needed minimum of the whole interface of Graph, which leads
to increased reusability of algorithms. Figure 1.1 shows relations between
graph concepts defined in the BGL.

1Traversing along the adjacency of vertex v is basically iterating over all neighbouring
vertices of v.

2Function defined in BGL that performs depth-first traversal of a graph.

4

1.1. Boost Graph Library

BidirectionalGraph IncidenceGraph

AdjacencyGraph

GraphVertexListGraph

EdgeListGraph

AdjacencyMatrix

VertexAndEdgeListGraph

Figure 1.1: The graph concepts and refinement relationships (the image is
taken from Boost website [6]).

Bellow you can find a description for each graph concept from Figure 1.1:

Graph concept. This concept contains only a few requirements that are
common for all other graph concepts. Examples of such requirements are
vertex descriptor and edge descriptor (indices used to address vertices
and edges, respectively).

AdjacencyGraph. This concept provides efficient access to vertices adjacent
to a certain vertex in the graph.

IncidenceGraph. This concept provides efficient access to the out-edges of
a certain vertex in the graph.

BidirectionalGraph. This concept is similar to IncidenceGraph, however
it adds requirement for efficient access to in-edges. It is separated from In-
cidenceGraph, because storing not only out-edges but also in-edges requires
more storage space and not every algorithm requires in-edges (this is not an
issue for undirected graphs, since every in-edge is also an out-edge).

AdjacencyMatrix. This concept provides efficient access to any edge in the
graph given the source and target vertices (this is achieved by storing edges
in a matrix, hence the name ”Adjacency matrix“).

EdgeListGraph. This concept provides efficient traversal of all edges in the
graph, i.e., efficient iterating over every edge.

VertexListGraph. This concept provides efficient traversal of all vertices in
the graph, i.e., iterating over every vertex.

VertexAndEdgeListGraph. This concept combines requirements of Edge-
ListGraph and VertexListGraph.

5

1. Analysis

1.1.3 Subgraph

Lot of graph algorithms require the usage of subgraphs, in fact, even the
implementation of a tree decomposition algorithm that we will discuss in the
next chapter uses subgraphs. That is why BGL provides a class subgraph
that is used to create subgraphs from a graph.

The subgraph class implements induced subgraphs. The main graph and
its subgraphs are maintained in a tree data structure. The main graph is
the root, and subgraphs are either children of the root or of other subgraphs.
All of the nodes in this tree, including the root graph, are instances of the
subgraph class. The subgraph implementation ensures that each node in the
tree is an induced subgraph of its parent. The subgraph class implements the
BGL graph interface, so each subgraph object can be treated as a graph [7].

Example of a structure that maintains the parent graph and its subgraphs
is shown in Figure 1.2. Each subgraph also has its own vertex and edge
descriptor for each vertex and edge, respectively (called local) as well as a
global descriptor, that is used to address the corresponding vertex or edge in
the parent graph. That way we can distinguish between vertices and edges of
the parent graph and its subgraphs.

A

B C

D E F

G

G1 G2

G3

(a) Graph G and subgraphs G1, G2, and G3

G

G1 G2

G3

(b) Tree-like data structure
of graph G and its subgraphs

Figure 1.2: Example of data representation used by class subgraph to store
graph G with its subgraphs G1 and G2 (which has its own subgraph G3).
Inspired by [8].

6

1.2. Notions of used algorithms

1.2 Notions of used algorithms

In this section we will take a look at formal definitions of general and nice tree
decomposition and get more familiar with their properties.

1.2.1 Tree decomposition and treewidth

Tree decomposition is used to represent graph G in a tree structure, allowing
us to deduce certain connectivity properties. Also, as we already mentioned
earlier, this decomposition is used to improve and speed up certain computa-
tionally complex algorithms—example of such an algorithm was given in the
introduction of this thesis. We will discuss another example later on.

Now onto the formal definition:
A tree decomposition of a graph G is pair T = (T, {Xt}t∈V (T)), where T

is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a
bag, such that the following three conditions hold:

1. ⋃t∈V (T) Xt = V (G). I.e., every vertex of G is in at least one bag.

2. For every uv ∈ E(G), there exists a node t of T such that bag Xt contains
both u and v.

3. For every u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt}, i.e., the set of
nodes whose corresponding bags contain u, induces a connected subtree
of T .

The width of a tree decomposition T is equals the size of its largest bag mi-
nus 1. The treewidth of graph G (denoted by tw(G)) is the minimum possible
width of a tree decomposition of graph G [9, Chap. 7.2]. See Figure 1.3 for an
example. We will be using treewidth as a parameter for an FPT algorithm3

provided by our library extension.

A

C

B

D

E F

{B,C,D}

{A,B,C}{C,D,E}

{E,F}

Figure 1.3: Example of a graph (on the left) and its tree decomposition of
width 2 (on the right).

3Fixed-parameter tractable (FPT) algorithm is an algorithm with complexity exponen-
tial only in the size of some fixed parameter k, therefore it works efficiently for a small k.

7

1. Analysis

1.2.2 Nice tree decomposition

Nice tree decomposition is a special type of a tree decomposition, that fol-
lows few more conditions in addition to those defined in previous subsection.
Those conditions might seem unnatural, but they make the design of dynamic-
programming algorithms much easier (as we will see in Section 2.6), which is
the primary motivation for introducing nice tree decompositions.

Important property of nice tree decompositions is that if a graph G admits
a tree decomposition of width k, then it also admits a nice tree decomposition
of width k. In other words, every tree decomposition can be transformed into
a nice tree decomposition without increasing its width [9, Lemma 7.4].

We will say that a tree decomposition T rooted at Xr is nice, if following
conditions are satisfied [9, Chapter 7.2]:

• Xr = ∅ and Xl = ∅ for every leaf l of T . In other words, all the leaves
as well as the root contain empty bags.

• Every non-leaf node of T is of one of the following three types:

– Introduce node: a node t with exactly one child t′ such that
Xt = Xt′ ∪ {v} for some vertex v /∈ Xt′ ; we say that v is introduced
at t.

– Forget node: a node t with exactly one child t′ such that
Xt = Xt′ \ {w} for some vertex w ∈ Xt′ ; we say that w is forgotten
at t.

– Join node: a node t with two children t1, t2 such that
Xt = Xt1 = Xt2 .

For an example of the nice tree decomposition of a tree decomposition
presented in Figure 1.3 see Figure 1.4.

From now on, we will have to distinguish nice decomposition from ”not
nice“ decomposition. Decomposition that does not need to follow additional
set of rules presented in this subsection will be referred to as an general tree
decomposition4. The term tree decomposition will be used as a generalization
of both general and nice decompositions.

4Some publications use different term instead of a ”general tree decomposition“, e.g.,

”simple tree decomposition“.

8

1.2. Notions of used algorithms

{B,C,D}

Ø

{B}

{B,C}

{A,B,C}

{A,B}

{A}

Ø

{B,C,D}

{C,D}

{B,C,D}

{C,D,E}

{D,E}

{E,F}

{E}

{F}

Ø

{B,C}

Figure 1.4: Example of a nice tree decomposition of the graph from Figure 1.3
(root is on top, leaf nodes are yellow, introduce nodes green, forget nodes red,
and the join node is blue).

1.2.3 Maximum weighted independent set

We will demonstrate the use of the library extension (specifically the nice tree
decomposition) on the Maximum Weighted Independent Set problem,
which can be described as follows (description is inspired by [9, Chap. 7.1]).

Imagine that you are a famous TV network hosting a large reality show
with no capacity cap. You have already held a few auditions and rated each
contestant with a score based on their fun factor. Now it is up to you to select
contestant, that will make the cut and will be participating in the reality show.
When making the list of the cast, you would like to maximize the total fun
factor of the selected contestants. However you know that it is not a good
idea to cast people that know each other, because they will most likely form
a ”secret pact“ giving them an unfair advantage against other contestants.
That is why you will want to avoid this situation.

We model this problem as follows. Assume that relationships between
contestants are represented by an undirected graph G. Vertices of G repre-
sent contestants and each v ∈ V (G) is assigned a non-negative weight w(v)

9

1. Analysis

that represents the score (i.e., the fun factor) given at the audition. Every
edge uv of G represents that contestant u knows contestant v (this relation is
symmetrical). The task is to find the maximum weight of an independent set
in G. This problem is called Maximum Weighted Independent Set. For
an example see Figure 1.5.

5

5

6

4

6

14

4

3

8

10

5

5 4

8

Figure 1.5: Example of a graph and its maximum weighted independent set
(represented by yellow vertices) with total weight of 42.

10

Chapter 2
Design

Since we established the key algorithm notions and characteristics of BGL in
previous chapter, we are ready to discuss requirements and code architecture
of our library extension. This will also include introduction to the algorithms
themselves—their core and used data structures.

