
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Automatic event recognition for Higgs
boson detection

Bc. Jakub Malý

Supervisor: Prof. Dr. Ing. Jan Kybic
Supervisor–specialist: doc. Dr. André Sopczak
May 2020

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457194Personal ID number:Malý JakubStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Automatic event recognition for Higgs boson detection

Master’s thesis title in Czech:

Automatické rozpoznávání událostí pro detekci Higgsova bosonu

Guidelines:
Particle accelerators at CERN produce a high number of so-called events, describing the collision products and its properties.
Events of interest are currently recognized by a rule-based system. The task is to recognize the events of interest
automatically using the techniques of machine learning, and possibly deep learning, and thus increase the ratio of correctly
identified events. The project is a part of the effort to analyse the properties of the Higgs boson.
Instructions:
1. Get familiar with the data and basic principles of searching for elementary particles in high-energy physics.
2. Design and implement a classifier to separate events of interest from the background, based on standard techniques
(e.g. random forest, gradient boosting). Evaluate its performance and compare with existing approaches.
3. Design and implement a neural network-based classifier to separate the events of interest from the background. Evaluate
its performance. Consider using low-level features instead of the precomputed ones.

Bibliography / sources:
[1] Dan Guest et al. Deep Learning and its application to LHC Physics. Annu. Rev. Nucl. Part. Sci. 2018, 68:1-22
[2] Pierre Baldil et al: Searching for Exotic Particles in High-Energy Physics
[3] ATLAS Collaboration: Observation of Higgs boson production in association with a top quark pair at the LHC with the
ATLAS detector. Physics Letters B, vol. 784, pp. 173-191, 2018
[4] R.Duda,P. Hart, D.Stork: Pattern classification. Willey-Intersciencee, 2000.
[5] I. Goodfellow, Y. Bengio, A. Courville: Deep learning. MIT Press. 2016

Name and workplace of master’s thesis supervisor:

prof. Dr. Ing. Jan Kybic, Biomedical imaging algorithms, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 29.01.2020

Assignment valid until:
by the end of summer semester 2020/2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
prof. Dr. Ing. Jan Kybic

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank both of my super-
visors for their continuous support and
patience. It was an honour to work un-
der such academics and their joint lead
greatly motivated this work.

Thanks also to my university, the Czech
Technical University (CTU) in Prague,
for giving me a great education which
served as a solid basis during the writing
of this thesis and providing access to a
computational grid.

Lastly, I would like to thank my fam-
ily and relatives for their great support.
This thesis was written during turbulent
times, which greatly challenged my men-
tal health and forced the work to happen
remotely. Without their support and care,
finishing would not have been possible.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 22. May 2020

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 22. Května 2020

v

Abstract

Several groups of researches have tried,
and are still trying, to improve Higgs bo-
son detection [PB04], [Col18a], [Col18b].
Machine Learning (ML) appears as one of
the most promising ways, namely Boosted
Decision Trees (BDT), Shallow Neural
Networks (SNN), and Deep Neural Net-
works (DNN). The great advantage of
such classifiers is that they can be trained
once and then reused several times with-
out needing any significant computational
power. Also, they can be free of knowing
the physical background, or the meaning
of the features. The main aim of this
project is to test recently developed ML
libraries on data provided by CERN.

Keywords: Higgs boson, tt̄H, tt̄W , tt̄Z,
Significance, ROOT, UpRoot,
Scikit-learn, RFC, KNC, GNB, ADA,
GBC, MLPC, SVC

Supervisor: Prof. Dr. Ing. Jan Kybic
Department of Cybernetics

Supervisor–specialist: doc. Dr. André
Sopczak
Institute of Experimental and Applied
Physics

Abstrakt

Několik skupin výzkumníků se zabývalo
a stále zajíma vylepšením detekce Higg-
sova bosonu [PB04], [Col18a], [Col18b].
Strojové učení se ukázalo, jako jedna z
nejlepších metod. Jmenovitě to byly po-
sílené stromové struktury, mělké neuro-
nové sítě, a hluboké neuronové sítě. Vel-
kou výhodou takovýchto modelů je, je-
jich schopnost se naučit pouze jednout a
poté být nespočetněkrát použity bez po-
třeby dalšího velkého výpočetního výkonu.
Dále mohou být nezávislé na fyzikálním
pozadí nebo významu jednotlivých vlast-
ností. Hlavním cílem tohoto projektu je
otestovat nedávno vyvinuté knihovny stro-
jového učení na datech, jež byly poskyt-
nuty organizací CERN.

Klíčová slova: Higgs boson, tt̄H, tt̄W ,
tt̄Z, Significance, ROOT, UpRoot,
Scikit-learn, RFC, KNC, GNB, ADA,
GBC, MLPC, SVC

vi

Contents

Project Specification iii

1 Introduction 1

Part I
Particle Physics

2 The Large Hadron Collider 5

2.1 Introduction 5

2.2 Area of interest 5

3 Signal in the presence of
background 9

3.1 Signal structure 9

3.2 Backgrounds 10

3.2.1 tt̄W . 10

3.2.2 tt̄Z . 10

3.2.3 Others . 11

3.3 Evaluation 12

3.3.1 Significance computation 12

Part II

Machine Learning

4 Data 17

4.1 The ROOT File system 17

4.2 UpRoot Library 18

4.3 Pre-processing 19

4.3.1 Inputs . 19

4.3.2 Scaling 20

4.3.3 Compression 20

4.4 Processing scripts 21

4.5 Used data 21

4.5.1 Working channel 22

4.5.2 Histograms 22

5 Classification 23

5.1 Introduction 23

5.2 General types of probabilities . . 23

5.2.1 Empirical 23

5.2.2 Subjective 24

vii

5.2.3 Apriori 24

5.3 Bayesisan decision task 25

5.3.1 Bayes’ theorem 25

5.3.2 Bayesian Risk 26

5.3.3 Decision strategy 27

6 The Scikit-learn library 29

6.1 Splits . 29

6.1.1 Test Split Validation 30

6.1.2 K-Fold Cross-Validation 30

6.1.3 Stratified K-Fold
Cross-Validation 31

6.2 Pipeline . 31

6.3 Classifiers . 32

6.4 Scoring . 33

6.4.1 F1-score 33

6.4.2 Mean accuracy score 35

6.4.3 ROC AUC score 36

6.5 The Random Forest Classifier . . 37

6.5.1 Introduction 37

6.5.2 Parameters 37

6.5.3 Feature importances 40

6.5.4 Additional tests 42

6.5.5 Working Point 43

6.5.6 Conclusion 46

6.6 The K-Neighbors Classifier 48

6.6.1 Introduction 48

6.6.2 Dimension reduction 48

6.6.3 Parameters 50

6.6.4 Additional tests 52

6.6.5 Working Point 53

6.6.6 Conclusion 55

6.7 Gaussian Naïve Bayes 57

6.7.1 Introduction 57

6.7.2 Parameters 57

6.7.3 Additional tests 59

6.7.4 Working Point 60

viii

6.7.5 Conclusion 61

6.8 AdaBoost Classifier 64

6.8.1 Introduction 64

6.8.2 Parameters 64

6.8.3 Additional tests 66

6.8.4 Working Point 67

6.8.5 Conclusion 68

6.9 Gradient Boosting Classifier 72

6.9.1 Introduction 72

6.9.2 Parameters 72

6.9.3 Additional tests 75

6.9.4 Working Point 76

6.9.5 Conclusion 77

6.10 Multi-Layer Perceptron Classifier 79

6.10.1 Introduction 79

6.10.2 Parameters 80

6.10.3 Additional tests 84

6.10.4 Working Point 84

6.10.5 Conclusion 85

6.11 Support Vector Classifier 87

6.11.1 Introduction 87

6.11.2 Parameters 88

6.11.3 Additional tests 90

6.11.4 Working Point 91

6.11.5 Conclusion 92

7 Real data 95

8 Additional Changes 99

8.1 Cheating . 99

8.2 New data training 99

8.2.1 RFC . 101

8.2.2 KNC . 102

8.2.3 GNB . 103

8.2.4 ADA . 104

8.2.5 GBC . 105

8.2.6 MLPC 106

ix

8.2.7 SVC. 107

8.2.8 Summary 107

8.2.9 Real data 108

8.3 Feature importances 109

8.4 tt̄Z weighting 110

9 Conclusion 111

Appendices

A Computations 115

A.1 Significance computation
example . 115

B Tables 119

B.1 Data . 119

C Figures 125

C.1 Data Histograms 125

C.1.1 Older mc16a set 125

C.1.2 Real mc16a & mc16d set . . 143

C.2 Tuning . 152

C.2.1 The Random Forest Classifier 152

C.2.2 The K-Neighbors Classifier 160

C.2.3 Gaussian Naïve Bayes 166

C.2.4 AdaBoost Classifier 170

C.2.5 Gradient Boosting Classifier 174

C.2.6 Multi-Layer Perceptron
Classifier . 184

C.2.7 Support Vector Classifier . . 196

D Code 203

D.1 Utils . 203

D.1.1 converter.py 203

D.1.2 reader.py 207

D.1.3 ml_utils.py 211

D.2 Scripts . 230

D.2.1 data_convert.py 230

D.2.2 data_filter.py 231

D.2.3 data_prepare.py 234

D.2.4 data_split.py 236

D.2.5 data_view.py 241

x

D.2.6 tuning scripts (only RFC
listed) . 244

D.2.7 tuning results view scripts
(only RFC listed) 247

D.2.8 train scripts (only RFC
listed) . 251

D.2.9 tuning_wp.py 255

D.2.10 eval_real.py 257

E Bibliography 261

xi

Figures

2.1 Aerial view of the LHC with the
locations of the four biggest detectors
[cita] . 6

2.2 ATLAS detector with crucial parts
marked [citb] 7

2.3 ATLAS inner detector with its
components [citc] 8

3.1 Higgs boson production with a pair
of top quarks [citd] 10

3.2 tt̄H (a) and tt̄W (b) Freyman
diagrams [PB14] 11

3.3 Example tt̄Z Freyman diagram
with trilepton signature [Byl16] . . 11

4.1 Converter and Reader flowchart
diagram . 19

6.1 K-Fold Cross Validation procedure
[QR19] . 30

6.2 Pipeline flowchart diagram 31

6.3 Elemental decision tree
classification [Yiu19] 38

6.4 Performance of RFC with default
parameters . 39

6.5 Performance of RFC with tuned
parameters . 40

6.6 Performance of RFC (channel)
with default parameters 40

6.7 Performance of RFC (channel)
with tuned parameters 41

6.8 Performance of RFC with tuned
parameters, trained on 80% of
full-data and tested on 80% and 20%
of channel-data 41

6.9 Feature importances for full-data
model (left) and channel-data model
(right) . 43

6.10 Performance of RFC with tuned
parameters, tested on a) older mc16d
b) newer mc16a & mc16d data . . . 43

6.11 Dependence of significance on the
threshold, vertical lines denote
maximums . 44

6.12 Dependences of a) the efficiencies,
b) the expected number of events on
the threshold, vertical lines denote
values for found threshold 45

6.13 Confusion matrices for a) default
decision and b) significance
maximization decision function for
the tuned classifier performing on the
newer data . 46

xii

6.14 a) parameters dependence on the
threshold and b) confusion matrix for
the WP maximizing sensitivity for a
given value of FDR for the tuned
classifier performing on the newer
data . 47

6.15 KNC steps visualization for
binary classification in
two-dimensional space [Nav18b] . . 49

6.16 Performance of KNC with default
parameters . 50

6.17 Performance of KNC with tuned
parameters . 50

6.18 Performance of KNC (channel)
with default parameters 52

6.19 Performance of KNC (channel)
with tuned parameters 52

6.20 Performance of KNC with tuned
parameters, trained on 80% of
full-data and tested on 80% and 20%
of channel-data 53

6.21 Performance of KNC with tuned
parameters, tested on a) older mc16d
b) newer mc16a & mc16d data . . . 53

6.22 Dependence of significance on the
threshold, vertical lines denote
maximums . 54

6.23 Dependences of a) the efficiencies,
b) the expected number of events on
the threshold, vertical lines denote
values for found threshold 54

6.24 Confusion matrices for a) default
decision and b) significance
maximization decision function for
the tuned classifier performing on the
newer data . 55

6.25 a) parameters dependence on the
threshold and b) confusion matrix for
the WP maximizing sensitivity for a
given value of FDR for the tuned
classifier performing on the newer
data . 56

6.26 Performance of GNB with default
parameters . 58

6.27 Performance of GNB with tuned
parameters . 58

6.28 Performance of GNB (channel)
with default parameters 59

6.29 Performance of GNB (channel)
with tuned parameters 59

6.30 Performance of GNB with tuned
parameters, trained on 80% of
full-data and tested on 80% and 20%
of channel-data 60

6.31 Performance of GNB with tuned
parameters, tested on a) older mc16d
b) newer mc16a & mc16d data . . . 60

6.32 Dependence of significance on the
threshold, vertical lines denote
maximums . 61

xiii

6.33 Dependences of a) the efficiencies,
b) the expected number of events on
the threshold, vertical lines denote
values for found threshold 61

6.34 Confusion matrices for a) default
decision and b) significance
maximization decision function for
the tuned classifier performing on the
newer data . 62

6.35 a) parameters dependence on the
threshold and b) confusion matrix for
the WP maximizing sensitivity for a
given value of FDR for the tuned
classifier performing on the newer
data . 63

6.36 AdaBoost steps visualization
[Nav18a] . 65

6.37 Performance of ADA with default
parameters . 66

6.38 Performance of ADA with tuned
parameters . 67

6.39 Performance of ADA (channel)
with default parameters 67

6.40 Performance of ADA (channel)
with tuned parameters 68

6.41 Performance of ADA with tuned
parameters, trained on 80% of
full-data and tested on 80% and 20%
of channel-data 68

6.42 Performance of ADA with tuned
parameters, tested on a) older mc16d
b) newer mc16a & mc16d data . . . 69

6.43 Dependence of significance on the
threshold, vertical lines denote
maximums . 69

6.44 Dependences of a) the efficiencies,
b) the expected number of events on
the threshold, vertical lines denote
values for found threshold 70

6.45 Confusion matrices for a) default
decision and b) significance
maximization decision function for
the tuned classifier performing on the
newer data . 70

6.46 a) parameters dependence on the
threshold and b) confusion matrix for
the WP maximizing sensitivity for a
given value of FDR for the tuned
classifier performing on the newer
data . 71

6.47 Performance of GBC with default
parameters . 73

6.48 Performance of GBC with tuned
parameters . 73

6.49 Performance of GBC (channel)
with default parameters 74

6.50 Performance of GBC (channel)
with tuned parameters 74

xiv

6.51 Performance of GBC with tuned
parameters, trained on 80% of
full-data and tested on 80% and 20%
of channel-data 75

6.52 Performance of GBC with tuned
parameters, tested on a) older mc16d
b) newer mc16a & mc16d data . . . 75

6.53 Dependence of significance on the
threshold, vertical lines denote
maximums . 76

6.54 Dependences of a) the efficiencies,
b) the expected number of events on
the threshold, vertical lines denote
values for found threshold 76

6.55 Confusion matrices for a) default
decision and b) significance
maximization decision function for
the tuned classifier performing on the
newer data . 77

6.56 a) parameters dependence on the
threshold and b) confusion matrix for
the WP maximizing sensitivity for a
given value of FDR for the tuned
classifier performing on the newer
data . 78

6.57 Artificial neuron visualization
[Roo19] . 79

6.58 Artificial neuron network
visualization [Sap19] 80

6.59 Performance of MLPC with
default parameters 82

6.60 Performance of MLPC with tuned
parameters . 82

6.61 Performance of MLPC (channel)
with default parameters 83

6.62 Performance of MLPC (channel)
with tuned parameters 83

6.63 Performance of MLPC with tuned
parameters, trained on 80% of
full-data and tested on 80% and 20%
of channel-data 83

6.64 Performance of MLPC with tuned
parameters, tested on a) older mc16d
b) newer mc16a & mc16d data . . . 84

6.65 Dependence of significance on the
threshold, vertical lines denote
maximums . 85

6.66 Dependences of a) the efficiencies,
b) the expected number of events on
the threshold, vertical lines denote
values for found threshold 85

6.67 Confusion matrices for a) default
decision and b) significance
maximization decision function for
the tuned classifier performing on the
newer data . 86

6.68 a) parameters dependence on the
threshold and b) confusion matrix for
the WP maximizing sensitivity for a
given value of FDR for the tuned
classifier performing on the newer
data . 86

xv

6.69 Binary classification problem
solved by Support Vector Machine
[Was19] . 87

6.70 Performance of SVC with default
parameters . 88

6.71 Performance of SVC with tuned
parameters . 89

6.72 Performance of SVC (channel)
with default parameters 90

6.73 Performance of SVC (channel)
with tuned parameters 90

6.74 Performance of SVC with tuned
parameters, trained on 10% of
full-data and tested on 80% and 20%
of channel-data 91

6.75 Performance of SVC with tuned
parameters, tested on a) older mc16d
b) newer mc16a & mc16d data . . . 91

6.76 Dependence of significance on the
threshold, vertical lines denote
maximums . 92

6.77 Dependences of a) the efficiencies,
b) the expected number of events on
the threshold, vertical lines denote
values for found threshold 92

6.78 Confusion matrices for a) default
decision and b) significance
maximization decision function for
the tuned classifier performing on the
newer data . 93

6.79 a) parameters dependence on the
threshold and b) confusion matrix for
the WP maximizing sensitivity for a
given value of FDR for the tuned
classifier performing on the newer
data . 94

7.1 Overview of individual real-data
predictions . 96

7.2 Individual real-data predictions . 96

7.2 Individual real-data predictions . 97

8.1 Performance of newly trained
RFC . 101

8.2 Dependences of a) the significance,
b) the efficiencies, c) the expected
number of events on the threshold,
vertical lines denote values for found
threshold . 101

8.3 Performance of newly trained
KNC . 102

8.4 Dependences of a) the significance,
b) the efficiencies, c) the expected
number of events on the threshold,
vertical lines denote values for found
threshold . 102

8.5 Performance of newly trained
GNB . 103

xvi

8.6 Dependences of a) the significance,
b) the efficiencies, c) the expected
number of events on the threshold,
vertical lines denote values for found
threshold . 103

8.7 Performance of newly trained
ADA . 104

8.8 Dependences of a) the significance,
b) the efficiencies, c) the expected
number of events on the threshold,
vertical lines denote values for found
threshold . 104

8.9 Performance of newly trained
GBC . 105

8.10 Dependences of a) the
significance, b) the efficiencies, c) the
expected number of events on the
threshold, vertical lines denote values
for found threshold 105

8.11 Performance of newly trained
MLPC . 106

8.12 Dependences of a) the
significance, b) the efficiencies, c) the
expected number of events on the
threshold, vertical lines denote values
for found threshold 106

8.13 Performance of newly trained
SVC . 107

8.14 Dependences of a) the
significance, b) the efficiencies, c) the
expected number of events on the
threshold, vertical lines denote values
for found threshold 107

8.15 Overview of individual real-data
predictions of newly trained
classifiers . 108

8.16 Individual real-data predictions of
newly trained classifiers 109

8.16 Individual real-data predictions of
newly trained classifiers 110

8.17 Feature importances of newly
trained RFC 110

A.1 Example of 3-class classification
results, tt̄H class is expressed as 0,
tt̄W as 1 and tt̄Z as 2 116

C.1 Full-data histograms (older mc16a
set) . 125

C.1 Full-data histograms (older mc16a
set) . 126

C.1 Full-data histograms (older mc16a
set) . 127

C.1 Full-data histograms (older mc16a
set) . 128

C.1 Full-data histograms (older mc16a
set) . 129

C.1 Full-data histograms (older mc16a
set) . 130

C.1 Full-data histograms (older mc16a
set) . 131

xvii

C.1 Full-data histograms (older mc16a
set) . 132

C.1 Full-data histograms (older mc16a
set) . 133

C.2 Channel-data histograms (older
mc16a set) . 134

C.2 Channel-data histograms (older
mc16a set) . 135

C.2 Channel-data histograms (older
mc16a set) . 136

C.2 Channel-data histograms (older
mc16a set) . 137

C.2 Channel-data histograms (older
mc16a set) . 138

C.2 Channel-data histograms (older
mc16a set) . 139

C.2 Channel-data histograms (older
mc16a set) . 140

C.2 Channel-data histograms (older
mc16a set) . 141

C.2 Channel-data histograms (older
mc16a set) . 142

C.3 Real-data histograms (mc16a &
mc16d set) . 143

C.3 Real-data histograms (mc16a &
mc16d set) . 144

C.3 Real-data histograms (mc16a &
mc16d set) . 145

C.3 Real-data histograms (mc16a &
mc16d set) . 146

C.3 Real-data histograms (mc16a &
mc16d set) . 147

C.3 Real-data histograms (mc16a &
mc16d set) . 148

C.3 Real-data histograms (mc16a &
mc16d set) . 149

C.3 Real-data histograms (mc16a &
mc16d set) . 150

C.3 Real-data histograms (mc16a &
mc16d set) . 151

C.4 n_estimators parameter tuning 152

C.5 max_depth parameter tuning . 152

C.6 min_samples_split parameter
tuning . 153

C.7 max_features parameter tuning 153

C.8 max_leaf_nodes parameter
tuning . 153

C.9 min_impurity_decrease parameter
tuning . 154

C.10 ccp_alpha parameter tuning . 154

xviii

C.11 max_samples parameter
tuning . 154

C.12 oob_score parameter tuning (0:
False, 1: True) 155

C.13 criterion parameter tuning (0:
’gini’, 1: ’entropy’) 155

C.14 n_estimators parameter tuning 156

C.15 max_depth parameter tuning 156

C.16 min_samples_split parameter
tuning . 157

C.17 max_features parameter
tuning . 157

C.18 max_leaf_nodes parameter
tuning . 157

C.19 min_impurity_decrease
parameter tuning 158

C.20 ccp_alpha parameter tuning . 158

C.21 max_samples parameter
tuning . 158

C.22 oob_score parameter tuning (0:
False, 1: True) 159

C.23 criterion parameter tuning (0:
’gini’, 1: ’entropy’) 159

C.24 n_components PCA parameter
tuning . 160

C.25 n_components TSVD parameter
tuning . 160

C.26 n_neighbors parameter tuning 161

C.27 leaf_size parameter tuning . . 161

C.28 p parameter tuning 161

C.29 weights parameter tuning (0:
’uniform’, 1: ’distance’) 162

C.30 algorithm parameter tuning (0:
’auto’, 1: ’ball_tree’, 2: ’kd_tree’, 3:
’brute’) . 162

C.31 n_components PCA parameter
tuning . 163

C.32 n_components TSVD parameter
tuning . 163

C.33 n_neighbors parameter tuning 164

C.34 leaf_size parameter tuning . . 164

C.35 p parameter tuning 164

C.36 weights parameter tuning (0:
’uniform’, 1: ’distance’) 165

C.37 algorithm parameter tuning (0:
’auto’, 1: ’ball_tree’, 2: ’kd_tree’, 3:
’brute’) . 165

C.38 n_components PCA parameter
tuning . 166

xix

C.39 n_components TSVD parameter
tuning . 166

C.40 priors parameter tuning 167

C.41 var_smoothing parameter
tuning . 167

C.42 n_components PCA parameter
tuning . 168

C.43 n_components TSVD parameter
tuning . 168

C.44 priors parameter tuning 169

C.45 var_smoothing parameter
tuning . 169

C.46 n_components PCA parameter
tuning . 170

C.47 n_components TSVD parameter
tuning . 170

C.48 n_estimators parameter tuning 171

C.49 learning_rate parameter tuning 171

C.50 base_estimator parameter tuning
(depth parameter of DT) 171

C.51 n_components PCA parameter
tuning . 172

C.52 n_components TSVD parameter
tuning . 172

C.53 n_estimators parameter tuning 173

C.54 learning_rate parameter tuning 173

C.55 base_estimator parameter tuning
(depth parameter of DT) 173

C.56 n_components PCA parameter
tuning . 174

C.57 n_components TSVD parameter
tuning . 174

C.58 learning_rate parameter tuning 175

C.59 subsample parameter tuning . 175

C.60 criterion parameter tuning (0:
’friedman_mse’, 1: ’mse’) 175

C.61 n_estimators parameter tuning 176

C.62 min_samples_split parameter
tuning . 176

C.63 max_depth parameter tuning 176

C.64 min_impurity_decrease
parameter tuning 177

C.65 max_features parameter
tuning . 177

C.66 max_leaf_nodes parameter
tuning . 177

C.67 ccp_alpha parameter tuning . 178

xx

C.68 n_components PCA parameter
tuning . 179

C.69 n_components TSVD parameter
tuning . 179

C.70 learning_rate parameter tuning 180

C.71 subsample parameter tuning . 180

C.72 criterion parameter tuning (0:
’friedman_mse’, 1: ’mse’) 180

C.73 n_estimators parameter tuning 181

C.74 min_samples_split parameter
tuning . 181

C.75 max_depth parameter tuning 181

C.76 min_impurity_decrease
parameter tuning 182

C.77 max_features parameter
tuning . 182

C.78 max_leaf_nodes parameter
tuning . 182

C.79 ccp_alpha parameter tuning . 183

C.80 n_components PCA parameter
tuning . 184

C.81 n_components TSVD parameter
tuning . 184

C.82 hidden_layer_sizes parameter
tuning (Table 6.13 contains mapping
of tuned values to numbers) 185

C.83 activation parameter tuning (0:
’identity’, 1: ’logistic’, 2: ’tanh’, 3:
’relu’) . 185

C.84 solver parameter tuning (0:
’lbfgs’, 1: ’sgd’, 2: ’adam’) 185

C.85 alpha parameter tuning 186

C.86 batch_size parameter tuning 186

C.87 learning_rate parameter tuning
(0: ’constant’, 1: ’invscaling’, 2:
’adaptive’) . 186

C.88 learning-rate-init parameter
tuning . 187

C.89 max_iter parameter tuning . . 187

C.90 tol parameter tuning 187

C.91 beta_1 parameter tuning 188

C.92 beta_2 parameter tuning 188

C.93 epsilon parameter tuning 188

C.94 n_iter_no_change parameter
tuning (early_stopping = ’True’) 189

C.95 n_components PCA parameter
tuning . 190

xxi

C.96 n_components TSVD parameter
tuning . 190

C.97 hidden_layer_sizes parameter
tuning (Table 6.13 contains mapping
of tuned values to numbers) 191

C.98 activation parameter tuning (0:
’identity’, 1: ’logistic’, 2: ’tanh’, 3:
’relu’) . 191

C.99 solver parameter tuning (0:
’lbfgs’, 1: ’sgd’, 2: ’adam’) 191

C.100 alpha parameter tuning 192

C.101 batch_size parameter tuning 192

C.102 learning_rate parameter tuning
(0: ’constant’, 1: ’invscaling’, 2:
’adaptive’) . 192

C.103 learning-rate-init parameter
tuning . 193

C.104 max_iter parameter tuning . 193

C.105 tol parameter tuning 193

C.106 beta_1 parameter tuning . . . 194

C.107 beta_2 parameter tuning . . . 194

C.108 epsilon parameter tuning . . . 194

C.109 n_iter_no_change parameter
tuning (early_stopping = ’True’) 195

C.110 kernel parameter tuning (0:
’linear’, 1: ’poly’, 2: ’rbf’, 3:
’sigmoid’) . 196

C.111 C parameter tuning 196

C.112 gamma parameter tuning . . . 197

C.113 tol parameter tuning 197

C.114 shrinking parameter tuning (0:
False, 1: True) 197

C.115 break_ties parameter tuning (0:
False, 1: True) 198

C.116 kernel parameter tuning (0:
’linear’, 1: ’poly’, 2: ’rbf’, 3:
’sigmoid’) . 199

C.117 C parameter tuning 199

C.118 gamma parameter tuning . . . 200

C.119 tol parameter tuning 200

C.120 shrinking parameter tuning (0:
False, 1: True) 200

C.121 break_ties parameter tuning (0:
False, 1: True) 201

xxii

Tables

3.1 Relation between significance and
probability [Kor08] 12

4.1 Structure of input matrix X 19

4.2 Structure of truth vector ~y 20

4.3 Comparison of performance for
different compression methods 20

4.4 List of possible channels containing
τ and light leptons (x - non-existing,
o - existing, X- ours) 22

6.1 List of tuned parameters of RFC
with results . 39

6.2 List of the most important features
with descriptions 42

6.3 List of tuned dimension reduction
algorithms for KNC with results . . 51

6.4 List of tuned parameters of KNC
with results . 51

6.5 List of tuned dimension reduction
algorithms for GNB with results . . 57

6.6 List of tuned parameters of KNC
with results . 57

6.7 List of tuned dimension reduction
algorithms for ADA with results . . 64

6.8 List of tuned parameters of ADA
with results . 66

6.9 List of tuned dimension reduction
algorithms for GBC with results . . 72

6.10 List of tuned parameters of GBC
with results . 72

6.11 List of tuned dimension reduction
algorithms for MLPC with results . 81

6.12 List of tuned parameters of
MLPC with results 81

6.13 List of tuned values for
’hidden_layer_sizes’ parameter . . . 82

6.14 List of tuned parameters of SVC
with results . 88

8.1 List of classifiers and their
significance scores 108

8.2 List of the most important features
with descriptions for newly trained
RFC . 109

B.1 List of used features 120

B.2 List of features after removing
additional ’simulation-only related’
features . 121

B.3 List of root files used for training
(80%) and testing (20%) splits - older
data set (mc16a) 122

xxiii

B.4 List of root files used for additional
testing - older data set (mc16d) . 122

B.5 List of used root files for
comparison (100%), re-training
(80%), and validation (20%) - newer
data set containing older tt̄Z files
(both mc16a & mc16d) 123

B.6 List of used real data root files for
testing . 123

xxiv

Chapter 1

Introduction

The Higgs boson, notoriously known as the God’s particle by the general
public, is a key particle in physics. Without it, no atoms would be created
and all particles would remain at the speed of light. In this thesis, enhance-
ments with the aim of boosting the efficiency of Higgs boson classification
are proposed. They are based on many experiments, carried out during a
ten-month cooperation between two CTU subsections: the Department of
Cybernetics and the Institute of Experimental and Applied Physics.

This paper applies well known machine learning techniques to achieve a
higher significance score. The results are discussed in detail and are sometimes
surprising. It was discovered that having a higher efficiency for background
than for signal can actually yield a better significance score than in the
opposite case. Of course, the performance mainly depends on the quality of
the classification. To boost this, many classifier parameters were tuned. Later,
a custom working point selection function was introduced for significance
maximization.

The thesis is divided into two parts: in the first, particle physics is shortly
discussed providing an elementary understanding to the problem; and the
second discusses machine learning and all related topics. This is followed by
the conclusion with a summary and a discussion of the pitfalls.

1

2

Part I

Particle Physics

3

4

Chapter 2

The Large Hadron Collider

2.1 Introduction

The Large Hadron Collider (LHC) is the biggest collider in the world, built
and operated by the European Organization for Nuclear Research (CERN).
The France-Switzerland border near Geneva was chosen as the construction
site. The construction itself took 10 years (1998-2008). Currently, more than
10,000 scientists are users of the CERN infrastructure. By the year 2010
the first collision was made at an energy of 3.5 TeV (teraelectronvolts) per
beam. This number exceeded the previous world record by about four times
[CER12]. The current record held by the LHC is 6.5 TeV per beam [Web15].
However, in the year 2018 a two-year shut-down was introduced to allow
additional adjustments for slightly higher energy output and a much more
intense beam. So in near future, the record will be probably exceeded once
more, 175 meters under the ground near Geneva.

2.2 Area of interest

There are many reasons why the LHC was constructed, including the testing
of theories and the discovery of physics beyond the Standard Model of
particle physics. Like any research fields, particle physics needs to validate its
theoretical conclusions. For this thesis, and for the team led by my supervisor-

5

2. The Large Hadron Collider...............................

Figure 2.1: Aerial view of the LHC with the locations of the four biggest
detectors [cita]

specialist, 2012 became an important date due to the confirmation of the
Higgs boson [BBC12], 48 years after Peter Higgs and his team proposed its
existence (1964) [TUoEA12]. This discovery yielded two Nobel prizes, one
for Peter Higgs and the other for his colleague François Englert [Amo13].

Existence confirmation is a complicated process in which the key elements
are detectors. The ATLAS and CMS are general-purpose detectors, con-
structed to look for clues of new physics, and confirmed the existence of a
Higgs boson [ERN12] [Tay12].

It is not within the scope of this thesis to explain in detail how such a
detector works, however a short description may be of use. A basic diagram
can be seen in Figure 2.2. At 7,000 tonnes, this cylindrical machine with a
length of 44 metres and a diameter of 25 metres is the biggest detector ever
constructed [CER08]. Inside, many layers precisely measure the trajectory,
momentum, and energy of particles, which can then be identified. Over a
billion particle interactions per second are detected by ATLAS. But only one
in a million is interesting, and the study of the Higgs boson is no exception. In
order to process such a huge amount of data, a special system was developed,
called the trigger and data acquisition system. This multi-level computing
system analyses data at 130 computing centres worldwide [Sca10].

6

................................... 2.2. Area of interest

Figure 2.2: ATLAS detector with crucial parts marked [citb]

There are several sub-detectors inside the ATLAS detector:

. an inner detector. calorimeters.muon spectrometers. a magnet system

The first sub-detector, a sensor system called an inner detector, Figure 2.3,
is located in the very heart of the detector. In total three sub-components (a
pixel detector, a semi-conductor tracker, and a transition radiation tracker)
help to detect direction, momentum, and electrical charge for the decay
products of the proton-proton collision [CERb].

The second component, a group of calorimeters, measures the energy lost
by particles during passing. In general there are two layers in a calorimeter.
The "passive" material, which has a high density, and the "active" material
for evaluation. The most common mediums used for these layers are lead
(passive) and lead-gas or liquid argon (active) respectively. In ATLAS, the
Liquid Argon Calorimeter (LAr) and the Tile Hadronic Calorimeter (TileCal)
are used [CERa]. LAr measures the energy of electrons and photons. TileCal
measures the energy of hadrons (protons and neutrons). The design is usually
chosen to deposit all energy of the passing particles into a detector. However,
there are two exceptions which cannot be stopped: muons and neutrinos.

7

2. The Large Hadron Collider...............................

Figure 2.3: ATLAS inner detector with its components [citc]

Muon spectrometers, which measure passing muons, are therefore necessary.
They are a special system made of many muon chambers. In ATLAS, four
different designs are used. For more information please see [CERd].

The last important component mentioned here is the magnet system.
Shortly explained, this is used to bend particles and makes containing their
tracks easier. A more detailed description can be found in [CERc].

8

Chapter 3

Signal in the presence of background

3.1 Signal structure

In the Standard Model (SM), the Higgs particle is a boson with zero spin, no
electric charge, and no colour charge. By SM predictions there is a number of
possible ways for the Higgs particle to be produced. However, the probability
of producing the Higgs boson in a collision is expected to be very small
[Str12]. In this thesis we are observing only one method of production, called
tt̄H. As can be seen in Figure 3.1, two colliding gluons decay into a top
quark-antiquark pair. This pair will form one of a number of particles, one
possibility being the Higgs boson. These are discussed in Section 3.2.

Data for both signal and background that was available to us originates
from Monte-Carlo random sampling simulations. For the years between 2015
and 2016, the dataset is called mc16a. For recorded 2017 data, the simulated
dataset is called mc16d. Each dataset contributes differently to the total
number of events. These samples are distinguished by the decay products
of H as all-hadronic (both tops decay hadronically), semi-leptonic (one top
hadronic, the other leptonic), and di-leptonic (both tops decay leptonically).

