
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 31, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: FIDO2 KeePass Plugin

 Student: Martin Kolárik

 Supervisor: Ing. Jiří Dostál, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

The goal of this thesis is to implement a plugin for the official KeePass version for Windows that allows
unlocking a KeePass database using a FIDO2 device instead of the regular master password/key file
method. If possible, the plugin should preserve database compatibility with other clients, i.e., it should be
possible to unlock the database using the regular master password/key file method if the user configured it
instead of the FIDO2 device.

1. Analyze the possibilities provided by the KeePass plugin system and review the implementations of
existing key provider plugins.
2. Design a suitable approach to implementing a key provider plugin utilizing a FIDO2 device, focusing on
security, ease of use and portability.
3. Implement, test and document the plugin.

References

Will be provided by the supervisor.





Bachelor’s thesis

FIDO2 KeePass Plugin

Martin Kolárik

Department of Software Engineering
Supervisor: Ing. Jiří Dostál, Ph.D.

June 4, 2020





Acknowledgments

I would like to thank my supervisor Ing. Jiří Dostál, Ph.D. for his interest
in this topic and the provided support.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as a school
work under the provisions of Article 60 (1) of the Act.

In Prague on June 4, 2020 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
© 2020 Martin Kolárik. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis

Kolárik, Martin. FIDO2 KeePass Plugin. Bachelor’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2020. Also
available from: 〈https://github.com/MartinKolarik/KeePassFIDO2〉.

https://github.com/MartinKolarik/KeePassFIDO2


Abstrakt

Táto práca skúma možnosti využitia FIDO2 zariadení ako náhradu pre
hlavné heslo v správcoch hesiel. Popisuje možnosti a obmedzenia FIDO2
a diskutuje možnosti implementácie: ukladanie šifrovacích kľúčov na FIDO2
autentifikátore a použitie autentifikátora na zašifrovanie externe uložených
kľúčov. Časť o implementácii popisuje zvolený postup ukladania šifrova-
cích kľúčov na autentifikátore, problémy súvisiace s obmedzením prístupu
k FIDO2 zariadeniam v aktuálnych verziách Windows a architektonické
rozhodnutia na prekonanie týchto problémov. Ako celok je táto práca uži-
točným zdrojom informácií pre kohokoľvek pokúšajúceho sa využiť FIDO2
v správcovi hesiel alebo podobnom prostredí.

Kľúčové slová FIDO2, WebAuthn, KeePass, správca hesiel, bezpečnostný
kľúč, prihlásenie bez hesla

vii



Abstract

This thesis explores the possibilities of using FIDO2 devices as a replace-
ment for master passwords in password managers. It describes the capa-
bilities and current limitations of FIDO2, and discusses implementation
approaches: storing encryption keys on FIDO2 authenticators, and using
the authenticators to encrypt externally stored keys. The implementation
chapter describes the chosen approach of storing encryption key on the au-
thenticator, the encountered challenges with restrictions on access to FIDO2
devices in recent versions of Windows, and the architectural decisions made
to overcome those challenges. As a whole, the thesis is a useful reference
for anyone attempting to utilize FIDO2 in password managers or similar
environments.

Keywords FIDO2, WebAuthn, KeePass, password manager, security key,
passwordless login

viii



Contents

Introduction 1

1 State-of-the-art 5
1.1 KeePass password manager . . . . . . . . . . . . . . . . . . 5

1.1.1 KeePass plugin system . . . . . . . . . . . . . . . . . 6
1.1.2 KeePass key providers . . . . . . . . . . . . . . . . . 8

1.2 FIDO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Web Authentication (WebAuthn) . . . . . . . . . . . 12
1.2.2 Client-to-Authenticator Protocol (CTAP) . . . . . . . 14
1.2.3 Universal 2nd Factor (U2F) . . . . . . . . . . . . . . 15
1.2.4 A note on terminology . . . . . . . . . . . . . . . . . 15

2 Analysis and design 17
2.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Implementation options . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Key stored as an authenticator resident key . . . . . 20
2.2.2 Key encrypted by the authenticator . . . . . . . . . . 20
2.2.3 Encryption key derived from a signature . . . . . . . 21
2.2.4 Key stored in resident key metadata . . . . . . . . . 25

3 Implementation 27
3.1 Communicating with the authenticator . . . . . . . . . . . . 28

ix



3.2 Plugin architecture . . . . . . . . . . . . . . . . . . . . . . . 29

4 Testing 33
4.1 Positive tests . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Add a key for a new database . . . . . . . . . . . . . 34
4.1.2 Unlock a database using the authenticator . . . . . . 34
4.1.3 Unlock a database using the original method . . . . . 35

4.2 Negative tests . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 No database open . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Error while adding a new key . . . . . . . . . . . . . 36
4.2.3 Error while unlocking the database . . . . . . . . . . 36

Conclusion 37

Bibliography 39

A Acronyms 43

B Glossary 45

C Contents of the enclosed SD card 49

x



List of Figures

1.1 A minimal KeePass plugin . . . . . . . . . . . . . . . . . . . . . 7
1.2 A minimal KeePass key provider . . . . . . . . . . . . . . . . . 9
1.3 FIDO2 architecture . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 OpenPGP message encryption . . . . . . . . . . . . . . . . . . . 21
2.2 A signature scheme with appendix . . . . . . . . . . . . . . . . 22

3.1 The plugin options window . . . . . . . . . . . . . . . . . . . . 30
3.2 The database unlock dialogue . . . . . . . . . . . . . . . . . . . 31
3.3 Sequence diagram of a get() operation . . . . . . . . . . . . . . 31

xi





List of Tables

1.1 Comparison of DLL and PLGX plugin format . . . . . . . . . . 7

xiii





Introduction

Passwords have been in use as a primary method of authentication in com-
puter systems for decades. They are a well-understood concept by both the
engineers implementing those systems and by the end-users.

Still, they come with several problems. With the computational power of
today’s hardware, they need to be long and complex to be secure, which
makes them hard to remember and annoying to type. The problem with
remembering becomes significantly worse upon the realization that an av-
erage person may use tens of different services, each of which should be
protected by a different password. Of course, it is almost impossible to
remember that many passwords, which is why most people tend to use just
one, or a few passwords everywhere. This practice presents a significant
security risk, because compromising just one system may lead to compro-
mising all other systems where the same password is used by the given user
and could be seen as one of the main arguments for moving to a different
form of authentication.

There have been many attempts to find a suitable replacement over the
years and predictions of passwords going away. For example, Bill Gates
made such a prediction already in 2004, and in 2011, IBM predicted that

1



Introduction

“you will never need a password again” within five years. Yet, it is 2020, and
passwords are still the primary method of authentication in most systems.
None of the possible replacements, such as digital certificates, one-time
login links, biometrics, or single sign-on systems, managed to combine the
relative ease-of-use, security, cost-effectiveness, and ease of implementation
and deployment.

Since passwords have been in wide use for a long time, solutions that aim
not to replace them, but rather remove some of their problems, were devel-
oped. Password managers—applications designed to securely store all user’s
passwords in an encrypted form—solve the issue with passwords reuse by
removing the need to remember them, and may even provide better user
experience by automatically filling in the correct credentials in most envi-
ronments. They are usually protected by another password themselves—a
master password—which is the only password the user needs to remember.

