
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Microelectronics

Diploma Thesis

Design of the HW accelerator of the Keccak hash function

Nikita Litvishko

Supervisor: Prof. Ing. Pavel Hazdra, CSc.
Second Supervisor: Ing. Leoš Kafka, Ph.D.

Study Program: Electronics and Communication, Master

Field of Study: Electronics

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

456867Osobní číslo:NikitaJméno:LitvishkoPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra mikroelektroniky

Elektronika a komunikaceStudijní program:

ElektronikaSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Návrh HW akcelerátoru Keccak hashovacího algoritmu pro SoC platformu

Název diplomové práce anglicky:

Design of the HW accelerator of the Keccak hash function.

Pokyny pro vypracování:
1. Navrhněte akcelerátor pro Keccak hashovací algoritmus. Vyberte optimální interface pro integraci akcelerátoru v
digitálním SoC (System-on-Chip).
2. Implementujte akcelerátor na úrovni RTL v jazyce Verilog2001. Ověřte funkci akcelerátoru simulací na RTL úrovni a
validací na FPGA desce.
3. Porovnejte výkon akcelerátoru se softwarovou implementací tohoto hashovacího algoritmu ve vestavěném procesoru
v FPGA. K softwarové implementaci použijte jádro Xilinx MicroBlaze.

Seznam doporučené literatury:
[1] The KECCAK reference, https://keccak.team/files/Keccak-reference-3.0.pdf
[2] KECCAK implementation overview, https://keccak.team/files/Keccak-implementation-3.2.pdf
[3] KECCAK in C, https://keccak.team/software.html https://keccak.team/obsolete/KeccakReferenceAndOptimized-3.2.zip

Jméno a pracoviště vedoucí(ho) diplomové práce:

prof. Ing. Pavel Hazdra, CSc., katedra mikroelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Ing. Leoš Kafka, Ph.D., Adesto Technologies

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 28.01.2020

Platnost zadání diplomové práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
prof. Ing. Pavel Hazdra, CSc.
podpis vedoucí(ho) ústavu/katedry

prof. Ing. Pavel Hazdra, CSc.
podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

v

Aknowledgements
I would like to thank my school supervisor Pavel Hazdra for valuable comments on the the-
sis. Also I would like to express my gratitude to the second supervisor, Leoš Kafka, for his
excellent management of the thesis, weekly consultations, professional advices both in the
field of digital design and in organizing time and work, as well as for help in difficult places.

I also wish to acknowledge the whole Adesto Technologies collective for a friendly atmo-
sphere and nice working place.

I would also like to thank my parents and relatives for the opportunity to study abroad,
for the endless support both during my studies at the university and throughout my life. I
am also grateful to my friends for their moral support.

Last but not least, I would like to thank my girlfriend Daria Uslontceva for moral sup-
port in difficult times, for walking this path with me from beginning to end and for believing
that I will succeed.

vi

Declaration
I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, date .

signature

Abstract

The goal of this work is to propose an implementation of the Keccak algorithm in FPGA
and evaluate its effectiveness on the SoC platform. For this purpose we studied the theory
behind SHA-3 hash function and Keccak algorithm. We also chose the suitable interface to
connect the implemented unit (accelerator) to the processor and wrote the firmware to access
the accelerator from the processor. We evaluated the effectiveness of the implementation by
comparing it with existing software implementation of SHA-3 hash function.

Keywords: hash function, hardware acceleration, digital design, FPGA, processor, com-
munication interface, SoC

vii

Abstrakt

Cílem této práce je návrh implementace Keccak algoritmu v FPGA a ověření jeho efektiv-
ity na SoC platformě. Pro tento účel jsme nastudovali teorii, která se týká SHA-3 hashovací
funkce a Keccak algoritmu. Také jsme vybrali vhodný interface pro připojení implemen-
tované jednotky (akcelerátoru) k procesoru a napsali firmware pro přístup k akcelerátoru
z procesoru. Efektivitu implementace jsme ověřili pomocí porovnání této implementace s
existující softwarovou implementací SHA-3 hashovací funkce.

Klíčová slova: hash funkce, hardwarová akcelerace, digitální návrh, FPGA, procesor, ko-
munikační interface, SoC

viii

Contents

1 Introduction 1
1.1 Thesis Structure . 2
1.2 Hash Function . 3
1.3 Common Hash Algorithms . 4

1.3.1 MD5 Message-digest Algorithm . 4
1.3.2 SHA-1 and SHA-2 Secure Hash Algorithms 4
1.3.3 SHA-3 Secure Hash Algorithm . 5

2 SHA-3/Keccak Algorithm Description 6
2.1 Sponge Construction and State Variables . 6

2.1.1 Absorbing Phase . 7
2.1.2 Squeezing Phase . 8
2.1.3 Long Messages Processing . 8
2.1.4 State Variables . 8

2.2 Algorithm Steps . 10
2.2.1 Specification of θ . 11
2.2.2 Specification of ρ . 12
2.2.3 Specification of π . 13
2.2.4 Specification of χ . 14
2.2.5 Specification of ι . 15

3 Algorithm Analysis 16
3.1 Key Parameters of the Keccak for Hardware Implementation 17
3.2 Estimation of Resources . 18
3.3 Conclusion . 20

4 HW Accelerator Description 21
4.1 Block Diagram . 21
4.2 List of Ports . 22
4.3 HW Accelerator Hierarchy . 24

4.3.1 Main Control Unit . 25
4.3.2 Computational Core . 27
4.3.3 Internal Input and Output Memories 28
4.3.4 Keccak Cell Unit . 29
4.3.5 XOR5 Auxiliary Block . 31

ix

CONTENTS x

4.3.6 Output Multiplexer . 32
4.4 Clock Domains . 32

5 Design Flow 33
5.1 Tools Used for Development . 35
5.2 Verification Environment . 36

6 Implementation Results 38

7 SoC Design 40
7.1 Block Design for Interface Selection . 40

7.1.1 Clock and Reset Generation . 41
7.1.2 MicroBlaze Processor . 42
7.1.3 AXI Interconnect . 43
7.1.4 AXI Central Direct Memory Access . 43
7.1.5 Local Memory Bus and AXI BRAM Controllers 44
7.1.6 AXI4-Stream Data FIFO . 44

7.2 Address Space . 45
7.3 Interface Selection . 46
7.4 Interfaces Comparison Results . 47
7.5 Block Design for HW and SW Comparison . 48

7.5.1 SHA-3 Accelerator . 49
7.5.2 AXI to APB Bridge . 53
7.5.3 AXI Timer . 53
7.5.4 AXI UART . 54

8 Analysis of Firmware Function 55
8.1 Data Transferring . 58
8.2 Data Processing . 60
8.3 Remaining Operations . 61
8.4 Influence of Each Aspect on the Total Execution Time 62

9 Comparison of the SW and HW Approaches 65
9.1 FPGA Development Board . 66
9.2 Data Set for Measurements . 67
9.3 Measurements Results . 68
9.4 Acceleration Dependence on the Message Length and SHA-3 Version 73

10 Conclusion 76

List of Figures

2.1 The sponge construction [5] . 7
2.2 Parts of the Keccak-f state [6] . 9
2.3 θ applied to a single bit [6] . 12
2.4 ρ applied to the lanes [6] . 13
2.5 π applied to a slice [6] . 14
2.6 χ applied to a single row [6] . 15

4.1 Block diagram of the accelerator . 22
4.2 kctrl-fifo states . 26
4.3 kctrl-fifo operation . 26
4.4 kctrl-fifo operation in the beginning of computation 27
4.5 kctrl-fifo operation in the end of computation 27
4.6 Block diagram of keccak-cell unit . 30

5.1 Development steps . 34

7.1 Block design for verification and measurements of the suitable interface 41
7.2 Block design for HW and SW comparison . 49
7.3 Control register structure . 50
7.4 Status register structure . 51
7.5 Config register structure . 51
7.6 keccak-axis block diagram . 53

8.1 Message structure . 55
8.2 Standard putfsl function assembly code . 59
8.3 Optimized putfsl function assembly code . 59
8.4 Ideal case of digest computation . 62

9.1 USB/UART bridge [18] . 67
9.2 Graph illustrating SHA-3 computation with accelerator 72
9.3 Graph illustrating SHA-3 computation without accelerator 73
9.4 The acceleration dependence on the message length and SHA-3 version 74

xi

List of Tables

2.1 Round constants for the lane size 64 [9] . 11
2.2 ρ step offsets [6] . 13

3.1 Estimation of resources . 19

4.1 keccak-fifo signals description . 23
4.2 kctrl-fifo signals description . 25
4.3 keccak-core signals description . 28
4.4 fifo-wrap signals description . 29
4.5 keccak-cell parameters description . 30
4.6 keccak-cell signals description . 31
4.7 xor5 signals description . 31
4.8 outmux signals description . 32