9

3. Signal in the presence of background

Figure 3.1: Higgs boson production with a pair of top quarks [citd]

3.2 Backgrounds

Several backgrounds can be mistaken for the production and decay of Higgs
bosons as the input is the same: two gluons interacting with each other. And
similarly for the output, the same particles are observed. To tell whether Higgs
boson production has occurred, a knowledge of backgrounds is important.
For example in the case of invisible particle production, like a neutrino,
momentum and energy loss are both present. This helps us to distinguish
between signal and background [PB14].

3.2.1 tt̄W

When two W bosons and two b-quarks are detected as decay products, tt̄W
background can be involved. Two Freyman diagrams, one for tt̄H and one for
tt̄W which both result in the same decay products, are shown in Figure 3.2.

3.2.2 tt̄Z

tt̄Z background was available in five different decay modes. For us Z → ee
and Z → µµ are the most critical, because they can lead to the same final
state as tt̄H. Z → ττ is also very important due to further work with a

10

.....................................3.2. Backgrounds

Figure 3.2: tt̄H (a) and tt̄W (b) Freyman diagrams [PB14]

Figure 3.3: Example tt̄Z Freyman diagram with trilepton signature [Byl16]

channel called ’2LSS1Tau’. It requires two same-sign light leptons (e or µ) and
one hadronically decaying τ . The remaining two decay modes are Z → νν,
and Z → qq. The example of tt̄Z background giving a trilepton signature is
shown in Figure 3.3.

3.2.3 Others

There are many other backgrounds which contribute to the uncertainty of
detecting the Higgs boson. Over the last few years in the tt̄H search, other
backgrounds have been reduced, and thus the tt̄W/Z became relatively more

11

3. Signal in the presence of background
significance 1 2 3 4 5

probability (p-value) 16% 2.3% 0.14% 3 · 10−5 3 · 10−7

Table 3.1: Relation between significance and probability [Kor08]

important [Col19a]. However, for a proper comparison with existing results
in [Col19b], four other types of backgrounds need to be taken into account:

. tt̄bar. tt̄γ. V V. rare

3.3 Evaluation

Many techniques can be used to determine how well our classifiers are perform-
ing. The basic techniques (such as F1 score, mean accuracy, and ROC/AUC),
are good indicators for machine learning. However, for particle physics,
another score is more important: the maximization of the special case of
statistical significance which maps the probability of a statistical fluctuation
into a number of Gaussian sigmas.

3.3.1 Significance computation

Many CERN papers use general approximation formulas (poor man solutions),
such as:

significance = S√
S +B

, (3.1)

or in its simplified form:

12

......................................3.3. Evaluation

significance = S√
B
. (3.2)

We use these for a direct comparison when comparing the significances. It
is good to note that these formulas only hold for (B+S)>100 or B>100 in the
case of the simplified form [Kor08]. As we encounter much smaller values,
the approximation is very rough.

In the equations, S and B are the expected numbers of selected signal and
background events in the real data. They can be expressed as:

S = Ltt̄H · σtt̄H · εtt̄H = Ntt̄H · ωtt̄H · εtt̄H , (3.3)

B =
∑

i∈(tt̄W,tt̄Z)
Li · σi · εi +Bother =

∑
i∈(tt̄W,tt̄Z)

Ni · ωi · εi +Bother, (3.4)

where L - luminosity[pb−1] and σ - cross-section [pb] are file-related con-
stants. Together they can be expressed in the form of a weighting factor ω
as:

ωi = 1
Ni
Ei

= Ei
Ni

= Li · σi
Ni

,∀i ∈ (tt̄H, tt̄W, tt̄Z), (3.5)

where N is the number of events in simulated data and E is the expected
number of events in real data.

Bother stands for the estimated B of all other backgrounds and the variable
ε - efficiency is the evaluation of classification performance.

It can be expressed as:

εi = Nsi
Nti

,∀i ∈ (tt̄H, tt̄W, tt̄Z), (3.6)

13

3. Signal in the presence of background
where Ns denotes the number of class events which were selected as tt̄H

(signal) events and Nt the number of total events in a given class.

This can be expressed in machine learning terms as:

εttH = TP

TP +
∑
i FNi

∀i ∈ (tt̄W, tt̄Z), (3.7)

for the tt̄H class. And as:

εi = FPi
FPi +

∑
j TNi,j

,∀i, j ∈ (tt̄W, tt̄Z), (3.8)

for the background classes. TP is the number of signals classified as a
signal, FN is the number of signals classified as background i, FP is the
number of background i’s classified as a signal, and TN is the number of
background i’s classified as background j.

A step-by-step example of the computation is shown in Appendix A.1.

14

15

3. Signal in the presence of background

Part II

Machine Learning

16

Chapter 4

Data

4.1 The ROOT File system

ROOT is a scientific tool kit developed by CERN and mainly written as
an object-oriented program in C++. There are also less frequently used
implementations for Python and R. The purpose of this program is mainly to
provide functionalities such as big data processing, visualization, or analysis.
On one hand it is accepted by a wide range of scientists, but on the other it
is criticized for its complexity, bugs, and not being user-friendly [Buc07].

The basic challenge was to understand the format of the data. Generated
in simulators, the datasets contain many branches which consist of tuples.
One can imagine this type of storage as a Python dictionary. The tree itself
is the dictionary; the branches are the dictionary’s keys; and the events are
key values. The ROOT file system, however, is far more complicated: for
example, it also allows the storing of data in time and uses trees to travel
in the data time line, as well as the creation of many more elements than
just branches. After a discussion, all data types apart from ’TBranch’ were
discarded due to the assumption that they are of only minor importance for
our work.

17

4. Data ..
4.2 UpRoot Library

The UpRoot library is a lighter version of ROOT written in Python, which
works directly with the NumPy library [Oli]. It is independent of the original
C++ ROOT and was created primarily to stream data into Python’s machine
learning libraries. Like many other C++ programs, ROOT is very efficient
and fast. However, it has been proven that UpRoot handles big data more
efficiently [Piv].

A new Python class called Converter (Appendix D.1.1, converter.py),
located inside the ’utils’ library folder, was created. This class uses the
UpRoot Application Programmable Interface (API) to allow users to load
.root files, query them by the original ROOT syntax, convert the results into
NumPy arrays, and save them. It was decided to save the arrays in Python’s
pickle library. Saved files contain a dictionary with branch names as keys and
branch data as the keys’ data. As discussed, this structure appears closest to
the original.

For loading and reading these files, another class called Reader (Appendix
D.1.2, reader.py) was built. Its purpose is to collect information such as the
criterion used to obtain data, or the names of branches (features in machine
learning terms) and data itself. Everything can be directly accessed via
getter methods. There are also two filter methods to satisfy the preprocessing
needs: the first returns data with only desired features and channels, and the
second returns data with desired features with a specified criterion applied
(for example channel selection).

One could propose to joining these two classes and working directly with
the data in the converter without saving. The main reason for having two
separate classes is the time it takes to convert a .root file into a .pkl file. It is
very convenient to convert once and save the result. Later, multiple tasks
can be done on the data, which is already converted and ready to be loaded
within a few seconds. A flowchart of the complete procedure can be seen in
Figure 4.1.

18

.................................... 4.3. Pre-processing

Figure 4.1: Converter and Reader flowchart diagram

feature1 feature2 ... featureN

event1 0 0.1 0
event2 0 0.2 1
...

eventN 0 0 1

Table 4.1: Structure of input matrix X

4.3 Pre-processing

Before data can be used in any machine-learning library, several steps are
required. First, "cheating" needs to be eliminated. In our case this term
signifies features which are simulation-related and do not occur in real data.
A filter was created, constructed under the advisement of my particle physics
advisor and included only well known features with a relatively good separa-
tion power. Also, all simulation-related features were discarded. This resulted
in a final number of 83. These features are listed in Appendix B.1. They are
discussed further in Chapter 5, where those with the greatest importance to
the classification are described in detail.

4.3.1 Inputs

Another step was to prepare the data in the correct format. Due to already
being stored in the NumPy arrays format, this library was used and provided
a fast solution. A new file called ml_utils.py was created inside the ’utils’
folder, with the purpose of containing all machine-learning related support
methods in one file. Using the originally created methods get_X_y_f() and
get_X_y_f_multiclass(), data for multiple files was concatenated by features
to form the input matrix X. Vector ~y recorded to which file (or more precisely,
class) a given set of events belonged. The format of these two elements is
shown in Tables 4.1 and 4.2.

19

4. Data ..
0/1/2 (ttH/ttW/ttZ)

event1 0
event2 2
...

eventN 1

Table 4.2: Structure of truth vector ~y

method size of X [KB] decompress time [s]

normal 1,945,184 2.131
gzip 364,387 8.635
bz2 326,777 48.859
lzma 264,997 43.110

Table 4.3: Comparison of performance for different compression methods

4.3.2 Scaling

Because of unspecified data distribution, it is advisable to create a pre-
processor to re-distribute the data. Generally, all classifiers assume data in
the form of comparable numerical magnitudes. Failure to do so may lead to
major problems. There are several common ways of scaling data. For example,
scaling data to look like standard normally-distributed data: Gaussian with
zero mean and unit variance. Or scaling features to a range, usually between 0
and 1. This process is discussed further in Subsection 6.2, where the pipeline
process is described in detail.

4.3.3 Compression

A large amount of data from input matrix X needed to be stored. In order to
reduce the storage space needed, the CompressPickle [Paz] library was used,
which joins the default pickle library with Python’s compression packages.
This results in a very efficient and user-friendly library with almost identical
calls. In Table 4.3, the performance of the compression methods is listed. All
tests were performed on a system with an HDD with 7200 RPM and Intel R©
CoreTM i7 4720HQ 2.6 GHz - 3.6 GHz Processor. Taking into account both
the size and the decompression time, a ’gzip’ algorithm was selected for further
work with the data. Four new methods in total were added inside ml_utils.py:
two for saving and loading files with compression and two without.

20

.................................. 4.4. Processing scripts

4.4 Processing scripts

Everything discussed above (except scaling) is demonstrated in five Python
scripts. The running order of these scripts is very important, as script n is
dependent on script n− 1, ∀n ∈ (1, 5). First, starting with data_convert.py,
data is converted from the root format into the python dictionary and saved
as a .pkl file. Second, data_filter.py demonstrates one possible way of filtering.
The desired channel is required together with pre-selected features. Third,
data_prepare.py reshapes the data into input matrix X and truth label vector
~y. Fourth, data_split.py performs basic splits and channel feature removals,
as channels are still present between features. For this purpose, two new
methods were added to ml_utils.py: apply_channel() and remove_channel().
Finally, data_view.py observes the data obtained in the fourth step. These
are all listed in Appendix D.2.

4.5 Used data

At the beginning of this thesis it was mentioned that the mc16a and mc16d
datasets from the years 2015-2017 were obtained from CERN. This data is
located inside the folder ’older’. However, for mc16d, only one signal file with
a small number of events was present. Therefore, mc16a was used mainly for
training and testing, and mc16d only for additional testing. Another folder
called ’newer’ can also be found, which includes the latest data (both mc16a
and mc16d) and which was used for comparison with the existing results
in [Col19b] and later for re-training the classifiers. Tables with all data used
are shown in Appendix B.3. Firstly, 80% of the older mc16a dataset was used
for training and 20% for testing. At the end of the thesis, training on the
newer set is also discussed, where 80% and 20% splits were also used. The
only exception is the SVC, which was trained on only 10% of the data to
significantly speed up the training process. However, it was also tested on
only 20%.

To distinguish between multiple data sets, a naming convention was imple-
mented. Data obtained earlier is referred to as ’older’, and the latest data as
’newer’. In both cases a suffix in the form of ’mc16a’, ’mc16d’, or ’mc16a &
mc16d’ usually follows, to provide information about what files are included.

Other terms used frequently are ’full-data’ and ’channel-data’ which refer to
cases where an experiment was performed on the data without any preceding

21

4. Data ..
τ/Nl 1 2 3

2 o o x
1 o X o
0 x o o

Table 4.4: List of possible channels containing τ and light leptons (x - non-
existing, o - existing, X- ours)

restrictions in channel selection. As discussed below, in the case of channel
2LSS1Tau, the data is referred to as ’channel-data’.

4.5.1 Working channel

Shortly mentioned in Part I, a specific channel is observed alongside the data.
This channel is called 2LSS1Tau and requires two same-sign light leptons
and one hadronically decaying τ . A visualization of possible channels is
demonstrated in Table 4.4.

The data for our working channel, 2LSS1Tau, contained a total of 6,729
events. 3,844 belonged to tt̄H, 684 tt̄W , and 2,201 tt̄Z respectively. Clearly
this is not much data and training any classifier will be difficult.

4.5.2 Histograms

Before moving to classification, the distribution of data inside the features was
observed. The results are listed in Appendix C.1.1 in the form of normalized
histograms with automatic bin size selection and a kernel density estimate.
Small differences between classes can be seen there. But it is clear that an
automatic classification will be a challenging task.

22

Chapter 5

Classification

5.1 Introduction

In machine learning, a classification is a process of identifying to which cate-
gory an observation belongs. It is done using a model which previously learned
using training data. There are two common ways of learning: supervised,
where the correct categories for the training data are well known (our case);
and unsupervised, where they are not.

5.2 General types of probabilities

To be able to predict the future, several probabilities can be used, all of which
require some kind of observation, intuition, or other data-related information.

5.2.1 Empirical

The basic form of probability is empirical. Having a given observation of the
past, a probability can be made as:

23

5. Classification.....................................

p(k) = Nk

N
,∀k ∈ K, (5.1)

where N denotes the number of events.

For example, knowing that tt̄H was present 70 times in 100 selected events,
the probability of it being present in the 101-st will be 70%.

5.2.2 Subjective

Another type of probability which can be used is subjective probability. In
this an opinion is formed and decisions are made on it. For example, as
previously, we observe 70 tt̄H events in 100. However, we know that tt̄H
is much rarer in complete data. The final prediction for the 101-st event
belonging to the tt̄H class could be around 40%. This strategy can lead to
better results but also to worse. Subjective probability was not used in this
work at all.

5.2.3 Apriori

To obtain good information about the data, apriori probability is a better
option. In the case of balanced classes (where all classes have the same number
of events), apriori probabilities would be the same as empirical probability.
But in our case, as noted in Section 4.5, the data is not balanced at all. There
are many ways to define apriori probabilities in such a case. The one we
use is the observation of results. From Table 152 in [Col19b], the expected
number of Higgs events for all classes was taken and apriori probabilities were
computed as:

p(k) = Ek∑
k Ek

,∀k ∈ K, (5.2)

where E is the number of expected events for a given class.

24

................................ 5.3. Bayesisan decision task

Knowing that there were 5.5650 tt̄H, 4.9338 tt̄W , and 3.9677 tt̄Z events,
the apriori probabilities are p(k) = (0.3847, 0.3411, 0.2742).

5.3 Bayesisan decision task

For supervised learning and well known probabilities, the Bayesian theorem
can be used. This strategy is called the Bayesian decision task and is a key
element in machine-learning classification.

The Bayesian classifier (sometimes called model or estimator) can be
expressed as:

k = q(x), (5.3)

where k denotes class, q is the strategy, and x is event data (row of matrix
X).

5.3.1 Bayes’ theorem

Theorem 5.1.

P (A|B) = P (B|A)P (A)
P (B) (5.4)

Bayes’ theorem is named after Reverend Thomas Bayes and describes
the probability of an event, based on prior knowledge of the conditions
which could be related to the event [Joy]. For example, knowing that the
probability of having a car is related to age. More accurate information about
the probability of having a car can be obtained knowing the age as opposed
to not knowing.

In our case, the probability of event x belonging to class k (posterior
probability) can be expressed as:

25

5. Classification.....................................

p(k|x) = p(x|k)p(k)
p(x) , (5.5)

where p(x|k) is the probability of evidence x given k is true, p(k) is apriori
probability, and the probability of evidence p(x) can be computed using the
law of total probability as:

p(k|x) = p(x|k)p(k)∑
k∈K p(x|k)p(k) . (5.6)

Clearly there are several limitations in order for these formulas to hold.
The first is a knowledge of apriori probabilities. And the second is knowing
the conditional probabilities. Without either of them, alternative decision
tasks can be used.

5.3.2 Bayesian Risk

Given a set of observations X, a set of hidden states K, and a penalty function
W (k, d), where d ∈ D is some possible decision, the strategy which minimizes
the expectation of W is:

R(q) =
∑
x∈X

∑
k∈C

p(x, k)W (k, q(x)), (5.7)

which is often rewritten as:

R(q) =
∑
x∈X

∑
k∈K

p(x|k)p(k)W (k, q(x)), (5.8)

where p(x, k) is a joint probability and R(q) is called Bayesian risk. The
solution is a Bayesian strategy q* minimizing the risk.

26

................................ 5.3. Bayesisan decision task

5.3.3 Decision strategy

Based on this strategy, a class will be returned. However, as a default, a
different expression is chosen as a working point. It is the maximization of
posterior probability. A classifier which uses such a strategy is often called
a Maximum Posterior (MAP) estimator [Pos]. The strategy equation is
obtained using Eq. 5.7 as:

q(x) = arg min
d∈D

∑
k∈K

p(x, k)W (k, d) = arg max
d∈D

p(k|x). (5.9)

For our problem, another approach was proposed, which is discussed in
Section 6.5.5.

27

28

Chapter 6

The Scikit-learn library

Scikit-learn (also known as sklearn) is a popular machine-learning library
written in the Python programming language. It provides an easy Application
Programmable Interface (API) for many classification, regression, and cluster-
ing algorithms including support vector machines and random forests. It also
comes with useful functions: for example, for preprocessing, augmentation,
and scoring. A basic support of neural networks is also present. However,
Graphic Processing Unit (GPU) accelerated training is not supported and
the use of additional libraries is recommended [PVG+].

6.1 Splits

Usually, data is split into subsets to ensure unbiased evaluation of the predic-
tion. There are many ways to split the data; each dataset requires observations
to determine split sizes; there is no fixed split ratio and training each of the
classifiers can demand different set sizes. Several functions in the scikit-learn
library can serve this purpose: each splits data differently and is used in
individual cases.

29

6. The Scikit-learn library.................................

Figure 6.1: K-Fold Cross Validation procedure [QR19]

6.1.1 Test Split Validation

sklearn.model_selection.train_test_split() is a basic function for shuffling
and splitting data into two subsets, one for training and one for testing. The
parameters are: the data with labels in an array format; the size of the
training and testing split; and two booleans, one for enabling shuffling and
one for enabling stratifying. In general, this split function is used for final
evaluations, when a classifier’s parameters are already tuned. For the training
process and tuning of parameters, two other splitting functions are often
used.

6.1.2 K-Fold Cross-Validation

K-Fold Cross-Validation (CV) is a re-sampling procedure for evaluating
models on K groups of original data. A common starting number of folds is 5,
which is referred to as 5-Fold Cross-Validation. CV is mainly used to evaluate
the performance of a freshly trained classifier on unseen data. This helps to
estimate how well can it perform in general. Often, general estimations are
less optimistic with predictions, although they are more accurate as they yield
unbiased generalized evaluation. CV is widely used for tuning parameters of
classifiers and observing their impact on the performance.

Let us divide X into K sets. Each set will be used once for evaluation and K-
1 times for the model training. Figure 6.1 illustrates this process. For 5-Fold
CV there will be 5 models trained separately on four different sets and tested
on the remaining one. In scikit-learn, the sklearn.model_selection.KFold()
function can be used for splitting data into the desired number of K-Folds.

30

.......................................6.2. Pipeline

Figure 6.2: Pipeline flowchart diagram

6.1.3 Stratified K-Fold Cross-Validation

A more advanced version of K-Fold CV is its stratified version. The split-
ting process may be governed by criteria. Such folds are made by pre-
serving the percentage of samples for each class. This helps the training
and test splits to have almost the same distribution of data which signif-
icantly helps in boosting the performance of the test classification. The
sklearn.model_selection.StratifiedKFold() function can serve this purpose.

6.2 Pipeline

A pipeline, sklearn.pipeline.Pipeline(), is a handly tool which can assemble
several steps together, allowing the setting of different parameters separately
and the Cross-Validating to happen together. It sequentially applies to all
transformations.

As discussed in Subsection 4.3.2, it is advisable to create a pre-processor for
re-distributing the data around a mean value suitable for the classifiers. Scikit-
learn’s Standard Scaler, sklearn.preprocessing.StandardScaler(), performing
Gaussian with zero mean and unit variance transformation, was used for our
needs and was set as the first step in the pipeline.

The second and final step in the pipeline was the introduction of a class of
classifier. The whole process diagram is illustrated in Figure 6.2. One could
argue that creating a pipeline just for two steps might be unnecessary. It was
mainly done to ensure the modularity of code. In the case of further demand
in the future (for example an addition of feature augmentation, decomposition,
or model stacking) only a small change in steps would need to be made.

31

6. The Scikit-learn library.................................
6.3 Classifiers

A short introduction to the format of Scikit-learn classifiers representation
will be given before moving on to the experiments. For each of the classifiers,
there are several common methods:

. fit() - performs training

. predict() - performs predictions (returns arg max p(k|x))

. predict_proba() - performs predictions (returns p(k|x))

. score() - returns mean accuracy on given test data and labels

Additional methods, such as get_params(), can appear with respect to the
type of classifier and its algorithm implementations.

Each classifier also has many parameters (sometimes called hyper-parameters).
These parameters need to be specified during class initialization and cannot
be changed during the training process. It is important not to confuse these
parameters with variables inside the algorithms. The adjustments invoked by
the training are done only on the variables.

The larger the amount of data, the longer the training time. Therefore, it
is very costly to train hundreds of classifiers just to tune the parameters. A
process for tuning is thus desired. A group of such processes is often called
Automated Machine Learning (AML) and is still under rapid development
[CT], [MF]. Scikit-learn provides two methods, which can be used for tun-
ing. The first, sklearn.model_selection.RandomizedSearchCV(), randomly
searches the area of the parameters in a specified number of iterations and
samples classifiers from them. It is useful for classification problems, where
basic parameters are not working.

In contrast, the second method, sklearn.model_selection.GridSearchCV(),
tries all value combinations inside the area of the parameters. The problem is,
of course, time and complexity, and it is advised to use this grid search only
for fine-tuning, when relatively good parameters have already been found.

32

....................................... 6.4. Scoring

6.4 Scoring

Before finally moving to the classifiers themselves, a few last things remain
to be explained. As noted in Section 3.3, significance maximization will
mainly be used for final evaluations. But in the search for optimal parameters,
different scores can be observed.

6.4.1 F1-score

The F1-score is interpreted as a weighted average (harmonic mean) of the
precision and recall, and reaches its best value at 1 and worst at 0. The
computation for binary classification can be expressed as:

F1 = 2 · precision · recall
precision+ recall

, (6.1)

where precision is:

precision = TP

TP + FP
, (6.2)

and recall is:

recall = TP

TP + FN
. (6.3)

However, it is recommended to approach the F1-score with precautions.
Higher score values do not necessarily mean a better classifier because there
is a large trade-off between precision and recall. During tuning, improving
precision often results in a deterioration in recall and vice versa. The F1-score
is useful for evaluating two or more classifiers with their own precision and
recall. It combines these two computed parameters into a single number
and helps to determine which of the classifiers is better. But the F1-score
gives a larger weight to lower numbers. Given an example of a classifier with

33

6. The Scikit-learn library.................................
precision 100% and recall 0%, the F1-score will be 0%, not 50%. Also, as
mentioned, the arithmetical mean is not used. Therefore, two classifiers, one
with precision 80% and recall 70%, and the other with precision 90% and
recall 60%, will not have the same score. The first will score 75% and the
second 72%. The low recall score resulted in a penalization for the second
classifier.

In the multi-class case, the value of the F1-score depends on the average
parameter. Precision and recall are computed per-class and from them the
per-class F1-score is computed. This is often called the one-vs-all approach.
In the next step these numbers need to be combined. There are several ways
of doing so. The most common way is ’macro-F1’ which uses the arithmetic
mean of the per-class F1-scores as:

MacroF1 = F11 + F12 + ...+ F1n
n

, (6.4)

where n denotes the number of classes.

Another variant is called ’micro-F1’ and computes the F1-score from its
micro-averaged precision and recall. All correctly predicted samples are
considered as true positives. Any other predictions which put samples into
the wrong class are considered as false positives but also as false negatives. The
precision and recall are computed from these values. But there is no reason to
compute both of them. Looking at Eq. 6.2, 6.3 and after substituting FP=FN,
the precision and recall are equal to each other in the micro-averaging case.
This means they are also equal to their harmonic mean. Therefore, the
micro-F1 score is:

MicroF1 = MicroPrecision = MicroRecall. (6.5)

These two methods would be sufficient where the classes are balanced,
but in our case, the data is unbalanced. A weighted-F1 score is therefore
introduced to count the weight of a given class. The general approach is to
weight the F1-score of each class by the number of samples (events in our
case) from that class. This can be expressed as:

WeightedF1 = N1 · F11 +N2 · F12 + ...+Nn · F1n
N

, (6.6)

34

....................................... 6.4. Scoring

where N is the total number of events.

In scikit-learn, All variants are implemented inside function sklearn.metrics.f1_score().

6.4.2 Mean accuracy score

Another method is called mean accuracy and is the default scoring method
of any classifier inside a library. Again, the values can be between 0 and 1,
where 1 is the best. The computation for a binary classification problem is
calculated as:

MeanAccuracy = TP + TN

TP + TN + FP + FN
= TP + TN

N
. (6.7)

In a multi-class case, the formula is a little more complicated:

MeanAccuracy = 1
N

|K|∑
k=0

|K|∑
l=0

I(pk = pl). (6.8)

|K| denotes the total number of classes, p is the number of predicted events
for a given class, and I is a function, which returns 1 if the classes match and
0 otherwise.

However, as mentioned earlier, weighting needs to be implemented due to
unbalanced classes in the data. For this, the formula can be adjusted to:

WeightedMeanAccuracy =
|K|∑
k=0

wk

|K|∑
l=0

I(pk = pl). (6.9)

Sadly, the scikit-learn library does not support custom weights for the
sklearn.metrics.accuracy_score() function. Judging by my observations, a
mean weighting is used as:

35

6. The Scikit-learn library.................................

wk = 1
|K| . (6.10)

6.4.3 ROC AUC score

The area under the ROC curve (AUC) is a useful tool for evaluating the
quality of class separation for most types of classifier. The ROC curve is
created by plotting the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings. Again, 0 denotes the worst, and 1
the best score. For the multi-class problematic a one-vs-all method, similar
to the precision/recall one-vs-all computation, or one-vs-one method can be
used. Also, similar averaging methods (macro, micro, weighted) for the F1-
score are used in the case of multi-class classification. Documentation of the
sklearn.metrics.roc_auc_score() function can be seen for further information.

For binary (or one-vs-all/one) classification:

TPR = TP

P
, (6.11)

FPR = FP

N
, (6.12)

where P is the number of all positive and N of all negative samples.

36

............................. 6.5. The Random Forest Classifier

6.5 The Random Forest Classifier

6.5.1 Introduction

Theorem 6.1. A large number of relatively uncorrelated models (trees) oper-
ating as a committee will outperform any of the individual constituent models.
[Yiu19]

Before moving to Random Forest (RF) it is crucial to understand Decision
Trees (DT). The visualization in Figure 6.3 can be used as an example. In the
diagram, a binary classification problem is solved using a single decision tree.
Firstly, the feature ’colour’ is observed. Based on this, the samples are split
into two groups. However, there are none present in the left split. Therefore,
another feature, ’underline’ is observed, and the final estimation is made.

Random forest or random decision forest is an ensemble classification and
regression method. Multiple decision trees are built during the learning
process. Randomness is introduced to suppress the habit of decision trees
to over-fit on a training set, and there are two common random processes
used to combat this over-fit. Bagging (also known as Bootstrap) reduces
the impact of small changes on the training set and allows each individual
tree to randomly sample from the dataset which results in different trees.
The other, Feature Randomness, reduces the number of features considered
during the split. By default, in DT every feature is considered and the one
with the biggest separation power between the left and right node is selected.
Not doing so forces more variation amongst the trees and results in a better
classification on unseen data.

The trees also protect each other from their individual errors. While some
trees can be wrong, many others will be right, and so a group move in the
correct direction will be possible. The final output is decided in the form of
voting between the trees.

6.5.2 Parameters

There are many parameters to be tuned for RFC scikit-learn library implemen-
tation. Firstly, the performance of the classifier trained on default parameters

37

6. The Scikit-learn library.................................

Figure 6.3: Elemental decision tree classification [Yiu19]

was obtained using the script train_rfc.py. In Figure 6.4, ROC curves can be
seen for the training and test splits of 80% and 20% respectively. As discussed
in Subsection 6.4, three scores are listed to evaluate performance.

Judging by Figure 6.4, default parameters can serve as a good basis.
However, an over-fitting problem occurred. To reduce this and smooth
the classification, a Grid Search with 5-Fold Stratified CV was chosen for
fine tuning the parameters. Script tuning_rfc.py can be viewed for imple-
mentation. Five splits allowed consistency in the split ration. Classifiers
were always trained on 80% and tested on 20% of the older mc16a data.
Later, the results are saved by date and constant identifier in the form of
’script_name_year_month_day_constant’. The console outputs are located
in the ’logs’ folder, and the tuning results in the form of a Pandas [M+] table
are in the folder ’tuning’.

The searched space and parameter definition are listed in Table 6.1. Note
that each parameter was tuned independently. In the same table the best
parameters obtained form the evaluating score and time performances are
listed for both full-data and channel-data models. These results were obtained
from the script tuning_rfc_results.py and are listed in Appendix C.2.1.

The job file tuning_rfc.job was created to submit a tuning script to the
Sun Grid Engine-governed (SGE) [Cor10] CTU cluster servers. The train-
ing/tuning processes were done on 8 cores (K8 or E5, 2000 - 2400, depended
on cluster) with 32 GB of dedicated memory.

Several parameters were not tuned. One of them was the ’bootstrap’.
Forcing a ’False’ value would undermine the randomness of the RFC and
lower the performance on general data. ’min_sample_leaf’ was also not tuned
due to having a similar effect on the classifier as a tuned ’min_sample_split’.

38

............................. 6.5. The Random Forest Classifier

(a) : Training results (b) : Test results

Figure 6.4: Performance of RFC with default parameters

parameter definition search space best value best value (channel)

n_estimators the number of trees in the forest range(50, 601, 20) 540 50
max_depth the maximum depth of the tree range(10, 101, 5) 15 10
min_samples_split minimum number of samples required to split an internal node range(2, 203, 5) 117 122
max_features the number of features to consider when looking for the best split linspace(0.05, 1, 20) 0.3 0.55
max_leaf_nodes grow trees in best-first fashion (best - relative reduction in impurity) range(2, 603, 5) 522 47
min_impurity_decrease a node will be split if this split induces a decrease of the impurity greater than or equal to this value linspace(0, 0.1, 21) 0.0 0.01 (0.0)*
ccp_alpha complexity parameter used for Minimal Cost-Complexity Pruning linspace(0, 0.1, 21) 0.0 0.005 (0.0)*
max_samples the number of samples to draw (using bootstrap) from X to train each base estimator linspace(0.05, 1, 20) 0.85 0.85
oob_score whether to use out-of-bag samples to estimate the generalization accuracy [’False’, ’True’] ’True’ ’True’
criterion the function to measure the quality of a split [’gini’, ’entorpy’] ’gini’ ’gini’

Table 6.1: List of tuned parameters of RFC with results

Due to not having weighted samples, ’min_weight_fraction_leaf’ (which
depends on sample weights) was dropped. The ’warm_start’ parameter was
also rejected for tuning. It can significantly speed up the training process for
an increase of certain parameters (such as ’n_estimators’). However, it is
advised to approach this parameter with caution as it uses previous training
results. There was also no reason to tune the ’class_weights’ parameter as
the apriori probabilities from Eq. 5.2 were used.

From the tuning results, the best parameters were chosen and a new
classifier trained. Figure 6.5 contains ROC curves with scores included.
Compared to Figure 6.4, the over-fit was clearly reduced. However, there is
almost no improvement in performance. To boost it, a working point setting
was observed.

Channel

But before moving there, experiments were also carried out for our working
channel 2LSS1Tau. Again, 80% of the data was selected for training and 20%
left for test/cross-validation purposes. Figure 6.6 contains ROC curves for the
model trained using default parameters and Figure 6.7 the one trained with
parameters obtained from tuning. Apart from the achievement of over-fit

39

6. The Scikit-learn library.................................

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.5: Performance of RFC with tuned parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.6: Performance of RFC (channel) with default parameters

reduction, no improvement is seen. This is probably due to not having enough
data for training. The performance of the classifier trained on 80% of the
full-data and tested on the channel-data was observed to prove this fact. The
results are shown in Figure 6.8.

It is good to note that many parameters depend on each other. This is a
well known problematic and one of the possible tuning strategies is tuning
them together. However, the computation demand and time of such an
operation is great.

6.5.3 Feature importances

Also, feature importances were observed. In Figure 6.9, 15 features with the
highest importances are listed along with their std. Table B.1 in Appendix

40

............................. 6.5. The Random Forest Classifier

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.7: Performance of RFC (channel) with tuned parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.8: Performance of RFC with tuned parameters, trained on 80% of
full-data and tested on 80% and 20% of channel-data

B.1 can be used to translate the feature number into a name and Table
6.2 provides more information about selected features. During the training
of the channel classifier with tuned parameters, a feature importance drop
was observed. Only one (number 5) was present and had an importance of
1. After further observations, two parameters causing this behaviour were
discovered: ’min_impurity_decrease’ and ’ccp_alpha’. Both were set to 0.0,
which is denoted with * in the tuning table.

For the full-data model, the ’best_Z_Mll’ feature took a lead, followed
by many other features with lesser importance. For the channel-data model
’Mll01’ is in the lead, again followed by many others. Looking at histograms
(Appendix C.1.1), it is not a surprise that only plots with a lot of information
were listed as important features.

41

6. The Scikit-learn library.................................
ID name deffinition

13 best_Z_Mll smallest mass difference between Z mass and invariant mass of lepton pair
5 Mll01 invariant mass of lepton pair (leading and subleading)
11 Mlll012 invariant mass of leptons (leading, subleading, and sub-subleading)
6 Mll02 invariant mass of leptons (leading and sub-subleading)
44 lep_isPrompt_2
43 lep_isPrompt_1
0 DRll01 special distance of jet and lepton
77 total_charge total electric charge of leptons
8 lep_isTightLH_2 lepton is fulfills high quality criteria
58 nJets_OR number of jets
60 nJets_OR_T number of jets after overlab removal
31 lep_Pt_2 transverse momentum of sub-subleading lepton
81 HT_lep sum of transverse momentum of all leptons
68 tau_fromPV_0
79 total_leptons
15 lep_Eta_0 Pseudo-rapidity of leading lepton
80 HT sum of transverse momentum of all objects
2 MET_RefFinal_et missing transverse energy
16 lep_Eta_1
56 lep_promptLeptonVeto_TagWeight_1 prompt lepton veto
63 Tau_MV2c10_0 tau isolation
4 MV2c10_70_EventWeight tau isolation
30 lep_Pt_1 transverse momentum of subleading lepton
82 HT_jets sum of transverse momenta of jets
29 lep_Pt_0 transverse momentum of leading lepton
35 lep_chargeIDBDTTight_0 charge of leading lepton with high quality

Table 6.2: List of the most important features with descriptions

6.5.4 Additional tests

Two extra tests were carried out. The first on the older mc16d data, which
consists of just one signal file and the second on the newer mc16a and mc16d
set. The results are shown in Figure 6.10. Only small differences were
observed. For the older mc16d data, the performance was slightly better. For
the newer data, it was almost exactly the same as the training data in Figure
6.5 (b). The over-fit was suppressed successfully and general classification
yielded approximately the same results.