2.1 Requirement specification

In the analysis we discussed the importance of genericity and its impact on
code design of whole BGL. On one hand, since this work is a BGL extension,
it should follow the same principles—in other words, it should also be generic.
Take the graph type as an example—we should not limit user to a certain
type instance of adjacency list5—instead, it should allow user to choose his
own desired graph structure. On the other hand, we have to make sure our
algorithm is compatible with any graph structure, which is often not possible.
That is where concept checking6 comes in handy. BGL provides concept
check library (BCCL), which adds a certain way for the writer of the function
template to explicitly specify, which model should the template argument
(provided by user) conform to. This is achieved by concept asserts, which
cause compiler error message when incorrect template argument is supplied.

Same principle applies to the nice decomposition algorithm. Instead of
obtaining decomposition of certain graph inside, we will require a decomposi-
tion of a graph as an input and then transform the given decomposition into
nice one. That way the user can choose, which algorithm for retrieving tree
decomposition he will use—be it the one provided in our BGL extension, or
a different one.

There are a few more requirements, that will our library extension try to
fulfil—those will be divided into functional and non-functional.

5adjacency list is specific class implementation of adjacency list graph structure.
6https://www.boost.org/doc/libs/1_72_0/libs/concept_check/concept_check.htm

11

https://www.boost.org/doc/libs/1_72_0/libs/concept_check/concept_check.htm

2. Design

2.1.1 Functional requirements

F1) Algorithm for obtaining a tree decomposition.

F2) Algorithm for turning a general tree decomposition into a nice one.

F3) Algorithm that uses dynamic programming over a tree decomposition.

F4) Each of algorithms should have generic interface that allows different
types of graph as an input.

F5) If user provides incorrect input, algorithms should throw an exception or
a compiler error.

F6) Nice decomposition algorithm should allow user to select which tree de-
composition algorithm will be applied.

2.1.2 Non-functional requirements

N1) Our library extension should follow Boost conventions (code-style, archi-
tecture, naming conventions, etc.)

N2) Only C++ Standard Library or other Boost libraries should be used.

N3) Documentation of algorithm interfaces should be provided.

N4) Majority of code should be covered by tests.

2.2 Architecture

As mentioned in non-functional requirement specification (N1), code architec-
ture should follow conventions of BGL. Since BGL is header-only library, the
structure of our extension is quite simple and it consist only of header files.
Each algorithm has its own separate file, that consist of various non-member
functions which are part of boost namespace. Interface of each algorithm
is directly accessible through that namespace. Other functions, that are not
part of the interface and serve as ”helper“ function inside the algorithm are
inside another nested namespace detail, that is supposed to ”hide“ the im-
plementation from the user7.

Each algorithm is covered by tests (Boost test library is used). Tests
are located in separate directory, where each header file has its own test-file
counterpart named *headerfile name* test.cpp. Every tested function has
its own test suite8 which contains several test cases.

7This is an ”unspoken“ convention used not only by BGL, please see discussion:
https://stackoverflow.com/questions/26546265/what-is-the-detail-namespace-
commonly-used-for

8https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/tests_
organization/test_tree/test_suite.html

12

https://stackoverflow.com/questions/26546265/what-is-the-detail-namespace-commonly-used-for
https://stackoverflow.com/questions/26546265/what-is-the-detail-namespace-commonly-used-for
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/tests_organization/test_tree/test_suite.html
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/tests_organization/test_tree/test_suite.html

2.3. Algorithm for obtaining a tree decomposition

2.3 Algorithm for obtaining a tree decomposition

Computing the treewidth of a given undirected graph is NP-hard [10] and there
are many different approaches, e.g, exact or approximate fixed-parameter
tractable (FPT) algorithms.

In this thesis we will be using the approximate FPT algorithm that mostly
follows Reed [11] and is described in the book Parameterized Algorithms [9,
Chap. 7.6.2]. Given an undirected graph G and integer k, the task of this
algorithm will be finding a tree decomposition of a graph G with treewidth at
most 3k + 4 or concluding that tw(G) > k. Time complexity of this algorithm
is O(8kk2n2).

As a first step we will have to decide, whether given graph G is connected
or not. If it is not, we will apply the algorithm to each connected component
of G and connect obtained tree decompositions (see Figure 2.1). From now
on, we will assume that G is connected.

T1
T2

T3

(a) Tree decompositions of components of
graph G

T3T1

T2

T

(b) Tree decomposition of a graph G

Figure 2.1: Tree decomposition of graph G created by connecting decomposi-
tions of the components of G (gray vertices are the root of they decomposition
they belong to).

The core of the algorithm will be a recursive procedure decompose(W, S),
where S (W ⊆ V (G) and |S| ≤ 3k + 4. This procedure tries to decompose
subgraph G[W] so that S is contained in one of the bags of the decomposition.
Output of this procedure will be a rooted tree decomposition TW,S . Root call
of this procedure will be decompose(V (G), ∅), which will return a rooted tree
decomposition of G.

13

2. Design

2.3.1 Procedure decompose

First, we will need to construct a set Ŝ with following properties:

1. S (Ŝ ⊆W

2. |Ŝ| ≤ 4k + 5

3. every connected component of G[W \ Ŝ] is adjacent to at most 3k + 4
vertices of Ŝ.

Constructed set Ŝ will be the root bag of the decomposition constructed by
this call of decompose.

If |S| < 3k + 4, we take any vertex u ∈W \S and construct Ŝ : S ∪{u}. If
|S| = 3k+4, we iterate through all possible partitions of S into two parts A and
B (there is 23k+4 of them) and apply a max-flow algorithm to verify, whether
minimum order of a separation of G[W], where A and B are separated, does
not exceed k+1. This is done by creating a new vertex, that will be connected
with every vertex of A—this will be the source for the max-flow algorithm.
Similarly we will construct a new vertex connected with every vertex of B—
this vertex will be the sink. After applying a max-flow algorithm to find a
maximum flow between the newly created source and the sink, we will get a
separation (A′, B′), where (A′ ∩B′) represents the cut.

If the computed flow is too big, i.e., such a partition of S does not exist for
every pair (A, B), we can conclude that tw(G[W]) > k, therefore tw(G) > k
and we can terminate the whole algorithm. If we have found a partition
(A′, B′) that satisfies given properties, we can construct Ŝ as S ∪ (A′ ∩B′).

After successfully constructing Ŝ, we create vertex sets D1, D2, .., Dp for
every connected component i = 1, 2, .., p of G[W \ Ŝ]. For each i we will
recursively call decompose(NG[Di], NG(Di)) and let ri be the root of the de-
composition returned by the decompose call. Now we will create root bag
Xr = Ŝ and for every i we will attach each decomposition Ti below r using
edge rri (note that if p = 0, then Ŝ will be a leaf of the tree decomposition of
G). We have successfully created decomposition of Tw,s.

2.3.2 Used data structures

Now that we are familiar with the algorithm, our next aim will be choosing
the right data representation. Since this work is a BGL extension, we will use
existing solutions provided by the BGL.

In Subsection 1.1.2 we discussed the role of graph concepts in BGL, which
will now come handy. First step will be to decide, which type of a graph we
expect as an input by user. In this algorithm we will need to traverse through
all vertices many times (e.g., when we will need to retrieve all neighbours of a
certain vertex or while constructing components of a given graph), therefore

14

2.4. Algorithm for obtaining a nice tree decomposition

the best option is VertexListGraph—it is the minimum concept, that includes
the operation we will require.

Second step will be to decide which type of a graph will be used to repre-
sent the tree decomposition. As opposed to the input graph, we do not require
any special operations on this graph—only required operations are adding ver-
tices and edges, which are basic operations supported by every graph concept.
Therefore there is no point in limiting user to certain graph concept and we
will let him decide, which one he wants to use.

Last step will be choosing the right data structure to represent bags of the
decomposition. Since it is more complex, we will dedicate a separate section
for it (see Section 2.5).

2.4 Algorithm for obtaining a nice tree
decomposition

Main task of this algorithm will be creating a nice tree decomposition d2 from
an general tree decomposition d1 provided by the user. This will be done
by traversing through graph d1 while simultaneously constructing graph d2
that follows additional set of rules introduced in the definition of the nice tree
decomposition (see Subsection 1.2.2).

Algorithm is described in Figure 2.2. Note that UML activity diagram
is significantly simplified in order to maintain readability. From the diagram
we can observe that constructing a nice decomposition from a general de-
composition will not affect its width, i.e., if a decomposition d1 has width k,
decomposition d2 will also have width k [9, Chap. 7.2]. To really simplify the
algorithm, first, we will construct node with empty bag for every leaf node of
d1. Second, we will insert a few nodes between each other nodes of d1 where
each time there will be one element from node of d1 introduced or forgotten.
That way we will never construct a node with a bag that has more elements
than the largest bag of d1, causing the increased width of d2.

2.4.1 Used data structures

Data representation will be similar to the one used in the algorithm for ob-
taining a general tree decomposition. However this time we will not require
a graph whose nice decomposition we will be constructing, just the general
decomposition.

We will have to decide, which type of graph we will use for both types of
decomposition. Since we will be traversing through the vertices of a general
decomposition provided by the user, VertexListGraph will be the best option.

Similarly to the general decomposition algorithm, the data structure to
represent the bags of both decompositions will be discussed in Section 2.5.

