
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 29, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Cryptanalysis of RSA based on factorization

 Student: Petr Horák

 Supervisor: Mgr. Martin Jureček

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2020/21

Instructions

The security of many public-key cryptosystems relies on intractability of the integer factorization problem.
The RSA encryption scheme belongs to the most common in this class of cryptosystems. Most attacks on
RSA cryptosystems are based on factorization of integers or on exploitation of inappropriate parameters
setting (e.g., low private exponent, common modulus, ...).

Survey some of the factorization techniques (especially Pollard's rho and (p-1) methods, Fermat's
factorization, and the Quadratic sieve) and analyze their expected computational complexities.
Implement these methods or use existing implementations (e.g., Magma) and perform factorization-based
attacks using various sizes of RSA public moduli.
Evaluate the performance results and discuss practical runtime complexities of these attacks.
Describe, implement, and evaluate at least three attacks on the RSA based on inappropriate parameters
settings.

References

Will be provided by the supervisor.

Bachelor’s thesis

Cryptanalysis of RSA based on
factorization

Petr Horák

Department of Computer Security and Information technology
Supervisor: Mgr. Martin Jureček

June 1, 2020

Acknowledgements

I would like to thank my supervisor, Mgr. Martin Jureček, for his guidance
and all the help he has provided not only during the creation of this thesis.

I would like to thank Ing. Eliška Šestáková for her useful comments.
I would also like to thank my friends, Stanislav Koleník, Radek Šmíd and
Petr Hoffmann, for their support and encouragements.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on June 1, 2020 .

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Petr Horák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Horák, Petr. Cryptanalysis of RSA based on factorization. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2020.

Abstrakt

Tato bakalářská práce se zabývá kryptoanalýzou RSA založenou na faktorizaci
celých čísel. Rozebrané jsou vybrané faktorizační metody – důraz je kladen
zejména na popis jejich časové náročnosti a porovnání z hlediska použitelnosti
v reálných podmínkách. Kromě toho se práce věnuje i problémům s bezpeč-
ností RSA, které mohou vzniknout při neopatrném využívání této kryptogra-
fické metody. Vybrané metody jsou implementované za použití Magmy pro
testování reálných výpočetních rychlostí na vzorových datech.

Klíčová slova RSA, RSA problém, faktorizace, Pollardova rho metoda,
Pollardova p-1 metoda, Fermatova faktorizace, Dixonův algoritmus, kvadra-
tické síto, Magma, společný modul, nízký soukromý exponent

vii

Abstract

This bachelor’s thesis deals with RSA cryptanalysis based on integer factor-
ization. Described are some of the factorization methods. Emphasis is laid on
their computational complexities and comparison in real-life scenarios of use.
Another topic in this work is a discussion of security issues of RSA which can
occur by incautious use of this cryptographic method. Selected algorithms are
implemented in Magma language for speed testing on the sample data.

Keywords RSA, RSA problem, factorization, Pollard’s rho method, Pol-
lard’s p-1 method, Fermat’s factorization, Dixon’s algorithm, quadratic sieve,
Magma, common modulus, low private exponent

viii

Contents

Introduction 1

1 State-of-the-art 3

2 Concepts 5
2.1 Notation . 5
2.2 Terminology . 6
2.3 Modular arithmetic . 6
2.4 Primes . 7

3 RSA 9
3.1 Introduction . 9
3.2 Communication mechanism . 10
3.3 Security . 12

4 Factoring algorithms 13
4.1 Trial division . 13

4.1.1 Complexity . 14
4.2 Pollard’s p− 1 method . 14

4.2.1 Complexity . 17
4.3 Pollard’s rho method . 17

4.3.1 Improvement . 19
4.3.2 Complexity . 21

4.4 Fermat’s factorization . 23
4.4.1 Improvement . 23
4.4.2 Complexity . 24

4.5 Dixon’s random squares algorithm 24
4.5.1 Complexity . 25

4.6 Quadratic sieve . 26
4.6.1 Improvement . 27

ix

4.6.2 Complexity . 28
4.7 Others . 29

5 Attacks on RSA 31
5.1 Common modulus . 31
5.2 Same message attack . 33
5.3 Low private exponent . 33
5.4 Broadcast attack . 35
5.5 Simple power analysis . 36

6 Testing 37
6.1 Factorization functions . 37
6.2 Factorization . 38
6.3 Attacks . 39

6.3.1 Low private exponent 39
6.3.2 Common modulus . 40
6.3.3 Same message . 41
6.3.4 Broadcast attack . 42

Conclusion 45

Bibliography 47

A Acronyms 51

B Contents of enclosed CD 53

x

List of Figures

6.1 Factorization methods comparison – legend is sorted by run times 39
6.2 Factorization methods comparison – higher modulus 40
6.3 Low private exponent attack using Carmichael function 41
6.4 Low private exponent attack using Euler’s function 42
6.5 Broadcast attack for various public exponents 43

xi

List of Tables

6.1 Factorization methods run times in seconds 38
6.2 Factorization methods run times in seconds – higher modulus . . . 38

xiii

Introduction

Digital communication is a widely spread phenomenon we use on a daily base.
Processing information via a cable or wirelessly became an essential thing in
our lives. However, along with it came the problem of securing these com-
munications and protecting against possible information thefts. Thus, many
encryption methods came to use. Some of them are based on the integer fac-
torization problem – RSA belongs to the most popular among them. However,
all encryption methods have some issues when they are not used correctly.

There are several problems in RSA encryption schema. One of these is the
choice of the modulus. Using various factorization algorithms, some numbers
are vulnerable against a brute force attack. The most important parameter of
these methods is computational complexity. This thesis gives much attention
to this part, describes selected algorithms by the perspective of feasibility
regarding their complexity demands. Studying these methods helps us avoid
potential problems.

Some of the attacks on the RSA scheme are based on the exploitation of
inappropriate parameters. Some of them are just less suitable than others.
Description of problematic parameters and the threats for the cryptosystem
are also parts of this thesis.

The primary aim of this thesis is to introduce specific factorization meth-
ods from the perspective of mathematical principles they are based on and
their computational complexities. Another aim is to produce a study material
for the course Mathematics for Cryptology (MIE-MKY)1 and its alternatives
for Czech students and remote study. The thesis also contains time tests of
the selected methods using Magma. Magma is a software package created at
the University of Sydney for mathematical computations with its own pro-
gramming language.

The thesis is divided into four logical parts. The first deals with terminology
and some definitions that will be used later on. The second part is about

1course taught at FIT CTU in Prague

1

Introduction

specific factorization algorithms and their description and analysis. Follows
a section about attacks on RSA which do not use factorization. The last
part describes results of testing of factorization methods and selected attacks
on RSA.

2

Chapter 1
State-of-the-art

Cryptography has been developing for a very long time. From antique and
Caesar cipher to the modern age of advanced cryptosystems. This chapter
contains a brief retrospective view on factorization. The end is dedicated to
comparison with existing literature with a similar focus.

As far as the history of encrypting goes, there always exist efforts to
decrypt secret messages. From the age of computing in hand, we got to
the era of computers. Thus, the requirements for the cryptosystems to be
unbreakable are not easy to fulfil. There is one more request, encryption and
decryption with known parameters have to be performed quickly.

Modern cryptography is based on solid mathematical arguments. They
usually use some kind of irreversible or slowly reversible math operations,
such as multiplication and factorization as its inverse as was used in the cryp-
tosystem RSA invented by Rivest, Shamir and Adleman in 1977. But the
actual factorization problem is much older and so are the attempts to solve it.

First factorization algorithm was published and described by Leonardo of
Pisa, better known as Fibonacci, in 1202 in his first book Liber Abaci [1, p. 20].
From then on, many great mathematicians took their part in building the
history of factorization. In 1674, Pierre de Fermat introduced his algorithm to
factorize numbers [1, p. 24] which is of good use in modern methods, especially
with its enhancement from Maurice Kraitchik in the 1920s [2, p. 1474]. Works
of Leonhard Euler and Adrien-Marie Legendre are also important.

Some new methods were published in the second half of the 20th century
in works of J. M. Pollard, who introduced two of them [3] [4]. John D. Dixon
continued with Fermat’s work and in 1981, he presented a new algorithm [5].
In the same year, Carl Pomerance came up with another improvement and
created quadratic sieve [6], one of the widely used algorithms. The idea of fac-
toring using elliptic curves, brought by Hendrik Lenstra in 1985 [7], reaches
very similar asymptotic running time to quadratic sieve but is especially fast
when the number to be factored has some small factors. The last significant

3

1. State-of-the-art

improvement in the field of factoring was made in 1988, after John Pollard
suggested using algebraic number fields [2, p. 1479] and thus number field
sieve, the fastest algorithm for factorization so far, was developed.

Even with modern computer networks, tremendous computing speed and
optimized parallel algorithms, the biggest RSA key that was factorized un-
til now is RSA-250 with 250 decimal digits (829 bits). They used open-
source CADO-NFS software, which is C/C++ implementation of number
field sieve, and it finished in February 2020 [8] [9]. For the comparison,
NIST2 recommends the length of the public modulus of RSA to be 2048 bits
or more [10, p. 15].

The main content of this thesis is a description of some factorization algo-
rithms. There are many books and articles with a similar purpose. It is not
possible to list all of them here, but some should be mentioned.

A great introduction to the world of cryptosystems is Handbook of Applied
Cryptography [11]. There are descriptions of the same methods as in this
thesis, and for the purpose of basic introduction, they work completely fine.
However, in some points, they unnecessarily differ from the original papers.
Also, there are some facts stated that are not very intuitive and can come as
a surprise to a reader. The same points go for [12] too.

On the other hand, there is publication Prime Numbers and Computer
Methods for Factorization [13]. It contains an enormous amount of factoring
algorithms with detailed descriptions. However, for the purpose of introduc-
tion of the basic concepts, the book is far too advanced and full of not so
important information.

The difference of this thesis is that it tries to achieve comprehension of
these algorithms in a logical way along with trying to minimize diversion from
the original papers. The purpose is not to make all the math arguments laying
under the theory of these methods, as some of them are far beyond the scope
of this thesis, but to introduce them in the logical and consistent way along
with some basic mathematical background.

2National Institute of Standards and Technology

4

Chapter 2
Concepts

This thesis uses some non-trivial mathematical principles, definitions and no-
tations. Here, the most important of them for the purposes of the later chap-
ters are described.