42

............................. 6.5. The Random Forest Classifier

(a) : Full-data trained model (b) : Channel-data trained model

Figure 6.9: Feature importances for full-data model (left) and channel-data
model (right)

(a): (b):

Figure 6.10: Performance of RFC with tuned parameters, tested on a) older
mc16d b) newer mc16a & mc16d data

6.5.5 Working Point

Significance maximization

To maximize the significance score, a new decision strategy was introduced:

φ(x, t) =

tt̄H, for p(tt̄H|x) ≥ t,
tt̄W, for p(tt̄W |x) ≥ p(tt̄Z|x),
tt̄Z, for p(tt̄W |x) < p(tt̄Z|x),

(6.13)

43

6. The Scikit-learn library.................................

Figure 6.11: Dependence of significance on the threshold, vertical lines denote
maximums

where t is the threshold constant.

This is basically the threshold tt̄H class vs. all other backgrounds. If
the threshold is not met, the background class with maximum probability is
returned.

Weighting factors, the number of events, and other background elements
of the computations were obtained using Table 152 from [Col19b], as shown
in Appendix A.1.

Figures 6.11 and 6.12 contain the significance approximations and charac-
teristics of efficiencies S and B up to the change of the threshold. In the first
figure, vertical lines denote the maximum value of any given approximation.
In the second, vertical lines denote values of the given characteristics at the
point of the selected threshold from the first figure. Note that all predictions
were done on the newer data.

As a working point, a threshold of 0.26 was selected, as the simplified
significance approximation was highest for this value.

In Figure 6.13, confusion matrices for the default (Eq. 5.9) and new (Eq.
6.13) decision functions are located. Clearly, setting a lower threshold caused
more background to be classed as a signal.

44

............................. 6.5. The Random Forest Classifier

(a): (b):

Figure 6.12: Dependences of a) the efficiencies, b) the expected number of events
on the threshold, vertical lines denote values for found threshold

Sensitivity maximization

There is also another approach to set a working point: recall (also known
as sensitivity) maximization. The same decision function (Eq. 6.13) as
significance maximization tuning was used. The sensitivity was observed at
each interval of the false discovery rate (FDR = 1 - precision) value. The
maximum value was again selected as the working point. Characteristics with
a confusion matrix are shown in Figure 6.14. An FDR interval which does
not exceed 0.4 was selected. For this interval, the maximum sensitivity of
magnitude 0.681 was found at a threshold value of 0.47. Of course, a working
point tuned this way will not outperform the previous one, when it comes to
significance. But for general classification evaluation, it yields more accurate
results.

45

6. The Scikit-learn library.................................

(a): (b):

Figure 6.13: Confusion matrices for a) default decision and b) significance
maximization decision function for the tuned classifier performing on the newer
data

Both significance and sensitivity maximization tuning can be found in the
script tuning_wp.py.

6.5.6 Conclusion

The RFC served as a good starting point in our classification problem. How-
ever, even after tuning, the classifier is not ideal. From observing histograms,
it can be seen that finding differences between classes is very difficult. This
was confirmed during the evaluation of performance on channel-data. The
amount of data in it is not efficient enough to form strong classification bound-
aries. As noted, only a few features out of 83 were used to train the classifier.
The rest were not used due to low information gain. Several solutions can
be proposed. The first is to add more features: we are working with only
a small fraction of the possible 2000 features. However, it is very difficult
to select a good feature and ensure that it is not only simulation related.
Several experiments were carried out to select good features automatically.
However, they always yielded unusable results which were only available
in the simulation data. Another solution could be to add more data. As
is shown by the performance of the full-data model, more data boosts the
classification and every feature has at least some importance. Adding data
to the full-data would also result in more data in the channel-data, since the
channel selection is based on the full-data. The last possibility would be to
augment the features to yield more information. This is very difficult and

46

............................. 6.5. The Random Forest Classifier

(a): (b):

Figure 6.14: a) parameters dependence on the threshold and b) confusion matrix
for the WP maximizing sensitivity for a given value of FDR for the tuned classifier
performing on the newer data

would require in-depth data analysis.

47

6. The Scikit-learn library.................................
6.6 The K-Neighbors Classifier

6.6.1 Introduction

The K-Neighbors Classifier (KNC) is one of the lazy learning algorithms.
Lazy means that any generalization on training data is delayed until a test
query is invoked. This is the exact opposite of the RFC (an eager learning
algorithm, which gerneralizes directly on the training data). This of course
makes training faster but testing slower. In the worst case, testing requires
the scanning of all data points. This can require much more memory than
any of the eager learning algorithms do.

In the KNC, K is the number of the nearest neighbors, and the algorithm
can be summed up in the following steps, which are also visualized in Figure
6.15:

. store training points. calculate distances for test point. find K-nearest neighbors. vote for the output class

6.6.2 Dimension reduction

Being a lazy learning algorithm, the KNC performs better with a smaller
number of features. A larger number of features usually leads to an over-
fitting problem. To avoid this, an exponential increase in data for each of
the features is needed as we increase the number of dimensions (number of
features). Such a problem is called the curse of dimensionality.

PCA

To reduce the dimension of the data, several approaches can be used. One of
them is Principal Component Analysis (PCA). In general, this method works

48

...............................6.6. The K-Neighbors Classifier

Figure 6.15: KNC steps visualization for binary classification in two-dimensional
space [Nav18b]

by mapping the original dataset into a new space. In this space, columns of the
matrix are orthogonal. This can be viewed as a transformation, which creates
a new covariance matrix. In this matrix the first component can explain
certain percentages of the variance on whole data. Scikit-learn implementation
is in the class sklearn.decomposition.PCA().

Truncated SVD

Singular Value Decomposition (SVD) factors matrix M into the three matrices
U, Σ, and VT. For SVD, the factorization is done on the data matrix, whereas
for PCA, the factorization is done on the covariance matrix.

Truncated SVD adds another step into the factorization. It produces it only
when the number of columns is equal to the specified truncation. It therefore
produces a specified number of columns in result data. In comparison, normal
SVD would produce n columns, where n is number of columns in the original
data. More information on scikit-learn implementation can be found in
sklearn.decomposition.TruncatedSVD().

One of the big advantages of Truncated SVD over PCA is that it can operate
on sparse matrices. For PCA, the covariance matrix must be computed on
the entire matrix.

49

6. The Scikit-learn library.................................

(a) : Training results (b) : Test results

Figure 6.16: Performance of KNC with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.17: Performance of KNC with tuned parameters

Metric

It is good to note that the metric used within the algorithm can also suffer from
higher dimensionality. It is well known that in large dimensions, Euclidean
distance is no longer useful, and so Mikowski distance is often used. Its power
parameter allows us to directly set the best distance for any given problem.

6.6.3 Parameters

Both PCA and Truncated SVD algorithms were observed. Their instances
were added into the pipeline, between the scaler and the classifier. For PCA,
setting the percentage of the variance which can be explained was observed.
For Truncated SVD, it was the number of columns. These parameters are

50

...............................6.6. The K-Neighbors Classifier

algorithm parameter search space best value best value (channel)

PCA n_components linspace(0.9, 1, 20) 0.9 (would need further tuning) 0.957 (w.n.f.t.)
Truncated SVD n_components range(2, 41, 1) 13 24

Table 6.3: List of tuned dimension reduction algorithms for KNC with results

parameter definition search space best value best value (channel)

n_neighbors number of neighbors used by queries range(1, 102, 2) 53 5
leaf_size leaf size passed to BallTree or KDTree range(1, 102, 2) 23 1
p power parameter for the Minkowski metric 2**linspace(-2, 10, 25) 2**0.5 2**1
weights weight function used in prediction [’uniform’, ’distance’] ’uniform’ ’uniform’
algorithm algorithm used to compute the nearest neighbors [’auto’, ’ball_tree’, ’kd_tree’, ’brute’] ’kd_tree’ ’auto’

Table 6.4: List of tuned parameters of KNC with results

called ’n_components’ for both classes. However, for PCA a float value
between zero and one is accepted. In the case of Truncated SVD, an integer
can be passed. For Truncated SVD, 13 was selected as a working point: lower
values resulted in worse performance, and higher only increased learning time
exponentially. To determine if the score is close to the results which can
be obtained for the original data, PCA for the ’n_components’ parameter
between values 0.9 and 1 was observed. It proved that reducing the dimension
does not result in worse performance of marginal magnitude. Instead it is
almost negligible. Table 6.3 lists the best values for both algorithms.

Comparing the performance and predict time, Truncated SVD was selected
and used for tuning the parameters of the classifier. Table 6.4 contains the
results of this tuning, and Appendix C.2.2 shows tuning plots.

Comparing the results for the default parameters in Figure 6.16 with
tuned parameters in Figure 6.17 shows a decrease in over-fit and also small
improvements in the scores. However, the results are not as good as when
using the RFC.

Channel

Again, the channel was also observed. Dimension reduction was again tuned
and a Truncated SVD of 24 components yielded the best results. After setting
this, other parameters were then tuned, and the results are shown in Table
6.4. Figure 6.18 contains ROCs for the model trained on the channel-data
with the default KNC’s parameters and Figure 6.19 with tuned parameters.

The performance of the classifier trained on 80% of full-data and tested
on the channel-data was also observed again, and the results are shown in
Figure 6.20. A small improvement is visible for the test set ROC curves.

51

6. The Scikit-learn library.................................

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.18: Performance of KNC (channel) with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.19: Performance of KNC (channel) with tuned parameters

6.6.4 Additional tests

For additional tests, no large deviation from Figure 6.17 was observed. Once
again, the older mc16d set did a little better compared to any other. Figure
6.21 contains the results of the tests.

52

...............................6.6. The K-Neighbors Classifier

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.20: Performance of KNC with tuned parameters, trained on 80% of
full-data and tested on 80% and 20% of channel-data

(a): (b):

Figure 6.21: Performance of KNC with tuned parameters, tested on a) older
mc16d b) newer mc16a & mc16d data

6.6.5 Working Point

Significance maximization

The previously derived Eq. 6.13 was used to find an optimal threshold to max-
imize significance. Figures 6.22 and 6.23 contain characteristics of efficiencies,
S, B, and significance approximations for the values of the threshold.

For the threshold, 0.08 was selected as the working point as it yielded the
maximum significance. In Figure 6.24, confusion matrices for the default
(Eq. 5.9) and new decision functions (Eq. 6.13) are located. Again, with a
higher significance, more background is classified as a signal. Surprisingly, in

53

6. The Scikit-learn library.................................

Figure 6.22: Dependence of significance on the threshold, vertical lines denote
maximums

(a) : Efficiencies (b) : Expected number of events

Figure 6.23: Dependences of a) the efficiencies, b) the expected number of events
on the threshold, vertical lines denote values for found threshold

the case of the KNC, the highest simplified significance is yielded for tt̄W
efficiency (0.9111), which is higher than for tt̄H (0.9714).

Sensitivity maximization

The second tuning method, which was proposed in the RFC section was
observed as well. In the case of the KNC, the optimal threshold was found
to be 0.4, which is equal to a sensitivity of 0.652. Figure 6.25 contains the
results of the tuning.

54

...............................6.6. The K-Neighbors Classifier

(a): (b):

Figure 6.24: Confusion matrices for a) default decision and b) significance
maximization decision function for the tuned classifier performing on the newer
data

6.6.6 Conclusion

The KNC did perform a little worse compared to the RFC. It was raised
that the KNC suffers from the curse of dimensionality. But even reductions
using decomposition methods could not achieve the results of the RFC. Also,
again the data itself was shown to be a great problem. The points stored
during the learning phase were very close to each other for the signal and the
background classes. This resulted in a large number of false classifications,
even with a great number of neighbors from which the output was computed.

55

6. The Scikit-learn library.................................

(a): (b):

Figure 6.25: a) parameters dependence on the threshold and b) confusion matrix
for the WP maximizing sensitivity for a given value of FDR for the tuned classifier
performing on the newer data

56

.................................6.7. Gaussian Naïve Bayes

algorithm parameter search space best value best value (channel)

PCA n_components linspace(0.1, 0.9, 81) 0.77 0.78
Truncated SVD n_components range(2, 41, 1) 23 14

Table 6.5: List of tuned dimension reduction algorithms for GNB with results

parameter definition search space best value best value (channel)

priors aprior probabilities of the classes [’None’ (Eq. 5.1), ’Custom’ (Eq. 5.2)] ’Custom’ ’Custom’
var_smoothing portion of the largest variance of all features that is added to variances for calculation stability logspace(-15, -3, 13) 1e-13 1e-3

Table 6.6: List of tuned parameters of KNC with results

6.7 Gaussian Naïve Bayes

6.7.1 Introduction

Naïve Bayes (or shortly NB) is type of classifier which implies Bayes’ theorem
5.1 with the naïve assumption of features being independent from each other.
An NB can be extended to real-valued attributes, most commonly by assuming
a Gaussian distribution. Such an extension is called a Gaussian NB. Our
data is already pre-scaled using a standard scaler to have the form of a
Gaussian (or normal) distribution. Therefore, it was proposed that we test
the performance of this elementary but sometimes surprisingly powerful tool.

6.7.2 Parameters

Similar to the KNC, dimension reduction can significantly speed up, and
help with, the classification process. Table 6.5 contains the results of the
dimension reduction algorithms’ tuning. Truncated SVD with 23 components
yielded the best results.

The GNB is a simple classifier: not many parameters can be tuned. Only
two of them, called ’priors’ and ’var_smoothing’, are accessible. The former
represents apriori probabilities: by default the GNB computes them as
emprical probabilities. The latter denotes the portion of the largest variance
of features from which stability is calculated.

Plots of tuning processes can be found in Appendix C.2.3. Table 6.6 contains
the best parameters for both full-data and channel-data models. Introducing
custom apriori probabilities yielded negligibly worse results compared to the

57

6. The Scikit-learn library.................................

(a) : Training results (b) : Test results

Figure 6.26: Performance of GNB with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.27: Performance of GNB with tuned parameters

empirical one (Figures 6.26 and 6.27). However, in the future, when real data
will be tested, the apriori probabilities will surely outperform the empirical.

Channel

Dimension reduction was also observed for our working channel. It yielded
slightly better scores. Therefore, it was decided that Truncated SVD with
14 components will be used. ROCs for both default and tuned models are
shown in Figures 6.28 and 6.29. Again, the performance was a little lowered
due to the introduction of custom apriori probabilities.

The performance of the full-data model on 20% and the channel-data was
observed once again. Results are shown in Figure 6.30.

58

.................................6.7. Gaussian Naïve Bayes

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.28: Performance of GNB (channel) with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.29: Performance of GNB (channel) with tuned parameters

6.7.3 Additional tests

The results of the tests are shown in Figure 6.31. Once again, the classifier
which performed on the older mc16d set did a little better in comparison
to the others. For the newer mc16a and mc16d data, the results are almost
identical to Figure 6.27 (b).

59

6. The Scikit-learn library.................................

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.30: Performance of GNB with tuned parameters, trained on 80% of
full-data and tested on 80% and 20% of channel-data

(a): (b):

Figure 6.31: Performance of GNB with tuned parameters, tested on a) older
mc16d b) newer mc16a & mc16d data

6.7.4 Working Point

Significance maximization

The threshold was again tuned to maximize the simplified significance ap-
proximation. Figures 6.32 and 6.33 contains the results.

For the threshold, 0.0 was selected by the algorithm as it yielded the best
significance. This resulted in all events being classified in the tt̄H class (Figure
6.34), completely undermining the purpose of the classification.

60

.................................6.7. Gaussian Naïve Bayes

Figure 6.32: Dependence of significance on the threshold, vertical lines denote
maximums

(a) : Efficiencies (b) : Expected number of events

Figure 6.33: Dependences of a) the efficiencies, b) the expected number of events
on the threshold, vertical lines denote values for found threshold

Sensitivity maximization

More reasonable results were obtained for the second type of tuning and are
shown in Figure 6.35. A threshold of 0.2 was selected and yielded a relatively
good result (0.541) for a simple classifier such as the GNB.

6.7.5 Conclusion

A quick diversion from complex ML algorithms was a nice variation from this
difficult task. As expected, poorer results were obtained. This resulted in
instability during the significance maximization tuning. Instead of the signifi-
cance of the threshold curve being a concave function with local maximum
between the 0 and 1, its shape was more like a convex function. On one hand

61

6. The Scikit-learn library.................................

(a): (b):

Figure 6.34: Confusion matrices for a) default decision and b) significance
maximization decision function for the tuned classifier performing on the newer
data

the significance was maximized, but on the other, the classification saturated
and was completely unnecessary. The same results could be achieved directly
by not performing the classification at all.

62

.................................6.7. Gaussian Naïve Bayes

(a): (b):

Figure 6.35: a) parameters dependence on the threshold and b) confusion matrix
for the WP maximizing sensitivity for a given value of FDR for the tuned classifier
performing on the newer data

63

6. The Scikit-learn library.................................
algorithm parameter search space best value best value (channel)

PCA n_components linspace(0.1, 0.9, 81) 0.89 0.87
Truncated SVD n_components range(2, 83, 1) 76 24

Table 6.7: List of tuned dimension reduction algorithms for ADA with results

6.8 AdaBoost Classifier

6.8.1 Introduction

In the past, boosting algorithms were developed to achieve higher accuracy
at a reasonable cost, and became a very popular tool. They combine multiple
weak classifiers into a more powerful ensemble. As opposed to the RFC, no
bagging or bootstrapping is present. The main process behind boosting is
setting the weights, of which there are two types: the ’observations’ and
classifiers’ weights. In general, they help to track hard-to-learn observations
and classifiers with the highest accuracy. This also allows the boosting
algorithms to avoid suffering from over-fitting. AdaBoost (ADA) stands for
Adaptive Boosting and is one type of boosting algorithm. The other type,
used later in this thesis, is Gradient Boosting. The steps of a general adaptive
boosting algorithm are:

. randomly select a training subset. iteratively train. assign weights to the observations (a high weight means a less accurate
observation). assign weights to the classifiers (a high weight means a better score). repeat until convergence or a number of estimators is reached. vote for output

6.8.2 Parameters

To speed up the learning process, dimension reduction was once again observed.
Table 6.7 contains the results for both PCA and Truncated SVD methods.

64

..................................6.8. AdaBoost Classifier

Figure 6.36: AdaBoost steps visualization [Nav18a]

There are a total of five parameters which can be changed. Two of them,
’algorithm’ and ’random_state’ are set by default to values which yield the
best results. This leaves only three parameters to be tuned. ’n_estimators’
is the maximum number of classifiers (estimators) used inside the ensemble,
in case the convergence is not reached in advance. ’learning_rate’ reduces
the contribution of classifiers. And ’base_estimator’ is the weak classifier
object used as a key element in the ensemble. There are several limitations
on these, including sample weights and classes support. More information
can be obtained by viewing sklearn.ensemble.AdaBoostClassifier(). Table 6.8
can be referred to for tuning results.

As a weak estimator, an elementary Decision Tree (DT) of depth 1 is used
as a default. To achieve proper classification, the DT parameter ’class_weight’
was additionally set to the apriori probabilities from Eq. 5.2. The depth was
later observed and the results listed in Table 6.8 are noted with an asterisk.
Using a Support Vector Classifier (SVC) was also proposed. However, due
to the computational complexity of the SVC algorithm for high dimensional
data and the requirement of vast numbers of trained classifiers, this method
was abandoned and experiments using a separate group of SVCs were carried
out later in Section 6.11.

Due to being limited by time, only one parameter change was able to be
tuned at a time. This formed as a crucial problem when deciding between
the number of estimators, and the depth of the base estimators. In the
end, based on Figures C.48 and C.50, setting the depth to 6 was selected
as an optimal approach, as it yields better values for both scores and time
complexity compared to a great number of estimators tuned for a DT of
depth 1.

65

6. The Scikit-learn library.................................
parameter definition search space best value best value (channel)

n_estimators the maximum number of estimators at which boosting is terminated range(50, 501, 50) 500 (50*) 150
learning_rate learning rate shrinks the contribution of each classifier by its value logspace(-20, 1, 22) 1e0 1e0
base_estimator the base estimator from which the boosted ensemble is built DT of depth 1 to 10 1 (6*) 1

Table 6.8: List of tuned parameters of ADA with results

(a) : Training results (b) : Test results

Figure 6.37: Performance of ADA with default parameters

Channel

Once again, our working channel was observed. Truncated SVD with 14
components yielded better results compared to PCA and was selected for
further tuning. ROCs for both the default and tuned model are shown in
Figures 6.28 and 6.29.

The performance of the full-data model on 20% and 80% of channel-data
is shown in Figure 6.30.

6.8.3 Additional tests

The results of the tests are shown in Figure 6.42. The older mc16d test set
once again performed slightly better. For the newer set, almost the same
results as in Figure 6.27 (b) were obtained.

66

..................................6.8. AdaBoost Classifier

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.38: Performance of ADA with tuned parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.39: Performance of ADA (channel) with default parameters

6.8.4 Working Point

Significance maximization

To maximize the simplified significance approximation, the threshold value
was once again tuned, and the results are shown in Figures 6.43 and 6.44.

The value 0.33 was selected for the threshold as it yielded the best signifi-
cance. In Figure 6.45, confusion matrices for the default and new threshold
are shown.

67

6. The Scikit-learn library.................................

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.40: Performance of ADA (channel) with tuned parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.41: Performance of ADA with tuned parameters, trained on 80% of
full-data and tested on 80% and 20% of channel-data

Sensitivity maximization

The results were also obtained for the second type of tuning and are shown
in Figure 6.46. A threshold of 0.34 was selected, yielding a sensitivity of
magnitude of 0.582.

6.8.5 Conclusion

The ADA performed slightly better compared to the GNB. However, both
the RFC and the KNC achieved even higher scores. Further tuning of the
ADA is certainly an option for boosting its performance. But due to the
computational demand and time constraints, it was not performed. All the

68

..................................6.8. AdaBoost Classifier

(a): (b):

Figure 6.42: Performance of ADA with tuned parameters, tested on a) older
mc16d b) newer mc16a & mc16d data

Figure 6.43: Dependence of significance on the threshold, vertical lines denote
maximums

characteristics in the working point tuning sections were very interesting.
Instead of concave, the curves were in the form of rectangular waves, possibly
due to the elementary classifiers inside the ensemble.

69

6. The Scikit-learn library.................................

(a) : Efficiencies (b) : Expected number of events

Figure 6.44: Dependences of a) the efficiencies, b) the expected number of events
on the threshold, vertical lines denote values for found threshold

(a): (b):

Figure 6.45: Confusion matrices for a) default decision and b) significance
maximization decision function for the tuned classifier performing on the newer
data

70

..................................6.8. AdaBoost Classifier

(a): (b):

Figure 6.46: a) parameters dependence on the threshold and b) confusion matrix
for the WP maximizing sensitivity for a given value of FDR for the tuned classifier
performing on the newer data

71

6. The Scikit-learn library.................................
algorithm parameter search space best value best value (channel)

PCA n_components linspace(0.1, 0.9, 81) 0.9* 0.9*
Truncated SVD n_components range(2, 61, 1) 38 21

Table 6.9: List of tuned dimension reduction algorithms for GBC with results

parameter definition search space best value best value (channel)

learning_rate learning rate shrinks the contribution of each classifier by its value logspace(-5, 1, 7) 1 1
subsample the fraction of samples to be used for fitting the individual base learners linspace(0.1, 1, 10) 1 1
criterion the function to measure the quality of a split [’friedman_mse’, ’mse’] ’friedman_mse’ ’friedman_mse’
n_estimators the number of boosting stages to perform range(100, 201, 10) 200* 100
min_samples_split the minimum number of samples required to split an internal node range(2, 103, 5) 2** 2**
max_depth maximum depth of the individual regression estimators range(3, 11, 1) 10* 6
min_impurity_decrease a node will be split if this split induces a decrease of the impurity greater than or equal to this value linspace(0, 0.1, 21) 0** 0**
max_features the number of features to consider when looking for the best split linspace(0.05, 1, 20) 1 1
max_leaf_nodes grow trees with max_leaf_nodes in best-first fashion range(2, 103, 5) ’None’** ’None’**
ccp_alpha complexity parameter used for Minimal Cost-Complexity Pruning linspace(0, 0.1, 21) 0 0

Table 6.10: List of tuned parameters of GBC with results

6.9 Gradient Boosting Classifier

6.9.1 Introduction

Alongside adaptive, gradient boosting is another technique for boosting an
ensemble of weak classifiers, although the approach is completely different.
Every time a new weak classifier is added, the weights of the previous one are
frozen. Due to this, the already existing weak classifiers inside the ensemble
remain at their fixed values. The boosting itself depends on a loss function.
Any custom function can be given, but it needs to be differentiable. However,
in general, a logarithmic loss function is mainly used and can satisfy the
majority of the ML problems. In this thesis, GBC is used as an abbreviation
for the gradient boosted classifier.

6.9.2 Parameters

PCA and SVD were observed and once again, SVD with Trunctation to r-first
elements scored higher than PCA. Table 6.9 contains the dimension reduction
results.

Contrary to the ADA, for the GBC there are many tunable parameters.
In Table 6.10, the majority are shown with the best values found during
tuning. However, several parameters were not tuned. The first of them:
’loss’ was desired to be set to a default value, in order not to perform
adaptive boosting once again. The second: ’min_samples_leaf’, as in the
case of the RFC is very similar to ’min_samples_split’. Another parameter,

72

.............................. 6.9. Gradient Boosting Classifier

(a) : Training results (b) : Test results

Figure 6.47: Performance of GBC with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.48: Performance of GBC with tuned parameters

’min_weight_fraction_leaf’, was not used due to not having weighted samples.
It was decided that the parameter ’init’ would not be tuned due to its
default setting to a Dummy Classifier, which is used to compute the initial
predictions. Also, the ’random_state’ default value was preserved, using
the random function of the NumPy library. As discussed previously for the
RFC, ’warm_start’ can help improve the training, however great precaution
is recommended, and so it was not tuned. The last parameters which were not
tuned were related to early stopping behavior: namely, ’n_iter_no_change’,
’validation_fraction’, and ’tol’. As we aspired for the best results possible,
default values were preserved and early stopping was disabled to allow longer,
but uninterrupted, learning.

An asterisk (*) in the tables denotes that the parameter would require
further tuning to be perfectly tuned but that there was not enough time to
continue the tuning. A double asterisk (**) means that default value was
preserved because tuning had negligible results.

73

6. The Scikit-learn library.................................

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.49: Performance of GBC (channel) with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.50: Performance of GBC (channel) with tuned parameters

Channel

For the channel, the results are also shown in Table 6.10. Figure 6.49 contains
ROCs for the model trained on the channel-data with default GBC parameters.
For the tuned model, see Figure 6.50.

The performance of the classifier trained on 80% of full-data and tested on
the channel-data is shown in Figure 6.20.

74

.............................. 6.9. Gradient Boosting Classifier

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.51: Performance of GBC with tuned parameters, trained on 80% of
full-data and tested on 80% and 20% of channel-data

(a): (b):

Figure 6.52: Performance of GBC with tuned parameters, tested on a) older
mc16d b) newer mc16a & mc16d data

6.9.3 Additional tests

No large deviation from Figure 6.48 was observed for any of the additional
tests. The older mc16d set did a little better once again and the newer set
yielded almost identical results to the default test set. The results are shown
in Figure 6.52.

75

6. The Scikit-learn library.................................

Figure 6.53: Dependence of significance on the threshold, vertical lines denote
maximums

(a) : Efficiencies (b) : Expected number of events

Figure 6.54: Dependences of a) the efficiencies, b) the expected number of events
on the threshold, vertical lines denote values for found threshold

6.9.4 Working Point

Significance maximization

A threshold value of 0.03 was found to be optimal for maximizing the simplified
significance approximation, yielding a result of 1.499. Significance, efficiencies,
and S, B parameter plots are shown in Figures 6.53 and 6.54.

76

.............................. 6.9. Gradient Boosting Classifier

(a): (b):

Figure 6.55: Confusion matrices for a) default decision and b) significance
maximization decision function for the tuned classifier performing on the newer
data

Sensitivity maximization

In the case of the second type of tuning, 0.43 was found to maximize the
sensitivity at a given level of the FDR. The maximum value is 0.646 and,
together with a confusion matrix, can be found in Figure 6.46.

6.9.5 Conclusion

Requiring the longest time for training, the GBC did not perform spectacularly.
Yes, a higher score than the default in [Col19b] was achieved, however the
improvement is very small. The RFC, KNC, and ADA achieved higher scores
in shorter learning times. One could argue that the KNC is a lazy learner
and that its time of prediction should be compared. But even then, the
GBC is more than four-times less efficient. The performance could maybe
be improved by further tuning of the parameters which are denoted by an
asterisk in Table 6.10. Nevertheless, this would require even more time, which
was rather dedicated to other two classification algorithms.

77

6. The Scikit-learn library.................................

(a): (b):

Figure 6.56: a) parameters dependence on the threshold and b) confusion matrix
for the WP maximizing sensitivity for a given value of FDR for the tuned classifier
performing on the newer data

78

........................... 6.10. Multi-Layer Perceptron Classifier

Figure 6.57: Artificial neuron visualization [Roo19]

6.10 Multi-Layer Perceptron Classifier

6.10.1 Introduction

In recent years, a rapid development in Artificial Neural Networks (ANN)
has been achieved. Similar to the human brain, the key element of each ANN
is the neuron (sometimes called perceptron due to historical reasons and to
distinguish it from the real tissue neurons), which is shown in Figure 6.57.
At first, it receives inputs (also called activations) from the other neurons,
or directly from the data, depending on the position of the neuron in the
network. The inputs are multiplied by weights and added together with
bias. In this form they are passed to the activation function (also known as
non-linearity) which describes the non-linear input-output characteristic and
gives the neuron more power to describe the relations in the inputs. Many
activation functions exist and can be used. Several were later observed during
the tuning process.

As noted, a formation of neurons can be called an ANN. There are many
types of them. The one we observe is called a Multi-Layer Perceptron
Classifier (MLPC) and is an example of a general feedforward ANN with
backpropagation supervised learning technique. There are, in total, n layers
and n-2 hidden layers inside the network. Two are subtracted due to the first
and the last layer being visible. In Figure 6.58 a demonstration of such a
network is shown.

The training process of a general MLPC can be summed in three steps as:

. Forward pass. Loss calculation. Backward pass

79

6. The Scikit-learn library.................................

Figure 6.58: Artificial neuron network visualization [Sap19]

This method is called a Stochastic Gradient Descent (SGD). In the forward
pass, the fraction of data is directly introduced at the input and is multiplied
by weights and added together with biases at each layer until the output is
computed. After this, the total loss of such a network is computed as the
difference between the ground truth and the output. This loss is later used in
the last step, when it propagates backwards through the network (one layer
at a time). During this, weights are updated proportional to the error. This
whole process is often referred to as an epoch.

6.10.2 Parameters

For both PCA and Truncated SVD dimension reductions the score and time
was compared. Truncated SVD was the winner, with 50 components and 72
components in the case of an observed channel: see Table 6.11 for the results.

In the case of the MLPC, many parameters can be tuned. Some have
a smaller impact on the performance, and others a bigger impact, and
some even have none. Between these parameters are: ’momentum’, ’nes-
terovs_momentum’, ’max_fun’, and ’power_t’. None of these were tuned
as they are parameters for a different solver than the used ’adam’ (Adaptive
Movement Estimation - an advanced type of SGD). Several others parameters
were also not tuned for many reasons. The ’shuffle’, ’random_state’, and
’warm_start’, were left as default, as they were already set properly. The last
parameter which was not tuned was ’validation_fraction’. This parameter is
related to early stopping behaviour and denotes how much of the training
data should be reserved for validation. After observing early stopping, it was
decided that it should be kept turned-off to maximize the performance event
at the cost of more computational time. One more parameter which was
tuned, but is only active when early stopping is active as well, is denoted by
an asterisk in Table 6.12 and its tuned value was not used for later tuning.

80

........................... 6.10. Multi-Layer Perceptron Classifier

algorithm parameter search space best value best value (channel)

PCA n_components linspace(0.1, 0.9, 81) 0.89 0.8
Truncated SVD n_components range(2, 83, 1) 52 72

Table 6.11: List of tuned dimension reduction algorithms for MLPC with results

parameter definition search space best value best value (channel)

hidden_layer_sizes the number of neurons in the i-th hidden layer Table 6.13 (100, 100,) (25, 50, 100, 50, 25,)
activation activation function for the hidden layer [’identity’, ’logistic’, ’tanh’, ’relu’] ’relu’ ’relu’
solver the solver for weight optimization [’lbfgs’, ’sgd’, ’adam’] ’adam’ ’adam’
alpha L2 penalty (regularization term) parameter logspace(-12, 0, 13) 1e-6 1e-12
batch_size size of minibatches for stochastic optimizers range(100, 401, 25) 200 225
learning_rate learning rate schedule for weight updates [’constant’, ’invscaling’, ’adaptive’] ’constant’ ’constant’
learning_rate_init the initial learning rate used logspace(-6, 0, 7) 1e-3 1e-3
max_iter maximum number of iterations (epochs) range(100, 401, 25) 250 100
tol tolerance for the optimization logspace(-8, -2, 7) 1e-4 1e-4
beta_1 exponential decay rate for estimates of first moment vector in adam linspace(0.8, 0.99, 20) 0.99 0.85
beta_2 exponential decay rate for estimates of second moment vector in adam linspace(0.9, 0.999, 10) 0.965 0.91
epsilon value for numerical stability in adam logspace(-12, -4, 9) 1e-11 1e-8
early_stopping whether to use early stopping to terminate training when validation score is not improving [’False’, ’True’] ’False’ ’False’
n_iter_no_change maximum number of epochs to not meet tol improvement (requires early_stopping) range(10, 100, 10) 40* 80*

Table 6.12: List of tuned parameters of MLPC with results

The parameter ’hidden_layer_sizes’ turned out to be very complicated to
tune. As a value, a 2D array of numbers can be passed. Several values were
randomly tested to acknowledge the direction of further changes. Surprisingly,
the performance did not increase with the addition of more hidden layers.
The best results were achieved with 2 layers, both containing 100 perceptrons.

Training results for the classifier with the default and tuned parameters
are shown in Figures 6.59 and 6.60 respectively.

Channel

In the case of channel, Table 6.12 contains the tuning results as well. Figure
6.61 contains characteristics for the model with the default parameters, and
Figure 6.62 for the model with the tuned parameters. And in Figure 6.63,
the performance of the classifier trained on 80% of full-data and tested on
channel-data is shown.

81

6. The Scikit-learn library.................................

tuning number hidden_layer_sizes

0 (100,)
1 (100, 100,)
2 (100, 200, 100,)
3 (100, 200, 200, 100,)
4 (100, 200, 300, 200, 100,)
5 (100,)
6 (50, 100,)
7 (50, 100, 50,)
8 (50, 100, 100, 50,)
9 (25, 50, 100, 50, 25,)
10 (200,)
11 (200, 50,)
12 (50, 200,)
13 (200, 100,)
14 (100, 200,)
15 (300,)
16 (400,)

Table 6.13: List of tuned values for ’hidden_layer_sizes’ parameter

(a) : Training results (b) : Test results

Figure 6.59: Performance of MLPC with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.60: Performance of MLPC with tuned parameters

82

........................... 6.10. Multi-Layer Perceptron Classifier

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.61: Performance of MLPC (channel) with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.62: Performance of MLPC (channel) with tuned parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.63: Performance of MLPC with tuned parameters, trained on 80% of
full-data and tested on 80% and 20% of channel-data

83

6. The Scikit-learn library.................................

(a): (b):

Figure 6.64: Performance of MLPC with tuned parameters, tested on a) older
mc16d b) newer mc16a & mc16d data

6.10.3 Additional tests

In the case of additional tests, shown in Figure 6.64, once again no large
deviations were observed compared to the results on the default test set
(Figure 6.60). For the newer set containing both mc16a and mc16d, the
results were the same. For the older set with only mc16d, little improvement
in tt̄W classification was observed.

