FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Reservation System as a Service

Student: Peter Matta

Supervisor: Ing. Adam Hof¢ica

Study Programme: Informatics

Study Branch: Web and Software Engineering
Department: Department of Software Engineering
Validity: Until the end of summer semester 2020/21

Instructions

Design and implement a reservation system for a medium-sized organization. The provided solution should
be customizable for the individual needs of asset owners. Asset owners should be isolated from each other
in multitenant meaner. The result should be a web application. API for further customization of front end
and 3rd party integration is a must. Demonstrate solution as a pilot in the Silicon Hill student club at
Strahov dormitory.

Thesis realization process requirements:

1) analysis of the current situation in the organization and existing solutions,
2) design of the system,

3) implementation of the system,

4) testing and the documentation,

5) pilot deployment.

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague February 12, 2020

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Reservation System as a Service

Peter Matta

Department of Software Engineering

Supervisor: Ing. Adam Hof¢ica

June 5, 2020

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No.121/2000 Coll., the Copyright Act, as amended. I further de-
clare that I have concluded an agreement with the Czech Technical University
in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No.111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on June 5, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Peter Matta. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Matta, Peter. Reservation System as a Service. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2020.

Abstract

This thesis covers the development process of a SaaS platform for the creation
and management of reservation systems. It is a multi-tenant, workspace based
system, inspired by the successful format of well known SaaS products such as
Slack or Microsoft Teams. The platform was developed in collaboration with
and for the Silicon Hill student club and represents the first attempt to merge
its existing reservation systems into one. This thesis aims to provide such a
platform while covering the requirement gathering process, iterative develop-
ment of the platform, and the reasoning behind the architectural decisions.
The conditions and environment in which the platform was developed led to
several unconventional software design decisions, such as following Domain
Driven-Design principle to achieve proper modularization and using Event
Sourcing technique for storing the data to achieve the flexibility of the do-
main.

Keywords Reservation System, Booking, Open Source, Multi Tenant, Event
Sourcing

Abstrakt

Této praca zachytava proces tvorby SaaS platformy pre tvorbu a spravu re-
zervac¢nych systémov. Je to multitenantny systém zalozeny na workspace-och
(tj. z pohladu uzi’vatela mnohych oddelenych instancidach rovnakého systému).
Tato struktira systému bola inSpirovand znamymi a tispesnymi SaaS produk-
tami s rovnakym formatom, ako Slack a Microsoft Teams. Platforma predsta-
vuje prvy pokus o zlicenie rezervacnych systémov vyuzivanych studentskym
klubom Silicon Hill, pre ktory, a v spolupraci s ktorym bola vyvinuta. V rdmci
tejto prace popisujeme zber poziadaviek na tito platformu, jej postupny vyvoj
a rozhodnutia veducie k jej finalnej architektire. Vzhladom na podmienky a
prostredie, v akych bola platforma vyvinutd, sme si zvolili niektoré, z hladiska
softwarovej architektiry nezvycajné, pristupy, ako napr. filozofiu Domain Dri-
ven Design, alebo techniku Event Sourcing (vyuzitd pri ukladani dat).

Klicova slova Rezervacény Systém, Rezervicia, Open Source, Multi Tenant,
Event Sourcing

vii

|El ntroductiog

Aim of the Thesis{

Structure of the Thesié

|I Analysig

1.1 User Rolesl

1.2

Requiremenﬁ

1.2.1 Functional Requiremenﬂ T

1.2.2 Non-Functional Requirement#

1.2.3 Constraintsl
|1.3 Domainl
1.3.1 Bounded Contexﬁ
1.3.2 Conceptual Modeﬂ
1.3.3 Domain Eventsl
1.3.4 Aggregateé
1.3.5 Reservation StateJ
|1.4 Existing solutions]
1.4.1 Easv!Appointmentsl
1.4.2 Bookedl
1.4.3 WebCalendaﬂ
1.4.4 Reservio|
1.4.5 Summary
I‘Z Architecturé
2.1 System Context‘
.2 System Architecturd
.3 Client Architecturd
|2.3.1 Client Applications
I2.4 Server Architecturel

ix

Contents

D41 API Gateway 17
2.4.2 Monolithic vs. Microservices Architectur& 17
0.4.3 Modularizationl 18
2.4.4 Core Module Integrationl 19
|2.5 Data Model ooi 21
2.5.1 CRUD e 21
2.5.2 Event Sourcingl 22
Technologies Used 25
3.1 Programming Lanp;uagel 25
3.2 Client Technologieé 26
3.3 API Gatewavl 26
3.4 Dependency Injection| 26
3.5 Data Storage 27
3.6 Database Integ‘rationl 27
3.7 Email Integrationl 27
3.8 Continuous Integration] 27
3.9 Containerization] 27
Implementationj 29
h.l Workspace Isolation 29
1.1.1 Entity Isolationl 29
1.1.2 Credentials IsolationJ 29
1.1.3 Domain Isolatiod 30
|4.2 Authentication and Authorizationl 30
1.2.1 Authenticationl 30
1.2.2 Authorization 30
1.2.3 Authorization Tokensl 31
4.2.4 _BEmail Verification 32
1.2.5 Integration with Silicon Hill OAuth2.d 32
|4.3 Personal Data and Anonymization 34
1.3.1 Personal Data Storap;e‘ 34
1.3.2 Data Anonymization| 34
b4 REST API o 35
1.4.1 Authorizationj 35
1.4.2 API Versioningl 35
1.4.3 Console AP]j 35
444 Setup API. 38
445 Workspace APTo oo i 39
|4.5 Event Sourcing] 46
151 OVerview 46
1.5.2 Agoregate Servicel 46
1.5.3 Agpgregate Repository‘ 48
1.5.4 Event StOTe oo oo 50

|4.5.5 Snapshottingf

|4.6 Message Brokerl
1.6.1 Overview{
1.6.2 Outbox
1.6.3 Inboxl
1.6.4 Event Consumeﬁ
U7 Webhookd oo
1.7.1 Supported Events
1.7.2 Webhook Realizationl
1.7.3 Payload Validationl
1.7.4 Testing of Webhook#
|4.8 Testing]
1.8.1 Client Testinﬁ
1.8.2 Server Testingﬁ
1.8.3 User Testingj

E ionclusion

grapilyl

A

Domain Events‘

A.1 Diagram notationl

A .2 List of Domain EventsJ

A.2.1 Workspace Request Life cyclel
A.2.2 Workspace Life cvcld
A.2.3 Resource Lifecyele Lo
A.2.4 Reservation Life Cycle Eventsl

A.2.5 Reservation Comments
A.2.6 User Life cyclé

E Acronims

xi

65

67

73
73
73
73
76
77
78
80
82

85

List of Figures

1.1 Conceptual Diag;raml 9
1.2 Reservation State Diagrarrj 11
2.1 System Context Diagrard 16
2.2 Server API Gateway Patternl 17
2.3 Module Laversl 19
.4 Module interactions when creating a reservationJ 20
2.5 Event emission handling caused by an external stimulusi 21
0.6 Data model separation on module leve]J 22
2.7 Derivation of Reservation from Reservation Eventé 23
1.1 User Entity Relation with Workspace 29
1.2 Silicon Hill OAuth2.0 Authentication] oo ... 33
4.3 Identity Tabld 34
1.4 Event Sourcing Overviewl 47
1.5 Service-Repository Command executionl 47
1.6 Agpregate Repositoryl 48
1.7 Command Handleﬂ 48
1.8 Event Handler{ 49
1.9 Bvent StOrdo 50
1.10 Single Row of Event Store‘ 51
1.11 Events Table Structurel 52
1.12 Snapshot Stord 52
1.13 Snapshot Tablel 53
1.14 Outbox Pattern — Successful Processing of Event‘ 55
1.15 Outbox Pattern — Failure Encountered During Event Processingﬁ . b5
1.16 Inbox Pattern — First Delivery of Eventl 56
1.17 Inbox Pattern — Subsequent Delivery of Evend 57
1.18 Webhook Testing . . . o o v vovv e e e 59
1.19 Test Pyramid oo oo 60

A.1 Workspace Request Life cyclel 75
A.2 Workspace Life cycleo 77
A.3 Resource Life cvcle| 78
A.4 Reservation Life cyeld 81
A.5 Reservation Comment Life cycle‘ 82
A.6 User Life cycleo oovvv i 84

Xiv

List of Tables

ll.l Existing Systems Comparison 13
4.1 Outbox Table 54
4.2 Inbox Table Lo o4

XV

Introduction

Managing reservations for various resources, such as common rooms or shared
goods, is well known and understood problem domain which many organiza-
tions face daily. Such an organization is, for example, Silicon Hill.

Silicon Hill is a student club operating at the Strahov dormitories providing
its members with services not related to the accommodation itself, such as
internet connection, rental of common rooms, equipment, and many more.

Silicon Hill is a highly decentralized organization in its nature, with multiple
departments responsible for the services they provide. The large variety of
the provided services results in vast differences in the requirements that each
department place on the reservation system, which has led to multiple reser-
vation systems being created. Having numerous reservation systems, each
developed, maintained, and tailored for a specific department, provides some
advantages such as easy customization and specialization of the system for the
type of services the department offers. However, as with any software design
decision, tradeoffs had to be made.

Firstly, since every department is responsible for the development of its own
reservation system, many departments manage reservations over email com-
munication and/or shared spreadsheets. Doing so has proven to lack trans-
parency and is hard to maintain long term. Secondly, the departments de-
veloping their own reservation system or taking advantage of the off the shelf
solution often fail to leverage the existing software infrastructure already avail-
able. This includes accessing members’ information from the club-wide Infor-
mation System or using its Single Sign-On (SSO) feature. Lastly, the biggest
issue that the departments have to face is the constant rotation of their mem-
bers. The vast majority of the departments’ members are students that study
at Czech Technical University in Prague and/or reside at the Strahov dormi-

INTRODUCTION

tory. Since the majority of the students finish their studies in 5 years or less,
the people responsible for the maintenance and development of the reservation
systems tend to leave without having an adequate fellow department member
to take over.

Aim of the Thesis

The primary outcome of this thesis is to provide a centralized platform for
creating and managing reservation systems for Silicon Hill departments. The
platform should work in a workspace based fashion following the success of
multiple Software as a Service (SaaS) type applications. It should allow each
department to create and configure a reservation system based on their own
needs, provide easy integration with Silicon Hill’s existing software infras-
tructure, and enable centralized management of the systems. The software
solution implementing the platform should be modular and flexible, allowing
the system to be developed in an agile way. The final software solution should
be deployed on the existing Silicon Hill infrastructure.

Structure of the Thesis

Analysis In this chapter, we cover the analysis that was made before the
project began as well as throughout the development of the project. This
chapter lists identified requirements, explores the problem domain, and inves-
tigates existing solutions.

Architecture The chapter focuses not only on the architecture itself but also
on the architectural decisions that lead to the final system architecture.

Technologies Used In this chapter, we list the significant technology deci-
sions that were made and discuss the reasons behind them.

Implementation This chapter explores the essential implementation details
of the system. Its primary focus is on workspace isolation, event sourcing
implementation, and application testing.

CHAPTER].

Analysis

This chapter lists identified requirements placed on the system, explores the
problem domain using the Domain-Driven Design (DDD) approach [1], and
investigates existing solutions.

1.1 User Roles

A user role defines how a user of a software system is allowed to interact
with it. The analysis of the existing software systems currently being used by
Silicon Hill identified five such roles:

e System administrator

o Workspace owner

o Workspace administrator
o Workspace maintainer

o Workspace user

1.2 Requirements

The following section lists requirements that were identified during the initial
analysis as well as the development process. The requirements are categorized
into functional requirements, non-functional requirements, and constraints.

The initial set of requirements was gathered by analyzing existing reservation
systems at Silicon Hill, and by meeting with department representatives main-
taining the systems or the physical resources that could have been reserved

3

1. ANALYSIS

using the systems. Additional requirements were identified in several sessions
throughout the development of the system, in which the various department
representatives could interact with the system and give feedback on it.

1.2.1

Functional Requirements

Functional requirements state what the system must do and how it must
behave or react to runtime stimuli. [2]

FRO1

FRO2

FRO3

FRO4

FRO5

FRO6

FRO7

FROS8
FRO9

FR10

FR11
FR12
FR13
FR14

FR15

FR16

Any resident of Strahov dormitories shall be able to access any reser-
vation system workspace.

Any Silicon Hill member shall be able to open a request for a reserva-
tion system workspace.

System administrators shall be able to confirm opened workspace re-
quests.

System administrators shall be able to decline opened workspace re-
quests.

System administrators shall be able to transfer ownership of the work-
space to another workspace user.

A workspace user shall be able to create a reservation for one or more
resources.

A workspace user shall be able to create a reservation for any time
range that starts in the future.

A workspace user shall be able to cancel a reservation assigned to them.
A workspace user shall be able to delete their account.

A workspace maintainer shall be able to perform all actions any work-
space user can.

A workspace maintainer shall be able to create a new resource.

A workspace maintainer shall be able to delete an existing resource.
A workspace maintainer shall be able to deactivate an active resource.
A workspace maintainer shall be able to activate an inactive resource.

A workspace maintainer shall be able to confirm a requested reserva-
tion.

A workspace maintainer shall be able to reject a requested reservation.

1.2. Requirements

FR17

FR18

FR20

FR21

FR22

FR23

FR24

FR25

FR26

FR27

FR28

FR29

1.2.2

A workspace maintainer shall be able to cancel a confirmed reservation.

A workspace maintainer shall be able to place a ban on a workspace
user.

A workspace maintainer shall be able to lift a ban from a workspace
user.

A workspace maintainer shall be able to promote a workspace user to
workspace maintainer.

A workspace maintainer shall be able to demote another workspace
maintainer to a workspace user.

A workspace administrator shall be able to perform all actions a work-
space maintainer can.

A workspace administrator shall be able to ban a workspace main-
tainer.

A workspace administrator shall be able to promote a workspace main-
tainer to a workspace administrator.

A workspace administrator shall be able to demote a workspace ad-
ministrator to a workspace maintainer.

A workspace owner shall be able to perform all actions workspace an
administrator can.