2.1 Notation
Notation in this thesis follows original articles of the authors of the presented
algorithms. If it not suitable, notation from [11] is used. However, if some
redundant designation is used in order to make algorithms clearer, the notation
is chosen accordingly for maximal consistency.

Describing algorithms in terms of computational complexity requires some
kind of notation. For the purpose of this thesis, big O notation is used for the
upper bound of the computational complexity functions, which are obviously
non-negative.

Definition 1 (Big O notation). Function f(n) is of the same or lower order
than a function g(n), written as f(n) = O(g(n)), if function f(n) is lower (or
equal) than a constant multiple of g(n) except for the finite amount of values.

f(n) = O(g(n)) ⇐⇒ (∃c ∈ R+)(∃n0 ∈ N+)(∀n > n0)(f(n) ≤ c · g(n))

In this thesis, big O notation is used to describe the amount of polynomial
time operations, such as division or multiplication, depending on the size of
the parameter n. As it is often very difficult to find the average computational
complexity, only the worst-case scenario is taken into the account unless told
otherwise.

There is one more complexity notation used in this thesis, L-notation. It
is very useful for a description of some algorithms. For the purpose of this
thesis, a reduced version of this notation, taken from [6, p. 90] is used.

L(n) = e
√

ln n ln ln n

5

2. Concepts

2.2 Terminology
By basic rule of arithmetic, every integer is decomposable to the multiplication
of primes, which are called its prime factors. To say that each of them is lower
than a specific bound B, let’s define smoothness in the following way.

Definition 2 (Smoothness). Let a be a natural number. We say a is B-smooth
(or just smooth if it is obvious from context or discussed generally) if every
prime factor pi of a is equal or lower than some natural number B.

2.3 Modular arithmetic
Almost the entire thesis is about modular arithmetic. There are two equivalent
notations used.

a = |b|n ⇐⇒ a ≡ b (mod n)
Let’s state (without proofs, they can be found in cited sources) some of

the most significant theorems. Formulations taught on FIT CTU in Prague
are used, specifically [14, slides 5 and 12] and [15, slide 12].

Theorem 1 (Little Fermat’s Theorem). Let p be a prime and a ∈ N+ such
natural number that is coprime with p. Then it holds

a(p−1) ≡ 1 (mod p).

As has been proven, it works, with some modifications, for all natural
numbers. The following theorem is its generalization.

Theorem 2 (Euler’s Theorem). Let a, p ∈ N be some coprime numbers. Then

aϕ(p) ≡ 1 (mod p).

Another topic used in the thesis is solving system of congruences. Thus,
following theorem come to use.

Theorem 3 (Chinese Remainder Theorem). Let’s have the system of linear
congruences

x ≡ a1 (mod p1)
x ≡ a2 (mod p2)

...
x ≡ aN (mod pN),

where the modules pi are pairwise coprime. Then the solution of this system
exists and all solutions are congruent modulo P , where

P =
N∏

i=1
pi.

6

2.4. Primes

2.4 Primes
Distribution of prime numbers among integers is one of the most mysterious
problems in the world of mathematics. As it is connected to Riemann Zeta
function, it is even included in the Millennium Problems list as the Riemann
Hypothesis [16]. However, the asymptotic amount of primes lower than a
certain bound is known.

Theorem 4 (Prime Number Theorem). Let π(n) be the number of primes
lower than some integer n. Then it holds

lim
n→∞

π(n)
n

ln n

= 1.

Despite the fact, that π(n) ∼ n
ln n is not the best-known approximation [17],

it is sufficient for the purposes of this thesis.

7

Chapter 3
RSA

As usage and mechanisms of cryptosystem are crucial for breaking it, this
chapter contains a basic description of the RSA – from the introduction and
the concept of public-key cryptography to proof of the correctness of commu-
nication mechanism and security aspects.

3.1 Introduction

The most used public-key cryptosystem is the RSA [11, p. 285]. It was
created in 1977 by Ronald L. Rivest, Adi Shamir and Leonard Adleman. In
general, public-key cryptosystems (sometimes also referred to as asymmetric
cryptosystems) use a key pair, two separate keys – public and private.

The public key may be widely available. It is used for data encryption. The
only problem here is to make sure it really belongs to the presented subject.
One way to approach it is to use certification authorities. The private key is
held in secret, and it is used for decryption and signing messages.

The idea here is that knowing the public key will not help to find the
private one in a reasonable amount of time. That is achieved via constructing
public key using a one-way function, like multiplication (factorization) and
modular exponentiation (discrete logarithm). Another thing to care about is
a bijection of this function. Otherwise, there could be some issues concerning
security.

When transmitting data, we can use the private key to sign it. The in-
formation held in the message can be compromised because everybody with
access to the public key can read it. But the main feature here is the authen-
ticity of the message, to alter it, one would have to know the private key of
the transmitter.

If we want to ensure that information included in the message are secured,
we can encrypt transmitted data with the public key of the receiver. Therefore,
the only way to read them is to decrypt it with the private key.

9

3. RSA

3.2 Communication mechanism
To create private and public keys, the following steps must be undertaken:

1. Choose two prime numbers p and q with the appropriate length. The
methodology for selecting these numbers is discussed in [18] and [19].

2. Compute public modulus: n = p · q

3. Compute Euler’s function of the public modulus: ϕ(n) = (p−1) · (q−1)

4. Choose private exponent d: 1 < d < ϕ(n) and GCD (d, ϕ(n)) = 1

5. Compute e which is multiplication inverse of d in modulus of ϕ(n):
ed ≡ 1 (mod ϕ(n))

Private key contains n, d. The public key is composed of n and e. This is the
original procedure as was described in [20, pp. 122–123]. However, nowadays
a different selection method is recommended, it is described in [18, pp. 50–53]
and [19, pp. 33–35].

Let us suppose Alice wants to write a secret message to Bob. The first
thing to do is to divide the content of the message to blocks and convert it
to integers mi, each of these must fulfil the condition mi < n. Otherwise,
mi could be reduced by modulus, and that would lead to duplicates making
decryption rather confusing. A ciphertext ci is then computed in the following
way:

ci = |me
i |n

Theorem 5 (Correctness of RSA). Let ci be a ciphertext incurred from en-
crypting plaintext mi by RSA using a public modulus n and an exponent e.
Assume that d is inverse of e in modulus of ϕ(n). Then:

mi =
∣∣∣cd

i

∣∣∣
n

Proof. Let’s rewrite ci according to the definition stated earlier.∣∣∣cd
i

∣∣∣ =
∣∣∣(me

i)d
∣∣∣
n

=
∣∣∣mde

i

∣∣∣
n

Now we can use a connection of d, e and ϕ(n):

d =
∣∣∣e−1

∣∣∣
ϕ(n)

|d · e|ϕ(n) = 1
d · e = k · ϕ(n) + 1, k ∈ N

Getting back to our equation:∣∣∣mde
i

∣∣∣
n

=
∣∣∣mϕ(n)·k+1

i

∣∣∣
n

=
∣∣∣mϕ(n)·k

i ·m1
i

∣∣∣
n

=
∣∣∣∣∣∣mϕ(n)·k

i

∣∣∣
n
· |mi|n

∣∣∣
n

10

3.2. Communication mechanism

If mi and n are coprime, usage of Theorem 2 (Euler’s Theorem) leads us to
the wanted result.∣∣∣∣∣∣mϕ(n)·k

i

∣∣∣
n
· |mi|n

∣∣∣
n

=
∣∣∣1k ·mi

∣∣∣
n

= |mi|n = mi

The last equation is a consequence of the condition mi < n.
A problem arises in a situation when mi and n are not coprime thus we

would not be able to use Euler’s theorem. There are p−1 multiples of q, q−1
multiples of p and 1, in total p+ q − 1 options for mi not to be coprime with
n. The chance of this happening is considered to be really low for huge prime
numbers p and q, as shown below:

lim
(p,q)→(∞,∞)

p+ q − 1
n

= lim
(p,q)→(∞,∞)

p+ q − 1
p · q

= lim
(p,q)→(∞,∞)

(
p

p · q
+ q

p · q
−

− 1
p · q

)
= lim

(p,q)→(∞,∞)

(1
q

+ 1
p
− 1
p · q

)
= lim

(p,q)→(∞,∞)

1
q

+ lim
(p,q)→(∞,∞)

1
p
−

− lim
(p,q)→(∞,∞)

1
p · q

= 0 + 0− 0 = 0

Nonetheless, even if this situation occurs (GCD (mi, n) 6= 1), RSA pro-
duces proper results, but proof of it is a bit complicated. Because only factors
of n are p and q we can say for sure that GCD (mi, n) = q or GCD (mi, n) = p.
These cases are equivalent. Therefore, proof here will be done just for one of
them, let’s say GCD (mi, n) = p.

mi = l · p, l ∈ N

As a consequence of Theorem 3 (Chinese Remainder Theorem):∣∣∣mde
i

∣∣∣
p

= |mi|p ∧
∣∣∣mde

i

∣∣∣
q

= |mi|q =⇒

=⇒
∣∣∣mde

i

∣∣∣
pq

= |mi|pq = mi

The first part of the condition is fulfilled easily because of mi = k · p. It
gives us equation 0 = 0, which is satisfied. The second part is proved by
adjusting the expression mde

i :

∣∣∣mde
i

∣∣∣
q

=
∣∣∣mde−1

i ·mi

∣∣∣
q

=
∣∣∣mϕ(n)·k

i ·mi

∣∣∣
q

=
∣∣∣m(p−1)·(q−1)·k

i ·mi

∣∣∣
q

=

=
∣∣∣∣(m(q−1)

i

)(p−1)·k
·mi

∣∣∣∣
q

=
∣∣∣1(p−1)·k ·mi

∣∣∣
q

= |mi|q

11

3. RSA

3.3 Security
It is widely believed that the security of RSA cryptosystem relies on the fac-
torization of integers. But that has not been proven so far. It is unknown if an
inverse of e modulo ϕ(n) can be found without actually factoring number n.
This is known as the RSA problem.

12

Chapter 4
Factoring algorithms

In this chapter, there are discussed some factorization techniques. In all the
cases, let us assume that number given to factorize is not a prime, which can
be determined with high precision (e.g., with Rabin-Miller’s algorithm) in a
short amount of time, nor simple squares of numbers. Checking these cases
should be done before actually starting factorization but they are out of the
scope of this thesis.