The idea of replacing passwords altogether has not been lost, though, and
one of the most recent news in this area is FIDO2. A project by the FIDO
Alliance—an open industry association with members including many large
technology companies, such as Amazon, Apple, Google, or Microsoft—and
World Wide Web Consortium—an organization responsible for creating
standards for the World Wide Web.

FIDO2 uses authenticators—small devices similar to flash keys—which are
able to securely generate, store, and later find and use the correct credentials
for each service, while completely hiding the technical aspects from the end-
users.

This approach provides several advantages over passwords, including com-
plete elimination of phishing attacks, while keeping a great level of usabil-
ity—from the users’ perspective, using the device involves only connecting
it to the computer and unlocking it with a short PIN when prompted.

2



The current issue with FIDO2 is that being a very new technology—de-
signated as an official web standard in March 2019—even if it becomes
successful, it will take years before the majority of online services supports
it and before the whole ecosystem around it develops.

Nevertheless, having a large list of big organizations behind it, and be-
ing focused on all the aforementioned problems of alternatives (ease-of-use,
security, cost-effectiveness, and ease deployment), it has great potential.

The goal of this thesis is, therefore, exploring the possibilities of combining
the FIDO2 technology with passwords managers to provide a solution that
works today, and makes it easy to gradually move beyond passwords, as the
support for FIDO2 increases.

Specifically, the thesis analyzes the capabilities of FIDO2 and KeePass pass-
word manager (similar concepts should apply to other passwords managers
as well), discusses the options of replacing master passwords with FIDO2
devices, and provides a proof-of-concept implementation.

3





Chapter 1
State-of-the-art

As a first step, we are going to take a look at how KeePass and FIDO2 work
individually. After that, we can examine the options of combining them.

1.1 KeePass password manager

KeePass is a free open source password manager licensed under GNU Gen-
eral Public License (GPL). It stores passwords, and all associated data,
such as usernames, URLs, notes, etc. in a single database file, which is en-
crypted using a master key. The supported encryption algorithms include
Advanced Encryption Standard (AES) and ChaCha20 [1].

The master key is based on one or more key sources:

• a master password,

• a key file, which can be any file, located anywhere on the system or
external storage,

• a windows user account, in which case Windows Data Protection API
(DPAPI) is used.

Any of these sources may be used on its own or be combined with others [2].

5



1. State-of-the-art

KeePass is written primarily for the Windows operating system and can
be run on other systems via Mono or Wine [3]. There are many unofficial
KeePass ports to other platforms, including Android, iOS, Linux, and OS
X. These ports usually aim to implement the same database format, i.e.,
they might be able to use a database created by the official version, but
the overall set of features and implementation details may differ consider-
ably [4]. This work will focus only on the official version but will try to
preserve database compatibility with other versions, if possible.

1.1.1 KeePass plugin system

KeePass offers an extensive plugin system, and a list of known plugins is
maintained at its official website [5]. Looking at the categories of available
plugins provides a good overview of what the plugin system allows:

• I/O & Synchronization – loading or synchronizing a database from a
remote storage provider,

• Integration & Transfer – improving integration with other applications
for easier transfer of credentials,

• Cryptography & Key Providers – adding new encryption methods or
key sources,

• Import & Export – interoperability with other systems.

This is, of course, not an extensive list of the plugins system’s capabilities.

The plugins are authored in C#, using the .NET Framework, and need to
derive from a base KeePass plugin class, which defines hooks for KeePass
lifecycle events as seen in Figure 1.1 [6].

6



1.1. KeePass password manager

using KeePass.Plugins;

namespace SimplePlugin
{

public sealed class SimplePluginExt : Plugin
{

private IPluginHost m_host = null;

public override bool Initialize(IPluginHost host)
{

if (host == null) return false;
m_host = host;
return true;

}
}

}

Figure 1.1: A minimal KeePass Plugin [6]

The IPluginHost interface provides access to most of KeePass’s internals.
Several sample plugins are available, demonstrating the most common use-
cases, such as:

• creating a custom password generator algorithm,

• creating a custom encryption algorithm,

• customizing the UI elements [5].

The plugins can be distributed as a DLL file, a PLGX1 file, or both [6]. The
advantages and disadvantages of these options are summarized in Table 1.1.

Table 1.1: Comparison of DLL and PLGX plugin format [6]

DLL PLGX
Compatibility check No - weak only Yes - strong

Compatibility with custom builds (Linux) Partial Yes
Authenticode signing support Yes No

No compilation on the user’s system Yes No
No plugin cache Yes No

1An optional plugin file format for KeePass ≥ 2.09. Instead of compiling the plugin
to a DLL file, the plugin source code files are packed into a PLGX file and KeePass
compiles them itself when the plugin is first loaded [6].

7



1. State-of-the-art

1.1.2 KeePass key providers

In the previous section, we found there is a category of plugins called
key providers, which allow implementing alternative ways of unlocking the
database. Key providers derive from the KeePassLib.Keys.KeyProvider class
and register themselves in the key provider pool via the Add method of the
KeyProviderPool class provided by IPluginHost interface [7], as seen in Fig-
ure 1.2. This design follows a strategy pattern2 that allows users to select
which of the registered providers will be used at database creation time.

In this section, we will briefly examine some of the existing implementa-
tions. This is not meant to be an extensive list of key providers nor a
detailed examination of their implementation details, but rather a small
selection of well-documented, actively developed, and used3 open source
implementations that we can use as a reference later when discussing our
own implementation challenges.

KeePassQuickUnlock is a plugin that allows reopening the database without
a full master password. It only works if the database is closed and later
reopened, but KeePass stayed running—in that case, the full master key
is kept in memory, and only a few characters of the master password are
required to confirm the unlock [12].

Similarly to KeePassQuickUnlock, KeePassWinHello is intended for quickly
unlocking the database—after its first regular unlock—usingWindows Hello4

technology. By default, the plugin holds an encrypted master key in mem-
ory and removes it when KeePass is closed. In order to be able to unlock

2A behavioral software design pattern that allows us to define a family of algorithms,
make them interchangeable, and select a specific one at runtime [8].

3The KeePass website lists several plugins implementing support for RSA certifi-
cates, for example, which might be conceptually similar to our plugin, but after a short
inspection, we found that they are either no longer available [9, 10], or not actively de-
veloped and used [11] (judging by a lack of author and user activity, and little or no
documentation).

4A technology that adds alternative way to authenticate into Windows and applica-
tions using a fingerprint, iris scan, facial recognition, a short PIN, or other method.

8



1.1. KeePass password manager

the database via Windows Hello in between KeePass launches, it may be
configured to store the key in the Windows Credential Manager5 [13].

namespace KeyProviderTest
{

public sealed class KeyProviderTestExt : Plugin
{

private IPluginHost m_host = null;
private SampleKeyProvider m_prov = new SampleKeyProvider();

public override bool Initialize(IPluginHost host)
{

m_host = host;
m_host.KeyProviderPool.Add(m_prov);
return true;

}

public override void Terminate()
{

m_host.KeyProviderPool.Remove(m_prov);
}

}

public sealed class SampleKeyProvider : KeyProvider
{

public override string Name
{

get { return "Sample Key Provider"; }
}

public override byte[] GetKey(KeyProviderQueryContext ctx)
{

// Return a sample key. In a real key provider plugin, the key
// would be retrieved from smart card, USB device, ...
return new byte[]{ 2, 3, 5, 7, 11, 13 };

}
}

}

Figure 1.2: A minimal KeePass key provider [7]

5A place where Windows and other apps using its API store credentials scoped to a
specific Windows account.

