
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 16, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: HoloCopy - 3D copy with Hololens

 Student: Anna Zderadičková

 Supervisor: doc. Ing. Tomáš Pajdla, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

1) Study literature about Hololens and 3D model visualization, e.g. [1,2,3,4] and references therein as well
as about 3D reconstruction from photographs, e.g. [5,6,7].
2) Propose and implement a system for automatic image acquisition by Hololens, 3D model computation
on a server, communication between the server and Hololens, model visualization and Hololens user
interface for acquisition control, visualization and object manipulation. Study approaches for efficient
model representation and visualization and implement an approach suitable for Hololens.
3) Demonstrate the system on a real device.

References

[1] M Garon et al.: Real-time High Resolution 3D Data on the HoloLens. 2016
[2] M Joachimczak et al.: Real-time mixed-reality telepresence via 3D reconstruction with HoloLens and commodity
depth sensors. ICMI 2017 DOI:10.1145/3136755.3143031.
[3] S Orts-Escolano et al. Holoportation: Virtual 3D Teleportation in Real-time. UIST '16, 2016
[4] S Dong, et al.: Real-Time Re-textured Geometry Modeling Using Microsoft HoloLens.
[5] JL Schonberger et al.: Structure-from-motion revisited. CVPR 2016
[6] A Locher et al.: Progressive 3D Modeling All the Way. 3DV 2016
[7] AliceVision. https://alicevision.github.io/

Bachelor’s thesis

HoloCopy - 3D copy with Hololens

Anna Zderadičková

Department of Software Engineering
Supervisor: doc. Ing. Tomáš Pajdla, Ph.D.

May 15, 2019

Acknowledgements

I would like to thank my supervisor, doc. Ing. Tomáš Pajdla, Ph.D., for giving
me the opportunity to work on this interesting topic.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Anna Zderadičková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Zderadičková, Anna. HoloCopy - 3D copy with Hololens. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstract

This thesis concentrates on creating a system for a 3D model reconstruction of
an object in augmented reality. The aim of this work is to create an application
for Microsoft HoloLens for automatic acquisition of images and visualization of
a reconstructed model and a server program that communicates with HoloLens
and mediates the reconstruction. Unity Engine was used for the creation of the
application because it supports the development for virtual and augmented
reality. The server is created using the Python Flask framework. The 3D
reconstruction is done in the COLMAP pipeline. The final system is useful
for Microsoft HoloLens users that are interested in creating 3D models from
a real world.

Keywords Microsoft HoloLens, 3D reconstruction, 3D models, AR, aug-
mented reality, Unity

vii

Abstrakt

Tato práce se zabývá vytvořeńım systému pro 3D rekonstrukci objektu
v rozš́ı̌rené realitě. Ćılem práce je vytvořit aplikaci na Microsoft HoloLens
pro automatické poř́ızeńı fotografíı a vizualizaci rekonstrukce modelu a server,
který po śıti komunikuje s HoloLens a zprostředkuje rekonstrukci. Pro vývoj
aplikace byl zvolen herńı engine Unity, který podporuje vývoj na virtualńı
a rozš́ı̌renou realitu. Pro server je použit Python framework Flask. 3D
rekonstrukce z fotografíı je provedena pomoćı programu COLMAP. Výsledný
systém je prospěšný pro uživatele Microsoft HoloLens zaj́ımaj́ıćı se o tvorbu
3D model̊u z reálného světa.

Kĺıčová slova Microsoft HoloLens, 3D rekonstrukce, 3D modely, AR, rozš́ı̌rená
realita, Unity

viii

Contents

Introduction 1

1 Goal 3

2 State-of-the-art 5
2.1 Augmented reality . 5
2.2 Microsoft HoloLens . 6
2.3 Photogrammetry . 7

3 Analysis and design 9
3.1 Analysis of similar applications and systems 9
3.2 User analysis . 11
3.3 Application on HoloLens . 12
3.4 Server . 13
3.5 Communication between the application and the server 13
3.6 Model reconstruction . 14
3.7 Model decimation . 16

4 Realization 17
4.1 Used technologies . 17
4.2 Application on HoloLens . 17
4.3 Server . 28
4.4 Testing . 33

5 Experimental validation 37

6 Installation 41
6.1 Server . 41
6.2 Application on HoloLens . 41

ix

Conclusion 45

Bibliography 47

A Acronyms 51

B Contents of enclosed CD 53

x

List of Figures

2.1 Microsoft HoloLens 1st generation [7] 6

3.1 Wireframe of HoloLens application UI 13
3.2 Graph of communication between HoloLens application and server 14
3.3 HoloLens depth data of a scene from the Real-time High Resolution

3D Data article [17] . 15
3.4 The scene from the Real-time High Resolution 3D Data article [17] 15

4.1 Example of acquired images . 20
4.2 Cameras marking positions of image captures 21
4.3 Communication between the application and the server 23
4.4 Examples of several visualizations of the 3D reconstruction 24
4.5 Examples of several visualizations of the 3D reconstruction 25
4.6 3D reconstructed model containing around 230 thousand vertices . 30
4.7 Decimated model containing around 25 thousand vertices 30
4.8 Camera positions reconstructed by COLMAP (green dots) that

are matched to HoloLens camera positions (blue dots) using Pro-
crustes analysis resulting in the reconstructed camera positions be-
ing mapped to HoloLens camera positions (red dots) 32

4.9 Comparing the distance between COLMAP cameras and HoloLens
cameras before and after the transformation calculated with Pro-
crustes analysis . 32

4.10 3D reconstructions created by tested users 35
4.11 Tested users with objects they were reconstructing 35

5.1 The set up of the experiment . 38
5.2 The set up of the experiment with marked locations of image capture 38
5.3 Histogram of deviations of HoloLens camera positions from the

distance between the center of the rotation table and the HoloLens
camera . 39

xi

6.1 Settings of a build of the application 42
6.2 Deploying the application to HoloLens 43

xii

List of code demonstration

1 The information text code . 18
2 The headset location update . 19
3 Image data . 20
4 Communication with the server 22
5 Mesh shader . 26
6 Rotation of the model . 27
7 Server image acquisition . 28
8 Calling COLMAP . 29
9 Calling Blender . 29
10 Blender script . 30
11 Converting camera centers from right-handed to left-handed

coordinate system . 31
12 Transforming the 3D reconstruction to Unity coordinate system 33

xiii

Introduction

Augmented and virtual reality is becoming more and more popular during
the latest years. It is slowly getting more available to the public. Augmented
reality is mostly used on phones, but the restrictions of the small screen of the
phone are breaking the immersion. That is why Microsoft HoloLens headset
is the ideal device for augmented reality. Having the headset on allows the
user to move freely without breaking the immersion.

With virtual environments comes the issue of virtual objects. 3D mod-
els are nowadays used almost everywhere. Movies, games, images, commer-
cials. . . However, 3D modeling is a time consuming task, users spend hours
and hours of work to recreate objects in a virtual world.

The topic of this thesis is a system for 3D reconstruction of objects using
HoloLens device.

The result of the work will be beneficial for users of HoloLens wanting to
automatically recreate objects from their surroundings. That way, they won’t
have to manually model those object themselves.

I chose this topic because this technology is still evolving, and if used
correctly, it will help create 3D models effectively and fast.

In this thesis, I look into the problems of 3D reconstruction from pho-
tographs and development on HoloLens. I analyze possible implementations,
then design and implement the system for automatic 3D model reconstruc-
tion using HoloLens. For the HoloLens application, I used Unity Engine with
Microsoft’s Mixed Reality Toolkit. The server part is done in Python and
reconstruction from photographs is done using COLMAP [1] [2] [3].

1

Introduction

The structure of the thesis is as follows. First, this work will focus on the
theory behind the system. Next will be described the analysis and design,
where users preferences, similar applications, and possible ways of develop-
ment of the system will be discussed. Then continues the realization part
where the implementation of the system will be demonstrated. User test-
ing is included in the realization chapter. After the realization comes the
experimental validation, where all experiments that had to be done during
the development will be described. The final chapter is about installing and
running the system.

2

Chapter 1
Goal

The goal of this bachelor thesis is divided into two following categories.
The first category is the theoretical part. The main goal is to study lit-

erature about HoloLens, 3D model visualization and 3D reconstruction from
photographs, then analyze possible ways of implementation of previously men-
tioned problems.

The second category is the practical part. There, the system for 3D recon-
struction for HoloLens will be proposed and implemented. First, the system
will automatically acquire images made by HoloLens. HoloLens will commu-
nicate with a server, which will perform a 3D model computation and a re-
construction. And lastly, the 3D model will be visualized on HoloLens and
manipulated by the user via the user interface. The system will be demon-
strated on a real HoloLens device.