4.1 Trial division

The most well-known factorization algorithm, about whose even pupils in some
elementary schools are taught, is the trial division.

The idea is straightforward. If we divide given number n by an integer i
and the result is an integer, then i and n/i are some factors of n. Starting
with i = 2, if the result is decimal, we raise i by one and try again. The upper
bound of i is

√
n from obvious reasons. If necessary, we can recursively apply

this algorithm to already found factors if any of them is not a prime.
Clearly, there is some redundancy. If i is a composite number, there is

no way it can divide our number n because we would already have tried to
divide n by its factors. Thus only prime numbers are meaningful. However,
determining if the number is prime will take some additional time. So there
are two approaches.

The first one is the one mentioned earlier. We try to divide n by all
numbers one by one. It is faster in total, but a bit inefficient. The second
one will use a pre-generated list of prime numbers and try to divide n only by
those. With that list already computed, this algorithm is faster. But when it
is necessary to generate it first, it is in total slower.

As this algorithm is well known, there will be no example of its usage.
Pseudocode Algorithm 1 is here just for consistency.

13

4. Factoring algorithms

Algorithm 1 Trial division
1: for i← 2 to b

√
nc do

2: if n/i is an integer then
3: return i, n/i
4: end if
5: end for

4.1.1 Complexity

This method can find low divisors of huge numbers very fast. But in the worst-
case scenario, when n is a product of two prime numbers about the same size,
O (
√
n) polynomial-time operations have to be executed. However, that is the

dependence on the number n itself, not on the length of the input, which is
in this case amount of bits of n, approximately log2(n) bits. Therefore, to
get input length n, the number taken into account should be 2n, which makes
complexity exponential, specifically

√
2n polynomial time operations.

The same logic of the exponential complexity from the dependence on the
actual number n is used in some later chapters in a similar manner, as should
be clear from the context.

4.2 Pollard’s p− 1 method

Pollard’s p− 1 method, invented by John M. Pollard in 1974, uses Theorem 1
(Little Fermat’s Theorem). Altering that formula leads to the key of this
factorization principle. Let a be a small number greater than 1.

a(p−1) ≡ 1 (mod p)
ak·(p−1) ≡ 1 (mod p), k ∈ N+

ak·(p−1) − 1 = l · p, l ∈ N+

It can be applied in RSA schema in the following way. Modulus n can be
decomposed as n = p·q. If we useGCD, we can get to the following expression:

d = GCD
(
ak·(p−1) − 1, n

)
= GCD (l · p, p · q)

From what we can see now, d = n in the case l is a multiplication of q or
d = p. So if we construct expression l · p in a handy way, we get the prime
factor p of the modulus n which is our primary task.

As a result, the problem has changed to find b = ak·(p−1). Let’s guess it.
We evaluate af ! for f = 2, 3, . . . up to some limit. If that factorial contains
p − 1 value as well, we can obtain the value of p using GCD stated above.
Let’s examine possible results for d′ = GCD

(
af ! − 1, n

)
:

14

4.2. Pollard’s p− 1 method

1. d′ = 1
This result indicates that our guess was unsuccessful. In other words,
our product does not contain the required p− 1 value. We can continue
using this algorithm by increasing f and trying it again or just quit it.

2. d′ = n

In this situation, f ! contains both p − 1 and q − 1 (from Theorem 2
(Euler’s Theorem)). Incrementing f is not much of a help because from
now on the result will remain the same, n. In the situaion that f was
not incremented just by one, a possible way is to reduce f ! by some part
of the last increase and try to compute d′ again.

3. d′ is equal to some other value
This case indicates success. It provides us notification that f ! in fact
contains p−1. From the formula stated above, it is apparent that d = p,
so we have our prime factor. The other one can be obtained by simple
division q = n/p.

Algorithm 2 Pollard’s p− 1 algorithm using factorial
1: choose upper bound L and a small number a, 1 < a
2: d← GCD (a, n)
3: if d > 1 then
4: return d
5: end if
6: for f ← 1 to L do
7: b← af !

8: d← GCD (b− 1, n)
9: if d = 1 then

10: continue
11: else if d = n then
12: reduce b by some number
13: continue with step 8
14: else
15: return d
16: end if
17: end for

Instead of using factorial, as it is in Algorithm 2, we can use another ap-
proach. The problem of using f ! is that soon we will get overcrowded by small
prime numbers. There is a limit to each prime number how many times we

15

4. Factoring algorithms

really require it. Powers of primes, that exceed the value of n are obviously
not useful. The maximal valuable exponent can be computed in the following
way:

qei
i ≤ n

ei ≤ logqi
n = lnn

ln qi

Algorithm 3 Pollard’s p− 1 algorithm
1: choose the upper bound L and a small number b, 1 < b
2: d← GCD (b, n)
3: if d > 1 then
4: return d
5: end if
6: for each prime q ≤ L do
7: l← qblogq nc

8: b← bl (mod n)
9: end for

10: d← GCD (b− 1, n)
11: if d = 1 then
12: lift the bound L and continue with step 6 or quit
13: else if d = n then
14: reduce b by some number
15: continue with step 10
16: else
17: return d
18: end if

This approach can be found in Algorithm 3. There are two changes to be
noticed. First, as discussed above, only the prime numbers and exponentiation
are used. The second is that GCD is checked just once after the whole for
loop is executed.

Pollard’s original algorithm works for two cases. Let 1 < L < M < n
1
2 ,

M < L2. It reveals all the factors of the form p− 1 = A or p− 1 = Aq, where
A is a multiplication of some primes not greater than L and q is one prime
number L < q < M [3, pp. 526–527]. The first case was discussed so far. The
second one can be checked by the continuation of Algorithm 3. If a situation
on line 11 happens, we can take value b and try to compute bm (mod n) for
every prime L < m < M and try to reveal factors of n by computing GCD
again.

16

4.3. Pollard’s rho method

4.2.1 Complexity

Which of the versions above is faster depends on the actual number p − 1.
Factorial will have better performance for a multiplication of low primes to
low powers, as the second one spends more time computing all the possible
powers of low primes. For larger numbers, the situation changes because some
low primes could be included more times than it is useful. In general, they
are asymptotically very similar. Therefore, just the second version will be
discussed.

For p−1 being L-smooth for some low L, we will get our result very quickly.
On the other hand, if p − 1 = 2 · pp and q − 1 = 2 · pq where and pp and pq

are primes about the same length, we have to iterate through the cycle over
all primes up to the lower of {pp, pq}, which would give us the size of bound
L = O (

√
n).

Complexity is given by the number of prime numbers up to the bound L.
By the Theorem 4 (Prime Number Theorem), this amount is about L

ln L . Each
iteration of the cycle can be done in polynomial time. This gets us to the final
value

O
(
L

lnL

)
= O

(√
n

ln
√
n

)
.

Thus, again exponential complexity, but slightly asymptotically faster than
the trial division.

Example 1. Let’s try to factorize n = 18559 using this algorithm. Let’s
choose bound L = 11, a = 2. For all primes pi ≤ 11, compute corresponding
maximal possible exponent ei, pei

i < 18559.

2214·38·56·75·114 ≡ 2480 (mod 18559)
GCD(2479, 18559) = 67

We have found one factor. The second can be gained by simple division
18559 / 67 = 277.

4.3 Pollard’s rho method

Pollard’s rho algorithm is a currently used name for Pollard’s Monte Carlo
factorization method firstly publicized by J. M. Pollard in 1975 in a ma-
thematics journal BIT Numerical Mathematics in the article called “A Monte
Carlo Method for Factorization”.

Let’s have a function f(x) which will produce a pseudorandom sequence.
With a finite set of numbers in modulus of n, after a maximum of n iterations
of this function, we will get to a repetition of values, a cycle. There also can

17

4. Factoring algorithms

be some initial acyclic part called a tail. If we sketch it, it can give us a picture
of Greek letter ρ, that is where the name of this algorithm came from.

The same sequence in modulus of p will cycle much faster since p < n. If
we are capable of detecting a cycle in modulus of p, then we should be able to
gain value of p easily. Original Pollard’s algorithm uses Floyd’s cycle detection
[21, p. 176].

Theorem 6 (Floyd’s cycle detection). Let’s have a sequence of numbers
(xj)j∈N+ modulo p. If there is a cycle, then it will be certainly detected by
the test xj ≡ x2j (mod p) for each relevant j.

Proof. Let us suppose that in our sequence there is actually a cycle with
length l and acyclic part of length a, l > 1, a ≥ 0. We use two pointers p
and u that at the beginning both point to the first sequence element x1. At
each iteration, we move pointer p two elements forward (so in the first step to
x3) and u just to the next element, so indexes of the elements appointed by p
will be two times bigger than the ones appointed by u. By some time (after
a − 1 iterations) both pointers will point to elements in the cycle. Let y be
a distance between them, specifically the distance from the pointer p to u in
the direction of the cycle. We know that y < l. After each iteration from now
on, y will be reduced by one. So after y iterations, both pointers will point to
the same element, that is when xj ≡ x2j occurs.

But we are interested in the cycle modulo p without actually knowing p.

x2j ≡ xj (mod p)
x2j − xj ≡ 0 (mod p)
x2j − xj = k · p, k ∈ N

The beauty of this method is we actually do not need to know p to use
a formula above. Let’s compute d = GCD (x2j − xj , n). There are several
possible results for d:

1. d = 1
This situation indicated that we were not able to get any useful results
yet. It means the situation xj ≡ x2j did not occur. Usually, we continue
iterating f(x).

2. d = n

In this case, we return failure. No useful result is gained, we have to try
variant seed values or/and different function in order to get demanded
result [21, p. 181].

3. 1 < d < n

We have found two non-trivial factors of n, d and n/d.

18

4.3. Pollard’s rho method

The sequence in question is constructed by iterating function f(x) for some
seed value x over and over again (f j(x)). But we do not need to store the
whole sequence at once. We merely need to know the values of xj and x2j ,
next elements are simply computed as xj+1 = f(xj) and x2·(j+1) = f(f(x2j)).