6.1 Number of blocks used in implementation . 38
6.2 FPGA resources utilization . 39

7.1 MicroBlaze address space . 45
7.2 CDMA address space . 46
7.3 Interfaces comparison . 48
7.4 Using DMA with different message lengths . 48
7.5 Control register bit definitions . 50
7.6 Status register bit definitions . 51
7.7 Config register bit definitions . 51

8.1 Data processing . 60
8.2 Ideal vs real firmware execution . 62
8.3 The influence of each category on the total execution time in clock cycles . . 63
8.4 The percentage influence of each category on the total execution time 64

9.1 SHA3-224 results . 68
9.2 SHA3-256 results . 69
9.3 SHA3-384 results . 70
9.4 SHA3-512 results . 71

xii

Acronyms

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

AXI Advanced eXtensible Interface

BRAM Block Random Access Memory

CC Clock Cycles

CDMA Central Direct Memory Access

CRG Clock and Reset Generation

DFF D Flip-Flop

DLMB Data Local Memory Bus

DMA Direct Memory Access

DUT Device Under Test

FIFO First In First Out Memory

FIPS Federal Information Processing Standards

FPGA Field-programmable Gate Array

GF Galois Field

HDL Hardware Description Language

HW Hardware

I/O Input/Output

IDE Integrated Development Environment

ILMB Instruction Local Memory Bus

IP Intellectual Property

LFSR Linear-feedback Shift Register

xiii

ACRONYMS xiv

LMB Local Memory Bus

LUT Lookup Table

MD Message-Digest Algorithm

MUX Multiplexer

NIST National Institute of Standards and Technology

PC Personal Computer

RC Round Constant

RDEN Read Enable

RTL Register-transfer Level

SDK Software Development Kit

SHA Secure Hash Algorithm

SoC System on a Chip

SW Software

UART Universal Asynchronous Receiver-transmitter

USB Universal Serial Bus

WREN Write Enable

Chapter 1

Introduction

The main purpose of general-purpose processors is to execute any given task. Due to the fact
that these processors are universal, their architecture is also universal and is not oriented on
the execution of specific tasks. If there is a need to execute the specific task more effectively,
then we can use the processor with different architecture or we can use a hardware accele-
ration. The hardware acceleration is the execution of a certain task on the hardware that
is specifically designed to execute this task effectively. One example of the hardware acce-
leration that closely relates to this work is cryptographic accelerator, which is the unit that
can execute all cryptographic operations more efficiently than the general-purpose processor.

The hardware acceleration takes place when the task requires the processing of large amount
of data and complex mathematical operations. The excellent candidates for the hardware
acceleration are the hash functions that are described in Section 1.2 in detail. Briefly, hash
function takes an input message of an arbitrary length, applies complex mathematical algo-
rithm and provides the output with fixed length. The most demanding part of every hash
function is the data processing part that is realized with some complex algorithm. In this
work we will concentrate ourselves on the SHA-3 hash function and the Keccak algorithm
that it uses [12], [6]. As we will see, the Keccak algorithm is very time-consuming, because
it requires the processing of large amount of data.

The Keccak algorithm has a lot of software implementations in many different program-
ming languages that can be found at [32]. One of the software implementations in C language
will be chosen in this work for comparison with our hardware implementation. Beside the
software implementations, there is one hardware implementation of the Keccak algorithm
in VHDL language [29]. In this work we concentrate ourselves on the Keccak algorithm
implementation in Verilog-2001 hardware description language.

Beside the effectively implemented data processing part of the accelerator, it is very im-
portant to optimally integrate the accelerator in the system, otherwise the acceleration will
not make any sense. Our main goal is to create an effective and fast hardware implemen-
tation of the algorithm that can later be used to accelerate the processor’s execution of the
SHA-3 hash function, which uses the Keccak algorithm. As a result of this work we want
to have an IP core that can be used in any FPGA design with the processor.

1

1.1 Thesis Structure

In this work we first provide a brief introduction to the world of hash functions in Chapter
1, their purpose and different types of hash functions. The universal knowledge about hash
functions help us to better understand the theory behind the SHA-3 function. In Chapter 2
we concentrate on the description of the SHA-3 hash function and the Keccak algorithm
that it uses. The theory described in that chapter helps us to understand how the Keccak
algorithm works and can be implemented effectively.

Chapter 3 contains an analysis of the Keccak algorithm from the point of view of its
implementation in FPGA. The analysis provided in this chapter is crucial to finding the op-
timal way to design the accelerator. The analysis of the algorithm is closely connected to the
theory knowledge obtained in Chapter 2. It helps us to propose the parallel implementation
of the algorithm where all bits of the internal state of Keccak algorithm are processed in
parallel. Chapter 3 focuses more on ideas about how the accelerator should be implemented
and in Chapter 4 we realize these ideas and show the RTL design of the accelerator. We
describe the hierarchy of the designed accelerator and the structure of the distinct modules.
Also we show how the parallel approach has been implemented and how the accelerator op-
erates. As a result of this chapter we have the computational core of the Keccak algorithm,
which yet does not contain any interface to communicate with the processor.

In Chapter 5 we talk about different development tools that we used throughout this work
and what steps we followed during implementation. We also provide a detailed description
about how the designed accelerator was verified during all development steps. Chapter 6
provides the results of logic implementation of the designed accelerator for a specific FPGA,
where we analyze the utilization of the chip resources. We also describe the frequency at
which it can operate and how the assumption about the number of logic cells from Table 3.1
differs from the implementation results.

In Chapter 7 we describe two SoC designs. The main task of the first SoC design was
to help us to indicate which communication interface better fits our application. We de-
scribe different types of interfaces, their advantages and disadvantages, and the simulation
results. After the suitable interface has been chosen, we move to the second SoC design that
helps us to evaluate the effectiveness of the designed accelerator in FPGA. In Chapter 8 we
provide a firmware function that allows the processor to use the accelerator. We also analyze
implemented function and describe its weak and strong sides. We divide the operation of
the function into several categories and talk about each category in detail along with sugges-
tions about how these categories can be improved and optimized. Firmware function from
Chapter 8 also helps us to compare the time needed to execute the SHA-3 function with and
without the accelerator. Chapter 9 contains the result of this comparison and provides the
data that evaluate the effectiveness of the accelerator. The chapter contains the tables with
measurements results and according graphs that visualize the comparison.

In Chapter 10 we summarize the results of this work and describe several difficulties that we
faced throughout this work. We also provide a suggestion on how this work can be improved
in future.

2

1.2 Hash Function

A hash function, or a hash algorithm, takes an input message of arbitrary length, mixes it
in a certain way and gives a digest of the required length to the output. The input of the
hash algorithm is called a "message", and the output is called a "digest" or simply a "hash
value". Hash functions are ubiquitous, starting with generating pseudo-random sequences,
encrypting passwords, and ending with digitally signed documents. All this poses a serious
challenge for developers and scientists when creating hash algorithms, since the algorithms
must exhibit a high level of reliability, good computing speed, flexibility in setting parame-
ters, and relative simplicity in implementation.

In this work we concentrate ourselves on the hardware implementation of the SHA-3 family
hash functions. Each of the SHA-3 functions is based on an instance of the Keccak algo-
rithm that National Institute of Standards and Technology (NIST) selected as the winner of
the SHA-3 Cryptographic Hash Algorithm Competition [12]. We chose this hash function
because it is well documented, has a lot of applications and can be effectively implemented
in hardware. Software implementations of the Keccak algorithm in different programming
languages can be found in [32].

One of the main parameters of a hash function is its security. NIST defines three main
criteria by which it is possible to judge the strength of hash algorithm [8]:

1. Collision resistance: how computationally difficult it is to find two input values at
the input of a hash function, for which the same output result will be produced. It is
measured in the amount of work needed to find such a collision. If the function had
poor collision resistance, then the algorithm would be vulnerable to collision attacks,
the essence of which is that an attacker can replace the original document with a fake
one, but which has the same hash value as the original. The recipient of the signed
message is then not able to distinguish the original from the fake, until he opens a
document. Thus, a malicious program can be passed off as something else [28].

2. Preimage resistance: how computationally difficult it is to find the input value of the
hash function for a given value at the output. It is measured in the amount of work
required to search for an input message. Suppose that an attacker has obtained a table
that stores users’ password hashes. If a hash function with a small preimage resistance
has been used, then it will not be difficult for an attacker to find the inverse images of
the hash values and thus obtain users’ passwords. Often attackers use prepared tables
with hashes of simple and frequently used types of passwords [27].

3. Second preimage resistance: for a given input value x1, how computationally difficult
it is to find the value x2, the hash of which will coincide with the hash of x1. This is
similar to collision resistance, but differs in that we know the value of x1 in advance.
This allows the attacker to create fraudulent certificates at any time, not just at the
time of certificate issuance [11].