15

2. Design

Create a new vertex in
graph d2 with an empty

bag and add it to Q2

Initialize Q1 with
any vertex from d1.

[Q1 is empty]:Decomposition d2
[Constructed]

[Q1 is non-empty]

[Bag of FQ1 and
FQ2 are equal]

Q1 - queue of vertices from graph d1
Q2 - queue of vertices from graph d2
FQ1 - first vertex in queue Q1
FQ2 - first vertex in queue Q2

Create a new vertex in graph d2
with the same bag as the FQ2 and
add/remove one element to/from it.

Then connect those two vertices
with an edge. Pop FQ2 and add
the newly created vertex to Q2.

Add neighbour of FQ1
to Q1 after popping FQ1.

[FQ1 has 1
neighbour not

processed by Q1]

Add any of the neighbours
of FQ1 into Q1. Create two
new vertices in graph d2
with the same bag as the
FQ2. Then connect them
with an edge to the FQ2.

Pop FQ2. Add newly
created vertices to Q2.

[FQ1 doesn't have
any neighbour not
processed by Q1]

[FQ1 has at least
2 neighbours not
processed by Q1]

Create a new vertex in graph d2
with the same bag as the FQ2

and remove one element from it.
Then connect those two vertices

with an edge.
[FQ2 has a non-

empty bag]

[FQ2 has an
empty bag]

[Bag of FQ2 and
FQ1 are not equal]

Pop FQ1 and FQ2.

Figure 2.2: UML activity diagram describing construction of the nice decom-
position (graph d1 is a general decomposition provided by user and graph d2
is a nice tree decomposition).

2.5 Representation of mutable bags

Since we want to give the user as much freedom of choice as possible, we will
use something called Read/Write Property Map9—it is a generic interface for
associative map, that allows read and write operations (value is retrieved using
the key). That way the user can choose a data structure (e.g., std::map) as
long as it follows the rules of Read/Write Property Map concept. The value
type of this map will be a mutable container. Graphical illustration of this
data structure is presented in Figure 2.3.

9https://www.boost.org/doc/libs/1_72_0/libs/property_map/doc/
ReadWritePropertyMap.html

16

https://www.boost.org/doc/libs/1_72_0/libs/property_map/doc/ReadWritePropertyMap.html
https://www.boost.org/doc/libs/1_72_0/libs/property_map/doc/ReadWritePropertyMap.html

2.5. Representation of mutable bags

A

B

C

D

{0,1}

{3,4,5,6,7,8}

{1,2,3,4}

{3,4,9,10,11,12}

Key type:

decomposition
vertex

Value type:

container containing
vertices of graph

Read/Write Property Map

Figure 2.3: Graphical illustration of data structure that represents bags.

Next step will be choosing the right concept of a container that will repre-
sent a single bag of node of the decomposition (we will be using list of concepts
provided by BGL as a reference [12]). BGL offers a wide range of concepts
and the most basic and simple one is Collection10. It provides methods for
accessing and most importantly iterating over the container. However it does
not provide a method for inserting elements into the container, which is one of
the key methods that we will need (since we will be constructing bags, which
requires inserting of elements). Therefore Collection concept is not suitable
for us.

The most basic concept that provides insert method is Sequence11. How-
ever downside of this concept is that it does not support popular containers
like std::set or std::unordered set.

Since none of the concepts provided by BGL is entirely suitable, we will
have to define our own container concept called InsertCollection. Its imple-
mentation will be discussed in Section 3.3.

10https://www.boost.org/doc/libs/1_72_0/libs/utility/Collection.html
11https://www.boost.org/sgi/stl/Sequence.html

17

https://www.boost.org/doc/libs/1_72_0/libs/utility/Collection.html
https://www.boost.org/sgi/stl/Sequence.html

2. Design

2.6 Maximum weighted independent set algorithm

Solving the Maximum Weighted Independent Set problem is classified as
NP-hard [13]. For the naive brute-force approach we would have to generate
every possible set of vertices of graph G (that is 2n permutations) and find
the maximum weighted independent set among them—that would result into
time complexity O(2n · n2).

However we can approach this problem much more effectively provided
that we have a nice tree decomposition T = (T, {Xt}t∈V (t)) of graph G of
width k with root r. We will be using the algorithm described in the book
Parameterized Algorithms [9, Chap. 7.3.1]. This algorithm will allow us to
solve problem in time 2k ·kO(1). The core of the algorithm will be a bottom-up
dynamic programming based procedure calculate weight(t, S):

calculate weight(t, S) = maximum possible weight of the set Ŝ such that
S ⊆ Ŝ ⊆ Vt, Ŝ ∩Xt = S, and Ŝ is independent, where Vt is the union of all

the bags present in the subtree of T rooted at t, including Xt

If no such set Ŝ exists (for example S itself is not independent), the re-
turn value of the procedure will be −∞. Root call of the procedure will be
calculate weight(r, ∅), which will calculate the maximum weight of graph G,
because Vr = V (G).

2.6.1 Procedure calculate weight

This recursive procedure defines behaviour for each type of node t we will
be possibly dealing with. The base case of this recurrence will be the leaf
node. For non-leaf nodes, the result of the procedure depends on the results
of their child nodes. Now we will define the behaviour for each type of nodes
introduced in Subsection 1.2.2 (in order to retain readability, we will be using
the abbreviation cw instead of full name of the procedure):

Leaf node. If t is a leaf node, we will return 0.
Introduce node. If t is an introduce node with a child t′ such that
Xt = Xt′ ∪ {v} for some v 6∈ Xt′ , we put:

cw(t, S) =

cw(t′, S) if v 6∈ S

cw(t′, S \ {v}) + w(v) if S \ {v} is independent
−∞ otherwise

(2.1)

Forget node. If t is a forget node with a child t′ such that Xt = Xt′ \ {w}
for some w ∈ Xt′ , we put:

cw(t, S) = max
{
cw(t′, S), cw(t′, S ∪ {w})

}
(2.2)

18

2.6. Maximum weighted independent set algorithm

Join node. If t is a join node with children t1, t2 such that Xt = Xt1 = Xt2 ,
we put:

cw(t, S) = cw(t1, S) + cw(t2, S)− w(S) (2.3)

2.6.2 Used data structures

Now we can move onto the choosing of right data structures. Most of them
will be similar to those used in previous algorithms.

First we need to choose the right representation for both graph and its nice
decomposition. In both cases we will need to traverse through vertices—as we
already established in previous sections, best graph concept for this matter is
VertexListGraph. Both of these graphs can be of different type, however they
both have to implement the graph concept VertexListGraph.

Next are the bags of the decomposition. Since the algorithm will use
the bags of decomposition only for reading, they will be be represented by
Readable Property Map. The value type of the map will be Container12, which
is the most generic interface for a container that provides basic operations
for reading.

Each of the vertices of the graph should have defined its weight. For this
we will be using similar approach as we did with bags, that is, Read/Write
Property Map, where we will use the vertex descriptor as a key to access the
weight of the said vertex. However the weight has to be a non-negative integer
(e.g., uint, ulong).

The purpose of this algorithm is not only to return the total weight of
the found maximal weighted set, but also provide the set itself. This will
be achieved by using something called Color Map—it is basically another
Property Map, where each vertex of a graph has assigned a color13. In our
case we will use two colors—white, if vertex belongs to the maximal weighted
set or black otherwise.

12https://www.boost.org/sgi/stl/Container.html
13https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/ColorValue.html

19

https://www.boost.org/sgi/stl/Container.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/ColorValue.html

Chapter 3
Implementation

This chapter will focus on fulfilling functional and non-functional requirements
from the previous chapter. It will be divided into three sections (for each
algorithm mentioned in F1, F2, and F3). In each of these parts we will discuss
interface, core of the functions and reasoning behind certain decisions that
were made.

3.1 Algorithm for obtaining a tree decomposition

In this section we will focus on implementation of the algorithm that con-
structs general tree decomposition—function tree decomposition. Interface
of the function is shown in Code snippet 3.1.

template <class Graph, class Decomposition, class Bags>
bool tree_decomposition(Graph & g, Decomposition & d, Bags &

bags, unsigned long k)↪→

Code snippet 3.1: Interface of the function tree decomposition.

Graph g—graph whose tree decomposition will be constructed.
Decomposition d—graph in which will be the decomposition stored (this is
an in/out parameter).
Bags bags—Property Map containing bags for each node of d (this is an
in/out parameter).
unsigned long k—parameter, which will limit the width of decomposition.

Return value of this function will be a boolean—true, if tree decomposition
of graph g exists with width at most 3k + 4 and false if such a decomposition
does not exist.

21

3. Implementation

Since most of the parameters of the function are template parameters,
we have to assure that the user provided a correct input (preferably during
compilation). That is achieved using the Boost concept asserts and Boost static
asserts. If any of these asserts (see Code snippet 3.2) fails, then compilation
error will be thrown.