A workspace owner shall be able to transfer ownership of the workspace
to a workspace user.

A workspace owner shall be able to delete the entire workspace.

Non-Functional Requirements

Non-Functional Requirements define the quality attributes of the system.
These requirements are categorized by the quality attributes they define.

1.2.2.1 Modifiability

Since the system is supposed to serve many Silicon Hill departments, which
all may place different requirements on the system, the system’s modifiability
is crucial.

NFRO1 The system shall be modular so that the changes to the system are

localized.

1. ANALYSIS

NFRO02

NFRO03

NFRO04

1.2.2.2

NFRO05

NFRO06

NFRO7

NFROS8

NFRO09

NFR10

NFR11

NFR12

NFR13

NFR14

1.2.2.3

NFR15

NFR16

NFR17

The system shall allow easy changes to be made to its implementa-
tion.

The system shall use continuous integration (CI) pipeline to mini-
mize and automate any verification and build tasks.

The system shall be easy to deploy.

Security

Only authenticated users shall be able to access the system.

The system shall not store any personal information that is not nec-
essary.

The system shall destroy all personal information after a user is
deleted.

The system shall destroy the personal information of all workspace
users when the workspace is deleted.

A system administrator shall not be able to access any workspace.

A system administrator shall not see any information about work-
space users (except the workspace owner).

Workspace user shall not be able to access other users’ personal
information.

Workspace user/maintainer/administrator/owner shall be able to
access only the workspace they belong to.

The correctness of any communication with an external system must
be verifiable.

Network communication within the system must use HTTPS.

Interoperability

The system shall allow Silicon Hill members to use Silicon Hill
OAuth2.0 API [3] to authenticate.

The system shall allow workspace administrators to configure web-
hooks to be dispatched when a reservation is created, rejected, can-
celed, or completed.

The system shall expose a REST APIL.

1.3. Domain

1.2.2.4 Debuggability

NFR18 The system shall provide logging of the system behavior.

NFR19 The system shall include high test coverage.

1.2.3 Constraints
CS01 The system shall be deployed on the Silicon Hill infrastructure.

CS02 The system shall use MySQL for its database.
CS03 The system shall be a web application.
CS04 The system shall be developed by June 1, 2020.

CS05 The system shall be accessible under a root domain rs.sh.cvut.cz.

1.3 Domain

Definition: A sphere of knowledge, influence, or activity. The subject area
to which the user applies a program is the domain of the software. [1]

The following section explores core domain aspects such as entities, relation-
ships between them, and domain events. The processes used to explore, de-
scribe, and model the domain, take inspiration from the Domain-Driven De-
sign (DDD) [1]. Any non-essential elements of the system (e.g., integrations
with external systems) are omitted for clarity.

1.3.1 Bounded Contexts

Definition: A description of a boundary (typically a subsystem, or the work
of a particular team) within which a particular model is defined and applicable.

[

The analysis of the domain revealed that the domain could be split into four
bounded contexts:

Resource-Reservation The primary domain entities forming this bounded
context are Resource, Reservation, Assignee, and Reservation Manager. All of
the entities in this bounded context are scoped to a single workspace. Reser-
vation Managers can create and edit Reservations for one or more Resources.
Each Reservation must be assigned to a single Assignee. Reservations can be
assigned Reservation Comments by Comment Authors. Workspace Resources
can be managed by Resource Managers.

rs.sh.cvut.cz

1. ANALYSIS

User-Access This bounded context encapsulates Users, their Identities, and
User Roles. All of the entities in this bounded context are scoped to a single
workspace. Each User must have a single, unique Identity. Each User must
also have a User Role assigned.

Workspace-Management To create a Workspace a Workspace Requester
must first open a Workspace Request. When a Workspace Request is opened,
a System Administrator can confirm or decline it. If Workspace Request is
confirmed, then a Workspace is created, making its Workspace Requester the
Workspace Owner of the Workspace. If, however, a Workspace Request is
declined, no Workspace is created, and all information related to the Workspace
Requester is destroyed.

Console This bounded context encapsulates system management. It holds
Console Account entities, which are responsible for the creation and deletion
of other Console Accounts. There must be at least one Console Account in
the system.

1.3.2 Conceptual Model

Diagram in figure El! captures a conceptual model of entities described in
subsection and relationships between them. The entities captured in the
diagram are grouped by the bounded context they belong to.

1.3.3 Domain Events

Definition: Domain event captures the memory of something interesting
which affects the domain. [4]

The previous subsections, and , capture the structure of the domain.
This subsection, however, focuses on the behavior of the domain, which is
usually done by identifying the domain events in the system.

There are many techniques for identifying domain events, one of which is
called Event Storming [5][6]. The idea of event storming is first to identify
what happens in the system, the events, then determine what actions cause
these events to be produced, the commands, and lastly, what triggers those
commands, the actors. A full list of identified domain events with diagrams
can be found in appendix |A.

8

1.3. Domain

Resource-Reservation
(05 1
Reservation Comment Comment Author
< Authors
1 s
A 5 User-Access
£ Is Assigned To >
=
0..* User Role
Reservation
1
N 1.* 0..*| +dateStart: Date Reservation
<Reserves | +dateEnd: Date < Requests Manager N
+state: ReservationState 3
< Manages o
User
Is A> | +email: EmailAddress
Resource Manager 1
< Manages 3
v
1
‘Workspace-Management
Identity
‘Workspace 1
‘Workspace Owner
— -+name: WorkspaceName <Owns 1
A
-
o WorkspaceRequest 1
f—;’ — Workspace Requester
Z +name: paceName < Keqt 1
2
5
5 A & Console
S 3 £
g g
] 3 g
EX 5 8 Manages
s A IsA> Console Account
ystem
i +username: Username

Figure 1.1: Conceptual Diagram

1.3.4 Aggregates

Definition Aggregate is a cluster of domain objects that can be treated as a
single unit. 7]

The domain model identified in subsections |1.3.17 and |1.3.3‘, is quite complex,
which would make it hard to maintain consistency across the entire system.
The DDD, however, suggests clustering entities with their value objects to
aggregates [1] and defining consistency boundaries around them.

Using the entities from the context diagram (figure Ell) and the domain events
associated with them, lead to identification of the following aggregates:

¢ Reservation

¢ Reservation Comment

1. ANALYSIS

o Resource

o User

o Workspace

o Workspace Request

e Console Account

1.3.5 Reservation State

The most important entity of the domain, which the entire system is built
around, is Reservation. Reservations represent a time constrained allocation
of one or more Resources by an Assignee. Once a Reservation is created, it
cannot be deleted, only its state can be changed (figure [1.2).

When a Reservation is created, its state is set to the requested state—this rep-
resents an Assignee wanting to make a claim for selected Resource in given time
range. At this point, the Reservation can be either canceled by the Assignee,
or confirmed or rejected by the Reservation Managers. When the Assignee
cancels the Reservation, the Reservation reaches a terminal, canceled, state.
When a Reservation Manager rejects the Reservation, it reaches a terminal,
rejected, state.

Confirmation of the Reservation moves the Reservation to the confirmed
state. In each Workspace there must be at most one confirmed Reservation
allocating any given set of Resources at any point in time. Once a Reservation
is confirmed, it can be canceled by either its Assignee or any of the Reservation
Managers, at which point the Reservation reaches a terminal, canceled, state.
If the Reservation’s end date reaches the present, it is automatically competed,
reaching a terminal, completed, state.

Any state transitions not mentioned in this section, such as from canceled
back to requested, are considered invalid state transitions and are not per-
mitted. Each Reservation in either requested or confirmed state can be
changed by their Assignee or any Reservation Manager.

10

1.4. Existing solutions

Reservation
Created

/

—
Requested

Manager Manager

Confirmation_ Rejection

\
~

Assignee
Cancelation

Confirmed

Assignee or Manager
_ Cancelation

W W
Canceled
/

Completed)
—
J/\
l/ }

N4

(o=)
Rejected |
_

—

Automatic Process
Completion

—

Figure 1.2: Reservation State Diagram

1.4 Existing solutions

There are many reservation systems ranging from open-source to paid SaaS
solutions. The primary issue with the majority of them is that they are often
single-purpose systems, e.g., restaurant/hotel booking systems or appointment
systems. Only a small number of them are general enough to be used by an
organization as large as Silicon Hill.

1.4.1 Easy!Appointments

Easy!Appointments [@] is an open-source web application focused on booking
appointments with other people. It is well maintained with more than a thou-
sand stars on Github [@] It is highly customizable with optional integration
with external services such as email and Google Calendar. It also provides
Docker images for easy deployment.

However, it does not provide user authentication. It also does not offer a
way to scope/group resources (people in this case), which would require an

11

1. ANALYSIS

instance of the application to be deployed per each Silicon Hill department,
which is the primary issue with the current approach.

1.4.2 Booked

Booked [10] is a general-purpose scheduling system with a high degree of
customization. It allows the configuration of different resources and their
usage limits. It also provides user authentication out of the box and the ability
to group and manage users. It has an active community of contributors formed
around the SaaS version of the application.

On the other hand, the application does not provide a grouping of resources,
which means the app could not be used as a Silicon Hill-wide reservation
system. It also does not offer a way to allow user access scoped to specific
resources. Using Booked would, therefore, result in an instance of the applica-
tion needed to be deployed per each department without a way to manage the
instances easily. The app is also expected to be run in a native environment,
which adds additional complexity.

1.4.3 WebCalendar

WebCalendar [11] is another open-source scheduling system focused on main-
taining personal or group schedules. It does have 62 reviews on Source Forge,
and more than 80 stars on Github [12]. However, it seems like it is not well
maintained anymoret. It also does not provide any integration with external
services nor user authentication.

1.4.4 Reservio

Reservio [13] is a closed-source, SaaS-based, general-purpose reservation sys-
tem. It does provide a multitude of customization and integration options.
They offer a three-tier program with an option to add additional features.
There are two issues, however. There is no option to host the software on-
premise as Silicon Hill requires, and it does not provide a free tier.

1.4.5 Summary

Overall, none of the considered solutions fits all criteria for the system, as can
be seen in table [L.1. Considered was also extending one of the existing Silicon
Hill’s reservation systems, such as SHerna [14]. However, all of them were
either too inflexible or lacked in development support.

LAt the time of writing the thesis, it seems that the WebCalendar has picked up some
new development activity. However, at the time of the research, the latest commit of Web-
Calendar was more than six months old, without any signs of active development.

12

1.4. Existing solutions

Name ‘ Free ‘ Authentication | Resource Scoping

Easy!Appointments | Yes No No
Bookend | Yes Yes No
WebCalendar | Yes Yes No
Reservio | No Yes Yes

Table 1.1: Existing Systems Comparison

13

CHAPTER 2

Architecture

Definition: The software architecture of a system is the set of structures
needed to reason about the system, which comprises software elements, rela-
tions among them, and properties of both. [2]

Every software system has an architecture, either one that was planned for
or one that emerged over the lifetime of the system. The architecture goal
is to shape the system to achieve non-functional requirements () while
not breaking any constraints () This chapter defines the architecture of
our system, describes decisions that were made, and explores the tradeoffs of
those decisions.

2.1 System Context

Almost no software system works on its own, but rather it is set in an en-
vironment in which it has to interact with various external entities or other
systems. The context of the RSaaS is captured in the diagram in figure El!,
which clearly defines the system’s boundary.

15

2. ARCHITECTURE

Silicon Hill Members —\
Reserve resources with Silicon Hill Information
System

Authenticates
users against

Manage RSaaS

System Administrators —he system

Sends
notifications with

Silicon Hill Mailing
Service

Silicon Hill Register for workspaces
I
Departments

Figure 2.1: System Context Diagram

2.2 System Architecture

The constraint defined the web to be a target platform. The two most
commonly used top-level web architectures are Client-Server and Peer-to-
Peer [2]. The Client-Server is, however, a better fit because of its centralized
nature, which is essential to implement requirements INFR15, lNFRlG‘, and

NFR17

2.3 Client Architecture

In Client-Server architecture, there are two approaches to define the client’s
architecture: Thin Client [15] and Thick Client [16]. To make the system
decoupled even on this abstraction level and to fit requirements and
, Thick Client was chosen.

2.3.1 Client Applications

The client is split into three separate applications according to their respon-
sibilities.

Landing Landing application is the entry point to the system. It lists existing

workspaces and allows users to open requests for new workspaces.

Console Console application is used by system administrators to manage
workspace requests, inspect existing workspaces, and change their owners.

Workspace Workspace application is used by workspace users to create reser-
vations for selected resources as well as workspace maintainers, administra-

16

2.4. Server Architecture

tors, and owners, to configure and attend the workspace. It is the primary
application users use to interact with the system.

2.4 Server Architecture

2.4.1 API Gateway

The primary architectural driver for choosing the top-level architecture of the
server was constraint which effectively requires the system to have a
single entry point. The m led to the secondary architectural driver, which
was to extract client assets serving from handling the REST API requests since
Silicon Hill infrastructure does not provide any solution for serving static files.
This naturally led to a pattern called Gateway Pattern [17][18] captured in
the diagram in figure @)

2.4.2 Monolithic vs. Microservices Architecture

There are many benefits and drawbacks to both approaches [19][20]. Mi-
croservices provide a great way to decouple the system into separate units,
independently develop, and scale them, and provide a high degree of fault
isolation. Together with the requirements , and , they seem
like a better choice.

However, not all of the benefits are applicable in the context of our system.
Independent development and deployment of the services make sense primarily
in organizations with a large number of development teams [21]. Since the
system is developed by a single person and is expected to be maintained

Server Boundary

O]

—= API Request
Client 1

Asscts
=

Client 2

REST API

API
Gateway

Workspace App |
Asscts Client
—_— ' Assets

—=

Client 3

Figure 2.2: Server API Gateway Pattern

17

2. ARCHITECTURE

by no more than ten people, the operational complexity of the microservices
approach outweighs this benefit. Independent scaling of the microservices does
not apply either. The total number of residents at Strahov dormitories, the
system’s potential users, is less than five thousand, making horizontal scaling
possible with a monolith, more than sufficient.