There are a huge number of different hash functions and each function does not have to
have each of the parameters listed above on the high. If the function does not show excellent

3

results in one of the parameters, this does not mean that it is unsuitable. Its certain qualities
are important in certain tasks and the hash function can simply be used for another purpose.
Since hash functions are used very often and are widely used, attacks against functions are
also developing. Therefore, hashing algorithms are constantly being improved and existing
ones are being replaced by new versions or are no longer used in some applications, if making
a successful attack becomes an easy task.

1.3 Common Hash Algorithms

Now we will briefly look at several algorithms that were used in the past or are being
used now. Each of these algorithms has a different internal structure, which is based on
certain mathematical operations. Basically, these mathematical operations are cyclically
repeated. Some of them, for example, determine the parity of a group of several bits, others
differently shift (rotate) a section of a message, and so on. As we will see in Chapter 2, in the
case of SHA-3 and, in particular, the used Keccak algorithm, some operations remove the
symmetry of individual iterations, while others are oriented on building a strong dependence
of one bit on many other bits.

1.3.1 MD5 Message-digest Algorithm

MD5 [1] is a message-digest algorithm. The algorithm takes as input a message of arbitrary
length and produces as output a 128-bit "fingerprint" or "message digest" of the input. It
was created in 1991 by Ronald Rivest and was documented in April 1992. Algorithm was
primarily designed as an extension of the MD4 message-digest algorithm. Nowadays MD5
is considered to be weak against attacks, such as collision attacks.

1.3.2 SHA-1 and SHA-2 Secure Hash Algorithms

SHA-1 and SHA-2 are two hash algorithms published by NIST. They are specified in the
FIPS 180-4 standard [10] and were first released in the 1993 and 2001 respectively. The dif-
ference between them is in the internal structure and the length of the digest they generate.
Both algorithms use padding of the input message, so that it can be divided into blocks with
constant length, which are then processed sequentially.

SHA-1 may be used to hash a message, M , having a length of l bits, where 0 ≤ l < 264.
The algorithm uses:

• Four different functions that are applied to the internal state of the algorithm

• Four internal constants that are XORed with the internal state every round

• Five internal variables used to store the intermediate results

• Five 32-bit hash values used at the output and updated every processed 512-bit block

4

The operation of the algorithm is divided into 4 steps with 20 iterations. The four functions
and constants correspond to these steps and their purpose is to differently mix the bits of the
message. Result after applying the function is stored into 5 internal variables, and iteration
repeats. SHA-1 is able to produce only a 160-bit digest.

SHA-2 has a similar to SHA-1 structure. It is able to process a message having a length
of l bits, where l is 0 ≤ l < 2128. It also pads the message and divides it into the blocks
of the length 512 bit. However, it is able to produce different output lengths, such as 224,
256, 384 and 512 bits. This is achieved by having different size hash values that store the
output of the algorithm. For example, SHA-224 uses seven 32-bit values, so that in sum it
gives exactly 224. SHA-512 uses eight 64-bit values. Similar to SHA-1, SHA-2 uses:

• Six different functions that are applied to the internal state of the algorithm

• Eight 32-bit internal variables used to store intermediate result

• The total of 64(80) internal constants each used in one function every round

The processing of one 512-bit block is divided into 64 or 80 rounds. SHA-224 and SHA-256
use 64 rounds; SHA-384 and SHA-512 both use 80 rounds. These rounds are not identical,
since the different constant is used every time.

1.3.3 SHA-3 Secure Hash Algorithm

SHA-3 hash family functions were first published by NIST in 2015. They are specified in
FIPS 202 standard [12] and use the Keccak algorithm specified in [6]. SHA-3 is very
different in structure from previous standards and has nr rounds. The number nr depends
on the size b of the internal state of algorithm. SHA-3 lets us to choose such that b = 25×2l,
where l ranges from 0 to 6. Each round, further, consists of five steps that are being executed
sequentially. Rounds are not identical due to the presence of the constants that differ for
every round and are XORed with the part of the internal state. Internal state s that is b
bits long is the only internal variable used to store the intermediate results of the algorithm.
We provide the detailed description of the algorithm in Chapter 2.

5

Chapter 2

SHA-3/Keccak Algorithm
Description

SHA-3 hash function uses the Keccak algorithm [6], developed by Guido Bertoni, Joan
Daemen, Michäel Peeters and Gilles Van Assche. The basis of this algorithm is the sponge
construction, which we will analyze in detail in Section 2.1. This construction allows to pro-
cess input data of any length and create the digest of the required length. On one side, the
function receives an input message, which is the only input to the hash function. Everything
that happens with the message and the way it is processed is determined by the definition
of a specific function. Inside the sponge, the input data are divided into blocks of the same
length and the so-called permutation function is applied on them.

The permutation function, in the case of SHA-3, is specified by the Keccak algorithm
and called Keccak-f permutation. Inside this function, the data are repeatedly mixed.
We will analyze in detail each operation of the Keccak algorithm in Section 2.2. When
all input data has been processed, the required number of processed data bits is taken, and
provided as an output of the hash function.

2.1 Sponge Construction and State Variables

SHA-3 family hash functions are based on the sponge construction that is described in this
section. We will refer to [12] and [5]. The sponge construction has the structure illustrated
in Figure 2.1.

6

Figure 2.1: The sponge construction [5]

It has one input, which is the input message M and one output that is the output message
Z. The input sequence of bits can have an arbitrary length, but it has to be padded to
the message P which length is divisible by bit rate r. Before padding the two-bit suffix is
appended to the message M to produce the input N to the pad function. In the case of
SHA-3 hash functions the suffix is 01.

Next, the multi-rate padding rule is applied to the new message N . By [5] the multi-rate
padding is defined according to Definition 2.1.1.

Definition 2.1.1. Multi-rate padding, denoted by pad10*1, appends a single bit 1 followed
by the minimum number of bits 0 followed by a single bit 1 such that the length of the result
is a multiple of the block length.

The block rate in the above definition is our bit rate r. The padding is provided even if
the length of the input message M is already divisible by r. Let us call such message M1

and imagine that there is another message M2, which after padding will result in message
M1 and these two different messages will produce same output. To avoid this error, the
message M1 should be padded.

Sponge construction has two phases: absorbing and squeezing. Both phases are described
in Subsections 2.1.1 and 2.1.2.

2.1.1 Absorbing Phase

First of all, the internal state s consisting of outer and inner part with lengths of r and
c respectively, is initialized to zero. The message P is divided into blocks Pi, each of the
length r. The r-bit input message blocks are XORed into the outer part of the state, in-
terleaved with applications of the function f . When all message blocks are processed, the
sponge construction switches to the squeezing phase. Function f is realized using Keccak-f

7

permutations that we will describe in Section 2.2. Absorbing phase can be described using
Algorithm 1.

Algorithm 1: Absorbing phase [6]
s = 0b

for i = 0 to |P |r − 1 do
s = s⊕ (Pi||0b−r)
s = f(s)

end

2.1.2 Squeezing Phase

The second part of sponge construction is the squeezing phase. On the input side it receives
the state s obtained in absorbing phase and on the output side it produces the bit sequence
of desired length. First of all, the state s is truncated to its first r bits and assigned to Z0.
If the required output length l is greater than |Z0|, then function f is applied to the state
and new Z1 is taken and concatenated with Z0. These steps are repeated until |Z| ≥ l.
Then Z is truncated to its first l bits and is given as an output of the sponge construction.
All of the above can be described using Algorithm 2.

Algorithm 2: Squeezing phase [6]
Z = bscr
while |Z| < l do

s = f(s)
Z = Z||bscr

end
return bZcl

2.1.3 Long Messages Processing

Due to the design of the sponge absorbing stage, it can process messages of arbitrary length.
The length of the message only affects the processing time, and does not affect the imple-
mentation of the hash function. All resources and blocks required to perform permutations
can be reused, which is the benefit of using a sponge function.

2.1.4 State Variables

The state s is expressed and treated as a three-dimensional array with dimensions x, y and
z. All the operations over x and y are taken modulo 5 and all the operations over z are
taken modulo w = b/25 (in our case it is 64). We denote the three-dimensional state as
a and one-dimensional state as s. The mapping between s and a coordinate systems is
s[w(5y + x) + z] = a[x][y][z] [6].

8

Since the state is a three-dimensional array, we can represent it as a cuboid, with sides
x y and z. Next, we divide it into the components shown in Figure 2.2.