9



1. State-of-the-art

1.2 FIDO2

FIDO2 is a term used to refer to several related specifications, which to-
gether, “enable users to leverage common devices to easily authenticate to
online services in both mobile and desktop environments” [14]. The spec-
ifications are the Web Authentication (WebAuthn) specification by World
Wide Web Consortium (W3C) and the Client-to-Authenticator Protocol
(CTAP) specification by FIDO Alliance6.

The security model of FIDO2 is based on public-key cryptography, and
three main entities:

• a relying party (RP) – an entity whose application utilizes the We-
bAuthn API, and which stores the public key,

• an authenticator – a cryptographic entity that handles generating and
storing keys, and performing cryptographic operations,

• a client – an entity that acts as an intermediary between the relying
party and the authenticator (typically a web browser or a similar
application) [15].

For each relying party, a separate public and private key pair is used, instead
of a regular password.

The authenticator may be either a separate hardware device (a roaming
authenticator), or a platform implementation (a platform authenticator).
The main difference is that while a roaming authenticator is transferable
between client devices7, a platform authenticator is bound to a specific
client device. A platform authenticator may still use specialized hardware,
e.g., a Trusted Platform Module (TPM)8 to provide sufficient security [15].

6An open industry association focused on authentication standards that aim to re-
duce the use of passwords. Members include many large technology companies, such as
Amazon, Apple, Google, or Microsoft.

7A hardware device on which the client runs, e.g., a smartphone or a laptop.
8A secure crypto-processor that is designed to carry out cryptographic operations

and store cryptographic keys.

10



1.2. FIDO2

Note that authenticators are often also referred to as “security keys”. We
will restrain from using this term in this work to avoid confusion with
frequently mentioned encryption keys.

Figure 1.3: FIDO2 architecture [16]

The FIDO Alliance summarizes the key aspects of FIDO2 as [14]:

1. Security – FIDO2 cryptographic login credentials9 are unique across
every website, never leave the user’s device, and are never stored on
a server. This eliminates the risks of phishing, all forms of password
theft, and replay attacks.

2. Privacy – Because FIDO cryptographic keys are unique for each
internet site, they cannot be used to track users across sites.

3. Convenience – Users unlock cryptographic login credentials with
simple built-in methods such as fingerprint readers or cameras on
their devices, or by leveraging easy-to-use FIDO security keys.

4. Scalability –Websites can enable FIDO2 through a simple JavaScript
API call that is supported across leading browsers and platforms.

9The term “credential” is not well-defined by the specification, but generally means
the private key and its associated metadata stored by the authenticator, such as infor-
mation about the user account or relying party.

11



1. State-of-the-art

1.2.1 Web Authentication (WebAuthn)

WebAuthn is the specification that covers interactions between clients and
relying parties (typically, but not necessarily, web browsers and web appli-
cations). The main interactions are Create and Get, which serve to create
new credentials and to authenticate using existing ones.

Create can be loosely described as [15]:

1. The relying party (optionally) collects user data, sets credential cre-
ation options, and initiates the create process with the client.

2. The client forwards the request to the authenticator, along with in-
formation about the relying party.

3. The authenticator generates a new credential and returns the public
key along with additional metadata to the client.

4. The client forwards the key and metadata to the relying party.

There are two creation options that are especially important in this pro-
cess, userVerification and requireResidentKey, which specify whether user
verification is required, preferred, or discouraged, and whether a resident
credential is requested.

User verification is a process by which the authenticator locally autho-
rizes the invocation of its operations. User verification may be instigated
through, for example, a touch plus pin code, password entry, or biometric
recognition [15]. In other words, this is the element that prevents unau-
thorized use of the authenticator by people other than its owner who have
physical access to it. This protection is optional and can be enforced by
the relying party. When enabled, it takes place before step three.

Resident credential is a credential whose private key is stored in the au-
thenticator, client, or client device. This definition immediately raises a
question: where else could the private key be stored? The answer is that

12



1.2. FIDO2

this is not specified—the authenticator is responsible for protecting the key,
but not for its physical storage. This allows implementing schemes that of-
fload the storage to an external system so that the number of stored keys is
not limited by the authenticator’s internal memory. For example, Yubico10

uses the following process for handling non-resident keys [17]:

During credential registration, a new key pair is randomly generated
by the YubiKey, unique to the new credential. The private key, along
with some metadata about the credential, is encrypted using authen-
ticated encryption with a master key. This master key is unique per
YubiKey, generated by the device itself upon first startup, and never
leaves the YubiKey in any form [. . .]

The encrypted (and authenticated) data then forms the 64-byte key
handle, which is sent to the server as part of the registration flow, to
be stored by the RP for later [. . .]

For authentication, the RP returns the key handle to the YubiKey.
Here it is decrypted to re-form the private key which is needed to sign
the challenge to complete the authentication.

The resident credential does not necessarily provide better security, but it
comes with one significant advantage that allows simplifying the authen-
tication process. First, let us examine how the Get operation works with
non-resident credentials [15]:

1. The relying party asks the user for a username or another identifier
of the account.

2. Based on the username, it finds all public keys and their metadata
that it previously stored.

10A member of the FIDO Alliance and a vendor of YubiKey authenticators.

13



1. State-of-the-art

3. The relying party generates a challenge, a randomly generated piece
of data that the authenticator is expected to sign.

4. The relying party initiates the get process with the client and sends
it the information about public keys and the challenge.

5. The client forwards this request to the authenticator.

6. The authenticator performs user verification if requested.

7. The authenticator looks up the private keys corresponding to the pub-
lic keys provided by the relying party, signs the challenge using each
of these keys, and returns the result to the client.

8. The client forwards the signatures and metadata to the relying party.

The resident credentials allow skipping the first two steps, i.e., the user does
not need to provide any account information. The authenticator looks up all
credentials associated with the relying party. If more than one exists, either
the authenticator or the client may present a list of all found credentials and
let the user choose which one should be used. If there is only one matching
credential, no user input is needed.

1.2.2 Client-to-Authenticator Protocol (CTAP)

This specification describes the communication between clients and authen-
ticators, and exact steps how authenticators handle the individual com-
mands. The commands are closely tied to those already described in We-
bAuthn so it is enough to say that the Create operation from WebAuthn
corresponds with the authenticatorMakeCredential command, and the Get

operation is based on authenticatorGetAssertion. We may reference this
specification in later sections for specific details if they turn out to be im-
portant for this work.