//== TYPEDEFS ==========================
//vertex descriptor that is used to address vertices in graph
using Graph_vertex = typename

graph_traits<Graph>::vertex_descriptor;↪→

//vertex descriptor that is used to address vertices in
decomposition graph↪→

using Decomposition_vertex = typename
graph_traits<Decomposition>::vertex_descriptor;↪→

//type of value (container) of PropertyMap
using Bag_value_type = typename

property_traits<Bags>::value_type;↪→

//type of container value, that is stored as value in
PropertyMap↪→

using Bag_inside_type = typename Bag_value_type::value_type;

//== ASSERTS ===========================
BOOST_CONCEPT_ASSERT((VertexListGraphConcept<Graph>)); //A1
BOOST_CONCEPT_ASSERT((InsertCollection<Bag_value_type>)); //A2
BOOST_CONCEPT_ASSERT((ReadWritePropertyMapConcept<Bags,

Decomposition_vertex>)); //A3↪→

BOOST_STATIC_ASSERT((is_same<Graph_vertex,
Bag_inside_type>::value)); //A4↪→

Code snippet 3.2: Asserts of the function tree decomposition.

A1) Graph must be a model of VertexListGraphConcept.

A2) Each bag of Bags container must be a model of InsertCollection (see
Section 3.3).

A3) Bags must be a model of Read/Write Property Map (with Decomposition
vertex descriptor as a key).

A4) Graph vertex descriptor and value type of container inside the Bags must
be the same type.

22

3.1. Algorithm for obtaining a tree decomposition

3.1.1 Implementation of the algorithm

Now that we are familiar with the interface of the function, let us take a closer
look into the implementation.

Assuming that all concept asserts passed, next step will be retrieving
all connected components of graph g provided by user, since procedure de-
compose expects sets of vertices from a connected graph. This is achieved
by helper function get components, which returns all components of g in a
std::vector. However this function requires subgraph (see chapter Subsec-
tion 1.1.3) as an input, so we have to create empty instance of class subgraph
and copy graph g into it.

Then, function decompose is called on every component. Return type of
this function is boost::tuple, where first element is vertex descriptor of
root node of decomposition, that was constructed by current call of decompose
and the second one is bool. If the bool = true, decomposition was found.
Otherwise, decomposition was not found and we can immediately return false
without further inspection of remaining components.

If the decomposition of every component was successfully found, we will
connect each decomposition with an edge to create one connected decom-
position. Now we can return true, since decomposition of g was found and
successfully constructed.

3.1.2 Procedure decompose

Function decompose is the core and also the most important part of this algo-
rithm. By recursively calling this function, decomposition of graph g and its
bags will be constructed (both decomposition and Property Map representing
the bags are passed by reference). First (aka the root) call of this recursive
function will contain empty decomposition, empty bags, std::set of vertex
descriptors w containing all vertices of graph g and empty std::set s.

First goal of this function is to construct set s1 (corresponding to the set
Ŝ in Subsection 2.3.1). If size of set s is smaller than 3k + 4, we iterate over
set w in order to find a vertex that is not contained in s and to insert it
into set s—this is done by trying to emplace every vertex of w into s using
std::set.emplace(). If enough vertices were successfully inserted, we stop
iterating and carry on with the algorithm.

If the size of s is equal to 3k + 4, we have to find a vertex separation of
s in graph g with minimum order not exceeding k + 1. Such a separation is
retrieved using the helper function get separation that returns either a set of
vertices forming the desired separation or an empty set if such separation was
not found—in that case, we can immediately return false in the current call
of decompose, since decomposition of width ≤ 3k + 4 cannot be constructed.

23

3. Implementation

Now we can insert a new vertex into the decomposition graph—it will
represent the root node of the decomposition created by the current call of
decompose. Since every node of decomposition should have its own bag, we
will create a new bag for this node and it will contain all vertices from set s1.

Finally, we will create a new subgraph of g, that will contain vertices from
w \ s (we will call this set d in short). This can be easily done by using
std::set difference—it inserts difference of two sets into a new one, in our
case set d. Next, we will construct a new subgraph d graph using the set of
vertices d obtained earlier. Now we can call recursively decompose on every
component of d graph (see Code snippet 3.3).

//for every component we will recursively call decompose
for (auto component : d_components) {

tuple<Decomposition_vertex, bool> res = detail::decompose(
parent,
decomposition,
bags,
detail::get_neighbour_vertices(*component, true),
detail::get_neighbour_vertices(*component, false),
k);

if (!get<1>(res)) return res;
//connect bag with current root
add_edge(get<0>(res), root_bag, decomposition);

}

Code snippet 3.3: Creation of new recursive calls of the function decompose.

3.1.3 Retrieving separation

Function get separation is another very important helper function. Its main
purpose is to find a vertex separator of a graph containing vertices from s with
minimum order not exceeding k + 1. If such a separator does not exist, an
empty set will be returned.

First, we will need to generate every possible partition of s into two non-
empty parts. This is done by the function split set, which takes a set of
vertices s and a seed number c number and returns a tuple of two sets (let
us call them a and b). Binary representation of c number will decide, how
s will be divided: If nth number of the binary representation of c number
is 0, the nth element of s will belong to a. Otherwise it will belong to b.
Implementation of this function is shown in Code snippet 3.4.

24

3.1. Algorithm for obtaining a tree decomposition

Graph_vertex_set a, b;
unsigned long long set_size = s_copy.size();
for (unsigned long long i = 0; i < set_size; i++) {

auto it = s_copy.begin();
if (c_number % 2 == 0) a.insert(*it);
else b.insert(*it);
s_copy.erase(it);
if (c_number != 0) c_number = c_number >> 1;

}
return make_tuple<Graph_vertex_set, Graph_vertex_set>(a, b);

Code snippet 3.4: Implementation of the function split set.

Now that we have every possible partition of s, we can move onto finding
a minimum separator that separates a and b. This is achieved by function
max flow sep that applies max-flow algorithm on a graph g, where partition
a will be the source and partition b will be the sink, which calculates the
vertex separation of the partition (this will be our desired separator). For that,
we will be using edmonds karp max flow provided by BGL that implements
Edmonds and Karp algorithm. However this leads to a few obstacles which will
force us to slightly modify the graph g before using edmonds karp max flow.

First obstacle is that edmonds karp max flow expects directed graph as
an input—however we are working with undirected graphs (see Section 2.3).
This is easily solved by converting our graph g into a new one (let us call it g1)
where every undirected edge uv will be represented by two directed edges uv
and vu. From now on we will be working with a newly created graph g1.

Second obstacle is that edmonds karp max flow calculates an edge sep-
arator instead of a vertex separator. For each vertex v we will create two
vertices v1 and v2 connected by directed edge v1v2. Every edge that had an
end in v will be connected to v1 and every edge that had a start in v will
be connected to v2 (see Figure 3.1). This method is explained in a proof of
Menger theorem [14]. Now if the max-flow algorithm calculates an edge v1v2
as a part of separator of g1, it means that vertex v is also a part of separator
of a graph g.

v v1 v2

Figure 3.1: ”Simulating“ a vertex v with an edge v1v2.

25

3. Implementation

Our source for the max-flow algorithm is a set a and the sink is a set b. Both
of these sets can contain multiple vertices, however edmonds karp max flow
expects a single vertex as a source and sink. As described in Subsection 2.3.1,
we will have to create two new vertices x1 and x2 in a graph g1, representing
the source and sink, respectively. Vertex x1 will be connected with every
vertex of a and x2 will be connected with every vertex of b.

As a last step, we have to define capacities for each edge of g1. Edges that

”simulate“ a vertex from g (described in Figure 3.1) will have capacity set to
1. Every other edge has capacity of 2 (thus these edges will not be part of the
computed separator). Capacities are stored in Property Map, that is passed
as an argument to edmonds karp max flow.

Now we are ready to call edmonds karp max flow. If the return value
of this function is at most k + 1, we have successfully found separation of a
graph g1—edges of this separation are stored in another Property Map. For
each edge v1v2 contained in Property Map we will insert vertex v from g into
the set, that will be the return value of function get separation. This set is
our desired vertex separation of graph g.

If the return value of edmonds karp max flow is higher than k+1, function
max flow sep will return an empty set and it will have to be called on another
partition of s created by the function split set.

3.1.4 Retrieving components

Earlier we mentioned helper function get components that is used to retrieve
all components of a certain subgraph G. This function is basically a wrap-
per around boost::connected components provided by BGL, which returns
number of all components and a map where each vertex from G has assigned
an integer which determines in which component it belongs to. However this
representation is not suitable for our algorithms, therefore we will rewrite
the map into std::vector containing pointers to all of the components of
graph G.

3.1.5 Retrieving neighbours

Another useful helper function is get neighbour vertices which returns all
of the neighbour vertices of a subgraph G′ in a parent graph G (formally
NG[G′] or NG(G′)).

It is basically a wrapper around the function boost::adjacent vertices
provided by BGL with a small modification—our function takes in addition
to subgraph G′ also a boolean as an input which determines if the neighbours
of G′ should also include vertices of G′ themselves. If the boolean is set to
true, vertices of G′ are included, otherwise they are not (formally NG[G′] and
NG(G′), respectively).