Decomposing the system into independently deployable units and integrating
them over an explicitly defined interface significantly decouples the system’s
parts. A similar degree of separation can also be achieved in the monolithic
system by proper modularization () On the other hand, the same degree
of fault isolation is not.

The monolithic approach has many advantages, as well. The monolithic ap-
proach yields a single application and is developed in a single codebase. There-
fore it is much easier to test, debug, and deploy the application. But, more
importantly, it has a much lower operational overhead compared to the mi-
croservices approach.

After evaluating both methods and following guidelines for choosing appro-
priate architecture [22], the monolithic approach was chosen, making its lack
of fault isolation, the only significant tradeoff that was made.

2.4.3 Modularization

Modular Monolith (sometimes referred to as Majestic Monolith [21]) suggests
modularization of the system. There are many modularization patterns, such
as Layered pattern [2], Multi-tier pattern [2], Pipes and Filters [23], Vertical
Slices [24][25], and many others.

Early in the development process, the Vertical Slices pattern was chosen be-
cause it results in a system with high cohesion. However, the coupling between
the modules started to be problematic after the system reached a certain size,
requiring changes to more than one module to be made. Therefore it was de-
cided to refactor out of this approach and create modules grouped into three
layers: edge, core, and infrastructure reflecting the Onion Architecture pattern
[26] on the module level captured in the diagram in figure R.3. Within each
layer, however, the modules still follow the Vertical Slices pattern.

Core Layer Modules in the core layer map directly to the bounded contexts
identified in section . They are atomic, self-contained, and do not depend
on any of the edge, infrastructure, or other core modules. They hold all of the
core domain logic. Although core modules do not communicate directly, they
can listen for domain events () emitted by other modules ()

18

2.4. Server Architecture

infrastructure Layer

Edge Layer

User-Verification API

Core Layer

Workspace- Resource-
Management Reservation

Console User-Access

Webhook-

il-Notifications i
Email-Notification Dispatcher

Figure 2.3: Module Layers

Edge Layer Modules in the edge layer are responsible for interacting with
external systems (e.g., such interaction is captured in figure R.4). They expose
public APT allowing clients to communicate with the system as well as allowing
the system to interact with external systems. Since they do not hold any
business logic related to the core domain, they communicate with core or
other edge modules. These modules contain all validation logic that ensures
the validity of the entities used by the core layer modules.

Infrastructure Layer Modules in the infrastructure layer are responsible for
bootstrapping the entire system and implementation of underlying protocols,
such as message broker integration. They do not hold any business logic.

2.4.4 Core Module Integration

Besides the restrictions put in place in the subsection , edge or other
core modules need to react to domain events produced by other core modules.
Handling these cases synchronously would require each command entry-point
module to know about every module interested in events possibly produced
by the command. Processing events in such a way would cause too much
coupling between the modules, which is why the asynchronous approach was
chosen.

19

2.

ARCHITECTURE

Create Reservation

Request
Server Boundary
Edge Layer
Y
API
Retrieve User Create
Information Reservation
x
A 4 4" Reservation

User-Access

Resource-Reservation

Created Event

Email Notification |

Send Email
Notification

Email Service

direct calls to given modules
asynchronous event consumption

Figure 2.4: Module interactions when creating a reservation

The integration is realized by a message broker [@] (figure @), which al-
lows modules to publish and subscribe to the domain events. Although asyn-
chronous integration is a better fit for the system, using a message broker
comes with drawbacks, too, primarily, eventual consistency |
modules. To minimize this drawback, modules hold strong consistency within
their boundaries.

20

| between the

2.5. Data Model

External stimulus

System Boundary
Core Layer
v
Core Modulel Core Module2 Code Module3
/ A
Produces Consume Consume
an event deduplicated event deduplicated event
Infrastructure Layer
Read enqueued
events)
Event [- [Event Publisher Event Consumerl Event Consumer]
Queue
i A ,v
Publish event | Consume event E Consume event
' '

v

Message Broker

—— calls that occur exactly once per event emission
---------- > calls that occur at least once per event emission

Figure 2.5: Event emission handling caused by an external stimulus

2.5 Data Model

Typically data model is shared throughout the entire system. However, using
the vertical slices pattern [@] on the module level, each module defines and
maintains its own data model (figure R.6). In theory, each of the modules
could even use a different storage mechanism, database, or schema.

2.5.1 CRUD

Usually, the data model is derived from the conceptual model (figure Ell) of
the system mapping its entities to respective database tables with associated
CRUD operations. This approach allows us to model rich relationships be-
tween the tables and to perform various complex queries on them. The most
significant drawbacks of this approach are the inflexibility of the model and
the loss of data. This approach was chosen for entities that are either not part

21

2. ARCHITECTURE

System Boundary

Core Layer

Resource- Workspace-
Reservation Management

User Console

Figure 2.6: Data model separation on module level

of the core domain or were identified as unlikely to change, such as Console
Account.

2.5.2 Event Sourcing

Another way to store the data is Event Sourcing [29], which, instead of cap-
turing the current state of the system, saves the domain events ([L.3.3), leading
up to the current state in an append-only event log.

Event Sourcing offers many advantages [30], such as flexibility of the model.
Since the state of the system is derived from the domain events (figure @),
which tend to change a lot less often than the way they are perceived, the
system only needs to change how the system state is derived from the events.

Another great advantage of event sourcing is debuggability. Since all of the
events leading up to a given state are persisted, then it is easy to figure out
how the system ended up in such a state if a faulty state is encountered.

Event Sourcing comes with drawbacks as well. Since the events are immutable,
the system cannot capture user personal or other sensitive information using
the events. Also, a careless implementation may result in performance issues.

After careful consideration, event sourcing was chosen as the data model for
the core domain entities most likely to change in the future, primarily because
of the flexibility it provides, mitigating some of the drawbacks, as described
in section @.5.

22

2.5. Data Model

Reservation
Created

=>

Reservation

Assigned

=>

Events Time Series

Resource

3

(=

=>

Derived to

Domain Entity Representation

Reservation

Resource
Removed

Reservation
;:> Confirmed

Assignee

It

Resource

Figure 2.7: Derivation of Reservation from Reservation Events

23

CHAPTER 3

Technologies Used

This chapter lists the used technologies and describes why they were chosen
based on the requirements ([l.2) and the architecture of the system ().

3.1 Programming Language

There are many languages specialized for programing both server and client-
side applications.

Based on the decisions taken in section @, and based on the most popular
programming langua%es at the time of the beginning of the project (summer of
2018) [31], Javascript® seemed like the best choice. However, because of its rise
in popularity, support of static typing, and interoperability with Javascript,
Typescript® was chosen for the client implementation.

Because of its lightweight runtime and rise in popularity [31], Node.jsg was
chosen as the target backend platform. Furthermore, using Node.js on backend
allows using the same language, Typescript, throughout the entire application
stack, lowering the barrier for anyone to be able to contribute or support the
project in the future.

Choosing Javascript / Typescript turned out to be the right decision. Javascript
remained the most popular programming language, while Typescript gained
significant popularity [32] over the past two years.

2https://developer.mozilla.org/en-US/docs/Web/javascript
3https://www.typescriptlang.org/
‘https://nodejs.org/en/

25

https://developer.mozilla.org/en-US/docs/Web/javascript
https://www.typescriptlang.org/
https://nodejs.org/en/

3. TECHNOLOGIES USED

3.2 Client Technologies

There is a large variety of front-end libraries/frameworks to choose from, each
with their benefits.

At the time of the beginning of the project, the two most popular were Angu-
lar/Angular.js and React.js [B1]. The most significant advantage of Angular
is its native Typescript implementation and the fact that it is a framework.
Angular includes end-to-end support for writing client-side applications, from
view generation, and state management, to network interactions. However,
Angular being a framework, is also its biggest drawback.

React.jSE, on the other hand, is just a library, which means it is not as opin-
ionated as Angular when it comes to structuring the application and choosing
other technologies. It provides only a lightweight wrapper around the DOM
interactions in a reactive way, without forcing the developer to use any specific
technology for the state management or network interactions.

After evaluating both, the React.js was chosen, which proved to be the right
decision, because of its flexibility and simplicity. Throughout building the
project, it also became the most popular front-end library/framework [32].

3.3 API Gateway

In section E.4.1, it was decided to use the API Gateway pattern. The first
question that needed to be resolved was whether to use off-the-shelf software
or whether to build a custom solution for it [33].

When evaluated the benefits and drawbacks of both approaches, it was decided
to use Nginxt because it would mean less code to maintain and because Nginx
turned out to be the most straightforward off-the-shelf piece of software to
configure and set up compared to alternatives, such as httpdE.

3.4 Dependency Injection

The primary goal for putting a dependency injection mechanism in place was
achieving requirements NFRO1|, and , while not sacrificing the clarit,

of the implementation. Libraries/frameworks considered were: TSyringeg

Shttps://angular.io/
Shttps://reactjs.org/
"https://nginx.org/
8https://httpd.apache.org/
“https://github.com/Microsoft/tsyringe

26

https://angular.io/
https://reactjs.org/
https://nginx.org/
https://httpd.apache.org/
https://github.com/Microsoft/tsyringe

3.5. Data Storage

injection—js@, and Nest.js.

All of the libraries use decorators to support dependency injection. After
developing a spike solution [34] using each method, Nest.js was chosen because
of its simplicity of use and the quality of documentation. The added benefit
of using the Nest.js turned out to be an integrated web framework it provides
built on top of the dependency injection system.

3.5 Data Storage

The system uses MySQL, because of the constraint .

3.6 Database Integration

Typeorm@ library was chosen for the database integration, because of Nest.js’
native supportt=. Also, because of its decorator-style integration, it fits in
much better with the rest of the system compared to other libraries, such as
Sequelize=2.

3.7 Email Integration
The only mature library for email sending that was found and eventually used
was Nodemailer=.

3.8 Continuous Integration

Continuous integration of the system is required by . For its imple-
mentation is used Gitlab CI/CDEL because it is the only continuous integra-
tion tool available as part of Silicon Hill infrastructure.

3.9 Containerization

It was decided to containerize pieces of the application using Docker@ to
achieve easy deployment required by ,

Ohttps://github.com/mgechev/injection-js
https://nestjs.com/

2https://www.mysql.com/

Bhttps://typeorm.io/
“bttps://docs.nestjs.com/techniques/database
https://sequelize.org/
https://nodemailer.com/about/
https://docs.gitlab.com/ee/ci/
8https://www.docker.com/

27

https://github.com/mgechev/injection-js
https://nestjs.com/
https://www.mysql.com/
https://typeorm.io/
https://docs.nestjs.com/techniques/database
https://sequelize.org/
https://nodemailer.com/about/
https://docs.gitlab.com/ee/ci/
https://www.docker.com/

3. TECHNOLOGIES USED

This proved to be very beneficial from the very beginning. Using Docker, it
is possible to run the app in the production environment even locally.

It also allowed moving from hosting the system on a single virtual machine
to a VIC cluster=2. This change was required because of the problem with
Silicon Hill infrastructure, that corrupted the virtual machine the application
was running on.

https://vmware.github.io/vic-product/

28

https://vmware.github.io/vic-product/

CHAPTER 4

Implementation

This chapter describes the most important aspects and features of the system.

4.1 Workspace Isolation

A workspace represents an instance of the reservation system. Since each user
of the system may have accounts, each with a different role () assigned, in
multiple systems at once, the system needs to isolate the workspaces.

The simplest way to achieve such isolation would be for the system to be
single-tenant [35]. The single-tenancy is however not feasible, since it requires
high infrastructure overhead. Therefore, the system is multi-tenant.

4.1.1 Entity Isolation

Each entity associated with a workspace is identified not only by its identifier
but also by the workspace id it belongs to. For example, User entity has two
primary identifiers, Userld and Workspaceld (figure {.1)).

4.1.2 Credentials Isolation

Further isolation level is achieved by scoping authorization credentials ()
to a single workspace. Therefore if a user wishes to access multiple workspaces,

User
Workspace 1.+ 1
H # id: Userld Identity

id: Workspaceld

+ role: UserRole

Figure 4.1: User Entity Relation with Workspace

29

4. IMPLEMENTATION

they need to use multiple credentials, each scoped to a single workspace.

4.1.3 Domain Isolation

The third level of isolation is achieved by assigning each of the workspace client
application (), a unique domain. This is accomplished by pre-pending the
root domain the workspace is hosted on, with the name of the workspace#.
For example, a workspace with a name test would be accessible on domain
test.rs.sh.cvut.cz.

4.2 Authentication and Authorization

This section describes authentication and authorization mechanisms the sys-
tem uses to ensure proper user access to its resources.

4.2.1 Authentication

Before granting system access authorization, the system requires each user
to authenticate. There are multiple methods of authentication based on the
authorization requested.

Opening a Workspace Request When a user wishes to open a request for
a new workspace, they are required to verify their email address. This is done
either by sending a verification email (or using Silicon Hill Information
System () After user email is verified, they are granted authorization to
open a workspace request.

Logging in to a Workspace Before authorizing user access to a workspace,
they need to authenticate with either, valid email and password combina-
tion associated with their workspace account, or by authenticating themselves
against Silicon Hill Information System.

Logging in to Console Application Each System Administrator has an
account with a unique username and password combination, which they need
to authenticate with in order to gain authorization to access the Console
Application.

4.2.2 Authorization

After a user authenticates themselves, they are, depending on their intent,
granted a specific authorization token. There are three types of authorization
token users can request.

20This does not break the constraint EESOS, since each of the workspaces is just a sub-
domain of the root domain rs.sh.cvut.cz.

30

test.rs.sh.cvut.cz
rs.sh.cvut.cz

Ju

W N O Ot ks W N

4.2. Authentication and Authorization

Workspace Access Token This token authorizes user to access a specific
workspace and is grated to a user after logging in to a workspace with their
workspace account.

Console Access Token This token authorizes user to perform system ad-
ministration and is granted to a user after logging in to a system using their
console account.

Email Verification Token This token authorizes user to open a workspace
request and is grated to a user by sending it in an email to their email address.

4.2.3 Authorization Tokens

There are two typical ways to implement authorization in web systems: session
cookies, and JSON web tokens (JWTs) [B6]. Both have their own benefits.
However, the most significant deciding factor that ruled in favor of using
JWTs, was that since JW'Ts are self-contained, they allow the server to remain
stateless.

