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Abstrakt

Cilem lokalnich univerzalnich vysvétlovacich metod je vysvétlit jednotlivé pre-
dikce libovolného modelu strojového uceni pouze za pomoci vstupti a odpovi-
dajicich vystuptu daného modelu. Vysvétlovani predikci slozitého modelu stro-
jového uceni poméha odbornikiim vylepsovat dany model a zvysuje uziva-
telskou dtvéru v predikce modelu. Tato prace zkouma tii z nejmodernéjsich
lokalnich univerzalnich vysvétlovacich metod — LIME, Anchors a SHAP. Zkou-
mané metody jsou detailné popsany a experimentalné vyhodnoceny s ohledem
na vérnost jejich vysvétleni vzhledem k vysvétlovanému modelu. Vyhodno-
ceni je provedeno na ruznych klasifikdtorech natrénovanych na umeéle vyge-
nerovanych datech i na redlnych datech. Umélad data jsou vygenerovdna na
zakladé znamych zavislosti, coz umoznuje spocitat optimalni vysvétleni a po-
rovnat ho s vysvétlenimi vygenerovanymi vysvétlovacimi metodami. Vysledky
experimentu ukazuji, ze SHAP je nejrobustnéjsi vudci vlastnostem modelované
funkce z uvazovanych vysvétlovacich metod. LIME i Anchors v uréitych situ-
acich neprodukuji presnd vysvétleni, nicméné v experimentu s redlnymi daty
obé metody vyprodukovaly pfesnad vysvétleni.

Klicova slova lokdlni, univerzalni, vysvétlovaci metody, interpretovatelné
strojové uceni, vysvétlitelna uméld inteligence, LIME, Anchors, SHAP
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Abstract

Local model-agnostic explanation methods aim to explain a single prediction

of an arbitrary machine learning model by studying the model only through its
inputs and corresponding outputs. Explaining predictions of a complex ma-
chine learning model helps practitioner to debug the model and build user’s
trust in the predictions. This thesis reviews and describes three of the state-
of-the-art local model-agnostic explanation methods — LIME, Anchors and
SHAP. The described methods are evaluated in terms of faithfulness of their
explanaions to the model being explained. Evaluation is performed on vari-
ous classifiers trained on artificially generated datasets as well as a real-world
divorce dataset. The artificial datasets are generated based on known de-
pendencies which allows to calculate optimal explanations and compare them
to the explanations produced by the explanation methods. The experiments
show that SHAP is the most robust out of the considered explanation meth-
ods. LIME and Anchors fail to produce faithful explanations in specific cases,
however, they both managed to produce faithful explanations in experiment
with real-world dataset.

Keywords local, model-agnostic, explanation methods, interpretable ma-
chine learning, explainable artificial intelligence, LIME, Anchors, SHAP
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Introduction

The recent years have witnessed a notable widespread of Artificial Intelligence
across practically all the businesses, and machine learning models are becom-
ing ubiquitous in people’s everyday lives. Thanks to the rise of computational
power and increasing sizes of datasets the state-of-the-art machine learning
models have evolved from simple models such as Linear Regression, whose
decision making can be usually understood even by laypeople, into complex
models such as Artificial Neural Network with milions of parameters that
contribute to the predictions. Such complex models are able to outperform
humans on specific tasks, such as image classification or playing Go, however
understanding their decision making is often unattainable even for machine
learning experts. The uninterpretability makes for a challenging evaluation of
other desired properties of machine learning models such as nondiscrimination
in loan approval models or safety in models that drive autonomous vehicles.
The emerging need for understanding the decision making of complex models
has led to a developement of the field called Explainable Artificial Intelligence
that has become one of the main interests of the recent Al research. Explain-
ing a complex model allows for inspection of the model’s decision making while
retaining its high level of performance. Explanations also help users trust and
adopt the model. This is crucial in fields such as medicine where the model’s
predictions are presented to a human decision maker who then makes the final
decision.

Explanation methods can aim to explain model’s behaviour for all possible
inputs. Such explanations are called global and while they may be desirable
and provide new valuable insight in tasks in which machine learning mod-
els generally outperform humans, it is usually unattainable for the complex
model to be explained succinctly. Local explanations provide an often feasible
fallback as they aim to explain model’s behaviour only for a single prediction.



INTRODUCTION

Model-agnostic explanation methods draw no assumptions about the under-
lying model, thus they can be applied on any machine learning model or even
proprietary predictive system. The ability to explain arbitrary models with
the same method is especially usefull for comparing multiple machine learning
models and choosing the optimal model for deployment. Model-specific ex-
planation methods, on the other hand, are tied to certain families of machine
learning models and require full acces to the model’s internals which allow
such methods to be more computationally efficient.

This work focuses on local model-agnostic explanation methods that explain
predictions of classification models for tabular input data. The goals of
this work are to describe and compare three of the state-of-the-art local
model-agnostic explanation methods — LIME, Anchors and SHAP. Expla-
nation methods are evaluated in terms of faithfulness of their explanations to
the model being explained.

The work is organized as follows. Chapter 1 is theoretical part, where in
sections 1.1 through 1.3 and overview of the field of Explainable Al is given
together with definitions of machine learning model, explainability and Black-
box model. Taxonomy of explanation methods is described in section 1.4
and metrics for evaluating various properties of explanations are presented
in section 1.5. The individual model-agnostic explanation methods are theo-
retically described in sections 1.6 and 1.7. In Chapter 2, the reviewed local
model-agnostic explanation methods are evaluated in terms of faithfulness on
artificial datasets and real-world divorce dataset.



CHAPTER ].

Theoretical part

1.1 Machine learning model and algorithm

Machine learning model is a function f : R® — R, where R" is a n-
-dimensional feature space and R is an output space. In the case of a classifier
the output is either a class label or a probability mass function [1].

Family of machine learning models is a set of machine learning models
with the same internal structure.

An example of a family of machine learning models is Logistic Regression used
for binary classification, where the two classes are labeled as “0” and “1”. The
output is given by:

Ply=1)=Swlz +b), (1.1)
where P(y = 1) denotes the probability of class 1, x € R" is the input vector,
w € R™ is the vector of weights, b € R is the bias term and S denotes the
sigmoid function defined by the formula: S(z) = ﬁ [2]. Different machine
learning models that are instaces of Logistic Regression have the same form of
Equation 1.1 but differ in the weights and bias values (also called parameters
of the model).

Machine learning algorithm adjusts parameters of a machine learning
model in order for the model to perfrom a given task. An example of such task
is disease diagnosis where the model is supposed to predict whether a given
patient is sick or healthy. Performance of such model can be measured as the
ratio of correctly diagnosed patients. The adjustment of model’s parameters
is also called training of the model. Supervised machine learning algorithm
trains a model on a set of labeled data called training set to maximize the ratio
of correct predictions of the model. Training set contains set of input vectors
(patients) with corresponding target outputs (true diagnoses). Most machine
learning algorithms also have parameters called hyperparameters whose val-
ues must be set before the machine learning algorithm is used. For example
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an algorithm that trains a tree ensemble model have hyperparameters such as
number of trees or maximum depth of an individual tree.

1.2 Interpretability and Explainability of machine
learning models

Large part of literature on Explainable Artificial Intelligence use terms inter-
pretability and explainability interchangeably. However, Arrieta et. al. in [3]
argue that these terms are being misused and they do not refer to the same
concepts. They further argues that the misuse of these terms is one of the
issues that hinders the establishment of common grounds in the field of Ex-
plainable Artificial Intelligence as there is a lack of consensus on definitions of
these terms. For the purpose of this thesis interpretability and explainability
are defined separately as follows.

Interpretability is a passive property of a machine learning model that refers
to the level at which a given audience can understand model’s decision mak-
ing [3]. Interpretability is a characteristic of White-box models that are dis-
cussed in section 1.3.

Explainability of a machine learning model refers to the level at which the
given model can be explained to a given audience by a certain procedure [3].

Condsider a task of disease diagnosis, where a Random Forest model is the
machine learning model and a doctor is the audience. The doctor has to
understand the decision making of the model in order to make the final diag-
nosis based on the model’s prediction. If the doctor understands the prediction
based on the structure of the Random Forest model, the model is interpretable.
Otherwise the model has to be explained for example through feature impor-
tance scores that would tell the doctor how each feature influenced the model’s
diagnosis.

Explanation produced by an explanation method serves as an interface be-
tween an audience and an uninterpretable machine learning model. Being an
explanation is not a passive property of statements as explanation is always an
interaction that depends on the knowledge and the goals of its audience [3].
The knowledge of the audience mainly affects the type of the explanation,
for example an audience with decent knowledge in statistics might be able to
understand a Bayesian Network, however for people without such knowledge,
sparse Decision Rule would be more appropriate [4].

The goals of the audience affects not only the type of the explanation but
also it’s granularity, for example an users to which a certain product is rec-
ommended might be satisfied with the most relevant product that they have
recently purchased as an explanation. However a doctor performing a diag-
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nosis might require a complete explanation of how each feature influenced the
model’s decision.

Explanations are produced after the model has been trained, thus such expla-
nations are called post-hoc explanations. Post-hoc explanations are implicit
and the term post-hoc is omitted throughout the thesis.

Many fields, such as philosophy and cognitive psychology have been long en-
gaged in the questions such as how to define, generate or evaluate explana-
tions. Social sciences therefore provide substantial insight into what kinds
of explanations people generally want and understand. The field of Explain-
able Artificial Intelligence can benefit from building on this research which is
reviewed in [5]. Relevant findings from cognitive psychology are mentioned
throughout the thesis.

1.3 White-box and Black-box machine learning
models

Machine learning model is referred to as Black-box when it is unattainable
even for a machine learning practitioner to understand model’s decision mak-
ing by inspecting it’s internals (parameters or submodels in case of ensembles).
Thus, if we want to understand Black-box model, an explanation method must
be employed. On the contrary model is referred to as White-box when it is in-
terpretable for a given audience [3]. White-box models present an alternative
to explainability methods as they are interpretable on their own [6].

Even though some families of machine learning models are generally deemed
as White-box (e.g. Decision Trees), every machine learning algorithm can
produce both White-box and Black-box models. For example a shallow De-
cision Tree with depth of 3 can be easily interpretable (Figure 1.1 shows an
example of an interpretable Decision Tree), whereas a very deep Decision Tree
will become uninterpretable and therefore Black-box. In order to interpret a
Decision Tree’s output a person has to simultaneously store and understand
all the rules on a given path from a root node to a leaf node. An approximate
depth threshold above which a Decision Tree becomes Black-box is 7 as an
average person is said to be unable to store more than 7 pieces of information
at a time [7]. In practice this threshold might be lower or higher depending
on the audience and complexity of the node rules. Furthermore any model
utilizing uninterpretable features such as components generated by Princi-
pal Component Analysis is inherently Black-box. Similarly Artificial Neural
Networks are generally deemed as Black-box, however an Artificial Neural
Network model without hidden layers that consists of couple of neurons may
be interpretable.
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Sex
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AN
Died Class Died

AN
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Figure 1.1: Decision Tree for prediction of whether a Titanic passenger have
survived the sinking or not. All the paths from the root node to leaf nodes
are easy to interpret, which makes this Decision Tree a White-box model.