26

3.2. Algorithm for obtaining a nice tree decomposition

3.2 Algorithm for obtaining a nice tree
decomposition

In Section 2.4 we discussed the algorithm that constructs a nice decompo-
sition based on a general tree decomposition provided by the user and now
it is time to take a look at the implementation. Interface of the function
nice tree decomposition is shown in Code snippet 3.5. Note that both gen-
eral and nice tree decomposition use the same data type for the graph and
its bags.

template <class Decomposition, class Bags>
typename graph_traits<Decomposition>::vertex_descriptor
nice_tree_decomposition(Decomposition & d, Bags & bags,

Decomposition & nice_d, Bags & nice_bags)↪→

Code snippet 3.5: Interface of the function nice tree decomposition.

Decomposition d—a general decomposition based on which a nice tree de-
composition will be constructed.
Bags bags—Property Map containing bags for each node of d.
Decomposition nice d—graph in which will be the constructed nice decom-
position stored (this is an in/out parameter).
Bags nice bags—Property Map containing bags for each node of nice d (this
is an in/out parameter).

Return value of this function is vertex descriptor of root node of con-
structed decomposition. If d contains a cycle, std::invalid argument ex-
ception is thrown.

Similarly to function tree decomposition we have to make sure that user
provided a correct input. For example if graph concept that does not support
traversing through vertices was provided, code would not compile and compiler
would produce long error messages, making it much harder for user to find
out what he did wrong—this is why we will use Boost concept asserts. Below
is a list of all used asserts (for more details see Code snippet 3.6):

A1) Decomposition must be a model of VertexListGraphConcept.

A2) Each bag of Bags container must be a model of InsertCollection (see
Section 3.3).

A3) Bags must be a model of Read/Write Property Map (with Decomposition
vertex descriptor as a key).

27

3. Implementation

//== TYPEDEFS ===
//vertex descriptor that is used to address vertices in

decomposition graph↪→

using Decomposition_vertex = typename
graph_traits<Decomposition>::vertex_descriptor;↪→

//type of value (container) of PropertyMap
using Bag_value_type = typename

property_traits<Bags>::value_type;↪→

//=== TYPEDEFS ==

//== ASSERTS ==
BOOST_CONCEPT_ASSERT((VertexListGraphConcept<Decomposition>));

//A1↪→

BOOST_CONCEPT_ASSERT((InsertCollection<Bag_value_type>)); //A2
BOOST_CONCEPT_ASSERT((ReadWritePropertyMapConcept<Bags,

Decomposition_vertex>)); //A3↪→

//== ASSERTS ==

Code snippet 3.6: Asserts of the function nice tree decomposition.

3.2.1 Implementation of the algorithm

In Section 2.4 we have gotten familiar with a simplified version of this algo-
rithm (especially in Figure 2.2). Actual implementation is similar, however
instead of an iterative algorithm with a queue we will be using a recursive
function nice decomposition rec, that works in the same manner. In the
next few paragraphs we will be using same terms, as in Section 2.4—d1 is a
general decomposition, d2 is a nice decomposition, FQ1 and FQ2 is (since we
do not use a queue) a currently processed vertex from d1 and d2, respectively.

Function nice decomposition rec takes FQ1 and FQ2 as a parameter,
compares them and if there are any differences between their bags, new vertex
is constructed in d2 and nice decomposition rec is called with a new FQ2.
If there are no differences, we can move on to another vertex from d1 (this
vertex will be a new FQ1).

The root call of nice decomposition rec will be with a vertex that has
an empty bag as FQ2 (this will be also the root of d2) and any vertex from
d1 as FQ1 (it does not matter which one since d1 is not rooted).

After nice decomposition rec successfully finishes, d2 will contain a nice
tree decomposition constructed based on d1. Then the root of d2 is returned
as a return value of the function nice tree decomposition.

28

3.3. Concept InsertCollection

3.3 Concept InsertCollection

In Section 2.5 we discussed the reason behind defining our own container
concept and now it is time to take a look at the implementation (presented
in Code snippet 3.7). The implementation will be following Boost Concept
Check Library (BCCL) standards [15].

#ifndef BOOST_GRAPH_INSERT_COLLECTION
#define BOOST_GRAPH_INSERT_COLLECTION
template <class C>
struct InsertCollection : Collection<C>
{
public:

using Container_value_type = typename C::value_type;

BOOST_CONCEPT_USAGE(InsertCollection)
{

x.insert(x.begin(), e); // require insert method
}

private:
C x;
Container_value_type e;

};
#endif // BOOST_GRAPH_INSERT_COLLECTION

Code snippet 3.7: Definition of concept InsertCollection.

InsertCollection is defined using struct that is a refinement of BCCL con-
cept Collection—this ensures that any data structure that is in conformance
to InsertCollection is also in conformance to Collection. Inside struct we will
use macro BOOST CONCEPT USAGE that exercises if method insert is defined for
the data structure that is being tested. If it is undefined, substitution of tem-
plate argument C will fail and the code will not compile. Interface of method
insert must be defined as follows:

insert (iterator pos, T& value);

Iterator pos is a position where the element value should be inserted (in
case of sorted container it is as close to pos as possible). Return value is
not tested. This interface was chosen because it is implemented by most of
the containers of C++ Standard Library. For summary of containers that
implement this interface refer to Table 3.1.

29

3. Implementation

Container Implements insert? Since
std::array No -
std::vector Yes C++11 [16]
std::deque Yes C++11 [17]
std::forward list No -
std::list Yes C++11 [18]
std::set Yes C++11 [19]
std::map Yes C++11 [20]
std::multiset Yes C++11 [21]
std::multimap Yes C++11 [22]
std::unordered set Yes C++11 [23]
std::unordered map Yes C++11 [24]
std::unordered multiset Yes C++11 [25]
std::unordered multimap Yes C++11 [26]
std::stack No -
std::queue No -
std::priority queue No -

Table 3.1: Summary of C++ Standard Library containers and their support
of the interface of method insert defined in InsertCollection concept.

3.4 Maximum weighted independent set algorithm

In this section we will focus on implementation of the algorithm that solves
the Maximum Weighted Independent Set problem—i.e., the function
max weighted independent set. Interface of the function is shown in Code
snippet 3.8.

template <class Graph, class Decomposition, class Bags, class
Weights, class Colors>↪→

typename property_traits<Weights>::value_type
max_weighted_independent_set(

Graph & g,
Decomposition & d,
Bags & bags,
typename graph_traits<Decomposition>::vertex_descriptor root,
Weights & weights,
Colors & colors)

Code snippet 3.8: Interface of the function max weighted independent set.

30

3.4. Maximum weighted independent set algorithm

Graph g—graph whose maximum weighted independent set will be computed.
Decomposition d—nice tree decomposition of graph g.
Bags bags—Property Map containing bags for each node of d.
decomposition vertex descriptor root—root node of decomposition d.
Weights weights—Property Map that contains weights for each vertex of g.
Colors colors—Property Map representing the maximum weighted indepen-
dent set. Each vertex of g is assigned a color—white if they belong to the
maximum weighted independent set, black if not. This is an in/out parameter.

Return value of the function is total weight of the computed maximum
weighted independent set. If d is not a tree, std::invalid argument excep-
tion is thrown.

As we can see, the function interface consists of many template arguments.
To ensure that the user provided correct input, we will be using Boost concept
asserts. Below are listed all asserts that have been used (their particular
implementation is shown in Code snippet 3.9):

A1) Graph must be a model of VertexListGraphConcept.

A2) Decomposition must be a model of VertexListGraphConcept.

A3) Bags must be a model of Readable Property Map (with Decomposition
vertex descriptor as a key).

A4) Each bag of Bags container must be a model of Container (generic
interface for container).

A5) Graph vertex descriptor and the value of type of container inside the
Bags must be the same type.

A6) Weights must be a model of Read/Write Property Map (with Graph
vertex descriptor as a key).

A7) The value type of Weights must be an unsigned integer (e.g., unsigned
int, unsigned long).

A8) Colors must be a model of Read/Write Property Map (with Graph vertex
descriptor as a key).

A9) The value type of Colors must be a model of Colors type.

31

3. Implementation

//== TYPEDEFS ===
//type of value (container) of PropertyMap
using Bag_value_type = typename

property_traits<Bags>::value_type;↪→

//type of container value, that is stored as value in
PropertyMap↪→

using Bag_inside_type = typename Bag_value_type::value_type;
//type representing weight
using Weight_type = typename

property_traits<Weights>::value_type;↪→

//type representing color
using Colors_type = typename

property_traits<Colors>::value_type;↪→

//== ASSERTS ==
BOOST_CONCEPT_ASSERT((VertexListGraphConcept<Graph>)); //A1
BOOST_CONCEPT_ASSERT((VertexListGraphConcept<Decomposition>));

//A2↪→

BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept<Bags,
Decomposition_vertex>)); //A3↪→

BOOST_CONCEPT_ASSERT((Container<Bag_value_type>)); //A4
BOOST_STATIC_ASSERT((is_same<Graph_vertex,

Bag_inside_type>::value)); //A5↪→

BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept<Weights,
Graph_vertex>)); //A6↪→

BOOST_CONCEPT_ASSERT((UnsignedIntegerConcept<Weight_type>));
//A7↪→

BOOST_CONCEPT_ASSERT((ReadWritePropertyMapConcept<Colors,
Graph_vertex>)); //A8↪→

BOOST_CONCEPT_ASSERT((IntegerConcept<Colors_type>)); //A9

Code snippet 3.9: Asserts of the function max weighted independent set.