Now, let’s have a look upon the function f(x). It is widely spread that easy-
to-compute function with sufficient randomness is the function f(x) = x2 + a
for some a ∈ N+ \ {0,−2}. These two values cannot be used because of the
stagnation of the algorithm. For a = 0, once we get to x = 0, we will not get
any further. For a = −2 are the values in question x = ±1, as (±1)2−2 = −1
will cause stagnation as well. Original Pollard’s algorithm uses f(x) = x2 − 1
[4, p. 331]. Today is prevalent to use a function f(x) = x2 + 1 as it is in
Algorithm 4.

Computing GCD after each iteration of the function f(x) is not that effi-
cient and is not used in the original algorithm either. An often used improve-
ment is to save intermediate results in a product and then compute GCD just
once for the whole product, e.g., after 100 iterations [4, p. 331]. If we get
d = n, we go back to the previous value and pick a lower step. Thus, it is
substantial to save the last values of a (al) and b (bl) for which we computed
GCD. This approach can be found in Algorithm 5.

Algorithm 4 Pollard’s rho algorithm without product
1: let’s have f(x)← x2 + 1, a← 2, b← 2
2: d← 1
3: for i← 1 to ∞ do
4: a← f(a) (mod n), b← f(f(b)) (mod n)
5: d← GCD (b− a, n)
6: if 1 < d < n then
7: return d, n/d
8: else if d = n then
9: return failure

10: end if
11: end for

4.3.1 Improvement

Another improvement was brought by Richard P. Brent. He used a different
cycle finding method which is about 36% faster than Floyd’s and leads to
approximately 24 % faster whole factorization algorithm [21, p. 176]. The
purpose of this method is to reduce the amount of computing f(x). It uses
two pointer technique as well.

The principle is to move one pointer forward and then, after a decided
amount of step (usually increasing powers of 2) we set the second to point to
the corresponding element and start the cycle again. If it reaches the second

19

4. Factoring algorithms

Algorithm 5 Pollard’s rho algorithm
1: let’s have f(x)← x2 + 1, a← 2, b← 2, Q← 1, s← 100
2: al ← a, bl ← b
3: d← 1
4: for i← 1 to ∞ do
5: a← f(a) (mod n), b← f(f(b)) (mod n)
6: Q← Q · (b− a)
7: if i mod s = 0 then
8: d← GCD (Q,n)
9: if 1 < d < n then

10: return d, n/d
11: else if d = n and s 6= 1 then
12: s← 1
13: a← al, b← bl

14: else if d = n then
15: return failure
16: end if
17: al ← a, bl ← b
18: end if
19: end for

pointer before, then the cycle is there and we are done. As a bonus, we
can easily gain loop length just by storing the number of steps done from
the last meeting point. Algorithm 6 below uses some common values. More
information can be found in [21].

Algorithm 6 Brent’s cycle-finding algorithm
1: x← 1 y ← x, r ← 1, k ← 0, j ← k, done = false
2: while true do
3: r = r · 2
4: x← y, j ← k
5: while k ≤ r do
6: k ← k + 1
7: y = f(y), done ← (x = y)
8: if done then
9: return l← (k − j)

10: end if
11: end while
12: end while

20

4.3. Pollard’s rho method

If we want to use Brent’s cycle-finding method to speed up the factoriza-
tion, we would need to alter it a bit similar way as Floyd’s. It is even possible
to use product improvement mentioned earlier.

4.3.2 Complexity

This algorithm has a weakness. Unlike the two previous methods, it is not
certain it will discover any factor. The chance of failure lays in the d = n
situation discussed earlier. If all factors of n have the same cycle mod n, then
this occurs all the time, and this method does not work. Another variable is
a function f(x). We do not know the value of p so we cannot be sure of its
behaviour.

Let’s check the complexity in the situation in which this method succeeds.
That highly depends on the time to get a collision which we can get from the
birthday paradox.

Theorem 7. In Floyd’s cycle-detection algorithm as discussed earlier, a col-
lision usually appears after O(√p) iterations of the function f(x) assuming it
behaves like a random function.

Proof. There are p numbers in our set. We pick t of them, 1 ≤ t ≤ p. To get
the chance of the collision, we can apply the complement rule.

Pcollision = 1− Pdifferent

Pdifferent = p

p
· p− 1

p
· . . . · p− t+ 1

p
=

= 1 ·
(

1− 1
p

)
·
(

1− 2
p

)
· . . . ·

(
1− t− 1

p

)

The right side of the previous equation can be altered using definition of ex.

ex =
∞∑

n=0

xn

n! = 1 + x+ x2

2! + x3

3! + · · ·

Let’s have x very small (as will turn out later). Then high order powers are
so small we do not need to consider them.

ex = 1 + x, x� 1

21

4. Factoring algorithms

Using this equation, we can gradually get to our Pdifferent.

ex = 1 + x

e−x = 1− x

e
−x

p = 1− x

p

Pdifferent = 1 ·
(

1− 1
p

)
·
(

1− 2
p

)
· . . . ·

(
1− t− 1

p

)
=

= e0 · e−
1
p · e−

2
p · . . . · e−

t−1
p = e

− 0+1+2+...+t−1
p

Now formula for a sum of the following numbers comes in hand.
n∑

x=1
x = n · (n+ 1)

2

Pdifferent = e
− 0+1+2+...+t−1

p = e
−

(t−1)·t
2
p = e

− t·(t−1)
2p

Let’s see what happens if we want the probability of collision c, 0 < c < 1.

Pdifferent = e
− t·(t−1)

2p = 1− Pcollision = 1− c
1

e
t·(t−1)

2p

= 1− c

e
t·(t−1)

2p = 1
1− c

t · (t− 1)
2p = ln

(1
1− c

)

For t large, t− 1 ≈ t.

t2

2p = ln
(1

1− c

)

t =
√

ln
(1

1− c

)
· 2p

t = C · √p, C ∈ R+

The last step is not entirely correct because the value of t does depend on the
c, but as it is a square root of a logarithm, t grows very lightly with the rising
value of c, therefore this approximation can be used. That means after O(√p)
picks from our set collision should occur.

22

4.4. Fermat’s factorization

Using the theorem above, a normal worst-case scenario has complexity
O(√p) = O (4

√
n) polynomial-time operations, which is significantly better

than the trial division, but still exponential.

Example 2. Let’s try to factorize 18559. Used function will be f(x) = x2 + 1
and start values a = b = 2.

1 : a = 22 + 1 = 5, b = (22 + 1)2 + 1 = 26, Q = 26− 5 = 21
2 : a = 52 + 1 = 26, b = (262 + 1)2 + 1 = 12914, Q = 21 · (12914− 26) = 10822
...
7 : a = 11915, b = 11512, Q = 9588
8 : a = 9435, b = 5884, Q = 9782
GCD (9782, 18559) = 67

Is succeeded, factors of 18559 are 67 and 18559 / 67 = 277.

4.4 Fermat’s factorization
Fermat’s factorization method takes advantage of the following lemma.

Lemma 1. Between any two various odd numbers p and q, let’s say p < q,
there always exists an odd integer x such as x−p = q−x. Its value is x = p+q

2 .

Let us suppose n we want to factorize is odd. Otherwise, we keep dividing
it by two until it is. That means factors p and q we are looking for are odd
as well. Thus, there exists a middle number x as mentioned in the Lemma 1.
Let y be the distance of factors p and q from their average, y = x− p = q−x.

n = p · q = (x− y) · (x+ y) = x2 − y2

y2 = x2 − n

y =
√
x2 − n

Let us assume we somehow get the average x of the factors. Then we
are able to get their distance and, as a result, both factors themselves. The
point is how do we get the average. From the equation, it is obvious that
x ≥

√
n. Fermat’s algorithm then, as is shown in Algorithm 7, advances

gradually through all numbers one by one until it finds the number x. That
is notified by getting y as a whole number.

4.4.1 Improvement

In the 1920s Maurice Kraitchik came up with an enhancement that it is not
necessary to look for x and y so x2 − y2 = n, but it is sufficient for it to be
a multiple of n, that is, x2 ≡ y2 (mod n) [2, p. 1474]. At least half of the

23

4. Factoring algorithms

Algorithm 7 Fermat’s factorization algorithm
1: x← d

√
ne

2: while
√
x2 − n is not integer do

3: x = x+ 1
4: end while
5: return x+

√
x2 − n, x−

√
x2 − n

solutions are interesting, which means x 6= ±y. Then the prime factor of n
can be found as GCD (x − y, n). This is a very important expression that
was at the basis of most modern factoring algorithms.

4.4.2 Complexity

The complexity of this algorithm highly depends on the distribution of the
prime factors of n. If they are about the same size, this method reveals them
almost instantly. However, in the worst case, when one of the factors is small,
we get similar complexity as the trial division, specifically O (

√
n) polynomial-

time operations.
For better usage, it can be combined with the trial division to decrease

the possibility of low prime factors. This approach is usually faster than trial
division or Fermat’s factorization alone.

Example 3. Let’s try to factorize n = 18559 using this algorithm. Starting
value is x =

⌈√
18559

⌉
= 137.

x = 137
√

1372 − 18559 ≈ 14.49

x = 138
√

1382 − 18559 ≈ 22.02
...

x = 172
√

1722 − 18559 = 105

q = x+
√

1722 − 18559 = 172 + 105 = 277
p = x− 105 = 67

Found factors are 67 and 277.

4.5 Dixon’s random squares algorithm
In Fermat’s factorization method, condition of x2 − n to be strait square is
too strict. John D. Dixon has replaced it with the condition that x2 − n is
ν-smooth for some chosen bound ν. By finding more numbers which fulfil this
condition, using Gaussian elimination, we are able to construct a product of

24

4.5. Dixon’s random squares algorithm

these in such a way that all powers of prime factors are even. Thus we can
use a similar approach as in Fermat’s algorithm to find factors of n.

Let us have set of prime numbers P with a length h containing all primes
lower than a bound ν. For an integer x from interval [1, n] [5, p. 256], if
x2 (mod n) is ν-smooth, it can be written as a vector of exponents of primes
pi in the set P . For

∣∣x2∣∣
n = pe1

1 · p
e2
2 · · · p

eh
h , vector of exponents would be

(e1, e2, e3 . . . , eh). Those vectors are stored in the set B. Length of each of
these vectors is h. Trial division is a sufficient tool for finding corresponding
exponents, assuming not so large P . We are trying to find the first vector
that is linearly dependent on the previous vectors. Using some knowledge of
linear algebra, we need at most h+1 vectors. Dependency can be found using
Gaussian elimination.