1.3.1 Accuracy and Interpretability trade-off

Accuracy and interpretability trade-off refers to a consensus among the major-
ity of machine learning practitioners that more accurate models usually tend
to be less interpretable and vice versa [3].

O Artificial Neural Networks
O Tree-based Ensembles
O Support Vector Machines
O k-Nearest Neighbors

Accuracy

O Decision Trees
O Logistic Regression

O Decision Rules

Interpretability

Figure 1.2: Visual representation of the trade-off between model accuracy
and interpretability. All the points in the space are illustrative to show which
families of machine learning models tend to be generally more accurate and
less interpretable.

Some researchers point out that it is not necessarily true that more complex
models are inherently more accurate than simple models. Explicitly in cases
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1.3. White-box and Black-box machine learning models

where the data is well structured and features at our disposal are of high
quality and value [8].

Undeniably though complex models have higher capacity than their simpler
counterparts, which gives them the flexibility to approximate more complex
functions. Real world function that one wishes to approximate might entail
such level of complexity a simple model is unable to represent [3].

credit card denied o

Late Fee Amount

Annual Income

Figure 1.3: Example of a credit card approval task, where each point represents
a single customer and plus and minus signs represent the target predictions.
Monotonic boundary that could be represented by a White-box Logistic Re-
gression model is easily interpretable but unable to capture the true decision
boundary. To capture the true non-monotonic decision boundary, a more
complex Black-box model has to be used (such as Random Forest or Artificial
Neural Network) [9].

In most cases, model with the highest accuracy is an ensemble of several
independently trained models as different models tend to be prone to different
errors on the test set [1]. The power of Black-box methods is also evident from
the interviews with machine learning competitions winners on kaggle.com who
mostly use Ensemble models and Artificial Neural Networks [6]. In computer
vision, Convolutional Neural Networks have outperformed humans on tasks
such as image classification which is beyond the possibilites of White-box
models [10].

Choosing explanation methods over a White-box model to achieve human
understanding of the model’s decision making allows for the deployment of
the best performing model regardless of it’s complexity.
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1.3.2 Explanation flexibility

Explanation flexibility refers to the ability of different exlpanation methods to
provide different types of explanations of the same machine learning model.
Examples of explanation types are feature importance scores, the most in-
fluential training example for a given prediction, or a spare Decision Rule.
In contrast White-box models are limited to only one type of explanation
depending on the White-box model.

For example, if in order to achieve human understanding of the model a White-
-box Logistic Regression model is deployed, the only type of explanation it can
provide are the weights of corresponding features (Equation 1.1). If a given au-
dience required a different kind of explanation (for example a sparse Decision
Rule for a different deparment of a corporation) an appropriate explanation
method would have to be used to provide such explanation.

1.4 Explanation methods taxonomy

Explanation methods are primarily divided based on the scope of their ex-
planations — whether they explain a machine learning model as a whole or
only partially, and by model specificity — whether they can be applied to any
machine learning model or only to a particular family of machine learning
models.

Explanation methods can be further divided based on the type of their expla-
nations (feature importance scores, Decision Rules, etc.), whether they can be
applied to any data or only to tabular/text/image data and whether they can
be applied on classification and/or regression tasks.

1.4.1 Explanation scope
1.4.1.1 Global explanation methods

Global explanation methods aim to explain a model as a whole. In other words
they aim to help an audience to understand the full logic of the model [11].
The audience that is provided a global explanation should also be able to cor-
rectly simulate the model’s prediction for any input. Global explanations can
therefore provide new valuable insight and improve humans decision making in
tasks where machine learning models generally outperform humans. However,
it is often infeasible to provide an accurate and succinct global explanation of
a complex model.
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1.4.1.2 Local explanation methods

Local explanation methods aim to explain a single prediction of a model. The
idea of local explanation methods is that while a given model is globally too
complex to be explained succinctly, explaining model’s decision making for
an individual prediction makes the explanation task feasible [12]. Locally the
predictions might only depend linearly or monotonically on some subset of
features rather than having a complex dependence on all the features [6].

Local explanation of a single prediction may provide understanding of the
model’s global decision making, however, it is not sufficient to evaluate and
assess trust in the model as whole. Local explanations of multiple predictions
can provide some insight into the global decision making of the model if the
chosen set of explanations is non-redundant and representative. Choosing
such set of explanations may be a feasible task even when providing a global
explanation of the model is unfeasible [12].

Local explanation methods are also useful in tasks where only explanations
of single predictions are required. For example in loan-approval systems, fi-
nancial institutions are obligated by law in both European Union and United
States to provide a reason why a given loan application was denied [13, 14].
Explanation of a single loan application denial corresponds to a local expla-
nation, while global explainability can be sacrificed for the sake of better
performance.

1.4.2 Model specificity
1.4.2.1 Model-agnostic explanation methods

Model-agnostic explanation methods treats a model being explained as a black-
-box function. In this case term black-box does not refer to a complex unin-
terpretable model but rather to a model that can be studied only through its
inputs and corresponding outputs without any knowledge of it’s internals [4].
Model-agnostic explanation methods therefore provide a model flexibility as
they can be applied to any predictive system regardless of its complexity or
inner workings.

Model-agnostic methods also allow to study models that provide access only
to its inputs and corresponding outputs via APIs. This limitation occurs in
situations where a company treats a model as a proprietary software, thus is
unwilling to release the whole model arguing that it contains company’s trade
secrets. For example COMPAS (Correctional Offender Management Profiling
for Alternative Sanctions) is a proprietary recidivism prediction tool that is in
widespread use in the U.S. Justice system for predicting the probability that a
criminal will be arrested again after their release. COMPAS was not created
by any standard machine learning algorithm, it was rather designed by experts
based on carefully designed surveys and expertise, however, its internals are

9
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kept as a trade secret. Even though it is not a machine learning model,
it is still a predictive system that can be studied through model-agnostic
methods [8]. Model-agnostic analysis of the COMPAS have shown that the
system is racially biased against black people [15].

When solving a particular machine learning task practitioners usually produce
multiple models often generated by different machine learning algorithms.
Competing models are subsequently compared in order to select the one that
will have the best performance on the real data. This comparison is usually
done by evaluating models’ performances on a held-out subset of annotated
data called test set. Relying solely on such evaluation can be misleading as
model’s performance on the test set may not correspond to its performance
once the model is deployed “in the wild”. One of many reasons for this might
be an accidental information share between the sets training and testing data
during preprocessing called Data leakage. Model-agnostic methods flexibility
allows for two models generated by different machine learning algorithms to
be explained by the same method. These explanations can then be used as a
complementary method for comparison of the competing models [4, 12].

1.4.2.2 Model-specific explanation methods

Model-specific explanation methods are tied specifically to certain families
of machine learning models and require full access to the model’s internals.
Their model specific design and ability to access model’s internals (such as
gradients) makes such methods generally more computationaly efficient than
model-agnostic methods.

Model-specific explanation methods are especially interesting in the fields that
are dominated by Deep learning, such as computer vision, natural language
processing and one dimensional signal processing. The best performing models
in such fields are almost exclusively versions of Artifical Neural Networks and
therefore the flexibility of model-agnostic methods is unnecessary. Deep learn-
ing models benefits from the model-specific approach for two main reasons.
First, Artifical Neural Networks learn features and concepts in their hidden
layers that are not uncovered when using the model-agnostic approach. Sec-
ond, the gradient can be utilized for higher computational efficiency [6].

10



1.5. Evaluation of explanation methods

1.5 Evaluation of explanation methods

There are two main properties of an explanation method that one can wish to
evaluate — faithfulness and comprehensibility. Faithfulness refers to the ability
of the explanation method to provide explanations that accurately capture
model’s true decision making. Comprehensibility refers to the ability of the
explanation method to explain a given model in a human understandable
fashion. There are other properties such as robustness. These are mentioned
in the end of this section.

The gold standard for evaluating explanation’s comprehensibility are human-
based experiments. Objective and universal metrics for evaluating compre-
hensibility without human-based experiments and faithfulness of explanations
remain an active field of research and one of the main challenges in the field
of Explainable Artificial Intelligence.

1.5.1 Faithfulness

Faithfulness should always be the first assessed property of an explanation
as other properties of an unfaithful explanation are meaningless. So far no
universal metrics to evaluate faithfulness of explanations have been developed.

The current metrics of faithfulness evaluation can be divided into two cate-
gories presented in the subsections below.

1.5.1.1 Evaluation through known dependencies

Evaluation through known dependencies means that instead of evaluating
faithfulness with respect to a Black-box model on a real task, the faithful-
ness is evaluated either through a White-box model or an artificial task with
known dependencies. These evaluation methods are particularly usefull for
general evaluation of explanation methods.

White-box models are interpretable, therefore the faithfulness of an explana-
tion of a White-box model can be easily evaluated as the underlying model’s
decision making is known. For example Ribeiro et. al. in [12] trained Logistic
Regression and Decision Tree classifiers such that the classifiers did not use
more than 10 features. Since these features were considered the most impor-
tant by the classifiers, they called them the gold features. Then they evaluated
each explanation by computing explanation’s recall on the gold features.

Artifical datasets generated by predefined dependencies can be leveraged for
faithfulness evaluation in a similar fashion. If a machine learning model is
able to learn the artifical task well enough (achieve high accuracy), evaluating
explanations of such model is again simple as the data generating process is
known.

11
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1.5.1.2 Explanation-specific evaluation

Explanation-specific evaluation metrics can only be applied to certain types
of explanations (e.g. Decision Rules). Such metrics are sufficient when a
particular type of an explanation is required but can not be used for comparing
explanations of different types.

1.5.1.2.1 Accuracy

Many global and local explanation methods provide a White-box machine
learning model as an explanation. The explanatory model is trained on data
annotated by a Black-box model. The goal of the White-box model is therefore
to approximate the predictions of the underlying Black-box model. In such
case accuracy, F1 scores and similar metrics can be measured by comparing
the explanatory White-box model’s predictions to the underlying Black-box
model’s predictions.

1.5.1.2.2 Replacing features with no-op values

IBM researchers in [16] proposed a metric for evaluating faithfulness of local
feature importance explanations by gradually replacing input features with
some no information value (no-op value) and measuring how the explained
model’s prediction probabilities change for each feature. For example for the
MNIST dataset of handwritten digits, the no-op value can be 0 representing
a black pixel.

Let 0 = (04,,04,,...,0,,) denote the feature importance vector (local ex-
planation), where 6 is sorted in descending order such that 0, >= 0, >=
...>= 0., and 6, denotes the feature importance of input feature z;. Let
D = (Pzy,Pxos - - - » Dz, ) denote a vector, where p,, is the prediction probability
after the value of input feature x; is replaced by no-op value and let p denote
Pearson correlation. The metric is then given by:

¢ = _p(evp)a

where higher value of ¢ indicates a better explanation.