3.4.1 Implementation of the algorithm

Let us assume that asserts from earlier passed. As a first step, recursive
function calculate weight (introduced in Subsection 2.6.1) will be called on
a root of the decomposition provided by the user.

In every call of this function we will check a memory structure (see Sub-
section 3.4.2) that stores the results for each combination of parameters t and
S (this structure is passed by a reference in every call). If the function was
already called with the same combination of parameters t and S, we will use

32

3.4. Maximum weighted independent set algorithm

the memorized results. Otherwise we will compute the weight and maximum
independent set and store it into the memory structure mentioned earlier.

After the algorithm ends a function get independent set backtracks re-
cursive calls stored in memory structure and retrieves a set of vertices that
belong to the maximum weighted independent set. Based on this set each
vertex from graph g is assigned a color (white color if it belongs to the set,
otherwise black color). Then the total weight of the computed maximum
independent set is returned.

3.4.2 Memory structure

Memory structure for storing results of calls of the function calculate weight
is represented by a 2D map. First dimension that represents parameter t is
stored as std::map with t as a key. Value of this map is the second dimension
representing parameter S stored as std::unordered map with S as a key.

However std::unordered map requires for its key to have a hash object
defined, which S (represented by std::set) does not have by default. This
issue is solved by using the Boost Functional library, which defines hash objects
for every STL container (including our std::set).

Finally, the value of the second dimension is a pair (std::pair) which
stores weight as a first value and list14 of vertices of graph g as a second value.
Signature of this data structure is shown in Code snippet 3.10.

//data structure for storing calculate_weight() call results
std::map<

Decomposition_vertex,
std::unordered_map<

std::set<Graph_vertex>,
std::pair<Weight_type, std::list<Graph_vertex>>,
hash<std::set<Graph_vertex>>

>
> memory;

weight = memory[t][S].first;
backtrack_list = memory[t][S].second;

Code snippet 3.10: Data structure used to store results of the calls of
calculate weight and an example of access to this structure.

14Value of the list is used in backtracking of the recursive calls in the function
get independent set. List is either empty or contains a vertex w in case that t is a forget
node and cw(t, S ∪ {w}) > cw(t, S).

33

Chapter 4
Testing and documentation

This chapter is divided into two parts. In the first one we will take a look
at testing of functions provided in our library extension. Also we will discuss
fulfilment of the requirements introduced in Section 2.1.

The second part of this chapter is dedicated to documentation of interfaces
provided by our library extension.

4.1 Testing

Since this is an extension for Boost library, the Boost Test Library (BTL) was
chosen as an Unit testing framework. Unit tests are supposed to assure that
all function provided by this library (and also most of the helper function used
by them) are working correctly. Structure of these test will be discussed in the
next subsection. In the last two subsections we will discuss a continuous inte-
gration that is used to build and run tests automatically and the requirements
from Section 2.1.

4.1.1 Structure

Three different usages of the BTL [27] are supported—header-only variant,
static library variant, and shared library variant. We will be using the static
library variant, because it is much simpler to use and it allows us to split the
tests into multiple files.

#define BOOST_TEST_MODULE Treewidth support for bgl tests
#include <boost/test/included/unit_test.hpp>

Code snippet 4.1: File test/main test.cpp.

35

4. Testing and documentation

First, we will need to define the main translation unit, that will run all
other test files. In our project it is file test/main test.cpp (see Code snip-
pet 4.1). Now that we have defined our main translation unit, we can finally
create test files for each function implemented in Chapter 3. Each test file will
consist of Fixture (we will discuss them in detail in Subsection 4.1.2) and Test
suites 15. The tests will have to include library graph utility.hpp, otherwise
the main translation unit will not be able to run them.

Inside the test file there will be one Test suite for each function tested
(mostly helper function used by the main function). Test suites can contain
multiple test cases. For a better understanding of the test structure, please
see Figure 4.1.

main_test.cpp

◄ initiates initiates ►

nice_tree_decomposition_test.cpp

Test suite
"nt_decomposition"

Test case 1 Test case 2

Test case 3

tree_decomposition_test.cpp

Test suite
"split_set"

Test case 1 Test case 2

Test case 3

Test suite
"get_components"

Test case 1 Test case 2

Test suite
"max_flow"

Test case 1 Test case 2

Figure 4.1: Structure of tests used in our library extension.

4.1.2 Fixtures

In general terms a test fixture or test context is the collection of one or more
of the following items, required to perform the test [28]:

• Preconditions.

• Particular states of tested units.

• Necessary clean-up procedures.
15Test suite can be understood as a some kind of wrapper, that keeps all test

cases of certain function, that is being tested, in one bundle. More information avail-
able from: https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/
tests_organization/test_tree/test_suite.html

36

https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/tests_organization/test_tree/test_suite.html
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/tests_organization/test_tree/test_suite.html

4.1. Testing

The main advantage of fixtures is in their re-usability—say, we want to
test several different functions on the same graph. Instead of re-declaring the
graph in each function (which is against DRY16 principle), we will define the
graph only once in the fixture and then pass the fixture inside a Test suite,
where it can be used in multiple test cases.

In BTL, a fixture is represented by a struct. Fixture data are stored
in struct as members. Each time a fixture is required by a Test suite, pro-
cedure setup is initiated (in case of BTL, the constructor of struct). After
finishing all test cases in a Test suite, procedure teardown is initiated (de-
structor of struct).

In our case, fixtures are mostly used to define multiple graphs or decom-
positions and their bags, that will be used in a Test suite. Example of a such
a fixture is shown in Code snippet 4.2.

struct Fixtures_d {
Fixtures_d() {

construct_g1();
construct_g2();

}
˜Fixtures_d() = default;

void construct_g1() {...}
void construct_g2() {...}

};

BOOST_FIXTURE_TEST_SUITE(split_set, Fixtures_d)
...
BOOST_AUTO_TEST_SUITE_END();

Code snippet 4.2: Example of a fixture that is ”injected“ into a Test suite.

4.1.3 Testing of the functions

In each test case we are testing the result of a single call of a function that
is being tested. Take a testing of helper function max flow sep (described in
Subsection 3.1.3) as an example—inside the test case we are asserting that
the retrieved separation has a correct size and contains expected vertices (see
Code snippet 4.3).

16DRY (Don’t repeat yourself) principle is a principle that focuses on reducing the repe-
tition of information of all kind (e.g., code duplication).

37

4. Testing and documentation

BOOST_AUTO_TEST_CASE(maxflow_g2_case2)
{

subgraph<Graph> sg;
copy_graph(g2, sg);
auto separation = detail::max_flow_sep(...);
BOOST_CHECK_EQUAL(1, separation.size());
BOOST_CHECK_EQUAL(1, separation.count(2) +

separation.count(3));↪→

}

Code snippet 4.3: Testing of the function max flow sep.

Some of the functions are a bit too complex to test them in such a simple
manner—one of those functions is tree decomposition. As we learnt in Sec-
tion 3.1, its purpose is to find the decomposition of a given graph. However
decompositions are not generally unique, there can be many different decom-
positions of the graph (e.g., trivial decomposition contains all vertices in a
single root node). That is why instead of comparing retrieved decomposition
with a reference decomposition, we will test, if it meets following conditions
that basically define tree decompositions:

1. Width of the decomposition is at most 3k + 4.

2. Every vertex is in at least one bag.

3. Every edge is in at least one bag.

4. Set of nodes containing any vertex v induces a connected component.

5. Decomposition is a tree.

If all of the listed conditions are met, the decomposition is valid. The
same approach is used when testing the function nice tree decomposition
(more conditions are added since a nice tree decomposition is more strict than
general decomposition).

4.1.4 Continuous integration

Since our library extension is hosted on GitLab, managing continuous inte-
gration is relatively easy. With each push or merge request GitLab runs a
pipeline of scripts to build and test our library extension. The pipeline and
its content is defined in file .gitlab-ci.yml located in the root of the project.

38

4.1. Testing

Our pipeline is divided into two stages:

1. Build. In this phase all of the source files are compiled using the make
compile command.

2. Test. In this phase the tests are run using the make test command.

If any of these two stages fails, GitLab prevents merging into master branch
until the errors are fixed and both of the stages pass (this is a default behaviour
for protected branches [29]). This prevents from pushing faulty code into the
master branch. The status of the pipeline can be viewed on GitLab website
(see Figure 4.2).

Figure 4.2: Status of the pipeline and its stages.

4.1.5 Fulfilling of the requirements

In this subsection we will review the fulfilment of the functional and non-
functional requirements that we have defined in Section 2.1. Each requirement
will be discussed in a separate paragraph:

Requirement F1. Algorithm for obtaining a tree decomposition was success-
fully implemented in a file src/tree decomposition.hpp. Its implementation
is discussed in Section 3.1.