3

Chapter 2
State-of-the-art

This chapter explains the technology that this thesis is working with. The first
topic to be explained is augmented reality, then HoloLens will be described
and a final topic to cover is photogrammetry.

2.1 Augmented reality

Augmented reality (also called AR) is “an enhanced version of reality where
live direct or indirect views of physical real-world environments are augmented
with superimposed computer-generated images over a user’s view of the real-
world, thus enhancing one’s current perception of reality” [4]. The most widely
used AR is on mobile phones, for example, being games, photography filters
or planning and measuring applications. Other most known AR devices are
Google Glasses [5] and Microsoft HoloLens [6]. Both devices are hands-free in
the form of glasses that are operated using voice or gestures.

Augmented reality is often mistaken for virtual reality (VR). The main
difference is that VR places the user in a whole new and fully virtual world,
where the user can’t see the real world. On the contrary, in AR users can see
the real world or the virtual environment is mapped onto the real world.

According to [4] there are four types of augmented reality:

• Marker-based AR

• Markerless AR

• Projection-based AR

• Superimposition-based AR

The marker-based AR requires special visual markers. These markers in-
dicate where the virtual object should be placed and from what position is
the AR device looking at them. This is, for example, a QR code, that will
display a virtual model, when a user points the AR device on it.

5

2. State-of-the-art

The markerless AR uses sensors like GPS, gyroscope, accelerometer. . . The
AR device is tracking the position. It doesn’t need any markers to display
a virtual object and knows the position from which is the device looking at it.
This is, for example, AR on mobile phones or HoloLens

The projection-based AR is projecting virtual objects to physical objects.
Users sometimes may even interact with the projection.

The superimposition-based AR changes the original viewed scene. It either
fully replaces it with a virtual scene, that is mapped to the real environment,
or it places new objects into the environment.

2.2 Microsoft HoloLens

HoloLens is an AR head-mounted display device in the form of smart-glasses
created by Microsoft.

Figure 2.1: Microsoft HoloLens 1st generation [7]

The first generation of HoloLens was released in March 2016 [7]. HoloLens
1st generation offers a markerless AR. It tracks the headset position using an
IMU (inertial measurement unit), four environment understanding cameras
and a depth camera. The visualization of a virtual object is done on see-
through holographic lenses (also called waveguides) [8].

User controls the device using hand gestures, voice commands, and a gaze.
The gaze refers to the way the user is pointing their head and it indicates with
which object the user wants to interact.

The second generation of HoloLens was announced in February 2019 and
it is said to be released in coming months [9]. One of the main changes was
moving the center of the mass from the front to the center of the device

6

2.3. Photogrammetry

by placing some of the hardware in the back of the headset. Another great
change is increasing the field of view for better immersion. Microsoft also
added another way of controlling the device and that’s by eye tracking. The
movement of eyes is tracked by two IR cameras [10].

The system is developed on the HoloLens 1st generation device.

2.3 Photogrammetry

Photogrammetry is a science of calculating geometric information from im-
ages. In other words, photogrammetry is extracting 3D information from
a set of photographs, most frequently resulting in a 3D reconstruction of the
object from the photographs.

According to [11], the most used way to classify types of photogrammetry
is based on camera location while taking pictures. There are two main types:
aerial photogrammetry and terrestrial photogrammetry.

As the name indicates, in aerial photogrammetry, images are taken in mid-
air. The camera is mounted to an aircraft, usually a drone. This method is
mostly used for terrain models or a building 3D reconstructions.

In terrestrial photogrammetry (also called close-range) the images are
taken on the ground. The camera is either held by the user or mounted
on a tripod. It usually results in 3D model reconstruction or measuring of
distances, sizes, etc. . . This is the type of photogrammetry that is used in this
thesis.

7

Chapter 3
Analysis and design

This chapter focuses on the analysis of similar applications and possible solu-
tions. There is an overview of possible technologies to be used for the system
as well as an analysis of user expectations. Requirements for the system are
to create an application on HoloLens for image acquisition and model visual-
ization and a server for 3D model reconstruction. Possible solutions for these
requirements are discussed in this chapter.

3.1 Analysis of similar applications and systems

This part analyses the applications similar to the goal of this thesis. This
analysis consists of three main parts. For the first part, an analysis of appli-
cations available on the official Microsoft App Store [12] is performed. The
second part focuses on similar applications that aren’t available at the store.
The third part inspects similar applications available on different platforms.

Since HoloLens is a Microsoft product, most of HoloLens applications are
available at Microsoft App Store [12]. After further inspection, there weren’t
found any applications matching the assignment of this thesis.

There are two types of applications as similar as possible available for
HoloLens.

The first type is applications that visualize already pre-made models, some
of them allowing the user to view and modify them. This is, for example,
the Bridge [13]. This application lets users choose a 3D model to visualize
and offers the option of moving, scaling and rotating the model. Another
example is MR Studio Immerse [14] which displays 3D models and 3D scans in
HoloLens. MR Studio Immerse has same functions as Bridge, and in addition
it provides an option of aligning models with the real world and annotating
them.

The second type is applications where the user can create a model. This
is, for example, 3DBear Holo [15]. This application is used for creating models
out of simple shapes, moving, scaling and rotating them. Second example is

9

3. Analysis and design

3dDraw [16]. User can create a model by drawing lines using their hand and
placing blocks.

But not all HoloLens applications are on the Microsoft Store. Applications
that are much closer to the goal of this thesis aren’t available there. Next part
discusses the most similar HoloLens applications that were to be found.

One of these applications worth mentioning is the Real-time High Reso-
lution 3D Data visualization system from M. Garone et al. [17]. This system
uses an Intel RealSense RGBD camera mounted to the HoloLens to capture
a depth map to reconstruct the current scene. The data obtained from the
RealSense camera is sent to a computer, where a reconstruction is calculated
and then sent to HoloLens for visualization.

Another to be discussed is the system from Real-Time Mixed-Reality
Telepresence via 3D Reconstruction with HoloLens and Commodity Depth
Sensors article created by M. Joachimczak et al. [18]. This system focuses
on the real-time 3D reconstruction of people to be used for remote commu-
nication. The system consists of two computers that have Kinect 2 sensors
attached to them. These computers stream depth and RGB data from Kinect
2 cameras to a 3D reconstruction server that is launched on another com-
puter. The server processes the data and creates a 3D reconstruction. The
3D reconstruction is then compressed and sent to a HoloLens device where it
is decompressed and visualized.

Another point of interest from the similar applications analysis is Holo-
portation. Holoportation is a system created by S. Orts-Escolano et al. [19]
that real-time reconstructs people, objects and space in augmented and virtual
reality. These reconstructions can be transmitted to another remote device,
allowing the user to see and hear the 3D reconstructed person and interact
with them as if they were present. The data for 3D reconstruction is acquired
through 8 camera pods with 2 Near Infra-Red cameras and a color camera
mounted on top. This setup collects color and depth data. The depth infor-
mation is estimated using the data from previously mentioned camera pods
and a diffractive optical element with a laser that is projecting a pattern to
the scene. The scene is then reconstructed on a computer, compressed and
sent to an AR or VR device where it is visualized.

The last existing solution to be considered is from an article called Real-
Time Re-textured Geometry Modeling Using Microsoft HoloLens written by
S. Dong and T. Höllerer [20]. This application concentrates on a 3D recon-
struction of an environment in real-time. Unlike all previously mentioned
solutions, this consists only of HoloLens, not using any additional sensors or
a server. The application is using the depth data from HoloLens, drawing the
data and applying a color texture to the drawn triangles. The visualized 3D
reconstruction is dynamically changing as the user is scanning the environ-
ment. The texture is size limited, so the larger the scanned environment is,
the smaller level of detail will the user get.

From the applications on other platforms, the most widely used are mobile

10

3.2. User analysis

applications.
One of the most used ones was 123D Catch from Autodesk. The user

took several pictures using this application, the application would then upload
taken images to the cloud and that would make a 3D reconstruction. After
several minutes the reconstruction was available to download, the user could
view it and slightly edit the model. However 123D Catch was discontinued [21]
and replaced with another product from Autodesk, called ReCap [22]. ReCap
works the same way as 123D Catch but in addition, it allows users to lint
the application with a laser scanner for even better reconstructions. Both
applications let the user view the final 3D reconstruction only on the device,
not using augmented reality.

Another application available on mobile devices is Scandy [23]. Scandy
is very similar to 123D Catch. In addition to all features that 123D Catch
has, it offers a live preview of the 3D reconstruction during the capture. The
final 3D model can be uploaded to the internet. The application does not use
augmented reality. However, it is advertised that the models can be used as
filters in AR and that this feature will be added [24].