The intuition behind this metric is that removing the most important feature
in favor of the given prediction should lower the probability of such prediction
more than removing the least important feature. However a similar intuition is
behind most of the explanation methods that calculate feature importance and
some methods even use the no-op values to calculate the feature importance as
well. This method therefore evaluates an explanation through another expla-
nation and it requires the model that is being explained to output probability
of a given class, rather than just the class.

This metric, along with Monotonicity described in subsubsection 1.5.3.2, is
included in IBM’s open-source explainability framework Al Explainability 360.
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The IBM researchers highlight the fact that out of all the Explainable Artificial
Intelligence frameworks, theirs is the only one that includes any faithfulness
evaluation metrics. This further highlights the difficulty of developing such
metrics.

1.5.2 Comprehensibility

Velez and Kim in [17] propose three levels for evaluating comprehensibility
of explanations — Application-grounded, Human-grounded and Functionally-
grounded.

1.5.2.1 Application-grounded Evaluation: Domain experts, real
tasks

Evaluating explanations with respect to the real task (the task for which a par-
ticular machine learning model was designed) by domain experts is deemed by
many researchers as the best way of evaluating explanations comprehensibility.
For example consider a task of diagnosing patients with a particular disease.
The explanations would be presented to a doctor who would then evaluate
whether the explanations justifies the model’s predictions and whether the
explanations are sufficient for the doctor to take actions based on the model’s
predictions.

1.5.2.2 Human-grounded Evaluation: Laypeople, simplified tasks

Another method for human-based evaluation of explanations’ comprehensibil-
ity consist in conducting a simplified task that maintains the essence of the real
task. Evaluations through a simplified task can be done by laypeople which
is appealing when experiments with the domain experts are too expensive.
An example of a simplified task is forward simulation, where laypeople are
presented with an explanation and an input and tries to simulate the model’s
prediction. The explanation can then be evaluated based on whether people
correctly simulated model’s prediction and how quickly they were able to do
it.

1.5.2.3 Functionally-grounded Evaluation: No humans, Proxy
tasks

Human-based experiments require a substantial amount of time and effort
which may be beyond the resources of a machine learning practitioner. Func-
tionally-grounded evaluation uses some formal definition of comprehensibility
as a proxy. Defining and quantifying comprehensibility is difficult and there-
fore the explanation complexity is usually evaluated instead. Many global
and local explanation methods provide a White-box machine learning model
as an explanation. Complexity of such explanation can then be evaluated with
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respect to the particular White-box model. For example complexity of a Deci-
sion Tree model can be measured as its depth or number of splits, whereas for
Linear Regression number of features with non-zero weights can be measured.
However it is unclear how to compare the complexity measures of different
families of machine learning models. Moreover for some explanations, such as
the most influential examples, the complexity metric does not exist so far.

1.5.3 Evaluation of other properties
1.5.3.1 Robustness

Robustness is measured as the change of an explanation after adding some
noise into the input or to the model being explained. The evaluation metrics
varies in what kind of noise is added. The most popular methods in the context
of Explainable Artificial Inteligence are adding randomly valued features to
the input space or adding Gaussian noise to the data [18].

1.5.3.2 Monotonicity

Monotonicity is the second metric in IBM’s Al Explainability 360 framework
for evaluating local feature importance explanations [16]. Monotonicity mea-
sures whether gradual provision of the features increases the probability of
a given class. The method starts with no-op values input and incrementally
replaces the features in increasing order of importance (provided by a local
explanation) with their actual value. If the features are positively and inde-
pendently correlated with the given class, then the class probabilities should
monotonically increase every time an actual value of the feature is added to
the input.

1.5.3.3 Usefulness in model selection

Ribeiro et. al. in [12] tried to simulate whether their local explanation method
can aid in selecting the better performing model as one of the methods to eval-
uate their explanation method. First they have added noisy binary features,
such that they appeared in 10% training examples of one class, 20% training
examples of the other class and in 10% testing examples of both classes. The
idea was to simulate the situation where the model uses spurious correlations
that doesn’t appear in the real world. Then they’ve trained two classifiers such
that their validation accuracies were within 0.1% of each other, while their test
set accuracies differed by at least 5%. The similar validation accuracies made
it impossible to choose a better model via only validation accuracies. Sub-
sequently they have used the explanation method to provide explanations of
both classifiers on all the validation data and marked each explanation as
untrustworthy if it treated at least one of the noisy features as an impor-
tant feature and trustworthy otherwise. The simulated user then picked the
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model with less untrustworthy explanations. Finally the authors measured
how many times the simulated user picked the better classifier. They also
measured how the probability of picking the better classifier changed with the
number of explanations provided to the simulated user.

1.6 Global model-agnostic explanation methods

Global model-agnostic explanation methods aim to explain a machine learning
model for all possible inputs by studying the model only through its inputs
and corresponding outputs. While it is usually unatainable to globally explain
a complex model, the global surrogate explanation model is described in the
section below as many local explanation methods are build upon the same
idea.

1.6.1 Global surrogate explanation model

A global surrogate model is a machine learning model that approximates a
Black-box machine learning model that is being explained. The idea is that
when the global surrogate model is a White-box model and accurately approx-
imates the model that is being explained, then it can be used as an explanation
of the underlying Black-box model.

The pseudocode of generating a global surrogate explanation model is given
in Algorithm 1. To generate an explanatory global surrogate model an ap-
propriate family of machine learning model, training algorithm and its hy-
perparameters have to be chosen first, in order to provide a model that is
interpretable to a given audience. Next, a training set of data for training the
surrogate model has to be chosen. The training set for the surrogate model
can be arbitrarily large, since it is annotated by the underlying Black-box
model. Often enough in order to prevent overfitting and achieve high gener-
alization, a model requires higher capacity than is necessary for the task due
to the limited number of the training examples. Thanks to the theoretically
unlimited number of training examples for the surrogate model, it is possible
for the surrogate model to approximate the Black-box model while remaining
interpretable [1]. Note that this is possible only in cases when the function
represented by the Black-box model is not too complex to be represented by
a White-box model as illustrated in Figure 1.3.

It is neccessary to choose a testing set for the surrogate model, also annotated
by the model being explained, and an accuracy metric to use to asses the
quality of surrogate model’s approximation. Finally, an accuracy threshold
bellow which the surrogate model is insufficient as an explanation should be
chosen. The optimal accuracy threshold value is unclear and even when the
suroggate model’s accuracy seems high, there can be a subset of data for which
the surrogate model is highly inaccurate [6].
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Algorithm 1 Global surrogate explanation model

Require: Machine learning algorithm A with hyperparameters h

Require: Training set Ili.q;n and testing set Il;.s; annoted by the model
being explained

Require: Accuracy metric accuracy and accuracy threshold ¢

1 g+ Apn(Uyrain) > Train the global surrogate model

2: if accuracy(g(liest)) >t then > Accuracy condition
return g

3: else

return "Insufficient accuracy, choose a different machine learning
algorithm or generate additional training data”

1.7 Local model-agnostic explanation methods

Local model-agnostic explanation methods aim to explain a single prediction
of a machine learning model by studying the model only through its inputs
and corresponding outputs. This chapter describes three of the most popular
and widely cited local model-agnostic methods for explaining predictions of
classification models. LIME method described in section 1.7.1 produces an
explanation in form of a sparse linear local surrogate model. The local surro-
gate model is also utilized by Anchors method described in section 1.7.2 that
produces a sparse Decision Rule as an explanation. SHAP method for calcu-
lating feature importance scores based on Shapley values from game theory is
described in section section 1.7.3.

1.7.1 LIME

LIME is a local model-agnostic explanation method created by Ribeiro et.
al. [12]. LIME explains a given prediction of a Black-box classifier by pro-
ducing a sparse linear model that is locally faithful the Black-box model.
LIME is essentially a linear local surrogate model that tries to approximate
the Black-box model around the input of a given prediction, rather than try-
ing to approximate the Black-box model for all the possible inputs like global
surrogate models.

Subsection 1.8.1.1 describes a general framework for producing a local surro-
gate explanation models. This framework was originally referred to as LIME
with Sparse linear explanations beeing only an instance of the framework that
uses linear model as the surrogate model. However, after the paper was pub-
lished, the Sparse linear explanations began to be called LIME even by the
authors themselves [19].
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1.7.1.1 Local surrogate explanation model

The goal of a local surrogate model is to approximate a Black-box model only
around a given prediction, therefore the locality around the prediction has
to be emphasized during the training of the surrogate model. This can be
achieved either by sampling the training data only around the corresponding
input of the prediction or by weighting the training samples by some prox-
imity measure. LIME uses the later approach where the training data for
the surrogate model are sampled from the distribution of the training data
of the model being explained and weighted by a proximity measure such that
instances farther from the input being explained are assigned lower weights.
Each of the input features are sampled individually from Gaussian distribu-
tion with their means and standard deviations taken from the training data
of the underlying Black-box model.

Formally, let f : R™ — R denote the model being explained, x € R™ denote
the input of the prediction being explained, f(x) denote the corresponding
prediction (class label or probability of a class) and 7, : R™ — R denote the
proximity measure between x and another instance from R".

Furthemore, let ¢ € G denote an explanatory local surrogate model that
belongs to a family of potentialy White-box models GG such as Decision Rule
or Linear Regression. As discussed in section 1.3 every family of machine
learning models contains both White-box and Black-box models. Therefore
in order to ensure that the surrogate model is interpretable, let Q(g) denote a
complexity metric of a model g. The choice of a complexity metric depends on
the chosen family of models G, for Decision Rules §2(g) may be the number of
conditions, while for Linear Regression, {(g) may be the number of features
with non-zero weights.

Finally, let L(f,g,7;) be a loss function that measures how unfaithful the
surrogate model g is in approximating the underlying Black-box model f in the
locality defined by the proximity measure m,. The explanatory local surrogate
model is then given by:

9(z) = argmin L(f, g, ) + Q(g) (1.2)
geG

This formulation optimizes both interpretability and local faithfulness in order
to find an optimal trade-off between interpretability and accuracy as discussed
in subsection 1.3.1. Thresholds can also be introduced to guarantee a certain
level of interpretability or local faithfulness.

1.7.1.2 Sparse linear explanations

The Equation 1.2 allows for arbitrary choice of a family of machine learning
models G, local faithfulness measure £, proximity measure 7, and complexity
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metric 2. This section describes the configuration chosen by Ribeiro et. al.
originally called Sparse linear explanations that is implemented in the LIME
framework available on GitHub. The illustrative example of Sparse linear
explanation (LIME) is given in Figure 1.4.

Figure 1.4: Tllustration of Sparse linear explanation (LIME). The green and
red background shows the decision boundary of the underlying Black-box clas-
sifier f, the points in the space represent the samples for training the local
surrogate model g with sizes of the samples indicating their weights. In this
example LIME is able to produce an explanation model g (violet line) that is
locally accurate around the instance being explained (circled point). However
in cases where the underlying Black-box model is highly non-linear, LIME
may be unable to produce an explanation that is locally faithful.