14



1.2. FIDO2

1.2.3 Universal 2nd Factor (U2F)

U2F is an open standard for two-factor authentication, which can be seen as
a predecessor to FIDO2. Unlike FIDO2, it is already supported by many11

services, and all FIDO2 devices are backward-compatible with existing U2F
implementations [19]. We will not directly utilize the U2F protocol in this
work but consider it important to note that since FIDO2 authenticators
support U2F as well, it can be used as an addition to passwords for services
that implement U2F but not FIDO2.

1.2.4 A note on terminology

Because FIDO2 supports various authentications flows, e.g., it can be used
as:

• a password replacement,

• a second factor, in addition to a regular username and password,

• a password and a username replacement, in case of a resident creden-
tial,

and because it is also backward-compatible with U2F, it is often not clear
which of these flows a specific implementation or service supports. The
term FIDO2, when used in this work, always refers to a scenario where the
authenticator is used as a primary factor (a replacement for the password).
For scenarios where the authenticator is used as an additional factor, we
use the term U2F.

11The Works with YubiKey Catalog [18] lists tens of large-scale services, such as
Dropbox, Gmail, Facebook, or Twitter. It is not a complete list as services do not need
to register with Yubico in order to use U2F.

15





Chapter 2
Analysis and design

In this chapter, we formulate the design goals that our implementation
should meet and then discuss four possible implementation approaches.

2.1 Design goals

After analyzing the KeePass plugin system and FIDO2 capabilities, we can
now formulate how the combination of KeePass and a FIDO2 authenticator
could look in more detail:

1. Websites that support FIDO2 can use this form of authentication
exclusively, without passwords.

2. For websites that do not support FIDO2, a regular password stored
in KeePass can be used.

a) For websites that support the older U2F, the FIDO2 device can
be used for additional security as a second factor.

b) The KeePass database can be unlocked by the FIDO2 device
instead of a master password.

Our implementation will, therefore, be a KeePass key provider plugin to
make the point 2b possible.

17



2. Analysis and design

An important fact to keep in mind is that KeePass does not support keys
being used alternatively, i.e., when a database is configured to be protected
by a master password and a custom key provider, they are both required to
unlock it. It is not possible to configure it, at least by the end-user, in such
a way that the unlock methods could be used interchangeably [2].

This is not ideal because introducing a custom key provider means the
database cannot be unlocked on other clients unless they also implement
the same key provider, and one of our goals was preserving database com-
patibility with other clients.

There are, however, ways to bypass this restriction. The QuickUnlock plu-
gin introduced earlier does precisely that—first, the database is unlocked
using the full master key, and after that, only by a few of its characters.

When we examine its implementation closely, we can find that [12]:

1. When a database is created, the QuickUnlock plugin is not registered
as a key provider. Instead, the user uses a regular master password
or a key file.

2. Once the database is unlocked, the QuickUnlock plugin reads the
database encryption key, which is available via the provided plugin
interface, and stores this key in an encrypted form.

3. The next time user is unlocking the database, they select the Quick-
Unlock provider. The QuickUnlock provider decrypts the previously
stored master key using the short password entered by the user and
unlocks the database with this master key.

This approach means that while from the user’s point of view, the database
is being unlocked by the QuickUnlock plugin, the used key is identical with
the one KeyPass would derive from the master password, which means the
QuickUnlock and master password unlock method may be used interchange-
ably.

18



2.1. Design goals

We can use a similar approach:

1. When creating a database, the user chooses the primary key—a mas-
ter password, a key file, or even another method implemented by
another plugin.

2. After the database is created, the user will have an option to associate
a FIDO2 authenticator with it. In this step, our plugin will retrieve
the encryption master key and store it in a secure way.

3. During the next unlock, the user may choose our provider, and the
master key will be retrieved and used.

This approach means:

• The user can always decide whether they want to use the primary
unlock method or our plugin.

• Multiple authenticators may be associated with one database.

• If only one authenticator is associated and it gets lost, the primary
method works as a backup.

Someone might object that one of our goals was to remove the usage of a
master password, and this approach still requires it. It is, however, impor-
tant to note that if the database is only used on systems where our plugin is
available, the master password is never needed. In theory, users who do not
want to have anything to remember, can create a database with a long and
random password (which can be generated using the KeePass generator),
associate an authenticator with it right after, and then they do not need to
remember the password. The downside is that there is no backup unlock
method in case they lose the authenticator, so this would only be advisable
if at least two authenticators are associated with the database.

19



2. Analysis and design

2.2 Implementation options

We have established that we want to take the existing master key, and store
it, while “protecting” it by the authenticator. Now is the time to look at
the technical possibilities of doing do.

2.2.1 Key stored as an authenticator resident key

The authenticator was designed to securely store private keys, so of course,
the first idea might be: can we take an existing key—the one generated by
KeePass—and transfer it to the authenticator?

The answer is no, unfortunately, as the authenticator was designed to han-
dle the whole process—including generating the credentials—on its own,
and there is no interface that would allow storing externally generated cre-
dentials [20].

2.2.2 Key encrypted by the authenticator

Since we need to generate a new key pair on the authenticator, maybe we
could use the private key from that pair to encrypt the database master
key, and then store the encrypted master key in the unencrypted section of
the database header section [21].

This design, where an asymmetric key is only used to encrypt a symmetric
key, and the symmetric key is then used to encrypt and decrypt the data,
can be found, for example, in OpenPGP12 as seen in Figure 2.1 [22].

12An email encryption standard defined by the OpenPGP Working Group of the
Internet Engineering Task Force (IETF) as a Proposed Standard in RFC 4880.

20



2.2. Implementation options

data

encrypt data using
the generated key

generate random
symmetric key

private asymmetric key

encrypt symmetric
key using the

asymmetric key

encrypted message

Figure 2.1: OpenPGP message encryption

However, after inspecting the CTAP specification, we find—similarly to the
previous case—that while the authenticators are likely technically capable
of encrypting data13, it is not something they were designed to do, so this
functionality is not exposed over their API [20].

2.2.3 Encryption key derived from a signature

Following the previous ideas, we know that:

• we cannot store the master key as a credential directly on the authen-
ticator,

13Considering that signing data typically involves the same underlying operations as
encrypting it, and that authenticators may utilize encryption as a way to implement
unlimited storage for non-resident credentials, as described in subsection 1.2.1.

21



2. Analysis and design

• we cannot use the authenticator directly to encrypt the key and store
it elsewhere.

Given these constraints, let us take a close look at the one operation the
authenticators support—signing data. The WebAuthn specification does
not specify the exact algorithm to be used. The authenticator may imple-
ment any number of algorithms from the IANA CBOR Object Signing and
Encryption (COSE) Algorithms Registry [23] and pick one based on prefer-
ences expressed by the relying party [15]. Generally, though, the commonly
used signature schemes:

1. take input data to be signed and a private key,

2. apply some cryptographic operations on these two (the operations
depend on the exact algorithm being used),

3. output a “signature” [24].

data

algorithm-dependent
operations

private key

signature

signed data

Figure 2.2: A signature scheme with appendix

22



2.2. Implementation options

The signature can be characterized by a few essential properties:

• a user can efficiently produce their own signature on documents of
their choice,

• other users can efficiently verify whether a given string is a signature
of another (specific) user on a specific document,

• it is infeasible to produce signatures of other users to documents that
they did not sign [25].