To be able to perform square root as in Fermat’s approach, an exponent has
to be even, so searching for linear dependency is sufficient to do modulo 2. Let
c be the vector found dependent on some vectors b ∈ B. As it is not necessary
for it to be dependent on all the previous, let fb be the indicator (0 or 1)
whether or not vector b ∈ B is included.

c ≡
∑
b∈B

fb · b (mod 2)

Therefore, c+
∑

b∈B fb · b is an even number. Let

d = 1
2 ·

c+
∑
b∈B

fb · b

 .
Just as c and b, variable d is a vector of exponents of primes from P . Let
y =

∏
pdi

i for all primes pi of P and their corresponding exponents (elements
of d).

All numbers xi whose powers of two were used to construct vectors from
B (including c), whose fb = 1, are stored in a set Z. Using x =

∏
xi∈Z xi we

get to congruence from the Fermat’s algorithm, and we are done because

x2 =
∏

xi∈Z

x2
i ≡

∏
p
(c+
∑

b∈B
fb·b)

i
i =

∏
p2di

i = y2 (mod n)

This algorithm can fail, that happens in the situation when x = ±y. As
pointed out in [5, p. 259], this chance is lower than 1

2 . Thus, the average
amount of tries is lower than 2.

4.5.1 Complexity

Crucial is a choice of the bound ν but complete complexity analysis of Dixon’s
random square algorithm is beyond the scope of this thesis. Dixon in [5, p. 257]
suggested ν = L(n)

√
2 = e

√
2 ln n ln ln n and proved the complexity of the algo-

rithm to be O
(
L(n)3

√
2
)
. However, it has been proved in [22] that the best

choice for ν is L(n)
1
2 with complexity O

(
L(n)2+O(1)

)
.

25

4. Factoring algorithms

4.6 Quadratic sieve

The quadratic sieve was made up in 1981 by Carl Pomerance. It uses a similar
approach as Dixon’s method, that is finding congruences of the shape
x2 ≡ y2 (mod n) and then uses technique mentioned earlier in Fermat’s fac-
torization.

The biggest difference from Dixon’s algorithm is in finding numbers whose
squares are smooth. Firstly, they are chosen relatively small compared to n,
so there is a bigger chance of finding suitable values. Also, the sieving method
is used to find them faster. The bound chosen is ν = L(n)a for some a,
1
10 < a < 1 [6, pp. 131–132].

The main idea is the following. Let S(A) = (
√
n+A)2 − n for A being

some small number, then the value of S(A) is about 2
√
nA. Moreover, a

technique similar to the Sieve of Eratosthenes is used. Its validity is shown
below. Let p be some prime number and k arbitrary integer.

S(A) =
(√
n+A

)2 − n = n+ 2
√
nA+A2 − n = 2

√
nA+A2

S(A+ kp) =
(√
n+A+ kp

)2 − n = n+ 2
√
n(A+ kp) + (A+ kp)2 − n =

= 2
√
nA+ 2

√
nkp+A2 + 2Akp+ (kp)2 = S(A) + kp · (2

√
n+

+ 2A+ kp)

Thus, the following holds.

S(A) ≡ S(A+ kp) (mod p)

Let us have a look at quadratic congruence S(A) ≡ 0 (mod p). Let’s mark
unknown x =

√
n+ a. Then it has at most two solutions.

S(A) = (
√
n+A)2 − n ≡ 0 (mod p)

x2 ≡ n (mod p)

There is at least one solution if either p|n or n is a quadratic residue
modulo p. The situation p|n is not interesting because it is very unlikely to
happen and it can be checked very quickly. The second scenario suggests two
solutions, x (mod p) and −x (mod p). However, that is true just for odd
primes. If p = 2, these solutions are both equal to 1 as n is not divisible by p.
As we want n to be quadratic residue modulo p, not all primes are useable for
sieving. If a prime is useful is decidable quickly by Euler’s Criterion. Let’s
start from Theorem 1 (Little Fermat’s Theorem).

np−1 ≡ 1 (mod p)(
n

p−1
2 + 1

)
·
(
n

p−1
2 − 1

)
≡ 0 (mod p)

26

4.6. Quadratic sieve

One of the factors must be equal to zero. If n is a quadratic residue, we can
write x2 ≡ n (mod p).((

x2
) p−1

2 + 1
)
·
((
x2
) p−1

2 − 1
)
≡ 0 (mod p)(

xp−1 + 1
)
·
(
xp−1 − 1

)
≡ 0 (mod p)

From Theorem 1 (Little Fermat’s Theorem) again, the second factor is zero.
Thus, whether or not n is a quadratic residue modulo p can be discovered from
the result of n

p−1
2 (mod p). This expression is called Legendre symbol. If it is

equal to 1, then n is a quadratic residue.
Solving congruence S(A) ≡ 0 (mod p) leads to seed value Ap (or more of

them). For each suitable prime p, we get the whole bunch of values we can
work with. If we have saved more values of S(A), then by increasing value
of k we get all S(A) divisible by p. Smooth numbers can be found quickly
this way. If we keep track for each S(A) which primes p are its divisors, every
S(A) value which will be close to the multiplication of its found divisors would
probably be L(n)a-smooth.

There is one thing to be concerned about. Sieving process described above
finds prime numbers which divide S(A). However, it does not recognize
whether or not S(A) is divisible by the higher powers of these primes. In
order to do that, two solutions can be applied. First is to check for the powers
using trial division. The other one is to try sieving using some higher powers
of primes, which is valid as well.

To speed up this algorithm even more, we can use negative values of x,
which will allow us to have two times more numbers and thus lower |S(A)|,
so operations will be performed faster. In order to do so, we need to include
−1 in our list of suitable primes and work with it as with a regular prime in
our set.

Another thing to decide is how many S(A) values should be precomputed
to get enough ν-smooth numbers. According to the Pomerance, if we have Lb

values of S(A), there are Lb−(4a)−1 numbers which are composed solely of the
primes p < La [6, p. 132]. So the choice of b = a + (4a)−1 seems reasonable
to get enough values to find a linear dependency.

Lb−(4a)−1 = La+(4a)−1−(4a)−1 = La

It is sumarized in Algorithm 8.

4.6.1 Improvement

There exists a variation of quadratic sieve called MPQS (multiple polynomial
quadratic sieve), which uses more than one polynomial. They should be

27

4. Factoring algorithms

Algorithm 8 Quadratic sieve
1: choose bound La, 1

10 < a < 1, i← 0
2: create prime set P of p < La for which n is quadratic residue modulo p
3: add −1 to the set P
4: for A ∈ {±1,±2,±3, . . . } do
5: compute S(A) = (

√
n+A)2 − n (mod n)

6: i← i+ 1
7: if i = La+(4a)−1 then
8: break
9: end if

10: end for
11: for each number p ∈ P do
12: find seed value/values A0 such as S(A0) ≡ 0 (mod p)
13: starting at A0, mark every p-th value of S(A) as a multiplication of p
14: if there are |P |+ 1 (almost) completely factorized S(A) values then
15: break
16: end if
17: end for
18: construct matrix of vectors of powers of primes mod 2
19: find linear dependency
20: construct expression x2 ≡ y2 (mod n)
21: if x = ±y then
22: repeat algorithm with a different choice of bound
23: else
24: return GCD(x± y, n)
25: end if

similar to the original S(A). Its biggest advantage is in parallelization, one
possible way is to provide each computer with different polynomial and sieve
independently [2, p. 1479].

4.6.2 Complexity

As the theory for obtaining complexity of the quadratic sieve algorithm is
beyond the scope of this thesis, let’s just say that complexity is

O(L(n)
r√

4r−4 +O(1)) = O
(
e

(
r√

4r−4 +O(1)
)
·
√

ln n ln ln n
)
,

where r is an exponent of the complexity of used elimination algorithm. Often
used Gaussian elimination has complexity t3 for a square matrix with t rows.
Thus, for r = 3 we get

O
(
e

(
3√

4·3−4 +O(1)
)
·
√

ln n ln ln n
)

= O
(
e
√

ln n ln ln n
)

= O (L(n)) .

28

4.7. Others

Example 4. Let’s try to factorize n = 18559 using simplified version of this
algorithm. Starting value is

⌊√
18559

⌋
= 136. Assume that the chosen prime

set is P = {2, 3, 5, 7, 11}. The sieving process is omitted due to small numbers.

(136 + 1)2 − 18559 = 210 = 2 · 3 · 5 · 7
(136− 1)2 − 18559 = −334 = −1 · 2 · 167
(136 + 2)2 − 18559 = 485 = 5 · 97

...
(136 + 7)2 − 18559 = 1890 = 2 · 33 · 5 · 7

As the values are small, dependence can be seen immediately.

1372 · 1432 ≡ 22 · 34 · 52 · 72 (mod n)
(137 · 143− 2 · 32 · 5 · 7) · (137 · 143 + 2 · 32 · 5 · 7) ≡ 0 (mod n)

402 · 1662 ≡ 0 (mod n)

GCD(18559, 402) = 67
GCD(18559, 1662) = 277

Found factors are 67 and 277.

4.7 Others
There are so many other factorization algorithms that were not discussed.
A lot of them are just variations or modifications of the methods described.
Some are significantly different. Here is a brief overview of some important
algorithms which were not described earlier.

Hugh C. Williams in 1982 presented “A p + 1 Method of Factoring”. As
the name suggests, it is an analogous method to Pollard’s p− 1 factorization
algorithm, working well if, for factor p of integer n, p+ 1 is a smooth number.

Elliptic curve factorization method can be considered for generalization of
Pollard’s p − 1 algorithm in the terms that factorization is not done on the
group Zp, but on group of points of random elliptic curve over Zp. If the order
of this group is smooth for some chosen bound B, non-trivial factors of n can
be gained.

The currently fastest general-purpose factoring algorithm is called general
number field sieve. It is based on the idea of John Pollard from 1988 to use
algebraic number fields. As it was originally meant for factoring numbers
of special shape, it has developed to the general-purpose algorithm with ex-
pected running time ec·(ln n)

1
3 (ln ln n)

2
3 . It believed that for numbers smaller

than 100 digits, the quadratic sieve is faster. But for numbers of 130 and

29

4. Factoring algorithms

more digits, number fields sieve is better [2, p. 1483]. In fact, it is still the
fastest applicable algorithm known.