Last application to be mentioned is 3D Creator by Sony [25]. 3D Cre-
ator mainly focuses on 3D reconstruction of faces allowing the user to create
a virtual avatar, that can be viewed in AR, used as an “emoji” in a chat and
shared on the internet.

In conclusion, exactly the same system hasn’t been yet created. The most
similar applications available on HoloLens are visualizing already existing
models or mostly using additional depth cameras for the reconstruction. Sim-
ilar applications on mobile devices focus on reconstruction and don’t visualize
the 3D reconstruction using augmented reality.

3.2 User analysis

Before the designing of the system, a user analysis was performed in order to
understand, what would users want and need from such a system. Selected
users to be questioned are all interested in AR technologies or 3D modeling,
so their answers give an overview of what real users of this system want.

The first question was how long they expect the 3D reconstruction to take.
All asked users answered in minutes. The fastest answer was half a minute
and the longest was 20 minutes. The most common answer turned out to be
5 minutes and the mean of all responses is 5.68 minutes. This determines that
the final time of the 3D reconstruction should be around 5 minutes at most.

Next, they were asked wherever they would want the data created during
the 3D reconstruction (captured images and the 3D reconstructed model) to
be saved somewhere on the server. 90% of questioned users answered they
want the data from the reconstruction to be saved. In conclusion, all the data

11

3. Analysis and design

created during the 3D reconstruction will be saved in a file on the server so
that users could view, edit or use the reconstruction on a computer.

Another question was if it is important for the user to know, where images
were taken during the reconstruction and if there should be somehow marked
the position where the image was taken. Half of the users said yes and the
other half no. It was decided to mark the positions in which images were
captured and then based on user testing determine wherever users found it
obstructing or helpful.

And a final series of questions was concerning word commands for model
manipulation. Users were asked what word in their opinion are best suitable
for moving the model, rotating the model and changing the size of the model.
For moving the model, 90% of questioned answered with the word “move”.
For rotating, 90% of users said “rotate”. Changing the size of the model
got the most varied answers. 50% answered “scale”, 25% answered “zoom”
and the rest said “resize”. From these answers are based chosen keywords
for operations with the 3D model and the chosen commands are “move” for
moving the model, “rotate” for rotating the model and “scale” for changing
the size of the model.

The user analysis provided valuable information and it is projected into
the design of the system.

3.3 Application on HoloLens

According to Microsoft documentation [26], applications can be created di-
rectly using DirectX or developed using the Unity engine.

DirectX allows to directly develop the application using the Windows
Mixed Reality APIs. However, that might require for the user to create their
own framework. It is said [27] that the development in DirectX is better
for the performance of the application, but it is more complicated and time-
consuming for the developer.

Unity game engine is recommended for fast and easy development of appli-
cations. “The fastest path to building a mixed reality app is with Unity.” [28]
Unity offers a holographic emulator for testing the application without hav-
ing HoloLens. In addition, Microsoft produced a Mixed Reality Toolkit [29],
which is a package of scripts and assets of UI and UX elements.

The application on HoloLens will be developed in Unity.
The UI of the application will be drawn in front of the user so it needs to

be minimal to not obstruct the user’s view. The designed UI is demonstrated
on a picture taken with HoloLens in the figure 3.1. In the middle of the screen
is a round cursor so the user would know where they are looking and where
is the center of the screen. Another important information for the user is the
number of images taken. This number is to be found in the right upper corner
and it will be updated every time the user takes a picture. Last information to

12

3.4. Server

be displayed is what is currently happening in the application and instruction
for users. This information will be shown in the left upper corner.

Figure 3.1: Wireframe of HoloLens application UI

3.4 Server

Calculations performed on the server require operations with matrices. Be-
cause of this fact, it was decided to use Python with the Numpy library for
matrix operations.

The server will be an HTTP server. An HTTP server can be created just
using basic Python libraries but it is rather complicated. There are libraries
and frameworks available that make the creation of an HTTP server easier.

The most known frameworks for web applications are Django [30], Flask [31]
and Pyramid [32]. Flask framework is said [33] to be ideal for fast and easy
development of web applications so it was chosen to be used for the system
server.

3.5 Communication between the application and
the server

The application will communicate with the server as it is designed in the
figure 3.2. The application will send captured images to the server, which
will save them. When the user stops the image capture, the application will
send all camera positions from image capture. The server will then run a 3D
reconstruction and calculate the transformation of the model using the camera

13

3. Analysis and design

positions sent by the application. The transformation needs to be calculated
in order to place the reconstruction over the reconstructed object. The server
will send the calculated transformation to the application. Application will
then request the 3D reconstructed model. The server will decimate the model
if needed and then sent it to HoloLens to be visualized.

Figure 3.2: Graph of communication between HoloLens application and server

3.6 Model reconstruction

The 3D reconstruction will be done using data acquired from HoloLens. All
calculations will be done on the server.

There are two options for the 3D reconstruction process available. The
first option is using the depth data from HoloLens to reconstruct the geome-
try and using the HoloLens camera for color information. However as it has
been shown in the article about the Real-time High Resolution 3D Data visu-
alization from M. Garone et al. [17], this option is not very effective, since the
depth data obtained from HoloLens is not suitable for an object reconstruc-
tion. A comparison of HoloLens depth data and a real scene can be seen in
figures 3.3 and 3.4.

14

3.6. Model reconstruction

Figure 3.3: HoloLens depth data
of a scene from the Real-time High
Resolution 3D Data article [17]

Figure 3.4: The scene from the
Real-time High Resolution 3D
Data article [17]

The second option for 3D reconstruction is reconstruction from images
captured by HoloLens. These images will be processed by a pipeline for image
reconstruction. This pipeline will be called by the server using the command
line to run the reconstruction. Possible pipelines are analyzed in the following
part.

First software to be considered is ReCap by Autodesk [34]. ReCap creates
3D reconstructions from images or laser scans. The reconstruction is in the
form of a mesh or a point-cloud. The software allows editing of the mesh and
exporting it into any 3D format. ReCap includes a command-line tool for
reconstruction called DeCap [35]. This command-line tool, however, doesn’t
provide the user with many options to direct the reconstruction, it creates
a ReCap project and it doesn’t support export in another format. One of the
options DeCap is offering is a model decimation which would be useful, but
the low choice of directing the reconstruction doesn’t make it suitable for this
system.

Issues that made ReCap not suitable are well resolved in Capturing re-
ality [36]. Capturing reality is a software that generates 3D reconstructions
from images and laser scans. It offers a command-line interface that allows
the user to do almost everything they can do in the application. This would
be an ideal solution for this system, but it won’t be used because it is not
open source so the user would have to buy the license if they would want to
use this system.

Another examined software is Meshroom by AliceVision [37]. Meshroom
is an open source 3D reconstruction software that processes reconstructions
from images. Meshroom offers the reconstructed model to be a point-cloud
or a mesh. A reconstruction can be run from a command-line. However
the official documentation [38] doesn’t fully cover that. Some users have
stated [39] [40] [41] that the reconstruction can take from 5 minutes to over an

15

3. Analysis and design

hour. Since the user analysis showed that users prefer faster reconstruction,
Meshroom will not be used in this system.

Last pipeline and the one that will be used is COLMAP created by Jo-
hannes L. Schoenberger [1] [2] [3]. COLMAP is a “general-purpose Structure-
from-Motion (SfM) and Multi-View Stereo (MVS) pipeline ” [1] that recreates
3D models from images. The command line interface is available and allows
the user a lot of control over the reconstruction. The result of a 3D reconstruc-
tion is a mesh and a point-cloud. The mesh is created from the point-cloud
using either a Poisson or a Delaunay method for meshing the point-cloud.

3.7 Model decimation

The reconstructed model can be too large for the HoloLens application to run
smoothly. In this section will be discussed possible solutions for this problem.
There are two main possible solutions: implementing a model decimation on
the server or using an application.

The implementation of the model decimation is an extensive subject. Model
decimation has been implemented several times before. To create a model dec-
imating script, that would be fast and would result in a good quality model,
would take a lot of time so it was decided to utilize a software that would
mediate the decimation.

The software suitable for the decimation would be the one that offers
a command line interface and either can be very precisely directed (letting
the user define how much to decimate, the format of the model, . . .) or that
can be scripted.

These requirements match Blender [42]. Blender is an open source software
for 3D modeling. Blender supports being run from a command line and can
be scripted using Python.

16

Chapter 4
Realization

This chapter is about the realization of the system.
There are two main parts: application on HoloLens and server. Each part

will describe each important step of the whole process of 3D object recon-
struction.