Figure 2.2: Parts of the Keccak-f state [6]

9

The parts of the state have the following properties in the case of SHA-3 [6]:

• plane is a set of 5×64 bits with constant y coordinate

• slice is a set of 5×5 bits with constant z coordinate

• sheet is a set of 5×64 bits with constant x coordinate

• row is a set of 5 bits with constant y and z coordinates

• column is a set of 5 bits with constant x and z coordinates

• lane is a set of 64 bits with constant x and y coordinates

2.2 Algorithm Steps

SHA-3 hash function implements its permutation function using one of the Keccak-f per-
mutations. There are 7 permutations in total denoted as Keccak-f [b], where b = 25 × 2l

and l ranges from 0 to 6. The four SHA-3 hash functions (SHA3-224, SHA3-256, SHA3-384
and SHA3-512) uses the Keccak-f [1600] permutation, which means that the length of the
state is 1600 bits.

Keccak-f [1600] is an iterated permutation, consisting of a sequence of nr = 12+2l (l = 6)
rounds indexed with ir from 0 to 23. Every round consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with

θ : a[x][y][z]← a[x][y][z] +
4∑

y′=0

a[x− 1][y′][z] +
4∑

y′=0

a[x+ 1][y′][z − 1],

ρ : a[x][y][z]← a[x][y][z − (t+ 1)(t+ 2)/2],

with t satisfying 0 ≤ t < 24 and
(
0 1
2 3

)t(
1
0

)
=

(
x
y

)
in GF(5)2× 2

or t = −1 if x = y = 0,

π : a[x][y] ← a[x′][y′], with
(
x
y

)
=

(
0 1
2 3

)(
x′

y′

)
,

χ : a[x] ← a[x] + (a[x+ 1] + 1)a[x+ 2],

ι : a ← a+ RC[ir].

The last step uses the 24 round constants RC[ir]. These are w-bit long and only applied
to the first w bits of the state s. The value of the RC constant is defined as the output of a
binary linear feedback shift register (LFSR), the values for Keccak-f [1600] are defined as
follows:

10

Table 2.1: Round constants for the lane size 64 [9]

RC[0] 0x0000000000000001 RC[12] 0x000000008000808B
RC[1] 0x0000000000008082 RC[13] 0x800000000000008B
RC[2] 0x800000000000808A RC[14] 0x8000000000008089
RC[3] 0x8000000080008000 RC[15] 0x8000000000008003
RC[4] 0x000000000000808B RC[16] 0x8000000000008002
RC[5] 0x0000000080000001 RC[17] 0x8000000000000080
RC[6] 0x8000000080008081 RC[18] 0x000000000000800A
RC[7] 0x8000000000008009 RC[19] 0x800000008000000A
RC[8] 0x000000000000008A RC[20] 0x8000000080008081
RC[9] 0x0000000000000088 RC[21] 0x8000000000008080
RC[10] 0x0000000080008009 RC[22] 0x0000000080000001
RC[11] 0x000000008000000A RC[23] 0x8000000080008008

The algorithm for each step mapping takes a thee-dimensional state array, denoted by a,
as an input and returns an updated state array, denoted by a′, as the output. The ι step
has a second input that is a round number. All step mappings require only bitwise Boolean
operations and rotation. Now we will look at each of the five steps.

2.2.1 Specification of θ

The first step mapping is θ. This mapping is linear and translation-invariant in all directions.
θ applied to a single bit is illustrated in Figure 2.3. The primary goal of this mapping is to
include the diffusion onto the hash function. Diffusion means that a single bit affects the
value of many other bits and as a consequence a value of a single bit is affected by many
other digits [2]. Again, its mathematical representation is the following:

θ : a[x][y][z]← a[x][y][z] +
4∑

y′=0

a[x− 1][y′][z] +
4∑

y=0

a[x+ 1][y′][z − 1]

The effect of θ is to XOR each bit in the state with the parities of two columns in the array.

11

Figure 2.3: θ applied to a single bit [6]

Symbol Σ indicates the XOR sum of all the bits in the column. As we can see, this step can
be implemented using only XOR gates.

2.2.2 Specification of ρ

This step is intended to rotate each lane by some constant value that is calculated according
to the definition of this step, which has the following mathematical representation:

ρ : a[x][y][z]← a[x][y][z − (t+ 1)(t+ 2)/2]

with t satisfying 0 ≤ t < 24 and
(
0 1
2 3

)t(
1
0

)
=

(
x
y

)
in GF(5)2× 2

or t = −1 if x = y = 0

The first equation shows us how the new bit position is calculated. The triangular numbers
are used as the offsets. It can be seen with the equation (t + 1)(t + 2)/2 that represents
triangular numbers. The second equation demonstrates how the coordinates of rotational
constants are computed. The same matrix and principle is used here as in π step and
the graphical representation can be found in Figure 2.5. The effect of ρ step mapping is
illustrated in Figure 2.4.

12

Figure 2.4: ρ applied to the lanes [6]

Rotation constants and the appropriate coordinates are given in Table 2.2.

Table 2.2: ρ step offsets [6]

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

Since all operations over the z coordinate are taken modulo w, these offsets can also be
substituted with its value modulo 64. Without ρ step, the diffusion between slices would be
very slow.

2.2.3 Specification of π

The third step mapping changes the x and y coordinates of every lane except for the first
lane. New coordinates are calculated as follows:

π : a[x][y] ← a[x′][y′], with
(
x
y

)
=

(
0 1
2 3

)(
x′

y′

)
π step applied to a slice is shown in Figure 2.5.

13

Figure 2.5: π applied to a slice [6]

We can see that the bit with coordinates (0, 0, z) does not change its position. This step is
translation-invariant in z-direction and can be implemented by addressing. Inspired by the
software implementation [30] we combined the ρ and π steps into one for the optimization
purpose.

2.2.4 Specification of χ

The fourth step called χ is the only non-linear mapping. Without it, the Keccak-f round
function would be linear, which means that the output of the round is the linear combination
of the inputs and hence the input can be found by solving the system of linear equations.
The mathematical representation of χ step is the following:

χ : a[x] ← a[x] + (a[x+ 1] + 1)a[x+ 2]

The χ step is shown in Figure 2.6.

14

Figure 2.6: χ applied to a single row [6]

Thanks to θ and χ steps, every bit at the input of the round affects 31 bits at its output,
and each bit at the output depends on the 31 bits at the input.

2.2.5 Specification of ι

The last step in every round is the addition of a round constant which value is dependent
on the current round. This mapping is aimed at disrupting symmetry between individual
rounds. This function makes every round unique. The attacks, which are using symmetry
(such as slide attacks) in hash functions, will not be effective against the hash function with
asymmetrical rounds. This type of attacks is used against the ciphers and hash functions
that use the identical permutation function every round [33]. All round constants can be
found in Table 2.1. Every round constant is added only to the first lane.

15

Chapter 3

Algorithm Analysis

FPGA and custom digital circuits in general give us the ability to effectively process a large
amount of data by splitting this data into parts and processing them in parallel. When
examining the algorithm, it is very important to optimally break it into similar pieces, which
can subsequently be processed simultaneously. This chapter is devoted to the analysis of the
algorithm from the point of view of its implementation at the hardware level.

The digital designers, of course, have a completely different approach to solving the problem
than the software engineers. Many things, such as logic operations, rotations and address-
ing, to name a few, are implemented quite easily and very efficiently at the hardware level.
Efficiency is manifested both in the time required to perform these operations, and in the
number of elements involved in its implementation. For example, the XOR operation in the
FPGA technology is implemented by combinational logic using one logic cell (to be more pre-
cise, the lookup table), while in the processor (it may differ depending on the architecture),
it is necessary to access the memory in which the variables are stored, pass them through the
Arithmetic Logic Unit and save back to memory. The processing time is extended further
due to memory latency and the pipelined nature of the processors.

Sequential execution of instructions allows the processor to process 32 or 64 bits at a time
(depending on the architecture used), which for "load, compute, store" triple will require
(1600/32)× 3 = 150 iterations to process the whole state s . It is possible that an effective
solution can also be found for the software approach which allows the processing of the state
quite efficiently. Refer to Chapter 2 in [9] that offers some implementation techniques, such
as bit interleaving or plane-per-plane processing. However, using custom digital logic, we can
create 1600 XOR cells that works in parallel, which will allow us to carry out the calculation
as quickly as possible bounded just by the speed of the signal passing through a logic cell.
Of course, it is logical to have a synchronous design implemented using sequential logic, so
doing 1600 parallel XOR operations would take us one clock cycle.

It is also important to see the disadvantages that may be associated with the possible acce-
leration of some algorithms with the help of the hardware accelerator. Despite the fact that
parallel computing can occur disproportionately faster than computing by the processor, it
is necessary to evaluate whether it makes sense to use hardware acceleration. To clarify this

16

idea, we give an example of the accelerator that requires frequent communication with the
processor for its operation. In this design, a lot of time will be spent on communication
between the accelerator and the processor. Communication runs on some internal bus, for
example, on the AMBA protocol, and this bus is used by other parts of the chip, too, which
reduces its throughput from the point of view of the accelerator. This system will spend
most of the time forwarding messages, and the advantage that the accelerator gives us may
not justify itself.