The last method to be mentioned here is Shor’s algorithm. It is the reason
why in the era of quantum computing RSA does not stand a chance. Factoring
can be done in polynomial time. This algorithm finds the least integer r such
as xr ≡ 1 (mod n). Then computing GCD(x

rx
2 − 1, n) gives us a factor of n

with a probability higher than 1
2 assuming n has at least two different prime

factors [23, p. 130].
It is really hard to guess the speed of development in the area of quan-

tum computing. It is possible that some breakthrough will happen soon and
quantum computers will become widely spread devices in the near future. But
it is not considered to be that likely. According to the estimate mentioned
in [24, 1:44:50], amount of qubits needed to factorize numbers used in RSA,
which is more than 108 qubits [24, 1:15:42], compared to 53 qubits that are
reached as of today, will be gained about the year 2050, so it is not something
we should be concerned about now.

30

Chapter 5
Attacks on RSA

Exposing the private key from the public one is not an easy task. It is known
as the RSA problem. It is widely believed that it is computational complexity
is the same as of the integer factorization although it has not been proven (or
disproven) yet. Till it is solved, factorization is the only general way how to
obtain the private key.

However, inappropriate settings of RSA parameters may end up in creating
some vulnerabilities which then could be exploited. Chosen parameters are
public modulus n (primes p and q) and public exponent e.

In this chapter, there will not be discussed attacks using factorization
including poor choice of n that could lead to a quick discovery of primes p and
q and thus, breaking the whole encryption system.

5.1 Common modulus

Let us suppose that we choose only one public modulus for all users. To be
able to use encrypted communication, each is given a unique pair of ei and
di using the same public modulus n. The reason of this could be, e.g., lower
computational complexity compared to computing and storing various ni.

This is an ultimately bad idea. Public modulus is as well as all public
exponents accessible by anyone. Everybody who holds a pair, (ei, di) can
compute prime factors of n, as was shown in [25, p. 205], in the following way.

e · d ≡ 1 (mod ϕ(n)), ϕ(n) = (p− 1) · (q − 1)

then k = ed− 1 is a multiple of ϕ(n). As p− 1 and g − 1 are both even, k is
even as well. For g > 0, GCD(g, n) = 1 Theorem 2 (Euler’s Theorem) applies:

gk ≡ 1 (mod n)

31

5. Attacks on RSA

Number x = g
k
2 is then square root of 1 modulo n. Let’s rewrite it.

x2 ≡ 1 (mod n)
x2 − 1 ≡ 0 (mod n)

(x+ 1) · (x− 1) ≡ 0 (mod n)
(x+ 1) · (x− 1) = l · p · q, l ∈ N

(x+ 1) · (x− 1)
p · q

= l

This equation has 4 solutions. For l = 0, there are two trivial solutions,
x = ±1. If l > 0, then

p|(x+ 1) ∧ q|(x− 1) or p|(x− 1) ∧ q|(x+ 1)

The other two solutions are

x ≡ −1 (mod p) ∧ x ≡ 1 (mod q)
and

x ≡ 1 (mod p) ∧ x ≡ −1 (mod q).

Computing GCD(x− 1, n) could reveal one of the factors of n. If it does
not and k/2 is still even number, we can divide it again trying to get yet
another square root of unity. This step can be done several times till k/2i is
even. If g is chosen randomly, solutions would be random as well. Therefore,
probability of correct choice of g can be expected about 1/2. If continued
division technique is used, then probability can get higher than 50%.

Algorithm 9 Common modulus attack
1: choose random low g, 2 < g < n− 2
2: if GCD(g, n) 6= 1 then
3: return GCD(g, n)
4: end if
5: k ← e · d− 1
6: while k ≡ 0 (mod 2) do
7: x← g

k
2 (mod n)

8: res = GCD(x− 1, n)
9: if 1 < res < n then

10: return res
11: end if
12: k ← k/2
13: end while
14: go back to step 1

32

5.2. Same message attack

5.2 Same message attack
This attack is strongly connected with the previous one. Let’s assume that
the message m is encrypted by two different public keys e1 and e2. That
can happen in a common modulus scenario but also when some kind of error
occurs during communication, so the public exponent is changed and the same
message is transmitted again. If GCD(e1, e2) = 1, then plaintext can be
obtained as was shown in [26, p. 181].

me1 ≡ c1 (mod n)
me2 ≡ c2 (mod n)

There exists Bézout’s identity of form ae1 + be2 = 1, where one of a, b is a
negative and one is a positive integer. They can be found by the Euclidean
algorithm. The inverse of ciphertext modulo n whose corresponding exponent
has negative coefficient is computed, let’s say b < 0, then c−1

2 (mod n). All
computations are done modulo n.

ca
1 ·
(
c−1

2

)|b|
= (me1)a ·

(
(me2)−1

)|b|
= mae1 ·mbe2 = mae1+be2 = m1 = m

Thus, anybody has access to the plaintext m. However, prevention against
this attack is very simple. Sufficient is to change the message somehow, e.g.,
by adding timestamp or different padding.

Algorithm 10 Same message attack
1: find a and b such as a · e1 + b · e2 = 1
2: m1 ← ca

1 (mod n)
3: m2 ← cb

2 (mod n)
4: message← m1 ·m2 (mod n)
5: return message

5.3 Low private exponent
If parameters of RSA are chosen in a way that the private exponent d is
small, e.g., for speeding up decryption, there exists a cryptanalytic attack
on the RSA, which can reveal factorization of the public modulus n. It was
described by Michael J. Wiener in [27]. To get there, let’s start from the
relation between the public and private exponents.

ed ≡ 1 (mod ϕ(n))
ed = k · ϕ(n) + 1, k ∈ N

ed = k · (p− 1) · (q − 1) + 1
e

pq
= k · pq − p− q + 1

pqd
+ k

kpqd
= k

d
·
(

1−
p+ q − 1− 1

k

pq

)

33

5. Attacks on RSA

Let’s mark δ = p+q−1− 1
k

pq . It can be rewritten as

e

pq
= k

d
· (1− δ).

This equation can be solved for low δ with the continued fraction algorithm
[27, p. 554], as e

pq contains only public information and it is a close underes-
timate of k

d for small δ. The algorithm can find values of k and d. Whether it
succeeded or not can be checked quickly.

ed = k · (p− 1) · (q − 1) + 1
ed− 1
k

= (p− 1) · (q − 1) = ϕ(n)

So we would know the value of ϕ(n). Therefore, we are able to get both
factors.

(p− 1) · (q − 1) = pq − p− q + 1 =⇒ pq − (p− 1) · (q − 1) + 1 = p+ q

The same approach as in the Fermat’s factorization can be used, in reverse
order, to obtain values of p and q.

(
p+ q

2

)2
−
(
p− q

2

)2
= n∣∣∣∣p− q2

∣∣∣∣ =

√(
p+ q

2

)2
− pq

If any of these steps returns an unexpected or an unwanted result, our
guess for values d and k was not correct, and we have to repeat it in order to
succeed.

Now about the actual continued fractions algorithm to get values d and k.
A continued fraction is an expression of the form

a1
q1 + a2

q2+ a3
...

.

If all ai are equal to 1, we are interested only in the vector of qi. Expansion
of e

pq will produce coefficients qi. Along with that, we construct new fraction
one step at time, the next coefficient is qi +1 if i is even or qi if i is odd. From
this fraction, we are able to reconstruct nominator and denominator of the
original expression. After each iteration, check if k

d is found.
It was shown that condition

dk <
pq

3
2 · (p+ q − 1)

34

5.4. Broadcast attack

is sufficient to allow d to be found. With the typical case of RSA parameters,
it will succeed for d < n0.25 [27, pp. 557–558]. Nowadays, instead of Euler’s
function, Carmichael function is used as a modulus to compute the second key
from the first. The biggest difference in the procedure is that multiplication
(p− 1) · (q− 1) is replaced by the expression LCM(p− 1, q− 1), which makes
it a bit complicated. More about it can be found in [27].

Algorithm 11 Low private exponent
1: while k

d is not found do
2: generate next quotient qi of continued fraction expansion of e

n
3: if i ≡ 0 (mod 2) then
4: construct fraction from quotients q0, q1, . . . , qi + 1
5: else
6: construct fraction form quotients q0, q1, . . . , qi

7: end if
8: if constructed fraction is equal to k

d then
9: return k

d
10: end if
11: end while

5.4 Broadcast attack

The broadcast attack, presented by Johan Hastad in [28], is a way to recover
a message encrypted using a small public exponent, which is sent to more
subjects.

Let us assume message m, which we want to send to more subjects, each
with different RSA key (modules n1, n2, . . .). These modules are coprime.
Otherwise, it is possible to factor some of them, and this attack does not have
to be used. Let’s suppose all subjects use the same low public exponent e.
Then, we can recover me using Theorem 3 (Chinese Remainder Theorem).
The result will be gained modulo n1 · n2 · · · . If e is lower than the number of
messages, then me < n1 · n2 · · · . Thus, modulo reduction does not apply and
m can be recovered by eth root.

This attack can be generalized for usage with more than just one e but it
is beyond the scope of this thesis.

Algorithm 12 Broadcast attack
1: create system of e linear congruences ci ≡ me (mod ni)
2: solve this system using Chinese remainder theorem for variable c
3: return e

√
c

35

5. Attacks on RSA

5.5 Simple power analysis
This attack is aimed more to the bad implementation than the wrong usage.
If the decryption process is not implemented correctly, it can lead to revealing
private modulus d by side channel, power analysis attack.

In RSA, plain text is gained from ciphertext in the following way.

mi =
∣∣∣cd

i

∣∣∣
n

The algorithm for quick exponentiation is called Square and Multiply. The
first step is to convert d to binary number. With process from high order bits
of d to lower, do the following. For the first 1, just enlist ci to the result. For
each following 0, square the result. For 1, square the result and multiply it
with ci. The following example ilustrates this method.

d = 13 = 1101, c = 5, n = 21, result will be in x
1101: x = 5
1101: x = x2 · 5 x = |25 · 5|21 = 20
1101: x = x2 x = |20 · 20|21 = 1
1101: x = x2 · 5 x = 12 · 5 = 5

If the algorithm for decryption is not implemented correctly, by power
analysis, it can be determined which bit of d was 0 and which 1 as for mul-
tiplication is needed some additional computational effort. Thus, it would be
possible to gain whole private exponent. Defence against this attack is quite
simple, sufficient is to add some odd multiplication for zero-bits as well.