Usually, the purpose of a signature is to prove the authenticity of the signed
data, i.e., the signature is considered “public”, but the fact that it is based
on the private key, and cannot be created without its knowledge begs the
question: could the signature itself act as a key in an encryption scheme?

If yes, we might be able to do the following:

1. Generate a resident credential on the authenticator.

2. Generate random data to be signed (challenge) and store it in the
database header section.

3. Ask the authenticator to sign the challenge using the generated private
key.

4. Encrypt the database master key using the signature as an encryption
key.

5. Store the encrypted database master key in the database header sec-
tion.

To unlock the database without the master password, we would then:

1. Take the stored challenge from the database header section.

2. Ask the authenticator to sign it.

23



2. Analysis and design

3. Use the signature to decrypt the encrypted master key from the
database header section.

4. Use the database master key to unlock the database.

Of course, this is not a typical usage of cryptographic primitives, so it brings
several questions.

First, we need to make sure that repeatedly performing the sign operation
using the same challenge and the same credential always generates the same
signature, since we use the signature for decryption. If it changed, we
would not be able to decrypt the master key. This is something that is
not guaranteed, as it depends on the chosen signature algorithm. We can,
however, make a list of algorithms that have this property and request
that one them is used (and accept that the plugin will work only if the
authenticator implements at least one such algorithm).

Note that the WebAuthn specification says that the challenges must be
randomly generated by relying parties to prevent replay attacks14. This
requirement is based on the intended use-case—authentication—but is in
direct contradiction with the properties needed for encryption, as explained
in the previous paragraph.

The second question is security. We know we will treat the signature itself as
something “private”, and not store it anywhere. We also know it is created
based on a private key stored on the authenticator (which we assume to
be secure), using one of standardized signature algorithms (which we also
assume to be secure15), and that the private key will not be used for any
other purpose. For now, let us assume that this scheme is secure, but if
this implementation option is eventually chosen, this should be discussed
in more detail.

14A form of attack in which a valid data transmission is repeated by an adversary
who intercepts and re-transmits it.

15In a sense that the generated signature has the previously introduced properties.

24



2.2. Implementation options

2.2.4 Key stored in resident key metadata

We have already established that we cannot import existing private keys to
the authenticator. However, the credentials are not just private keys—there
are several other fields, which may hold additional data, and can be set by
the user at the credential creation time. They are defined as [20]:

1. User handle – Specified by a relying party, and used to map a specific
credential to a specific user account with the relying party. A user
handle is an opaque byte sequence with a maximum size of 64 bytes,
not meant to be displayed to users, and should not contain personally
identifying information.

2. Display name – A Human-palatable16 identifier for a user account,
intended only for display, for example, “Alex P. Müller”. Authentica-
tors must accept and store up to at least 64 bytes long values.

3. Name – Similar to display name, used to distinguish between user
accounts with similar display names. For example, “alex.p.mueller
@example.com”. Authenticators must accept and store up to at least
64 bytes long values.

4. Icon – A URL that resolves to an image associated with the entity.
For example, user’s avatar or a relying party’s logo. Authenticators
must accept and store up to at least 128 bytes long values. Note that
icon value can employ “data” URLs as defined by RFC2397 [27] so
that the icon can be displayed without an internet connection.

The specifications also have important notes about access to these addi-
tional fields:

1. “User identifiable information (name, DisplayName, icon) MUST not
be returned if user verification is not done by the authenticator” [20].

16Intended to be rememberable and reproducible by typical human users, in contrast
to identifiers that are, for example, randomly generated sequences of bits [26].

25



2. Analysis and design

2. “The user handle is not considered personally identifying information
[. . .] It is RECOMMENDED to let the user handle be 64 random
bytes” [15].

This is interesting because even though each field has a specified use-case,
handling of its content is entirely up to the client and the relying party.
Combined with the fact that three of those fields are expected to contain
user identifiable information and are protected the same way as private keys,
we essentially get a way to store at least 256 bytes of data per credential in
a secure way.

This allows us to formulate another design approach. When generating a
new resident credential, pass the database master key as an icon field of
the credential, and keep it stored on the authenticator. To later unlock the
database, the contents of the icon field can be retrieved after successful user
verification.

Note that we could use the name or display name field as well. The icon was
chosen because it provides the most storage space and because it is meant
to be displayed as an image. Hence, its raw byte value is least likely to be
directly displayed to the user in case the credential is accessed by a client
other than our plugin. Of course, a successful user verification would still
be required by the authenticator in such a case, so this is not meant to
be a significant security mechanism—it could be compared to the common
practice of hiding passwords behind asterisks to prevent shoulder surfing.

Also, note that this approach is not ideal. It should be secure, and we
include it to document all considered options, but it still requires bending
the specification rules and using the icon field in a way it was not designed
to.

26



Chapter 3
Implementation

This chapter describes the final part of this work—creating a proof-of-
concept implementation of the plugin. Initially, we chose the third im-
plementation option described in subsection 2.2.3. However, we later dis-
covered that our initial analysis missed one crucial detail. The section 6.1.1
of WebAuthn specification introduces an optional signature counter [15]:

Authenticators SHOULD implement a signature counter feature. The
signature counter is incremented for each successful authenticatorGe-
tAssertion operation by some positive value, and its value is returned
to the WebAuthn Relying Party within the authenticator data. The
signature counter’s purpose is to aid Relying Parties in detecting
cloned authenticators [. . .]

If an authenticator implements the signature counter, the counter’s value
is included in metadata that are added to the relying party’s challenge
before signing it. Supporting this feature is optional, but if an authenticator
does support it, there is no way to prevent its use [15]. That means the
resulting signature is different every time, which breaks one of the essential
requirements of our implementation strategy. After this discovery, we were,
therefore, only left with the last option described in subsection 2.2.4.

27



3. Implementation

3.1 Communicating with the authenticator

Rather than communicating with the authenticator directly via CTAP, we
initially chose to use libfido2 package by Yubico. It handles communication
with a FIDO device over USB and exposes all its features as both a C
library and a command-line tool [28].

This choice turned out to be a problem later, as starting with a Windows
10, version 1903, Microsoft has restricted the direct access to FIDO devices
to privileged applications. Applications not running with administrator
privileges have to use a new native API [28].

Requiring administrator privileges to use our plugin would limit its usability
and might raise security concerns, so we attempted to switch to the native
API. This has, however, brought several new problems.

First, the only available piece of documentation for this API is a C header
file in one of Microsoft’s GitHub repositories [29]. Further, the README
file in this repository points back to the WebAuthn and CTAP specifications
“for more details”, but the exposed interfaces from the header file do not
directly match those described in the specifications.

Eventually, we have found that the API does not expose the full functional-
ity to applications that use it. For example, when an authenticator returns
multiple credentials, Windows uses its own graphical interface to let the user
choose which credential they want to use. In this interface, it displays the
credential metadata (name and display name). It does not, however, expose
any metadata to the application.

Because our implementation requires access to the icon field, it cannot use
the native Windows API, and we have to accept it will only work when
running under a privileged account.