6.10.4 Working Point

Significance maximization

The optimal value of the threshold, in order to maximize the significance,
was found to be 0.16. This value yielded a score of 1.586. Due to this, the
MLPC became the new leading classifiers with the best score. Significance,
efficiencies, and S, B parameter plots are shown in Figures 6.65 and 6.66.

Sensitivity maximization

For the second type of tuning, a threshold of value of 0.4 was found to be
optimal and maximized the sensitivity to the value of 0.692. In Figure 6.68
both tuning plot and confusion matrix are shown.

84

........................... 6.10. Multi-Layer Perceptron Classifier

Figure 6.65: Dependence of significance on the threshold, vertical lines denote
maximums

(a) : Efficiencies (b) : Expected number of events

Figure 6.66: Dependences of a) the efficiencies, b) the expected number of events
on the threshold, vertical lines denote values for found threshold

6.10.5 Conclusion

The MLPC was shown to be the most effective classifier of all which were
tested. As an elementary ANN it served as a good demonstration of the
power these tools have and proved that it requires more complex algorithms
to achieve higher classification scores on our data. In the future, with enough
time, other types of ANN could also be tested: such as a Convolutional
Neural Network (CNN), a Deep Neural Network (DNN), a Recurrent Neural
Network (RNN), and many others.

85

6. The Scikit-learn library.................................

(a): (b):

Figure 6.67: Confusion matrices for a) default decision and b) significance
maximization decision function for the tuned classifier performing on the newer
data

(a): (b):

Figure 6.68: a) parameters dependence on the threshold and b) confusion matrix
for the WP maximizing sensitivity for a given value of FDR for the tuned classifier
performing on the newer data

86

............................... 6.11. Support Vector Classifier

Figure 6.69: Binary classification problem solved by Support Vector Machine
[Was19]

6.11 Support Vector Classifier

6.11.1 Introduction

The Support Vector Machine (SVM), or the Support Vector Classifier (SVC)
in the case of classification, is a very powerful and popular machine learning
algorithm. However, it can only be used for supervised learning. A key
element of every SVM, as the name denotes, is the support vectors which are
the datapoints (events) closest to the separation hyperplane. The hyperplane
itself is defined using these vectors and is taken as a decision boundary between
the classes. A margin is introduced to fine-tune this boundary. The centering
of the hyperplane between the closest datapoints of each class is desired. A
good margin not only increases the separation power, it also reduces the
number of wrong classifications and is often called the Maximum Marginal
Hyperplane (MMH). In Figure 6.69 a binary classification 2D problem solution
by the SVM, with all previously mentioned terms, is demonstrated.

Another important element which allows the rapid developments of the
SVM is a kernel trick, in which the kernel function maps low dimensional
space and transforms it into high dimensional space. This allows the SVM to
transform non-separable problems into separable problems and solve them
very efficiently. At a later stage, the most famous kernel functions (such as
linear, poly, rbf, and sigmoid) were tuned.

However, there is a large problem with the SVM: the length of training
time. Training it is a quadratic programming problem and it was proven in
[Cha06] to be equal to O(max(n, d)min(n, d)2), where n is the number of
datapoints (events) and d is the number of dimensions (features).

87

6. The Scikit-learn library.................................
parameter definition search space best value best value (channel)

kernel kernel type used in the algorithm [’linear’, ’poly’, ’rbf’, ’sigmoid’] ’rbf’
C regularization parameter [logspace(-5, 0, 6), range(1, 41, 1) 7
gamma kernel coefficient logspace(-20, 0, 21) 1e-2
tol tolerance for stopping criterion logspace(-6, 0, 7) 1e-2
shrinking whether to use the shrinking heuristic [False, True] True*
break_ties wheather ’predict’ method will break ties according to the confidence values of decision function [False, True] False*

Table 6.14: List of tuned parameters of SVC with results

(a) : Training results (b) : Test results

Figure 6.70: Performance of SVC with default parameters

To reduce the training time but still present a large amount of training data,
a new wrapper called a bagging classifier (sklearn.ensemble.BaggingClassifier)
was introduced. Similar to any other ensemble classifier, it takes a specified
number of weak classifiers and trains each of them on a fraction of the data,
usually adequately divided. This allows the parallelization of training which
therefore allows the ensemble to learn on more data in the training time of
an individual classifier. The bagging classifier itself does not provide any
supervision over the ensemble and only collects final votes from it. Such an
approach allows an easy tuning of the underlying classifiers. Experimentally,
the number of SVC classifiers used inside the bagging classifier was set to 10.

Later the training data was additionally shrunk to contain up to approxi-
mately 100,000 events (10% of the older mc16a data). This was mainly done
to increase training speed due to the short time limit left for the SVC tuning
task. Other dimension reductions, such as PCA or Truncated SVD were
discarded as n >> d.

6.11.2 Parameters

For SVC implementation in the scikit-learn library there are just a few
parameters which require tuning. However, their importance is great. The
’kernel’ parameter sets the kernel function. To be able to tell how much

88

............................... 6.11. Support Vector Classifier

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.71: Performance of SVC with tuned parameters

misclassification is penalized, a regularization parameter ’C’ can be used.
And to describe the reach of the influences of a single datapoint, parameter
’gamma’ can be tuned. The ’tol’ parameter (also called cost) describes the
tolerance of wrong classification. The behaviour of the predict method in
the case of ’ovr’ (one vs the rest) classification can be set by specifying the
’break_ties’ parameter. If true, the predict method will break ties according
to the confidence values of the decision function. The shrinking heuristic
which speeds up the optimization can be turned on or off by specifying the
parameter ’shrinking’. This sometimes helped, and sometimes did not, and
therefore this parameter was also tuned.

Some parameters were directly changed without tuning as the optimal
value was known in advance, including the ’class_weight’ which was set to
apriori probabilities (5.2). The ’probability’ parameter was set to True, since
WP tuning requires posteriori probabilities. Lastly, several parameters were
left as their default. The first, ’decision_function_shape’ allows us to specify
how the multiclass classification will be handled. The default value of ’ovr’
was what we desired. Two other parameters, ’degree’ and ’coef0’, were related
to a different kernel function than the Radial Basis Function (RBF), which
achieved the highest score of all kernel functions. The last parameter not
tuned was the ’random_state’, which, as usual, was left to be set to a random
function of the NumPy library.

The training and test results for the SVC with default parameters are
shown in Figure 6.70. Table 6.14 shows the results of the tuning and in Figure
6.71, the results of the SVC with tuned parameters can be seen.

89

6. The Scikit-learn library.................................

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.72: Performance of SVC (channel) with default parameters

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.73: Performance of SVC (channel) with tuned parameters

Channel

In the case of the channel, the same data as the other classifiers was used, as
only 6,729 events were present and reducing this number was not necessary.
Table 6.14 contains the results and in Figures 6.72 and 6.73 the scores and
ROC for the default and tuned channel models are shown respectively. Figure
6.74 shows the evaluation of the performance of the classifier trained on 10%
of the full-data and tested on the channel-data.

6.11.3 Additional tests

For two additional testing sets: the older mc16d and the newer mc16a &
mc16d, improvements were observed in both cases. The results are shown in

90

............................... 6.11. Support Vector Classifier

(a) : Training (80%) results (b) : Test (20%) results

Figure 6.74: Performance of SVC with tuned parameters, trained on 10% of
full-data and tested on 80% and 20% of channel-data

(a): (b):

Figure 6.75: Performance of SVC with tuned parameters, tested on a) older
mc16d b) newer mc16a & mc16d data

Figure 6.75 and were compared with results from Figure 6.71 (b)).

6.11.4 Working Point

Significance maximization

A threshold value of 0.14 was found to maximize the simplified significance
to a value of 1.524, which is a good score. However, there are two other
classifiers, RFC and MLPC, which performed better. For the tuning please
refer to Figures 6.65 and 6.66.

91

6. The Scikit-learn library.................................

Figure 6.76: Dependence of significance on the threshold, vertical lines denote
maximums

(a) : Efficiencies (b) : Expected number of events

Figure 6.77: Dependences of a) the efficiencies, b) the expected number of events
on the threshold, vertical lines denote values for found threshold

Sensitivity maximization

In the second type of tuning, a threshold value of 0.41 was found to maximize
the sensitivity to 0.655 at a given FDR. The results are shown in Figure 6.79.

6.11.5 Conclusion

The SVC performed fairly: only two other classifiers achieved higher scores.
The performance could probably be boosted by adding more classifiers inside
an ensemble or training on data with more events. However, this would mean
very long training times. In the case of the SVC, the number of events in
the full-data training set was reduced. After this reduction, the data was
roughly equal to the channel-data multiplied by ten. Observing results for

92

............................... 6.11. Support Vector Classifier

(a): (b):

Figure 6.78: Confusion matrices for a) default decision and b) significance
maximization decision function for the tuned classifier performing on the newer
data

both reduced full-data and channel-data trained models, it is clear that the
number of events is not the cause of a channel not performing well. It is
probably the ’is2LSS1Tau’ cut itself, dropping important information in the
channel-data.

93

6. The Scikit-learn library.................................

(a): (b):

Figure 6.79: a) parameters dependence on the threshold and b) confusion matrix
for the WP maximizing sensitivity for a given value of FDR for the tuned classifier
performing on the newer data

94

Chapter 7

Real data

During the final weeks, real data was obtained to evaluate the performance of
the tuned classifiers. Table B.6 in the Appendices contains more information
about used files. Appendix C.1.2 can be viewed for histograms of the data
and can be compared with Appendix C.1.1, where the histograms of the
training data are shown.

All classifiers were tested and their results compared. In Figure 7.1 the
predictions of each classifier are listed in the form of 1D heat maps, where
light blue denotes the tt̄H, orange tt̄W , and green tt̄Z classes. Figure 7.2
shows the individual results in the form of bar graphs.

Most classifiers found a very small amount of background. Only the GBC
was more sceptical and classified many events as background. Whether or not
this is correct can be decided using the classifier with the highest significance
score for the test data, the MLPC, as a reference to evaluate the remaining
classifiers. The MLPC detected only a few background events, and thus
the GBC results are wrong. A second determining method is to use those
classifiers which have approximately the same predictions. From Figure 7.1,
two groups can be seen: one which predicts all events belonging to a signal
(KNC, GNB, and SVC); and the other which has some identical predictions
for background (RFC, ADA, and MLPC). The GBC does not share prediction
results with any of these classifiers, and therefore its results are wrong.

No more experiments were carried out with real-data. Their purpose was
mainly to demonstrate the capabilities of individual classifiers and to observe
whether they will make the same predictions. The lack of ground-truth labels

95

7. Real data

Figure 7.1: Overview of individual real-data predictions

prevents any score computation or ROC plot evaluation.

Figure 7.2: Individual real-data predictions

96

....................................... 7. Real data

Figure 7.2: Individual real-data predictions

97

98

Chapter 8

Additional Changes

8.1 Cheating

Several additional changes were made in the final weeks, the first of which
was triggered by the discovery of ’cheating’. As described at the beginning of
the thesis, such a term is used for features which are only available for simu-
lation data or, more precisely, which are related only to simulations. Namely:
’lep_isPrompt_0’, lep_isPrompt_1’, lep_isPrompt_2”lep_isQMisID_0’,
’lep_isQMisID_1, and ’lep_isQMisID_2’. They were all removed in con-
version scripts and new files were generated, with only 77 features listed in
Table B.2. Any converted files containing the reduced number of features are
denoted by the suffix ’new’.

8.2 New data training

Another change was introduced into the training process. Before the change,
the older mc16a data set was used, but it was explained later that any
newer sets of simulated data would surpass the previous one. Therefore,
it is desirable both to train and evaluate on the newest data set as the
older data would be contained along with the new. The use of both mc16a
and mc16d sets was also recommended by my supervisors. All classifiers
were re-trained on 80% of the newer data and tested on 20% respectively.

99

8. Additional Changes
The working point was retuned based on this new test split. However, the
parameters of the classifiers were not retuned due to the short time limit.
In the following subsections, the ROC plots, together with the significance
tuning and confusion matrices are shown for each classifier. The significance
score was improved in many cases. However, the testing and computation
was newly done on only 20% of newer data, instead of the previous 100%.
This was due to the classifiers being trained on this set as well, taking the
remaining 80% for training.

In the previous experiments, full-data models significantly outperformed
channel-data models during training, and so in this case the training and
tests were performed only on full-datasets (the newer mc16a & mc16d set).

100

.................................. 8.2. New data training

(a) : Training (80%) re-
sults

(b) : Test (20%) results (c) : Confusion Matrix
for selected Threshold

Figure 8.1: Performance of newly trained RFC

(a): (b): (c):

Figure 8.2: Dependences of a) the significance, b) the efficiencies, c) the ex-
pected number of events on the threshold, vertical lines denote values for found
threshold

8.2.1 RFC

In the case of the RFC, the score was drastically improved: from 1.576 (Figure
6.11) to 1.668. This was a result of both background efficiencies being reduced
while signal efficiency still being high.

101

8. Additional Changes

(a) : Training (80%) re-
sults

(b) : Test (20%) results (c) : Confusion Matrix
for selected Threshold

Figure 8.3: Performance of newly trained KNC

(a): (b): (c):

Figure 8.4: Dependences of a) the significance, b) the efficiencies, c) the ex-
pected number of events on the threshold, vertical lines denote values for found
threshold

8.2.2 KNC

A small improvement was also observed for the KNC. From 1.51 (Figure 6.22),
the significance increased to 1.521. The efficiency of the tt̄W background
was still too high to achieve higher scores. However, after re-training, for an
optimal working point which maximizes the significance, the efficiency of the
background was no longer greater than that of the signal.

102

.................................. 8.2. New data training

(a) : Training (80%) re-
sults

(b) : Test (20%) results (c) : Confusion Matrix
for selected Threshold

Figure 8.5: Performance of newly trained GNB

(a): (b): (c):

Figure 8.6: Dependences of a) the significance, b) the efficiencies, c) the ex-
pected number of events on the threshold, vertical lines denote values for found
threshold

8.2.3 GNB

In the case of the GNB, no change was observed. This elementary classification
method again classified every single event into the tt̄H class.

103

8. Additional Changes

(a) : Training (80%) re-
sults

(b) : Test (20%) results (c) : Confusion Matrix
for selected Threshold

Figure 8.7: Performance of newly trained ADA

(a): (b): (c):

Figure 8.8: Dependences of a) the significance, b) the efficiencies, c) the ex-
pected number of events on the threshold, vertical lines denote values for found
threshold

8.2.4 ADA

A small increase from 1.508 (Figure 6.43) to 1.553 ’was observed for the ADA,
although the original rectangular wave shape is retained.

104

.................................. 8.2. New data training

(a) : Training (80%) re-
sults

(b) : Test (20%) results (c) : Confusion Matrix
for selected Threshold

Figure 8.9: Performance of newly trained GBC

(a): (b): (c):

Figure 8.10: Dependences of a) the significance, b) the efficiencies, c) the
expected number of events on the threshold, vertical lines denote values for found
threshold

8.2.5 GBC

One of the biggest score increases was observed for the GBC. From its original
1.499 (Figure 6.53) it leapt to 1.655. The reasons for this improvement are
again due to the suppression of background efficiencies while keeping a high
efficiency for signal.

105

8. Additional Changes

(a) : Training (80%) re-
sults

(b) : Test (20%) results (c) : Confusion Matrix
for selected Threshold

Figure 8.11: Performance of newly trained MLPC

(a): (b): (c):

Figure 8.12: Dependences of a) the significance, b) the efficiencies, c) the
expected number of events on the threshold, vertical lines denote values for found
threshold

8.2.6 MLPC

The biggest score increase was achieved for the MLPC. From a previously
obtained 1.586 (Figure 6.65) a jump to an astonishing 1.756 was made. Both
background efficiencies were reduced to below 0.4, while keeping the signal
efficiency higher than 0.9. This was a new record and the best performance
achieved.

106

.................................. 8.2. New data training

(a) : Training (80%) re-
sults

(b) : Test (20%) results (c) : Confusion Matrix
for selected Threshold

Figure 8.13: Performance of newly trained SVC

(a): (b): (c):

Figure 8.14: Dependences of a) the significance, b) the efficiencies, c) the
expected number of events on the threshold, vertical lines denote values for found
threshold

8.2.7 SVC

A small increase in the significance score from 1.524 (Figure 6.76) to 1.567
was also observed for the SVC. The main reason for such a small improvement
is likely due to the amount of training data, which in the case of the SVC
was again reduced to only 10%. Increasing the number of training events
up to 80% to be equal with other classifiers would certainly produce better
results. However, as mentioned earlier, the length of time taken by the SVC
is dependent on the amount of data as O(max(n, d)min(n, d)2), where n is
the number of events and d is the number of dimensions.

8.2.8 Summary

In Table 8.1 the old and new significance scores are listed for each of the
classifiers. An improvement was achieved in almost all cases except the GNB.
The highest was obtained for the MLPC, and the lowest for the KNC.

107

8. Additional Changes
classifier old score new score difference

RFC 1.576 1.668 0.092
KNC 1.51 1.521 0.011
GNB 1.487 1.487 0
ADA 1.508 1.553 0.045
GBC 1.499 1.655 0.156
MLPC 1.586 1.756 0.17
SVC 1.524 1.567 0.043

Table 8.1: List of classifiers and their significance scores

Figure 8.15: Overview of individual real-data predictions of newly trained
classifiers

8.2.9 Real data

With newly trained classifiers, the performance on the real data was observed
again. An increase in the number of tt̄W class predictions was detected
and is shown in Figures 8.15 and 8.16, although the MLPC and the KNC
predictions were almost identical with previously obtained predictions for the
old models (Figure 7.1, 7.2). Using the MLPC as a reference to evaluate the
remaining classifiers, it can be seen that the results of the RFC, ADA, and
GBC classifiers are wrong. Looking at the new figures, three groups were
formed: one which predicts that all events belong to signal (GNB and SVC);
one which predicts only a little background would be present (MLPC and
KNC); and a third which predicts a lot of background in the data (RFC,
ADA, and GBC). There is no way to determine which classifier (or group)
performed the best on real data.

108

................................. 8.3. Feature importances

Figure 8.16: Individual real-data predictions of newly trained classifiers

8.3 Feature importances

The feature importances were also updated. In Figure 6.9, the newly discov-
ered cheating features were present, and so its veracity is questionable. In
Figure 8.17, the new importances are shown.

ID name deffinition

13 best_Z_Mll smallest mass difference between Z mass and invariant mass of lepton pair
5 Mll01 invariant mass of lepton pair (leading and subleading)
11 Mlll012 invariant mass of leptons (leading, subleading, and sub-subleading)
4 MV2c10_70_EventWeight tau isolation
6 Mll02 invariant mass of leptons (leading and sub-subleading)
52 nJets_OR number of jets
8 MLL12
54 nJets_OR_T number of jets after overlab removal
0 DRll01 special distance of jet and lepton
55 nJets_OR_T_MV2c10_70
31 lep_Pt_2 transverse momentum of sub-subleading lepton
53 nJets_OR_MV2c10_70
71 total_charge
50 lep_promptLeptonVeto_TagWeight_0 prompt lepton veto
75 HT_lep sum of transverse momentum of all leptons

Table 8.2: List of the most important features with descriptions for newly
trained RFC

Compared to Figure 6.9, no large change was observed. Feature ID 13
(best_Z_Mll) once again achieved the highest importance. Between the first
five, a new feature with ID 4 is seen (MV2c10_70_EventWeight) which in the
previous test had a much smaller importance. Due to the additional removal
of several simulation-only related features, the numbers shifted a little. Table
B.2 can be referred to for updated IDs. In Table 8.2, the most important
features are again listed with definitions.

109

8. Additional Changes

Figure 8.16: Individual real-data predictions of newly trained classifiers

Figure 8.17: Feature importances of newly trained RFC

8.4 tt̄Z weighting

Another action which took place during the final weeks was a presentation
regarding our progress at a weekly CERN tt̄H collaboration meeting. From
this meeting, very valuable feedback was received. There was a suggestion to
use individual weights for the tt̄Z backgrounds, not an overall weight as we
currently do. The weight is defined as the ratio of the total number of tt̄Z
events divided by the total number of expected tt̄Z events. The suggestion
was regarding using different weights for each of the tt̄Z decay mode: in
our case there are five in total. There should be a separate weight for each
of them. This last suggestion was not implemented due both to the short
time limit and not having enough information about the individual tt̄Z decay
modes.

110

Chapter 9

Conclusion

The original goal was to test XGBoost, TensorFlow, and other libraries
alongside Scikit-learn. However, the tuning process took a significant portion
of the allocated time for this project, and therefore only one library with
seven classifiers was demonstrated.

As mentioned earlier, Automatic Machine Learning (AML) was proposed
to fine-tune the parameters of the classifiers, after the parameter search space
is reduced. Sadly there was no time for the implementation of AML libraries,
such as Auto-sklearn or Neuraxle. Keeping in mind the training and predict
times of the classifiers, such an automated process would require a vast
number of computation machines. It is questionable whether this would be
the right approach, or whether trying other classifiers (such as Convolutional
Neural Networks (CNN)) would be a more lucrative option.

However, despite being lighter than the original plan, this thesis brought
forward some new discoveries. The major one being the effectiveness (or,
rather, the ineffectiveness) of the ’is2LSS1Tau’ cut for obtaining channel-data.
Models trained on the full-data significantly surpassed the channel trained
model. Another interesting discovery was related to efficiencies: as shown in
the case of the KNC and its WP tuning, the best significance was achieved
with signal efficiency being lower than the background. Lastly an evaluation
of several classifiers revealed the most powerful for a given problem. Further
work with the RFC and the MLPC is reccomended, as their performances
were astonishing with regards to both the score and time.

To conclude I would like to say a few words about the thesis in general. The

111

9. Conclusion......................................
time given for this task was roughly ten months, the first few of which were
dedicated to understanding the basics of particle physics. During this time,
many articles were read and many meetings with the supervisors were held.
The output of the first five months were several reports, demonstrating the
successful conversion from root format as well as the first ML attempts. In the
second half of the devoted time, classifiers were studied in detail and the most
prospective were selected for training. At that moment, the dimensionality
of the data became a problem. Decomposition methods were studied and
two of them (PCA and Truncated SVD) were further observed for several
classifiers with dimensionality problems.

Also, during this time, strict measures were accepted by nearly the entire
world to prevent a newly discovered virus from spreading. Personal meetings
became impossible, and were partially replaced by online contact although
the frequency significantly decreased. A major part of the blame for the
cancellation of many of the original goals for this thesis can be placed on my
own mental heath and productivity during this crisis. For a person having
many relatives on the other side of the world, a country-wide lockdown with
no lift-date was a big uncertainty in my life. Being the only person working
on this thesis, there was no additional push from collaborators, and so my
productivity decreased and the time limit grew nearer. For me, this was a
time of discovery regarding my personality and inability to work alone: during
my student life I have had many projects and internships which ended well. I
now know that this was due, in part, to the pressure and accountability from
colleagues, working in great teams, and the knowledge that I was not alone.
I hope that this thesis can serve as a basis for future research and that these
new discoveries will prove correct and important.

112

113

9. Conclusion......................................

Appendices

114

Appendix A

Computations

A.1 Significance computation example

The following classification results in the form of a Confusion Matrix in Figure
A.1 as a result of sensitivity maximization (RFC). The efficiencies can be
computed (using Eq. 3.7 and 3.8) as:

εtt̄H = TP

TP +
∑
i∈(tt̄W,tt̄Z) FNi

= CM [0][0]∑
CM [0][:] = 667366

667366 + 14366 + 38746 ≈ 0.9263

(A.1)

εtt̄W = FPtt̄W
FPtt̄W +

∑
j∈(tt̄W,tt̄Z) TNtt̄W,j

= CM [1][0]∑
CM [1][:] = 315213

315213 + 59220 + 4012 ≈ 0.8329

(A.2)

εtt̄Z = FPtt̄Z
FPtt̄Z +

∑
j∈(tt̄W,tt̄Z) TNtt̄Z,j

= CM [2][0]∑
CM [2][:] = 408908

408908 + 24685 + 661943 ≈ 0.3732

(A.3)

115

A. Computations

Figure A.1: Example of 3-class classification results, tt̄H class is expressed as 0,
tt̄W as 1 and tt̄Z as 2

For comparison with existing results, the weighting factors can be computed
from [Col19b], Table 152, using Eq. 3.5 and the number of events from Table
B.5 as:

ωtt̄H = 1
7674

5.5650
= 1

1378.9757 (A.4)

ωtt̄W = 1
1178

4.9338
= 1

238.7612 (A.5)

ωtt̄Z = 1
4253

3.9677
= 1

1071.9056 (A.6)

From table 152, Bother can also be computed as the sum of the rest of the
expected background events:

116

........................... A.1. Significance computation example

Bother = Btt̄bar+Btt̄γ+BV V +Brare = 1.7113+0.2165+0.7311+2.4493 = 5.1082
(A.7)

With this knowledge, a substitution to a simplified form of Eq. 3.7 and 3.8
is possible. The final number of expected events are:

S = NttW · ωttH · εttH = 7674 · 1
1378.9757 · 0.9263 ≈ 5.1549, (A.8)

for signal, and:

B =
∑

i∈(ttW,ttZ)
Ni·ωi·εi+Bother = 1178· 1

238.7612 ·0.8329+4253· 1
1071.9056 ·0.3732+5.1082 ≈ 10.6983,

(A.9)

for the background.

Significance approximation in its simplified form (Eq. 3.2) is therefore:

significance = S√
B

= 5.1549√
10.6983

≈ 1.576. (A.10)

This is an improvement, compared to 1.487 in [Col19b].

117

118

Appendix B

Tables

B.1 Data

119

B. Tables

ID name ID name

0 DRll01 42 lep_isPrompt_0
1 DRll12 43 lep_isPrompt_1
2 MET_RefFinal_et 44 lep_isPrompt_2
3 MET_RefFinal_phi 45 lep_isQMisID_0
4 MV2c10_70_EventWeight 46 lep_isQMisID_1
5 Mll01 47 lep_isQMisID_2
6 Mll02 48 lep_isTightLH_0
7 Mll03 49 lep_isTightLH_1
8 Mll12 50 lep_isTightLH_2
9 Mll13 51 lep_isolationFixedCutLoose_0
10 Mll23 52 lep_isolationFixedCutLoose_1
11 Mlll012 53 lep_isolationFixedCutLoose_2
12 Mllll0123 54 lep_isolationFixedCutLoose_3
13 best_Z_Mll 55 lep_promptLeptonVeto_TagWeight_0
14 dilep_type 56 lep_promptLeptonVeto_TagWeight_1
15 lep_Eta_0 57 lep_promptLeptonVeto_TagWeight_2
16 lep_Eta_1 58 nJets_OR
17 lep_Eta_2 59 nJets_OR_MV2c10_70
18 lep_ID_0 60 nJets_OR_T
19 lep_ID_1 61 nJets_OR_T_MV2c10_70
20 lep_ID_2 62 nTaus_OR_Pt25
21 lep_ID_2_new 63 tau_MV2c10_0
22 lep_ID_3 64 tau_btag70_0
23 lep_Mtrktrk_atConvV_CO_0 65 tau_btag70_1
24 lep_Mtrktrk_atConvV_CO_1 66 tau_charge_0
25 lep_Mtrktrk_atConvV_CO_2 67 tau_charge_1
26 lep_Mtrktrk_atPV_CO_0 68 tau_fromPV_0
27 lep_Mtrktrk_atPV_CO_1 69 tau_passEleBDT_0
28 lep_Mtrktrk_atPV_CO_2 70 tau_passEleBDT_1
29 lep_Pt_0 71 tau_passMuonOLR_0
30 lep_Pt_1 72 tau_passMuonOLR_1
31 lep_Pt_2 73 tau_tagWeightBin_0
32 lep_RadiusCO_0 74 tau_tagWeightBin_1
33 lep_RadiusCO_1 75 tau_tight_0
34 lep_RadiusCO_2 76 tau_tight_1
35 lep_chargeIDBDTTight_0 77 total_charge
36 lep_chargeIDBDTTight_1 78 trilep_type
37 lep_chargeIDBDTTight_2 79 total_leptons
38 lep_flavour 80 HT
39 lep_isMedium_0 81 HT_lep
40 lep_isMedium_1 82 HT_jets
41 lep_isMedium_2

Table B.1: List of used features

120

.. B.1. Data

ID name ID name

0 DRll01 39 lep_isMedium_0
1 DRll12 40 lep_isMedium_1
2 MET_RefFinal_et 41 lep_isMedium_2
3 MET_RefFinal_phi 42 lep_isTightLH_0
4 MV2c10_70_EventWeight 43 lep_isTightLH_1
5 Mll01 44 lep_isTightLH_2
6 Mll02 45 lep_isolationFixedCutLoose_0
7 Mll03 46 lep_isolationFixedCutLoose_1
8 Mll12 47 lep_isolationFixedCutLoose_2
9 Mll13 48 lep_isolationFixedCutLoose_3
10 Mll23 49 lep_promptLeptonVeto_TagWeight_0
11 Mlll012 50 lep_promptLeptonVeto_TagWeight_1
12 Mllll0123 51 lep_promptLeptonVeto_TagWeight_2
13 best_Z_Mll 52 nJets_OR
14 dilep_type 53 nJets_OR_MV2c10_70
15 lep_Eta_0 54 nJets_OR_T
16 lep_Eta_1 55 nJets_OR_T_MV2c10_70
17 lep_Eta_2 56 nTaus_OR_Pt25
18 lep_ID_0 57 tau_MV2c10_0
19 lep_ID_1 58 tau_btag70_0
20 lep_ID_2 59 tau_btag70_1
21 lep_ID_2_new 60 tau_charge_0
22 lep_ID_3 61 tau_charge_1
23 lep_Mtrktrk_atConvV_CO_0 62 tau_fromPV_0
24 lep_Mtrktrk_atConvV_CO_1 63 tau_passEleBDT_0
25 lep_Mtrktrk_atConvV_CO_2 64 tau_passEleBDT_1
26 lep_Mtrktrk_atPV_CO_0 65 tau_passMuonOLR_0
27 lep_Mtrktrk_atPV_CO_1 66 tau_passMuonOLR_1
28 lep_Mtrktrk_atPV_CO_2 67 tau_tagWeightBin_0
29 lep_Pt_0 68 tau_tagWeightBin_1
30 lep_Pt_1 69 tau_tight_0
31 lep_Pt_2 70 tau_tight_1
32 lep_RadiusCO_0 71 total_charge
33 lep_RadiusCO_1 72 trilep_type
34 lep_RadiusCO_2 73 total_leptons
35 lep_chargeIDBDTTight_0 74 HT
36 lep_chargeIDBDTTight_1 75 HT_lep
37 lep_chargeIDBDTTight_2 76 HT_jets
38 lep_flavour

Table B.2: List of features after removing additional ’simulation-only related’
features

121

B. Tables

folder file ID events 2LSS1Tau events

mc16a/older 345672 2,211 tt̄H 2 tt̄H
mc16a/older 345673 99,790 tt̄H 1,729 tt̄H
mc16a/older 345674 255,663 tt̄H 2,113 tt̄H
mc16a/older 410155 163,406 tt̄W 684 tt̄W
mc16a/older 410156 1,333 tt̄Z 0 tt̄Z
mc16a/older 410157 4,713 tt̄Z 1 tt̄Z
mc16a/older 410218 244,768 tt̄Z 550 tt̄Z
mc16a/older 410219 286,557 tt̄Z 379 tt̄Z
mc16a/older 410220 34,675 tt̄Z 1,271 tt̄Z

total 357,664 tt̄H 3,844 tt̄H
163,406 tt̄W 684 tt̄W
572,046 tt̄Z 2,201 tt̄Z

Table B.3: List of root files used for training (80%) and testing (20%) splits -
older data set (mc16a)

folder file ID events 2LSS1Tau events

mc16d/older 345672 2,531 tt̄H 3 tt̄H
mc16d/older 410155 155,594 tt̄W 680 tt̄W
mc16d/older 410156 1,178 tt̄Z 0 tt̄Z
mc16d/older 410157 4,234 tt̄Z 2 tt̄Z
mc16d/older 410218 216,848 tt̄Z 586 tt̄Z
mc16d/older 410219 266,987 tt̄Z 342 tt̄Z
mc16d/older 410220 31,243 tt̄Z 1,122 tt̄Z

total 2,531 tt̄H 3 tt̄H
155,594 tt̄W 680 tt̄W
520,490 tt̄Z 2,052 tt̄Z

Table B.4: List of root files used for additional testing - older data set (mc16d)

122

.. B.1. Data

folder file ID events 2LSS1Tau events

mc16a/newer 345873 2,315 tt̄H 3 tt̄H
mc16a/newer 345874 100,860 tt̄H 1,653 tt̄H
mc16a/newer 345875 257,064 tt̄H 2,181 tt̄H
mc16d/newer 345873 2,315 tt̄H 3 tt̄H
mc16d/newer 345874 100,860 tt̄H 1,653 tt̄H
mc16d/newer 345875 257,064 tt̄H 2,181 tt̄H
mc16a/newer 413008_wCharge 172,937 tt̄W 511 tt̄W
mc16d/newer 413008_wCharge 205,508 tt̄W 667 tt̄W
mc16a/older 410156 1,333 tt̄Z 0 tt̄Z
mc16a/older 410157 4,713 tt̄Z 1 tt̄Z
mc16a/older 410218 244,768 tt̄Z 550 tt̄Z
mc16a/older 410219 286,557 tt̄Z 379 tt̄Z
mc16a/older 410220 34,675 tt̄Z 1,271 tt̄Z
mc16d/older 410156 1,178 tt̄Z 0 tt̄Z
mc16d/older 410157 4,234 tt̄Z 2 tt̄Z
mc16d/older 410218 216,848 tt̄Z 586 tt̄Z
mc16d/older 410219 266,987 tt̄Z 342 tt̄Z
mc16d/older 410220 31,243 tt̄Z 1,122 tt̄Z

total 720,478 tt̄H 7,674 tt̄H
378,445 tt̄W 1,178 tt̄W
1,092,536 tt̄Z 4,253 tt̄Z

Table B.5: List of used root files for comparison (100%), re-training (80%),
and validation (20%) - newer data set containing older tt̄Z files (both mc16a &
mc16d)

folder file ID events 2LSS1Tau events

mc16a/real data15 3,286 1
mc16a/real data16 30,090 13
mc16d/real data17 35,788 9

total 69,164 23

Table B.6: List of used real data root files for testing

123

124

Appendix C

Figures

C.1 Data Histograms

C.1.1 Older mc16a set

Full-data

Figure C.1: Full-data histograms (older mc16a set)

125

C. Figures

Figure C.1: Full-data histograms (older mc16a set)

126

...................................C.1. Data Histograms

Figure C.1: Full-data histograms (older mc16a set)

127

C. Figures

Figure C.1: Full-data histograms (older mc16a set)

128

...................................C.1. Data Histograms

Figure C.1: Full-data histograms (older mc16a set)

129

C. Figures

Figure C.1: Full-data histograms (older mc16a set)

130

...................................C.1. Data Histograms

Figure C.1: Full-data histograms (older mc16a set)

131

C. Figures

Figure C.1: Full-data histograms (older mc16a set)

132

...................................C.1. Data Histograms

Figure C.1: Full-data histograms (older mc16a set)

133

C. Figures
Channel-data

Figure C.2: Channel-data histograms (older mc16a set)

134

...................................C.1. Data Histograms

Figure C.2: Channel-data histograms (older mc16a set)

135

C. Figures

Figure C.2: Channel-data histograms (older mc16a set)

136

...................................C.1. Data Histograms

Figure C.2: Channel-data histograms (older mc16a set)

137

C. Figures

Figure C.2: Channel-data histograms (older mc16a set)

138

...................................C.1. Data Histograms

Figure C.2: Channel-data histograms (older mc16a set)