When the authentication process completes, the system sends the client a pair
of access and refresh token (listing {.1]).

Access Token A short-lived token (five minutes) that is used to authorize
client requests.

Refresh Token A long-lived token (one day) is used to request a new access
token without needing to re-authenticate the user.

Client applications store these tokens in the browser’s local storage [37] and
attach access token to each request it makes.

{
"access_token": <access token JWT>,
"expires_in": 3600,
"token_type": "Bearer",
"refresh token'": <refresh token JWT>,
"scope": "",
"workspace": "test"

}

Listing 4.1: Authentication Response for workspace named test

Each JWT holds information about what kind of token it is, its expiration,
and the user it was issued for (listing {1.2).

31

© 00 N O Uk W N =

e e e
B~ W N = O

4. IMPLEMENTATION

{
"jit": <opaque token value>,
"sub": <user id>,
"exp": 1588599277,
"iat": 1588595677,
"scope": [J,
"kind": "access_token",
"user": {
"id": <user id>,
"workspace": "test",
"role": "admin",
"isOwner": true,
1,
}

Listing 4.2: Access Token JWT for Workspace test

4.2.4 Email Verification

User email is verified either using Silicon Hill’s OAuth2.0 API (), or by
sending a verification email to user’s email address. The email contains a URL
link that contains user’s email address, expiration time, unique workspace id,
and HMAC signature [38] of the URL that is appended as query parameters.
Once user navigates to the link, they can open the workspace request authen-
ticating themselves with the email address, sent workspace id, expiration date
and signature,

4.2.5 Integration with Silicon Hill OAuth2.0

The system leverages Silicon Hill’s OAuth2.0 [39] API for user authentication
to allow Silicon Hill members easier access. The entire authentication flow is
captured in the diagram in figure .

The implemented flow slightly differs from a typical one. There is an extra
step that resolves the redirect URI based on the workspace the user is trying
to log in, which is achieved by storing workspace information in the state
parameter [40].

If it is the user’s first time logging in to a given workspace, then a workspace
user account with the information fetched from the Silicon Hill is created
before the authorization token pair is sent to the user.

32

4.2. Authentication and Authorization

Client Server Al
OAuth2.0 API
Request Login with ' E
Silicon Hill ' !
» \
DAuth2.0 Code Redirect Client to Silicon Hill i
Auth with server client id S
and workspace information '
< | .
Login to Silicon Hill L
; Redirects user _:_ OAuth2.0 redirect
.. yith authorization code
original workspace | |ez______ Wi aorzanon coce]
<. riginal works pce | <]
Complete Silicon Hill Exchange authorization code :
Authentication = for access token L
< Returns a valid access token

Requests user information N E

Returns user Silicon Hill

user information
'< """"""""""""""" -

First Login)
Create Workspace User '
Account !
Responds with Crca?o;::;h;:;auon H
Authorization Token Pair » |

Figure 4.2: Silicon Hill OAuth2.0 Authentication

33

4. IMPLEMENTATION

4.3 Personal Data and Anonymization

Use of personal data is essential for the system. As mentioned in section ,
each Workspace User entity is assigned an Identity, comprised of multilﬁe
personal information, such as email, first and last name, and phone number&.

4.3.1 Personal Data Storage

None of the personal information is stored in events that are immutable to
ensure this data can be destroyed. Instead, each identity is mapped to a row
in the identity table in the database (figure @)

4.3.2 Data Anonymization

Since domain-specific user information, such as user role, is stored in events,
the system cannot actually delete the user. A user is deleted once a user
deleted event (|A.2.6) is recorded in the event store () Therefore, personal
user data needs to be destroyed in other way. To maintain user entity link to
its identity, and, at the same time, compliance with GDPR [41], the personal
data is anonymized.

Anonymization is done by encrypting personal information with a randomly
generated, 256-bit encryption key, using an AES cipher [42], and throwing
away the encryption key. This way, since there is no way to recover the
used encryption key, all of the data is effectively destroyed. Yet, the system
maintains information about what kind of information was associated with
each user identity.

21Email is the only piece of personal information, that is required. First and last name,
password, and phone number, can be optionally filled by either the user, or are automatically
filled in if provided by the Silicon Hill OAuth2.0 API.

identity

workspace id

£

user id
email
first name
last name

phone number

0O 0 0 0

password

primary column
o nullable column

Figure 4.3: Identity Table

34

4.4. REST API

4.4 REST API

To suffice requirement , as well as, to provide a unified interface for
simple client interoperability, the server exposes a REST API using JSON.
The API is built around resources and follows basic REST principles [43].

Similarly to the separation of client applications, the REST API is split into
three groups: console, setup, and workspace.

4.4.1 Authorization

Depending on the required authorization method and the requested API, each
request must include an authorization token () The setup API requires
an email verification token to be included as part of the request in order to
open a workspace request () Instead, the console and workspace APIs
expect an access token to be present in the request. The system has relaxed
rules, as for how the access token is included in the request. Users can attach
the access token in the Authorization header of request (Bearer <token>),
or include it in the query parameters (access_token=<token>), or even in
the body of the request ("access_token": <token>).

The API routes described in the following subsections annotated by an asterisk
symbol (*) require such authorization.

4.4.2 API Versioning

For future backward compatibility, all API routes are prefixed with a /api/v1
to ensure that any new major API update would require users to just switch
the route prefix, e.g., /api/v2.

4.4.3 Console API

These routes are prefixed with /console, and all relate to system adminis-
tration. Therefore, the client application uses those API routes primarily.
Accessibility of these routes is predicated on console account authentication.

4.4.3.1 Authentication

To retrieving an access token for the console API, a user needs to authenticate
themselves with console account credentials. The authentication response of
the server is a pair of authorization tokens ()

4.4.3.2 Authentication API Routes

These routes expose functionality for obtaining console account authentication
and registration, and authorization token management.

35

4. IMPLEMENTATION

e POST /console/login This route is used for users to log in with their
console account username and password credentials passed in the body
of the request. If this request succeeds, the API responds with an au-
thorization token pair and HTTP status code 200, If the username or
password do not match any of the registered accounts, the API responds
with status code 400.

e POST /console/register™ This route is used to create a new console
account with the given pair of username and password. If the creation
of the new console account succeeds, the API responds with a response
code 201. If an error occurs, such as username is already taken, the API
responds with status code 400.

e POST /console/token/refresh This route is used to request a new
access token using a refresh token. If the refresh token is valid, the API
responds with status code 200, attaching an authorization token pair in
the response body. If a refresh token is invalid (corrupted, revoked, or
expired), the API responds with status code 400.

e POST /console/token/revoke This route is used to revoke an existing
refresh token provided in the request. If the refresh token is valid, the
API responds with status code 204 and an empty response body. If a re-
fresh token is invalid (corrupted, revoked, or expired), the API responds
with status code 400.

4.4.3.3 Console Account API Routes

These routes expose functionality for the management of console accounts.

e GET /console/account*® This route is used for listing all existing con-
sole accounts in the system. The API responds with status code 200,
including all console accounts in its body.

e DELETE /console/account/{username}* This method is used for delet-
ing existing console accounts by their username included in the API
route as a parameter. If a console account with the username exists,
the API responds with status code 204 and an empty body. If a user
tries to delete their own account, which they are logged in as, the API
responds with status code 403. If a provided username is not associated
with any console account, the API responds with status code 404.

4.4.3.4 Workspace API Routes

These routes expose functionality for the listing of existing workspaces and
their ownership transfer.

36

4.4. REST API

e GET /console/workspace™ This route is used for listing all existing
workspaces. The API responds with status code 200, including all
workspaces in its body.

e POST /console/{workspace_id}/transfer* This method is used for
transferring ownership of the workspace to a different workspace user,
whose id is expected to be present in the body of the request. If the user
exists, the API responds with status code 200, attaching the updated
workspace in its body. If the id provided in the request is not associated
with any user in the given workspace, or if the workspace id is not
associated with any workspace, the API responds with status code 404.

o GET /console/{workspace_id}/user™® This method is used for listing
workspace users of the workspace, which id is passed as route parameter.
If the workspace exists, the API responds with status code 200, attaching
its users in the body of the response. If the workspace does not exist,
the API response with status code 404.

4.4.3.5 Workspace Request API Routes

These routes expose functionality for the listing of existing workspace requests
and their confirmation and decline.

o GET /console/workspace/request™® This route is used for listing all
existing workspace requests. The API responds with status code 200,
including all workspace requests in its body.

e POST /console/request/{request_id}/confirm* This route is used
for confirmation of workspace requests. The API responds with status
code 200, attaching the updated workspace request in its body. If the
workspace request has already been closed®d, the API responds with
status code 400. If the id does not correspond to any existing workspace
request, the API responds with status code 404.

o POST /console/request/{request_id}/decline™® This route is used
for declining of workspace requests. The API responds with status code
200, attaching the updated workspace request in its body. If the work-
space request has already been closed, the API responds with status code
400. If the id does not correspond to any existing workspace request,
the API responds with status code 404.

22The workspace request is closed, if it is confirmed or declined

37

4. IMPLEMENTATION

4.4.4 Setup API

These routes are prefixed with /setup, and all relate to the opening of work-
space requests. They form the primary consumer of this API is the landing
application.

4.4.4.1 Email Verification API Routes

These routes expose functionality related to the verification of the user’s email
address (E24)

e POST /setup/verify/email This route is used for verifying user’s email
address passed in the body of the request using a verification email. The
API responds with status code 202 and an empty response body.

e GET /setup/verify/authority/{authority} This route is used for
verifying user’s email address passed in the body of the request using
an external OAuth2.0 compliant authority®d. The API expects the au-
thority identifier to be present as the router parameter, and the initial
state is passed as the request’s query parameter. The API responds
with status code 301, redirecting the client to complete the OAuth2.0
authentication with the external authority. If the referenced authority
does not exist, the API responds with status code 404.

4.4.4.2 Workspace Request Completion API Routes

These routes expose functionality for completing a setup process of opening a
workspace request.

o POST /setup/complete/email® This route is used for opening a request
for a workspace with an email address verified using a verification email.
The API responds with status code 201, attaching the opened workspace
request in its body. If verification information provided is invalid, the
API responds with status code 401. If the name of the workspace is
either invalid or collides with an already existing one, the API responds
with status code 400.

o POST /setup/complete/authority™® This route is used for opening a
workspace request using the authority verification process. The API
responds with status code 201, attaching the created workspace in its
body. If verification completes with an error, the API responds with
status code 401. If the name of the workspace is either invalid or collides
with an already existing one, the API responds with status code 400.

23Currently the only authority implemented is Silicon Hill with authority identifier
silicon_hill.

38

4.4. REST API

4.4.5 Workspace API

These are the rest of the API routes and present the primary way of interacting
with a specific workspace. Therefore, the workspace application is the primary
consumer of these routes. The access to majority of these routes is predicated
on workspace account authentication.

4.4.5.1 Authentication API Routes

These routes are used to authenticate users with the system using external
authorities, as well as to set up and/or change users’ passwords.

e GET /login/{authority} This route is used for requesting the user au-
thentication using an external OAuth2.0 compliant authority®2. The
API expects the authority identifier to be present as the router pa-
rameter and the initial state passed as the query parameter of the re-
quest. The API responds with status code 301, redirecting the client to
complete the OAuth2.0 authentication with the authority. If, however,
there’s no authority associated with the given authority identifier, the
API returns status code 404.

e GET /auth/{authority} External OAuth2.0 compliant authorities use
this route as the redirect URI. Each supported authority is registered a
version of this route with its specific authority identifier. This redirects
clients to the URI encoded in the state query parameter of the request.

e POST /login/authority This route is used to complete the login using
an external authority expecting OAuth2.0 authorization code, as well as
authority identifier and the state passed in the body of the request. The
API responds with status code 200 and a pair of authorization tokens
(1.2.3), creating a workspace user account if it is the first time for the
user logging in the given workspace. If the user is banned, the API
responds with status code 400. If the workspace the user is trying to log
in, or authority associated with the given identifier does not exist, the
API responds with status code 404.

e POST /password* This route is used for setting a new account password,
passed in the body of the request. The API responds with status code
204 and an empty response body.

4.4.5.2 OAuth2.0 API Routes

The system implements a subset of OAuth2.0 [39], namely the password and
refresh_token grant types. The API also allows for refresh token revocation.

24Currently the only authority implemented is Silicon Hill with authority identifier
silicon_hill.

39

4. IMPLEMENTATION

e POST /oauth2/token This is a standard OAuth2.0 request except for
the password grant type, which in addition to username and password
values also expects a workspace name passed as workspace. The API
responds with status code 200 and an authorization token pair in the
response body. If the request is invalid, the API responds with status
code 400. If an unsupported grant type is requested, the API responds
with status code 501. In case of the password grant type, if a workspace
name is invalid, the workspace with the given name does not exist, the
user is banned, or either username or password do not match, the API
responds with status code 400, as well. In case of refresh_token grant
type, if given refresh token is invalid, the API responds with status code
400, too.

e POST /oauth2/token/revoke* This route is used for refresh token re-
vocation. The API responds with status code 204 and an empty body.
In case of an invalid refresh token being provided, the API responds
with status code 400.

4.4.5.3 Workspace API Routes

These routes expose functionality for the listing of existing workspaces, their
ownership transfer, and deletion.

e GET /workspace This route is used for the listing of workspaces. The
API responds with status code 200 and a list of existing workspaces in its
body. The route also supports the addition of a name query parameter,
in which case the API returns just the workspace with the given name.
If such workspace does not exist, the API responds with status code 404.

o POST /workspace/transfer™ This route is used by workspace owners
to transfer ownership of the workspace to a different user. The API
responds with status code 204 and an empty response body. If a user
trying to transfer the ownership of the workspace is not its owner, the
API responds with status code 401. If the user the workspace is being
transferred to does not exist, the API responds with status code 404.

o DELETE /workspace™® This route is used for deleting the workspaces.
The API responds with status code 200 and an updated workspace in
its body. If a user tries to delete the workspace is not its owner, the API
responds with status code 401.