4.1 Used technologies

The HoloLens part of the system is developed using Unity [43] and .NET
backend. The server part is realized in Python using Flask framework [31].

4.2 Application on HoloLens

The HoloLens application is developed in Unity version 2018.1.3f1 using .NET
scripting backend. Some settings need to be done at the beginning of the
project for it to run on HoloLens without any problems. First, the camera
had to be set to the origin of the scene (coordinates [0, 0, 0]). The camera
background was changed from Skybox to Solid color and set the color to be
RGBA (0, 0, 0, 0). Then for the application to run well without any lags, the
quality setting was set to very low. The smooth functioning of the application
is very important as large and often lags could cause the user to feel uneasy.
And finally, the target SDK (software development kit) had to be specified to
Windows 10 with Windows Mixed reality enabled.

4.2.1 Mixed reality toolkit

The application uses some of the scripts and prefabs from Mixed reality toolkit
for the UI. Mixed reality toolkit is a Microsoft open source project that con-
tains some of the building blocks for a HoloLens application. It is used because
it ”showcases UX best practices with UI controls that match Windows Mixed
Reality and HoloLens Shell.” [29].

17

4. Realization

4.2.2 User interface

In the middle of the screen is the cursor that follows the user’s gaze and reacts
when the user is using gestures such as the air-tap. Prefabs and scripts for
this part of the UI are from the Mixed reality toolkit [29].

In the upper right corner of the screen is located the image counter. It
displays the number of images that have been already captured since the start
of the application. It is a simple text mesh, that is updated every frame and
drawn on a canvas in front of the camera. The image capture is started with
an air-tap gesture and it is stopped again with and air-tap, that also triggers
the model reconstruction.

In the upper left corner is the information panel, which informs the user
about everything that is happening. As well as the image counter, it is
a simple text mesh on the same canvas. It is displayed using the Debug-
Window.cs script that can be seen in the code demonstration 1. The text is
sent to the Unity console using the function Debug.Log() this triggers the
Application.logMessageReceived event and the text are then added to the
text mesh and drawn.

void OnEnable()
{

Application.logMessageReceived += LogMessage;
}

.

.

.

public void LogMessage(string message,
string stackTrace, LogType type)

{
textMesh.text = message + "\n";

}

Code demonstration 1: The information text code

4.2.3 Image acquisition

The image acquisition is located in the CameraCapture.cs script it is processed
by the function TakePhoto.

The automatic image acquisition is triggered with an air-tap gesture. With
every image being captured, the application plays a sound of the camera click-
ing to let the user know an image has been taken. Once the acquisition is

18

4.2. Application on HoloLens

started a photograph is taken every time the user moves his head 30 centime-
ters. The head location is checked and updated every frame in the Update()
function in the CameraCapture.cs script as it is shown in code demonstra-
tion 2. Both the newHeadPosition and the startHeadPosition has been
initialized during the start of the script. The variable newHeadPosition con-
tains current head position and startHeadPosition is the position when the
last image was taken.

void Update()
{

newHeadPosition = Camera.main.transform.position;
double headPositionDistance = Math.Sqrt(

(newHeadPosition.x - startHeadPosition.x) *
(newHeadPosition.x - startHeadPosition.x) +
(newHeadPosition.y - startHeadPosition.y) *
(newHeadPosition.y - startHeadPosition.y) +
(newHeadPosition.z - startHeadPosition.z) *
(newHeadPosition.z - startHeadPosition.z));

textMesh.text = photoCount.ToString();

if (headPositionDistance >= distance)
{

startHeadPosition = newHeadPosition;
if (cameraCaptureOn)
{

TakePhoto();
}

}

}

Code demonstration 2: The headset location update

The image capture is accomplished using Unity class PhotoCapture [44].
The image data is stored as a list of bytes that can be obtained by method
photoCaptureFrame.CopyRawImageDataIntoBuffer as it is in code demon-
stration 3. This data is sent to the server to be saved as an image. The
figure 4.1 demonstrates an example of images taken by HoloLens during the
run of the system.

19

4. Realization

Figure 4.1: Example of acquired images

List<byte> imageBufferList = new List<byte>();
photoCaptureFrame.CopyRawImageDataIntoBuffer(imageBufferList);

UploadImage(imageBufferList.ToArray());

Code demonstration 3: Image data

20

4.2. Application on HoloLens

To let the user know, where they took the images, there are cameras being
drawn in the exact position as when the image was taken. This is achieved by
getting the current head position from the moment of the image acquisition.
The cameras are then drawn as red pyramids in the DrawCameras.cs script.
The marked camera positions are visible in the figure 4.2.

Figure 4.2: Cameras marking positions of image captures

21

4. Realization

4.2.4 Communication with server

Communication with the server is accomplished using a Unity Networking
library. This library contains the UnityWebRequest class [45] that is pro-
cessing the communication. This class builds an HTTP request of any type
that is needed and sends it to a specified URL. All the communication with
the server is done in the CameraCapture.cs script. In the code demonstra-
tion 4 is an example of a request for downloading the reconstruction. A get
request is sent to the server at a route /api/cv/query reconstruction. The
HandeReconstructionDownload function is a handler, waiting for a response
from the server with the reconstruction data.

void DownloadReconstruction()
{

string url = BASEURL + "/api/cv/query_reconstruction/";
UnityWebRequest request = UnityWebRequest.Get(url);
UnityWebRequestAsyncOperation op = request.SendWebRequest();

op.completed += HandleReconstructionDownload;
}

//handler for http request, draws reconstruction
void HandleReconstructionDownload(AsyncOperation op)
{

UnityWebRequestAsyncOperation aop =
(UnityWebRequestAsyncOperation)op;

byte[] result = aop.webRequest.downloadHandler.data;
.
.
.

}

Code demonstration 4: Communication with the server

The whole process of communication of the application with the server
during one reconstruction is described by the figure 4.3. The application is
sending each image to the server, the server saves the image and replies with
the name of the image. The name is used as a camera position ID for pairing
the camera positions with camera positions reconstructed in COLMAP for
later calculations of transformation. After the image acquisition is complete,
the application sends all camera positions from when images were taken. The
server calculates a transformation between these positions and the positions
of cameras that were reconstructed and sends a reply containing the transfor-
mation. Then the application sends a request for the 3D reconstructed model
and server replies with the data of the decimated and reconstructed model.

22

4.2. Application on HoloLens

Figure 4.3: Communication between the application and the server

4.2.5 Mesh visualization

After the reconstruction, the server sends a JSON containing the model data.
The data is composed of vertices, colors for each vertex and faces in the form
of vertex indents. That data is then assigned to the mesh filter of the visualiza-
tion object in the function HandleReconstructionDownload from the Camer-
aCapture.cs script. The mesh filter passes the mesh to mesh renderer, where
the mesh is drawn using the set material. This material’s color is assigned
in a simple shader called VertexShader.shader (code demonstration 5). The
shader assigns each vertex a color that’s specified in the mesh variable color.
The visualization of the 3D reconstruction can be seen in figures 4.4 and 4.5.

23

4. Realization

Figure 4.4: Examples of several visualizations of the 3D reconstruction

24

4.2. Application on HoloLens

Figure 4.5: Examples of several visualizations of the 3D reconstruction

25

4. Realization

Shader "Custom/VertexShader" {
SubShader{
Pass{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"

// vertex input: position, color
struct appdata {
float4 vertex : POSITION;
fixed4 color : COLOR;
};

struct v2f {
float4 pos : SV_POSITION;
fixed4 color : COLOR;
};

v2f vert(appdata v) {
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.color = v.color;
return o;
}

fixed4 frag(v2f i) : SV_Target{ return i.color; }
ENDCG
}
}
}

Code demonstration 5: Mesh shader

26

4.2. Application on HoloLens

4.2.6 Model manipulation

Manipulation with the model is achieved using the Mixed Reality Toolkit
Input scripts for voice and gesture recognition. The script requires keywords
and methods that should be run when a certain keyword is recognized.

The reconstructed model doesn’t appear as a solid object in the application
which means that the user can’t interact with it. This is solved by inserting
an invisible cube in the center of the reconstruction, that is the same size
as the reconstructed model. This cube has a Box Collider set, which means
that it collides with the user’s gaze and results in detecting when the user is
interacting with it. The user interaction then triggers the manipulation with
the reconstructed model.