139

C. Figures

Figure C.2: Channel-data histograms (older mc16a set)

140

...................................C.1. Data Histograms

Figure C.2: Channel-data histograms (older mc16a set)

141

C. Figures

Figure C.2: Channel-data histograms (older mc16a set)

142

...................................C.1. Data Histograms

C.1.2 Real mc16a & mc16d set

Figure C.3: Real-data histograms (mc16a & mc16d set)

143

C. Figures

Figure C.3: Real-data histograms (mc16a & mc16d set)

144

...................................C.1. Data Histograms

Figure C.3: Real-data histograms (mc16a & mc16d set)

145

C. Figures

Figure C.3: Real-data histograms (mc16a & mc16d set)

146

...................................C.1. Data Histograms

Figure C.3: Real-data histograms (mc16a & mc16d set)

147

C. Figures

Figure C.3: Real-data histograms (mc16a & mc16d set)

148

...................................C.1. Data Histograms

Figure C.3: Real-data histograms (mc16a & mc16d set)

149

C. Figures

Figure C.3: Real-data histograms (mc16a & mc16d set)

150

...................................C.1. Data Histograms

Figure C.3: Real-data histograms (mc16a & mc16d set)

151

C. Figures
C.2 Tuning

C.2.1 The Random Forest Classifier

Full-data model

(a) : Score results (b) : Time results

Figure C.4: n_estimators parameter tuning

(a) : Score results (b) : Time results

Figure C.5: max_depth parameter tuning

152

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.6: min_samples_split parameter tuning

(a) : Score results (b) : Time results

Figure C.7: max_features parameter tuning

(a) : Score results (b) : Time results

Figure C.8: max_leaf_nodes parameter tuning

153

C. Figures

(a) : Score results (b) : Time results

Figure C.9: min_impurity_decrease parameter tuning

(a) : Score results (b) : Time results

Figure C.10: ccp_alpha parameter tuning

(a) : Score results (b) : Time results

Figure C.11: max_samples parameter tuning

154

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.12: oob_score parameter tuning (0: False, 1: True)

(a) : Score results (b) : Time results

Figure C.13: criterion parameter tuning (0: ’gini’, 1: ’entropy’)

155

C. Figures
Channel-data model

(a) : Score results (b) : Time results

Figure C.14: n_estimators parameter tuning

(a) : Score results (b) : Time results

Figure C.15: max_depth parameter tuning

156

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.16: min_samples_split parameter tuning

(a) : Score results (b) : Time results

Figure C.17: max_features parameter tuning

(a) : Score results (b) : Time results

Figure C.18: max_leaf_nodes parameter tuning

157

C. Figures

(a) : Score results (b) : Time results

Figure C.19: min_impurity_decrease parameter tuning

(a) : Score results (b) : Time results

Figure C.20: ccp_alpha parameter tuning

(a) : Score results (b) : Time results

Figure C.21: max_samples parameter tuning

158

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.22: oob_score parameter tuning (0: False, 1: True)

(a) : Score results (b) : Time results

Figure C.23: criterion parameter tuning (0: ’gini’, 1: ’entropy’)

159

C. Figures
C.2.2 The K-Neighbors Classifier

Full-data model

(a) : Score results (b) : Time results

Figure C.24: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.25: n_components TSVD parameter tuning

160

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.26: n_neighbors parameter tuning

(a) : Score results (b) : Time results

Figure C.27: leaf_size parameter tuning

(a) : Score results (b) : Time results

Figure C.28: p parameter tuning

161

C. Figures

(a) : Score results (b) : Time results

Figure C.29: weights parameter tuning (0: ’uniform’, 1: ’distance’)

(a) : Score results (b) : Time results

Figure C.30: algorithm parameter tuning (0: ’auto’, 1: ’ball_tree’, 2: ’kd_tree’,
3: ’brute’)

162

....................................... C.2. Tuning

Channel-data model

(a) : Score results (b) : Time results

Figure C.31: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.32: n_components TSVD parameter tuning

163

C. Figures

(a) : Score results (b) : Time results

Figure C.33: n_neighbors parameter tuning

(a) : Score results (b) : Time results

Figure C.34: leaf_size parameter tuning

(a) : Score results (b) : Time results

Figure C.35: p parameter tuning

164

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.36: weights parameter tuning (0: ’uniform’, 1: ’distance’)

(a) : Score results (b) : Time results

Figure C.37: algorithm parameter tuning (0: ’auto’, 1: ’ball_tree’, 2: ’kd_tree’,
3: ’brute’)

165

C. Figures
C.2.3 Gaussian Naïve Bayes

Full-data model

(a) : Score results (b) : Time results

Figure C.38: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.39: n_components TSVD parameter tuning

166

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.40: priors parameter tuning

(a) : Score results (b) : Time results

Figure C.41: var_smoothing parameter tuning

167

C. Figures
Channel-data model

(a) : Score results (b) : Time results

Figure C.42: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.43: n_components TSVD parameter tuning

168

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.44: priors parameter tuning

(a) : Score results (b) : Time results

Figure C.45: var_smoothing parameter tuning

169

C. Figures
C.2.4 AdaBoost Classifier

Full-data model

(a) : Score results (b) : Time results

Figure C.46: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.47: n_components TSVD parameter tuning

170

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.48: n_estimators parameter tuning

(a) : Score results (b) : Time results

Figure C.49: learning_rate parameter tuning

(a) : Score results (b) : Time results

Figure C.50: base_estimator parameter tuning (depth parameter of DT)

171

C. Figures
Channel-data model

(a) : Score results (b) : Time results

Figure C.51: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.52: n_components TSVD parameter tuning

172

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.53: n_estimators parameter tuning

(a) : Score results (b) : Time results

Figure C.54: learning_rate parameter tuning

(a) : Score results (b) : Time results

Figure C.55: base_estimator parameter tuning (depth parameter of DT)

173

C. Figures
C.2.5 Gradient Boosting Classifier

Full-data model

(a) : Score results (b) : Time results

Figure C.56: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.57: n_components TSVD parameter tuning

174

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.58: learning_rate parameter tuning

(a) : Score results (b) : Time results

Figure C.59: subsample parameter tuning

(a) : Score results (b) : Time results

Figure C.60: criterion parameter tuning (0: ’friedman_mse’, 1: ’mse’)

175

C. Figures

(a) : Score results (b) : Time results

Figure C.61: n_estimators parameter tuning

(a) : Score results (b) : Time results

Figure C.62: min_samples_split parameter tuning

(a) : Score results (b) : Time results

Figure C.63: max_depth parameter tuning

176

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.64: min_impurity_decrease parameter tuning

(a) : Score results (b) : Time results

Figure C.65: max_features parameter tuning

(a) : Score results (b) : Time results

Figure C.66: max_leaf_nodes parameter tuning

177

C. Figures

(a) : Score results (b) : Time results

Figure C.67: ccp_alpha parameter tuning

178

....................................... C.2. Tuning

Channel-data model

(a) : Score results (b) : Time results

Figure C.68: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.69: n_components TSVD parameter tuning

179

C. Figures

(a) : Score results (b) : Time results

Figure C.70: learning_rate parameter tuning

(a) : Score results (b) : Time results

Figure C.71: subsample parameter tuning

(a) : Score results (b) : Time results

Figure C.72: criterion parameter tuning (0: ’friedman_mse’, 1: ’mse’)

180

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.73: n_estimators parameter tuning

(a) : Score results (b) : Time results

Figure C.74: min_samples_split parameter tuning

(a) : Score results (b) : Time results

Figure C.75: max_depth parameter tuning

181

C. Figures

(a) : Score results (b) : Time results

Figure C.76: min_impurity_decrease parameter tuning

(a) : Score results (b) : Time results

Figure C.77: max_features parameter tuning

(a) : Score results (b) : Time results

Figure C.78: max_leaf_nodes parameter tuning

182

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.79: ccp_alpha parameter tuning

183

C. Figures
C.2.6 Multi-Layer Perceptron Classifier

Full-data model

(a) : Score results (b) : Time results

Figure C.80: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.81: n_components TSVD parameter tuning

184

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.82: hidden_layer_sizes parameter tuning (Table 6.13 contains mapping
of tuned values to numbers)

(a) : Score results (b) : Time results

Figure C.83: activation parameter tuning (0: ’identity’, 1: ’logistic’, 2: ’tanh’,
3: ’relu’)

(a) : Score results (b) : Time results

Figure C.84: solver parameter tuning (0: ’lbfgs’, 1: ’sgd’, 2: ’adam’)

185

C. Figures

(a) : Score results (b) : Time results

Figure C.85: alpha parameter tuning

(a) : Score results (b) : Time results

Figure C.86: batch_size parameter tuning

(a) : Score results (b) : Time results

Figure C.87: learning_rate parameter tuning (0: ’constant’, 1: ’invscaling’, 2:
’adaptive’)

186

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.88: learning-rate-init parameter tuning

(a) : Score results (b) : Time results

Figure C.89: max_iter parameter tuning

(a) : Score results (b) : Time results

Figure C.90: tol parameter tuning

187

C. Figures

(a) : Score results (b) : Time results

Figure C.91: beta_1 parameter tuning

(a) : Score results (b) : Time results

Figure C.92: beta_2 parameter tuning

(a) : Score results (b) : Time results

Figure C.93: epsilon parameter tuning

188

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.94: n_iter_no_change parameter tuning (early_stopping = ’True’)

189

C. Figures
Channel-data model

(a) : Score results (b) : Time results

Figure C.95: n_components PCA parameter tuning

(a) : Score results (b) : Time results

Figure C.96: n_components TSVD parameter tuning

190

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.97: hidden_layer_sizes parameter tuning (Table 6.13 contains mapping
of tuned values to numbers)

(a) : Score results (b) : Time results

Figure C.98: activation parameter tuning (0: ’identity’, 1: ’logistic’, 2: ’tanh’,
3: ’relu’)

(a) : Score results (b) : Time results

Figure C.99: solver parameter tuning (0: ’lbfgs’, 1: ’sgd’, 2: ’adam’)

191

C. Figures

(a) : Score results (b) : Time results

Figure C.100: alpha parameter tuning

(a) : Score results (b) : Time results

Figure C.101: batch_size parameter tuning

(a) : Score results (b) : Time results

Figure C.102: learning_rate parameter tuning (0: ’constant’, 1: ’invscaling’, 2:
’adaptive’)

192

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.103: learning-rate-init parameter tuning

(a) : Score results (b) : Time results

Figure C.104: max_iter parameter tuning

(a) : Score results (b) : Time results

Figure C.105: tol parameter tuning

193

C. Figures

(a) : Score results (b) : Time results

Figure C.106: beta_1 parameter tuning

(a) : Score results (b) : Time results

Figure C.107: beta_2 parameter tuning

(a) : Score results (b) : Time results

Figure C.108: epsilon parameter tuning

194

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.109: n_iter_no_change parameter tuning (early_stopping = ’True’)

195

C. Figures
C.2.7 Support Vector Classifier

Full-data model

(a) : Score results (b) : Time results

Figure C.110: kernel parameter tuning (0: ’linear’, 1: ’poly’, 2: ’rbf’, 3: ’sigmoid’)

(a) : Score results (b) : Time results

Figure C.111: C parameter tuning

196

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.112: gamma parameter tuning

(a) : Score results (b) : Time results

Figure C.113: tol parameter tuning

(a) : Score results (b) : Time results

Figure C.114: shrinking parameter tuning (0: False, 1: True)

197

C. Figures

(a) : Score results (b) : Time results

Figure C.115: break_ties parameter tuning (0: False, 1: True)

198

....................................... C.2. Tuning

Channel-data model

(a) : Score results (b) : Time results

Figure C.116: kernel parameter tuning (0: ’linear’, 1: ’poly’, 2: ’rbf’, 3: ’sigmoid’)

(a) : Score results (b) : Time results

Figure C.117: C parameter tuning

199

C. Figures

(a) : Score results (b) : Time results

Figure C.118: gamma parameter tuning

(a) : Score results (b) : Time results

Figure C.119: tol parameter tuning

(a) : Score results (b) : Time results

Figure C.120: shrinking parameter tuning (0: False, 1: True)

200

....................................... C.2. Tuning

(a) : Score results (b) : Time results

Figure C.121: break_ties parameter tuning (0: False, 1: True)

201

202

Appendix D

Code

D.1 Utils

D.1.1 converter.py

"""
Last modified Apr 13 2020
@author : Jakub Maly
"""

from os import path
import utils . reader as reader

import warnings
import uproot
import re
import pickle
import numpy as np

class Converter :
""" Class for handling root files .

This class is used to open root files , use the ROOT Scan () method
above them ,

convert obtained data to numpy arrays , and save whole result to pkl
format .

The data are stored as dictionary . Each feature ’s data can be
accessed by calling self.data[’feat_name ’].

! Warning !
For reader .py ’s purposes , the data dictionary contains extra

feature called ’criterion012345 ’. This feature stores

203

D. Code ..
root criterion used for extracting the data from original tree. As

an end user you should always access the data
from reader .py instance which automatically returns data without

this feature .
"""

def __init__ (self , params ={}):
self. verbose = params .get(’verbose ’)
self. state = 0
self.file = {}
self.data = {}
self. filename = ’’
self. directory = ’’
self. criterion = ’’

def open(self , f):
""" Open specified root file.
@param self:
@param f: The root file which is to be open.
@return :
"""

if self. verbose is not None:
print (’ converter .open ():’)
print (’\t|-> opening file \’’ + f + ’\’’)

self.file = uproot .open(f)
self. filename = f. rsplit (’/’, 1) [1][: -5]
self. directory = f. rsplit (’/’, 1) [0]
self. state = 1

if self. verbose is not None:
print (’\t--------- open done ----------’)

@staticmethod
def to_code (string):

""" Convert ROOT query to python language .
@param string : The string which is to be converted to code.
@return : The converted string , The branches needed for

successful query .
"""

expressions = re. split (’,|;’, string)
req_branches = []

operators = []
for c in string :

if c == ’,’ or c == ’;’:
operators . append (c)

for i, expression in enumerate (expressions):
if expression .find (’== ’) != -1:

branch = re. split (’==’, expression)
req_branches . append (branch [0])
code = re.sub (’[a-z,A-Z,0-9,_]+’, lambda m: ’dc [\ ’%s

\’]’ % m. group (0) , branch [0])
expressions [i] = code + ’==’ + branch [1]

elif expression .find (’!= ’) != -1:
branch = re. split (’!=’, expression)
req_branches . append (branch [0])
code = re.sub (’[a-z,A-Z,0-9,_]+’, lambda m: ’dc [\ ’%s

\’]’ % m. group (0) , branch [0])
expressions [i] = code + ’!=’ + branch [1]

elif expression .find (’<’) != -1:
branch = re. split (’<’, expression)
req_branches . append (branch [0])

204

.. D.1. Utils

code = re.sub (’[a-z,A-Z,0-9,_]+’, lambda m: ’dc [\ ’%s
\’]’ % m. group (0) , branch [0])

expressions [i] = code + ’<’ + branch [1]
elif expression .find (’>’) != -1:

branch = re. split (’>’, expression)
req_branches . append (branch [0])
code = re.sub (’[a-z,A-Z,0-9,_]+’, lambda m: ’dc [\ ’%s

\’]’ % m. group (0) , branch [0])
expressions [i] = code + ’>’ + branch [1]

elif expression .find (’<=’) != -1:
branch = re. split (’<=’, expression)
req_branches . append (branch [0])
code = re.sub (’[a-z,A-Z,0-9,_]+’, lambda m: ’dc [\ ’%s

\’]’ % m. group (0) , branch [0])
expressions [i] = code + ’<=’ + branch [1]

elif expression .find (’>=’) != -1:
branch = re. split (’>=’, expression)
req_branches . append (branch [0])
code = re.sub (’[a-z,A-Z,0-9,_]+’, lambda m: ’dc [\ ’%s

\’]’ % m. group (0) , branch [0])
expressions [i] = code + ’>=’ + branch [1]

else:
print (’ Unsupported comparison !’)

code = ’’
if len(expressions) > 1:

for i, expression in enumerate (expressions):
if i < len(operators):

code += expression + operators [i]
else:

code += expression
else:

code = expressions [0]

code = ’(’ + code + ’)’
code = code. replace (’,’, ’) and (’)
code = code. replace (’;’, ’ or ’)

return code , req_branches

def scan(self , tree_name , branches =’*’, criterion =None):
""" Scan the file.
@param self:
@param tree_name : The name of tree used in query .
@param branches : Branches on which the request is made.
@param criterion : Query criterion .
@return :
"""

if self. state < 1:
warnings .warn(’ Warning : File need to be opened first ! Use

method open () ’)
return

if self. verbose is not None:
print (’ converter .scan ():’)

dc = {}
separator = ’:’
self. criterion = criterion # for passing to saved file

Handle ROOT notation
if branches == ’*’:

branches = self.file[tree_name]. keys ()
branches = list(dict. fromkeys (branches))

else:

205

D. Code ..
branches = re. split (separator , branches)

Handle existence of file
for i, branch in enumerate (branches):

if not isinstance (branch , str):
branches [i] = branch . decode (’utf -8 ’) # convert to utf

-8 (remove ’b prefix)
if path. exists (self. directory + ’/’ + self. filename + ’.pkl ’):

rd = reader . Reader ()
rd.open(self. directory + ’/’ + self. filename + ". pkl ")

saved_query = rd. get_query ()
our_query = separator .join(branches)

if criterion :
saved_criterion = rd. get_criterion ()
if saved_query == our_query and saved_criterion ==

criterion :
raise FileExistsError

elif saved_query == our_query :
raise FileExistsError

Get data of branches
for i, branch in enumerate (branches):

if self. verbose is not None:
print (’\t|-> reading branch \’’ + branches [i] + ’\’’)

dc[branches [i]] = self.file[tree_name]. array (branches [i])

Apply criterion if it exists
if criterion :

criterion , req_branches = self. to_code (criterion)
if self. verbose is not None:

print (’\t------------------------------’)
print (’\t|-> applying criterion \’’ + criterion + ’\’’)

for branch in req_branches :
if branch not in dc: # check if branch is missing in

dictionary
if self. verbose is not None:

print (’\t\t|-> reading branch \’’ + branch +
’\’’)

dc[branch] = self.file[tree_name]. array (branch)

result = eval(criterion)
for key in dc:

dc[key] = dc[key][result]

Remove unwanted branches from dc (if they were added due to
criterion req)

dc = {key: dc[key] for key in branches }

self.data = dc
self. state = 2

if self. verbose is not None:
print (’\t--------- scan done ----------’)

def convert (self):
""" Convert data to numpy arrays .
@param self:
@return :
"""

if self. state < 2:
warnings .warn(’ Warning : File need to be scanned first ! Use

method scan () ’)
return

206

.. D.1. Utils

if self. verbose is not None:
print (’ converter . convert ():’)
print (’\t|-> converting data to numpy arrays ’)

for key in self.data:
self.data[key] = np. array (self.data[key])

self. state = 3

if self. verbose is not None:
print (’\t-------- convert done --------’)

def save(self , folder , name):
""" Save data in pkl format .
@param self:
@param folder : Name of the folder
@param name: Name of the file
@return :
"""

if self. state < 3:
warnings .warn(’ Warning : File need to be converted first !

Use method convert () ’)
return

if self. verbose is not None:
print (’ converter .save ():’)
print (’\t|-> saving data to pkl format ’)

Add criterion to dictionary
self.data[’ criterion012345 ’] = self. criterion

with open(folder + name + ’.pkl ’, ’wb ’) as f:
pickle .dump(self.data , f)
f. close ()

self. state = 4

if self. verbose is not None:
print (’\t--------- save done ----------’)

D.1.2 reader.py

"""
Last modified Apr 13 2020
@author : Jakub Maly
"""

import utils . converter as converter

import warnings
import re
import pickle

class Reader :
""" Class for handling pkl files .

This class is used to open pkl files , get basic information about
their structure ,

and obtain their data.

207

D. Code ..
Please see converter .py for information about format in which data

are saved .
"""

def __init__ (self , params ={}):
self. verbose = params .get(’verbose ’)
self. state = 0
self.file = {}
self.data = {}
self. filename = ’’
self. branches = []
self. query = ’’
self. criterion = ’’

def open(self , f):
""" Open specified pkl file.
@param self:
@param f: The pkl file which is to be open.
@return :
"""

if self. verbose is not None:
print (’ reader .open ():’)
print (’\t|-> opening file \’’ + f + ’\’’)

self.file = f
self. filename = f. rsplit (’/’, 1) [1][: -4]

with open(self.file , ’rb ’) as f:
self.data = pickle .load(f)

Set criterion
self. criterion = self.data[’ criterion012345 ’]
del self.data[’ criterion012345 ’]

Set branches
temp = []
for key in self.data:

temp. append (key)

self. branches = temp

Set query
temp = ’’
for item in self. branches :

if temp:
temp += ’:’ + item

else:
temp += item

self. query = temp

self. state = 1

if self. verbose is not None:
print (’\t--------- open done ----------’)

def print_info (self):
""" Show basic information about the file.
@param self:
@return :
"""

if self. state < 1:
warnings .warn(’ Warning : File need to be opened first ! Use

method open () ’)

208

.. D.1. Utils

return

if self. verbose is not None:
print (’ reader . print_info ():’)

if self. criterion :
print (’\t|-> file \ ’{0}. pkl\’ contains data of \’Scan

(\"{1}\" ,\"{2}\") \’’. format (self.filename , self.query ,
self

.
criterion
)
)

else:
print (’\t|-> file \ ’{0}. pkl\’ contains data of \’Scan

(\"{1}\") \’’. format (self.filename , self. query))

def filt_channels (self , features , channels):
""" Filter data by given features , ignore desired channels .
@param self:
@param features : Features used for filtering .
@param channels : Channels ignored by filtering .
@return :
"""

if self. state < 1:
warnings .warn(’ Warning : File need to be opened first ! Use

method open () ’)
return

if self. verbose is not None:
print (’ reader . filt_channels ():’)

Wildcard handling
temp_features = list ()
for feature in features :

if feature [-1] == "*":
for element in filter ((lambda x: re. search (r ’^{} ’.

format (feature [: -1]) , x)), self. branches):
temp_features . append (element)

else:
temp_features . append (feature)

for channel in channels :
temp_features . append (channel)

Missing feature handling
temp_features_checked = list ()
for feature in temp_features :

if feature in self. branches :
temp_features_checked . append (feature)

self.data = { feature : self.data[feature] for feature in
temp_features_checked }

def filt_criterion (self , features , criterion):
""" Filter data by given features , applies desired criterion
@param self:
@param features : Features used for filtering .
@param criterion : Criterion used for filtering .
@return :
"""

if self. state < 1:
warnings .warn(’ Warning : File need to be opened first ! Use

209

D. Code ..
method open () ’)

return

if self. verbose is not None:
print (’ reader . filt_criterion ():’)

if criterion is None:

Wildcard handling
temp_features = list ()
for feature in features :

if feature [-1] == "*":
for element in filter ((lambda x: re. search (r ’^{} ’.

format (feature [: -1]) , x)), self. branches):
temp_features . append (element)

else:
temp_features . append (feature)

Missing feature handling
temp_features_checked = list ()
for feature in temp_features :

if feature in self. branches :
temp_features_checked . append (feature)

self.data = { feature : self.data[feature] for feature in
temp_features_checked }

else:
cv = converter . Converter ()
criterion , req_branches = cv. to_code (criterion)
if self. verbose is not None:

print (’\t------------------------------’)
print (’\t|-> applying criterion \’’ + criterion + ’\’’)

dc = self.data
result = eval(criterion)
for key in dc:

dc[key] = dc[key][result]

self.data = dc
self. filt_criterion (features , None)

def save(self , f):
""" Save data in pkl format .
@param self:
@param f: Path to file
@return :
"""

self.data[’ criterion012345 ’] = self. criterion

with open(f, ’wb ’) as f:
pickle .dump(self.data , f)
f. close ()

def get_data (self):
""" Return file ’s data.
@param self:
@return : Dictionary with data.
"""

if self. state < 1:
warnings .warn(’ Warning : File need to be opened first ! Use

method open () ’)

return self.data

210

.. D.1. Utils

def get_branches (self):
""" Return file ’s branches .
@param self:
@return : List of branches names .
"""

if self. state < 1:
warnings .warn(’ Warning : File need to be opened first ! Use

method open () ’)

return self. branches

def get_query (self):
""" Return query string .
@param self:
@return : Query used for Scan () command .
"""

if self. state < 1:
warnings .warn(’ Warning : File need to be opened first ! Use

method open () ’)

return self. query

def get_criterion (self):
""" Return criterion string .
@param self:
@return : Criterion used for Scan () command .
"""

if self. state < 1:
warnings .warn(’ Warning : File need to be opened first ! Use

method open () ’)

return self. criterion

D.1.3 ml_utils.py

"""
Last modified May 19 2020
@author : Jakub Maly

Support methods for ML libraries
"""

import utils . reader as reader

import sys

import pickle
import compress_pickle
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib . pyplot as plt

from sklearn . pipeline import Pipeline

from sklearn . preprocessing import LabelBinarizer
from sklearn . preprocessing import label_binarize
from sklearn . preprocessing import StandardScaler

211

D. Code ..
from sklearn . decomposition import TruncatedSVD

from sklearn . ensemble import RandomForestClassifier
from sklearn . neighbors import KNeighborsClassifier
from sklearn . naive_bayes import GaussianNB
from sklearn . ensemble import AdaBoostClassifier
from sklearn . ensemble import GradientBoostingClassifier
from sklearn . neural_network import MLPClassifier
from sklearn .svm import SVC
from sklearn . ensemble import BaggingClassifier

from sklearn . metrics import precision_score
from sklearn . metrics import recall_score
from sklearn . metrics import f1_score
from sklearn . metrics import accuracy_score
from sklearn . metrics import roc_auc_score
from sklearn . metrics import roc_curve
from sklearn . metrics import confusion_matrix
from sklearn . metrics import auc

import utils . confusion_matrix_pretty_print as cmpp

def get_X_y_f (files_sig , files_bgr , params ={}):
""" Loads specified Signal and Backgroun files .
@param files_sig : Signal file(s)
@param files_bgr : Background file(s)
@param params : Reader params such as verbose
@return : X, y, f - the data set , labels , feature names

Warning : For binary classification ttH is labeled with 1 and any
background with 0!

"""

print (’ ml_utils . get_X_y_f ():’)

rd = reader . Reader (params ={})

data_sig = {}
data_bgr = {}
f_sig = {}
f_bgr = {}
f = list ()
f_new = list ()
X_sig = None
X_sig_iter = None
X_bgr = None
X_bgr_iter = None

Store data
for file_sig in files_sig :

rd.open(file_sig)
data_sig [file_sig] = rd. get_data ()
f_sig [file_sig] = rd. get_branches ()

for file_bgr in files_bgr :
rd.open(file_bgr)
data_bgr [file_bgr] = rd. get_data ()
f_bgr [file_bgr] = rd. get_branches ()

Get common features
for file_sig in files_sig :

if len(f) is 0:
f = f_sig [file_sig]

else:
f = set(f) & set(f_sig [file_sig])

for file_bgr in files_bgr :

212

.. D.1. Utils

if len(f) is 0:
f = f_bgr [file_bgr]

else:
f = set(f) & set(f_bgr [file_bgr])

Check features
data_iter = data_sig [next(iter(files_sig))]
for key in f:

exclude objects
if data_iter [key]. dtype != object :

exclude monte - carlo features
if ’truth ’ not in key and ’Truth ’ not in key:

f_new . append (key)

Stack results
print (’ Stacking signal files ... ’)
for file_sig in files_sig :

data_iter = data_sig [file_sig]
for key in f_new :

check if X already initialized , *1 - convert boolean to
int

if X_sig_iter is None:
X_sig_iter = data_iter [key] * 1

else:
X_sig_iter = np. column_stack ((X_sig_iter , data_iter [key

] * 1))

print (’{}: {} ’. format (file_sig , np. shape (X_sig_iter)))
if X_sig is None:

X_sig = X_sig_iter
else:

X_sig = np. concatenate ((X_sig , X_sig_iter))
X_sig_iter = None

print (’---------------’)
print (np. shape (X_sig))

print (’ Stacking background files ... ’)
for file_bgr in files_bgr :

data_iter = data_bgr [file_bgr]
for key in f_new :

check if X already initialized , *1 - convert boolean to
int

if X_bgr_iter is None:
X_bgr_iter = data_iter [key] * 1

else:
X_bgr_iter = np. column_stack ((X_bgr_iter , data_iter [key

] * 1))

print (’{}: {} ’. format (file_bgr , np. shape (X_bgr_iter)))
if X_bgr is None:

X_bgr = X_bgr_iter
else:

X_bgr = np. concatenate ((X_bgr , X_bgr_iter))
X_bgr_iter = None

print (’---------------’)
print (np. shape (X_bgr))

print (’ Concatenating results ... ’)
X = np. concatenate ((X_sig , X_bgr))
y_pos = np.ones(len(X_sig))
y_neg = np. zeros (len(X_bgr))
y = np. concatenate ((y_pos , y_neg))
f = f_new

return X, y, f

213

D. Code ..
def get_X_y_f_multiclass (data , params ={}):

""" Loads specified data files .
@param data: Dictionary with files path
@param params : Reader params such as verbose
@return : X, y, f - the data set , labels , feature names

Warning : For multi - class classification ttH is labeled with 0 and
any background with 0+i, i>0, i++!

"""

print (’ ml_utils . get_X_y_f_multiclass ():’)

rd = reader . Reader (params)
data_classes = {}
f_classes = {}
f = list ()
f_new = list ()
X = None
X_iter = None
X_iter_inner = None
y = None
y_iter = None

Store data
for key in data:

data_i = {}
f_i = {}
for file in data[key]:

rd.open(file)
data_i [file] = rd. get_data ()
f_i[file] = rd. get_branches ()

data_classes [key] = data_i
f_classes [key] = f_i

Get common features
for key in data:

for file in data[key]:
if len(f) is 0:

f = f_classes [key][file]
else:

f = set(f) & set(f_classes [key][file])

Check features
for key in data:

for file in data[key]:
for feature in f_classes [key][file]:

if data_classes [key][file][feature]. dtype != object :
exclude monte - carlo features
if ’truth ’ not in feature and ’Truth ’ not in

feature :
f_new . append (feature)

break
break

Stack results
print (’ Stacking files ... ’)
for key in data:

for file in data[key]:
data_iter = data_classes [key][file]
for feature in f_new :

check if X already initialized , *1 - convert boolean
to int

if X_iter_inner is None:
X_iter_inner = data_iter [feature] * 1

else:

214

.. D.1. Utils

X_iter_inner = np. column_stack ((X_iter_inner ,
data_iter [feature] * 1))

if X_iter is None:
X_iter = X_iter_inner

else:
X_iter = np. concatenate ((X_iter , X_iter_inner))

X_iter_inner = None

y_iter = np.ones(len(X_iter)) * key
if y is None:

y = y_iter
X = X_iter

else:
y = np. concatenate ((y, y_iter))
X = np. concatenate ((X, X_iter))

X_iter = None

print (’---------------’)
print (’X dimensions : {} ’. format (np. shape (X)))

return X, y, f_new

def get_X_f_multiclass (data , params ={}):
""" Loads specified data files of unknown class .
@param data: List with files path
@param params : Reader params such as verbose
@return : X, f - the data set , feature names
"""

print (’ ml_utils . get_X_f_multiclass ():’)

rd = reader . Reader (params)
data_files = {}
f_files = {}
f = list ()
f_new = list ()
X = None
X_iter = None
X_iter_inner = None

Store data
for file in data:

rd.open(file)
data_files [file] = rd. get_data ()
f_files [file] = rd. get_branches ()

Get common features
for file in data:

if len(f) is 0:
f = f_files [file]

else:
f = set(f) & set(f_files [file])

Check features
for file in data:

for feature in f_files [file]:
if data_files [file][feature]. dtype != object :

exclude monte - carlo features
if ’truth ’ not in feature and ’Truth ’ not in feature :

f_new . append (feature)
break

Stack results
print (’ Stacking files ... ’)

215

D. Code ..
for file in data:

data_iter = data_files [file]
for feature in f_new :

check if X already initialized , *1 - convert boolean to
int

if X_iter_inner is None:
X_iter_inner = data_iter [feature] * 1

else:
X_iter_inner = np. column_stack ((X_iter_inner , data_iter

[feature] * 1))

if X_iter is None:
X_iter = X_iter_inner

else:
X_iter = np. concatenate ((X_iter , X_iter_inner))

X_iter_inner = None

if X is None:
X = X_iter

else:
X = np. concatenate ((X, X_iter))

print (’---------------’)
print (’X dimensions : {} ’. format (np. shape (X)))

return X, f_new

def save(f, folder , name):
""" Saves file.
@param f: File to be saved
@param folder : Folder for saving
@param name: Name of save file
"""

pickle .dump(f, open(folder + ’/’ + name + ’.pkl ’, ’wb ’))

def save_compress (f, folder , name , method):
""" Compress and saves file.
@param f: File to be saved
@param folder : Folder for saving
@param name: Name of save file
@param method : Compression method
"""

compress_pickle .dump(f, open(folder + ’/’ + name + ’.pkl.’ + method
, ’wb ’) , compression = method)

def load(f):
""" Loads file.
@param f: File to be loaded
@return : Content of file
"""

return pickle .load(open(f, ’rb ’))

def load_compress (f, method):
""" Loads compressed file.
@param f: File to be loaded
@param method : Compression method
@return : Content of file
"""

216

.. D.1. Utils

return compress_pickle .load(open(f, ’rb ’) , method)

def apply_channel (X_cv , X_test , y_cv , y_test , f, channel):
""" Performs channel selection
@param X_cv: The cv set
@param X_test : The test set
@param y_cv: The cv labels
@param y_test : The test labels
@param f: Feature names
@param channel : Channel name
@return : X_cv , X_test , y_cv , y_test , f - the data set , labels ,

feature names
"""

i = f. index (channel)
f = np. delete (f, i)

cv
truth_cv = X_cv [:, i]
X_cv_new = None
y_cv_new = list ()
X_cv = np. delete (X_cv , i, 1)
for j, t in enumerate (truth_cv):

if t == 1.0:
if X_cv_new is None:

X_cv_new = X_cv[j, :]
else:

X_cv_new = np. row_stack ((X_cv_new , X_cv[j, :]))
y_cv_new . append (y_cv[j])

y_cv_new = np. array (y_cv_new)

test
truth_test = X_test [:, i]
X_test_new = None
y_test_new = list ()
X_test = np. delete (X_test , i, 1)
for j, t in enumerate (truth_test):

if t == 1.0:
if X_test_new is None:

X_test_new = X_test [j, :]
else:

X_test_new = np. row_stack ((X_test_new , X_test [j, :]))
y_test_new . append (y_test [j])

y_test_new = np. array (y_test_new)

return X_cv_new , X_test_new , y_cv_new , y_test_new , f

def remove_channel (X_cv , X_test , f, channel):
""" Performs channel data removal (possible guidance for learning)
@param X_cv: The cv set
@param X_test : The test set
@param f: Feature names
@param channel : Channel name
@return : X_cv , X_test , y_cv , y_test , f - the data set , labels ,

feature names
"""

i = f. index (channel)
f = np. delete (f, i)

cv
X_cv = np. delete (X_cv , i, 1)

217

D. Code ..
test
X_test = np. delete (X_test , i, 1)

return X_cv , X_test , f

def check_feature_order (X, y, f, f_prev):
""" Checks if features are in desired order
@param X: Data
@param y: Ground truth Labels
@param f: Current order
@param f_prev : Previous (desired) order
@return : Reordered data and labels , desired feature order
"""

X_new = X
y_new = y

for feature in f_prev :
i = f_prev . index (feature)
j = f. index (feature)

if i != j:
print (’ features columns were exchanged ’)
X_new [:, i] = X[:, j]
y_new [i] = y[j]

return X_new , y_new , f_prev

def multiclass_roc_auc_score (y_test , y_pred , average =" macro ",
multi_class =’ovo ’):
""" Computes ROC/AUC score for multiclass classification
@param y_test : test labels
@param y_pred : predicted labels
@param average : averaging algorithm
@param multi_class : how to handle multiclass
@return : ROC/AUC score
"""

lb = LabelBinarizer ()
lb.fit(y_test)
y_test = lb. transform (y_test)
y_pred = lb. transform (y_pred)
return roc_auc_score (y_test , y_pred , average =average , multi_class =

multi_class)

def multiclass_f1 (y_test , y_pred , average =" macro ",):
""" Computes F -1 score for multiclass classification
@param y_test : test labels
@param y_pred : predicted labels
@param average : averaging algorithm
@return : F -1 score
"""

lb = LabelBinarizer ()
lb.fit(y_test)
y_test = lb. transform (y_test)
y_pred = lb. transform (y_pred)
return f1_score (y_test , y_pred , average = average)

def multiclass_accuracy (y_test , y_pred):
""" Computes accuracy score for multiclass classification

218

.. D.1. Utils

@param y_test : test labels
@param y_pred : predicted labels
@return : Accuracy score
"""

lb = LabelBinarizer ()
lb.fit(y_test)
y_test = lb. transform (y_test)
y_pred = lb. transform (y_pred)
return accuracy_score (y_test , y_pred)

def threshold_probas_multiclass (y_probas , threshold):
""" Thresholds multiclass probabilities - see thesis (WP tuning)

for more information
@param y_probas : Predicted probabilities
@param threshold : Probability threshold
@return : Predicted classes
"""

length = np. shape (y_probas)[0]
width = np. shape (y_probas)[1]

y_pred = list ()

for i in range (length):
bgr_sum = 0
for j in range (1, width):

bgr_sum += y_probas [i, j]

if y_probas [i, 0] >= threshold :
y_pred . append (0)

else:
suggestion = 0
max_p = 0
if suggestion == 0:

for j in range (1, width):
if max_p < y_probas [i, j]:

max_p = y_probas [i, j]
suggestion = j

y_pred . append (suggestion)

return y_pred

def threshold_characteristics_multiclass_significance (y_probas , y_test ,
weights , total , other_bgr):

""" Obtain characteristics for simplified significance maximization
threshold tuning

@param y_probas : Predicted probabilities
@param y_test : Ground truth labels
@param weights : Weighting factors used for comparison with existing

results
@param total : Number of events in real data used for comparison
@param other_bgr : Number of events in other background in real data

used for comparison
@return : Graph data , best threshold
"""

x_values = list ()

y_eps_0 = list ()
y_eps_1 = list ()
y_eps_2 = list ()
y_S = list ()
y_B = list ()

219

D. Code ..
y_signif = list ()
y_signif_simp = list ()

max_sig = 0
best_tr = 0

for tr in np. round (np. arange (0.0 , 1, 0.01) , 2):
tr = np. round (tr , 3)
x_values . append (tr)
print (’ Threshold : {} ’. format (tr))
y_pred = threshold_probas_multiclass (y_probas , tr)
response = significance_score_multiclass_compare (y_test , y_pred

, weights , total , other_bgr , False)
y_eps_0 . append (response [’eps ’][0])
y_eps_1 . append (response [’eps ’][1])
y_eps_2 . append (response [’eps ’][2])
y_S. append (response [’S ’])
y_B. append (response [’B ’])
y_signif . append (response [’signif ’])
y_signif_simp . append (response [’ signif_simp ’])

if response [’ signif_simp ’] > max_sig :
max_sig = response [’ signif_simp ’]
best_tr = tr

return x_values , y_eps_0 , y_eps_1 , y_eps_2 , y_S , y_B , y_signif ,
y_signif_simp , best_tr

def threshold_characteristics_multiclass_sensitivity (y_probas , y_test):
""" Obtain characteristics for sensitivity maximization threshold

tuning
@param y_probas : Predicted probabilities
@param y_test : Ground truth labels
@return : Graph data , best threshold
"""

x_values = list ()

y_fdr = list ()
y_sen = list ()

max_sig = 0
best_tr = 0

for tr in np. arange (0, 1.01 , 0.01) :
tr = np. round (tr , 3)
x_values . append (tr)
print (’ Threshold : {} ’. format (tr))
y_pred = threshold_probas_multiclass (y_probas , tr)
fdr = 1 - precision_score (y_test , y_pred , average =’weighted ’)
sen = recall_score (y_test , y_pred , average =’weighted ’)

y_fdr . append (fdr)
y_sen . append (sen)

if sen > max_sig :
max_sig = sen
best_tr = tr

return x_values , y_fdr , y_sen , best_tr

def significance_score_multiclass_compare (y, y_pred , weights ={} , total
={} , compensation =0, verbose =True):
""" Approximate significance score for prediction .