4.4.5.4 User API Routes

These routes expose functionality for listing workspace users, changing their
permissions, and user deletion.

40

4.4. REST API

e GET /user*® This route is accessible only to workspace maintainers, ad-
mins, and the workspace owner. The API responds with status code
200, attaching a list of users in the body of the response.

e GET /user/me™ This route responds with status code 200, attaching the
currently logged in user in its body.

e DELETE /user/me* This route is used for deleting the user’s account.
The API responds with status code 204 and an empty response body.
If a workspace owner tries to delete themselves, the API responds with
status code 403.

o PUT /user/me/profile* This route updates user’s profile to a new one,
passed in the body of the request. The API responds with status code
200, attaching the updated user in its body.

e GET /user/{id}* This route returns users referenced by their id, that is
passed as the route parameter. This route is accessible only to workspace
maintainers, admins, and the workspace owner. The API responds with
status code 200, attaching referenced user in its body. If the referenced
user does not exist, the API responds with status code 404.

e PATCH /user/{id}/role* This route sets referenced user’s role. This
route is accessible only to workspace maintainers, admins, and the work-
space owner. The API returns status code 200, attaching updated user
in its body. If a requester tries to demote a user with higher privileges,
or tries to grant higher privileges than their own, the API responds with
status code 401. If a requester tries to change their own role, the API
responds with status code 403. If the referenced user does not exist, the
API responds with status code 404.

e PATCH /user/{id}/ban* This route toggles referenced the user’s ban.
This route is accessible only to workspace maintainers, admins, and the
workspace owner. The API returns status code 200, attaching updated
user in its body. If a requester tries to toggle the ban of a user with
higher privileges, the API responds with status code 401. If a requester
tries to toggle their own ban status, the API responds with status code
403. If the referenced user does not exist, the API responds with status
code 404.

4.4.5.5 Resource API Routes

These routes expose functionality for listing and management of resources.

e GET /resource™ This route lists all resources in the workspace respond-
ing with status code 200.

41

4.

IMPLEMENTATION

GET /resource/{id}* This route is used to retrieve a resource refer-
enced by its id passed as the route parameter. The API responds with
status code 200, attaching the resource in its body. If the referenced
resource does not exist, the API responds with status code 404.

POST /resource* This route is accessible only to workspace maintain-
ers, admins, and the workspace owner, and it is used to create new
resources with given name and description passed in the body of the
request. The API responds with status code 201, attaching the created
resource in its body.

PUT /resource/{id}* This route is accessible only to workspace main-
tainers, admins, and the workspace owner, and it is used to update the
resource with a given name and description passed in the body of the
request. The API responds with status code 200, attaching the updated
resource in its body. If the referenced resource does not exist, the API
responds with status code 404.

DELETE /resource/{id}* This route is accessible only to workspace
maintainers, admins, and the workspace owner, and it is used to delete
the referenced resource. The API responds with status code 204 and an
empty body. If the referenced resource does not exist, the API responds
with status code 404.

PATCH /resource/{id}/toggle™ This route is accessible only to work-
space maintainers, admins, and the workspace owner, and it is used to
toggle the active status of the referenced resource. The API responds
with status code 200, attaching the updated resource in its body. If the
referenced resource does not exist, the API responds with status code
404.

4.4.5.6 Reservation API Routes

These routes expose functionality to create and manage reservations.

42

e GET /reservation™ This route lists all reservations in the workspace

responding with status code 200. The route also provides options for
filtering based on the reservation time period. A requester can provide
date_start, date_end, or both dates as query parameters forming a
interval. If filtering parameters are provided, the API responds only
with reservations, which intervals intersect with the one formed by the
query parameters.

POST /reservation®™ This route is used for creating reservations from
the properties passed in the body of the request. The API responds

4.4. REST API

with status code 201, attaching the created reservation in its body. If
a workspace user tries to create a reservation not assigned to them, the
API responds with status code 401. If an invalid date range is selected,
such as reservation starting in the past or ending before it starts, the
API responds with status code 400.

GET /reservation/{id}* This route is used for querying reservations
by their id, which is passed as the route parameter in the request. The
API responds with status code 200, attaching referenced reservation in
its body. If the referenced reservation does not exist, the API responds
with status code 404.

PUT /reservation/{id}* This route is used for updating reservations
from the properties passed in the body of the request. The API responds
with status code 200, attaching updated reservation in its body. If a
workspace user tries to reassign a reservation to someone else or try to
update the reservation not assigned to them, the API responds with
status code 401. If an invalid date range is selected, such as reservation
starting in the past or ending before it starts, the API responds with
status code 400. If the reservation has already been canceled, rejected,
or completed, the API responds with status code 403 ()

GET /reservation/{id}/events™® This route is used for querying events
associated with the referenced reservation by its id, which is passed as
the route parameter in the request. The API responds with status code
200 attaching a list of referenced reservation events, ordered in ascend-
ing order by their event id, in its body. If the referenced reservation
does not exist, the API responds with status code 404.

PATCH /reservation/{id}/confirm* This route is accessible only to
workspace maintainers, admins, and the workspace owner, and it is used
to confirm a reservation referenced by the route parameter. The API
responds with status code 200, attaching updated reservation in its body.
If one or more resources are unavailable in the requested time range, it
begins in the past, or the confirmation of the reservation would cause an
invalid state transition (@), then the API responds with status code
403. If the referenced reservation does not exist, the API responds with
status code 404.

PATCH /reservation/{id}/cancel™ This route is used to cancel a reser-
vation referenced by the route parameter. The API responds with status
code 200, attaching the updated reservation in its body. If a workspace
user tries to cancel a reservation that is assigned to someone else, the
API responds with status code 401. If the cancelation of the reservation
would cause an invalid state transition () or the reservation starts

43

4.

IMPLEMENTATION

in the past, the API responds with status code 403. If the referenced
reservation does not exist, the API responds with status code 404.

PATCH /reservation/{id}/reject® This route is accessible only to
workspace maintainers, admins, and the workspace owner, and it is used
to reject a reservation referenced by the route parameter. The API re-
sponds with status code 200, attaching updated reservation in its body.
If the rejection of the reservation would cause an invalid state transi-
tion () or the reservation starts in the past, the API responds with
status code 403. If the referenced reservation does not exist, the API
responds with status code 404.

4.4.5.7 Reservation Comment API Routes

These routes expose functionality for adding comments to reservations, their
editing, and deletion.

44

e GET /reservation/{reservation_id}/comment* This route lists com-

ments attached to the reservation referenced by the route parameter,
responding with status code 200. The route is accessible only to work-
space maintainers, admins, and the workspace owners. If the reservation
does not exist, the API responds with status code 404.

POST /reservation/{reservation_id}/comment* This route is acces-
sible only to workspace maintainers, admins, and the workspace owners
and it creates a new comment from the properties attached in the re-
quest body for the referenced reservation. The API responds with status
code 201, attaching the created reservation comment in its body. If the
reservation does not exist, the API responds with status code 404.

PUT /reservation/{reservation_id}/comment/{id}* Only to work-
space maintainers, admins, and the workspace owners can access this
route, which is used to update referenced comment by the route param-
eter from the properties attached in the request body. The API responds
with status code 200, attaching the updated reservation comment in its
body. If the user trying to edit the referenced comment is not its author,
the API responds with status code 401. If the referenced comment or
the reservation does not exist, the API responds with status code 404.

DELETE /reservation/{reservation_id}/comment/{id}* This route
is accessible only to workspace maintainers, admins, and the workspace
owners and it is used to delete referenced comment by the route param-
eter. The API responds with status code 204 and an empty response

4.4. REST API

body. If the user trying to delete the referenced comment is not its au-
thor, the API responds with status code 401. If the referenced comment
or the reservation does not exist, the API responds with status code 404.

4.4.5.8 Webhook API Routes

These routes expose functionality for configuring workspace webhooks.

e GET /webhook* This route is accessible only to workspace admins and
the workspace owner, and it is used for the listing of webhooks. The
API responds with status code 200, attaching all webhooks in its body.

e POST /webhook™ This route is accessible only to workspace admins and
the workspace owner, and it is used for creating webhooks from the
properties attached in the body of the request. The API responds with
status code 201, attaching the created webhook in its body.

e GET /webhook/{id}* This route is accessible only to workspace admins
and the workspace owner, and it is used for querying webhooks by their
id, that is present as the request route parameter. The API responds
with status code 200, attaching referenced webhook in its body. If the
referenced webhook does not exist, the API responds with status code
404.

e PUT /webhook/{id}* This route is accessible only to workspace admins
and the workspace owner, and it is used for updating webhooks by their
id, that is present as the request route parameter, using the properties
from the body of the request. The API responds with status code 200,
attaching the updated webhook in its body. If the referenced webhook
does not exist, the API responds with status code 404.

e DELETE /webhook/{id}* This route is accessible only to workspace ad-
mins and the workspace owner, and it is used for deleting webhooks
by their id, that is present as the request route parameter. The API
responds with status code 204 with an empty response body. If the
referenced webhook does not exist, the API responds with status code
404.

e POST /webhook/{id}/test* This route is accessible only to workspace
admins and the workspace owner, and it is used for testing of the con-
figured webhook referenced the by its id, that is present as the request
route parameter. The API responds with status code 200, attaching
response from the remote server in its body. If the referenced webhook
does not exist, the API responds with status code 404.

45

=W N

4. IMPLEMENTATION

e PATCH /webhook/{id}/toggle™ This route is accessible only to work-
space admins and the workspace owner, and it is used for toggling activ-
ity of the webhook referenced the by its id, that is present as the request
route parameter. The API responds with status code 200, attaching
updated webhook in its body. If the referenced webhook does not exist,
the API responds with status code 404.

4.5 Event Sourcing

As it was mentioned in subsection , the system uses event sourcing to
store the vast majority of the core domain data.

There are many ways the event sourcing could be implemented [29][44]. The
one implemented, that fit the overall design of our system, was highly inspired
by the one presented by Phillipa Avery, and Robert Reta, in their presentation
[45] on implementing Downloads feature in Netflix.

4.5.1 Overview

The event sourcing adopted by RSaaS is built around aggregates. Aggregate is
an entity that can be decomposed into a sequence of events %@) For each of
them, there is an aggregate service that holds business logic associated with
the aggregate. Each aggregate service has an aggregate repository, that is
responsible for communication with event store, where the events are stored,
applying the events onto aggregates, and executing commands. This flow is
captured in the figure f.4.

4.5.2 Aggregate Service

Aggregate services are implemented as classes following Command Query Sep-
aration (CQS) [46] principle. They expose methods for querying the aggre-
gates (listing @), as well as a method for executing commands on them
(listing {1.4).

When executing commands, a service can query other services to ensure busi-
ness invariants. However, it does not perform the commands directly. Instead,
services use their associated repositories to execute the commands (figure §.5).

public async getById(
workspaceld: string,
reservationld: string,

): Promise<Reservation> { ... }

Listing 4.3: Reservation Service Query Method

46

4.5. FEvent Sourcing

Client Service Repository Command Handler Event Handler Event Store
Query Client Query N
>
A t 3

ggregate Query > Events Query R

Events List
O Rt e e

(Uninitialized Aggregate. Event List) o

; >

A, rc‘ ate H

N e e :

ggregate |

... Asgregate R :

@ | Cliet Command__ | ! 3

— (Aggregate, Command) | H

» (A Command) |

Events List :

[€omeeeeeneacteeane. H
Store Events List ' _
. >

return i
<' """""""""" rrTTTTmmmmmmmm s i

(Aggregate, Events List) g

s ;

D H

oo] T

Figure 4.4: Event Sourcing Overview

AN

Figure 4.5: Service-Repository Command execution

Service

Aggregate

v

Command

/

/

public async confirm(

reservation: Reservation,
changedBy: ReservationManager,

): Promise<void> { ... }

Listing 4.4: Reservation Service Command Method

47

4. IMPLEMENTATION

Repository
Events List
Command Event ———
- @ 5
Handler Handler Event Store

Figure 4.6: Aggregate Repository

Aggregate ——»

v

C d Handler

Command ———»

Figure 4.7: Command Handler

Event

4.5.3 Aggregate Repository

Aggregate Repositories (figure @) are implemented as classes, composed of a
pair of command (4.5.3.1) and event handler () Repositories use these

handlers for command execution, as well as applying events onto aggregates.

Each the aggregate repository derives from the base class, that implements
behavior for command execution, event application, and event store com-
munication. The derived classes provide a custom implementation of those
handlers, specific to the associated aggregate.

4.5.3.1 Command Handler

Command handlers are responsible for executing commands on given aggre-
gates. The output of command handlers is a list of events leading the aggregate
to a new, desired state (figure @) If, however, such a state is not possible
to achieve (e.g., executing a confirm command on rejected reservation), the
handler can reject such command by throwing an exception.

48

—

ot W N

=

ot W N

4.5. Event Sourcing

Aggregate ——»

Updated

Event Handler —
Aggregate

Event ——»

Figure 4.8: Event Handler

Command handlers are implemented as classes, which methods can be reg-
istered to handle specific commands (listing @) Each handler class derives
from a base class that instruments command execution using class’ registered
methods.

@CommandHandler (ReservationCommandType.create)

public executeCreate(

aggregate: Reservation,

command: ReservationCreateCommand,
): ReservationEvent[] { ... }

Listing 4.5: Reservation Command Handler Method Registration

4.5.3.2 Event Handler

Event handlers are responsible for applying events to given aggregates, taking
a list of events, and aggregate as the input and outputs updated aggregate (fig-
ure 1.§). Application of events is an operation that always succeeds, resulting
in a new aggregate state.

Event handlers, similarly to command handlers, are implemented as classes,
which methods can be registered to handle specific events (listing @) Each
event handler class derives from a base class, that instruments event applica-
tion using class’ registered methods.