39

4. Testing and documentation

Requirement F2. Algorithm for obtaining a nice tree decomposition from
general tree decomposition was successfully implemented. General decomposi-
tion is supplied to the function as an input (see Section 3.2). File nice src/-
tree decomposition.hpp contains implementation of the algorithm.

Requirement F3. Algorithm for solving the maximum weighted independent
set was chosen as a demonstration of usage of dynamic programming over
a tree decomposition. The implementation of the algorithm is located in
src/max weighted independent set.hpp. For more details see Section 3.4.

Requirement F4. Every function defined in our library extension uses tem-
plate parameters, so that user is not bound to certain type of graph. This
also applies to other data structures, e.g., Property Map representing bags of
the decomposition.

Requirement F5. Exceptions are thrown only if the user provides an input,
that would cause an infinite loop—e.g., a decomposition that is not a tree in
the function src/max weighted independent set.hpp. Incorrect template
arguments cause a compilation error thanks to usage of concept checks.

Requirement F6. Algorithm nice tree decomposition is not bound to
any algorithm for obtaining a tree decomposition. Instead, tree decomposi-
tion is supplied as an input (therefore avoiding the decision to use specific
decomposition algorithm) as opposed to retrieving the decomposition as a
part of the algorithm.

Requirement N1. Our library extension follows most of the conventions
used by BGL, e.g., code structure, naming conventions (words separated by

” “ instead of using camel-case) or indentation. As it is customary for BGL,
each of the algorithms is implemented and defined in a header-file.

Requirement N2. Each of the algorithms used in our library extension uses
only C++ Standard Library or Boost libraries—no other third-party libraries
were used.

Requirement N3. Documentation of the interface is provided in form of
HTML pages generated by Doxygen (see Section 4.2).

Requirement N4. Algorithms and helper-functions used in those algorithms
are tested by BTL (note that not every helper-function is tested, because they
are either a wrapper or they cannot be tested). Tests are located in directory
test/ and they are initiated by test/main test.cpp. These tests are also a
part of continuous integration (see Subsection 4.1.4).

40

4.2. Documentation

4.2 Documentation

Documentation of this library is supposed to serve as a reference guide for
users, that will be using the functions provided by our extension. This is
the main reason why only the interfaces of those functions are described and
not the helper-functions, since they are irrelevant to the user. Documentation
is generated by Doxygen—a tool frequently used for documentation of C++
source codes.

It can generate an on-line documentation browser (in HTML) and/or an
off-line reference manual from a set of documented source files. The documen-
tation is extracted directly from the sources, which makes it much easier to
keep the documentation consistent with the source code [30].

Source files have to be described with specific annotations17 in order to be
documented (see Code snippet 4.4 for an example).

/**
* @tparam Graph Type of the graph.
* @tparam Decomposition Type of the decomposition.
* @tparam Bags Type of the property map representing bags ...
* @param[in] g An undirected graph. The graph type must be ...
* @param[out] d An undirected graph in which will be ...
* @param[out] bags The bags property map. The type must be ...
* @param[in] k Parameter, which defines the maximum width ...
* @return True if tree decomposition of graph g exists ...
*/

template <class Graph, class Decomposition, class Bags>
bool tree_decomposition(Graph & g, Decomposition & d, Bags &

bags, unsigned long k)↪→

Code snippet 4.4: Annotation of the function tree decomposition.

Generated documentation is located in a directory doc/html/ and avail-
able from doc/index.html, which redirects to a list of functions provided
by our library extension. For each function there is a description of its pur-
pose, used libraries, (template) parameters, and the return value. Segment of
documented function tree decomposition is shown in Figure 4.3.

17Annotation is a special type of comment block that contains additional or meta-
information in the source code.

41

4. Testing and documentation

Figure 4.3: Example of the documentation generated from annotation pre-
sented in Code snippet 4.4.

42

Conclusion

The goal of this thesis was to extend the C++ Boost Graph Library with algo-
rithms for obtaining a general/nice tree decomposition along with algorithm,
that demonstrates the usage of dynamic programming over a tree decompo-
sition, which was successfully fulfilled along with all of the functional and
non-functional requirements (as we discussed in Subsection 4.1.5).

Heavy emphasis was put on genericity of the functions provided by our
library extension, which was achieved using the C++ templates and concepts
defined by BGL—functions can be used with various types of graphs and
data structures.

There is lot of space for further improvement of our library extension:

• Optimization of used algorithms.

• Provide more algorithms that use a tree decomposition to improve their
performance.

• Make the parameter k of the function tree decomposition optional.

• Implement exact FPT algorithm for obtaining a tree decomposition, al-
lowing the user to choose, whether exact or approximate FPT algorithm
should be applied.

This work, including the thesis, source-codes, and documentation is up-
loaded on the attached SD card. The work is also available from faculty
GitLab in repository:
https://gitlab.fit.cvut.cz/kralva10/treewidth-support-for-bgl

43

https://gitlab.fit.cvut.cz/kralva10/treewidth-support-for-bgl

Bibliography

1. KARP, Richard M. Reducibility among Combinatorial Problems. In: ed.
by MILLER, Raymond E.; THATCHER, James W.; BOHLINGER, Jean
D. Boston, MA: Springer US, 1972, pp. 85–103. ISBN 978-1-4684-2001-2.
Available from DOI: 10.1007/978-1-4684-2001-2_9.

2. CHEN, G.; KUO, M.; SHEU, Jang-Ping. An optimal time algorithm for
finding a maximum weight independent set in a tree. Vol. 28, pp. 353–
356. Available from DOI: 10.1007/BF01934098.

3. ISO. ISO/IEC 14882:2011 Information technology — Programming lan-
guages — C++. Geneva, Switzerland: International Organization for
Standardization, 2011. Available also from: http://www.iso.org/iso/
iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=
50372.

4. ISO. ISO/IEC 14882:2017 Information technology — Programming lan-
guages — C++. Geneva, Switzerland: International Organization for
Standardization, 2017. Available also from: https://www.iso.org/
standard/68564.html.

5. Genericity in the Boost Graph Library. In: Boost [online] [visited on
2020-03-01]. Available from: https://www.boost.org/doc/libs/1_72_
0/libs/graph/doc/index.html.

6. Graph Concepts. In: Boost [online] [visited on 2020-03-01]. Available
from: https://www.boost.org/doc/libs/1_72_0/libs/graph/
doc/graph_concepts.html.

7. Subgraph class. In: Boost [online] [visited on 2020-03-26]. Available from:
https : / / www . boost . org / doc / libs / 1 _ 72 _ 0 / libs / graph / doc /
subgraph.html.

8. Subgraph. In: Boost [online] [visited on 2020-05-02]. Available from: htt
ps://www.boost.org/doc/libs/1_72_0/libs/graph/doc/subgraph.
html.

45

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/BF01934098
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/graph_concepts.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/graph_concepts.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/subgraph.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/subgraph.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/subgraph.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/subgraph.html
https://www.boost.org/doc/libs/1_72_0/libs/graph/doc/subgraph.html

Bibliography

9. CYGAN, Marek; FOMIN, Fedor V.; KOWALIK, Lukasz; LOKSHTA-
NOV, Daniel; MARX, Dániel; PILIPCZUK, Marcin; PILIPCZUK, Mi-
chal; SAURABH, Saket. Parameterized Algorithms. Springer, 2015. ISBN
978-3-319-21274-6. Available from DOI: 10.1007/978-3-319-21275-3.

10. ARNBORG, Stefan; CORNEIL, Derek G.; PROSKUROWSKI, Andrzej.
Complexity of Finding Embeddings in a k-Tree. SIAM Journal on Alge-
braic Discrete Methods. 1987, vol. 8, no. 2, pp. 277–284. Available from
DOI: 10.1137/0608024.

11. REED, B. A. Algorithmic Aspects of Tree Width. In: Recent Advances in
Algorithms and Combinatorics. Ed. by REED, Bruce A.; SALES, Cláudia
L. New York, NY: Springer New York, 2003, pp. 85–107. ISBN 978-0-
387-22444-2. Available from DOI: 10.1007/0-387-22444-0_4.

12. Container Concept Checking Classes. In: Boost [online] [visited on 2020-
04-04]. Available from: https://www.boost.org/doc/libs/1_72_0/
libs/concept_check/reference.htm#container-concepts.

13. LAMM, Sebastian; SCHULZ, Christian; STRASH, Darren; WILLIGER,
Robert; ZHANG, Huashuo. Exactly Solving the Maximum Weight In-
dependent Set Problem on Large Real-World Graphs. In: Proceedings of
the Twenty-First Workshop on Algorithm Engineering and Experiments,
ALENEX 2019, San Diego, CA, USA, January 7-8, 2019. SIAM, 2019,
pp. 144–158. Available from DOI: 10.1137/1.9781611975499.12.