220

.. D.1. Utils

Used to compare with known results for given weights , number of
events , and background compensation constant .

@param y: Ground truth labels
@param y_pred : Predicted probabilities
@param weights : Class weights
@param total : Number of events in given class
@param compensation : Other backgrounds constants
@param verbose : Turn on displaying information about computation
@return : List containing efficiencies , S, B, and two significances

(norml & simplified)
"""

Selected
cm = confusion_matrix (y, y_pred)
cm_len = np. shape (cm)[0]

Efficiencies
sig_total = cm[0, 0]
epsilon_bgrs = list ()
bgr_sums = list ()
for i in range (1, cm_len):

sig_total += cm[0, i]
epsilon_bgrs . append (cm[i, 0])
bgr_sums . append (sum(cm[i, j] for j in range (cm_len)))

epsilon_sig = cm[0, 0] / sig_total
for i in range (len(epsilon_bgrs)):

epsilon_bgrs [i] = epsilon_bgrs [i] / bgr_sums [i]

S = epsilon_sig * total [0] * weights [0]
B = 0
for i in range (len(epsilon_bgrs)):

B += epsilon_bgrs [i] * total [i + 1] * weights [i + 1]
B += compensation

if verbose :
print (’ ml_utils . sig_score ():’)
print (’\t|-> eps 0: %0.4f’ % epsilon_sig)
for i in range (len(epsilon_bgrs)):

print (’\t|-> eps %d: %0.4f’ % (i + 1, epsilon_bgrs [i]))
print (’\t|-> S: %0.4f’ % S)
print (’\t|-> B: %0.4f’ % B)

signif = S / np.sqrt(S + B)
signif_simp = S / np.sqrt(B)
eps = list ()
eps. append (epsilon_sig)
for i in range (len(epsilon_bgrs)):

eps. append (epsilon_bgrs [i])

ret_dic = {’eps ’: eps ,
’S ’: S,
’B ’: B,
’signif ’: signif ,
’signif_simp ’: signif_simp }

return ret_dic

def plot_threshold (x_values , y_values , optimums , title , ylabel , colors ,
labels , force_threshold_value =None):

""" Plots graphs for threshold characteristics .
@param x_values : Values for x-axis (list)
@param y_values : Values for y-axis (list of lists)
@param optimums : Whether to search max or min values in y_values
@param title : Title of plot
@param colors : Colors for y_values

221

D. Code ..
@param labels : Labels for y_values
@param force_threshold_value : Value of forced vertical line value (

if None , vertical line is computed with usage of
optimums parameter)
"""

plt. figure ()
for values , optimum , color , label in zip(y_values , optimums , colors

, labels):
plt.plot(x_values , values , color =color , label = label)

if force_threshold_value is None:
best_index = 0
if optimum == ’max ’:

best_score = 0
else:

best_score = max(values)
for i, v in enumerate (values):

if optimum == ’max ’:
if best_score < v:

best_score = v
best_index = i

else:
if best_score > v:

best_score = v
best_index = i

else:
best_index = int(force_threshold_value * 100)
best_score = values [best_index]

Plot a dotted vertical line at the best score for that scorer
marked by x

plt.plot ([x_values [best_index],] * 2, [0, best_score],
linestyle =’-.’, color =color , marker =’x’,

markeredgewidth =3, ms =8)

Annotate the best score for that scorer
plt. annotate ("%0.3 f" % best_score ,

(x_values [best_index], best_score + 0.005))

plt. xticks (np. arange (0.0 , 1.0 , step =0.1))
plt. xlabel (’ Threshold [-]’)
plt. ylabel (ylabel)
plt. title (title)
plt. legend (loc =" best ")

def train_model (X, y, name=None , parameters ={} , svd_components =0):
""" Trains classifier with the data. Also performs basic scaling of

data.
@param X: Data
@param y: Ground truth labels
@param name: Name of the classifier (None , RFC , KNC , GNB , ADA , GBC)
@param parameters : Parameters for given model
@param svd_components : Number of components for Truncated SVD
@return : Scikit - learn pipeline
"""

print (’ ml_utils . train_model ():’)

Scaler
sc = StandardScaler ()

if name is None or name == ’RFC ’:
Random Forest Classifier - ensemble of decision trees

222

.. D.1. Utils

print (’\t|-> training RandomForestClassifier ’)
clf = RandomForestClassifier (** parameters)

pipe = Pipeline (steps =[
(’sc ’, sc),
(’clf ’, clf)])

pipe.fit(X, y)

print (’\t|-> mean score : %0.2f’ % pipe. score (X, y))

elif name == ’KNC ’:
K- Neighbors Classifier

print (’\t|-> training KNeighborsClassifier ’)
clf = KNeighborsClassifier (** parameters)

if svd_components > 0:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’svd ’, TruncatedSVD (n_components = svd_components)),
(’clf ’, clf)])

else:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’clf ’, clf)])

pipe.fit(X, y)

print (’\t|-> mean score : %0.2f’ % pipe. score (X, y))

elif name == ’GNB ’:
Gaussian Naive Bayes Classifier

print (’\t|-> training GaussianNB ’)
clf = GaussianNB (** parameters)

if svd_components > 0:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’svd ’, TruncatedSVD (n_components = svd_components)),
(’clf ’, clf)])

else:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’clf ’, clf)])

pipe.fit(X, y)

print (’\t|-> mean score : %0.2f’ % pipe. score (X, y))

elif name == ’ADA ’:
Gaussian Adaptive Boosting Classifier

print (’\t|-> training AdaBoostClassifier ’)
clf = AdaBoostClassifier (** parameters)

if svd_components > 0:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’svd ’, TruncatedSVD (n_components = svd_components)),
(’clf ’, clf)])

else:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’clf ’, clf)])

223

D. Code ..
pipe.fit(X, y)

print (’\t|-> mean score : %0.2f’ % pipe. score (X, y))

elif name == ’GBC ’:
Gradient Boosting Classifier

print (’\t|-> training GradientBoostingClassifier ’)
clf = GradientBoostingClassifier (** parameters)

if svd_components > 0:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’svd ’, TruncatedSVD (n_components = svd_components)),
(’clf ’, clf)])

else:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’clf ’, clf)])

pipe.fit(X, y)

print (’\t|-> mean score : %0.2f’ % pipe. score (X, y))

elif name == ’MLPC ’:
Multi - Layer Perceptron Classifier

print (’\t|-> training MLPClassifier ’)
clf = MLPClassifier (** parameters)

if svd_components > 0:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’svd ’, TruncatedSVD (n_components = svd_components)),
(’clf ’, clf)])

else:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’clf ’, clf)])

pipe.fit(X, y)

print (’\t|-> mean score : %0.2f’ % pipe. score (X, y))

elif name == ’SVC ’:
Support Vector Classifier
N_ESTIMATORS = 10

print (’\t|-> training SVC ’)
clf = BaggingClassifier (SVC (** parameters), max_samples =1.0 /

N_ESTIMATORS , n_estimators = N_ESTIMATORS , n_jobs = -1)

if svd_components > 0:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’svd ’, TruncatedSVD (n_components = svd_components)),
(’clf ’, clf)])

else:
pipe = Pipeline (steps =[

(’sc ’, sc),
(’clf ’, clf)])

pipe.fit(X, y)

print (’\t|-> mean score : %0.2f’ % pipe. score (X, y))

224

.. D.1. Utils

return pipe

def predict (model , X):
""" Predicts outputs for model (pipeline).
@param model : Scikit - learn model (pipeline)
@param X: Inputs for prediction
@return : Predicted classes
"""

return model . predict (X)

def predict_proba (model , X):
""" Predicts outputs for model (pipeline).
@param model : Scikit - learn model (pipeline)
@param X: Inputs for prediction
@return : Predicted class probabilities
"""

return model . predict_proba (X)

def plot_histograms_multiclass (X, y, classes , feature , bins=None ,
saving =False , save_folder =None):
""" Plots histograms with kernel density estimation for multiclass

data.
@param X: Data
@param y: Ground truth labels
@param classes : Dictionary with classes
@param feature : Name of feature for which histogram should be

plotted
@param bins: Number of bins (None will force automatic selection)
@param saving : Whether to save plot or no
@param save_folder : Where to save plot (only when saving is True)
"""

plt. figure ()
plt. title (feature)
for key in classes :

sns. distplot (X[y == key], bins , hist_kws ={’ histtype ’: ’step ’},
kde_kws ={’label ’: ’%s (KDE)’ % classes [key]},

label =’%s’ % classes [key])

plt. legend (loc =" best ")

if saving :
plt. savefig (save_folder + feature + ’.png ’)
plt. close ()

def plot_cm (y_pred , y, n, classes , title):
""" Plots confusion matrix with usage of pretty cm library .
@param y_pred : Predicted classes
@param y: Ground truth labels
@param n: Number of classes (size of cm: nXn)
@param classes : List with classes names
@param title : Title of plot
"""

cm = confusion_matrix (y_pred , y)
df_cm = pd. DataFrame (cm , range (n), range (n))
cmpp. pretty_plot_confusion_matrix (df_cm , cmap= make_cmap ([(240 , 248 ,

255) , (240 , 248 , 255)], bit=True), title =title ,
classes = classes)

225

D. Code ..

def make_cmap (colors , position =None , bit= False):
’’’
This wonderful method was taken from http :// schubert . atmos .

colostate .edu /~ cslocum / custom_cmap .html
@author Chris Slocum

make_cmap takes a list of tuples which contain RGB values . The RGB
values may either be in 8-bit [0 to 255] (in which bit must be set

to
True when called) or arithmetic [0 to 1] (default). make_cmap

returns
a cmap with equally spaced colors .
Arrange your tuples so that the first color is the lowest value for

the
colorbar and the last is the highest .
position contains values from 0 to 1 to dictate the location of

each color .
’’’

bit_rgb = np. linspace (0, 1, 256)
if position == None:

position = np. linspace (0, 1, len(colors))
else:

if len(position) != len(colors):
sys.exit (" position length must be the same as colors ")

elif position [0] != 0 or position [-1] != 1:
sys.exit (" position must start with 0 and end with 1")

if bit:
for i in range (len(colors)):

colors [i] = (bit_rgb [colors [i][0]] ,
bit_rgb [colors [i][1]] ,
bit_rgb [colors [i][2]])

cdict = {’red ’: [], ’green ’: [], ’blue ’: []}
for pos , color in zip(position , colors):

cdict [’red ’]. append ((pos , color [0] , color [0]))
cdict [’green ’]. append ((pos , color [1] , color [1]))
cdict [’blue ’]. append ((pos , color [2] , color [2]))

cmap = mpl. colors . LinearSegmentedColormap (’ my_colormap ’, cdict ,
256)

return cmap

def plot_roc_multiclass (title , y, y_probas , classes , scores):
""" Plots ROC curve for multi - class classification .
@param title : Title of plot
@param y: True labels
@param y_probas : Predicted probabilities
@param classes : Dictionary with classes
@param scores : Dictionary with scores
"""

y_bin = label_binarize (y, classes =list(classes .keys ()))
n_classes = y_bin . shape [1]

fprs = dict ()
tprs = dict ()
aucs = dict ()

for i in range (n_classes):
fprs[i], tprs[i], _ = roc_curve (y_bin [:, i], y_probas [:, i])
aucs[i] = auc(fprs[i], tprs[i])

plt. figure ()

226

.. D.1. Utils

for key in scores :
plt.plot ([0 , 0], [0, 0], color =’k’, linestyle =’-’, label = ’{}:

{} ’. format (key , np. round (scores [key], 2)))
plt.plot ([0 , 1], [0, 1], color =’darkblue ’, linestyle =’--’, label =’

Chance ’)
for i in range (n_classes):

plt.plot(fprs[i], tprs[i], label =’ROC %d - %s (AUC = %0.2f)’ %
(i, classes [i], aucs[i]))

plt.xlim ([-0.05 , 1.05])
plt.ylim ([-0.05 , 1.05])
plt. xlabel (’ False Positive Rate ’)
plt. ylabel (’True Positive Rate ’)
plt. title (title)
plt. legend (loc =" lower right ")

def plot_pred_multiclass (title , y_preds , classifiers , classes , colors):
""" Plots predict arrays for multi - class classification .
@param title : Title of plot
@param y_preds : List of predictions for classifiers
@param classifiers : List of classifiers
@param classes : Dictionary of classes
@param colors : Colors used for classes
"""

n_rows = len(y_preds)
n = len(y_preds [0])
cmap = make_cmap (colors)

fig , ax = plt. subplots (nrows =n_rows , figsize =(10 , 5))
plt. subplots_adjust (left =0, bottom =0, right =10 , top =1, wspace =0,

hspace =0)
ax [0]. set_title (title , fontsize =14)

Plot bars
for i, row in enumerate (ax):

row. imshow (np. array (y_preds [i])[np.newaxis , :], cmap=cmap ,
aspect =’auto ’)

pos = list(row. get_position (). bounds)
x_text = 0.05
y_text = pos [1] + 0.011 * (i + 1)
fig.text(x_text , y_text , classifiers [i], va=’center ’, ha=’right

’, fontsize =10)
row. set_xlim ([-n * 0.1 , n + n * 0.1])
row. set_axis_off ()

Plot legend
for key in classes :

plt.plot ([0 , 0], [0, 0], color = colors [key], linestyle =’-’,
label = ’{} ’. format (classes [key]))

plt. legend (loc =" lower right ")
plt. tight_layout ()

def plot_pred_hist_multiclass (y_preds , classifiers , classes , colors):
""" Plots predict histograms for multi - class classification .
@param y_preds : List of predictions for classifiers
@param classifiers : List of classifiers
@param classes : Dictionary of classes
@param colors : Colors used for classes
"""

for i, y_pred in enumerate (y_preds):
y_pred = np. array (y_pred)

227

D. Code ..
heights = list ()
labels = list ()

Compute heights and note labels
for key in classes :

heights . append (sum(y_pred == key))
labels . append (classes [key])

plt. figure ()
x = np. arange (3)
barlist = plt.bar(x, height = heights)

Set colors
for j, bar in enumerate (barlist):

bar. set_color (colors [j])

plt. xticks (x, labels)
plt. title (’{} predictions ’. format (classifiers [i]))

def plot_search_results (name , results , scorer_dict , tuned_parameter ,
score_x_min , score_x_max , score_y_min , time_y_max):
""" Plots parameter tuning results . Produces two plots . One for

score and one for time.
Strongly inspired by: https :// scikit - learn .org/ stable / auto_examples

/ model_selection / plot_multi_metric_evaluation .html
@param name: Name of classifier
@param results : Panda data frame with results
@param scorer_dict : Dictionary with scorers
@param tuned_parameter : Name of tuned parameter
@param score_x_min : x axis min value (both score and time plots)
@param score_x_max : x axis max value (both score and time plots)
@param score_y_min : y axis min value (score plot)
@param time_y_max : y axis max value (time plot)
"""

Scores
plt. figure (figsize =(8 , 8))
plt. title (name + ’: ’ + tuned_parameter + ’ tuning ’, fontsize =16)
plt. xlabel (tuned_parameter)
plt. ylabel (’score ’)

ax = plt.gca ()
ax. set_xlim (score_x_min , score_x_max)
ax. set_ylim (score_y_min , 1.001)

Get the regular numpy array from the MaskedArray
try:

X_axis = np. array (results [’ param_clf__ ’ + tuned_parameter]. data
, dtype = float)

except :
try:

X_axis = np. array (results [’ param_clf__base_estimator__ ’ +
tuned_parameter]. data , dtype = float)

except :
X_axis = np. array (results [’ param_svd__ ’ + tuned_parameter].

data , dtype = float)

for scorer , color in zip(sorted (scorer_dict), [’k’, ’g’, ’r ’]):
for sample , style in ((’train ’, ’--’), (’test ’, ’-’)):

sample_score_mean = results [’ mean_ %s_%s’ % (sample , scorer)
]

sample_score_std = results [’std_%s_%s’ % (sample , scorer)]
ax. fill_between (X_axis , sample_score_mean -

sample_score_std ,
sample_score_mean + sample_score_std ,

228

.. D.1. Utils

alpha =0.1 if sample == ’test ’ else 0, color
=color ,

label =" std %s (%s)" % (scorer , sample) if
sample == ’test ’ else ’’)

ax.plot(X_axis , sample_score_mean , style , color =color ,
alpha =1 if sample == ’test ’ else 0.7 ,
label =" mean %s (%s)" % (scorer , sample))

best_index = 0
best_score = 0
for i, r in enumerate (results [’ mean_test_ %s’ % scorer]):

if best_score < r:
best_score = r
best_index = i

Plot a dotted vertical line at the best score for that scorer
marked by x

ax.plot ([X_axis [best_index],] * 2, [0, best_score],
linestyle =’-.’, color =color , marker =’x’,

markeredgewidth =3, ms =8)

Annotate the best score for that scorer
ax. annotate ("%0.3 f" % best_score ,

(X_axis [best_index], best_score + 0.005))

plt. legend (loc =" best ")

Fit time
plt. figure (figsize =(8 , 8))
plt. title (name + ’: ’ + tuned_parameter + ’ tuning ’, fontsize =16)
plt. xlabel (tuned_parameter)
plt. ylabel (’time [s]’)

ax = plt.gca ()
ax. set_xlim (score_x_min , score_x_max)
ax. set_ylim (0, time_y_max)

for sample , color in ((’fit ’, ’r ’) , (’score ’, ’g ’)):
sample_score_mean = results [’ mean_ %s_time ’ % sample]
sample_score_std = results [’std_%s_time ’ % sample]
ax. fill_between (X_axis , sample_score_mean - sample_score_std ,

sample_score_mean + sample_score_std ,
alpha =0.1 , color =color , label =" std Time (%s)" %

sample)
ax.plot(X_axis , sample_score_mean , ’-’, color =color ,

alpha =1,
label =" mean Time (%s)" % sample)

best_index = 0
best_score = max(results [’ mean_ %s_time ’ % sample])
for i, r in enumerate (results [’ mean_ %s_time ’ % sample]):

if best_score > r:
best_score = r
best_index = i

ax.plot ([X_axis [best_index],] * 2, [0, best_score],
linestyle =’-.’, color =color , marker =’x’,

markeredgewidth =3, ms =8)

ax. annotate ("%0.1 f" % best_score ,
(X_axis [best_index], best_score + 0.005))

plt. legend (loc =" best ")

def plot_feat_imp (title , model , f, limit , verbose =True):
""" Plots feature importances for model containing RFC

classificator .

229

D. Code ..
@param title : Title of plot
@param model : RFC classificator or pipeline containing one
@param f: List of features
@param limit : Number of features to be plot
@param verbose : Whether lor importances to console
"""

imp = np. round (model [’clf ’]. feature_importances_ , 5)
std = np. round (np.std ([tree. feature_importances_ for tree in model

[’clf ’]. estimators_], axis =0) , 5)
ind = np. argsort (imp)[:: -1]

imp_plot = list ()
std_plot = list ()
ind_plot = list ()

if verbose :
print ("\ nFeatures importance :")

for i in range (limit):
imp_plot . append (imp[ind[i]])
std_plot . append (std[ind[i]])
ind_plot . append (ind[i])
if verbose :

print (f[ind_plot [-1]] + ’, imp: {}, std: {} ’. format (
imp_plot [-1], std_plot [-1]))

plt. figure ()
plt. title (title)
plt.bar(range (limit), imp_plot , color ="r", label =" Importance (with

std)", yerr=std_plot , align =" center ")
plt. xticks (range (limit), ind_plot)
plt.xlim ([-1, limit])
plt. xlabel (’ Feature number [-]’)
plt. ylabel (’ Importance [-]’)
plt. title (title)
plt. legend (loc=’ upper right ’)

D.2 Scripts

D.2.1 data_convert.py

"""
Last modified May 14 2020
@author : Jakub Maly
"""

import utils . converter as converter

def convert_it (data_folder , file_names):
cv = converter . Converter ({’ verbose ’: 10})
for file_name in file_names :

cv.open(data_folder + file_name + ’.root ’)
cv.scan(’nominal ’, ’*’)
cv. convert ()
cv.save(data_folder , file_name)

def main ():

230

....................................... D.2. Scripts

""" Older data """
data_folder = ’../ root_data / mc16a / older /’
file_names = [’345672 ’ , ’345673 ’ , ’345674 ’ , ’410155 ’ , ’410156 ’ ,

’410157 ’ , ’410218 ’ , ’410219 ’ , ’410220 ’]
convert_it (data_folder , file_names)

data_folder = ’../ root_data / mc16d / older /’
file_names = [’345672 ’ , ’345673 ’ , ’345674 ’ , ’410155 ’ , ’410156 ’ ,

’410157 ’ , ’410218 ’ , ’410219 ’ , ’410220 ’]
convert_it (data_folder , file_names)

""" Newer data """
data_folder = ’../ root_data / mc16a / newer /’
file_names = [’345873 ’ , ’345874 ’ , ’345875 ’ , ’413008 _wCharge ’]
convert_it (data_folder , file_names)

data_folder = ’../ root_data / mc16d / newer /’
file_names = [’345873 ’ , ’345874 ’ , ’345875 ’ , ’413008 _wCharge ’]
convert_it (data_folder , file_names)

""" Real data """
data_folder = ’../ root_data / mc16a /real/’
file_names = [’data15 ’, ’data16 ’]
convert_it (data_folder , file_names)

data_folder = ’../ root_data / mc16d /real/’
file_names = [’data17 ’]
convert_it (data_folder , file_names)

if __name__ == ’__main__ ’:
""" Script demonstrating root files conversion .

In this script several files are opened and scanned . Conversion
with saving is performed in the end.

"""

main ()

D.2.2 data_filter.py

"""
Last modified May 19 2020
@author : Jakub Maly
"""

import utils . reader as reader

Use new features (77 instead of 83)
NEW_FEAT = False
NEW_FEAT = True

def filter_it (data_folder , file_names , features , channels):
rd = reader . Reader ({’ verbose ’: 10})
for file_name in file_names :

rd.open(data_folder + file_name + ’.pkl ’)
rd. filt_channels (features , channels)
if NEW_FEAT :

rd.save(data_folder + file_name + ’_fil_new .pkl ’)
else:

rd.save(data_folder + file_name + ’_fil.pkl ’)

231

D. Code ..
def main ():

if NEW_FEAT :
features = [’DRll01 ’, ’DRll12 ’, ’MET_RefFinal_et ’, ’

MET_RefFinal_phi ’, ’MV2c10_70_EventWeight ’, ’Mll01 ’,
’Mll02 ’,
’Mll03 ’, ’Mll12 ’, ’Mll13 ’, ’Mll23 ’, ’Mlll012 ’, ’

Mllll0123 ’, ’best_Z_Mll ’, ’dilep_type ’, ’
lep_Eta_0 ’,

’lep_Eta_1 ’, ’lep_Eta_2 ’, ’lep_ID_0 ’, ’lep_ID_1 ’, ’
lep_ID_2 ’, ’lep_ID_2_new ’, ’lep_ID_3 ’,

’lep_Mtrktrk_atConvV_CO_0 ’, ’
lep_Mtrktrk_atConvV_CO_1 ’, ’
lep_Mtrktrk_atConvV_CO_2 ’,

’lep_Mtrktrk_atPV_CO_0 ’, ’lep_Mtrktrk_atPV_CO_1 ’, ’
lep_Mtrktrk_atPV_CO_2 ’, ’lep_Pt_0 ’, ’lep_Pt_1 ’,

’lep_Pt_2 ’, ’lep_RadiusCO_0 ’, ’lep_RadiusCO_1 ’, ’
lep_RadiusCO_2 ’, ’lep_chargeIDBDTTight_0 ’,

’lep_chargeIDBDTTight_1 ’, ’lep_chargeIDBDTTight_2 ’,
’lep_flavour ’, ’lep_isMedium_0 ’,

’lep_isMedium_1 ’,
’lep_isMedium_2 ’, ’lep_isTightLH_0 ’, ’

lep_isTightLH_1 ’, ’lep_isTightLH_2 ’,
’lep_isolationFixedCutLoose_0 ’, ’

lep_isolationFixedCutLoose_1 ’, ’
lep_isolationFixedCutLoose_2 ’,

’lep_isolationFixedCutLoose_3 ’, ’
lep_promptLeptonVeto_TagWeight_0 ’,

’lep_promptLeptonVeto_TagWeight_1 ’,
’lep_promptLeptonVeto_TagWeight_2 ’, ’nJets_OR ’, ’

nJets_OR_MV2c10_70 ’, ’nJets_OR_T ’,
’nJets_OR_T_MV2c10_70 ’, ’nTaus_OR_Pt25 ’, ’

tau_MV2c10_0 ’, ’tau_btag70_0 ’, ’tau_btag70_1 ’,
’tau_charge_0 ’,
’tau_charge_1 ’, ’tau_fromPV_0 ’, ’tau_passEleBDT_0 ’,

’tau_passEleBDT_1 ’, ’tau_passMuonOLR_0 ’,
’tau_passMuonOLR_1 ’, ’tau_tagWeightBin_0 ’, ’

tau_tagWeightBin_1 ’, ’tau_tight_0 ’, ’
tau_tight_1 ’,

’top1Mass ’, ’top2Mass ’, ’total_charge ’, ’
trilep_type ’, ’jet_pT ’, ’total_leptons ’, ’HT*’]

else:
features = [’DRll01 ’, ’DRll12 ’, ’MET_RefFinal_et ’, ’

MET_RefFinal_phi ’, ’MV2c10_70_EventWeight ’, ’Mll01 ’,
’Mll02 ’,
’Mll03 ’, ’Mll12 ’, ’Mll13 ’, ’Mll23 ’, ’Mlll012 ’, ’

Mllll0123 ’, ’best_Z_Mll ’, ’dilep_type ’, ’
lep_Eta_0 ’,

’lep_Eta_1 ’, ’lep_Eta_2 ’, ’lep_ID_0 ’, ’lep_ID_1 ’, ’
lep_ID_2 ’, ’lep_ID_2_new ’, ’lep_ID_3 ’,

’lep_Mtrktrk_atConvV_CO_0 ’, ’
lep_Mtrktrk_atConvV_CO_1 ’, ’
lep_Mtrktrk_atConvV_CO_2 ’,

’lep_Mtrktrk_atPV_CO_0 ’, ’lep_Mtrktrk_atPV_CO_1 ’, ’
lep_Mtrktrk_atPV_CO_2 ’, ’lep_Pt_0 ’, ’lep_Pt_1 ’,

’lep_Pt_2 ’, ’lep_RadiusCO_0 ’, ’lep_RadiusCO_1 ’, ’
lep_RadiusCO_2 ’, ’lep_chargeIDBDTTight_0 ’,

’lep_chargeIDBDTTight_1 ’, ’lep_chargeIDBDTTight_2 ’,
’lep_flavour ’, ’lep_isMedium_0 ’,

’lep_isMedium_1 ’,
’lep_isMedium_2 ’, ’lep_isPrompt_0 ’, ’lep_isPrompt_1

’, ’lep_isPrompt_2 ’, ’lep_isQMisID_0 ’,
’lep_isQMisID_1 ’, ’lep_isQMisID_2 ’, ’

lep_isTightLH_0 ’, ’lep_isTightLH_1 ’, ’
lep_isTightLH_2 ’,

232

....................................... D.2. Scripts

’lep_isolationFixedCutLoose_0 ’, ’
lep_isolationFixedCutLoose_1 ’, ’
lep_isolationFixedCutLoose_2 ’,

’lep_isolationFixedCutLoose_3 ’, ’
lep_promptLeptonVeto_TagWeight_0 ’,

’lep_promptLeptonVeto_TagWeight_1 ’,
’lep_promptLeptonVeto_TagWeight_2 ’, ’nJets_OR ’, ’

nJets_OR_MV2c10_70 ’, ’nJets_OR_T ’,
’nJets_OR_T_MV2c10_70 ’, ’nTaus_OR_Pt25 ’, ’

tau_MV2c10_0 ’, ’tau_btag70_0 ’, ’tau_btag70_1 ’,
’tau_charge_0 ’,
’tau_charge_1 ’, ’tau_fromPV_0 ’, ’tau_passEleBDT_0 ’,

’tau_passEleBDT_1 ’, ’tau_passMuonOLR_0 ’,
’tau_passMuonOLR_1 ’, ’tau_tagWeightBin_0 ’, ’

tau_tagWeightBin_1 ’, ’tau_tight_0 ’, ’
tau_tight_1 ’,

’top1Mass ’, ’top2Mass ’, ’total_charge ’, ’
trilep_type ’, ’jet_pT ’, ’total_leptons ’, ’HT*’]

channels = [’ is2LSS1Tau ’]

""" Older data """
data_folder = ’../ root_data / mc16a / older /’
file_names = [’345672 ’ , ’345673 ’ , ’345674 ’ , ’410155 ’ , ’410156 ’ ,

’410157 ’ , ’410218 ’ , ’410219 ’ , ’410220 ’]
filter_it (data_folder , file_names , features , channels)

data_folder = ’../ root_data / mc16d / older /’
file_names = [’345672 ’ , ’410155 ’ , ’410156 ’ , ’410157 ’ , ’410218 ’ ,

’410219 ’ , ’410220 ’]
filter_it (data_folder , file_names , features , channels)

""" Newer data """
data_folder = ’../ root_data / mc16a / newer /’
file_names = [’345873 ’ , ’345874 ’ , ’345875 ’ , ’413008 _wCharge ’]
filter_it (data_folder , file_names , features , channels)

data_folder = ’../ root_data / mc16d / newer /’
file_names = [’345873 ’ , ’345874 ’ , ’345875 ’ , ’413008 _wCharge ’]
filter_it (data_folder , file_names , features , channels)

""" Real data """
data_folder = ’../ root_data / mc16a /real/’
file_names = [’data15 ’, ’data16 ’]
filter_it (data_folder , file_names , features , channels)

data_folder = ’../ root_data / mc16d /real/’
file_names = [’data17 ’]
filter_it (data_folder , file_names , features , channels)

if __name__ == ’__main__ ’:
""" Script demonstrating pkl files filtering .

In this script several files are opened and filtered . Saving is
performed in the end.