28



3.2. Plugin architecture

At this point, it is fair to say that FIDO2—at least in its current state—did
not turn out to be a good choice for the purpose of implementing an alterna-
tive database unlocking strategy. Out of the four examined implementation
approaches, we have found that three will not work at all (for the first two,
the reasons are explained directly in the initial analysis, for the third one,
at the beginning of this chapter), and the fourth approach—which was also
not ideal from the beginning—will require administrator privileges to use
our plugin, which might make it impossible to use for some people, create
security issues, and overall make the plugin harder to use. In the next
section, we describe a way to partially limit the negative aspects of this
requirement, but it is not possible to do so entirely.

3.2 Plugin architecture

In this section, we describe the architecture of the plugin, implementing the
approach proposed in subsection 2.2.4. The chosen architecture consists of
two modules:

• the KeePass plugin itself, written in C# and implementing the re-
quired interface,

• a “device communicator” module, in the form of a native executable
file written in C++, which performs the operations that require priv-
ileged access.

This choice was made for two main reasons. First, because KeePass plugins
run in the context of the main KeePass process, performing the privileged
operations directly in the plugin would mean the whole KeePass application
—and in turn, any other loaded KeePass plugin—would have to be running
with administrator privileges, breaking the principle of least privilege17.

17This principle says that every program should operate using the least set of privi-
leges it needs to function, which limits the damage that can result from an accident or
programmer error [30].

29



3. Implementation

Second, because libfido2 is an unmanaged DLL written in C, we would need
to create a wrapper class acting as an intermediary between the unmanaged
DLL, and the managed C# code [31].

By implementing the device communicator as a separate executable, we al-
low the plugin—and consequently, KeePass—to run under a regular account
and greatly reduce the amount of code running in a privileged context.

The plugin module extends the KeePass user interface by adding a new
entry “KeePassFIDO2 Options” to the “Tools” menu. After selecting this
entry, the user can associate a new authenticator with the currently open
database. To do so, they need to click the corresponding button and perform
the regular user verification, as requested by the authenticator. The options
window is shown in Figure 3.1.

Figure 3.1: The plugin options window

Any number of authenticators can be associated with a single database,
but for now, it is not possible to use the same authenticator with multiple
databases. This is a limitation that could be removed in future plugin
versions by generating a unique database file identifier, storing it in the
database header section and on the authenticator, and using it to pair a
specific database file with the correct credential.

After adding the key, the database can be unlocked by selecting “FIDO2

30



3.2. Plugin architecture

Key Provider” in the KeePass unlock dialogue, as shown in Figure 3.2.

Figure 3.2: The database unlock dialogue

The communicator module implements two operations. The first is create

to create a new credential, and the second is get to retrieve a key stored
in an existing credential. These operations are exposed over a minimal
interface that allows passing of the necessary data between the two modules.
Figure 3.3 shows how retrieving a stored key looks in this architecture.

KeePass plugin Device communicator Authenticator

get()

credential metadata

authenticatorGetAssertion()

master key

Figure 3.3: Sequence diagram of a get() operation

31



3. Implementation

Because the exchanged data include the authenticator PIN and the database
encryption key, the primary criteria for choosing the communication channel
were security and ease of implementation.

The plugin allocates a buffer where it prepares the PIN and then passes
a pointer to this buffer along with the requested operation name to the
communicator via command line arguments. The communicator reads the
prepared buffer, verifies it has the required structure, and in case of the get

operation, later uses it to pass the retrieved key back to the plugin.

Note that the buffer is allocated within the private memory space of the
plugin. This approach takes advantage of the fact that the communicator is
already running as a privileged process and can access the memory of other
processes. Other running unprivileged processes are not able to access this
memory.

In the end, this implementation fulfills our initial goal of creating an al-
ternative database unlock strategy using a FIDO2 device, as well as the
design goals described in section 2.1. Users can associate any number of
authenticators with their KeePass database, and interchangeably use any
of them or the original unlock method. Associating an authenticator with
a database file does not modify it in any way so that it can still be used
with other clients implementing the KDBX file format.

During our work, we used Security Keys by Yubico. The plugin should work
with any other USB authenticator implementing the specifications but was
tested only with the Yubico keys.

An unstated goal of this work was open-sourcing the final implementation
and making it freely available for all KeePass users. Given the previously
described issues, however, it should be considered a proof-of-concept only
and may not be suitable for widespread use.

32



Chapter 4
Testing

Testing is an important part of the software development process, even
more so in case of software handling sensitive data. The core of our im-
plementation, however, is based on using external hardware devices, which
were specifically designed to confirm every operation with the user before
performing it. That makes it impossible to write fully automated tests.
Writing automated tests only for the parts that do not directly interact
with the authenticator, or mocking18 the functions that perform the com-
munication makes little sense because such tests would not cover the most
critical parts of the code.

For these reasons, we include test cases for manual testing, which can be
easily performed by any user of the plugin. These test cases are written in
such a way that they can also serve as a user manual.

All cases assume a default configuration of Windows 10, version 1903 or
higher (mainly, default UAC settings), default KeePass configuration, and
a single authenticator connected via USB. All cases start with KeePass
running and no database open.

18A technique of replacing one part of real implementation with a “fake” version
during testing, with the goal of making another part easier to test.

33



4. Testing

Note that at this time, a single authenticator can only hold a key for one
database. Adding a key for a new database (as done in some of these tests)
overwrites any other key previously stored on the authenticator.

4.1 Positive tests

This section describes test cases for the intended usage scenarios. Note that
these cases are written for a database protected by a master password. To
test with a database protected by a key file, the same steps apply, except
any instruction to enter the password is changed to choose the key file.

4.1.1 Add a key for a new database

1. Create a new KeePass database.

2. In the “Create Composite Master Key” dialogue, fill in “123” as mas-
ter password.

3. Go to Tools→Options→KeePassFIDO2 and click “Add a new FIDO
key”.

4. Enter your authenticator PIN when prompted (if configured), and
click “Submit”.

5. Confirm the UAC prompt for “DeviceCommunicator.exe”.

6. Perform user presence/verification check as requested by the authen-
ticator.

Expected result: A message confirming the key was added appears in the
“KeePassFIDO2 Options” window.

4.1.2 Unlock a database using the authenticator

1. Open the database created in subsection 4.1.1.

34



4.2. Negative tests

2. In the “Open Database” dialogue, select “Key File: FIDO2 Key
Provider” as unlock method and click “OK”.

3. Enter your authenticator PIN when prompted (if configured), and
click “Submit”.

4. Confirm the UAC prompt for “DeviceCommunicator.exe”.

5. Perform user presence/verification check as requested by the authen-
ticator.

Expected result: The database was unlocked.

4.1.3 Unlock a database using the original method

1. Open the database created in subsection 4.1.1.

2. In the “Open Database” dialogue, select “Master Password”, type
“123” and click “OK”.

Expected result: The database was unlocked.

4.2 Negative tests

This section describes steps to test that common error situations are cor-
rectly handled.

4.2.1 No database open

1. With no database open, go to Tools → Options → KeePassFIDO2
and click “Add a new FIDO key”.

Expected result: An error message is shown, saying that a database needs
to be open first.