@EventHandler (ReservationEventType.created)
public applyCreated(

aggregate: Reservation,

event: ReservationCreatedEvent,
): Reservation { ... }

Listing 4.6: Reservation Event Handler Method Registration

49

4. IMPLEMENTATION

Event Store

Row Id Events

— OO 00
— OO0
— OO0

Figure 4.9: Event Store

4.5.4 Event Store

The event store provides an abstraction layer around the storing of the events.
The event store forms a key-value store [47] that stores lists of events in rows
identified by their row id (figure @)

A row id is a structured string, formed by an aggregate name, and any number
of related identifiers (such as workspace id) separated by colons, that logically
groups related events together. Row id can be thought of as sort of an index
to a specific group of events. For example, each reservation event is assigned
a row id based on the workspace they belong to.

Each row within the event store can contain events related to multiple aggre-
gates. However, each of them must be of the same type&2 (figure) The
event store is append-only which means that events can only be appended at
the end of each row, but not updated, nor deleted.

4.5.4.1 Tabular Representation

Since the system uses MySQL as the database, the event store is represented
by a single table, the events_table (figure)7 with the event’s properties
mapped to table’s columns.

Event Id This is the primary key of the table. It is sequentially incremented
and assigned to each event upon its persistence in the database. Using this
key, we can represent each event in a specific row, as just another row in

25This means that one row can store events of multiple reservation aggregates, however
it cannot store events of reservations and users

20

4.5. Event Sourcing

Event Store

Row Id Events

| Events of aggregate 1
_| Events of aggregate 2

Figure 4.10: Single Row of Event Store

the events_table. The benefit of having a unique identifier assigned to each
event is an unambiguous ordering of events.

Row Id This column directly translates to the row id of the event store. This
column is indexed and can be used to query the events.

Aggregate Id This column contains the identifier, a string, of the aggregate
it belongs to. This column is indexed and can be used to query the events.

Timestamp This column contains the timestamp of event creation. It is
indexed and is used to filter the events.

Type This column holds the information about the event type. It is not
indexed and therefore not supposed to be queried against by the system.
However, it can be used for debugging purposes.

Payload This column holds the JSON-encoded payload of the event. This
column is not indexed.

4.5.5 Snapshotting

In section , we raised potential performance issues that poor implemen-
tation of event sourcing may cause. Specifically, processing a large number of
events to complete a request.

One precaution taken is a grouping of events into rows index by their row id, as
we mentioned in the previous section, which significantly decreases the number

51

4. IMPLEMENTATION

events_table

Event Id Row Id Aggregate 1d Timestamp Type Payload

timestamp string string

integer ‘ ‘ string ‘ ‘ string ‘

| Primary key column
.| Indexed columns
Plain data column

Figure 4.11: Events Table Structure

Snapshot Store

Row Id Aggregates

— [

Figure 4.12: Snapshot Store

of events needed to be processed per request. However, if the number of events
in a row increases significantly, it may no longer make sense to process every
single event that happened since the beginning of the system. The system
implements a technique called snapshotting [48] to avoid this situation.

4.5.5.1 Snapshots

A snapshot is a materialized view that encapsulates the entire history until a
particular point in time. In the case of our system, a snapshot captures a list
of aggregates with the same row id (figure @)

Snapshots are created by an aggregate repositories when certain criteria that
can be customized by each repository are met. Once the specific criteria are
met, the repository captures the current state of the aggregates in a snapshot,
that is serialized and stored in the snapshot store. From this moment onwards,
the repository, first checks for the existence of the snapshot, and if it exists,
processes only the events that were added after the snapshot was created.

02

4.6. Message Broker

snapshot_table

Row Id Event Id Payload

‘ string ‘ number string

Primary key column
Plain data column

Figure 4.13: Snapshot Table

4.5.5.2 Tabular Representation

The snapshot store, as the event store, is represented by a single table, the
snapshot_table (figure), mapping snapshot’s properties to the table’s
columns.

Row Id This is the primary key of the table, representing the key by which
the materialized aggregates are stored.

Event Id This column represents the latest event processed that led to the
state of the materialized view of the aggregates. This column is not indexed.

Payload This column represents materialized aggregates, which are serialized
into an array of JSON objects.

4.6 Message Broker

As it was mentioned in section , the system uses a message broker to real-
ize asynchronous communication between the modules. Multiple off-the-shelf
solutions, like Kafka [49] and RabbitMQ [50] were considered. The system
even used RabbitMQ for a brief period of time throughout the development
of the project. However, since Silicon Hill infrastructure does not include such
messaging solution, the burden caused by maintenance and configuration of an
external system dependency was the primary deciding factor for implementing
a custom, in-memory solution.

4.6.1 Overview

The primary goal of the message broker was to allow event consumers to
subscribe for domain events emitted in the system. The key qualities of the

93

4. IMPLEMENTATION

Column name ‘ Description
id of the event that should be published
serialized event

Table 4.1: Outbox Table

event_id
event

Column name ‘ Description
name of the event consumer
id of the latest consumed event

consumer_name
latest_consumed

Table 4.2: Inbox Table

message were reliable publishing of those events), as well as, exactly-
4.6.3)

once delivery of them to the event consumers (

4.6.2 Outbox

The reliable publishing of the events is realized using the outbox pattern [51].
It is implemented using a single database table with columns captured in table

. The publisher of the event is required to insert the entires in the same
transaction as they are stored in the event store ()

The outbox table forms a queue, which an outbox processor polls every 200ms
for new entries. If there are some entries in the outbox table, the processor
reads them ordered by their event id, and dispatches them to the message
broker. The message broker then passes each of them to every subscriber.
Once all of the subscribers successfully process the entry, the outbox processor
removes it from the outbox table (figure §.14).

If, however, the a failure is occurs (figure), the message is not deleted,
and the outbox processor current invocation aborts. This ensures the entries
are deleted only if they are successfully processed by the message broker.

4.6.3 Inbox

The system implements a simplified version of the inbox pattern [52], in which
each event consumer maintains track of the latest consumed event in the inbox
table @

Each event consumer is assigned to a subscriber, that is registered in the
message broker. Once the subscriber receives an entry to consume, it checks
whether the id of the event is higher than the latest consumed one for the
given consuier.

If the value is indeed greater, the event is deserialized and passed to the event

o4

4.6. Message Broker

Publisher Outbox Outbox Processor Message Broker
Publish a Message o E
return E
E Polling J , Check Unrcad Messages E
For each
: message |
| List of Unrcad Messages '
E Dispatch a Message o
E Remove Processed
| P Message <---------F-“-":n-
| return E

=
'
'
'
'

Figure 4.14: Outbox Pattern — Successful Processing of Event

Publisher Outbox Outbox Processor Message Broker
Publish a Message - i
return
: Polling] __ Check Unread Messages
E For each
E message List of Unrcad Messages
[e o Dispatch a Message !
E fails
! Ko L]

Figure 4.15: Outbox Pattern — Failure Encountered During Event Processing

95

=W N

4. IMPLEMENTATION

Message Broker Subcriber Inbox Consumer
For each \ i
Subcriber / Consume cvent ' Has consumed event
> with given id
>
>
No
R
Consume event
>
>
return
oy
Update latest consumed
event id
>
>
return
iy AR |
return
- mmm e

Figure 4.16: Inbox Pattern — First Delivery of Event

consumer (figure) If the consumer successfully processes the event, the
latest consumed event id in the consumer inbox is updated.

If, however, subscriber is handed already processed event, the event is ignored
(figure) This way subscriber ensures each event is consumed only once
by the consumer.

4.6.4 Event Consumers

Any class in the system that wishes to consume events need to be annotated
with an EventConsumer decorator (listing @), which registers the class for
event consumption. After the class is annotated, their methods can be anno-
tated with any number of EventPattern decorators (listing .§), which specify
what type of events the methods should process.

Q@EventConsumer ()
class WorkspaceRequestConfirmationIngestorService {

3

Listing 4.7: Event Consumer Class Registration

o6

[

4.6. Message Broker

Message Broker Subcriber Inbox Consumer
For each |
Subcriber/ Consume event Has consumed event
» with given id
>
Yes
|
< return

-

Figure 4.17: Inbox Pattern — Subsequent Delivery of Event

Q@EventPattern(WorkspaceRequestEventType.confirmed)
public async consumeConfirmed/(
event: WorkspaceRequestConfirmedEvent,

): Promise<void> { ... }

Listing 4.8: Event Pattern Method Registration

o7

4. IMPLEMENTATION

4.7 Webhooks

Webhooks are essentially configurable callbacks to remote services, which can
be dispatched when specific events () occur in the system.

4.7.1 Supported Events

Currently, the system supports the following subset of reservation life cycle
events (g.2.4):

¢ Reservation created
o Reservation confirmed
e Reservation rejected

¢ Reservation canceled

Each webhook can be configured to be dispatched when any one, or more of
these events occur in the system. In the future it is planned to extend these
events with all of the reservation life cycle events and also include resource
and reservation comment events.

4.7.2 Webhook Realization

Webhooks are implemented as remote HTTP POST requests [53]. Each web-
hook can configure the URL the request should be sent to, and payload en-
coding type. The webhook dispatcher is implemented as an event consumer.
Therefore, it is guaranteed that each event results in all registered webhooks
being dispatched. Each webhook request should respond with a success HT'TP
status code (2xx) [54], otherwise, the request is retried. Each webhook request
is retried up to three times with timeouts of 100, 200, and 400ms.

4.7.3 Payload Validation

Each webhook HTTP request also includes an X-Reserve-Signature header
with an HMAC [38] signature of the request’s payload using a secret key,
which is part of the each webhook’s configuration. This signature can be used
to validate the correctness of the payload.

4.7.4 Testing of Webhooks

The system exposes the API for testing the webhooks with arbitrary payloads.
A user configuring the webhook can invoke it with a custom payload. The

o8

4.8. Testing

The System
Invoke Webhook Remote Service Y Sy
Request _ -~
Client Server "\ Remote Service <
- Ly { B
Wrapped Remote e Remote Service 7
Service Response Response

Figure 4.18: Webhook Testing

server then dispatches the webhook with the given payload passing response@
of the remote server back to the user in the body of the server response (figure
-!-.18).

4.8 Testing

Testing is an integral part of any development process. There are many meth-
ods to test the system. This section describes how parts of the system are
tested.

4.8.1 Client Testing

Client applications rely entirely on manual Ul testing. This decision was
predicated on the implementation and tooling complexity of automated UI
testing, which was found ineffective throughout the development. Features
provided by client application tools, such as hot reloading [55], provide an
efficient way to change and debug the code.

4.8.2 Server Testing

Initially, the first version of the server part of the system was implemented
without any automated tests. All testing was done through the UI or the
REST API. This decision was made to minimize any unwanted coupling be-
tween the implementation and code in the beginning of the project, and to
reduce the time to delivery of its initial version.

2Included are the response status code, headers and its body.

99

4. IMPLEMENTATION

End-to-End
Tests

Integration Tests

Unit Tests

Figure 4.19: Test Pyramid

However, after the the system grew to a certain size, a large number of re-
gressions started to slow down the development significantly. To minimize
the regressions and to improve overall code quality, the techniques such as
opportunistic refactoring [b6], adding tests to refactored pieces of code, and
Test-Driven Development (TDD) [57], when adding new features, got em-
ployed.

Using these techniques, the system achieved high test coverage, as required by
, increased development velocity, as well as, reduced debugging time.
Currently, the server tests form a test pyramid (figure), where there is a
large number of unit tests (), followed by integration tests () and
a small number of end-to-end tests (4.8.2.3).

4.8.2.1 Unit Tests

Definition: A unit test is an automated piece of code that invokes the unit
of work being tested, and then checks some assumptions about a single end
result of that unit. A unit test is almost always written using a unit testing
framework. It can be written easily and runs quickly. It’s trustworthy, readable,
and maintainable. It’s consistent in its results as long as production code hasn’t
changed. [58]

The system deliberately follows such vague definition, especially around the

60

4.8. Testing

‘unit of work’ under test, because it depends on each test’s context. In some
cases ‘unit of work’ refers to a single method or a function, in others to a
group of methods or an entire class.

Unit tests focus primarily on testing the business logic of the system, achieving
a 100% test coverage of the business logic code. They form the majority of
the system tests because they are the cheapest (fastest) to run.

To maintain the clarity of the unit tests, all of them follow Arrange-Act-Assert
(AAA) structure [59] (example in code listing @)

Arrange The arrange section is responsible for the test setup. This ranges
from method argument initialization to instantiation of objects being tested.
The key principle followed is that all methods or constructors used in this
section should be part of the public API exposed by the classes/modules used
in the test. Also, for test isolation, using fakes is preferred to using mocks
or stubs so that the tests mimic conditions as close to the real, production
environment, as possible.

Act The act section is responsible for performing the ‘work’ under test.

Assert The assert section is responsible for validating the results of the test
against the expectations. The principle followed in this section is to have just
one assert whenever possible. Usually, having more than one assert in a test
suggests the test should be broken down into multiple ones.

4.8.2.2 Integration Tests

Definition: Integration tests determine if independently developed units of
software work correctly when they are connected to each other. [60]

In the context of our system, the ‘independently developed’ units are its mod-
ules (£.4.3).

Since unit tests cover the functionality within each of the modules, integration
tests do not need to repeat coverage of all of the edge conditions covered by
the unit tests. Instead, they focus on module integration. These tests are
typically found in modules in the edge module layer () that implement
REST API. For example, the code listing m shows the resource REST API
controller being tested, that uses both, user-access and resource-reservation
modules.

Integration tests, similarly to unit tests, need to be isolated, specifically, from
external services (e.g., database). For achieving this kind of isolation, inte-
gration tests, like unit tests, also prefer using fakes to mocks or stubs.

61

© 00 N O Uk W N =

e e e e e o o e T
© 0 N O U W N = O

20

4. IMPLEMENTATION

it('should confirm the reservation', async () => {
// Arrange
const reservation = make_defaultReservationBuilder () .build();
const assignee = new Assignee('99');
const changedBy = new ReservationManager (
'99',
UserRole.maintainer,
)3
await effect createReservation(
reservation,
make_createParams('99', assignee, changedBy),

)

// Act
await reservationService.confirm(reservation, changedBy);

// Assert
const result = await reservationService.getById('test', '99');
expect (result.getState()).toBe(ReservationState.confirmed) ;

I

Listing 4.9: Unit Test Example

it('should create a new resource', async () => {
await effect_createOwnerWithId('99');
const result = await controller.create(
make_ownerAuthorizedRequestWithId('99'),
new CreateResourceDTO('test resource', 'test description'),
);
expect (result) .toEqual(
new Resource(
expect.any(String),
'test',
'test resource',
'test description',
),
);
b

Listing 4.10: Integration Test Example

62

4.8. Testing

4.8.2.3 End-to-End Tests

End-to-end tests typically exercise the entire application stack. Since the
system uses purely manual testing for all client applications, end-to-end tests
omit the Ul and focus on testing the entire server part of the system through
its REST API.