3.1 Key Parameters of the Keccak for Hardware Implemen-
tation

In this section, we describe some aspects of the Keccak algorithm that make it an ideal
candidate for implementation at the hardware level. The structure of this section will be as
follows: we call the property of the algorithm, describe why it is an advantage, and how it
can be used in its implementation.

The entire computational process can be implemented using only basic logic gates and one
register (DFF) per bit. In Subsection 2.2.1, which describes the θ step, we can see the use of
only addition operations modulo two, which is the XOR function. The χ operation described
in Subsection 2.2.4 uses multiplication, addition, and inversion, which implies blocks such as
AND, XOR, and NOT. The ι operation (Subsection 2.2.5) simply XORs the first lane with
the round constant, that is, we use XOR cells. Steps ρ and π do not use any logic cells.
The mentioned DFF is necessary for storing the bit value for one clock cycle. Using only the
basic blocks allows us to implement the algorithm in FPGA.

There is no need to use additional memory to store the state value. Here it is meant that
the current state value is used only to calculate a new value in the next clock cycle and
is not used later. This statement is justified by the structure of the algorithm itself and
the absence of any feed-forward loop of the state with further calculations. This property
simplifies the implementation of the algorithm and allows the use of only simple sequential
logic consisting of DFFs that store the values of individual bits and the combinational logic
necessary to calculate new bit values.

It is possible to operate with all 1600 bits of the state s concurrently. Thanks to the DFFs,
the value of each bit remains unchanged for one clock cycle and a new value can be calculated
during this cycle. The new value of the bits depends only on the previous state value. This
allows a parallel approach to implementation, meaning that bit values are calculated and
overwritten at the same time. Parallelism can be very effectively realized in custom digital
circuits.

Every step mapping of the Keccak-f permutation function can be executed during one
clock cycle. As noted earlier, the only element of the sequential logic is the DFF, which
stores bit value, and everything else is implemented using combinational logic, allowing the
calculation of the new bit values during one clock cycle. Moreover, inspired by software
implementation[30], we combine π and ρ operations into one, which reduces the execution

17

time of each round by one clock cycle. One-clock cycle execution allows us to make an initial
estimate of the complexity of our solution over time. To process each block Pi of message
P , 24× 4, that is, 96 clock cycles, are needed.

All rounds are identical (except for the ι step), implying reuse of the blocks and same
wiring/addressing. Steps θ, χ, ρ and π are independent of the current round and are per-
formed identically throughout the entire computational process. It means that the blocks
used to calculate the value of the bits can be reused in each round. Despite the fact that
the ι step is dependent on the round, its principle remains the same, namely, XORing the
first lane with the round constant. The XOR operation can be reused, but we need a mul-
tiplexer, which will switch one of the XOR inputs to various constants, depending on the
current round. Since the constants are given by the algorithm itself and are independent
of the input message, they can be calculated at the design stage (see Table 2.1) and, when
implemented, they will be hard-wired to the relevant values. This also simplifies the imple-
mentation of the algorithm by the fact that there is no need to add LFSR to calculate the
constants.

There is no need to use any logic to implement π and ρ steps, since each bit will always be
assigned the value of the exact other bit. For example, bit 576, after completing both steps,
will be assigned the value of the 1411 bit. This can be calculated by simply substituting
the coordinates of bit 576, that is, (4, 1, 0), in the formulas for π and ρ, which give us the
coordinates of the bit, the value of which is the new value of bit 576. In each round, these
coordinates will be the same for bit 576, as for all other bits, which allows us to get rid of the
use of any shift registers and logic for rearranging lanes and can be used a simple hard-wired
assignment of new addresses.

Following the advantages of the algorithm described above, the best solution in terms of
speed is to choose a parallel implementation in which we will develop a universal block,
later called the keccak-cell, which will allow us to perform all algorithm operations for one
bit. Using the versatility of the cell, the Keccak core will consists of 1600 instances of the
keccak-cell, which will be interconnected in a certain way.

3.2 Estimation of Resources

Before writing the RTL code, it is needed to estimate required number of logic gates. The
theoretical introduction given in Chapter 2, along with the analysis from the previous sec-
tion, gives us an idea of how individual steps can be implemented. Since we have already
decided that the algorithm can be implemented using only the basic logic cells, and these
cells can be used repeatedly during the calculations, it is enough to calculate how many
elements are needed to implement one round. Each subsequent round will reuse the same
blocks and only different round constants will be used (which, as we decided before, does
not require any cells and is simply connected to zeroes and ones).

We will implement each step based on its mathematical notation and the pseudocode given

18

in [6], so that even before writing the code it is possible to evaluate its complexity. In order
to further simplify our task, we will calculate how much logic is needed for one bit. Due
to the parallel implementation that we have chosen, this number will be just multiplied by
1600 then. A preliminary estimate of the number of elements needed to implement individ-
ual steps may differ from the actual implementation, but even this gives us a good idea of
whether it makes sense to try to implement the algorithm in this way.

According to the technical documentation of the Keccak algorithm [6], the following logic
gates are needed to implement the single steps:

1. θ step needs two XOR5 gates and one XOR3 gate

2. ρ and π steps do not require any combinational logic and can be implemented by
wiring

3. χ step uses one NOT, one AND and one XOR

4. ι step uses constants which can be pre-calculated on implementation stage

All steps and rounds are repeated cyclically and a multiplexer will be used to switch between
the steps of the permutation function. Multiplexer will have a minimum of four inputs plus
one control input. Four inputs correspond to the new values of this bit after performing a
certain step of the function (ρ and π are combined into one step).

For the ι step, we also need a multiplexer that switches between 24 round constants and
changes its input every round. Due to the fact that the ι step affects only the first lane,
there is no need to have a multiplexer for each of the 1600 state bits. Since the lane length
is 64 bits, we need 64 such multiplexers.

The presence of multiplexers also presupposes the presence of a control unit, which will
gradually increment the control signal, responsible for changing the step, and also, every 4
clock cycles, change the number of rounds. We assume that the control unit does not take
up much space in the design, compared with the computing core. The control unit can be
implemented using several counters, multiplexers and a small number of standard cells.

After analyzing the individual parts, we can estimate the required number of elements.
The implementation of the computational part of the algorithm will take approximately:

Table 3.1: Estimation of resources

Cell For 1 bit Total
AND 1 1600
XOR5 2 320
XOR3 1 1600
NOT 1 1600
DFF 1 1600
MUX6 (step select) 1 1600
MUX24 (round select) 1 64

19

In total we have only 5120 basic logic cells to implement every step, 1600 registers to store
the bits values and 1664 multiplexers to implement the step and round selection. Modern
FPGA chips can implement it without any problem.

3.3 Conclusion

In the previous two sections, we examined the properties of an algorithm implemented at
the hardware level and explained why we chose a parallel implementation. In addition,
we can say that the design of 1600 blocks can be automated, and how the state bits are
interconnected can be calculated using the formulas given in Section 2.2.

20

Chapter 4

HW Accelerator Description

In this chapter, we present an implementation of the Keccak algorithm in FPGA. The
accelerator we developed can be connected to the processor using some interface for commu-
nication. In this chapter only the accelerator (without interface) is described. The accelerator
supports all four SHA-3 hash functions (i.e. SHA3-224, SHA3-256, SHA3-384, SHA3-512).
The internal architecture of the accelerator is the same for all four versions of the SHA-3
and only the maximum values of some counters in the control unit are changed. The version
of SHA-3 can be dynamically changed after the processing of the message is completed.

The accelerator can be easily integrated into an existing system and connected to the proces-
sor via a communication bus. Integration and selection of a suitable environment for testing
is described in Chapter 7.

Two clock domains are used: one frequency is used for the data processing part of the
computing core itself, and the other for communication between the processor and the HW
accelerator. Partitioning of the system into several domains is described in detail in Section
4.4.

4.1 Block Diagram

We will begin the analysis of the accelerator by considering its block diagram. Figure 4.1
shows a simplified block diagram of the accelerator. For readability, the names of individual
signals and their width are not shown.

21

Figure 4.1: Block diagram of the accelerator

All signals of the accelerator can be divided into the following five categories:

• Input data

• Control input FIFO

• Core control and status signals

• Control output FIFO

• Output data

Each group of signals refers to one of the blocks of which the accelerator consists. Each block
will be described in Section 4.3, where their structure is analyzed in detail and a description
of all signals is given.