The pseudocode of producing a sparse linear explanation (LIME) is given in
Algorithm 2. As the name suggests the choice of GG is a family of Linear
Regression models, where the explanatory local surrogate model is given by
g(z) = ngx' . The 2/ € R% denotes a sparse representation of input z € R"
that contains the d < n most important features of . The sparse representa-
tion is often required in order to produce an interpretable explanation, as the
original representation x might be high dimensional. When n is low enough d
can be set as d = n. The number of features used in the explanation is forced
by the complexity measure  given by (g) = 001y, |y>a, Where [Jwg|, de-
notes the £y “norm” defined as the number of non-zero elements of a vector.
This particular choice of £ makes solving Equation 1.2 directly intractable
as the number of possible feature combinations grows exponentially with d.
Therefore an approximation is produced instead where d of the most impor-
tant features are preselected. The d most important features are by default
chosen by training a locally weighted Linear Regression with L2 regularization
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(Ridge Regression) and then selecting the d features with the highest weights.

After the d features are selected the explanatory model is obtained by min-
imizing the locally weighted square loss with L2 regularization £, where the
weights are given by the the exponential kernel 7, on Euclidean distance D.

L(f,g,m)= Y exp

z,2'€Z

— X,z 2
(D(g)> (£) = 9 + Al (13)

where Z denotes the training set for the explanatory model sampled from
the Gaussian distribution A/ (y,0?) with the mean p and variance o2 of each
feature taken from the underlying model’s training set and £ denotes the kernel
width which is by default defined as £ = 0.75v/d.

Algorithm 2 LIME (Sparse linear explanations)

Require: Classifier f, Input x of the prediction being explained
Require: Number of training samples M, Length of explanation d
Require: Means p and variances o2 of all features from the classifier’s f
training data
Z{}
forie {1,2,...,M} do
zi  N(u,0?)
Z Uz, f(2), m2(24))
Gfeature_selection < Rldge(Z)
Select the d features with the highest weights in geature setection
g < Ridge(2) > with 2] as features and f(z) as target
return g

1.7.2 Anchors

Anchors is a local model-agnostic explanation method created by the same
researchers as LIME - Ribeiro et. al. [19]. Anchors explain a given prediction
of a Black-box classifier by producing a Decision Rule. The motivation behind
the method is that explanations from other local explanation methods have
unclear coverage. For example a local explanation produced by the LIME
method can be locally faithful, however, it is unclear whether the explanation
also applies to some other instance. Ribeiro et. al. argue that the unclear cov-
erage can mislead the audience as they may think that the explanation applies
to some other instance when it does not. Anchors aim to produce a Decision
Rule such that features that are not included in the rule’s predicates does not
influence the prediction of the model being explained. Such explanation have
clear coverage as it applies to all instances that satisfy the rule’s conditions

19



1. THEORETICAL PART

as illustrated in Figure 1.5. Decision Rules are also highly interpretable for
humans which makes them a goot fit for explanations [20].

Figure 1.5: Illustration of Anchors explanation. The green and red background
shows the decision boundary of the underlying Black-box classifier f, the point
in the space shows the instance being explained x and the explanation rule g
produced by the Anchors method is illustrated as the purple rectangle. The
rule’s coverage is clear as it only applies to instances inside the rectangle (rule’s
scope) where the rule is also highly efficient.

Explanations produced by Anchors are essentially local surrogate models with
Decision Rules as the family of explanatory machine learning models. However
the method is not based on the local surrogate explanation model framework
described in subsection 1.8.1.1. Instead, the method utilizes techniques from
reinforcement learning and graph search in order to be computationally effi-
cient.

Formally, let f : R™ — R denote the model being explained, x € R™ denote
the input of the prediction being explained and f(z) denote the corresponding
prediction (which must be a class label). Let A be a Decision Rule, such that
A(z) returns 1 if x satisfies all the rule’s predicates. Moreover, let D denote
a distribution from which the training samples for the explanation are drawn
and let D(-|A) denote a conditional distribution when the rule A is satisfied.
For a desired level of precision 7, explanation rule A must satisfy the following:

A(l‘) =1, ED(z|A)[]]-f(ac):f(z)] >, (14)

where Ep;j4)[1 f(z)=f(z)] = prec(A). For a highly dimensional input space it
is infeasible to evaluate 1 ¢(,)—y(. for all z € D(-|A). Therefore a probabilistic
precision is evaluated instead with parameter § € (0, 1) specifing the desired
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level of statistical confidence:
P(prec(A) > 1) >1-4. (1.5)

From all the rules that satisfy this precision condition, the explanation is
selected as the rule A with the highest coverage cov(A):

Ast. P(prrc%?fl{)ZT)Zl—(s]ED(z) [A()] (16)
where Ep(;)[A(2)] = cov(A). Through maximizing the coverage, interpretabil-
ity of the explanation is indirectly also maximized as Decision Rules with less
predicates tend to have higher coverage. On the other hand, Decision Rules
with more predicates tend to have lower coverage and higher precision which
yields a trade-off between precision and coverage.

Evaluating A(z) for all z € D is infeasible, therefore the cov(A) is estimated
based on a fixed number of samples as the ratio of samples that satisfy the
given rule A. However, solving Equation 1.6 directly remains intractable as the
number of all possible rules grows exponentially with n (number of features).

In order to produce an explanation that is an approximation of the Equa-
tion 1.6, Beam search over the space of potential explanations is performed.
Beam search is a search algorithm that uses a heuristic to expand only B
best candidates in each depth [21]. The Beam search therefore have two main
parts. In the first part, a new set of rule candidates is generated out of the set
of B best rule candidates from the previous step and in the second part, new
B best rule candidates with the highest precision are selected for the next step
of the Beam search. Algorithms for both of these parts are described below.

Generating rule candidates by expanding rules The pseudocode of
generating rule candidates is given in Algorithm 3. The algorithm starts with
an empty set of rules Ac.q,g and in each iteration, each rule A € A is extended
by one additional feature predicate for each predicate a;, such that a; is satis-
fied by x and cov(A A a;) > cov(A*), where A* denotes the best rule found so
far with respect to the Equation 1.6. This condition prunes the search space
as the rule’s coverage can only decrease when adding more predicates. For the
purpose of generating feature predicates, continuous features are discretized
into bins of equal height (quartiles or deciles) as predicates are generated for
each value of each feature.
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Algorithm 3 Generating rule candidates by expanding rules
Require: Input x of the prediction being explained
Require: Set of the current candidate rules A
Require: Coverage of the best rule found so far cov(A*)

1: function GENERATECANDIDATES(z, A, cov(A™*))

2 Acand — @

3 for all A € A do

4 for all a; s.t. a; is satisfied by x and a; ¢ A do

5: if cov(A A a;) > cov(A*) then > Prunning of the search space

6:

7

Acand <~ -Acand U (A A ai)

return A.q,q

Selecting the best candidate rules After generating the set of rules A,
B candidate rules with the highest precision from A..,q have to be selected
for the next iteration. As disscused earlier, it is infeasible to evaluate all the
samples from D(:|A) to calculate the true precision of a rule A and therefore
an approximation have to be calculated instead. The approximation of the
rule’s A precision is calculated on a limited number of samples z € D(:|A).
Choosing a fixed number of samples may lead to inaccurate estimations in
some cases and high computational complexity in other cases. The goal is to
accurately approximate precisions using a minimal number of samples from D.
To achieve this goal, the problem of selecting B rules with the highest precision
is reformulated as an instance of explore-m multi-armed bandit problem.

Multi-armed bandit problem is a reinforcement learning problem inspired by
a gambler who can choose from a number of one-armed bandit slot machines.
Each slot machine yields a reward with a different probability. The reward
probabilities are unknown to the gambler, however, he is allowed to play the
slot machines arbitrarily. In the explore-m setting, gambler’s goal is to identify
a subset of the highest rewarding slot machines with a minimal number of
plays [22]. Formally, consider a finite number of arms K > 2, where each
sample of arm k yields a reward generated from a Bernoulli distribution with
mean pi € [0,1]. The arms can be sorted based on the corresponding means
such that p;1 > ps > ... > pr. The goal is to identify m arms with the
highest means using a minimal number of samples. In the context of selecting
rules with the highest precision, each arm k corresponds to a rule A, mean py
corresponds to precision prec(A) and sampling arm & corresponds to drawing
a sample z € D(-|A) and evaluating 1 ¢(zy—f(2) [23].

To solve this task, Ribeiro et. al. proposed to use the KL-LUCB algorithm.
Informally, the KL-LUCB algorithm works by constructing confidence regions
for the precision estimate of each rule. In each iteration, the current set of B
best rules is selected and only the two critical rules are sampled - the worst
rule from the set of the best rules and the best rule outside of the set of the
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best rules. The iterations stop when the critical rules’ confidence regions are
far enough apart and the current set of B best rules is returned.

The pseudocode of KL-LUCB algorithm is given in Algorithm 4. In the first
step, the algorithm samples z € D(-|A) for each rule A to initialize the pre-
cision estimate prec(A) as well as confidence region’s bounds prec;(A) and
precyy(A) computed based on Kullback-Leibler divergence:

precip(A) = min{q € [0, prec(A)] : Na(t)K L(prec(A), q) < B(t,9)}, (L)
precuy(A) = maz{q € [prec(A), 1] : Na(t) K L(prec(A),q) < B(t,5)},

where ¢ denotes the time (step of the algorithm), N4 (t) denotes the number
of samples z € D(-|A) drawn up to time t (number of updates of prec(A)),
6 denotes the desired level of statistical confidence on the precision estimate,
K L denotes the Kullback-Leibler divergence between two Bernoulli distribu-
tions, given as K L(py, py) = pzlog(f)—z)—l—(l—px)log(i—zz) and 8 denotes the ex-
ploration rate which is by default defined as (¢, ) = log( ktzK) + log log(kt;K)7
where a > 1 and k > 1+ —L- are parameters [24].