The key principle, followed by end-to-end tests, is to mirror the system envi-
ronment as close to the production one as possible. This includes usage of the
same database (MySQL) and communicating with the system only through
publicly accessible APIs.

Since end-to-end tests are the most expensive to run, they form only a small
part of the system’s tests.

4.8.2.4 Golden Master Test

Golden master testing is typically used when interacting with a legacy system
or codebase. [61]

Usually, the test executes a valid scenario against the system, persisting its
outputs. Then, if a change to the system or codebase is made, the same test
scenario is re-run comparing the results. The primary goal of this test is to
detect changes in behavior and ensure that all changes are accounted for by
having an actual person validate the difference in results. If a change in the
results is expected, the person updates the reference results.

The RSaaS uses a version of the golden master test as well. The fact that
the system’s core modules are event-sourced opens up a possibility of not
recording just the communication with the system, but instead its event log
(1.5.4). Therefore, any deviation in the results not only means that something
in the system changed but rather that the actual state of the system changed.

4.8.3 User Testing

User testing was part of the development process since the first publicly acces-
sible version. From the very beginning of the project, it was planned to deploy
the system for users to try as soon as possible, even when the system was under
active development, and to roll out bug fixes and features continuously.

The primary users of the systems were Silicon Hill department representatives,
present on the meetings and discussions that were held throughout the devel-
opment process, providing their feedback, and reporting found bugs. Even
with a robust test suite in place, a number of bugs were reported on the
majority of the sessions (e.g., invalid database string encoding).

63

4. IMPLEMENTATION

During these sessions, there were also identified new requirements and domain
aspects of the system, such as the need for workspace creation being predicated
on confirmation of a workspace request by a system administrator or a need
for reservation comments.

64

Conclusion

The main goal of this thesis was to create a platform for the creation and
management of general-purpose reservation systems. This goal was definitely
met. During the platform development we worked closely with various Silicon
Hill departments, which are the primary clients of the system’s pilot version.
Thanks to the architectural decisions made early in the development process
we were able to rapidly incorporate their continuous feedback, leading to the
system’s current feature set.

The first publicly accessible test version of the platform was deployed on the
Silicon Hill infrastructure early in the Fall of 2019. We planned to release the
platform’s beta version, migrating selected reservation systems in the Spring
of 2020. However, we were forced to postpone the release until the Summer of
2020 because of the complications caused by the coronavirus outbreak early
that year.

We plan to evaluate the system’s usage in Silicon Hill in the Fall of 2020.
In the case of the positive results, Silicon Hill plans to migrate all existing
reservation systems to our platform, making it the primary choice for any
Silicon Hill department in need of a new reservation system. If, however,
significant weaknesses are found, organization-wide systems migration will be
put off until the raised issues will be addressed, and the next round of the
evaluation will be conducted.

65

10.
11.

12.

Bibliography

EVANS, Eric. Domain-driven design reference. Definitions and Pattern
Summaries. March. 2015.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in
Practice: Software Architect Practice_c3. Pearson Education, 2012. SEI
Series in Software Engineering. ISBN 9780132942782. Available also
from: https://books.google.cz/books?id=-I1173rBDXCYC.

Silicon Hill OAuth2.0 API. Available also from:
https://is.sh.cvut.cz/oauth_api.

FOWLER, Martin. Domain Event. Available also from:
https://www.martinfowler.com/eaaDev/DomainEvent.html.

A step by step guide to Fvent Storming — our experience. Available also
from: https://www.boldare.com/blog/event-storming-guide/.

A step by step guide to Event Storming — our experience. Available also
from: https://www.eventstorming.com/.

FOWLER, Martin. DDD Aggregate. Available also from:
https://www.martinfowler.com/bliki/DDD_Aggregate.html.

Easy!Appointments. Available also from:
https://easyappointments.org/.

Easy!Appointments. Available also from:
https://github.com/alextselegidis/easyappointments.

Bookend. Available also from: https://www.bookedscheduler.com/.

WebCalendar. Available also from:
https://sourceforge.net/projects/webcalendar/.

WebCalendar. Available also from:
https://github.com/craigkbn/webcalendar.

67

https://books.google.cz/books?id=-II73rBDXCYC
https://is.sh.cvut.cz/oauth_api
https://www.martinfowler.com/eaaDev/DomainEvent.html
https://www.boldare.com/blog/event-storming-guide/
https://www.eventstorming.com/
https://www.martinfowler.com/bliki/DDD_Aggregate.html
https://easyappointments.org/
https://github.com/alextselegidis/easyappointments
https://www.bookedscheduler.com/
https://sourceforge.net/projects/webcalendar/
https://github.com/craigk5n/webcalendar

BIBLIOGRAPHY

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

68

Reservio. Available also from: https://www.reservio.com/.

SHerna. Available also from:
https://sherna.siliconhill.cz/rezervace.

Thin Client. Available also from:
https://techterms.com/definition/thinclient.

Thick Client. Available also from:
https://techterms.com/definition/thickclient.

RICHARDSON, Chris. Pattern: API Gateway / Backends for
Frontends. Available also from:
https://microservices.io/patterns/apigateway.html.

The API Gateway Pattern. Available also from:
https://freecontent.manning.com/the-api-gateway-pattern/.

KHARENKO, Anton. Monolithic vs. Microservices Architecture.
Available also from:
https://articles.microservices.com/monolithic-vs-
microservices-architecture-5c4848858£59.

BETTS, Thomas. To Microservices and Back Again - Why Segment
Went Back to a Monolith. Available also from: https:
//www.infoq.com/news/2020/04/microservices-back-again/.

HANSSON, David Heinemeier. Majestic Monolith. Available also from:
https://m.signalvnoise.com/the-majestic-monolith/.

LUMETTA, Jake. When to Start With A Monolith. Available also
from: https://nordicapis.com/should-you-start-with-a-
monolith-or-microservices/#whentostartwithamonolith.

Pipes and Filters pattern. Available also from:
https://docs.microsoft.com/en—
us/azure/architecture/patterns/pipes-and-filters.

KREMIC, Ned. Horizontal and Vertical User Stories - Slicing the Cake.
Available also from: http://www.deltamatrix.com/horizontal-and-
vertical-user-stories-slicing-the-cake/.

BOGARD, Jimmy. Vertical Slice Architecture. Available also from:
https://jimmybogard.com/vertical-slice-architecture/.

STENBERG, Jan. Domain-Driven Design with Onion Architecture.
Available also from:
https://www.infoq.com/news/2014/10/ddd-onion-architecture/.

https://www.reservio.com/
https://sherna.siliconhill.cz/rezervace
https://techterms.com/definition/thinclient
https://techterms.com/definition/thickclient
https://microservices.io/patterns/apigateway.html
https://freecontent.manning.com/the-api-gateway-pattern/
https://articles.microservices.com/monolithic-vs-microservices-architecture-5c4848858f59
https://articles.microservices.com/monolithic-vs-microservices-architecture-5c4848858f59
https://www.infoq.com/news/2020/04/microservices-back-again/
https://www.infoq.com/news/2020/04/microservices-back-again/
https://m.signalvnoise.com/the-majestic-monolith/
https://nordicapis.com/should-you-start-with-a-monolith-or-microservices/%23whentostartwithamonolith
https://nordicapis.com/should-you-start-with-a-monolith-or-microservices/%23whentostartwithamonolith
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
http://www.deltamatrix.com/horizontal-and-vertical-user-stories-slicing-the-cake/
http://www.deltamatrix.com/horizontal-and-vertical-user-stories-slicing-the-cake/
https://jimmybogard.com/vertical-slice-architecture/
https://www.infoq.com/news/2014/10/ddd-onion-architecture/

Bibliography

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Asynchronous message-based communication. Available also from:
https://docs.microsoft.com/en—
us/dotnet/architecture/microservices/architect-
microservice-container-applications/asynchronous-message-
based-communication#asynchronous—-event-driven-—
communication.

BAILIS, Peter; GHODSI, Ali. Eventual consistency today: Limitations,
extensions, and beyond. Queue. 2013, vol. 11, no. 3.

FOWLER, Martin. Event Sourcing. Available also from:
https://martinfowler.com/eaaDev/EventSourcing.html.

YOUNG, Greg. Why use Event Sourcing. Available also from:
http://codebetter.com/gregyoung/2010/02/20/why-use-event-
sourcing/.

Developer Survey Results 2017. Available also from:
https://insights.stackoverflow.com/survey/2017#most—
popular-technologies.

Developer Survey Results 2019. Available also from:
https://insights.stackoverflow.com/survey/2019#most—
popular-technologies.

SWORDS, Simon. Off-the-shelf Software: Advantages and
Disadvantages. Available also from:
https://www.atlascode.com/blog/the-advantages-and-
disadvantages-of-off-the-shelf-software/.

WELLS, Don. Spike. Available also from:
http://www.extremeprogramming.org/rules/spike.html.

FELDER, Ian. SaaS: Single Tenant vs Multi-Tenant - What’s the
Difference? Available also from:
https://digitalguardian.com/blog/saas-single-tenant-vs—
multi-tenant-whats-difference.

AHMED, Anamika. JSON Web Tokens vs. Session Cookies for
Authentication. Available also from:
https://medium.com/better-programming/json-web-tokens-vs-
session-cookies-for-authentication-55a5ddafb435.

Local Storage. Available also from:
https://developer.mozilla.org/en—
US/docs/Web/API/Window/localStorage.

KRAWCZYK, Dr. Hugo; BELLARE, Mihir; CANETTI, Ran. HMAC:
Keyed-Hashing for Message Authentication [RFC 2104]. RFC Editor,
1997. Available from DOI: 10.17487/RFC2104. Technical report.

69

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication%23asynchronous-event-driven-communication
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication%23asynchronous-event-driven-communication
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication%23asynchronous-event-driven-communication
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication%23asynchronous-event-driven-communication
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication%23asynchronous-event-driven-communication
https://martinfowler.com/eaaDev/EventSourcing.html
http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/
http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/
https://insights.stackoverflow.com/survey/2017%23most-popular-technologies
https://insights.stackoverflow.com/survey/2017%23most-popular-technologies
https://insights.stackoverflow.com/survey/2019%23most-popular-technologies
https://insights.stackoverflow.com/survey/2019%23most-popular-technologies
https://www.atlascode.com/blog/the-advantages-and-disadvantages-of-off-the-shelf-software/
https://www.atlascode.com/blog/the-advantages-and-disadvantages-of-off-the-shelf-software/
http://www.extremeprogramming.org/rules/spike.html
https://digitalguardian.com/blog/saas-single-tenant-vs-multi-tenant-whats-difference
https://digitalguardian.com/blog/saas-single-tenant-vs-multi-tenant-whats-difference
https://medium.com/better-programming/json-web-tokens-vs-session-cookies-for-authentication-55a5ddafb435
https://medium.com/better-programming/json-web-tokens-vs-session-cookies-for-authentication-55a5ddafb435
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
http://dx.doi.org/10.17487/RFC2104

BIBLIOGRAPHY

39. HARDT, Dick. The OAuth 2.0 Authorization Framework [RFC 6749].
RFC Editor, 2012. Available from DOI: 10.17487/RFC6749. Technical
report.

40. HARDT, Dick. The OAuth 2.0 Authorization Framework [RFC 6749].
RFC Editor, 2012. Available from DOI: 10.17487/RFC6749. Technical
report.

41. 2018 reform of EU data protection rules [online|. 2018 [visited on
2019-06-17]. Available from:

https://ec.europa.eu/commission/sites/beta-
political/files/data-protection-factsheet-changes_en.pdf.

42. SCHAAD, Jim. Use of the Advanced Encryption Standard (AES)
Encryption Algorithm in Cryptographic Message Syntax (CMS) [RFC
3565]. RFC Editor, 2003. Available from DOI: 10.17487/RFC3565.
Technical report.

43. What is REST. Available also from: https://restfulapi.net/.

44. RICHARDSON, Chris. Pattern: Event sourcing. Available also from:
https://microservices.io/patterns/data/event-sourcing.html.

45. PHILLIPA AVERY, Robert Reta. Scaling Fvent Sourcing for Netfliz
Downloads, Episode 2. Available also from:
https://www.youtube.com/watch?v=rsS1d8NycCU.

46. FOWLER, Martin. CommandQuerySeparation. Available also from:
https:
//www.martinfowler.com/bliki/CommandQuerySeparation.html.

47. Key Value Store. Available also from:
https://www.techopedia.com/definition/26284/key-value-store.

48. Fvent Sourcing and Snapshots. Available also from: https:
//blog.jonathanoliver.com/event-sourcing-and-snapshots/.

49. Kafka. Available also from: https://kafka.apache.org/index.html.
50. RabbitM Q. Available also from: https://www.rabbitmg.com/.

51. GRZYBEK, Kamil. The Outbox Pattern. Available also from:
http://www.kamilgrzybek.com/design/the-outbox-pattern/.

52. FILCIK, Joe. The “Inbox Pattern”. Available also from:
https://productcoalition.com/the-inbox-pattern-2a2641e84eab.

53. FIELDING, Roy T.; RESCHKE, Julian. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content [RFC 7231]. RFC Editor, 2014.
Available from DOI: 10.17487/RFC7231. Technical report.