"""

main ()

233

D. Code ..
D.2.3 data_prepare.py

"""
Last modified May 19 2020
@author : Jakub Maly
"""

import utils . ml_utils as ml_utils

Use new features (77 instead of 83)
NEW_FEAT = False
NEW_FEAT = True

def main ():
""" mc16a / older - mainly used for training """
if NEW_FEAT :

data = {0: [’../ root_data / mc16a / older /345672 _fil_new .pkl ’, ’../
root_data / mc16a / older /345673 _fil_new .pkl ’,

’../ root_data / mc16a / older /345674 _fil_new .pkl ’],
1: [’../ root_data / mc16a / older /410155 _fil_new .pkl ’],
2: [’../ root_data / mc16a / older /410156 _fil_new .pkl ’, ’../

root_data / mc16a / older /410157 _fil_new .pkl ’,
’../ root_data / mc16a / older /410218 _fil_new .pkl ’, ’../

root_data / mc16a / older /410219 _fil_new .pkl ’,
’../ root_data / mc16a / older /410220 _fil_new .pkl ’]

}
else:

data = {0: [’../ root_data / mc16a / older /345672 _fil.pkl ’, ’../
root_data / mc16a / older /345673 _fil.pkl ’,

’../ root_data / mc16a / older /345674 _fil.pkl ’],
1: [’../ root_data / mc16a / older /410155 _fil.pkl ’],
2: [’../ root_data / mc16a / older /410156 _fil.pkl ’, ’../

root_data / mc16a / older /410157 _fil.pkl ’,
’../ root_data / mc16a / older /410218 _fil.pkl ’, ’../

root_data / mc16a / older /410219 _fil.pkl ’,
’../ root_data / mc16a / older /410220 _fil.pkl ’]

}

X, y, f = ml_utils . get_X_y_f_multiclass (data , {’verbose ’: 10})

if NEW_FEAT :
ml_utils . save_compress (X, ’data/older ’, ’X_fil_new_com_mc16a ’,

’gzip ’)
ml_utils .save(y, ’data/older ’, ’y_fil_new_mc16a ’)
ml_utils .save(f, ’data/older ’, ’f_fil_new_mc16a ’)

else:
ml_utils . save_compress (X, ’data/older ’, ’X_fil_com_mc16a ’, ’

gzip ’)
ml_utils .save(y, ’data/older ’, ’y_fil_mc16a ’)
ml_utils .save(f, ’data/older ’, ’f_fil_mc16a ’)

""" mc16d / older - mainly used for testing """
if NEW_FEAT :

data = {0: [’../ root_data / mc16d / older /345672 _fil_new .pkl ’],
1: [’../ root_data / mc16d / older /410155 _fil_new .pkl ’],
2: [’../ root_data / mc16d / older /410156 _fil_new .pkl ’, ’../

root_data / mc16d / older /410157 _fil_new .pkl ’,
’../ root_data / mc16d / older /410218 _fil_new .pkl ’, ’../

root_data / mc16d / older /410219 _fil_new .pkl ’,
’../ root_data / mc16d / older /410220 _fil_new .pkl ’]

}
else:

data = {0: [’../ root_data / mc16d / older /345672 _fil.pkl ’],
1: [’../ root_data / mc16d / older /410155 _fil.pkl ’],

234

....................................... D.2. Scripts

2: [’../ root_data / mc16d / older /410156 _fil.pkl ’, ’../
root_data / mc16d / older /410157 _fil.pkl ’,
’../ root_data / mc16d / older /410218 _fil.pkl ’, ’../

root_data / mc16d / older /410219 _fil.pkl ’,
’../ root_data / mc16d / older /410220 _fil.pkl ’]

}

X, y, f = ml_utils . get_X_y_f_multiclass (data , {’verbose ’: 10})

if NEW_FEAT :
ml_utils . save_compress (X, ’data/older ’, ’X_fil_new_com_mc16d ’,

’gzip ’)
ml_utils .save(y, ’data/older ’, ’y_fil_new_mc16d ’)
ml_utils .save(f, ’data/older ’, ’f_fil_new_mc16d ’)

else:
ml_utils . save_compress (X, ’data/older ’, ’X_fil_com_mc16d ’, ’

gzip ’)
ml_utils .save(y, ’data/older ’, ’y_fil_mc16d ’)
ml_utils .save(f, ’data/older ’, ’f_fil_mc16d ’)

""" newer / mc16a & mc16d - mainly used for testing and comparison with
internal note """

if NEW_FEAT :
data = {

0: [’../ root_data / mc16a / newer /345873 _fil_new .pkl ’, ’../
root_data / mc16a / newer /345874 _fil_new .pkl ’,
’../ root_data / mc16a / newer /345875 _fil_new .pkl ’, ’../

root_data / mc16d / newer /345873 _fil_new .pkl ’,
’../ root_data / mc16d / newer /345874 _fil_new .pkl ’, ’../

root_data / mc16d / newer /345875 _fil_new .pkl ’],
1: [’../ root_data / mc16a / newer /413008 _wCharge_fil_new .pkl ’,

’../ root_data / mc16d / newer /413008 _wCharge_fil_new .pkl ’],
2: [’../ root_data / mc16a / newer /410156 _fil_new .pkl ’, ’../

root_data / mc16a / newer /410157 _fil_new .pkl ’,
’../ root_data / mc16a / newer /410218 _fil_new .pkl ’, ’../

root_data / mc16a / newer /410219 _fil_new .pkl ’,
’../ root_data / mc16a / newer /410220 _fil_new .pkl ’, ’../

root_data / mc16d / newer /410156 _fil_new .pkl ’,
’../ root_data / mc16d / newer /410157 _fil_new .pkl ’, ’../

root_data / mc16d / newer /410218 _fil_new .pkl ’,
’../ root_data / mc16d / newer /410219 _fil_new .pkl ’, ’../

root_data / mc16d / newer /410220 _fil_new .pkl ’]
}

else:
data = {0: [’../ root_data / mc16a / newer /345873 _fil.pkl ’, ’../

root_data / mc16a / newer /345874 _fil.pkl ’,
’../ root_data / mc16a / newer /345875 _fil.pkl ’, ’../

root_data / mc16d / newer /345873 _fil.pkl ’,
’../ root_data / mc16d / newer /345874 _fil.pkl ’, ’../

root_data / mc16d / newer /345875 _fil.pkl ’],
1: [’../ root_data / mc16a / newer /413008 _wCharge_fil .pkl ’,

’../ root_data / mc16d / newer /413008 _wCharge_fil .pkl ’],
2: [’../ root_data / mc16a / newer /410156 _fil.pkl ’, ’../

root_data / mc16a / newer /410157 _fil.pkl ’,
’../ root_data / mc16a / newer /410218 _fil.pkl ’, ’../

root_data / mc16a / newer /410219 _fil.pkl ’,
’../ root_data / mc16a / newer /410220 _fil.pkl ’, ’../

root_data / mc16d / newer /410156 _fil.pkl ’,
’../ root_data / mc16d / newer /410157 _fil.pkl ’, ’../

root_data / mc16d / newer /410218 _fil.pkl ’,
’../ root_data / mc16d / newer /410219 _fil.pkl ’, ’../

root_data / mc16d / newer /410220 _fil.pkl ’]
}

X, y, f = ml_utils . get_X_y_f_multiclass (data , {’verbose ’: 10})

235

D. Code ..
if NEW_FEAT :

ml_utils . save_compress (X, ’data/newer ’, ’
X_fil_new_com_mc16a_mc16d ’, ’gzip ’)

ml_utils .save(y, ’data/newer ’, ’y_fil_new_mc16a_mc16d ’)
ml_utils .save(f, ’data/newer ’, ’f_fil_new_mc16a_mc16d ’)

else:
ml_utils . save_compress (X, ’data/newer ’, ’X_fil_com_mc16a_mc16d

’, ’gzip ’)
ml_utils .save(y, ’data/newer ’, ’y_fil_mc16a_mc16d ’)
ml_utils .save(f, ’data/newer ’, ’f_fil_mc16a_mc16d ’)

""" real/ mc16a & mc16d - testing """
if NEW_FEAT :

data = [’../ root_data / mc16a /real/ data15_fil_new .pkl ’, ’../
root_data / mc16a /real/ data16_fil_new .pkl ’,

’../ root_data / mc16d /real/ data17_fil_new .pkl ’]
else:

data = [’../ root_data / mc16a /real/ data15_fil .pkl ’, ’../ root_data
/ mc16a /real/ data16_fil .pkl ’,

’../ root_data / mc16d /real/ data17_fil .pkl ’]

X, f = ml_utils . get_X_f_multiclass (data , {’verbose ’: 10})

if NEW_FEAT :
ml_utils . save_compress (X, ’data/real ’, ’

X_fil_new_com_mc16a_mc16d ’, ’gzip ’)
ml_utils .save(f, ’data/real ’, ’f_fil_new_mc16a_mc16d ’)

else:
ml_utils . save_compress (X, ’data/real ’, ’X_fil_com_mc16a_mc16d ’,

’gzip ’)
ml_utils .save(f, ’data/real ’, ’f_fil_mc16a_mc16d ’)

if __name__ == ’__main__ ’:
""" Script demonstrating data preparation .

In this script several files are opened and used to form data
matrix X and label vector y which are saved together

with features vector f.
"""

main ()

D.2.4 data_split.py

"""
Last modified May 19 2020
@author : Jakub Maly
"""

import utils . ml_utils as ml_utils

import numpy as np

from sklearn . model_selection import train_test_split

Use new features (77 instead of 83)
NEW_FEAT = False
NEW_FEAT = True

def main ():
random_state = 0

236

....................................... D.2. Scripts

train_split = 80
test_split = 100 - train_split

""" older / mc16a - train and test splits """
if NEW_FEAT :

X = ml_utils . load_compress (’data/ older / X_fil_new_com_mc16a .pkl.
gzip ’, ’gzip ’)

y = ml_utils .load(’data/ older / y_fil_new_mc16a .pkl ’)
f = ml_utils .load(’data/ older / f_fil_new_mc16a .pkl ’)

else:
X = ml_utils . load_compress (’data/ older / X_fil_com_mc16a .pkl.gzip

’, ’gzip ’)
y = ml_utils .load(’data/ older / y_fil_mc16a .pkl ’)
f = ml_utils .load(’data/ older / f_fil_mc16a .pkl ’)

Shuffle and slit data
X_train , X_test , y_train , y_test = train_test_split (X, y,

random_state = random_state , train_size = train_split / 100)
Returns data valid for channel , also removes channel from

features
X_ch , _, y_ch , _, _ = ml_utils . apply_channel (X, X, y, y, f, ’

is2LSS1Tau ’)
X_train_ch , X_test_ch , y_train_ch , y_test_ch , _ = ml_utils .

apply_channel (X_train , X_test , y_train , y_test , f,
’

is2LSS1Tau
’)

Removes channel from features
X, _, f_new = ml_utils . remove_channel (X, X, f, ’is2LSS1Tau ’)
X_train , X_test , _ = ml_utils . remove_channel (X_train , X_test , f, ’

is2LSS1Tau ’)

Save
if NEW_FEAT :

ml_utils . save_compress (X, ’splits /older ’, ’X_new_mc16a ’, ’gzip
’)

ml_utils .save(y, ’splits /older ’, ’y_new_mc16a ’)
ml_utils . save_compress (X_ch , ’splits /older ’, ’X_new_ch_mc16a ’,

’gzip ’)
ml_utils .save(y_ch , ’splits /older ’, ’y_new_ch_mc16a ’)
ml_utils . save_compress (X_train , ’splits /older ’, ’X_new_train_ {}

_mc16a ’. format (train_split), ’gzip ’)
ml_utils .save(y_train , ’splits /older ’, ’y_new_train_ {} _mc16a ’.

format (train_split))
ml_utils . save_compress (X_test , ’splits /older ’, ’X_new_test_ {}

_mc16a ’. format (test_split), ’gzip ’)
ml_utils .save(y_test , ’splits /older ’, ’y_new_test_ {} _mc16a ’.

format (test_split))
ml_utils . save_compress (X_train_ch , ’splits /older ’, ’

X_new_train_ {} _ch_mc16a ’. format (train_split), ’gzip ’)
ml_utils .save(y_train_ch , ’splits /older ’, ’y_new_train_ {}

_ch_mc16a ’. format (train_split))
ml_utils . save_compress (X_test_ch , ’splits /older ’, ’X_new_test_

{} _ch_mc16a ’. format (test_split), ’gzip ’)
ml_utils .save(y_test_ch , ’splits /older ’, ’y_new_test_ {}

_ch_mc16a ’. format (test_split))
ml_utils .save(f_new , ’splits /older ’, ’f_new_mc16a ’)

else:
ml_utils . save_compress (X, ’splits /older ’, ’X_mc16a ’, ’gzip ’)
ml_utils .save(y, ’splits /older ’, ’y_mc16a ’)
ml_utils . save_compress (X_ch , ’splits /older ’, ’X_ch_mc16a ’, ’

gzip ’)
ml_utils .save(y_ch , ’splits /older ’, ’y_ch_mc16a ’)
ml_utils . save_compress (X_train , ’splits /older ’, ’X_train_ {}

_mc16a ’. format (train_split), ’gzip ’)

237

D. Code ..
ml_utils .save(y_train , ’splits /older ’, ’y_train_ {} _mc16a ’.

format (train_split))
ml_utils . save_compress (X_test , ’splits /older ’, ’X_test_ {} _mc16a

’. format (test_split), ’gzip ’)
ml_utils .save(y_test , ’splits /older ’, ’y_test_ {} _mc16a ’. format (

test_split))
ml_utils . save_compress (X_train_ch , ’splits /older ’, ’X_train_ {}

_ch_mc16a ’. format (train_split), ’gzip ’)
ml_utils .save(y_train_ch , ’splits /older ’, ’y_train_ {} _ch_mc16a

’. format (train_split))
ml_utils . save_compress (X_test_ch , ’splits /older ’, ’X_test_ {}

_ch_mc16a ’. format (test_split), ’gzip ’)
ml_utils .save(y_test_ch , ’splits /older ’, ’y_test_ {} _ch_mc16a ’.

format (test_split))
ml_utils .save(f_new , ’splits /older ’, ’f_mc16a ’)

""" older / mc16d - test split """
f_prev = f

if NEW_FEAT :
X = ml_utils . load_compress (’data/ older / X_fil_new_com_mc16d .pkl.

gzip ’, ’gzip ’)
y = ml_utils .load(’data/ older / y_fil_new_mc16d .pkl ’)
f = ml_utils .load(’data/ older / f_fil_new_mc16d .pkl ’)

else:
X = ml_utils . load_compress (’data/ older / X_fil_com_mc16d .pkl.gzip

’, ’gzip ’)
y = ml_utils .load(’data/ older / y_fil_mc16d .pkl ’)
f = ml_utils .load(’data/ older / f_fil_mc16d .pkl ’)

Check if new data have same feature order (can get shuffled
during conversion)

X, y, f = ml_utils . check_feature_order (X, y, f, f_prev)

X_ch , _, y_ch , _, _ = ml_utils . apply_channel (X, X, y, y, f, ’
is2LSS1Tau ’)

X, _, f_new = ml_utils . remove_channel (X, X, f, ’is2LSS1Tau ’)

if NEW_FEAT :
ml_utils . save_compress (X, ’splits /older ’, ’X_new_mc16d ’, ’gzip

’)
ml_utils .save(y, ’splits /older ’, ’y_new_mc16d ’)
ml_utils . save_compress (X_ch , ’splits /older ’, ’X_new_ch_mc16d ’,

’gzip ’)
ml_utils .save(y_ch , ’splits /older ’, ’y_new_ch_mc16d ’)
ml_utils .save(f_new , ’splits /older ’, ’f_new_mc16d ’)

else:
ml_utils . save_compress (X, ’splits /older ’, ’X_mc16d ’, ’gzip ’)
ml_utils .save(y, ’splits /older ’, ’y_mc16d ’)
ml_utils . save_compress (X_ch , ’splits /older ’, ’X_ch_mc16d ’, ’

gzip ’)
ml_utils .save(y_ch , ’splits /older ’, ’y_ch_mc16d ’)
ml_utils .save(f_new , ’splits /older ’, ’f_mc16d ’)

""" newer / mc16a & mc16d - train and test splits """
if NEW_FEAT :

X = ml_utils . load_compress (’data/ newer /
X_fil_new_com_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

y = ml_utils .load(’data/ newer / y_fil_new_mc16a_mc16d .pkl ’)
f = ml_utils .load(’data/ newer / f_fil_new_mc16a_mc16d .pkl ’)

else:
X = ml_utils . load_compress (’data/ newer / X_fil_com_mc16a_mc16d .

pkl.gzip ’, ’gzip ’)
y = ml_utils .load(’data/ newer / y_fil_mc16a_mc16d .pkl ’)
f = ml_utils .load(’data/ newer / f_fil_mc16a_mc16d .pkl ’)

238

....................................... D.2. Scripts

X, y, f = ml_utils . check_feature_order (X, y, f, f_prev)

Shuffle and slit data
X_train , X_test , y_train , y_test = train_test_split (X, y,

random_state = random_state , train_size = train_split / 100)

X_ch , _, y_ch , _, _ = ml_utils . apply_channel (X, X, y, y, f, ’
is2LSS1Tau ’)

X_train_ch , X_test_ch , y_train_ch , y_test_ch , _ = ml_utils .
apply_channel (X_train , X_test , y_train , y_test , f,

’
is2LSS1Tau
’)

X, _, f_new = ml_utils . remove_channel (X, X, f, ’is2LSS1Tau ’)
X_train , X_test , _ = ml_utils . remove_channel (X_train , X_test , f, ’

is2LSS1Tau ’)

if NEW_FEAT :
ml_utils . save_compress (X, ’splits /newer ’, ’X_new_mc16a_mc16d ’,

’gzip ’)
ml_utils .save(y, ’splits /newer ’, ’y_new_mc16a_mc16d ’)
ml_utils . save_compress (X_train , ’splits /newer ’, ’X_new_train_ {}

_mc16a_mc16d ’. format (train_split), ’gzip ’)
ml_utils .save(y_train , ’splits /newer ’, ’y_new_train_ {}

_mc16a_mc16d ’. format (train_split))
ml_utils . save_compress (X_test , ’splits /newer ’, ’X_new_test_ {}

_mc16a_mc16d ’. format (test_split), ’gzip ’)
ml_utils .save(y_test , ’splits /newer ’, ’y_new_test_ {}

_mc16a_mc16d ’. format (test_split))
ml_utils . save_compress (X_train_ch , ’splits /newer ’, ’

X_new_train_ {} _ch_mc16a_mc16d ’. format (train_split), ’gzip ’)
ml_utils .save(y_train_ch , ’splits /newer ’, ’y_new_train_ {}

_ch_mc16a_mc16d ’. format (train_split))
ml_utils . save_compress (X_test_ch , ’splits /newer ’, ’X_new_test_

{} _ch_mc16a_mc16d ’. format (test_split), ’gzip ’)
ml_utils .save(y_test_ch , ’splits /newer ’, ’y_new_test_ {}

_ch_mc16a_mc16d ’. format (test_split))
ml_utils . save_compress (X_ch , ’splits /newer ’, ’

X_new_ch_mc16a_mc16d ’, ’gzip ’)
ml_utils .save(y_ch , ’splits /newer ’, ’y_new_ch_mc16a_mc16d ’)
ml_utils .save(f_new , ’splits /newer ’, ’f_new_mc16a_mc16d ’)

else:
ml_utils . save_compress (X, ’splits /newer ’, ’X_mc16a_mc16d ’, ’

gzip ’)
ml_utils .save(y, ’splits /newer ’, ’y_mc16a_mc16d ’)
ml_utils . save_compress (X_train , ’splits /newer ’, ’X_train_ {}

_mc16a_mc16d ’. format (train_split), ’gzip ’)
ml_utils .save(y_train , ’splits /newer ’, ’y_train_ {} _mc16a_mc16d

’. format (train_split))
ml_utils . save_compress (X_test , ’splits /newer ’, ’X_test_ {}

_mc16a_mc16d ’. format (test_split), ’gzip ’)
ml_utils .save(y_test , ’splits /newer ’, ’y_test_ {} _mc16a_mc16d ’.

format (test_split))
ml_utils . save_compress (X_train_ch , ’splits /newer ’, ’X_train_ {}

_ch_mc16a_mc16d ’. format (train_split), ’gzip ’)
ml_utils .save(y_train_ch , ’splits /newer ’, ’y_train_ {}

_ch_mc16a_mc16d ’. format (train_split))
ml_utils . save_compress (X_test_ch , ’splits /newer ’, ’X_test_ {}

_ch_mc16a_mc16d ’. format (test_split), ’gzip ’)
ml_utils .save(y_test_ch , ’splits /newer ’, ’y_test_ {}

_ch_mc16a_mc16d ’. format (test_split))
ml_utils . save_compress (X_ch , ’splits /newer ’, ’X_ch_mc16a_mc16d

’, ’gzip ’)
ml_utils .save(y_ch , ’splits /newer ’, ’y_ch_mc16a_mc16d ’)
ml_utils .save(f_new , ’splits /newer ’, ’f_mc16a_mc16d ’)

239

D. Code ..
""" SVC train split : 10% of original train split - newer data are

used for NEW_FEAT """
if NEW_FEAT :

X = ml_utils . load_compress (’ splits / newer / X_new_mc16a_mc16d .pkl.
gzip ’, ’gzip ’)

y = ml_utils .load(’ splits / newer / y_new_mc16a_mc16d .pkl ’)
X_train , X_test , y_train , y_test = train_test_split (X, y,

train_size =0.1)
ml_utils . save_compress (X_train , ’splits /newer ’, ’

X_new_mc16a_mc16d_svc ’, ’gzip ’)
ml_utils .save(y_train , ’splits /newer ’, ’y_new_mc16a_mc16d_svc ’)

else:
X = ml_utils . load_compress (’ splits / older / X_mc16a .pkl.gzip ’, ’

gzip ’)
y = ml_utils .load(’ splits / older / y_mc16a .pkl ’)
X_train , X_test , y_train , y_test = train_test_split (X, y,

train_size =0.1)
ml_utils . save_compress (X_train , ’splits /older ’, ’X_mc16a_svc ’,

’gzip ’)
ml_utils .save(y_train , ’splits /older ’, ’y_mc16a_svc ’)

""" real/ mc16a & mc16d - test split """
if NEW_FEAT :

X = ml_utils . load_compress (’data/real/ X_fil_new_com_mc16a_mc16d
.pkl.gzip ’, ’gzip ’)

y = np. zeros (X. shape [0])
f = ml_utils .load(’data/real/ f_fil_new_mc16a_mc16d .pkl ’)

else:
X = ml_utils . load_compress (’data/real/ X_fil_com_mc16a_mc16d .pkl

.gzip ’, ’gzip ’)
y = np. zeros (X. shape [0])
f = ml_utils .load(’data/real/ f_fil_mc16a_mc16d .pkl ’)

X, y, f = ml_utils . check_feature_order (X, y, f, f_prev)

X_ch , _, y_ch , _, _ = ml_utils . apply_channel (X, X, y, y, f, ’
is2LSS1Tau ’)

X, _, f_new = ml_utils . remove_channel (X, X, f, ’is2LSS1Tau ’)

if NEW_FEAT :
ml_utils . save_compress (X, ’splits /real ’, ’X_new_mc16a_mc16d ’, ’

gzip ’)
ml_utils . save_compress (X_ch , ’splits /real ’, ’

X_new_ch_mc16a_mc16d ’, ’gzip ’)
ml_utils .save(f_new , ’splits /real ’, ’f_new_mc16a_mc16d ’)

else:
ml_utils . save_compress (X, ’splits /real ’, ’X_mc16a_mc16d ’, ’gzip

’)
ml_utils . save_compress (X_ch , ’splits /real ’, ’X_ch_mc16a_mc16d ’,

’gzip ’)
ml_utils .save(f_new , ’splits /real ’, ’f_mc16a_mc16d ’)

if __name__ == ’__main__ ’:
""" Script demonstrating data splitting .

In this script data are opened and split . Channel is obtained from
the splits and channel feature is removed .

"""

main ()

240

....................................... D.2. Scripts

D.2.5 data_view.py

"""
Last modified May 18 2020
@author : Jakub Maly
"""

import utils . ml_utils as ml_utils

import numpy as np

Use new features (77 instead of 83)
NEW_FEAT = False
NEW_FEAT = True

Print features ’ names
FEATURES = False
FEATURES = True

Plot and save histograms - for training and real data
input files and output folder need to be changed manually in the code

if histograms for different data are desired
HISTOGRAMS = False
HISTOGRAMS = True

def main ():
""" older / mc16a """
if NEW_FEAT :

X = ml_utils . load_compress (’ splits / older / X_new_mc16a .pkl.gzip ’,
’gzip ’)

y = ml_utils .load(’ splits / older / y_new_mc16a .pkl ’)
X_ch = ml_utils . load_compress (’ splits / older / X_new_ch_mc16a .pkl.

gzip ’, ’gzip ’)
y_ch = ml_utils .load(’ splits / older / y_new_ch_mc16a .pkl ’)
f = ml_utils .load(’ splits / older / f_new_mc16a .pkl ’)

else:
X = ml_utils . load_compress (’ splits / older / X_mc16a .pkl.gzip ’, ’

gzip ’)
y = ml_utils .load(’ splits / older / y_mc16a .pkl ’)
X_ch = ml_utils . load_compress (’ splits / older / X_ch_mc16a .pkl.gzip

’, ’gzip ’)
y_ch = ml_utils .load(’ splits / older / y_ch_mc16a .pkl ’)
f = ml_utils .load(’ splits / older / f_mc16a .pkl ’)

n_feat = len(f)

print (’\ nolder mc16a ({} features) data :’. format (n_feat))
print (’ features in X: {} ’. format (X. shape [1]))
print (’ total data in X: {} ’. format (X. shape [0]))
print (’{} of ttH ’. format (sum(y == 0)))
print (’{} of ttW ’. format (sum(y == 1)))
print (’{} of ttZ ’. format (sum(y == 2)))

print (’\ nolder mc16a ({} features) data - channel :’. format (n_feat))
print (’ features in X_ch: {} ’. format (X_ch. shape [1]))
print (’ total data in X_ch: {} ’. format (X_ch. shape [0]))
print (’{} of ttH ’. format (sum(y_ch == 0)))
print (’{} of ttW ’. format (sum(y_ch == 1)))
print (’{} of ttZ ’. format (sum(y_ch == 2)))

""" older / mc16d """
if NEW_FEAT :

X = ml_utils . load_compress (’ splits / older / X_new_mc16d .pkl.gzip ’,
’gzip ’)

241

D. Code ..
y = ml_utils .load(’ splits / older / y_new_mc16d .pkl ’)
X_ch = ml_utils . load_compress (’ splits / older / X_new_ch_mc16d .pkl.

gzip ’, ’gzip ’)
y_ch = ml_utils .load(’ splits / older / y_new_ch_mc16d .pkl ’)
f = ml_utils .load(’ splits / older / f_new_mc16d .pkl ’)

else:
X = ml_utils . load_compress (’ splits / older / X_mc16d .pkl.gzip ’, ’

gzip ’)
y = ml_utils .load(’ splits / older / y_mc16d .pkl ’)
X_ch = ml_utils . load_compress (’ splits / older / X_ch_mc16d .pkl.gzip

’, ’gzip ’)
y_ch = ml_utils .load(’ splits / older / y_ch_mc16d .pkl ’)
f = ml_utils .load(’ splits / older / f_mc16d .pkl ’)

n_feat = len(f)

print (’\ nolder mc16d ({} features) data :’. format (n_feat))
print (’ features in X: {} ’. format (X. shape [1]))
print (’ total data in X: {} ’. format (X. shape [0]))
print (’{} of ttH ’. format (sum(y == 0)))
print (’{} of ttW ’. format (sum(y == 1)))
print (’{} of ttZ ’. format (sum(y == 2)))

print (’\ nolder mc16d ({} features) data - channel :’. format (n_feat))
print (’ features in X_ch: {} ’. format (X_ch. shape [1]))
print (’ total data in X_ch: {} ’. format (X_ch. shape [0]))
print (’{} of ttH ’. format (sum(y_ch == 0)))
print (’{} of ttW ’. format (sum(y_ch == 1)))
print (’{} of ttZ ’. format (sum(y_ch == 2)))

""" newer / mc16a & mc16d """
if NEW_FEAT :

X = ml_utils . load_compress (’ splits / newer / X_new_mc16a_mc16d .pkl.
gzip ’, ’gzip ’)

y = ml_utils .load(’ splits / newer / y_new_mc16a_mc16d .pkl ’)
X_ch = ml_utils . load_compress (’ splits / newer /

X_new_ch_mc16a_mc16d .pkl.gzip ’, ’gzip ’)
y_ch = ml_utils .load(’ splits / newer / y_new_ch_mc16a_mc16d .pkl ’)
f = ml_utils .load(’ splits / newer / f_new_mc16a_mc16d .pkl ’)

else:
X = ml_utils . load_compress (’ splits / newer / X_mc16a_mc16d .pkl.gzip

’, ’gzip ’)
y = ml_utils .load(’ splits / newer / y_mc16a_mc16d .pkl ’)
X_ch = ml_utils . load_compress (’ splits / newer / X_ch_mc16a_mc16d .

pkl.gzip ’, ’gzip ’)
y_ch = ml_utils .load(’ splits / newer / y_ch_mc16a_mc16d .pkl ’)
f = ml_utils .load(’ splits / newer / f_mc16a_mc16d .pkl ’)

print (’\ nnewer mc16a & mc16d ({} features) data :’. format (n_feat))
print (’ features in X: {} ’. format (X. shape [1]))
print (’ total data in X: {} ’. format (X. shape [0]))
print (’{} of ttH ’. format (sum(y == 0)))
print (’{} of ttW ’. format (sum(y == 1)))
print (’{} of ttZ ’. format (sum(y == 2)))

print (’\ nnewer mc16a & mc16d ({} features) data - channel :’. format (
n_feat))

print (’ features in X_ch: {} ’. format (X_ch. shape [1]))
print (’ total data in X_ch: {} ’. format (X_ch. shape [0]))
print (’{} of ttH ’. format (sum(y_ch == 0)))
print (’{} of ttW ’. format (sum(y_ch == 1)))
print (’{} of ttZ ’. format (sum(y_ch == 2)))

""" real/ mc16a & mc16d """
if NEW_FEAT :

X = ml_utils . load_compress (’ splits /real/ X_new_mc16a_mc16d .pkl.

242

....................................... D.2. Scripts

gzip ’, ’gzip ’)
X_ch = ml_utils . load_compress (’ splits /real/ X_new_ch_mc16a_mc16d

.pkl.gzip ’, ’gzip ’)
f = ml_utils .load(’ splits /real/ f_new_mc16a_mc16d .pkl ’)

else:
X = ml_utils . load_compress (’ splits /real/ X_mc16a_mc16d .pkl.gzip

’, ’gzip ’)
X_ch = ml_utils . load_compress (’ splits /real/ X_ch_mc16a_mc16d .pkl

.gzip ’, ’gzip ’)
f = ml_utils .load(’ splits /real/ f_mc16a_mc16d .pkl ’)

print (’\ nreal mc16a & mc16d ({} features) data :’. format (n_feat))
print (’ features in X: {} ’. format (X. shape [1]))
print (’ total data in X: {} ’. format (X. shape [0]))

print (’\ nreal mc16a & mc16d ({} features) data - channel :’. format (
n_feat))

print (’ features in X_ch: {} ’. format (X_ch. shape [1]))
print (’ total data in X_ch: {} ’. format (X_ch. shape [0]))

if FEATURES :
print (’\n Features :’)
for feature in f:

print (feature)

if HISTOGRAMS :
""" older /mc16a , 83 features """
X = ml_utils . load_compress (’ splits / older / X_mc16a .pkl.gzip ’, ’

gzip ’)
y = ml_utils .load(’ splits / older / y_mc16a .pkl ’)
X_ch = ml_utils . load_compress (’ splits / older / X_ch_mc16a .pkl.gzip

’, ’gzip ’)
y_ch = ml_utils .load(’ splits / older / y_ch_mc16a .pkl ’)
f = ml_utils .load(’ splits / older / f_mc16a .pkl ’)

classes = {0: ’$t\ overline {t}H$ ’,
1: ’$t\ overline {t}W$ ’,
2: ’$t\ overline {t}Z$ ’}

for i, feature in enumerate (f):
ml_utils . plot_histograms_multiclass (X[:, i], y, classes ,

feature , saving =True ,
save_folder =’data/ older

/ histograms_mc16a
/’)

ml_utils . plot_histograms_multiclass (X_ch [:, i], y_ch ,
classes , feature , saving =True ,

save_folder =’data/ older
/
histograms_ch_mc16a
/’)

""" real/ mc16a &mc16d , 83 features """
X = ml_utils . load_compress (’ splits /real/ X_mc16a_mc16d .pkl.gzip

’, ’gzip ’)
y = np. zeros (X. shape [0])
X_ch = ml_utils . load_compress (’ splits /real/ X_ch_mc16a_mc16d .pkl

.gzip ’, ’gzip ’)
y_ch = np. zeros (X_ch. shape [0])
f = ml_utils .load(’ splits /real/ f_mc16a_mc16d .pkl ’)

classes = {0: ’unknown ’}

in case of ’ValueError : array must not contain infs or NaNs ’
navigate to the ’scipy _lib\ _util .py ’, line 239

and change it to ’a = np. nan_to_num (a)’

243

D. Code ..
this is probably caused by kernel estimation function

resulting in nan matrix , even when data have real values
for i, feature in enumerate (f):

ml_utils . plot_histograms_multiclass (X[:, i], y, classes ,
feature , saving =True ,

save_folder =’data/real/
histograms_mc16a_mc16d
/’)

ml_utils . plot_histograms_multiclass (X_ch [:, i], y_ch ,
classes , feature , saving =True ,

save_folder =’data/real/
histograms_ch_mc16a_mc16d
/’)

if __name__ == ’__main__ ’:
""" Script demonstrating how to get information about final data.