The current model manipulation supported is rotating the model around
the Y axis, moving the model and changing the size of the model. User
can switch between these types of manipulation by voice command ”rotate”,
”move” or ”scale” and perform the manipulation by air-tapping and dragging
their hand. The code demonstration 6 shows an example of how the rotation
is accomplished. The model manipulation is implemented in the GestureAc-
tion.cs script. The RotationSensitivity is set during the initialization of
the script and it represents the sensitivity of hand movement to the rotation.
The parameter stands for the movement of the hand. The rotation is then
calculated by multiplying the RotationSensitivity with the position of the
hand on X-axis.

void INavigationHandler.OnNavigationUpdated(NavigationEventData e)
{

if (isNavigationEnabled)
{

float rotationFactor = e.NormalizedOffset.x
* RotationSensitivity;

transform.Rotate(new Vector3(0, -1 * rotationFactor, 0));
}

}

Code demonstration 6: Rotation of the model

27

4. Realization

4.3 Server

The server is created using Flask framework [31]. The server obtains images
and runs a reconstruction. Then it calculates a transformation between the
reconstructed model and the real world object from camera positions. Finally,
it decimates the model and sends it to the HoloLens application.

4.3.1 Image acquisition

Image acquisition on the server is implemented in the api_save_images func-
tion as can be seen below in code demonstration 7. As the decorator implies,
the route to this function is /api/cv/save images and it expects POST HTTP
requests. Once called, this function tries to save obtained data as a jpg image.
The server sends the saved image name as a response to the application.

@app.route("/api/cv/save_images/", methods=['POST'])
def api_save_images():

try:
for f in request.files:

img = request.files[f]
global folder
start = time.time()
pimg = Image.open(img.stream)
path = os.path.dirname(os.path.realpath(__file__)) + "/"
name = str(start).replace('.', '_') + "_" + str(f) + ".jpg"
filename = path + folder + "/" + name

pimg.save(filename);

response_list = [("file", name)]

response_dict = dict(response_list)
return flask.jsonify(response_dict)

except Exception as err:
print("ko:", err)

return "ok"

Code demonstration 7: Server image acquisition

28

4.3. Server

4.3.2 3D reconstruction

Reconstruction is processed by COLMAP [1] that is called by the server
via command line in the api_get_transformation method. COLMAP is
a Structure-from-Motion and Multi-View Stereo pipeline widely used for 3D
reconstruction from images. The way to run COLMAP from a command line
can be seen in code demonstration 8. The command needs a workspace path
that determines, where the reconstruction should be saved, an image path
to know which images to use for a reconstruction and an optional parameter
is the quality of reconstruction. High quality reconstruction can take a few
minutes, so for the whole system to be as fast as possible, the recommended
quality for reconstruction is medium.

os.system(path +
"COLMAP.bat automatic_reconstructor \ --workspace_path "
+ path + folder + " \ --image_path " + path + folder
+ " --quality " + quality)

Code demonstration 8: Calling COLMAP

After the reconstruction is done, the 3D model is very large, containing
around hundreds of thousands of vertices. The first concern is that Unity has
a limit for the number of vertices in a mesh. This limit is said to be around
65 000 vertices [46]. The second problem is that the higher the number of
vertices is, the more time it takes to draw the model. That could result in the
application lagging which is not desired. So the model needs to be decimated
before sending it to the application.

This is implemented in the api_download_model method. The decimation
is done using Blender [42]. Blender can be run from a command line and
fully supports scripts. The server runs Blender with a script that opens the
reconstructed model and decimates it until the number of faces is smaller
than 20 000. Then it exports the decimated model to a file. The command
for Blender can be seen in the code demonstration 9 and the script in the
code demonstration 10. The script needs a path to the decimated model as an
argument. The decimated model is saved in the same folder as the original
model. The original result of the reconstruction is shown in the figure 4.6 and
to compare, the decimated model is in the figure 4.7.

os.system('.\Blender\\blender.exe --background --python "'
+ path + 'decimation_script.py" -- "'
+ modelpath +'"')

Code demonstration 9: Calling Blender

29

4. Realization

argv = sys.argv
argv = argv[argv.index("--") + 1:]
bpy.ops.import_mesh.ply(filepath=argv[0] + "/meshed-poisson.ply")

for obj in bpy.data.objects:
if obj.type == "MESH":

modDec = obj.modifiers.new("Decimate", type = "DECIMATE")
bpy.context.scene.update()
#len(obj.data.vertices)

while modDec.face_count >= 20000:
modDec.ratio *= 0.5
bpy.context.scene.update()

bpy.ops.export_mesh.ply(filepath= argv[0] + "/decimated.ply",
use_normals=False, use_uv_coords=False)

Code demonstration 10: Blender script

Figure 4.6: 3D reconstructed
model containing around 230 thou-
sand vertices

Figure 4.7: Decimated model con-
taining around 25 thousand ver-
tices

The final model is then transformed to be mapped to the reconstructed
object and sent by the server as arrays of vertices, faces and colors to the
application to be visualized.

4.3.3 Model transformation

The final 3D reconstruction needs to be placed on the object that was recon-
structed. The translation, rotation, and scale are calculated using HoloLens

30

4.3. Server

camera positions and reconstructed camera positions from COLMAP.
The server obtains HoloLens camera positions from HoloLens applica-

tion. Then it loads the reconstructed camera positions from a file created
by COLMAP. The camera positions from COLMAP are in the form of rota-
tion and a translation, so the center of the camera is calculated by multiplying
the translation by the rotation. The loading of the camera positions is done
in the method api_get_transformation on the server

The calculation of the transform is then done in the calculate_transform
method. First, to calculate the transformation COLMAP camera positions
need to be converted from the coordinate system of COLMAP to the coordi-
nate system of Unity. COLMAP uses a right-handed coordinate system and
Unity left-handed coordinate system. The transformation is done by making
the Y-axis negative. This is achieved by multiplying COLMAP camera centers
with a reflection matrix, as it can be seen in the code demonstration 11).

Q = np.array([[1, 0, 0], [0, -1, 0], [0, 0, 1]])
.
.
.

for i in range(numOfCams):
colCams[i] = np.matmul(Q, np.array(colCams[i]))

Code demonstration 11: Converting camera centers from right-handed to left-
handed coordinate system

When both sets of camera centers are in the same coordinate system, the
transformation is calculated using the Procrustes analysis [47]. The Procrustes
analysis calculates the best transformation (rotation, scale, and translation)
to match two sets of points onto each other. An example of the matching
can be seen in the figure 4.8. The green dots represent centers of COLMAP
cameras that are matched to the centers of HoloLens cameras that are blue.
Resulting in transformed centers of COLMAP cameras that are represented
by red dots. The distance difference between pairs of cameras before and after
the transformation is compared in the figure 4.9

31

4. Realization

Figure 4.8: Camera positions reconstructed by COLMAP (green dots) that are
matched to HoloLens camera positions (blue dots) using Procrustes analysis
resulting in the reconstructed camera positions being mapped to HoloLens
camera positions (red dots)

Figure 4.9: Comparing the distance between COLMAP cameras and HoloLens
cameras before and after the transformation calculated with Procrustes anal-
ysis

32

4.4. Testing

The calculated scale, rotation, and translation are stored in global variables
to be then applied to the reconstructed model when the application sends a re-
quest to download the 3D model. The api_download_model method processes
the 3D model decimation, the transformation and sends it to the application.
The 3D model is stored in a polygon file format (.ply). The file is read line by
line, each line being parsed into vertices, colors and faces. The model trans-
formed as it can be seen in the code demonstration 12. Each vertex is first
converted into a left-handed coordinate system by negating the Y coordinate.
The vertex is moved to the origin of the COLMAP cameras coordinate sys-
tem. Then the vertex is transformed by the transformation calculated using
Procrustes analysis. It is multiplied by rotation and scale and moved by the
translation.

vertex = np.array([verts[index],
-1.0 * (verts[index+1]),
verts[index+2]])

vertex = vertex - globmuY
vertex = vertex / globnormY
vertex = scale * np.matmul(vertex, rotation) + translation

Code demonstration 12: Transforming the 3D reconstruction to Unity coor-
dinate system

The transformed model is then sent to the HoloLens application as a list
of vertex coordinates, colors and face indices.

4.4 Testing

The system was tested on users to determine if the UI is intuitive and if the
system is easy to use for new users.

Videos of all the testing can be found on the enclosed CD. There are two
videos for every tested user. The first video is of the user using the application.
The other video is a view from the application. However, HoloLens does not
support two applications accessing the camera, so the in-application videos
were taken after the reconstruction was done, showing results of the user’s
reconstruction.

The system is designed for users of HoloLens. However, some of the tested
users have never used HoloLens before. To compensate this fact, a tutorial
about operating the device was played to them before the testing. First, before

33

4. Realization

the testing of the system, tests subjects were asked a series of questions:

• Have you ever used Augmented reality? If yes, on what occasion?