54. HTTP response status codes. Available also from:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status.

70

http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6749
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
http://dx.doi.org/10.17487/RFC3565
https://restfulapi.net/
https://microservices.io/patterns/data/event-sourcing.html
https://www.youtube.com/watch?v=rsSld8NycCU
https://www.martinfowler.com/bliki/CommandQuerySeparation.html
https://www.martinfowler.com/bliki/CommandQuerySeparation.html
https://www.techopedia.com/definition/26284/key-value-store
https://blog.jonathanoliver.com/event-sourcing-and-snapshots/
https://blog.jonathanoliver.com/event-sourcing-and-snapshots/
https://kafka.apache.org/index.html
https://www.rabbitmq.com/
http://www.kamilgrzybek.com/design/the-outbox-pattern/
https://productcoalition.com/the-inbox-pattern-2a2641e84eab
http://dx.doi.org/10.17487/RFC7231
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Bibliography

55.

56.

57.

58.

59.

60.

61.

ABRAMOV, Dan. Hot Reloading in React. 2016. Available also from:
https://medium.com/@dan_abramov/hot-reloading-in-react-
1140438583bf.

FOWLER, Marting. OpportunisticRefactoring. 2011. Available also
from: https:
//martinfowler.com/bliki/OpportunisticRefactoring.html.

FOWLER, Marting. TestDrivenDevelopment. 2005. Available also from:
https:
//www.martinfowler.com/bliki/TestDrivenDevelopment.html.

ROY OSHEROVE Michael Feathers, Robert C. Martin. The Art of
Unit Testing, Second Edition with examples in C#. Manning
Publications, 2013. ISBN 9781617290893. Available also from:
https://livebook.manning.com/book/the-art-of-unit-testing-
second-edition?origin=product-look-inside.

WAKE, Bill. 3A — Arrange, Act, Assert. 2011. Available also from:
https://xpl123.com/articles/3a-arrange-act-assert/.

FOWLER, Martin. IntegrationTests. 2018. Available also from:
https://martinfowler.com/bliki/IntegrationTest.html.

REZVINA, Sasha. Gold Master Testing. 2020. Available also from:
https://codeclimate.com/blog/gold-master-testing/.

71

https://medium.com/@dan_abramov/hot-reloading-in-react-1140438583bf
https://medium.com/@dan_abramov/hot-reloading-in-react-1140438583bf
https://martinfowler.com/bliki/OpportunisticRefactoring.html
https://martinfowler.com/bliki/OpportunisticRefactoring.html
https://www.martinfowler.com/bliki/TestDrivenDevelopment.html
https://www.martinfowler.com/bliki/TestDrivenDevelopment.html
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition?origin=product-look-inside
https://livebook.manning.com/book/the-art-of-unit-testing-second-edition?origin=product-look-inside
https://xp123.com/articles/3a-arrange-act-assert/
https://martinfowler.com/bliki/IntegrationTest.html
https://codeclimate.com/blog/gold-master-testing/

APPENDIX A

Domain Events

A.1 Diagram notation

All diagrams capturing identified domain events used in this chapter use the
following notation:

iy
e Red note shapes represent events.
« Blue note shapes = represent commands.

e Stick figures X represent actors triggering commands.

o)

e Gear icons “ represent automatic processes triggering commands.

o Trigger associations between actors, automated processes, or events, are
captured as a dashed lines - > with an arrow pointing towards a com-
mand they trigger.

o All events following a command in the same row are produced by that
command.

e Orange diamonds are a conditional based on which specific events
are produced.

A.2 List of Domain Events

A.2.1 Workspace Request Life cycle

The requirements describe the life cycle of the workspace re-

quest. Investigation of these requirements led to the following scenarios, all
of which can be found in the diagram in figure .

73

A. DoMAIN EVENTS

Opening a Workspace Request

Actor: A Workspace Requester entity.
Command: Open Workspace Request.

Events Produced: Workspace Request Opened.

Creation of a Workspace Owner

Actor: A Workspace Request Opened event.
Command: Create Workspace Owner.

Events Produced: User Created, Ownership Claimed.

Workspace Request being Declined

Actor: A System Administrator entity.
Command: Decline Workspace Request.

Events Produced: Workspace Request Declined.

Anonymization of a Workspace Owner

Actor: A Workspace Request Declined event.
Command: Anonymize User Identity.

Events Produced: None

Confirmation of a Workspace Request

Actor: A System Administrator entity.
Command: Confirm Workspace Request.

Events Produced: Workspace Request Confirmed.

74

A.2. List of Domain Events

Workspace-M
........... » Open ‘Workspace
Requ;sl Op;ned
‘Workspace
Requester
..... > Decline ‘Workspace
Requlest Deciined

System administrator

D

e emeee > Anonymize
User Identity

\ T
\ T
\ T
g AN AN
" 0 :_ > Create ‘Workspace
E E Workspace Created
\ |
\ |
\ |
User-Access 5 E IL
i : Create Ownership
S » Workspace User Created 5
) Owner b

Following notation from section IZJI

Figure A.1: Workspace Request Life cycle

Creation of a Workspace

Actor: A Workspace Request Confirmed event.
Command: Create Workspace.

Events Produced: Workspace Created.

75

A. DoMAIN EVENTS

A.2.2 Workspace Life cycle

The requirements [FR05, tFR27|, and tF‘R28| describe a workspace life cycle.
Diagram in figure displays the scenarios that revealed these requirements.

Ownership Transfer

Actor: A Workspace OQwner or a System Administrator entity.
Command: Transfer Workspace Ownership.

Events Produced: Workspace Ownership Transferred.

Workspace Ownership Claim

Actor: A Workspace Ownership Transferred entity.
Command: Claim Workspace Ownership.

Events Produced: Workspace Ownership Claimed.

Giving Up Workspace Ownership

Actor: A Workspace OQwnership Transferred entity.
Command: Give Up Workspace Ownership.

Events Produced: Workspace Ownership Gave Up.

Delete Workspace

Actor: A Workspace Owner entity.
Command: Delete Workspace.

Events Produced: Workspace Deleted.

Workspace User Anonymization

Actor: A Workspace Deleted event.
Command: Anonymize User Identities.

Events Produced: None.

76

A.2. List of Domain Events

Workspace-Management
''''' "
|

"= Transfer Workspace

Workspace Ownership
System administrator Ownership Transfered [~ 773
= T
H Lo
H Lo
H Lo
H Lo
H Lo
{ Lo
""" | b
Ly Delete ‘Workspace I
Workspace Deleted == 0 8
P
Workspace Owner ' ;
b
i

User-Access E E N\
P \ B
noon Claim 0 s
{1 ‘- Workspace =D
noa A Claimed
0o Ownership
P AN AN
H ive Up A
SRR » Workspace Oxle;ﬂup
Ownership P

N\
e Anonymize
User Identities

Following notation from section IEI
Figure A.2: Workspace Life cycle

A.2.3 Resource Life cycle

The requirements m

tured in the diagram in figure .

Resource Creation
Actor: A Workspace Maintainer.
Command: Create Resource.

Events Produced: Resource Created.

describe the life cycle of the resources cap-

7

A. DoMAIN EVENTS

Resource-Reservation

Workspace
Maintainer

AN

______ > Create Resource
| Resource Created
______ > Delete Resource
i Resource Deleted

! Toggle
------ » Resource
Activation

Active

N

Resource
Activated

N

Resource
Deactivated

Following notation from section

Figure A.3: Resource Life cycle

Resource Deletion

Actor: A Workspace Maintainer.

Command: Delete Resource.

Events Produced: Resource Deleted.

Resource Activation Toggling

Actor: A Workspace Maintainer.

Command: Toggle Resource Activation.

Events Produced: Resource Activated if the Resource is currently inactive,

Resource Deactivated otherwise.

A.2.4 Reservation Life Cycle Events

The requirements IFROGI, IFR07|, and lFRlélHFRl

the reservations captured in the diagram in figure |A.4|

78

describe the life cycle of

¥

A.2. List of Domain Events

Creation of Reservation

Actor: A Reservation Requester entity.
Command: Create Reservation.

Events Produced: Reservation Created, Reservation Assigned, one or more
Resource Added.

Update of Reservation

Actor: A Reservation Requester or Workspace Maintainer entity.
Command: Update Reservation.

Events Produced: Reservation Date Changed, Reservation Assigned, zero
or more Resource Added and zero or more Resource Removed (The
events produced by the command depend on how did the reservation
change. For example, if reservation did not change at all, no events will
be produced. If, however there was one resource added to the reserva-
tion, and one removed, two events will be produced: Resource Removed

and Resource Added).

Reservation Cancelation

Actor: A Reservation Requester or Workspace Maintainer entity.
Command: Cancel Reservation.

Events Produced: Reservation Canceled.

Reservation Confirmation

Actor: A Workspace Maintainer entity.
Command: Confirm Reservation.

Events Produced: Reservation Confirmed.

79

A. DoMAIN EVENTS

Reservation Rejection
Actor: A Workspace Maintainer entity.
Command: Reject Reservation.

Events Produced: Reservation Rejected.

Reservation Completion

Actor: An automated job triggered when the end of the reservation is no
longer in the future.

Command: Complete Reservation.

Events Produced: Reservation Completed.

A.2.5 Reservation Comments

Even though there were no requirements mentioning reservation comments,
the modeling of the bounded contexts uncovered a need for such a con-
cept. Diagram in figure captures events associates with them.

Reservation Comment Creation

Actor: A Comment Author entity.
Command: Create Reservation Comment.

Events Produced: Reservation Comment Created.

Reservation Comment Editing

Actor: A Comment Author entity.
Command: Edit Reservation Comment.

Events Produced: Reservation Comment Edited.

80

A.2. List of Domain Events

Resource-Reservation

[— N
..... ‘r —— .>
| Create Reservation Reservation
! Reservation Created Assigned Resource
i Added
Reservation | L
Requestor |
! (one or more)
: N N
: NN 2 .
By Update Reservation Reservation
Reservation Date Changed Assigned Resource Resource
......... > Added Removed
(optional) (optional)
(zero or more) (zero or more)
‘Workspace
Maintainer
! AN AN
f Cancel Reservation
| Reservation Canceled
et 750
Reservation 1___ » _ Confim Reservation
Requestor it Reservation Confirmed
P
i
|
P
AN AN
o, Reject Reservation
Reservation Rejected
‘Workspace
Maintainer B B
@ _________ > Complete Reservation
O Reservation Completed
Automatic Job

Following notation from section IZJI

Figure A.4: Reservation Life cycle

Reservation Comment Deletion

Actor: A Comment Author entity.
Command: Delete Reservation Comment.

Events Produced: Reservation Comment Deleted.

81

A. DoMAIN EVENTS

Resource-Reservation

Create Reservation
[» Reservation Comment
Comment Created

H
H
H
i AN AN
i Edit Reservation
------ \-----» Reservation Comments
: Comment Edited

0 Delete Reservation
(oooad] » Reservation Comment
Comment Deleted

Following notation from section

Figure A.5: Reservation Comment Life cycle

A.2.6 User Life cycle

The requirements tFROd, tFRZ(HFR2i and tFR24HFR26| describe actions
associated with users captured in the diagram in figure IAJ

Toggling of User Ban
Actor: A Workspace Maintainer/Administrator/Owner entity.
Command: Toggle User Ban.

Events Produced: User Ban Lifted if the User is currently banned, User
Ban Placed otherwise.

Changing of User Role

Actor: A Workspace Maintainer/Administrator/Owner entity.
Command: Change User Role.

Events Produced: User Role Changed.

82

A2

List of Domain Events

User Creation
Actor: A User entity.
Command: Create User.

Events Produced: User Created.

User Deletion
Actor: A User entity.
Command: Delete User.

Events Produced: User Deleted.

User Identity Anonymization
Actor: A User Deleted event.
Command: Anonymize User Identity.

Events Produced: None.

83

A. DoMAIN EVENTS

84

:

Ban Placed

:

Ban Lifted

User-Access
i [r=== >
R Toggle User A]k
: Han W
' Yes----- >
i
_ Workspace .p| Change User User Role
maintainer/admin/owner Role Changed
o P Create User User Created
]
User ‘---» Delete User User Deleted
' 5 Anonymize
User Identity

Following notation from section @

Figure A.6: User Life cycle

APPENDIX B

Acronyms

ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
CD Continuous Delivery

CI Continuous Integration

CQS Command Query Separation
CRUD Create, Read, Update, Delete
DDD Domain-Driven Design

DOM Document Object Model

GUI Graphical user interface

HTTP Hypertext Transfer Protocol
REST Representational State Transfer
RSaaS Reservation System as a Service
SaaS System as a Service

URL Uniform Resource Locator

URL Uniform Resource Identifier

XML Extensible markup language

85

	Introduction
	Aim of the Thesis
	Structure of the Thesis

	Analysis
	User Roles
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Constraints

	Domain
	Bounded Contexts
	Conceptual Model
	Domain Events
	Aggregates
	Reservation State

	Existing solutions
	Easy!Appointments
	Booked
	WebCalendar
	Reservio
	Summary

	Architecture
	System Context
	System Architecture
	Client Architecture
	Client Applications

	Server Architecture
	API Gateway
	Monolithic vs. Microservices Architecture
	Modularization
	Core Module Integration

	Data Model
	CRUD
	Event Sourcing

	Technologies Used
	Programming Language
	Client Technologies
	API Gateway
	Dependency Injection
	Data Storage
	Database Integration
	Email Integration
	Continuous Integration
	Containerization

	Implementation
	Workspace Isolation
	Entity Isolation
	Credentials Isolation
	Domain Isolation

	Authentication and Authorization
	Authentication
	Authorization
	Authorization Tokens
	Email Verification
	Integration with Silicon Hill OAuth2.0

	Personal Data and Anonymization
	Personal Data Storage
	Data Anonymization

	REST API
	Authorization
	API Versioning
	Console API
	Setup API
	Workspace API

	Event Sourcing
	Overview
	Aggregate Service
	Aggregate Repository
	Event Store
	Snapshotting

	Message Broker
	Overview
	Outbox
	Inbox
	Event Consumers

	Webhooks
	Supported Events
	Webhook Realization
	Payload Validation
	Testing of Webhooks

	Testing
	Client Testing
	Server Testing
	User Testing

	Conclusion
	Bibliography
	Domain Events
	Diagram notation
	List of Domain Events
	Workspace Request Life cycle
	Workspace Life cycle
	Resource Life cycle
	Reservation Life Cycle Events
	Reservation Comments
	User Life cycle

	Acronyms