Now, in brevity, the principle of operation of this accelerator can be described as follows:
the input message is loaded into the input FIFO memory, from where it is then read by the
computing core. The core is automated using a control unit, which is responsible for switch-
ing the necessary steps and rounds, as well as for sending status messages to the processor
about the state of calculations. Upon completion of the calculations, the result is loaded
into the output FIFO memory, from where it can subsequently be read by the processor.
Despite the fact that the computation is automated, external control is still necessary, which
will start loading the message and export the result.

4.2 List of Ports

This section describes all the input and output signals used by the accelerator. Signals are
shown in Table 4.1. In addition to the signals, one parameter is used to determine the width

22

of the data. DATA_WIDTH parameter can be set to either 32 or 64, depending on the
processor architecture or chosen communication interface.

Table 4.1: keccak-fifo signals description

Name Type Width Description
msg_from_cpu_i I DATA_WIDTH Input message from the processor
SHA3_version_i I 2 Select the SHA-3 version
resetn_i I 1 Asynchronous reset. Active low
clk_core_i I 1 Clock signal in the core domain
clk_io_i I 1 Clock signal in the I/O domain
run_comp_i I 1 Starts the computation: load and

compute states
run_export_i I 1 Starts exporting of the digest
wr_msg_en_i I 1 Enables writing message to input

FIFO
rd_dig_en_i I 1 Enables reading digest from output

FIFO
clr_i I 1 Resets the state s to 0s
compute_done_io_o O 1 Indicates the end of computation
export_done_io_o O 1 Indicates the end of exporting
ififo_empty_io_o O 1 Indicates if input FIFO is empty
ififo_full_io_o O 1 Indicates if input FIFO is full
ofifo_empty_io_o O 1 Indicates if output FIFO is empty
ofifo_full_io_o O 1 Indicates if output FIFO is full
dig_o O DATA_WIDTH Computed digest

The msg_from_cpu_i signal, which is 32-bit data that will be connected to a certain exter-
nal bus during accelerator integration, represents an input message for which the hash value
must be calculated. This signal passes directly to the input FIFO memory.

The SHA3_version_i signal is a two-bit signal that allows choosing the version of the SHA-3
function. The version is chosen by the processor and may be changed only after the whole
message is processed.

The resetn_i signal is an asynchronous reset that is active low. This signal is used to
initialize the whole system.

The signals clk_core_i and clk_io_i are clock signals in the computational and input/output
domains, respectively. These domains will be described in detail in Section 4.4.

The run_comp_i signal starts the process of calculating the digest for one block of the
input message. If the message has a length of more than one block, it is necessary to start
the calculation several times using this command.

23

The run_export_i signal starts the process of loading the computed digest into the out-
put FIFO memory. This command needs to be executed only once, when the whole message
has already been processed. Later the processor can read the result from the output FIFO
memory.

The signal wr_msg_en_i is connected to the internal input FIFO and allows writing to
it the input message sent by the processor. After loading the message, the message will be
read by the computing core and processed. Several different messages can be loaded into the
memory, however, the accelerator itself is not able to distinguish which message the block
belongs to, so it is necessary to control such situation with external signals.

The signal rd_dig_en_i is connected to the output FIFO memory and allows the pro-
cessor to read the calculated digest. Thanks to the use of FIFO memory, accelerator can
store several different digests, which belong to different input messages and these digests can
be read regardless of the current state of the computing core.

The clr_i signal initializes the state s to zeroes so that it is possible to start the calcu-
lation of the digest of the new message. Also, this signal can be used to abort all pending
operations and switch the accelerator to the initial state.

The signal compute_done_io_o indicates that the loading of the message into the com-
puting core and its subsequent processing are completed and the core is ready for further
work. Based on this signal, the processor decides whether it is necessary to start the calcu-
lation again (for example, if there are still unprocessed blocks of one message) or whether it
is necessary to export the result to output FIFO memory.

The export_done_io_o signal indicates the end of the process of exporting the digest to
the output FIFO memory, and therefore, the ability to read data from the memory by the
processor using the connected bus.

Four signals ififo_empty_o, ififo_full_o, ofifo_empty_o and ofifo_full_o give us infor-
mation about the state of two FIFO memories, namely, if the each memory is empty or full.
These signals are designed to prevent situations such as trying to write to a full memory or
reading from an empty memory.

Finally, the signal dig_o, which connects the output of the FIFO memory to an exter-
nal bus connected to the processor. Using this signal, the calculated digest is transmitted to
the processor.

4.3 HW Accelerator Hierarchy

Our implementation can be divided into several hierarchical levels and blocks, some of which
are instantiated multiple times, forming a block standing in the hierarchy above.

24

4.3.1 Main Control Unit

One of the main blocks inside keccak-fifo is kctrl-fifo. It is the main control unit that
controls the calculation process itself, input and output FIFO memories, and also receives
and sends status signals outside the block. Based on these signals, the calculation process
can be started, stopped, and internal state s initialized to zeroes.

The list of signals used to communicate with the kctrl-fifo block is shown in Table 4.2
below.

Table 4.2: kctrl-fifo signals description

Name Type Width Description
SHA3_version_i I 2 Select the SHA-3 version
resetn_i I 1 Asynchronous reset with rising edge synchro-

nized to core clock domain. Active low
clk_core_i I 1 Clock signal in the core domain
run_comp_i I 1 Starts the computation: load and compute

states
run_export_i I 1 Starts exporting of the digest
clr_i I 1 Resets the state s to 0s
compute_done_o O 1 Indicates the end of computation
export_done_o O 1 Indicates the end of exporting
load_en_o O 1 Enables reading from input FIFO
export_en_o O 1 Enables writing to output FIFO
step_sel_o O 3 Multiplexer control signal for step selection
round_sel_o O 5 Multiplexer control signal for round selection
kcore_out_sel_o O 3 Multiplexer control signal for digest part selec-

tion
en_o O 1600 Enables keccak-cell DFFs

This block controls three tasks: loading a message, calculating the result and exporting the
digest. To implement its operation we define the finite state machine with the total of 4
states. The first state is the IDLE(0) state, when the outputs of all cells are blocked and
cannot be changed and all internal counters are stopped. As we can see in Figure 4.2, from
this state system has the ability to go into the EXPORT(3) state and into the LOAD(1)
followed by COMPUTE(2) states. After the command run_comp is asserted, the system
goes into a LOAD state and reads the data block from the input FIFO memory for the
required number of clock cycles (based on the length of the read block). The number of
clock cycles required to read the message can be calculated in advance, since the length of
the block is always fixed for a specific version of SHA-3 function. The counter responsible
for controlling whether the message was read, counts up to a certain point and then generate
the signal load_done. This signal changes the state machine from the LOAD state to the
COMPUTE state.

25

0

1

2

3

run_comp
load_done

compute_done
run_exportexport_done

Figure 4.2: kctrl-fifo states

In this state, several counters are used, which are responsible for generating control signals
for each keccak-cell (described in Subsection 4.3.4). One of the counters counts from 2
to 5, that is, it switches the multiplexer between θ, ρ and π (performed simultaneously), χ
and ι. When these steps are completed, the counter is cleared and begins to count again,
moving to a new round. The second counter is used as a round counter, counting from 1
to 24. The counter value increases every four clock cycles, which are necessary to complete
the four steps. The simultaneous overflow of both counters indicates the end of calculation
of one message block. This generates a compute_done signal, and the FSM returns back
to the IDLE state. If there are still further data in the input FIFO memory related to
the same message, the data-load and calculation process shall be started again. When the
whole message was processed, the digest can be exported, using the run_export signal, the
state machine goes into the EXPORT state and writes the result to the output FIFO mem-
ory. This operation takes a fixed number of clock cycles, which depends on the digest length.

Figure 4.3 shows an approximate principle of operation of this state machine.

Figure 4.3: kctrl-fifo operation

As can be seen, the run_comp signal switches the state machine to the message loading and
starts the computational algorithm. At the end of the calculations, the comp_done signal is
generated, based on which the processor can either start the next block calculation again or
start exporting the result. Figure 4.3 shows the operation of the control unit for a message
consisting of two blocks. Despite the fact that the execution time for the calculation and
export operations is shown as the same, calculations take up more time than exporting.

26

Figure 4.4 shows the control signals for multiplexers in keccak-cells at the beginning of
calculations. We can see how the whole process is started by the load_done command, after
which the counters begin to increase.

Figure 4.4: kctrl-fifo operation in the beginning of computation

Figure 4.5 shows the last few cycles of the calculation state. When both counters overflow
(that is, the last step and the last round are executed), the comp_done signal is generated
and the counters are cleared.

Figure 4.5: kctrl-fifo operation in the end of computation

Overflow occurs specifically two cycles earlier, so that as a result there is no delay in the
whole system. That is, exactly one cycle is needed to change the values of the registers of
overflow and one cycle to clear the counters.