• Have you ever used HoloLens?

• What do you understand under the term “3D Copy”?

• Do you prefer a fast and smoothly running program or a high quality of
a model and a lot of details?

• Do you have any experience with 3D modeling?

The initial questioning revealed that only half of users had some experience
with Augmented reality and their experiences were mostly with AR on mobile
phones. A third of the questioned had used HoloLens. Two types of answers
appeared concerning the term “3D Copy”. Half of the users said they pictured
a 3D printed copy of an object. The other half understood it as a virtual copy
of an existing real world object. When asked about their preferences (speed
and latency or high quality), about three quarters preferred fast and smoothly
running program over a high quality of a model. Most of the questioned users
have no experiences with 3D modeling.

After starting the application, users were asked to perform a few tasks to
ensure, that the application can be used by users without any struggles.

The first task was to start an image capture. Almost all tested users didn’t
have any problems figuring out how to start taking images. The only ones
with some issues where users with astigmatism that made it impossible for
them to read the instructive text.

When the image acquisition was started, users were asked to take as many
images of objects on the desk as they thought was suitable for a reconstruction
and then to stop the image acquisition. Both, the mean and the median of
number of images taken was 21 images. All users took enough images for
the reconstruction to run successfully. However, some users struggled with
reconstruction because most of the images they took were motion blurred.
This was caused because images were taken while the user moved. Most
of the users haven’t realized that they needed to be steady while taking an
image. But after realizing that, all users managed to take images sufficient
for a reconstruction. Another issue that was discovered was, that if the user
moved too fast some of the images weren’t saved and caused an exception in
the application. This problem will be solved by using a queue for captured
images instead of a single photo capture variable.

When taking images was accomplished, users were asked if they can tell
from looking at the UI how many images had been taken. All users answered
correctly without any hesitating.

Finally, after the reconstruction was finished, tested users were asked, how
would they move, rotate or scale the reconstructed model. Most of them

34

4.4. Testing

didn’t realize, they could use voice commands to manipulate the device, but
after they were reminded, that HoloLens can be operated using voice, they
used correct commands.

An example of 3D reconstructions made by tested users can be seen in
figure 4.10

Figure 4.10: 3D reconstructions created by tested users

Figure 4.11: Tested users with objects they were reconstructing

35

4. Realization

After the testing, tested users were asked another set of questions to find
out their experience from using the application:

• Did you have any struggles while using the application?

• Did your answer about preferring speed or quality change after using
this application?

• Were you satisfied with the final 3D model?

• Did you find the UI intuitive? Did it have all the information you
needed?

• Did you find the marked positions of image captures helpful?

The final questioning showed that most of the tested users didn’t feel like
they struggled during fulfilling given tasks. The minority answered that they
struggled with the air-tap. Users, who responded in the initial questioning
that they preferred speed and latency over high quality model haven’t changed
their opinion. However, users preferring the quality of the model said, they
give preference to speed and latency. Half of the questioned users liked the
reconstructed model. The other half said that the model wasn’t detailed
enough for their preferences. All users answered that the UI was informative
and adequate for everything they were doing. No user had any problem with
marked locations of image captures, they all found it helpful.

In conclusion, the change that came out of this testing was heightening
the quality of the reconstructed model. The captured photos will be put into
a queue to be processed in a case the user moves too fast. As was shown in
the testing, marking the positions in which the user took the image was found
helpful and it will be kept.

36

Chapter 5
Experimental validation

This chapter describes the experimental findings that were done during the
development of the system.

5.0.1 HoloLens location data

Every image capture contains data about the location where it was taken.
This location consists of a rotation and a position. The position could mean
either the center of the head or the center of the camera. This information
was unavailable in the official Microsoft and Unity documentation.

If the acquired position is the center of the camera, it would mean that
there are no alterations to the calculation of transformation between the coor-
dinate system needed. However, if the acquired position would be the center
of the head, the HoloLens camera center positions would have to be calculated
from the center of the head.

In order to find which of the two possible positions does HoloLens return,
there was an experiment performed.

The HoloLens device was placed on an arm attached to a rotation table.
Above the rotation table was a bridge-looking construction. From the top of
this construction was hanged an object to be photographed and reconstructed.
The whole construction can be seen in the image 5.1.

The rotation table then slowly rotated, with HoloLens on it pointing to-
wards the center of the table and taking a picture every 15 centimeters. After
the photo capture, all the camera location data was saved to a text file and
further inspected using MATLAB. There were four measurements in total,
each time at a different measured distance from the center of the rotation
table.

37

5. Experimental validation

Figure 5.1: The set up of the experiment

Figure 5.2: The set up of the experiment with marked locations of image
capture

The inspection of the camera positions consisted of calculating the center
of all the camera positions for each measurement and then calculating the
deviation of HoloLens camera positions from the distance between the center
of the rotation table and the HoloLens camera. The histogram of all deviations
in the figure 5.3.

38

Figure 5.3: Histogram of deviations of HoloLens camera positions from the
distance between the center of the rotation table and the HoloLens camera

The deviation mostly from 0 to 3 centimeters, which is a slight inaccuracy
caused probably by HoloLens location tracking. These deviations are not big
enough to imply that the position returned by HoloLens represents the center
of the head. This leads to the deduction that the position acquired during
image capture corresponds to the center of the HoloLens camera.

39

Chapter 6
Installation

This chapter is about how to install and run the system. The first part is
describing running the server and the second part explains the installation of
the application on HoloLens.

6.1 Server

The server was developed in Python version 3.7.1., so this is the recommended
version for running the program. To run successfully the server requires to
have Numpy, PIL and flask libraries installed. The server is then started by
executing the program using Python in the command line.

6.2 Application on HoloLens

There is a version of the build of the application available on the CD en-
closed. However, if there is a need to build the application, there are some
important settings that can’t be forgotten. All those settings can be seen in
the image 6.1. First, the platform needs to be switched to “Universal Windows
Platform”. User needs to select “Universal Windows Platform” and click on
“Switch Platform”. When the platform is set correctly, it is necessary to set
the build type to D3D and to check the box for “Unity C# Projects”. With
these settings, the build of the application will run on HoloLens.

41

6. Installation

Figure 6.1: Settings of a build of the application

The build of the application generated a Visual Studio project. This
project is used to deploy the application to the HoloLens device. When opened
in Visual Studio, it needs to be specified where and how the application will
run. These settings are demonstrated in the image 6.2. The option of Solu-
tion Configurations should be set to Release. The Solution platform is x86.
Finally, the last option is on which device the deployment should be. This
setting depends on how the HoloLens is connected to the computer. If it is
done using a cable, the user needs to select “Device”. In this example, the
HoloLens is connected via WiFi, so the “Remote Machine” option is selected.
When all these settings are done, the application is deployed by clicking the
green triangle button.

42

6.2. Application on HoloLens

Figure 6.2: Deploying the application to HoloLens

43

Conclusion

The goal of this thesis was to propose and implement a system for a fully
automatic 3D model reconstruction and model visualization on Microsoft
HoloLens. This system consists of a HoloLens application and a sever. The
HoloLens application runs the image acquisition and sends it to the server.
The server then performs the 3D reconstruction and sends the reconstructed
model to the HoloLens application. The application visualizes the reconstruc-
tion allowing the user to view the model and manipulate with it.

The result of this thesis is a system for 3D reconstruction of the object, that
doesn’t require any additional hardware. Users can create a 3D reconstruction,
view it and manipulate with it. The system is a great contribution for users
that need to recreate some objects from the real world in a virtual world.

There is still some room for future improvement of the system. The pos-
sibilities of using an image texture will be examined and implemented.

In conclusion, previously determined goals of this thesis were accomplished.

45

Bibliography

1. SCHOENBERGER, Johannes L. Colmap [online] [visited on 2019-04-18].
Available from: https://colmap.github.io/.

2. SCHÖNBERGER, Johannes Lutz; FRAHM, Jan-Michael. Structure-from-
Motion Revisited. In: Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016.

3. SCHÖNBERGER, Johannes Lutz; ZHENG, Enliang; POLLEFEYS, Marc;
FRAHM, Jan-Michael. Pixelwise View Selection for Unstructured Multi-
View Stereo. In: European Conference on Computer Vision (ECCV).
2016.

4. REALITYTECHNOLOGIES.COM DIVERSIFIED INTERNET HOLD-
INGS LLC. The Ultimate Guide to Understanding Augmented Reality
(AR) Technology [online] [visited on 2019-05-09]. Available from: https:
//www.realitytechnologies.com/augmented-reality/.