In this script several files are opened and information is printed
about them. Code sections can be uncommented to

obtain list of features or histograms .
"""

main ()

D.2.6 tuning scripts (only RFC listed)

"""
Last modified May 9 2020
@author : Jakub Maly
"""

import utils . ml_utils as ml_utils

from sklearn . ensemble import RandomForestClassifier
from sklearn . model_selection import GridSearchCV
from sklearn . preprocessing import StandardScaler
from sklearn . pipeline import Pipeline
from sklearn . metrics import make_scorer

import numpy as np

import datetime
import sys

If use non - binary classification (default 1)
MULTICLASS = 1
Use channel data
CHANNEL = 1

Number of cores for computations
N_JOBS = 8

Additional counter in case of multiple files for one day
counter = 1

2020 -03 -24
min_samples_split = range (2, 103 , 5)
min_samples_split = range (107 , 203 , 5)
min_samples_split = range (2, 203 , 5)

2020 -03 -25
n_estimators = range (50 , 151 , 10)

244

....................................... D.2. Scripts

n_estimators = range (160 , 201 , 10)
n_estimators = range (220 , 401 , 20)
n_estimators = range (420 , 601 , 20)
n_estimators = range (50 , 601 , 10)

2020 -03 -26
max_depth = range (10 , 101 , 5)

2020 -03 -27
max_features = np. linspace (0.05 , 1, 20)

2020 -03 -28
max_leaf_nodes = range (2, 103 , 5)
max_leaf_nodes = range (107 , 203 , 5)
max_leaf_nodes = range (207 , 303 , 5)
max_leaf_nodes = range (307 , 403 , 5)
max_leaf_nodes = range (407 , 503 , 5)
max_leaf_nodes = range (507 , 603 , 5)
max_leaf_nodes = range (2, 603 , 5)

2020 -03 -29
min_impurity_decrease = np. linspace (0, 0.1 , 21)

2020 -03 -30
ccp_alpha = np. linspace (0, 0.1 , 21)

2020 -03 -31
max_samples = np. linspace (0.05 , 1, 20)

2020 -04 -01
oob_score = [False , True]

2020 -04 -02
criterion = [’gini ’, ’entropy ’]

def main ():
if not CHANNEL :

X = ml_utils . load_compress (’ splits / older / X_mc16a .pkl.gzip ’, ’
gzip ’)

y = ml_utils .load(’ splits / older / y_mc16a .pkl ’)
else:

X = ml_utils . load_compress (’ splits / older / X_ch_mc16a .pkl.gzip ’,
’gzip ’)

y = ml_utils .load(’ splits / older / y_ch_mc16a .pkl ’)

Convert to single background problem
if not MULTICLASS :

y = [1.0 if el == 2.0 else el for el in y]
y = np. array (y)

Class weights
[ATL -COM -PHYS -2018 -410]
w_ttH = 5.5650
w_ttW = 4.9338 + 3.9677
w_sum = w_ttH + w_ttW

class_weights = {0: w_ttH / w_sum ,
1: w_ttW / w_sum }

parameters = {’ class_weight ’: class_weights }
else:

Class weights
[ATL -COM -PHYS -2018 -410]
w_ttH = 5.5650
w_ttW = 4.9338

245

D. Code ..
w_ttZ = 3.9677
w_sum = w_ttH + w_ttW + w_ttZ

class_weights = {0: w_ttH / w_sum ,
1: w_ttW / w_sum ,
2: w_ttZ / w_sum }

parameters = {’ class_weight ’: class_weights }

sc = StandardScaler ()
clf = RandomForestClassifier (** parameters)

pipe = Pipeline (steps =[
(’sc ’, sc),
(’clf ’, clf)])

grid_dict = { # ’clf__min_samples_split ’: min_samples_split ,
’clf__n_estimators ’: n_estimators ,
’clf__max_depth ’: max_depth ,
’clf__max_features ’: max_features ,
’clf__max_leaf_nodes ’: max_leaf_nodes ,
’clf__min_impurity_decrease ’: min_impurity_decrease ,
’clf__ccp_alpha ’: ccp_alpha ,
’clf__max_samples ’: max_samples ,
’clf__oob_score ’: oob_score ,
’clf__criterion ’: criterion

}

sc_dict = {’Accuracy ’: make_scorer (ml_utils . multiclass_accuracy),
’F1 Weighted ’: make_scorer (ml_utils . multiclass_f1 ,

average =’weighted ’) ,
’ROC AUC Weighted ’: make_scorer (ml_utils .

multiclass_roc_auc_score , average =’weighted ’,
multi_class =’ovr ’)

}

dt = datetime . datetime .now ()
dt = dt.date ()
if not CHANNEL :

dt = str(dt) + ’-’ + str(counter)
else:

dt = str(dt) + ’-’ + str(counter) + ’-ch ’

old_stdout = sys. stdout
log_file = open(’logs/ tuning_rfc_ {}. log ’. format (dt), ’w ’)
sys. stdout = log_file
print (’ Output : {’)

model = GridSearchCV (estimator =pipe , param_grid =grid_dict , scoring =
sc_dict , refit =’ROC AUC Weighted ’,

return_train_score =True , verbose =10 , n_jobs =
N_JOBS)

model = model .fit(X, y)

print (’}’)
print (’Best score : {’ + str(model . best_score_) + ’}’)
print (’Best params : {} ’. format (model . best_params_))
print (’ Results : {} ’. format (model . cv_results_))

ml_utils .save(model . cv_results_ , ’tuning ’, ’tuning_rfc_ {} ’. format (
dt))

sys. stdout = old_stdout
log_file . close ()

246

....................................... D.2. Scripts

if __name__ == ’__main__ ’:
""" Script demonstrating RFC tuning process .

In this script RFC parameters are tuned . Also three metrics to
measure performance are introduced . Uncommenting

desired parameter will make it being tuned . Only one can be tuned
at the time. Results are store in log and tuning

folders .
"""

main ()

D.2.7 tuning results view scripts (only RFC listed)

"""
Last modified May 11 2020
@author : Jakub Maly
"""

import utils . ml_utils as ml_utils

from sklearn . metrics import make_scorer
import matplotlib . pyplot as plt
import pandas as pd
from tabulate import tabulate

Use channel results
CHANNEL = 1

def main ():
Scorers
scorer_dict = {’Accuracy ’: make_scorer (ml_utils . multiclass_accuracy

),
’F1 Weighted ’: make_scorer (ml_utils . multiclass_f1 ,

average =’weighted ’) ,
’ROC AUC Weighted ’: make_scorer (ml_utils .

multiclass_roc_auc_score , average =’weighted ’,
multi_class =’ovr ’)

}

""" min_samples_split """
parameter = ’min_samples_split ’
if not CHANNEL :
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -24 -1. pkl

’) , ml_utils .load(’ tuning / tuning_rfc_2020 -03 -24 -2. pkl ’)]
score_y_min = 0.5
time_y_max = 1000
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -24 -1 - ch.

pkl ’)]
score_y_min = 0
time_y_max = 10
#
graph boundaries
score_x_min = 0
score_x_max = 204

""" n_estimators """
parameter = ’n_estimators ’
if not CHANNEL :

247

D. Code ..
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -25 -1. pkl

’) ,
ml_utils .load(’ tuning / tuning_rfc_2020 -03 -25 -2. pkl

’) ,
ml_utils .load(’ tuning / tuning_rfc_2020 -03 -25 -3. pkl

’) ,
ml_utils .load(’ tuning / tuning_rfc_2020 -03 -25 -4. pkl

’)]
score_y_min = 0.5
time_y_max = 5000
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -25 -1 - ch.

pkl ’)]
score_y_min = 0
time_y_max = 15
#
score_x_min = 45
score_x_max = 605

""" max_depth """
parameter = ’max_depth ’
if not CHANNEL :
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -26 -1. pkl

’)]
score_y_min = 0.5
time_y_max = 1000
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -26 -1 - ch.

pkl ’)]
score_y_min = 0
time_y_max = 10
#
score_x_min = 8
score_x_max = 102

""" max_features """
parameter = ’max_features ’
if not CHANNEL :
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -27 -1. pkl

’)]
score_y_min = 0.5
time_y_max = 7000
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -27 -1 - ch.

pkl ’)]
score_y_min = 0
time_y_max = 15
#
score_x_min = 0.03
score_x_max = 1.02

""" max_leaf_nodes """
parameter = ’max_leaf_nodes ’
if not CHANNEL :
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -28 -1. pkl

’) ,
ml_utils .load(’ tuning / tuning_rfc_2020 -03 -28 -2. pkl

’) ,
ml_utils .load(’ tuning / tuning_rfc_2020 -03 -28 -3. pkl

’) ,
ml_utils .load(’ tuning / tuning_rfc_2020 -03 -28 -4. pkl

’) ,
ml_utils .load(’ tuning / tuning_rfc_2020 -03 -28 -5. pkl

’) ,
ml_utils .load(’ tuning / tuning_rfc_2020 -03 -28 -6. pkl

’)]

248

....................................... D.2. Scripts

score_y_min = 0.5
time_y_max = 1000
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -28 -1 - ch.

pkl ’)]
score_y_min = 0
time_y_max = 10
#
score_x_min = 0
score_x_max = 604

""" min_impurity_decrease """
parameter = ’min_impurity_decrease ’
if not CHANNEL :
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -29 -1. pkl

’)]
score_y_min = 0.5
time_y_max = 800
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -29 -1 - ch.

pkl ’)]
score_y_min = 0
time_y_max = 10
#
score_x_min = -0.002
score_x_max = 0.102

""" ccp_alpha """
parameter = ’ccp_alpha ’
if not CHANNEL :
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -30 -1. pkl

’)]
score_y_min = 0.3
time_y_max = 20000
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -30 -1 - ch.

pkl ’)]
score_y_min = 0
time_y_max = 10
#
score_x_min = -0.002
score_x_max = 0.102

""" max_samples """
parameter = ’max_samples ’
if not CHANNEL :
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -31 -1. pkl

’)]
score_y_min = 0.5
time_y_max = 1500
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -03 -31 -1 - ch.

pkl ’)]
score_y_min = 0.4
time_y_max = 10
#
score_x_min = 0.03
score_x_max = 0.97

""" oob_score """
parameter = ’oob_score ’
if not CHANNEL :
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -04 -01 -1. pkl

’)]
score_y_min = 0.5
time_y_max = 1500

249

D. Code ..
else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -04 -01 -1 - ch.

pkl ’)]
score_y_min = 0.4
time_y_max = 10
#
score_x_min = -0.02
score_x_max = 1.02

""" criterion """
parameter = ’criterion ’
if not CHANNEL :

results = [ml_utils .load(’ tuning / tuning_rfc_2020 -04 -02 -1. pkl ’)]
score_y_min = 0.5
time_y_max = 3000

else:
results = [ml_utils .load(’ tuning / tuning_rfc_2020 -04 -02 -1 - ch.pkl

’)]
score_y_min = 0.4
time_y_max = 10

score_x_min = -0.02
score_x_max = 1.02

Prepare data in Pandas
df = None
for result in results :

if df is None:
df = pd. DataFrame (result)

else:
df = pd. concat ([df , pd. DataFrame (result)], ignore_index =

True)

Print pretty df table
print (tabulate (df , headers =’keys ’, tablefmt =’psql ’))

Substitute values for strings
if parameter == ’criterion ’:

df = df. replace (’gini ’, 0)
df = df. replace (’entropy ’, 1)

Plot data
ml_utils . plot_search_results (’RFC ’, df , scorer_dict , parameter ,

score_x_min , score_x_max , score_y_min , time_y_max)
plt.show ()

if __name__ == ’__main__ ’:
""" Script demonstrating processing of RFC tuning results .

In this script results from tuning are loaded and plotted . Both
score and time are observed . Results for parameter

can be obtained by uncommenting given section .
"""

main ()

250

....................................... D.2. Scripts

D.2.8 train scripts (only RFC listed)

"""
Last modified May 18 2020
@author : Jakub Maly
"""

import utils . ml_utils as ml_utils

import matplotlib . pyplot as plt

Use new features (77) and newer data
NEW = False
NEW = True

Train new classifier
TRAIN = 0
Use default parameters
DEFAULT = 0
Use channel
CHANNEL = 0
Test channel -data on full -data trained model (channel needs to be 1)
CROSSEVAL = 0
Test on older mc16d data
OLDER_MC16D = 0
Test on newer mc16a and mc16d data
NEWER = 0

Plot features importance
FEAT = 1

Number of cores available for training
N_JOBS = 8

def main ():
if TRAIN :

if not CHANNEL :
if NEW:

X_train = ml_utils . load_compress (’ splits / newer /
X_new_train_80_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

y_train = ml_utils .load(’ splits / newer /
y_new_train_80_mc16a_mc16d .pkl ’)

else:
X_train = ml_utils . load_compress (’ splits / older /

X_train_80_mc16a .pkl.gzip ’, ’gzip ’)
y_train = ml_utils .load(’ splits / older / y_train_80_mc16a .

pkl ’)
else:

if NEW:
X_train = ml_utils . load_compress (’ splits / newer /

X_train_80_ch_mc16a_mc16d .pkl.gzip ’, ’gzip ’)
y_train = ml_utils .load(’ splits / newer /

y_train_80_ch_mc16a_mc16d .pkl ’)
else:

X_train = ml_utils . load_compress (’ splits / older /
X_train_80_ch_mc16a .pkl.gzip ’, ’gzip ’)

y_train = ml_utils .load(’ splits / older /
y_train_80_ch_mc16a .pkl ’)

Class weights
[ATL -COM -PHYS -2018 -410]
w_ttH = 5.5650
w_ttW = 4.9338
w_ttZ = 3.9677

251

D. Code ..
w_sum = w_ttH + w_ttW + w_ttZ

class_weights = {0: w_ttH / w_sum ,
1: w_ttW / w_sum ,
2: w_ttZ / w_sum }

if DEFAULT :
parameters = {’ class_weight ’: class_weights ,

’n_jobs ’: N_JOBS }
elif not CHANNEL :

parameters = {’ n_estimators ’: 540 ,
’max_depth ’: 15,
’min_samples_split ’: 117 ,
’max_features ’: 0.3 ,
’max_leaf_nodes ’: 522 ,
’min_impurity_decrease ’: 0.0 ,
’ccp_alpha ’: 0.0 ,
’max_samples ’: 0.85 ,
’oob_score ’: True ,
’criterion ’: ’gini ’,
’class_weight ’: class_weights ,
’n_jobs ’: N_JOBS }

else:
parameters = {’ n_estimators ’: 50,

’max_depth ’: 10,
’min_samples_split ’: 122 ,
’max_features ’: 0.55 ,
’max_leaf_nodes ’: 47,
’min_impurity_decrease ’: 0.0 ,
’ccp_alpha ’: 0.0 ,
’max_samples ’: 0.85 ,
’oob_score ’: True ,
’criterion ’: ’gini ’,
’class_weight ’: class_weights ,
’n_jobs ’: N_JOBS }

model = ml_utils . train_model (X_train , y_train , ’RFC ’,
parameters)

if not CHANNEL :
if DEFAULT :

ml_utils .save(model , ’models ’, ’RFC_default %s’ % (’_new
’ if NEW else ’’))

else:
ml_utils .save(model , ’models ’, ’RFC_tuned %s’ % (’_new ’

if NEW else ’’))
else:

if DEFAULT :
ml_utils .save(model , ’models ’, ’RFC_default_ch %s’ % (’

_new ’ if NEW else ’’))
else:

ml_utils .save(model , ’models ’, ’RFC_tuned_ch %s’ % (’
_new ’ if NEW else ’’))

else:
if not CHANNEL :

if OLDER_MC16D :
X = ml_utils . load_compress (’ splits / older / X_mc16d .pkl.

gzip ’, ’gzip ’)
y = ml_utils .load(’ splits / older / y_mc16d .pkl ’)

elif NEWER :
X = ml_utils . load_compress (’ splits / newer / X_mc16a_mc16d .

pkl.gzip ’, ’gzip ’)
y = ml_utils .load(’ splits / newer / y_mc16a_mc16d .pkl ’)

else:
if NEW:

252

....................................... D.2. Scripts

X_train = ml_utils . load_compress (’ splits / newer /
X_new_train_80_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

y_train = ml_utils .load(’ splits / newer /
y_new_train_80_mc16a_mc16d .pkl ’)

X_test = ml_utils . load_compress (’ splits / newer /
X_new_test_20_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

y_test = ml_utils .load(’ splits / newer /
y_new_test_20_mc16a_mc16d .pkl ’)

else:
X_train = ml_utils . load_compress (’ splits / older /

X_train_80_mc16a .pkl.gzip ’, ’gzip ’)
y_train = ml_utils .load(’ splits / older /

y_train_80_mc16a .pkl ’)
X_test = ml_utils . load_compress (’ splits / older /

X_test_20_mc16a .pkl.gzip ’, ’gzip ’)
y_test = ml_utils .load(’ splits / older /

y_test_20_mc16a .pkl ’)

if DEFAULT :
model = ml_utils .load(’ models / RFC_default %s.pkl ’ % (’

_new ’ if NEW else ’’))
else:

model = ml_utils .load(’ models / RFC_tuned %s.pkl ’ % (’_new
’ if NEW else ’’))

else:
if OLDER_MC16D :

X = ml_utils . load_compress (’ splits / older / X_ch_mc16d .pkl
.gzip ’, ’gzip ’)

y = ml_utils .load(’ splits / older / y_ch_mc16d .pkl ’)
elif NEWER :

X = ml_utils . load_compress (’ splits / newer /
X_ch_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

y = ml_utils .load(’ splits / newer / y_ch_mc16a_mc16d .pkl ’)
else:

if NEW:
X_train = ml_utils . load_compress (’ splits / newer /

X_new_train_80_ch_mc16a_mc16d .pkl.gzip ’, ’gzip
’)

y_train = ml_utils .load(’ splits / newer /
y_new_train_80_ch_mc16a_mc16d .pkl ’)

X_test = ml_utils . load_compress (’ splits / newer /
X_new_test_20_ch_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

y_test = ml_utils .load(’ splits / newer /
y_new_test_20_ch_mc16a_mc16d .pkl ’)

else:
X_train = ml_utils . load_compress (’ splits / older /

X_train_80_ch_mc16a .pkl.gzip ’, ’gzip ’)
y_train = ml_utils .load(’ splits / older /

y_train_80_ch_mc16a .pkl ’)
X_test = ml_utils . load_compress (’ splits / older /

X_test_20_ch_mc16a .pkl.gzip ’, ’gzip ’)
y_test = ml_utils .load(’ splits / older /

y_test_20_ch_mc16a .pkl ’)

if DEFAULT :
model = ml_utils .load(’ models / RFC_default_ch %s.pkl ’ %

(’_new ’ if NEW else ’’))
elif CROSSEVAL :

model = ml_utils .load(’ models / RFC_tuned %s.pkl ’ % (’_new
’ if NEW else ’’))

else:
model = ml_utils .load(’ models / RFC_tuned_ch %s.pkl ’ % (’

_new ’ if NEW else ’’))

classes = {0: ’ttH ’,

253

D. Code ..
1: ’ttW ’,
2: ’ttZ ’}

s = str
if DEFAULT :

if not CHANNEL :
s = ’default ’

else:
s = ’default_ch ’

else:
if not CHANNEL or CROSSEVAL :

s = ’tuned ’
else:

s = ’tuned_ch ’

if OLDER_MC16D or NEWER :
y_pred = ml_utils . predict (model , X)
y_pred_proba = ml_utils . predict_proba (model , X)

acc = ml_utils . multiclass_accuracy (y, y_pred)
f1 = ml_utils . multiclass_f1 (y, y_pred , average =’weighted ’)
auc = ml_utils . multiclass_roc_auc_score (y, y_pred , average

=’weighted ’, multi_class =’ovr ’)

ml_utils . plot_roc_multiclass (
’RFC_%s test %s’ % (s, ’(100% of newer mc16a & mc16d

set)’ if NEWER else ’(100% of older mc16d set) ’),
y,
y_pred_proba , classes ,
{’Accuracy ’: acc , ’F1 Weighted ’: f1 ,

’ROC AUC Weighted ’: auc })
else:

y_train_pred = ml_utils . predict (model , X_train)
y_train_pred_proba = ml_utils . predict_proba (model , X_train)
y_test_pred = ml_utils . predict (model , X_test)
y_test_pred_proba = ml_utils . predict_proba (model , X_test)

acc_train = ml_utils . multiclass_accuracy (y_train ,
y_train_pred)

f1_train = ml_utils . multiclass_f1 (y_train , y_train_pred ,
average =’weighted ’)

auc_train = ml_utils . multiclass_roc_auc_score (y_train ,
y_train_pred , average =’weighted ’, multi_class =’ovr ’)

acc_test = ml_utils . multiclass_accuracy (y_test , y_test_pred
)

f1_test = ml_utils . multiclass_f1 (y_test , y_test_pred ,
average =’weighted ’)

auc_test = ml_utils . multiclass_roc_auc_score (y_test ,
y_test_pred , average =’weighted ’, multi_class =’ovr ’)

ml_utils . plot_roc_multiclass (
’RFC_%s train (80%% of %s)’ % (s, ’newer mc16a & mc16d

set ’ if NEW else ’older mc16a set ’) , y_train ,
y_train_pred_proba , classes ,
{’Accuracy ’: acc_train , ’F1 Weighted ’: f1_train ,

’ROC AUC Weighted ’: auc_train })
ml_utils . plot_roc_multiclass (

’RFC_%s test (20%% of %s)’ % (s, ’newer mc16a & mc16d
set ’ if NEW else ’older mc16a set ’) , y_test ,

y_test_pred_proba ,
classes ,
{’Accuracy ’: acc_test , ’F1 Weighted ’: f1_test , ’ROC AUC

Weighted ’: auc_test })

if FEAT:
if NEW:

254

....................................... D.2. Scripts

f = ml_utils .load(’ splits / newer / f_mc16a_mc16d .pkl ’)
else:

f = ml_utils .load(’ splits / older / f_mc16a .pkl ’)

ml_utils . plot_feat_imp (’RFC_%s feature importances ’ % s,
model , f, 15)

plt.show ()

if __name__ == ’__main__ ’:
""" Script demonstrating training and test process for RFC.

In this script RFC is trained / tested for default / tuned parameters .
In total four variables can be manipulated to

achieve results for tran/test , default /tuned , full -data/channel -
data , and normal / crosseval .

Also test on January and March data can be obtained .
"""

main ()

D.2.9 tuning_wp.py

"""
Last modified May 19 2020
@author : Jakub Maly
"""

import utils . ml_utils as ml_utils

import matplotlib . pyplot as plt

Use new features (77) and newer data traine models
NEW = False
NEW = True

Choose CERN aproach (significance) maximization or ML approach (
sensitivity maximization)

CERN = 1
CERN = 0

For which classifier should be WP tuned
CLASS = ’RFC ’
CLASS = ’KNC ’
CLASS = ’GNB ’
CLASS = ’ADA ’
CLASS = ’GBC ’
CLASS = ’MLPC ’
CLASS = ’SVC ’

def main ():
if NEW:

X_test = ml_utils . load_compress (’ splits / newer /
X_new_test_20_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

y_test = ml_utils .load(’ splits / newer / y_new_test_20_mc16a_mc16d .
pkl ’)

model = ml_utils .load(’ models /{} _tuned_new .pkl ’. format (CLASS))
else:

X_test = ml_utils . load_compress (’ splits / newer / X_mc16a_mc16d .pkl
.gzip ’, ’gzip ’)

255

D. Code ..
y_test = ml_utils .load(’ splits / newer / y_mc16a_mc16d .pkl ’)
model = ml_utils .load(’ models /{} _tuned .pkl ’. format (CLASS))

number of march data channel events (mc16a + mc16d)
total = {0: 7674 ,

1: 1178 ,
2: 4253}

[ATL -COM -PHYS -2018 -410]
weights = {0: 5.5650 / total [0] ,

1: 4.9338 / total [1] ,
2: 3.9677 / total [2]}

[ATL -COM -PHYS -2018 -410]
other_bgr = 1.7113 + 0.2165 + 0.7311 + 2.4493

classes = [’t$\ overline {t}$H ’, ’t$\ overline {t}$W ’, ’t$\ overline {t}
$Z ’]

Load predictions which takes significant time to be computed and
were already computed once in train scripts

if not NEW:
if CLASS == ’KNC ’:

y_pred = ml_utils .load(’ predictions /
KNC_y_pred_newer_mc16a_mc16d .pkl ’)

y_probas = ml_utils .load(’ predictions /
KNC_y_pred_proba_newer_mc16a_mc16d .pkl ’)

elif CLASS == ’ADA ’:
y_pred = ml_utils .load(’ predictions /

ADA_y_pred_newer_mc16a_mc16d .pkl ’)
y_probas = ml_utils .load(’ predictions /

ADA_y_pred_proba_newer_mc16a_mc16d .pkl ’)
elif CLASS == ’SVC ’:

y_pred = ml_utils .load(’ predictions /
SVC_y_pred_newer_mc16a_mc16d .pkl ’)

y_probas = ml_utils .load(’ predictions /
SVC_y_pred_proba_newer_mc16a_mc16d .pkl ’)

else:
if CLASS == ’SVC ’:

y_pred = ml_utils .load(’ predictions /
SVC_y_test_pred_20_new_mc16a_mc16d .pkl ’)

y_probas = ml_utils .load(’ predictions /
SVC_y_test_pred_proba_20_new_mc16a_mc16d .pkl ’)

else:
y_pred = ml_utils . predict (model , X_test)
y_probas = ml_utils . predict_proba (model , X_test)

if CERN:
x_values , y_eps_0 , y_eps_1 , y_eps_2 , y_S , y_B , y_signif ,

y_signif_simp , best_tr = ml_utils .
threshold_characteristics_multiclass_significance (
y_probas , y_test , weights , total , other_bgr)

ml_utils . plot_threshold (x_values , [y_eps_0 , y_eps_1 , y_eps_2],
[’max ’, ’min ’, ’min ’],

’Efficiencies to Threshold
characteristics ’,

’Efficiency [-]’, [’darkblue ’, ’orange
’, ’green ’],

[’$\ epsilon_ {t\ overline {t}H}$’, ’$\
epsilon_ {t\ overline {t}W}$’,

’$\ epsilon_ {t\ overline {t}Z}$’],
best_tr)

ml_utils . plot_threshold (x_values , [y_S , y_B], [’max ’, ’min ’], ’
S & B to Threshold characteristics ’,

’Expected events [-]’,

256

....................................... D.2. Scripts

[’green ’, ’sienna ’], [’S’, ’B’],
best_tr)

ml_utils . plot_threshold (x_values , [y_signif , y_signif_simp], [’
max ’, ’max ’],

’Significance Approximations to
Threshold characteristics ’,

’Significance Approximation [-]’, [’
darkred ’, ’r’], [’S/sqrt(S+B)’, ’S/
sqrt(B) ’])

print (’Best Threshold : {} ’. format (best_tr))

ml_utils . plot_cm (y_pred , y_test , 3, classes , ’CM - test (
default threshold) ’)

ml_utils . plot_cm (ml_utils . threshold_probas_multiclass (y_probas ,
best_tr), y_test , 3, classes ,

’CM - test ({} threshold) ’. format (best_tr))
plt.show ()

else:
x_values , y_fdr , y_sen , best_tr = ml_utils .

threshold_characteristics_multiclass_sensitivity (y_probas ,
y_test)

ml_utils . plot_threshold (x_values , [y_fdr , y_sen], [’min ’, ’max
’],

’FDR & Sensitivity to Threshold
characteristics ’,

’[-]’, [’darkblue ’, ’orange ’],
[’FDR (1 - precision)’, ’Sensitivity (

recall) ’])
print (’Best Threshold : {} ’. format (best_tr))

ml_utils . plot_cm (ml_utils . threshold_probas_multiclass (y_probas ,
best_tr), y_test , 3, classes ,

’CM - test ({} threshold) ’. format (best_tr))
plt.show ()

if __name__ == ’__main__ ’:
""" Script demonstrating how to tune WP.

In this script two WP tuning approaches are listed .
"""

main ()

D.2.10 eval_real.py

"""
Last modified May 20 2020
@author : Jakub Maly
"""

import utils . ml_utils as ml_utils

import matplotlib . pyplot as plt

import numpy as np

Use new features (77) and newer data trained models
NEW = False
NEW = True

257

D. Code ..
Save predictions for future
SAVE = False
SAVE = True

Load saved predictions for instant plotting
LOAD = False
LOAD = True

def main ():
if NEW:

X_test = ml_utils . load_compress (’ splits /real/
X_new_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

X_test = ml_utils . load_compress (’ splits /real/
X_new_ch_mc16a_mc16d .pkl.gzip ’, ’gzip ’)

else:
X_test = ml_utils . load_compress (’ splits /real/ X_mc16a_mc16d .

pkl.gzip ’, ’gzip ’)
X_test = ml_utils . load_compress (’ splits /real/ X_ch_mc16a_mc16d .

pkl.gzip ’, ’gzip ’)

Windows int64 not supported
X_test = np. array (X_test , np. int32)

classifiers = [’RFC ’, ’KNC ’, ’GNB ’, ’ADA ’, ’GBC ’, ’MLPC ’, ’SVC ’]

thresholds = {’RFC ’: 0.26 ,
’KNC ’: 0.08 ,
’GNB ’: 0,
’ADA ’: 0.33 ,
’GBC ’: 0.03 ,
’MLPC ’: 0.16 ,
’SVC ’: 0.14}

classes = {0: ’t$\ overline {t}$H ’,
1: ’t$\ overline {t}$W ’,
2: ’t$\ overline {t}$Z ’}

colors = [(0.12156862745098039 , 0.4666666666666667 ,
0.7058823529411765) ,

(1.0 , 0.4980392156862745 , 0.054901960784313725) ,
(0.17254901960784313 , 0.6274509803921569 ,

0.17254901960784313)]

y_preds = list ()
for classifier in classifiers :

if LOAD:
y_pred = ml_utils .load(

’predictions /% s_pred_real_mc16a_mc16d .pkl ’ % (
classifier + ’_y_new ’ if NEW else classifier + ’_y
’))

else:
model = ml_utils .load(’ models /% s_tuned %s.pkl ’ % (classifier

, ’_new ’ if NEW else ’’))
y_pred = ml_utils . threshold_probas_multiclass (ml_utils .

predict_proba (model , X_test), thresholds [classifier])
if SAVE:

ml_utils .save(y_pred , ’predictions ’,
’% s_pred_real_mc16a_mc16d ’ % (classifier

+ ’_y_new ’ if NEW else classifier + ’
_y ’))

y_preds . append (y_pred)

ml_utils . plot_pred_multiclass (’1D heat maps of classifiers
predictions ’, y_preds , classifiers , classes , colors)

ml_utils . plot_pred_hist_multiclass (y_preds , classifiers , classes ,

258

....................................... D.2. Scripts

colors)

plt.show ()

if __name__ == ’__main__ ’:
""" Script demonstrating real data evaluation .

In this script all previously tuned classifiers are tested on real
data.

"""

main ()

259

260

Appendix E

Bibliography

[Amo13] J. Amos, Higgs: Five decades of noble endeavour bbc news science
and environment.

[BBC12] BBC, Higgs boson-like particle discovery claimed at lhc.

[Buc07] A. Buckley, The problem with root (a.k.a. the root of all evil),
InsectNation (2007).

[Byl16] O. B. Bylund, Measurement of ttz and ttw production at atlas in
13 tev data, using trilepton and same charge dimuon final states,
ATL-PHYS-PROC-2016-117 (2016).

[CERa] CERN, Calorimetry, ATLAS Technical Proposal.

[CERb] , Inner detector, ATLAS Technical Proposal.

[CERc] , Magnet system, ATLAS Technical Proposal.

[CERd] , Overall detector concept, ATLAS Technical Proposal.

[CER08] , Cern particle detector: Atlas completes world’s largest
jigsaw puzzle, ScienceDaily (2008).

[CER12] , Lhc to run at 4 tev per beam in 2012, Media and Press
Relations (Press release) (2012).

[Cha06] O. Chapelle, Training a support vector machine in the primal.

[cita] Aerial view of lhc, https://www.pinterest.com/pin/508414245409340997/.

[citb] Atlas detector, https://atlas.cern/discover/detector.

261

E. Bibliography
[citc] Atlas inner detector, https://atlas.cern/discover/detector/inner-

detector.

[citd] Higgs boson production with a pair of top quarks,
http://gkantonius.github.io/feynman/auto_examples/Particle_Physics/plot_ttH.html.

[Col18a] The ATLAS Collaboration, Observation of higgs boson production
in association with a top quark pair at the lhc with the atlas
detector.

[Col18b] , Observation of higgs boson production in association
with a top quark pair at the lhc with the atlas detector, Physics
Letters B 784 (2018), 173–191.

[Col19a] , Analysis of tth and ttw production in multileptonfinal
states with the atlas detector, ATLAS-CONF-2019-045 (2019).

[Col19b] , Search for the associated production of a higgs boson
and a top quark pair in multilepton final states in 80 fb−1 pp
collisions at

√
s = 13 TeV with the atlas detector, ATL-COM-

PHYS-2018-410 (2019).

[Cor10] Oracle Corporation, Oracle grid engine.

[CT] H. H. Hoos K. Leyton-Brown C. Thornton, F. Hutter, Auto-
weka: Combined selection and hyperparameter optimization of
classification algorithms.

[ERN12] ERN, Latest results from atlas higgs search, ATLAS News (2012).

[Joy] J. Joyce, Bayes’ theorem, The Stanford Encyclopedia of Philoso-
phy.

[Kor08] A. Korytov, Introduction to elementary particle physics.

[M+] Wes McKinney et al., Data structures for statistical computing
in python, Proceedings of the 9th Python in Science Conference.

[MF] K. Eggensperger J. Springenberg M. Blum F. Hutter M. Feurer,
A. Klein, Efficient and robust automated machine learning, Ad-
vances in Neural Information Processing Systems 28 (NIPS 2015).

[Nav18a] A. Navlani, Adaboost classifier in python, Datacamp (2018).

[Nav18b] Avinash Navlani, Knn classification using scikit-learn, Datacamp
(2018).

[Oli] Travis E Oliphant, A guide to numpy.

[Paz] L. Paz, Official compresspickle repository.

262

..................................... E. Bibliography

[PB04] D. Whiteson P. Baldi, P. Sadowski, Searching for exotic particles
in high-energy physics with deep learning, Annu. Rev. Nucl. Part.
Sci. 2018 68 (2004), 1–22.

[PB14] , Searching for exotic particles in high-energy physics with
deep learning.

[Piv] J. Pivarski, Official uproot repository.

[Pos] P. Posik, Artificial intelligence, decision tasks, learning, CTU in
Prague, Faculty of Electrical Engineering, Dept. of Cybernetics.

[PVG+] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research.

[QR19] Shuai Han Qiubing Ren, Mingchao Li, Tectonic discrimination
of olivine in basalt using data mining techniques based on major
elements: a comparative study from multiple perspectives.

[Roo19] M. Roos, Deep learning neurons versus biological neurons, To-
wards Data Science (2019).

[Sap19] G. Saporito, How does a neural network make predictions?, To-
wards Data Science (2019).

[Sca10] D.A. Scannicchio, Atlas trigger and data acquisition: Capabilities
and commissioning, Nuclear Instruments and Methods in Physics
Research Section A 617 (2010), 306–309.

[Str12] M. Strassler, The higgs faq 2.0, ProfMattStrassler.com (2012).

[Tay12] L. Taylor, Observation of a new particle with a mass of 125 gev,
CMS Public Website (2012).

[TUoEA12] School of Physics The University of Edinburgh and Astronomy,
Peter higgs: Curriculum vitae.

[Was19] M. Waseem, A quick guide to learn support vector machine in
python, Edureka (2019).

[Web15] J. Webb, Lhc smashes energy record with test collisions.

[Yiu19] T. Yiu, Understanding random forest, Towards Data Science
(2019).

263

	Project Specification
	Introduction
	Particle Physics
	The Large Hadron Collider
	Introduction
	Area of interest

	Signal in the presence of background
	Signal structure
	Backgrounds
	tW
	tZ
	Others

	Evaluation
	Significance computation

	Machine Learning
	Data
	The ROOT File system
	UpRoot Library
	Pre-processing
	Inputs
	Scaling
	Compression

	Processing scripts
	Used data
	Working channel
	Histograms

	Classification
	Introduction
	General types of probabilities
	Empirical
	Subjective
	Apriori

	Bayesisan decision task
	Bayes' theorem
	Bayesian Risk
	Decision strategy

	The Scikit-learn library
	Splits
	Test Split Validation
	K-Fold Cross-Validation
	Stratified K-Fold Cross-Validation

	Pipeline
	Classifiers
	Scoring
	F1-score
	Mean accuracy score
	ROC AUC score

	The Random Forest Classifier
	Introduction
	Parameters
	Feature importances
	Additional tests
	Working Point
	Conclusion

	The K-Neighbors Classifier
	Introduction
	Dimension reduction
	Parameters
	Additional tests
	Working Point
	Conclusion

	Gaussian Naïve Bayes
	Introduction
	Parameters
	Additional tests
	Working Point
	Conclusion

	AdaBoost Classifier
	Introduction
	Parameters
	Additional tests
	Working Point
	Conclusion

	Gradient Boosting Classifier
	Introduction
	Parameters
	Additional tests
	Working Point
	Conclusion

	Multi-Layer Perceptron Classifier
	Introduction
	Parameters
	Additional tests
	Working Point
	Conclusion

	Support Vector Classifier
	Introduction
	Parameters
	Additional tests
	Working Point
	Conclusion

	Real data
	Additional Changes
	Cheating
	New data training
	RFC
	KNC
	GNB
	ADA
	GBC
	MLPC
	SVC
	Summary
	Real data

	Feature importances
	tZ weighting

	Conclusion

	Appendices
	Computations
	Significance computation example

	Tables
	Data

	Figures
	Data Histograms
	Older mc16a set
	Real mc16a & mc16d set

	Tuning
	The Random Forest Classifier
	The K-Neighbors Classifier
	Gaussian Naïve Bayes
	AdaBoost Classifier
	Gradient Boosting Classifier
	Multi-Layer Perceptron Classifier
	Support Vector Classifier

	Code
	Utils
	converter.py
	reader.py
	ml_utils.py

	Scripts
	data_convert.py
	data_filter.py
	data_prepare.py
	data_split.py
	data_view.py
	tuning scripts (only RFC listed)
	tuning results view scripts (only RFC listed)
	train scripts (only RFC listed)
	tuning_wp.py
	eval_real.py

	Bibliography