4.3.2 Computational Core

The main control unit, the principle of its operation and the signals that it generates, were
described in Subsection 4.3.1 . This section describes the computational core. In Section
3.1, we analyzed some positive aspects of the Keccak algorithm for digital implementation
and created an approximate idea of how it can be implemented. In the same place, we
mentioned the creation of a universal cell that will implement one bit of the state s and
we mentioned the creation of 1600 such instances (this cell will be described in detail in
Subsection 4.3.4). The computational core block combines 1600 instances of the cell, as well
as 320 instances of the XOR5 block (see Subsection 4.3.5). Based on the definition of the
Keccak algorithm, all these instances are interconnected in a certain way. In order not to
manually create 1600 + 320 instances, a Python script was written. Based on the formulas
given in the Keccak algorithm description, the script generates a Verilog code with the
necessary instances and correct interconnections.

27

Table 4.3: keccak-core signals description

Name Type Width Description
message_i I 1152 Input message from FIFO memory
resetn_i I 1 Asynchronous reset with rising edge

synchronized to core clock domain.
Active low

clk_i I 1 Clock signal in the core domain
step_sel_i I 3 Multiplexer control signal for step

selection
round_sel_i I 5 Multiplexer control signal for round

selection
kcore_out_sel_i I 4 Multiplexer control signal for digest

part selection
en_i I 1600 Enables keccak-cell DFFs
kcore_out_o O DATA_WIDTH Output of the computational core

connected to output FIFO

A new signal in Table 4.3 is kcore_out_o, which is connected to a multiplexer, the function
of which is described in Subsection 4.3.6. This multiplexer is needed to take the first X bits
by 32(64)-bit blocks sequentially (where X is the version of SHA-3, i.e. SHA3-X) in order
to export the digest to FIFO memory.

The width of the message_i signal is 1152, which is the longest message block Pi. This
length is used by the SHA3-224 function, while others applicable message sizes are smaller
than 1152 (1088, 832, 576). Switching between SHA-3 versions will result in loading the
input message into the first r cells, while the rest of the cells will remain unchanged.

4.3.3 Internal Input and Output Memories

Two FIFO memories used in this work have already been mentioned several times. In this
subsection, we describe in detail why they are used and what functions they implement.

First, we describe the type of memory that we have chosen, namely, FIFO memory with
two clock domains. This type of memory allows us to write with one frequency, and read
from it with another. Thus, the processes of writing and reading are completely independent,
which is beneficial for the following reasons:

• In our design, there are two clock domains and this type of memory implements a clock
domain crossing scheme between these two domains

• The computing core can work regardless of whether the processor is currently writing
to memory or reading the finished result, thus, the calculation and communication
with the processor may overlap with each other

The signals used by the block are described in Table 4.4.

28

Table 4.4: fifo-wrap signals description

Name Type Width Description
di_i I DATA_WIDTH Input data
rd_clk_i I 1 Read clock signal. For ififo is con-

nected to core domain, for ofifo is
connected to io domain

wr_clk_i I 1 Write clock signal. For ififo is con-
nected to io domain, for ofifo is
connected to core domain

rd_en_i I 1 Read enable
wr_en_i I 1 Write enable
ext_reset_i I 1 External reset connected to outside

of the keccak-fifo block. Active
low

fifo_empty_o O 1 Indicates that FIFO is empty
fifo_full_o O 1 Indicates that FIFO is full
do_o O DATA_WIDTH Output data

To implement the memory, FIFO_DUALCLOCK_MACRO, available from Xilinx, was se-
lected. To use it, a wrapper was created that removes some unnecessary signals and also
inverts the reset signal, making it active low. The documentation for the Xilinx block inside
the wrapper is available in [34].

4.3.4 Keccak Cell Unit

This subsection describes one of the most important parts of our design, namely the block
responsible for a single state bit. This unit both stores the value of the bit and has logic
for calculating its new value, that is, each of the five steps of the Keccak algorithm is
implemented.

29

Figure 4.6: Block diagram of keccak-cell unit

Figure 4.6 shows the block diagram of the keccak-cell. The input signals are divided into
data (shown on the left) and control signals (shown at the bottom). All signals are described
in Table 4.6.

The key part of the block is the multiplexer, which is responsible for switching the steps.
Four of its inputs are responsible for the new bit values and the value is supplied to them
after the step is completed. With each new clock cycle, the multiplexer input switches and
the new value is written to the DFF, which stores the value of the bit. An additional input
for the multiplexer is the output from the new_mes block, responsible for the XOR of the bit
of the input message with a current bit value. This input is active only when it is necessary
to produce a XOR of a new message block with the internal state s.

Table 4.5: keccak-cell parameters description

Name Default Width Description
iota_param 1 1 Defines if iota block will be generated or not
new_bit_param 1 1 Defines if new_bit block will be generated or not

Table 4.5 describes two parameters of the keccak-cell. They are responsible for generating
the block that XORs the input message with the state, and generating logic for the ι step.

30

Since the maximum block size is 1152 bits, there is no need to create new_mes block for
all 1600 bits of the state s. It can be included only in the first 1152 cells, which will be
combined with the input message block through the XOR function. Similarly, in the ι step,
only the first lane is XORed with the round constant, that is, with the first 64 bits, so it is
not necessary to generate a XOR for all bits of the state s.

Table 4.6: keccak-cell signals description

Name Type Width Description
clk_i I 1 Read clock signal. For input FIFO is connected

to core domain, for output FIFO is connected to
I/O domain

resetn_i I 1 Asynchronous reset with rising edge synchro-
nized to core clock domain. Active low

round_sel_i I 5 Multiplexer control signal for round selection
step_sel_i I 3 Multiplexer control signal for step selection
en_i I 1 Enables keccak-cell DFFs
in_i I 1 Input from FIFO
theta1_i I 1 First input for θ step
theta2_i I 1 Second input for θ step
rho_pi_i I 1 Input for both ρ and π steps
chi1_i I 1 First input for χ step
chi2_i I 1 Second input for χ step
iota_i I 1 Input for ι step
s_o O 1 Output bit

The iota block works in such a way that for bit 0, bits at zero position of all 24 round
constants are taken and every 4 cycles the value at the input of the iota block changes, as
does the round constant. For bit 1, the first bits of all 24 constants are taken, for bit 2,
the second bits are taken, etc. Thus, in the iota block there is also a multiplexer, which is
responsible for switching round constants.

4.3.5 XOR5 Auxiliary Block

This block is just five input XOR unit. Its function is to calculate the parity of a column,
as shown in Figure 2.3.

Table 4.7: xor5 signals description

Name Type Width Description
xor1_i I 1 First bit of column
xor2_i I 1 Second bit of column
xor3_i I 1 Third bit of column
xor4_i I 1 Fourth bit of column
xor5_i I 1 Fifth bit of column
xor_o O 1 Output bit (parity of the column)

31

It was introduced into the design in order to simplify the whole implementation and make
the keccak-cell less bulky, that is, instead of 10 (5 + 5) inputs, we only have 2 for the θ
step.

4.3.6 Output Multiplexer

The multiplexer at the output from the computational core allows to write the parallel output
to the 32(64)-bit input of the output FIFO memory.

Table 4.8: outmux signals description

Name Type Width Description
kcore_to_mux_i I 512 First 512 bits of the state
kcore_out_sel_i I 4 Multiplexer control signal to choose

appropriate part
kcore_output_o O DATA_WIDTH Output data to FIFO

Since the maximum digest length of all four SHA-3 functions is 512, the multiplexer consists
of 16 32-bits width inputs (8 64-bits) and with the rising edges of the clocks, one of the
inputs is sent to the output of the multiplexer. If the SHA-3 version with a shorter digest is
used, the counter responsible for exporting the result simply counts in different range.

4.4 Clock Domains

In this section, we will in detail describe the two clock domains used in the accelerator. The
first clock signal is used by the computing core, as well as reading from the input FIFO
memory and writing to the output FIFO memory. The second clock signal is used by the
processor itself and the communication interface. The division of the system into two clock
domains allows us to execute communication and computing at two different frequencies.
Two independent clock domains allow to further increase the efficiency of hardware accele-
ration.

One of the main problems that arise when dividing the system into several clock domains is
the synchronization of signals moving from one domain to another. To solve it, synchroniza-
tion blocks are used, at the output of which the signal changes its value with the rising edge
of the new clock. When switching from a slow domain to a fast one, there are no problems,
since a fast clock manages to capture a slow signal. However, if a signal moves from a fast
domain to a slow one, then during one period of the slow clock its value can be changed
several times, and, thus, the data would be lost. Since in our design there is only such a
type of signal as the pulse (which, for example, means that the calculations have come to an
end), we can use the stretching of the pulse for a minimum duration of one period of slow
clocks. Thus, this pulse will always be registered during the transition of two clock domains.
In addition to the module that stretches the pulses, the double-flop synchronizers are used
on all scalar signals between the clock domains.