5. GOOGLE LLC. Glass [online] [visited on 2019-05-09]. Available from:
https://x.company/glass/.

6. MICROSOFT CORPORATION. Microsoft HoloLens [online] [visited on
2019-05-09]. Available from: https://www.microsoft.com/en- us/
hololens.

7. BBC. First Hololens kit to cost $3,000 [online] [visited on 2019-05-09].
Available from: https://www.bbc.com/news/technology-35686616.

8. MICROSOFT CORPORATION. HoloLens hardware details [online] [vis-
ited on 2019-05-09]. Available from: https://docs.microsoft.com/en-
us/windows/mixed-reality/hololens-hardware-details.

9. GRABHAM, Dan. Microsoft HoloLens 2 features, news and release date:
Everything you need to know [online] [visited on 2019-05-09]. Available
from: https : / / www . pocket - lint . com / ar - vr / news / microsoft /
146803-microsoft-hololens-2-specs-release-date-news-features.

47

https://colmap.github.io/
https://www.realitytechnologies.com/augmented-reality/
https://www.realitytechnologies.com/augmented-reality/
https://x.company/glass/
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.bbc.com/news/technology-35686616
https://docs.microsoft.com/en-us/windows/mixed-reality/hololens-hardware-details
https://docs.microsoft.com/en-us/windows/mixed-reality/hololens-hardware-details
https://www.pocket-lint.com/ar-vr/news/microsoft/146803-microsoft-hololens-2-specs-release-date-news-features
https://www.pocket-lint.com/ar-vr/news/microsoft/146803-microsoft-hololens-2-specs-release-date-news-features

Bibliography

10. MICROSOFT CORPORATION. HoloLens2-Overview, Features and Specs
[online] [visited on 2019-05-09]. Available from: https://www.microsoft.
com/en-us/hololens/hardware.

11. WALFORD, Alan. Photogrammetry [online] [visited on 2019-05-09]. Avail-
able from: http://www.photogrammetry.com/.

12. MICROSOFT CORPORATION. Microsoft App Store [online] [visited
on 2019-04-16]. Available from: https : / / www . microsoft . com / en -
us/store/collections/hlgettingstarted/hololens.

13. IMMERSIV.IO. Bridge [online] [visited on 2019-04-16]. Available from:
https://www.microsoft.com/en-us/p/bridge-immersivio/9pb6lvrltxpc?
cid=msft_web_collection&activetab=pivot:overviewtab#.

14. ARVIZIO INC. MR Studio Immerse [online] [visited on 2019-04-16].
Available from: https://www.microsoft.com/en-us/p/mr-studio-
immerse-20/9ngr4c2zk1lp?cid=msft_web_collection&activetab=
pivot%5C%3Aoverviewtab.

15. 3DBEAR OY. 3DBear Holo [online] [visited on 2019-04-16]. Available
from: https://www.microsoft.com/en-us/p/3dbear-holo/9p2109dw9nnx?
cid=msft_web_collection&activetab=pivot%5C%3Aoverviewtab#.

16. CASE WESTERN RESERVE UNIVERSITY. 3dDraw [online] [visited
on 2019-04-16]. Available from: https : / / www . microsoft . com / en -
us / p / 3ddraw - for - hololens / 9nblggh51dwh ? activetab = pivot :
overviewtab#.

17. GARON, Mathieu; BOULET, Pierre-Olivier; DOIRONZ, Jean-Philippe;
BEAULIEU, Luc; LALONDE, Jean-Franfffdfffdois. Real-Time High Res-
olution 3D Data on the HoloLens. In: 2016. Available from DOI: 10.
1109/ISMAR-Adjunct.2016.0073.

18. JOACHIMCZAK, Michal; LIU, Juan; ANDO, Hiroshi. Real-time Mixed-
reality Telepresence via 3D Reconstruction with HoloLens and Com-
modity Depth Sensors. In: Proceedings of the 19th ACM International
Conference on Multimodal Interaction. Glasgow, UK: ACM, 2017. ICMI
’17. ISBN 978-1-4503-5543-8. Available from DOI: 10.1145/3136755.
3143031.

19. ORTS, Sergio et al. Holoportation: Virtual 3D Teleportation in Real-
time. In: 2016. Available from DOI: 10.1145/2984511.2984517.

20. DONG, Samuel; HÖLLERER, Tobias. Real-Time Re-Textured Geome-
try Modeling Using Microsoft HoloLens. 2018 IEEE Conference on Vir-
tual Reality and 3D User Interfaces (VR). 2018.

21. LIEVENDAG, Nick. Autodesk 123D Catch (Discontinued) [online] [vis-
ited on 2019-04-19]. Available from: https : / / 3dscanexpert . com /
autodesk-photogrammetry-review-123d-catch/.

48

https://www.microsoft.com/en-us/hololens/hardware
https://www.microsoft.com/en-us/hololens/hardware
http://www.photogrammetry.com/
https://www.microsoft.com/en-us/store/collections/hlgettingstarted/hololens
https://www.microsoft.com/en-us/store/collections/hlgettingstarted/hololens
https://www.microsoft.com/en-us/p/bridge-immersivio/9pb6lvrltxpc?cid=msft_web_collection&activetab=pivot:overviewtab#
https://www.microsoft.com/en-us/p/bridge-immersivio/9pb6lvrltxpc?cid=msft_web_collection&activetab=pivot:overviewtab#
https://www.microsoft.com/en-us/p/mr-studio-immerse-20/9ngr4c2zk1lp?cid=msft_web_collection&activetab=pivot%5C%3Aoverviewtab
https://www.microsoft.com/en-us/p/mr-studio-immerse-20/9ngr4c2zk1lp?cid=msft_web_collection&activetab=pivot%5C%3Aoverviewtab
https://www.microsoft.com/en-us/p/mr-studio-immerse-20/9ngr4c2zk1lp?cid=msft_web_collection&activetab=pivot%5C%3Aoverviewtab
https://www.microsoft.com/en-us/p/3dbear-holo/9p2109dw9nnx?cid=msft_web_collection&activetab=pivot%5C%3Aoverviewtab#
https://www.microsoft.com/en-us/p/3dbear-holo/9p2109dw9nnx?cid=msft_web_collection&activetab=pivot%5C%3Aoverviewtab#
https://www.microsoft.com/en-us/p/3ddraw-for-hololens/9nblggh51dwh?activetab=pivot:overviewtab#
https://www.microsoft.com/en-us/p/3ddraw-for-hololens/9nblggh51dwh?activetab=pivot:overviewtab#
https://www.microsoft.com/en-us/p/3ddraw-for-hololens/9nblggh51dwh?activetab=pivot:overviewtab#
http://dx.doi.org/10.1109/ISMAR-Adjunct.2016.0073
http://dx.doi.org/10.1109/ISMAR-Adjunct.2016.0073
http://dx.doi.org/10.1145/3136755.3143031
http://dx.doi.org/10.1145/3136755.3143031
http://dx.doi.org/10.1145/2984511.2984517
https://3dscanexpert.com/autodesk-photogrammetry-review-123d-catch/
https://3dscanexpert.com/autodesk-photogrammetry-review-123d-catch/

Bibliography

22. PHAN, Annie. ReCap Pro app for iPad Profffdfffd [online] [visited on
2019-04-19]. Available from: https://knowledge.autodesk.com/search-
result/caas/simplecontent/content/recap-pro-app-for-ipad-
pro-C2-AE.html.

23. SCANDY CO. Scandy Pro [online] [visited on 2019-04-19]. Available
from: https://www.scandy.co/products/scandy-pro.

24. SCANDY CO. Using Scandy Pro scans in AR Lenses or Filters [online]
[visited on 2019-04-19]. Available from: https://www.youtube.com/
watch?v=mcDGJodHJKs.

25. SONY MOBILE COMMUNICATIONS INC. Xperia XZ1 3D Image Cre-
ation [online] [visited on 2019-04-19]. Available from: https://www.
sonymobile.com/us/products/phones/xperia-xz1/3d-creator/.

26. MICROSOFT CORPORATION. Development launchpad [online] [vis-
ited on 2019-04-19]. Available from: https://docs.microsoft.com/en-
us/windows/mixed-reality/development.

27. GOINS, Dwight. Unity vs DirectX performance [online] [visited on 2019-
05-09]. Available from: https://forums.hololens.com/discussion/
2552/unity-vs-directx-performance.

28. MICROSOFT CORPORATION. Unity development overview [online]
[visited on 2019-04-19]. Available from: https://docs.microsoft.com/
en-us/windows/mixed-reality/unity-development-overview.