36

Chapter 6
Testing

Mathematical expressions for the computational complexities of the factoriza-
tion methods can provide a reasonable estimate of the running time. However,
that stands only for the worst-case scenarios, the real running times can be
different. In this section, selected methods are tested and compared in simu-
lations performed by Magma software [29].

Two approaches in terms of the choice of the number to factorize are taken
into account, as there are some recommendations regarding the choice of RSA
public modulus n and its factors p and q presented by NIST in [18, pp. 50–53]
and [19, pp. 33–35]. Comparison between running times of the factorization
performed on the RSA modulus and random numbers with the corresponding
length is also included.

6.1 Factorization functions

Magma offers several factorization functions, namely trial division (TrialDivi-
sion)3, Pollard’s rho (PollardRho), Pollard’s p−1 (pMinus1), Williams’s p+1
(pPlus1), Shanks’s square forms (SQUFOF), Elliptic Curve Method (ECM),
multiple polynomial quadratic sieve (MPQS), Number Field Sieve(NFS) and
method for small Cunningham numbers (Cunningham). The last two are not
used in the tests, mainly because they require parameters whose reasonable
choice is beyond this thesis. Shanks’s square forms can be understood as a
practical implementation of Fermat’s factorization method. There also exists
a function called Factorization, which is a combination of the previously men-
tioned functions to achieve close to optimal performance [30, p. 302].

3name of the function in Magma, without parameters

37

6. Testing

length of modulus in bits
Function 20 30 40 50 60 70 80 90 100 110 120
Factorization 0 0.001 0 0.001 0.002 0.016 0.035 0.055 0.101 0.272 0.339
TrialDivision 0 0 0.01 0.26 7.97 1719.81
PollardRho 0 0 0.002 0.008 0.021 0.126 0.592 2.677 18.829 126.579 362.689
pMinus1 0.258 0.001 5.181 0.018 0.037 9.307 0.624 15.834 15.108 16.255 17.002
pPlus1 1.348 0.003 0.002 0.03 0.127 0.275 1.102 1.885 28.818 29.472 80.683
SQUFOF 0 0 0 0.001 0.002 0.011 0.03 0.272 1.125 7.597 20.94
ECM 0.006 0.003 0.005 0.031 0.156 0.432 1.102 5.818 4.812 20.2 67.489
MPQS 0.008 0.035 0.026 0.025 0.021 0.033 0.043 0.065 0.092 0.124 0.162

Table 6.1: Factorization methods run times in seconds

length in bits
Function 20 40 60 80 100 150 200 250 300 350 400
Factorization 0 0 0.002 0.035 0.101 1.330 19.495 415.350 7174.535 183821.2
MPQS 0.008 0.026 0.21 0.43 0.092 0.56 17.515 343.83 7289.405 122109.87
FactorizationR 0 0 0.001 0.003 0.007 0.047 1.89 8.788 62.551 575.376 124.632
NFS 3.99 61.19 340.43 2247.44 18841.1 100253

Table 6.2: Factorization methods run times in seconds – higher modulus

6.2 Factorization

Comparison of the mentioned methods on the numbers satisfying conditions
of creating RSA public modulus, except for the length, was performed for
the modulus range between 20 and 120 bits. Its size is limited by Magma
implementation, higher values are problematic for some functions. Results
presented in Table 6.1 and Figure 6.1 were gained as the average of 10 runs of
each function for each modulus length, with the exception of TrialDivision.

Comparison by obtained results between each other almost corresponds
with the comparison by computational complexities. Nonetheless, it could not
be compared numerically because theoretical running times are asymptotical
and curve regressions provided strongly misleading values.

Notable are the running times of the Pollard’s p− 1 method, which highly
depends on the properties of a particular integer that is factorized. The similar
should work for Williams’s p+ 1 method as well, but it is not so obvious from
the results.

The second test was about numbers with higher bit length. RSA mod-
ules of size up to 400 bits were tested by three methods – Magma functions
Factorization and MPQS mentioned earlier. The third was CADO-NFS [8]
implementation of the Number Field Sieve(NFS). In addition, function Factor-
ization was used to factorize a random number of the corresponding length. It
is denoted as FactorizationR. Results are gathered in Table 6.2 and Figure 6.2.

Results show that restrictions on creating RSA modulus are really impor-
tant as the factorization of a randomly chosen number of the same length

38

6.3. Attacks

20 40 60 80 100 120
0

5

10

20

50

length of n [bits]

ti
m
e
[s
]

TrialDivision
PollardRho
pPlus1
ECM

SQUFOF
pMinus1

Factorization
MPQS

Figure 6.1: Factorization methods comparison – legend is sorted by run times

can be done much faster. Factorization and MPQS have very similar running
times, which is not very surprising due to the fact that Factorization is mostly
quadratic sieve [30, p. 302]. As the results confirm, NFS is, in fact, the fastest
factorization algorithm for long RSA moduli.

6.3 Attacks

Results of testing of selected attacks on RSA excluding factorization are de-
scribed in this section.

6.3.1 Low private exponent

Low private exponent attack was tested from the perspective of the relation
between the maximal size of private exponent d and modulus n such as the fac-
tors of n can be revealed. Two attacks were performed – one using Carmichael

39

6. Testing

20 100 200 300 400
0

50
100

200

400

800

length of n [bits]

ti
m
e
[s
]

Factorization
MPQS
NFS

FactorizationR

Figure 6.2: Factorization methods comparison – higher modulus

function (Figure 6.3) and the second using Euler’s function (Figure 6.4) as
the modulus for the computation of public exponent from the private one.

Let dm be the maximal private exponent which is vulnerable to low private
exponent attack. The results showed that n0.246144 ≤ dm < n0.26209 for the
Euler’s function and n0.240641 ≤ dm < n0.254649 for Carmichael function. Thus,
for the prevention of this attack, private exponent should be chosen larger then
n0.25 unless another defence is chosen, as was suggested in [27, p. 557]

Edge values stated earlier were gained as the average of more than 200
runs of the attack for various bit lengths of the modulus and raising private
exponent length by one at the time. How were these values distributed based
on the modulus length is shown in Figure 6.3 and Figure 6.4.

6.3.2 Common modulus

Common modulus attack was performed on the modulus up to 2830 bits. Even
for the numbers this large, the attack was able to recover private exponent d

40

6.3. Attacks

20 50 100 150 200 250
0.23

0.25

0.3

length of n [bits]

ex
po

ne
nt

–
lo

g n
(d

)

failure
success

Figure 6.3: Low private exponent attack using Carmichael function

very quickly. In fact, for each size of the modulus, time needed to perform the
attack was lower than 0.1 seconds. Thus, it is essential to be secure against
this kind of attack. The test aimed at a number of choices of a random g
to recover a private exponent. From 556 runs, 768 random choices of g were
made, meaning 72.4 % success rate of the first choice. The average amount of
division of k done for a choice of g was 2.457.

6.3.3 Same message

Same message attack is a speedy way to recover plaintext. All the attempts
to perform this attack were from the time perspective at the edge of computer
recognition (about 0.01 seconds). However, not all the attempts were success-
ful. As was mentioned in description earlier, coprime public exponents are
required. For a randomly chosen pair of public exponents on various modulus
length, the attack was successful in 81.17% of cases from more than 1000 runs.

41

6. Testing

20 50 100 150 200 250
0.23

0.25

0.3

length of n [bits]

ex
po

ne
nt

–
lo

g n
(d

)

failure
success

Figure 6.4: Low private exponent attack using Euler’s function

6.3.4 Broadcast attack

As the size of the modulus and public exponent raises, the broadcast attack
becomes slower and slower. Its computational complexity is exponential. De-
pendence of running time on the length of public exponent with fixed modulus
length n = 120 bits is shown in Figure 6.5.

42

6.3. Attacks

2 10 13 16
0

20

40

60

80

100

length of e [bits]

ti
m
e
[s
]

Figure 6.5: Broadcast attack for various public exponents

43

Conclusion

The goal of this thesis was to describe selected factorization methods and
some attacks on RSA and test these. Provided descriptions and mathematical
expressions were designed to help understand them in the prospective study,
which I believe was achieved.

Tests of factorization algorithms were performed, and comparison of prac-
tical running times almost corresponds to the theoretical collation. Also, the
impact on the whole cryptosystem in the case that modulus is chosen ran-
domly and not according to recommendations was shown. Wrong usage or
inappropriate parameters can lead to information disclosure or more severe
problems using various attacks.

All the tests were performed in Magma. Even though there were some
limitations concerning the accuracy of computations with huge numbers which
led to some constraints during testing, Magma has proved to be a handy tool
for mathematical computations.

Further works may follow on and focus on the algorithms omitted in this
thesis and remaining attacks on RSA or their generalization. It is also possible
to focus on creating new factorization methods. Nevertheless, as many great
mathematicians already studied factorization problem, it is not very likely
that computational complexity will get significantly better. However, a way
of improvement can lay in the solution of the RSA problem. Maybe there
exists a way to break this cryptosystem without factorization.

45

Bibliography

1. MOLLIN, Richard A. A Brief History of Factoring and Primality Testing
B. C. (Before Computers). Mathematics Magazine. 2002, vol. 75, no. 1,
pp. 18–29. Available from DOI: 10.1080/0025570X.2002.11953094.

2. POMERANCE, Carl. A Tale of Two Sieves. Notices of the AMS [online].
1996, vol. 43, pp. 1473–1485 [visited on 2020-04-07]. ISSN 0002-9920.
Available from: https://www.ams.org/notices/199612/pomerance.
pdf.

3. POLLARD, J. M. Theorems on Factorization and Primality Testing.
Mathematical Proceedings of the Cambridge Philosophical Society. 1974,
vol. 76, no. 3, pp. 521–528. Available from DOI: 10.1017/S0305004100
049252.

4. POLLARD, J. M. A Monte Carlo Method for Factorization. BIT Numer-
ical Mathematics [online]. 1975, vol. 15, no. 3, pp. 331–334 [visited on
2020-04-07]. ISSN 1572-9125. Available from DOI: 10.1007/BF01933667.