35



4. Testing

4.2.2 Error while adding a new key

1. Open the database created in subsection 4.1.1.

2. In the “Open Database” dialogue, select “Master Password”, type
“123” and click “OK”.

3. Go to Tools→Options→KeePassFIDO2 and click “Add a new FIDO
key”.

4. Disconnect the authenticator from the computer.

5. Submit the “FIDO2 PIN” dialogue.

6. Confirm the UAC prompt for “DeviceCommunicator.exe”.

Expected result: An error message is shown, including a device commu-
nicator exit code.

4.2.3 Error while unlocking the database

1. Open the database created in subsection 4.1.1.

2. In the “Open Database” dialogue, select “Key File: FIDO2 Key
Provider” as unlock method and click “OK”.

3. Disconnect the authenticator from the computer.

4. Submit the “FIDO2 PIN” dialogue.

5. Confirm the UAC prompt for “DeviceCommunicator.exe”.

Expected result: An error message is shown, including a device commu-
nicator exit code.

36



Conclusion

As a first step, this thesis was meant to analyze the possibilities provided
by the KeePass plugin system and review the implementations of existing
key provider plugins. This analysis was covered in section 1.1 and could be
summarized by saying that KeePass has a flexible, well-documented plugin
system, which allows implementing alternative database unlock methods.

As a second step, we aimed to analyze the capabilities of FIDO2 and design
a suitable approach to implementing a key provider plugin utilizing a FIDO2
device, with a focus on security and ease of use. We analyzed the FIDO2
specifications in section 1.2, specified the key design goals on a technical
level in section 2.1, and then discussed four implementation approaches to
achieve them in section 2.2.

We found that the first two implementation options, which would otherwise
be the most suitable ones, are not possible due to the limited capabilities
of FIDO2 devices. Later, we found that the third option would only work
with some authenticators, which opted not to implement one of the features
of the FIDO2 specifications. This left us the fourth option as the only one
that should work with any device.

37



Conclusion

In chapter 3, we fulfilled the final goal, which was implementing the KeePass
plugin. We have found, however, that due to restrictions on access to FIDO2
devices in the recent versions of Windows, the plugin will only work when
running under a privileged account. In chapter 4, we described test cases,
which can be used to verify the plugin functions correctly.

Even though the work meets all initial goals and was done in the “best
possible” way, there were many technical obstacles that forced us to use
subpar solutions to some problems, for the lack of better options. For that
reason, we consider the most notable result of this work to be the detailed
analysis of the current options.

Future versions of FIDO specifications or new versions of the native Win-
dows API may solve some of the current issues and allow a better imple-
mentation approach.

38



Bibliography

[1] Reichl, D. KeePass Password Safe. [online], 2003–2020, [accessed 2020-
05-09]. Available from: https://keepass.info/

[2] Reichl, D. Composite Master Key – KeePass. [online], 2003–2020,
[accessed 2020-05-09]. Available from: https://keepass.info/help/
base/keys.html

[3] Reichl, D. Installation/Portability – KeePass. [online], 2003–2020, [ac-
cessed 2020-05-09]. Available from: https://keepass.info/help/v2/
setup.html

[4] Reichl, D. Downloads – KeePass. [online], 2003–2020, [accessed 2020-
05-09]. Available from: https://keepass.info/download.html

[5] Reichl, D. Plugins – KeePass. [online], 2003–2020, [accessed 2020-05-
09]. Available from: https://keepass.info/plugins.html

[6] Reichl, D. Plugin Development – KeePass. [online], 2003–2020, [ac-
cessed 2020-05-09]. Available from: https://keepass.info/help/v2_
dev/plg_index.html

[7] Reichl, D. Key Provider Development – KeePass. [online], 2003–2020,
[accessed 2020-05-10]. Available from: https://keepass.info/help/
v2_dev/plg_keyprov.html

39

https://keepass.info/
https://keepass.info/help/base/keys.html
https://keepass.info/help/base/keys.html
https://keepass.info/help/v2/setup.html
https://keepass.info/help/v2/setup.html
https://keepass.info/download.html
https://keepass.info/plugins.html
https://keepass.info/help/v2_dev/plg_index.html
https://keepass.info/help/v2_dev/plg_index.html
https://keepass.info/help/v2_dev/plg_keyprov.html
https://keepass.info/help/v2_dev/plg_keyprov.html


Bibliography

[8] Gamma, E.; Helm, R.; et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, November
1994, ISBN 0-201-63361-2.

[9] Heitzmann, D. Multi Cert Key Provider. [software], [accessed 2020-
05-18]. Available from: https://www.creative-webdesign.de/en/
software/keepass-plugins/multi-cert-keyprovider.html

[10] Heitzmann, D. RSA Cert Key Provider. [software], [accessed 2020-
05-18]. Available from: https://www.creative-webdesign.de/en/
software/keepass-plugins/rsa-cert-keyprovider.html

[11] Buchler, M. CertKeyProvider. [software], [accessed 2020-05-18]. Avail-
able from: https://github.com/markbott/CertKeyProvider

[12] Estelmann, J. KeePassQuickUnlock. [software], [accessed
2020-05-18]. Available from: https://github.com/JanisEst/
KeePassQuickUnlock

[13] Sitnikov, S.; Osipkov, A. KeePassWinHello. [software], [ac-
cessed 2020-05-18]. Available from: https://github.com/sirAndros/
KeePassWinHello

[14] FIDO Alliance. FIDO2: WebAuthn & CTAP. [online], [accessed 2020-
05-10]. Available from: https://fidoalliance.org/fido2/

[15] W3C. Web Authentication: An API for accessing Public Key Cre-
dentials Level 1. March 2019, [accessed 2020-05-11]. Available from:
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/

[16] Yubico. WebAuthn Introduction. [online], [accessed 2020-05-11]. Avail-
able from: https://developers.yubico.com/WebAuthn/

[17] Yubico. U2F – Protocol details – Key generation. [online], [accessed
2020-05-24]. Available from: https://developers.yubico.com/U2F/
Protocol_details/Key_generation.html

40

https://www.creative-webdesign.de/en/software/keepass-plugins/multi-cert-keyprovider.html
https://www.creative-webdesign.de/en/software/keepass-plugins/multi-cert-keyprovider.html
https://www.creative-webdesign.de/en/software/keepass-plugins/rsa-cert-keyprovider.html
https://www.creative-webdesign.de/en/software/keepass-plugins/rsa-cert-keyprovider.html
https://github.com/markbott/CertKeyProvider
https://github.com/JanisEst/KeePassQuickUnlock
https://github.com/JanisEst/KeePassQuickUnlock
https://github.com/sirAndros/KeePassWinHello
https://github.com/sirAndros/KeePassWinHello
https://fidoalliance.org/fido2/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://developers.yubico.com/WebAuthn/
https://developers.yubico.com/U2F/Protocol_details/Key_generation.html
https://developers.yubico.com/U2F/Protocol_details/Key_generation.html


Bibliography

[18] Yubico. Works with YubiKey Catalog. [online], [accessed 2020-05-
24]. Available from: https://www.yubico.com/works-with-yubikey/
catalog/#protocol=universal-2nd-factor-(u2f)

[19] Yubico. FIDO U2F. [online], [accessed 2020-05-24]. Available from:
https://www.yubico.com/authentication-standards/fido-u2f/

[20] FIDO Alliance. Client to Authenticator Protocol (CTAP). Jan-
uary 2019, [accessed 2020-05-11]. Available from: https:
//fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-
client-to-authenticator-protocol-v2.0-ps-20190130.html

[21] Reichl, D. KDBX 4 – KeePass. [online], 2003–2020, [accessed 2020-05-
20]. Available from: https://keepass.info/help/kb/kdbx_4.html

[22] Callas, J.; Donnerhacke, L.; et al. OpenPGP Message Format. RFC
4880, RFC Editor, November 2007. Available from: https://www.rfc-
editor.org/rfc/rfc4880.txt

[23] IANA. IANA CBOR Object Signing and Encryption (COSE) Algo-
rithms Registry. [online], [accessed 2020-05-21]. Available from: https:
//www.iana.org/assignments/cose/cose.xhtml#algorithms

[24] Moriarty, K.; Kaliski, B.; et al. PKCS #1: RSA Cryptography Specifi-
cations Version 2.2. RFC 8017, RFC Editor, November 2016.