14. VALLA, T.; MATOUŠEK, J. Kombinatorika a grafy. In: Skripta, KAM
MFF UK [online]. Praha, 2008, pp. 21–22 [visited on 2020-03-29]. Avail-
able from: https://iuuk.mff.cuni.cz/˜valla/kg.pdf.

15. Creating Concept Checking Classes. In: Boost [online] [visited on 2020-
04-04]. Available from: https://www.boost.org/doc/libs/1_72_0/
libs/concept_check/creating_concepts.htm.

16. std::vector::insert. In: cppreference [online] [visited on 2020-04-04]. Avail-
able from: https://en.cppreference.com/w/cpp/container/vector/
insert.

17. std::deque::insert. In: cppreference [online] [visited on 2020-04-04]. Avail-
able from: https://en.cppreference.com/w/cpp/container/deque/
insert.

18. std::list::insert. In: cppreference [online] [visited on 2020-04-04]. Available
from: https://en.cppreference.com/w/cpp/container/list/inser
t.

19. std::set::insert. In: cppreference [online] [visited on 2020-04-04]. Available
from: https://en.cppreference.com/w/cpp/container/set/insert.

20. std::map::insert. In: cppreference [online] [visited on 2020-04-04]. Avail-
able from: https://en.cppreference.com/w/cpp/container/map/
insert.

46

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/0608024
https://doi.org/10.1007/0-387-22444-0_4
https://www.boost.org/doc/libs/1_72_0/libs/concept_check/reference.htm#container-concepts
https://www.boost.org/doc/libs/1_72_0/libs/concept_check/reference.htm#container-concepts
https://doi.org/10.1137/1.9781611975499.12
https://iuuk.mff.cuni.cz/~valla/kg.pdf
https://www.boost.org/doc/libs/1_72_0/libs/concept_check/creating_concepts.htm
https://www.boost.org/doc/libs/1_72_0/libs/concept_check/creating_concepts.htm
https://en.cppreference.com/w/cpp/container/vector/insert
https://en.cppreference.com/w/cpp/container/vector/insert
https://en.cppreference.com/w/cpp/container/deque/insert
https://en.cppreference.com/w/cpp/container/deque/insert
https://en.cppreference.com/w/cpp/container/list/insert
https://en.cppreference.com/w/cpp/container/list/insert
https://en.cppreference.com/w/cpp/container/set/insert
https://en.cppreference.com/w/cpp/container/map/insert
https://en.cppreference.com/w/cpp/container/map/insert

Bibliography

21. multiset::insert. In: cppreference [online] [visited on 2020-04-04]. Avail-
able from: https : / / en . cppreference . com / w / cpp / container /
multiset/insert.

22. std::multimap::insert. In: cppreference [online] [visited on 2020-04-04].
Available from: https://en.cppreference.com/w/cpp/container/
multimap/insert.

23. std::unordered set::insert. In: cppreference [online] [visited on 2020-04-
04]. Available from: https://en.cppreference.com/w/cpp/container
/unordered_set/insert.

24. std::unordered map::insert. In: cppreference [online] [visited on 2020-04-
04]. Available from: https://en.cppreference.com/w/cpp/container
/unordered_map/insert.

25. std::unordered multiset::insert. In: cppreference [online] [visited on 2020-
04-04]. Available from: https://en.cppreference.com/w/cpp/contai
ner/unordered_multiset/insert.

26. unordered multimap::insert. In: cppreference [online] [visited on 2020-04-
04]. Available from: https://en.cppreference.com/w/cpp/container
/unordered_multimap/insert.

27. Usage variants. In: Boost [online] [visited on 2020-03-12]. Available from:
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/
boost_test/usage_variants.html.

28. Fixtures. In: Boost [online] [visited on 2020-03-12]. Available from: http
s://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_
test/tests_organization/fixtures.html.

29. Security on protected branches. In: gitlab [online] [visited on 2020-04-
06]. Available from: https://docs.gitlab.com/ee/ci/pipelines/
#security-on-protected-branches.

30. Doxygen main page. In: Doxygen [online] [visited on 2020-03-13]. Avail-
able from: http://www.doxygen.nl/index.html.

47

https://en.cppreference.com/w/cpp/container/multiset/insert
https://en.cppreference.com/w/cpp/container/multiset/insert
https://en.cppreference.com/w/cpp/container/multimap/insert
https://en.cppreference.com/w/cpp/container/multimap/insert
https://en.cppreference.com/w/cpp/container/unordered_set/insert
https://en.cppreference.com/w/cpp/container/unordered_set/insert
https://en.cppreference.com/w/cpp/container/unordered_map/insert
https://en.cppreference.com/w/cpp/container/unordered_map/insert
https://en.cppreference.com/w/cpp/container/unordered_multiset/insert
https://en.cppreference.com/w/cpp/container/unordered_multiset/insert
https://en.cppreference.com/w/cpp/container/unordered_multimap/insert
https://en.cppreference.com/w/cpp/container/unordered_multimap/insert
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/usage_variants.html
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/usage_variants.html
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/tests_organization/fixtures.html
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/tests_organization/fixtures.html
https://www.boost.org/doc/libs/1_72_0/libs/test/doc/html/boost_test/tests_organization/fixtures.html
https://docs.gitlab.com/ee/ci/pipelines/#security-on-protected-branches
https://docs.gitlab.com/ee/ci/pipelines/#security-on-protected-branches
http://www.doxygen.nl/index.html

Appendix A
Acronyms

2D Two-Dimensional

BCCL Boost Concept Check Library

BGL Boost Graph Library

BTL Boost Test Library

DRY Don’t Repeat Yourself

FPT Fixed-Parameter Tractable

GCC GNU Compiler Collection

GNU GNU’s Not Unix

HTML HyperText Markup Language

OS Operating System

PNG Portable Network Graphics

PRNG Pseudo-Random Number Generator

SD Secure Digital

SDLC Software Development Life Cycle

STL Standard Template Library

TV Television

UML Unified Modelling Language

49

Appendix B
Installation instructions

In this appendix we will describe contents, requirements, and usage of our
library extension.

B.1 Contents

Our library extension consists of three header files located in directory src/:

• tree decomposition.hpp containing a function for retrieving a tree de-
composition.

• nice tree decomposition.hpp containing a function for retrieving a
nice tree decomposition.

• max weighted independent set.hpp containing a function that com-
putes a maximum weighted independent set.

Documentation of those three header files is located in doc/index.html.
Examples can be found in directory example/. Lastly, Makefile which is used
to build example and tests is in the root of the project.

B.2 Requirements

Our library extension was developed on Linux OS using the GCC compiler
(version C++14) and GNU Make. Successful compilation with older versions
of GCC or different OS is not guaranteed.

Provided header files require Boost 1.72.0 18 library (older versions might
not be compatible). Library can be installed using the command:

sudo apt-get install libboost-dev

18https://www.boost.org/users/history/version_1_72_0.html

51

https://www.boost.org/users/history/version_1_72_0.html

B. Installation instructions

B.3 Usage example

In order to help the users to get more familiar with our library extension
we also provide examples of usage. The file with the examples is located
in example/example.cpp and contains a sample graph on which are applied
functions that we presented earlier in this chapter.

The form of the output of the example depends on the boolean variable
SAVE GRAPHS. If it is set to false, the graphs (e.g., constructed tree decomposi-
tions) will be printed in text form into stdout. Otherwise, the graphs will be
saved into .dot19 files in the example/ directory. In addition, if the user has
installed the Graphviz library20, PNG files will be created from .dot files using
the dot command. Graphviz library can be installed using the command:

sudo apt-get install graphviz

B.4 Make commands

As we mentioned, to compile and run our library extension together with
example or tests we are using GNU Make. See Table B.1 for available make
commands that can be run from the root of the project.

Command Usage
make all Compile both example and tests.
make compile Same as make all
make doc Generate documentation 21

make run Compile and run example.
make test Compile and run tests.
make help Show help.
make run Clean binaries and obj/ directory.

Table B.1: Available make commands used to build example and tests.

19DOT is a graph description language used to represent graphs in a simple text form.
20Available from https://www.graphviz.org/download/
21Doxygen version 1.8.17 or newer required.

52

https://www.graphviz.org/download/

Appendix C
Contents of enclosed SD card

README.md.....................the file with SD card content description
project..............................the directory with the source files

doc...............................the directory with documentation
example........................the directory with examples of usage
src....................................the directory of source codes
test..the directory with tests
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

53

	Introduction
	Goals
	Structure

	Analysis
	Boost Graph Library
	Notions of used algorithms

	Design
	Requirement specification
	Architecture
	Algorithm for obtaining a tree decomposition
	Algorithm for obtaining a nice tree decomposition
	Representation of mutable bags
	Maximum weighted independent set algorithm

	Implementation
	Algorithm for obtaining a tree decomposition
	Algorithm for obtaining a nice tree decomposition
	Concept InsertCollection
	Maximum weighted independent set algorithm

	Testing and documentation
	Testing
	Documentation

	Conclusion
	Bibliography
	Acronyms
	Installation instructions
	Contents
	Requirements
	Usage example
	Make commands

	Contents of enclosed SD card