5. DIXON, John D. Asymptotically Fast Factorization of Integers. Math-
ematics of Computation. 1981, vol. 36, no. 153, pp. 255–260. Available
from DOI: 10.1090/S0025-5718-1981-0595059-1.

6. POMERANCE, Carl. Analysis and Comparison of Some Integer Factor-
ing Algorithms. Computational Methods in Number Theory. 1982, no.
154, pp. 89–139.

7. LENSTRA JR., Hendrik W. Factoring Integers with Elliptic Curves. The
Annals of Mathematics. 1987, vol. 126, no. 3, pp. 649–673. Available from
DOI: 10.2307/1971363.

8. THE CADO-NFS DEVELOPMENT TEAM. CADO-NFS [online] [visi-
ted on 2020-04-07]. Available from: http://cado-nfs.gforge.inria.
fr/.

47

https://doi.org/10.1080/0025570X.2002.11953094
https://www.ams.org/notices/199612/pomerance.pdf
https://www.ams.org/notices/199612/pomerance.pdf
https://doi.org/10.1017/S0305004100049252
https://doi.org/10.1017/S0305004100049252
https://doi.org/10.1007/BF01933667
https://doi.org/10.1090/S0025-5718-1981-0595059-1
https://doi.org/10.2307/1971363
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/

Bibliography

9. ZIMMERMANN, Paul. Factorization of RSA-250 [online]. 2020 [visited
on 2020-04-07]. Available from: https://lists.gforge.inria.fr/
pipermail/cado-nfs-discuss/2020-February/001166.html.

10. BARKER, Elaine; ROGINSKY, Allen. Transitioning the Use of Cryp-
tographic Algorithms and Key Lengths. NIST Special Publication 800-
131A Revision 2 [online]. 2019 [visited on 2020-04-07]. Available from
DOI: NIST.SP.800-131Ar2.

11. MENEZES, Alfred J.; VAN OORSCHOT, P. C.; VANSTONE, Scott A.
Handbook of Applied Cryptography. CRC, 1997. ISBN 0-8493-8523-7.

12. Faktorizace velkých čísel [online] [visited on 2019-12-21]. Available from:
http://artax.karlin.mff.cuni.cz/~ppri7485/nmib014/faktorizace.
pdf. [Translated by author].

13. RIESEL, Hans. Prime Numbers and Computer Methods for Factoriza-
tion [online]. Birkhäuser Boston, 2012 [visited on 2020-04-07]. Modern
Birkhäuser Classics. ISBN 978-0-8176-8298-9. Available from: https :
//books.google.cz/books?id=94DaZuVETzIC.

14. KOLÁŘ, Josef. Properties of Primes [online]. 2014 [visited on 2019-12-
10]. Available from: https://courses.fit.cvut.cz/BIE-ZDM/media/
lectures/p11numbt2.pdf [File available after login to CTU network –
a copy of the file is on the enclosed CD].

15. KOLÁŘ, Josef. Solving Linear Congruences [online]. 2014 [visited on
2019-12-10]. Available from: https://courses.fit.cvut.cz/BIE-
ZDM/media/lectures/p12numbt3.pdf [File available after login to CTU
network – a copy of the file is on the enclosed CD].

16. CLAY MATHEMATICS INSTITUTE. Millenium Problems [online] [vi-
sited on 2020-04-07]. Available from: https : / / www . claymath . org /
millennium-problems.

17. WEISSTEIN, Eric W. Prime Number Theorem. MathWorld–A Wolfram
Web Resource [online]. 2003 [visited on 2020-04-07]. Available from: https:
//mathworld.wolfram.com/PrimeNumberTheorem.html.

18. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Dig-
ital Signature Standard (DSS). Federal Information Processing Standards
Publication (FIPS) 186–4. 2013. Available also from: https://doi.org/
10.6028/NIST.FIPS.186-4.

19. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Dig-
ital Signature Standard (DSS). Federal Information Processing Standards
Publication (FIPS) 186–5 (Draft). 2019. Available also from: https :
//doi.org/10.6028/NIST.FIPS.186-5-draft.

48

https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://doi.org/NIST.SP.800-131Ar2
http://artax.karlin.mff.cuni.cz/~ppri7485/nmib014/faktorizace.pdf
http://artax.karlin.mff.cuni.cz/~ppri7485/nmib014/faktorizace.pdf
https://books.google.cz/books?id=94DaZuVETzIC
https://books.google.cz/books?id=94DaZuVETzIC
https://courses.fit.cvut.cz/BIE-ZDM/media/lectures/p11numbt2.pdf
https://courses.fit.cvut.cz/BIE-ZDM/media/lectures/p11numbt2.pdf
https://courses.fit.cvut.cz/BIE-ZDM/media/lectures/p12numbt3.pdf
https://courses.fit.cvut.cz/BIE-ZDM/media/lectures/p12numbt3.pdf
https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems
https://mathworld.wolfram.com/PrimeNumberTheorem.html
https://mathworld.wolfram.com/PrimeNumberTheorem.html
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://doi.org/10.6028/NIST.FIPS.186-5-draft

Bibliography

20. RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems. Commun. ACM.
1978, vol. 21, no. 2, pp. 120–126. ISSN 0001-0782. Available from DOI:
10.1145/359340.359342.

21. BRENT, Richard P. An Improved Monte Carlo Factorization Algorithm.
BIT Numerical Mathematics. 1980, vol. 20, no. 2, pp. 176–184. Available
from DOI: 10.1007/BF01933190.

22. KIMING, Ian. The ψ-function and the Complexity of Dixon’s Factoring
Algorithm [online]. 2005 [visited on 2020-04-08]. Available from: http:
//web.math.ku.dk/~kiming/papers/2005_factoring/gamma.pdf.

23. SHOR, Peter W. Algorithms for Quantum Computation: Discrete Loga-
rithms and Factoring. In: Proceedings 35th Annual Symposium on Foun-
dations of Computer Science. 1994, pp. 124–134. ISBN 0-8186-6580-7.
Available from DOI: 10.1109/SFCS.1994.365700.

24. MATEMATICKÉ PROBLÉMY NEMATEMATIKŮ. Kvantový počítač –
pátý jezdec apokalypsy? – Jiří Pavlů || Seminář MPN 20.11.2019 [online].
2020 [visited on 2020-04-07]. Available from: https://www.youtube.
com/watch?v=7KNGYgiduoI&t=4473s [Translated by author].

25. BONEH, Dan et al. Twenty Years of Attacks on the RSA Cryptosystem.
Notices of the AMS [online]. 1999, vol. 46, no. 2, pp. 203–213 [visited on
2020-05-03]. ISSN 1088-6842. Available from: https://www.ams.org/
notices/199902/boneh.pdf.

26. SIMMONS, Gustavus J. A “Weak” Privacy Protocol Using the RSA
Crypto Algorithm. Cryptologia. 1983, vol. 7, no. 2, pp. 180–182. Available
from DOI: 10.1080/0161-118391857900.

27. WIENER, Michael J. Cryptanalysis of Short RSA Secret Exponents.
IEEE Transactions on Information Theory. 1990, vol. 36, no. 3, pp. 553–
558. Available from DOI: 10.1109/18.54902.

28. HASTAD, Johan. Solving Simultaneous Modular Equations of Low De-
gree. Siam Journal on Computing. 1988, vol. 17, no. 2, pp. 336–341.

29. BOSMA, Wieb; CANNON, John; PLAYOUST, Catherine. The Magma
algebra system. I. The user language. J. Symbolic Comput. 1997, vol. 24,
no. 3-4, pp. 235–265. ISSN 0747-7171. Available from DOI: 10 . 1006
/jsco.1996.0125. Computational algebra and number theory (London,
1993).

30. CANNON, John; BOSMA, Wieb; FIEKER, Claus; STEEL, Allan. Hand-
book of Magma Functions [online]. 2013 [visited on 2020-05-05]. Available
from: https://www.math.uzh.ch/sepp/magma-2.19.8-cr/Handbook.
pdf.

49

https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/BF01933190
http://web.math.ku.dk/~kiming/papers/2005_factoring/gamma.pdf
http://web.math.ku.dk/~kiming/papers/2005_factoring/gamma.pdf
https://doi.org/10.1109/SFCS.1994.365700
https://www.youtube.com/watch?v=7KNGYgiduoI&t=4473s
https://www.youtube.com/watch?v=7KNGYgiduoI&t=4473s
https://www.ams.org/notices/199902/boneh.pdf
https://www.ams.org/notices/199902/boneh.pdf
https://doi.org/10.1080/0161-118391857900
https://doi.org/10.1109/18.54902
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
https://www.math.uzh.ch/sepp/magma-2.19.8-cr/Handbook.pdf
https://www.math.uzh.ch/sepp/magma-2.19.8-cr/Handbook.pdf

Appendix A
Acronyms

FIT Faculty of Information Technology

CTU Czech Technical University in Prague

GCD Greatest common divisor

LCM Least common multiple

MPQS Multiple polynomial quadratic sieve

NFS Number Field Sieve

SQUFOF Shanks’s square forms factorization

ECM Elliptic curve method

NIST National Institute of Standards and Technologies

51

Appendix B
Contents of enclosed CD

readme.txt......................file with brief CD contents description
materials/......................materials available from CTU network
thesis/ ... text of the thesis

thesis.pdf...................................thesis in PDF format
latex/...LATEX source files

src/......................................the directory of source codes

53

	Stránka 1
	Introduction
	State-of-the-art
	Concepts
	Notation
	Terminology
	Modular arithmetic
	Primes

	RSA
	Introduction
	Communication mechanism
	Security

	Factoring algorithms
	Trial division
	Complexity

	Pollard's p-1 method
	Complexity

	Pollard's rho method
	Improvement
	Complexity

	Fermat's factorization
	Improvement
	Complexity

	Dixon's random squares algorithm
	Complexity

	Quadratic sieve
	Improvement
	Complexity

	Others

	Attacks on RSA
	Common modulus
	Same message attack
	Low private exponent
	Broadcast attack
	Simple power analysis

	Testing
	Factorization functions
	Factorization
	Attacks
	Low private exponent
	Common modulus
	Same message
	Broadcast attack

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