Then in each iteration, the algorithm selects the set Apes; of B rules with the
highest precision estimates and two critical rules A, and A; such that:

A, = argmax precy,(A), Ay = arg min precp(A) (1.8)
Ag-Abest AGAbest

In other words, rule A, is the rule with the highest precision upper bound
outside of Ap.s; and rule A; is the rule with he lowest precision lower bound
from Apes;. In each iteration, only the two critical rules are sampled and
updated and the iterations stops after the difference between the precision
upper bound of A, and the precision lower bound of A; is lower than a selected
tolerance € € [0,1]. The KL-LUCB algorithm returns a set Apes; of B rules
that satisfy the following (proved in [24]):

P(Aénjgst prec(A) > A/g}i/r;est prec(A’) —e) > 1 -4, (1.9)

where A’jq; is the true set of B rules with the highest precision.
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Algorithm 4 Selecting B best rule cadidates via KL-LUCB algorithm
Require: Classifier f, Input x of the prediction being explained
Require: Distribution D of the training data for explanation
Require: Set of rules A, Number of rules to be chosen B
Require: Desired level of statistical confidence §
Require: Tolerance e, Exploration rate
1: function B-BESTCANDIDATES(f, z, A, D, B, d, ¢, 3)
for all A € A do > Initialization
sample z € D(-|A)
initialize prec(A), precy(A), precyy(A)
initialize Apegt, Ay, A;

while precy,(Ay) — precp(A4;) > € do
sample z, € D(-|A,)
update p/TEC(Au) ) preclb(Au)7precub(Au)
sample z; € D(:|4;)
update prec(A4;), precp(A;), precyy(4;)
update Apest, Ay, A

return Ap.q

—
— O

—_
\V]

The final pseudocode of the Beam search for generating the explanation rule is
given in Algorithm 5. The Beam search iteratively search the space of potential
candidate rules using the GENERATECANDIDATES method for generating a
new set of rule cadidates and B-BESTCANDIDATES method for selecting the
B rules with the highest precision. In the end of each iteration, the best rule
A* is potentially updated as the rule with the precision lower bound higher
than the desired level of rule precision 7 and the highest coverage found so
far. The search ends when there is no rule candidate that could potentially
surprass the best rule found so far.
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Algorithm 5 Anchors - Beam Search

Require: Classifier f, Input x of the prediction being explained
Require: Distribution D of the training data for explanation
Require: Beam width B

Require: Desired levels of precision 7 and statistical confidence &
Require: Tolerance ¢, Exploration rate

1: Ag <0 > Initialize the set of candidate rules
2: A* + null > Initialize the best rule found so far
3: loop

4: At cand ¢ GENERATECANDIDATES (2, A;_1, cov(A*))

5: A; < B-BESTCANDIDATES( f, x, At canas D, B, d, €, 5)

6: if A, =0 then > No candidate rules left
7 break loop

8: for all A € A; s.t. precy(A) > 7 do > Satisfy Equation 1.5
9: if cov(A) > cov(A*) then > Highest coverage found so far
10: A+ A

11: return A*

1.7.3 SHAP

Shapley Additive Explanations (SHAP) is a local model-agnostic explanation
method that explains a given prediction of a Black-box model through feature
importance scores. Feature importance explanation shows how each of the
input’s features influenced the prediction. Such explanations are popular as
there are many model-agnostic and model-specific methods for calculating
global or local feature importance scores [3]. SHAP is based on Shapley values
that come from cooperative game theory. Cooperative game is a game where
multiple players cooperate in order to acquire a payout and Shapley values
show how to fairly divide the payout between the individual players based on
their contributions to the payout. When used on a machine learning model,
the Shapley values show the influence that each feature has on the prediction.

Formally, a cooperative (or coalitional) game is a tuple (P,v), where P is a
finite set of players and v : 2 +— R is a characteristic function that maps
every possible subset of players S C P (coalition) to a number represent-
ing coalition’s collective payout. The characteristic function must satisfy
that v(@) = 0, where () denotes the empty set of players. Intuitively, the
marginal contribution to the payout of a player 7 in a coalition S could be
obtained as the difference between the payouts of coalitions with and without
the player i: v(SU{i}) —v(S). However, this equation calculates the marginal
contribution only in the situation when the player ¢ joins the coalition as the
last player. The marginal contribution of the player ¢ may therefore be too
low as the player’s skillset could already be present in the coalition S before
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player’s addition to the coalition. Similarly, if the player ¢ is added as the
first player to the coalition, the player’s marginal contribution may be too
high, bringing down other players’ contributions. Shapley value ¢;(v) is de-
fined as the average marginal contribution of the player ¢ over all possible
permutations of the coalition. Shapley value ¢;(v) is given by:

ySI!(!Plu—D‘I!SI ~ DY u(s U {it) — w(S)), (1.10)

gi(v)=

SCP\{i}

where |S| denotes the number of elements of S. Subset S represents players
that were picked before the player i and subset P\{SU{i}} represents players
that were picked after the player i. Since the player ¢ is not affected by
the exact order within the subsets of the players picked before and after the
player i, the payout differences v(S U {i}) — v(S) are weighted by the term
ISH(IPI=1SI-1)Y/|p|r that calculates how many permutations are represented by
the particular pick of S.

Lloyd Shapley has proved in [25] that the Shapley values are the only solution
to the problem of fair distribution of the payout that satisfy the following
axioms.

Efficiency axiom The sum of all Shapley values is equal to the collective
payout:

> 6i(v) = v(P) (L11)

i€P

Symmetry axiom If two players increase the payout of every coalition by
the same amount, then their Shapley values are equal:

Vi,j € P:VS C P u(SU{i}) =v(SU{) AL ¢S = di(v) =d;(v) (1.12)

Dummy axiom If a player does not increase the payout of any coalition,
then its Shapley value is equal to zero:

Vie P:VS C P v(SU{i}) =v(S) = ¢i(v) =0 (1.13)

Additivity axiom If a characteristic function of a game can be represented
as a sum of two charactaristic functions, then the corresponding Shapley values
can be decomposed in the same way:

V(P,v+w):¥S CP (v+w)(S) =v(s) +w(S) =

=Vie P ¢i(v+w) = ¢i(v) + ¢;(w) (1.14)
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These axioms demonstrate that SHAP explanations are built on a solid theory
which may make them more appealing in some use cases or to some audi-
ences [6]. Patrick Hall, who is a co-founder of an Al-focused law firm called
bnh.ai, suggests using SHAP explanations in fields regulated by the law such
as banks or insurance companies [26].

The Equation 1.10 can not be directly used to generate an explanation of
a machine learning model as most of the machine learning models can not
handle missing data and must be provided with a value for each input fea-
ture. Moreover, the Equation 1.10 requires evaluation of every subset which
is unfeasible as the number of subsets grows exponentially with the number
of players (features).

Strumbelj et. al. in [27, 28] propose an approach to overcome both of these
issues. The pseudocode of their algorithm for generating explanations based
on Shapley values is given in Algorithm 6. First, an equivalent formulation of
the Equation 1.10 that computes the average marginal contribution over the
set of all ordered permutations W(P) of players P is given by:

i) = = 3 ((Pré (W) U{i}) —o(Pre(y),  (115)

P! Pev(P)

where Pre’(i) denotes the set of all players that precede the player i in per-
mutation ¢ € U(P).

Let f : R™ — R denote the model being explained, z € R™ denote the input
of the prediction being explained and f(x) denote the corresponding predic-
tion (class label or probability of a class). Let the set of players be repre-
sented as the set of n features denoted by their corresponding feature indexes
N = {1,2,...n} and the payout be represented as the difference between
the prediction being explained f(z) and the expected prediction of the model
being explained E[f]. The goal is to fairly divide the payout f(z) — E[f]
between the individual features of input x based on features’ contributions.
To simulate the situation where a subset of features is missing from the in-
put, the values of the features that are supposed to be missing are replaced
by randomly sampled values. Formally, for a permutation ¢ € W(N) and
a sample z € R" drawn from a distribution D (distribution from which the
training samples for the explanation are drawn) two instances z4;,x_; € R”
are constructed as:

LTyq = (l’,z,fl(l), .'I}wfl(Q), ceey xdfl(i)’ 21/1*1(2'4-1)7 ceey wal(n)% (1 16)

T—; = (a;¢71(1), IL‘w—l(Q), ey Z¢—1(i), wal(i—i-l)? ey Zzp*l(n))v
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1. THEORETICAL PART

Let ¢;(f,x) denote the Shapley value of feature i for the model f and input
z. To compute the exact value of ¢;(f,x), the whole set of ordered permuta-
tions ¥(N) would have to be evaluated. Instead, only a fixed number of M
randomly sampled permutations 1) € W(NN) and samples z € D are evaluated
to produce an approximation ggl( f,x):

M
G =1 Y Ul —fla),), )
T

where (z44),, and (z_;),, denote instances constructed as in Equation 1.16
based on permutation 1, and sample z,,.

gz?z( f,x) is an unbiased and consistent estimator of ¢;(f,z) and is approxi-
2

mately normally distributed: ¢;(f,z) ~ N (¢:i(f, ), Jﬁl), where o? denotes
the variance of the feature ¢ in the distribution D and M; denotes the number
of samples used for calculating gz?i(f, x). As q?i(f, x)—¢i(f,z) =~ N(0, %), the
number of samples needed to accurately approximate ¢;(f,z) depends solely
on the feature’s i variance 2. Choosing the same number of samples for all
the features is undesirable as the features are likely to have different variances.
Therefore a minimal number of samples for each feature M,,;, and a maximal
number of samples for all the features M, . are chosen. After each feature is

sampled M,,;, times, the algorithm chooses which feature to sample next by
2

2
choosing the feature j with the highest (;—7 — mjﬂr ), where m; denotes the
number of samples for the feature 7 drawn so far. The algorithm stop after
drawing M., samples. This sampling strategy minimizes the squared loss
?:1(51-(]“, r) — ¢i(f,x))%. The same approach can be used even in situations
where the variances o2 are unknown as they can be estimated from the samples

z € D drawn so far for example by Knuth’s incremental algorithm [29].
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1.7. Local model-agnostic explanation methods

Algorithm 6 SHAP

Require: Classifier f, Input x of the prediction being explained
Require: Distribution D of the training data for explanation
Require: Minimal number of samples for each feature M,,;,
Require: Maximal number of samples for all the features M,,q.

1: for i =1 ton do > Initialization
2: m; < 0 N
3: ¢i <0 > ¢i(f, )

4: while Y 7" | mj < Myq, do

5: if 3i: m; < M, then

6: pick feauture j to be sampled s.t. m; < Myip

7 else ) )

8: pick feature j to be sampled with the highest (ZTJ] — m]-il)
9: Y < VU(N)

10: z+ D

11: Tyj — (qu(l), $w71(2), ceey md)*l(i)a wal(i—‘rl)? Ceey wal(n))

12: T_j < (x¢_1(1), Top=1(2)y + + + s Zep=1(3)> Zp=1(i4+1)s =+ + > Zw—l(n))

130 @i i + (f(zgi) — fz-0))

14: mj < m; +1

15: for i =1 ton do

16: gbl — %

17: return ¢ > Vector of Shapley values

1.7.3.1 Kernel SHAP

Kernel SHAP is a method for approximating Shapley values introduced by
Lundberg et. al. in [30]. The authors argue that Kernel SHAP achieves
similar accuracy while being computationally more efficient compared to the
Algorithm 6. The goal of Kernel SHAP is to learn an explanation model g:

9(2') = do +>_ biz, (1.18)

=1

where 2z’ € {0,1}" denotes a coalition vector for an input of n features where
the value of 2/; specify whether the feature i is present (2] = 1) or absent
(z2f = 0) [6]. The Shapley value ¢y denotes the expected prediction of the
model being explained E[f]. For the input « of the prediction being explained,
the coalition vector is defined as a vector of all ones: 2/ = (1,1,...,1). The
explanation model g must satisfy the following:

@) = gl@) = b0+ 3 dua (1.19)

i=1
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This equation resembles the linear explanation model and Shapley values are
the only solution to this equation that satisfies the axioms in Equations 1.11-
1.14 as proved by Lloyd Shapley in [25]. Lundberg et. al. have proved, that
the LIME framework described in subsection 1.7.1.1 is able to recover the
Shapley values with the following choices of loss function £, weighting kernel
e and complexity metric €2:

o) =0, (1.20a)
(2 = (n_ 1)
2 (2) (n choose ||2'|))[[Z']lo(n — 112']ly)’ (1.20b)
LUf g mar) = 3 mar () (F(ha(2) = 9()2, (1.20¢)
2'eB

where where ||2/||, denotes the ¢y “norm” defined as the number of non-
zero elements of vector 2/, B denotes a distribution of binary vectors and
hy: {0,1}" +— R™is a function that maps a coalition vector to the original
feature space in the following way:

riex ifz =1

zi€z if2l=0"

(he(2")); = { (1.21)

where (hz(2')); denotes the value of h,(2’) on index i and z denotes a sample
drawn from a distribution D. The function h, therefore replaces the feature
values of x that are supposed to be absent with a value from a random sample
z which is a similar approach as in the Algorithm 6.