29. MICROSOFT CORPORATION. Mixed Reality Toolkit [online] [visited
on 2019-04-17]. Available from: https : / / github . com / Microsoft /
MixedRealityToolkit-Unity.

30. DJANGO SOFTWARE FOUNDATION. Django [online] [visited on 2019-
05-09]. Available from: https://www.djangoproject.com/.

31. PALLETS TEAM. Flask [online] [visited on 2019-04-17]. Available from:
http://flask.pocoo.org/.

32. AGENDALESS CONSULTING. Pyramid [online] [visited on 2019-05-
09]. Available from: https://trypyramid.com/.

33. HRONČOK, Miro; VIKTORIN, Petr. MI-PYT - Flask [online] [visited
on 2019-05-09]. Available from: https://naucse.python.cz/course/
mi-pyt/intro/flask/.

34. AUTODESK INC. ReCap [online] [visited on 2019-04-19]. Available from:
https://www.autodesk.com/products/recap/overview.

35. AUTODESK INC. About the DeCap Command-Line Tool [online] [vis-
ited on 2019-04-19]. Available from: https://knowledge.autodesk.
com/support/recap/learn- explore/caas/CloudHelp/cloudhelp/
2017/ENU/Reality- Capture/files/GUID- A9D25D0F- 7EBF- 4BFB-
B94F-66A10EB73D9B-htm.html.

49

https://knowledge.autodesk.com/search-result/caas/simplecontent/content/recap-pro-app-for-ipad-pro-C2-AE.html
https://knowledge.autodesk.com/search-result/caas/simplecontent/content/recap-pro-app-for-ipad-pro-C2-AE.html
https://knowledge.autodesk.com/search-result/caas/simplecontent/content/recap-pro-app-for-ipad-pro-C2-AE.html
https://www.scandy.co/products/scandy-pro
https://www.youtube.com/watch?v=mcDGJodHJKs
https://www.youtube.com/watch?v=mcDGJodHJKs
https://www.sonymobile.com/us/products/phones/xperia-xz1/3d-creator/
https://www.sonymobile.com/us/products/phones/xperia-xz1/3d-creator/
https://docs.microsoft.com/en-us/windows/mixed-reality/development
https://docs.microsoft.com/en-us/windows/mixed-reality/development
https://forums.hololens.com/discussion/2552/unity-vs-directx-performance
https://forums.hololens.com/discussion/2552/unity-vs-directx-performance
https://docs.microsoft.com/en-us/windows/mixed-reality/unity-development-overview
https://docs.microsoft.com/en-us/windows/mixed-reality/unity-development-overview
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://www.djangoproject.com/
http://flask.pocoo.org/
https://trypyramid.com/
https://naucse.python.cz/course/mi-pyt/intro/flask/
https://naucse.python.cz/course/mi-pyt/intro/flask/
https://www.autodesk.com/products/recap/overview
https://knowledge.autodesk.com/support/recap/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/Reality-Capture/files/GUID-A9D25D0F-7EBF-4BFB-B94F-66A10EB73D9B-htm.html
https://knowledge.autodesk.com/support/recap/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/Reality-Capture/files/GUID-A9D25D0F-7EBF-4BFB-B94F-66A10EB73D9B-htm.html
https://knowledge.autodesk.com/support/recap/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/Reality-Capture/files/GUID-A9D25D0F-7EBF-4BFB-B94F-66A10EB73D9B-htm.html
https://knowledge.autodesk.com/support/recap/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/Reality-Capture/files/GUID-A9D25D0F-7EBF-4BFB-B94F-66A10EB73D9B-htm.html

Bibliography

36. CAPTURING REALITY S.R.O. CapturingReality [online] [visited on
2019-04-19]. Available from: https://www.capturingreality.com/
Home.

37. ALICEVISION. Meshroom [online] [visited on 2019-05-01]. Available from:
https://github.com/alicevision/meshroom.

38. ALICEVISION. Meshroom Documentation [online] [visited on 2019-05-
01]. Available from: https://github.com/alicevision/meshroom/
wiki.

39. AUTODESK INC. About the DeCap Command-Line Tool [online] [vis-
ited on 2019-04-19]. Available from: https://peterfalkingham.com/
2018/08/11/photogrammery-testing-14-alicevision-meshroom/.

40. AUTODESK INC. About the DeCap Command-Line Tool [online] [vis-
ited on 2019-04-19]. Available from: https://www.gamefromscratch.
com/post/2018/10/18/Creating-3D-Models-From-Photos-Using-
Meshroom.aspx.

41. AUTODESK INC. About the DeCap Command-Line Tool [online] [vis-
ited on 2019-04-19]. Available from: https://www.blendernation.com/
2018/08/26/how- to- photoscan- easy- and- free- meshroom- and-
blender/.

42. BLENDER FOUNDATION. Blender [online] [visited on 2019-04-18].
Available from: https://www.blender.org/.

43. UNITY TECHNOLOGIES. Unity [online] [visited on 2019-04-17]. Avail-
able from: https://unity.com/.

44. UNITY TECHNOLOGIES. PhotoCapture [online] [visited on 2019-04-
18]. Available from: https://docs.unity3d.com/ScriptReference/
XR.WSA.WebCam.PhotoCapture.html.

45. UNITY TECHNOLOGIES. WebRequest [online] [visited on 2019-04-18].
Available from: https://docs.unity3d.com/ScriptReference/Networking.
UnityWebRequest.html.

46. ERIC5H5. Vertex limit [online] [visited on 2019-04-17]. Available from:
https://answers.unity.com/questions/255405/vertex- limit.
html.

47. ROSS, Amy. Procrustes Analysis. 2005. Available from DOI: 10.1.1.
119.2686.

50

https://www.capturingreality.com/Home
https://www.capturingreality.com/Home
https://github.com/alicevision/meshroom
https://github.com/alicevision/meshroom/wiki
https://github.com/alicevision/meshroom/wiki
https://peterfalkingham.com/2018/08/11/photogrammery-testing-14-alicevision-meshroom/
https://peterfalkingham.com/2018/08/11/photogrammery-testing-14-alicevision-meshroom/
https://www.gamefromscratch.com/post/2018/10/18/Creating-3D-Models-From-Photos-Using-Meshroom.aspx
https://www.gamefromscratch.com/post/2018/10/18/Creating-3D-Models-From-Photos-Using-Meshroom.aspx
https://www.gamefromscratch.com/post/2018/10/18/Creating-3D-Models-From-Photos-Using-Meshroom.aspx
https://www.blendernation.com/2018/08/26/how-to-photoscan-easy-and-free-meshroom-and-blender/
https://www.blendernation.com/2018/08/26/how-to-photoscan-easy-and-free-meshroom-and-blender/
https://www.blendernation.com/2018/08/26/how-to-photoscan-easy-and-free-meshroom-and-blender/
https://www.blender.org/
https://unity.com/
https://docs.unity3d.com/ScriptReference/XR.WSA.WebCam.PhotoCapture.html
https://docs.unity3d.com/ScriptReference/XR.WSA.WebCam.PhotoCapture.html
https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.html
https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.html
https://answers.unity.com/questions/255405/vertex-limit.html
https://answers.unity.com/questions/255405/vertex-limit.html
http://dx.doi.org/10.1.1.119.2686
http://dx.doi.org/10.1.1.119.2686

Appendix A
Acronyms

API Application programming interface

AR Augmented reality

MVS Multi-View Stereo

RGB Red green blue

RGBA Red green blue alpha

RGBD Red green blue depth

SfM Structure-from-Motion

SDK Software development kit

UI User interface

URL Uniform Resource Locator

UX User experience

VR Virtual reality

51

Appendix B
Contents of enclosed CD

53

B. Contents of enclosed CD

CD1 .. The first CD
readme.txt....................the file with CD contents description
hololens app..................the directory of HoloLens application

hololens project.zip.......the compressed Unity project of the
application

thesis...................................the directory of the thesis
2019-Zderadickova-BSc.zip.....LATEX source codes of the thesis
2019-Zderadickova-BSc.pdf.......the thesis text in PDF format

webserver.............................the directory with the server
webserver.zip............................the compressed server

wbdcm implementation sources
CD2 ... The second CD

readme.txt....................the file with CD contents description
testing.zip................the compressed videos from user testing

54

	Introduction
	Goal
	State-of-the-art
	Augmented reality
	Microsoft HoloLens
	Photogrammetry

	Analysis and design
	Analysis of similar applications and systems
	User analysis
	Application on HoloLens
	Server
	Communication between the application and the server
	Model reconstruction
	Model decimation

	Realization
	Used technologies
	Application on HoloLens
	Server
	Testing

	Experimental validation
	Installation
	Server
	Application on HoloLens

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