[25] Goldreich, O. The Foundations of Cryptography - Volume II, Basic
Applications. New York: Cambridge University Press, May 2004, ISBN
0-521-83084-2, 498 pp.

[26] Internet2. EduPerson Object Class Specification. [online], [accessed
2020-05-25]. Available from: https://www.internet2.edu/media/
medialibrary/2013/09/04/internet2-mace-dir-eduperson-
200604.html

[27] Masinter, L. The “data” URL scheme. RFC 2397, RFC Editor,
August 1998. Available from: https://www.rfc-editor.org/rfc/
rfc2397.txt

41

https://www.yubico.com/works-with-yubikey/catalog/#protocol=universal-2nd-factor-(u2f)
https://www.yubico.com/works-with-yubikey/catalog/#protocol=universal-2nd-factor-(u2f)
https://www.yubico.com/authentication-standards/fido-u2f/
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://keepass.info/help/kb/kdbx_4.html
https://www.rfc-editor.org/rfc/rfc4880.txt
https://www.rfc-editor.org/rfc/rfc4880.txt
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.internet2.edu/media/medialibrary/2013/09/04/internet2-mace-dir-eduperson-200604.html
https://www.internet2.edu/media/medialibrary/2013/09/04/internet2-mace-dir-eduperson-200604.html
https://www.internet2.edu/media/medialibrary/2013/09/04/internet2-mace-dir-eduperson-200604.html
https://www.rfc-editor.org/rfc/rfc2397.txt
https://www.rfc-editor.org/rfc/rfc2397.txt


Bibliography

[28] Yubico. libfido2. [software], [accessed 2020-05-24]. Available from:
https://github.com/Yubico/libfido2

[29] Corporation, M. libfido2. [online], [accessed 2020-05-24]. Available
from: https://github.com/microsoft/webauthn

[30] Saltzer, J. H.; Schroeder, M. D. The protection of information in com-
puter systems. Proceedings of the IEEE, volume 63, no. 9, 1975: pp.
1278–1308.

[31] Wenzel, M.; et al. Consuming Unmanaged DLL Functions. [online],
[accessed 2020-05-25]. Available from: https://docs.microsoft.com/
en-us/dotnet/framework/interop/consuming-unmanaged-dll-
functions

42

https://github.com/Yubico/libfido2
https://github.com/microsoft/webauthn
https://docs.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://docs.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://docs.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions


Appendix A
Acronyms

AES Advanced Encryption Standard

API Application programming interface

CBOR Concise Binary Object Representation

COSE CBOR Object Signing and Encryption

CTAP Client-to-Authenticator Protocol

DLL Dynamic-link library

DPAPI Windows Data Protection API

GPL General Public License

RP relying party

43



Acronyms

TPM Trusted Platform Module

U2F Universal 2nd Factor

UAC User Account Control

W3C World Wide Web Consortium

WebAuthn Web Authentication

44



Appendix B
Glossary

authenticator

A cryptographic entity that handles generating and storing keys, and
performing cryptographic operations.

challenge

A randomly generated piece of data that the authenticator is expected
to sign.

client

An entity that acts as an intermediary between the relying party and
the authenticator (typically a web browser or a similar application).

client device

A hardware device on which the client runs, e.g., a smartphone or a
laptop.

database

Generally, an organized collection of data. In this work, database
refers specifically to the file in which KeePass stores usernames, pass-
words, and other associated data.

45



Glossary

FIDO Alliance

An open industry association focused on authentication standards
that aim to reduce the use of passwords. Members include many large
technology companies, such as Amazon, Apple, Google, or Microsoft.

key source

A master password, key file, or other secret data.

master key

An encryption key based on one or more key sources.

OpenPGP

An email encryption standard defined by the OpenPGP Working
Group of the Internet Engineering Task Force (IETF) as a Proposed
Standard in RFC 4880.

platform authenticator

An authenticator that is attached using a client device-specific trans-
port and is usually not removable.

PLGX

An optional plugin file format for KeePass ≥ 2.09. Instead of compil-
ing the plugin to a DLL file, the plugin source code files are packed
into a PLGX file and KeePass compiles them itself when the plugin
is first loaded [6].

relying party

An entity whose application utilizes the WebAuthn API.

resident credential

A credential whose private key is stored in the authenticator, client,
or client device.

46



Glossary

roaming authenticator

A roaming authenticator is attached using cross-platform transports,
removable, and can “roam” among client devices.

TPM

A secure crypto-processor that is designed to carry out cryptographic
operations and store cryptographic keys.

user verification

A process by which the authenticator locally authorizes the invoca-
tion of its operations. User verification may be instigated through, for
example, a touch plus pin code, password entry, or biometric recog-
nition.

Windows Credential Manager

A place where Windows and other apps using its API store credentials
scoped to a specific Windows account.

Windows Hello

A technology that adds alternative way to authenticate into Windows
and applications using a fingerprint, iris scan, facial recognition, a
short PIN, or other method.

47





Appendix C
Contents of the enclosed SD card

README.md ...................................... contents description
KeePassFIDO2-v1.0.0.zip...........................plugin binaries
DeviceCommunicator........source code of the communicator module
KeePassPlugin.............................source code of the plugin
Thesis...............................LATEX source code of the thesis

BP_Kolárik_Martin_2020.pdf ..........PDF version of the thesis

49


	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	State-of-the-art
	KeePass password manager
	KeePass plugin system
	KeePass key providers

	FIDO2
	Web Authentication (WebAuthn)
	Client-to-Authenticator Protocol (CTAP)
	Universal 2nd Factor (U2F)
	A note on terminology


	Analysis and design
	Design goals
	Implementation options
	Key stored as an authenticator resident key
	Key encrypted by the authenticator
	Encryption key derived from a signature
	Key stored in resident key metadata


	Implementation
	Communicating with the authenticator
	Plugin architecture

	Testing
	Positive tests
	Add a key for a new database
	Unlock a database using the authenticator
	Unlock a database using the original method

	Negative tests
	No database open
	Error while adding a new key
	Error while unlocking the database


	Conclusion
	Bibliography
	Acronyms
	Glossary
	Contents of the enclosed SD card