In the LIME framework for linear models the complexity metric €2 is supposed
to limit the number of features used by the explanation model to ensure inter-
pretability. For calculating Shapley values the complexity metric €2 is ommited
as the Shapley values must be calculated for all the input features to ensure
that the axioms in Equations 1.11-1.14 are satisfied. The intuition behind
the weighting kernel 7,/ is similar as in the weighting term in Equation 1.10,
where the weights are assigned based on how many permutations are repre-
sended by the particular pick of present and absent players (features). m, is
therefore not a proximity measure that defines the locality around the input
z as in the LIME framework. Finally, the linear explanation model whose
weights correspond to Shapley values is obtained by minimizing the weighted
square loss £. The pseudocode of Kernel SHAP is given in Algorithm 7.
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Algorithm 7 Kernel SHAP

Require: Classifier f, Input x of the prediction being explained
Require: Distribution D of the training data for explanation
Require: Distribution B of binary vectors

Require: Number of training samples M

AR > Training data
: forie{1,2,...,M} do

2« B

z+ D

ZU(, f(ha(2)), T ()

: ¢ < LinearRegression(Z2)

return ¢

NP T e

It is important to note that the linear explanation model returned by Kernel
SHAP is not a local surrogate explanation model as it is designed to approxi-
mate Shapley values and not to approximate the model being explained.

While Kernel SHAP was designed to be computationally more efficient than
the Algorithm 6, Molnar et. al. in [6] argue, that Kernel SHAP is still
very time consuming for some practical applications. Lundberg et. al. in [30]
propose and review several model-specific methods for approximating Shapley
values such as Linear SHAP for linear models, Tree SHAP for tree-based mod-
els and Deep SHAP for Artificial Neural Networks. These methods achieve
higher computational efficiency as they are allowed to access model’s internals
such as gradient values. By being based on the same solid theory of Shap-
ley values, these model-specific explanation methods can also be used as a
complementary method for selection of the better performing model.
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CHAPTER 2

Experimental part

2.1 Implementation

The experiments are written in the Python programming language (version
3.8) [31], which is a object-oriented, high-level language with a wide range
of machine learning related packages and libraries available. The evaluated
local model-agnostic explanation methods - LIME, Anchors and SHAP (Ker-
nelSHAP) are all implemented in Python by their respective authors [12, 19,
30]. Some of the evaluated methods are also implemented in explainability
libraries such as Alibi [32] or XAI360 [16]. These libraries provide a unified in-
terface for all their implemented explanation methods, however, to the best of
our knowledge no such library currently includes all of the evaluated methods.

Artificial datasets used in section 2.2 were generated using the numpy li-
brary [33], which is a library for handling multidimensional arrays. Other
libraries used in the experiments are — pandas [34] for handling tabular data
and scikit-learn [35] that implements all the machine learning algorithms used
in the experiments.

The experiments were run and are available in Jupyter notebooks [36] which
is a web-based environment for running Python code.

2.2 Faithfulness evaluation on artificial datasets

In this section, the local model-agnostic explanation methods described in Sec-
tion 1.7 are experimentally evaluated on artificial datasets in terms of their
faithfulness . Faithfulness refers to the accuracy of an explanation with re-
spect to the model being explained. Artificial datasets are generated based
on known predefined dependencies, which allows for the optimal explanations
to be calculated. Explanations of machine learning models that are highly
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2. EXPERIMENTAL PART

accurate on a given artificial dataset can then be compared to the optimal
explanation in order to evaluate explanation’s faithfulness.

2.2.1 Artificial datasets

The artificial datasets described below are inspired by Robnik-Sikonja et. al.
who use artificial datasets to evaluate their local model-agnostic explanation
method in [37]. Each artificial dataset is associated with a suitable family of
machine learning models.

condInd The condInd dataset consists of eight binary features and binary
class with 50% probability of 1. Four of the features are important as they have
equal value to the class in 90, 80, 70 and 60% of the cases, respectively. The
other four features are unimportant as they are unrelated to the class (have
equal value to the class in 50% cases). Since the features are conditionally
independent, Naive Bayes classifier is suitable for this dataset.

xor The xor dataset consists of six binary features and binary class. Three
of the features are important and — class is equal to 1 when an odd number of
important features are equal to 1, and 0 otherwise. The other three features
are unimportant as they are unrelated to the class. Decision Tree is suitable
for this dataset as it can capture the necessary conditions.

cross The cross dataset consists of four continuous features and binary class.
Two of the features are important and they are generated into a cross sign as
shown in Figure 2.1. The class value is 1 if (I; — 0.5)(Iz — 0.5) > 0, where
I and I, denote the two important features. The other two features are
unimportant as they are unrelated to the class. Random Forest is the chosen
model with the best performance on this dataset.

groups The groups dataset consists of four continuous features and binary
class. Two of the features are important. The datapoints in 2-dimensional
space of these important features form 16 clusters, where adjacent clusters
have different class values as shown in Figure 2.2. The other two features are
unimportant as they are unrelated to the class. Since each group is clustered
together, k-Nearest Neighbors algorithm is suitable for this dataset.

34



2.2. Faithfulness evaluation on artificial datasets

0.6 |- -

0.4 A

0 02 04 06 08 1

Figure 2.1: Visualization of the two important features in the cross dataset.
Red minuses represent data points of class 0 and green pluses represent data
points of class 1.
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Figure 2.2: Visualization of the two important features in the groups dataset.
Red minuses represent data points of class 0 and green pluses represent data
points of class 1.
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2.2.2 Metrics

Metrics that are used for the evaluation of faithfulness on artificial datasets are
described below. Note that since each of the evaluated explanation methods
produce different type of explanation not all of the metrics are applicable on
every evaluated explanation method.

Recall on important features and False discovery rate on unimpor-
tant features Each artificial dataset is designed such that it contains equal
number of important and unimportant features. This allows the explanation
methods to be evaluated based on the ratio of important and unimportant
features included in their explanations. For this evaluation, LIME’s parame-
ters are set such that its explanations include number of features equal to the
number of important features in a given artificial dataset. Anchors and SHAP
methods does not allow to set the number of features in their explanations.
Anchors produces sparse explanations in order to maximize coverage of the
decision rules. Features used in the decision rule explanations are considered
important by the Anchors method. SHAP, however, always includes all of the
features in its explanations, therefore a Shapley value threshold above which a
feature is considered to be included in the explanation was experimentally set
to 0.05. Higher threshold value leads to higher recall on important features
and higher false discovery rate on unimportant features and vice versa.

Mean absolute error The true feature importance scores are known for
all the artificial datasets. The correct feature importance scores in absolute
values are the following: 0.4, 0.3, 0.2 and 0.1 for important features in the
condInt dataset, 1/3 for each important feature in the xor dataset and 1/2 for
each important feature in both cross and groups datasets. The unimportant
features should be assigned zero feature importance scores in all the artificial
datasets. Both LIME explanations’ feature contributions and SHAP expla-
nations’ Shapley values can therefore be evaluated based on mean absolute
error:

n

where ¢; denotes the correct feature importance of feature 7 and w; denotes the
explanation’s feature importance of feature i. Note that the correct feature
importance scores have their sums normalized to 1, therefore the explanations’
feature importance scores sums have to be also normalized to 1 (excluding
the intercept). For this evaluation, LIME’s parameters are set such that its
explanations include all the features. SHAP explanations’ always include all
the features and Anchors explanations’ can not be evaluated by this metric.

Accuracy and Coverage LIME and Anchors methods produce local sur-
rogate models as explanations. Local surrogate models can be evaluated based
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on accuracy of their approximation of the model being explained. Accuracy
of a local surrogate model g and a model being explained f is given by:

1
T D La)=fa) (2:2)

‘ Atest | €A ost

where Asest C Iliesr denotes the set of testing data for the local surrogate
model, Il;es; denotes the set of all the testing data and |A¢es| denotes the
number of elements in the set. Local surrogate model aims to approximate
the model being explained locally, which means that the explanation does not
apply to all possible inputs. Accuracy is therefore evaluated only on a subset
of the testing data to which a given explanation apply. Proportion of the data
to which the explanation apply is called coverage and is calculated as:

’Atest |
|Htest | ’

(2.3)

For Anchors, the subset Asg: contains the testing instances that satisfy ex-
planation’s rule conditions. For LIME, the subset A contains the test-
ing instances for which the explanation produces confident predictions. The
threshold for confident predictions was set differently for each explained model.
SHAP’s accuracy and coverage can not be evaluated as the method does not
produce a local surrogate model as an explanation.

2.2.3 Results

Table 2.1 shows results of the faithfulness evaluation. 2000 samples were
generated for each artificial dataset, with half of the samples used for training
and other half for testing. The same sets of training and testing data were
used for the models being explained and for the explanations. Explanations
were generated for each sample in the test set and the values listed in the table
are mean metric values of all the explanations. For each artificial dataset, the
chosen family of machine learning models is specified and accuracy of the
model being explained is given in parentheses. Models’ hyperparameters were
set manually based on knowledge of the artifical dataset and explanations’
parameters were set to default.

On the condInd dataset, all the explanation methods produced faithful lo-
cal explanations. Anchors achieved a seemingly low recall on the important
features as its goal is to maximize explanation’s coverage while producing
an accurate explanation. To achieve this goal on the Naive Bayes classifier
trained on the condInd dataset, Anchors does not have to use all of the impor-
tant features in its explanations. For example, when the features that have
the same value as class in 90 and 70% of the cases have equal value, the model
predicts this value as the class regardless of the other features.
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Explanation condInd XOr Cross groups
method NB (0.92) | DT (1.00) | RF (1.00) | KNN (0.94)
Imp Recall 0.99 0.81 0.67 0.54
Unimp FDR 0.01 0.19 0.33 0.46
LIME MAE 0.053 0.105 0.213 0.240
Accuracy 0.93 0 0 0
Coverage 0.55 0.0 0.0 0.0
Imp Recall 0.62 1.0 1.0 0.99
Unimp FDR 0.06 0.71 0.39 0.82
Anchors MAE / / / /
Accuracy 0.92 1.0 0.97 0.88
Coverage 0.36 0.06 0.13 0.02
Imp Recall 0.79 1.0 1.0 0.95
Unimp FDR 0.0 0.0 0.05 0.27
SHAP MAE 0.046 0.008 0.025 0.082
Accuracy / / / /
Coverage / / / /

Table 2.1: Results of faithfulness evaluation on artificial datasets

On the xor dataset, LIME failed to produce faithful local surrogate models,
despite being able to identify the important features and assigning reasonably
accurate weights to the features. LIME explanations failed to produce any con-
fident predictions which resulted in 0 coverage. This behaviour was expected
as linear models are unable to learn even the two variable version of the xor
function since it is highly non-linear [1]. Anchors produced explanations with
low coverage due to the inclusion of unimportant features. Anchors produces
the explanation rules iteratively by adding one feature condition to the rule
in each step. However in the xor dataset, all feature conditions have the same
discriminative value unless two of the important features are already included
in the Decision Rule, which causes the high false discovery rate of unimpor-
tant features. While the xor dataset proved to be difficult for both LIME and
Anchors methods, SHAP explanations achieved nearly optimal faithfulness.
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The cross dataset is similar to the xor dataset with only two important fea-
tures, where the features are continuous instead of binary. This causes similar
issues for both LIME and Anchors methods. Looking at the Figure 2.1, the
optimal coverage of the Anchors explanations should be 0.25 as opposed to
the achieved coverage of 0.13.

Similar issues for LIME and Anchors also emerged on the groups dataset,
where even the SHAP method included some of the unimportant features in
its explanations, unlike on the other artificial datasets.

2.2.4 Summary

In this section, local model-agnostic explanation methods — LIME, Anchors
and SHAP were evaluated in terms of their faithfulness to the model being
explained on four artificial datasets. The artificial datasets demonstrated
situations where both LIME and Anchors produce suboptimal explanations,
whereas SHAP was able to produce faithful explanations on all the datasets.

LIME fails to produce faithful local explanations of highly non-linear mod-
els. Anchors produces overly specific explanations with low coverage when
individual features have low discriminative value. Out of the evaluated lo-
cal model-agnostic explanation methods, SHAP was evaluated to be the most
robust one.

2.3 Explaining a black-box classifier learned on
real-world dataset

In this section, the local model-agnostic methods are used to explain a black-
-box classifier learned on the real-world UCI divorce dataset [38].

The divorce dataset contains 51 features, each corresponding to a certain state-
ment about a participant and their partner (current or ex), such as “I enjoy
traveling with my wife” or “My spouse and I have similar ideas about how mar-
riage should be”. The feature values range from —2 to 2, where —2 means the
participant strongly disagrees with the statement and 2 means the participant
strongly agrees with the statement. The class is binary, where 0 corresponds
to a divorced participant and 1 corresponds to a married participant. The
dataset contains data on 170 participants (84 divorced and 86 married) and
was split into 113 training instances and 57 testing instances.

Yontem et. al. in [38] have shown that Random Forest models achieve the
highest performance on this task. The Random Forest model consisting of
50 Decision Trees with maximum depth of 4 achieved 98.2% accuracy on the
set of testing data. The hyperparameters were found using grid search and
cross-validation.
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Yontem et. al. have also compared performance of many different divorce
prediction tools, concluding that the Random Forest models learned on this
dataset achieves the highest accuracy, while also not requiring personal meet-
ing with a couple therapist. However, a notable downside of this automated
approach is that potential users are not expected to be able to understand
decision making of a model that consists of 50 Decision Trees and uses 51 dif-
ferent features. It is easy to imagine that a couple would be more interested
in the negative influences in their marriage that they can work on rather than
getting an accurate prediction that they will divorce.

LIME, Anchors and SHAP explanations of one selected instance are shown
below. The instance being explained is correctly predicted as divorced by the
Random Forest model (the predicted probability of class 0 is 92%).

Table 2.2 shows LIME explanation of an instance predicted as divorced by the
model. The number of features used by the LIME explanation was set to 7.

Feature’s
Feature Statement Value | Weight ea.ure.b
contribution
M s d I have similar ideas
y spouse an 1ave similar ideas 1 0.090 -0.090
about how marriage should be.
My spouse and I have similar ideas
-2 0.028 -0.057
about how roles should be in marriage.
‘We share the same views about
-2 0.014 -0.028
being happy in our life with my spouse.
I think that day in the fut hen I look back
1ink that one day in the future, when I look back, 1 0.024 0,024
I see that my spouse and I have been in harmony with each other.
I know my spouse’s basic anxieties. -2 0.008 -0.015
I enjoy traveling with my wife. -2 0.007 -0.015
My spouse and I have similar values in trust. -2 0.005 -0.011
Explanation model’s intercept 0.436
Explanation model’s prediction 0.191 =0

Table 2.2: LIME explanation of the instance predicted as divorced. Linear
model’s prediction is a sum of intercept and features’ contributions, where
feature’s contribution is a multiplication of feature’s value and corresponding
weight. The LIME surrogate model’s prediction is lower than 0.5 therefore it
predicts class 0 (divorced).

Table 2.3 shows Anchors explanation of the same instance predicted as di-
vorced by the model. Anchors is able to produce a very sparse explanation of
the model’s prediction, using only 2 of the 51 features. Method’s parameters
were set to default.
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Feature conditions

Our dreams with my spouse are similar and harmonious. <=1

We share the same views about being happy in our life with my spouse. <= -2

Explanation model’s prediction 0

Explanation model’s coverage 0.47

Table 2.3: Anchors explanation of the instance predicted as divorced. When
all the feature conditions are satsified by an instance, the explanation predicts
class 0 (divorced). The explanation rule is satisfied by 47% instances from the
test data.

Table 2.4 shows the 7 highest Shapley values genereated by the SHAP method
for the same instance predicted as divorced. The SHAP method assigned non-
-zero Shapley values to 19 features. However, when exhaustive explanations
are not required, shorter explanations should be preferred as they are easier
to understand.

Feature Statement Value Feature
importance
My spouse and I have similar ideas 1 0.08
about how marriage should be.
My spouse and I have similar ideas - 0.07
about how roles should be in marriage.
We’re compatible with my spouse about 1 0.04
what love should be.
We share the same views about - 0.04
being happy in our life with my spouse.
I think that one day in the future, when I look back, 1 0.03
I see that my spouse and I have been in harmony with each other.
I know my spouse’s basic anxieties. -2 0.03
My spouse and I have similar values in trust. -2 0.03
If one of us apologizes when our discussion 1 0.02
deteriorates, the discussion ends.
Explained model’s expected prediction (probability of class 0) 0.47
Explained model’s prediction (probability of class 0) 0.92

Table 2.4: 7 highest Shapley values of the instance predicted as divorced gen-
erated by the SHAP method. The model’s expected probability of predicting
class 0 is 0.47, whereas for this instance the predicted probability of class 0 is
0.92. Shapley values explain the difference between the expected prediction
and the prediction for a particular instance.

41



2. EXPERIMENTAL PART

2.3.1 Faithfulness evaluation

To evaluate fathfulness of explanations of a black-box model trained on a
real-world dataset, metrics such as Recall on important features or MAE from
subsection 2.2.2 can not be used, as the correct explanations are usually un-
known. LIME and Anchors produce local surrogate models as explanations,
which can be evaluated in terms of accuracy and coverage even on a real- -
world datasets. The only metric that could be used to evaluate faithfulness of
SHAP explanations is described in subsection 1.5.1.2 and based on replacing
feature values with no information values (called no-op values) and measuring
the impact on the predictions of the model being explained. The only sensi-
ble no-op value in the divorce dataset is 0 as it represents a neutral answer.
However, for the model being explained, features with 0 value have positive
impact towards not divorced predictions. When a considered instance is pre-
dicted as not divorced, replacing its feature values with no-op value changes
the model’s predictions for only 3 features, while the SHAP method assigns
non-zero Shapley values to 19 features. This metric was therefore deemed as
unreliable for evaluating SHAP explanations’ faithfulness with respect to the
model trained on the divorce dataset.

Table 2.5 show results of accuracy and coverage evaluation of LIME and An-
chors explanations. Explanations were generated for each sample in the test
set and mean values of accuracy and coverage are listed in the table. Both
explanation methods achieved high accuracy therefore their explanations are
considered faithful to the model being explained. LIME explanations achieved
higher coverage, thus they explain a bigger part of the model, while Anchors
explanations achieved better comprehensibility by using only 2 feature condi-
tions in each explanation.

Explanation method

LIME Accuracy | 1.0
Coverage | 0.63

Anchors Accuracy | 0.98
Coverage | 0.34

Table 2.5: Results of faithfulness evaluation of LIME and Anchors explana-
tions on real-world divorce dataset
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2.4 Discussion

The local model-agnostic explanation methods - LIME, Anchors and SHAP
were used to explain and evaluated in terms of faithfulness on machine learning
models learned on four artificial datasets and one real-world divorce dataset.

SHAP method produced explanations with the highest faithfulness on the
artificial datasets. LIME was shown to struggle on highly non-linear mod-
els, while Anchors produced overly specific explanations with low coverage in
cases where individual feature conditions had low discriminative value. The
experiments suggest that when Anchors produce overly specific explanations,
it may indicate that such explanations are not faithful to the model being
explained.

Experiments on the real-world divorce dataset demonstrated the main disad-
vantage of the SHAP method, which is that to the best of our knowledge,
there is no reliable metric to evaluate its explanations’ faithfulness on real-
-world datasets. LIME and Anchors produce explanations in form of a local
surrogate models which can always be evaluated in terms of accuracy on the
set of testing data annotated by the model being explained. Both LIME and
Anchors explanations of the Random Forest classifier trained on the divorce
dataset achieved high accuracy. LIME managed to explain a bigger part of
the model, while Anchors achieved better comprehensibility by using only two
feature conditions in its explanations.

The experiments showed that none of the considered local model-agnostic
methods can be deemed as superior overall. Anchors may be more appropri-
ate in situations where high comprehensibility is prioritized by the audience.
LIME, on the other hand, allows to specifically set the number of features used
in its explanations, thus tuning both comprehensibility and faithfulness of its
explanations. SHAP can be used when both LIME and Anchors fail to pro-
duce faithful explanations as it was found to be the most robust explanation
method that is also based on solid theory of Shapley values. However, SHAP
produces only approximation of the true Shapley values, therefore a lack of
reliable evaluation metric may limit the audiences’ trust to its explanations.
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CHAPTER 3

Conclusion

This work focuses on part of the Explainable Artificial Inteligence field con-
cerned with local model-agnostic explanation methods that aim to explain a
prediction of a given machine learning classifier by studying the model only
through its inputs and corresponding outputs.

Apart from the explanation methods, theoretical part describes basic concepts
in Explainable AI — motivation, definitions, taxonomy of explanation methods,
various properties of explanations and evaluation metrics. Three local model-
agnostic explanation methods are described in the theoretical part — LIME
that produces explanations in form of linear local surrogate models, Anchors
that utilizes decision rules as local surrogate models, and SHAP that calculates
feature importance scores via Shapley values from coalitional game theory.

Experimental part evaluates the described local model-agnostic explanation
methods in terms of faithfulness of their explanations to the model being
explained. Explanations are evaluated on various classifiers trained on arti-
ficially generated datasets as well as real-world divorce dataset. Experiment
with artificial datasets demonstrated that LIME fails to produce faithful ex-
planations of highly non-linear models, while Anchors fail to produce faith-
ful explanations in situations where individual feature conditions have low
discriminative value. SHAP was found to be the most robust out of the
considered explanation methods as it produced faithful explanations of each
of the classifiers trained on artificial datasets. Experiment on real-world di-
vorce dataset demonstrated the main drawback of SHAP as to the best of our
knowledge there is currently no reliable metric to evaluate its explanations’
faithfulness on real-world tasks where the optimal explanations are not known.
Both LIME and Anchors produced faithful explanations of the model trained
on divorce dataset where LIME explained a bigger part of the model, while
Anchors achieved better comprehensibility of its explanations.

The implication of the experiments is that none of the considered local model-
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3. CONCLUSION

-agnostic explanation methods can be deemed as superior overall. The optimal
explanation method choice depends on the particular model being explained
and goals of its audience. Even though LIME and Anchors may fail to produce
faithful explanations in some situations, faithfulness of their explanations can
always be evaluated. Both LIME and Anchors methods are suitable in situa-
tions when sparse explanations are preferred. SHAP is suitable in situations
when both LIME and Anchors fail to produce accurate explanations as SHAP
was evaluated as the most robust out of the considered explanation methods.

While the field of Explainable Artificial Intelligence is relatively new, many
practically useful methods for explaining predictions of black-box classifiers
have already been developed. The priority of the future research should be
put in developing reliable faithfulness evaluation metrics that would allow to
evaluate and compare faithfulness of various explanation types. The LIME
framework could also be extended with options to use different faimilies of
local surrogate models such as decision trees to address the limitations of
linear models in certain situations.

46



Bibliography

Goodfellow, I.; Bengio, Y.; et al. Deep Learning. MIT Press, 2016, ISBN
9780262337373, http://www.deeplearningbook.org.

Hastie, T.; Tibshirani, R.; et al. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer series in statis-
tics, Springer, 2009, ISBN 9780387848846. Available from: https://
books.google.cz/books?id=eBSgoAEACAAJ

Arrieta, A. B.; Diaz-Rodriguez, N.; et al. Explainable Artificial Intelli-
gence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible Al. Information Fusion, volume 58, 2020: pp. 82-115, ISSN
1566-2535.

Ribeiro, M. T.; Singh, S.; et al. Model-agnostic interpretability of machine
learning. ArXiv, volume abs/1606.05386, 2016, ISSN 2331-8422.

Miller, T. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, volume 267, 2019: pp. 1-38, ISSN 0004-
3702.

Molnar, C. Interpretable Machine Learning. Lulu, 2019, ISBN
9780244768522, https://christophm.github.io/interpretable-ml-
book/.

Lisman, J. E.; Idiart, M. A. Storage of 7+ /-2 short-term memories in
oscillatory subcycles. Science, volume 267, no. 5203, 1995: pp. 1512—
1515, ISSN 1095-9203.

Rudin, C. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine
Intelligence, volume 1, no. 5, 2019: pp. 206-215, ISSN 2522-5839.

47


http://www.deeplearningbook.org
https://books.google.cz/books?id=eBSgoAEACAAJ
https://books.google.cz/books?id=eBSgoAEACAAJ
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

BIBLIOGRAPHY

[9]

[10]

[11]

48

Choudhary, P. Interpreting predictive models with Skater: Un-
boxing model opacity. 2018, [Online]. Available from: https:
//www.oreilly.com/content/interpreting-predictive-models-
with-skater-unboxing-model-opacity/

Wu, R.; Yan, S.; et al. Deep image: Scaling up image recognition. arXiv
preprint arXiw:1501.02876, volume 7, no. 8, 2015, ISSN 2331-8422.

Guidotti, R.; Monreale, A.; et al. A survey of methods for explaining
black box models. ACM computing surveys (CSUR), volume 51, no. 5,
2018: pp. 1-42, ISSN 1557-7341.

Ribeiro, M. T.; Singh, S.; et al. "Why should i trust you?” Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining, 2016,
ISBN 9781450342322, pp. 1135-1144.

Council of the European Union. General Data Protection Regulation
(EU) 2016/679. 2016.

Office of the Federal Register. Code of Federal Regulations, Title 12
Banks and Banking. 1972.

Angwin, L. J. M. S.; Julia; Kirchner, L. Machine Bias. 2016, [On-
line]. Available from: https://www.propublica.org/article/machine-
bias-risk-assessments-in-criminal-sentencing

Arya, V.; Bellamy, R. K.; et al. One explanation does not fit all: A
toolkit and taxonomy of ai explainability techniques. arXiv preprint
arXiv:1909.05012, 2019, ISSN 2331-8422.

Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable ma-
chine learning. arXiv preprint arXiv:1702.08608, 2017, ISSN 2331-8422.

Dhurandhar, A.; Iyengar, V.; et al. Tip: Typifying the interpretability of
procedures. arXiv preprint arXiv:1706.02952, 2017, ISSN 2331-8422.

Ribeiro, M. T.; Singh, S.; et al. Anchors: High-precision model-agnostic
explanations. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018, ISSN 2374-3468.

Su, G.; Wei, D.; et al. Interpretable two-level boolean rule learning for
classification. arXiv preprint arXiw:1511.07361, 2015, ISSN 2331-8422.

Beam Search <algorithm>. [Online]. Available from:  http://
foldoc.org/beam+search


https://www.oreilly.com/content/interpreting-predictive-models-with-skater-unboxing-model-opacity/
https://www.oreilly.com/content/interpreting-predictive-models-with-skater-unboxing-model-opacity/
https://www.oreilly.com/content/interpreting-predictive-models-with-skater-unboxing-model-opacity/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://foldoc.org/beam+search
http://foldoc.org/beam+search

Bibliography

[22]

23]

[24]

[30]

31]

32]

[33]

[34]

Weber, R.; et al. On the Gittins index for multiarmed bandits. The Annals
of Applied Probability, volume 2, no. 4, 1992: pp. 1024-1033, ISSN 2168-
8737.

Kalyanakrishnan, S.; Tewari, A.; et al. PAC Subset Selection in Stochastic
Multi-armed Bandits. In ICML, volume 12, 2012, ISSN 2640-3498, pp.
655—662.

Kaufmann, E.; Kalyanakrishnan, S. Information complexity in bandit
subset selection. In Conference on Learning Theory, 2013, ISSN 1532-
4435, pp. 228-251.

Shapley, L. S. A value for n-person games. Contributions to the Theory
of Games, volume 2, no. 28, 1953: pp. 307-317, ISSN 0066-2313.

Hall, P. Building Explainable Machine Learning Systems: The Good,
the Bad, and the Ugly. 2018, [h20 meetup NYC 2018]. Available from:
https://www.youtube.com/watch?v=Q8rTrmqUQsU

Strumbelj, E.; Kononenko, I. Explaining prediction models and individ-
ual predictions with feature contributions. Knowledge and information
systems, volume 41, no. 3, 2014: pp. 647-665, ISSN 0219-1377.

Kononenko, 1.; et al. An efficient explanation of individual classifications
using game theory. Journal of Machine Learning Research, volume 11,
no. Jan, 2010: pp. 1-18, ISSN 1532-4435.

Knuth, D. E. The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. Boston: Addison-Wesley, third edition, 1997, ISBN
0201896842 9780201896848.

Lundberg, S. M.; Lee, S.-I. A unified approach to interpreting model
predictions. In Advances in neural information processing systems, 2017,
pp- 4765-4774.

Van Rossum, G.; Drake, F. L. Python 8 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009, ISBN 1441412697.

Klaise, J.; Van Looveren, A.; et al. Alibi: Algorithms for monitor-
ing and explaining machine learning models. Available from: https:
//github.com/SeldonI0/alibi

Oliphant, T. E. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006, ISBN 9781517300074.

Wes McKinney. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, edited by Stéfan
van der Walt; Jarrod Millman, 2010, ISSN 2575-9752, pp. 56 — 61, doi:
10.25080/Majora-92bf1922-00a.

49


https://www.youtube.com/watch?v=Q8rTrmqUQsU
https://github.com/SeldonIO/alibi
https://github.com/SeldonIO/alibi

BIBLIOGRAPHY

[35] Pedregosa, F.; Varoquaux, G.; et al. Scikit-learn: Machine learning in
Python. Journal of machine learning research, volume 12, no. Oct, 2011:
pp- 28252830, ISSN 1532-4435.

[36] Kluyver, T.; Ragan-Kelley, B.; et al. Jupyter Notebooks — a publish-
ing format for reproducible computational workflows. 01 2016, ISBN
9781614996484, pp. 87-90.

[37] Robnik-Sikonja, M.; Kononenko, I. Explaining Classifications For Indi-
vidual Instances. IEEE Transactions on Knowledge and Data Engineer-
ing, volume 20, 2008: pp. 589-600, ISSN 1041-4347.

[38] Yontem, M. K.; Adem, K.; et al. Divorce Prediction Using Correlation
Based Feature Selection Aand Artificial Neural Networks. Nevsehir Hact
Bektas Veli Universitesi SBE Dergisi, volume 9, 2019: pp. 259 — 273,
ISSN 2149-3871.

20



APPENDIX A

Acronyms

AT Artificial Intelligence

COMPAS Correctional Offender Management Profiling for Alternative Sanc-
tions

DT Decision Tree

FDR False discovery rate

KNN k-Nearest Neighbors algorithm

LIME Local Interpretable Model-Agnostic Explanations
MAE Mean absolute error

NB Naive Bayes

RF Random Forest

SHAP Shapley Additive Explanations

XAI Explainable Artificial Intelligence
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APPENDIX B

Contents of enclosed CD

README.md......ovvvvvvvennnnnnnn... the file with CD contents description
| eXPerimentS.....ooueiiiiiiiniiiaieana.. the experiments files directory
thesis_env.yml...........oooiiiiiiiian, the conda environment file
dataset.....ovviiiieiinnnnnnnn. the directory with the divorce dataset
notebooks.................. the directory with the Jupyter notebooks

I v PP the thesis text directory
tBachelorThesis_Skluzacek.pdf ....... the thesis text in PDF format
STC ettt the directory with the IATEX source files
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