32

Chapter 5

Design Flow

The design flow of the accelerator presented in this work is shown in Figure 5.1. The develop-
ment of the accelerator began with theoretical introduction into the world of hash functions
and more precisely the SHA-3 hash function. To choose an effective approach in implement-
ing the accelerator, it is required to deeply understand the theory, so that every aspect of
the function is known. Saying this, the Keccak algorithm, presented in Chapter 2, was
studied in detail. In Chapter 3 we provided a deep analysis of the algorithm, so that the
most efficient implementation can be chosen.

After the theory introduction we specified some key parameters that we wanted to achieve
in our design. We can divide the characteristics of the implemented design into several
categories, such as:

• Efficiency

• Power consumption

• Area

Since the main topic of this work is to accelerate the computational process of the hash
function, we concentrated ourselves only on achieving the maximum efficiency and compu-
tation speed in terms of required clock cycles. This decision allowed us to create a parallel
implementation that requires a lot of logic cells. However, as can be seen in Chapter 6, the
parallel approach did not require the huge amount of logic cells. Modern FPGA chips can
offer much more (over 100k) cells for custom logic implementation.

Our third step was to design the architecture of the system. Chapter 3 contains the reasons,
why we chose the parallel implementation, and Chapter 4 describes the architecture of the
accelerator. We started creating the architecture by drawing a block scheme, containing all
the necessary inputs and outputs and considering in advance, how the accelerator will be
connected to the processor. Next, we divided the top level block into several smaller blocks,
such as the computational core (Subsection 4.3.2) and control unit (Subsection 4.3.1). The
process of dividing the blocks into smaller parts continued until we have reached the lowest
implementation level, meaning that only the implementation of single Keccak step map-
pings left.

33

Having considered the architecture of the system, we moved on to describing individual
steps using HDL language, namely Verilog. In our RTL design we followed the bottom-up
strategy, meaning that we first designed all the low-level units and only after we were sure
they function as expected, we moved to the next blocks.

Figure 5.1: Development steps

Consequently with writing the RTL design, new blocks were verified using our custom test-
benches. Testbench in digital design is a verification environment that contains the device
under test (DUT), and the required signal generation blocks. Basically, testbench should
imitate all the possible inputs to the system and be able to create some periodic signals,
such as clock signal. For example, after we implemented the keccak-core block, we created
the testbench called keccak-core-tb that contained designed computational core and also
the necessary logic to control the functionality of the core. All the control signals from
(during that time not-yet implemented control unit) and data signals were presented. This

34

step allowed us to make sure that the data inside the core are processed as expected. Next,
we implemented the control unit kctrl-fifo and only after we verified that both blocks
function separately, we connected them and corrected the RTL design if needed. The same
method was applied to all other designed blocks. Thus, the behavioral simulation using
testbenches gave us the feedback on what should be optimized and approved that the design
works as expected.

After we verified that the accelerator works correctly, we started designing the complex
block design containing the processor, memories and all required elements. This step is
described in Chapter 7, which focuses on many aspects, such as choosing the appropriate
interface, measuring different communication approaches and ways to compare implemented
accelerator with the software function.

SoC design is closely related to writing the software program for the chosen processor that
will be responsible for sending data and controlling the accelerator. The program was tested
in the created block design using the testbench and behavioral simulation. Chapter 7 also de-
scribes the different software approaches for data transferring and the ways to solve potential
problems. During the software development we discovered few places in our accelerator that
should be optimized. For example, FIFO memories, described in Subsection 4.3.3 can be
configured in two different ways: first way sets the data to the FIFO output before the signal
Read Enable is active and the second way sets the data after the signal Read Enable was set
to logic one. Having the FIFO memory configured to work in the second mode we encoun-
tered the problem that AXI4-Stream interface (see Section 7.3) reads one invalid block of
data. To correct the error we just reconfigured the FIFO memory to another operating mode.

The last two steps are described in Chapters 6 and 9. After we have chosen the appro-
priate way to connect the accelerator to the processor, we synthesized and implemented the
design and began the measurements of the accelerator’s effectiveness on the real hardware.

5.1 Tools Used for Development

The entire development process took place using the Xilinx development tools. These tools
include Vivado for creating and verification of the RTL code (as well as integrating the
different IP cores) and SDK (Software Development Kit) used for writing the software pro-
gram for the chosen processor. Xilinx environment was chosen due to the huge amount of
available no-cost IP cores that greatly simplify the development process and allow an easy
block-design creation. Also, Xilinx offers a lot of user guides and well-documented manuals.

As has been mentioned in Subsection 4.3.2, we used the Python script to create 1600 in-
stances of the keccak-cell blocks. To be more precise, the Python 2.7 version and PyCharm
IDE were used. The script generated a file of Verilog format, which contained the header,
the declaration of the module, signals and 1600 instances of keccak-cell blocks. Python
program contains all the necessary functions used to correctly interconnect all the instances.

35

5.2 Verification Environment

Before proceeding to bitstream generation and FPGA programming, the implemented design
was verified. To verify every complex block of the designed accelerator we used testbenches
that were briefly mentioned in the beginning of this chapter. This section will describe in
detail different verification techniques and the ways we analyzed the implemented design.
We devote a whole section to testbenches, since this is no less important part of the entire
design than regular RTL code.

Every testbench contains the design under test and all the necessary logic that will gen-
erate input signals to the DUT. Every signal defined in the testbench can later be viewed
in the built-in Vivado waveform analyzer after the simulation began. Furthermore, Vivado
lets the designer to look inside the DUT and so every lower hierarchy level blocks can be
inspected. This feature greatly simplifies the design process, because the one can have the
overall representation of the design and follow the appropriate error to its origin.

There are some signals that were used in almost all testbenches that verified the sequen-
tial logic. These signals are the periodic clock signal and the asynchronous active low reset.

To verify that the computational core generates the digest correctly, we had to provide
some input data. One way to do this was to create a long (minimum of 576 bits) vector
inside the testbench that will be passed as the input to the computational core. The ad-
vantage of this method is its simplicity, because it does not require any additional functions
or tools, and so it can be used to verify that the core functions as expected for the first
time. However, since we wanted to test the core on many different input messages, it was
more useful to create the distinct files that contained the input messages. After that, using
the readmemh function in the testbench, we copied the content of the files into appropriate
arrays that were later passed as the input to the core. This method allowed us to separate
the input data and the testbench code, which made the code well-arranged and clear.

Since the SHA-3 hash function is officially specified in its standard [12], we had to com-
pare produced digests with some reference official data. Such test data can be found in [31],
where for every SHA-3 version there are five different input messages that varies in length
and in its content. For example, for every SHA-3 function there is an empty message, as
well as a one- or multi-block message. Test data are available as the pdf document which
also contains the information about how the data have changed after a single step has been
executed inside the Keccak algorithm. Without this information the verification and de-
velopment process would take much more time, because it is nearly impossible to find where
the error occurs due to the high randomness of the output, which excludes any prediction
of what went wrong. Using these data and the opportunity to follow the waveforms of the
signals inside of the computational core allowed us to quickly find all the errors we had in
the design and to put the accelerator into operation.

After we ensured that the computational core, control unit and the input/output FIFO
memories function together, we moved on to the creation of the SoC design, described in
Chapter 7. Although we could still try to imitate the signals from the processor using the

36

testbench, we decided that it would we much easier to connect our accelerator to the real pro-
cessor, because at this stage the signals and the data were at a relatively complex level and it
would be hard to maintain them all. After creating the SoC design and the top-level module
that combined the processor, peripherals and our accelerator, we wrote a small testbench
that emulated the real FPGA development board. It means that this testbench had only the
asynchronous reset, clock signal and UART rx/tx signals for further communication with
PC (UART signals, were left unconnected in the testbench). Vivado simulations allowed us
to follow every waveform of the signals, to find and fix the appropriate errors and to debug
the software program using debug AXI4-Stream Data FIFO, described in Subsection 7.1.6.

The last verification step was to add one of the software implementations of SHA-3 function
and to ensure that our accelerator and the software implementation provide the same result.
This step was verified on the FPGA development board. Using UART for communication
with PC we could exchange the data and follow the execution of the program. To compare
the execution time of the software and hardware implementation of the SHA-3 function, we
used the AXI Timer IP core (see Subsection 7.5.3) that returned the time needed to execute
an appropriate function.

37

Chapter 6

Implementation Results

After we ensured that the accelerator works as expected, we moved on to the next design
step, that is, implementation. The output of this step is the design placed on a specific chip.
Before starting the implementation, it is necessary to create a timing constraints file. During
the implementation, the design is optimized according to the given timing constraints file,
so that the desired frequency can be achieved. The implementation result does rely on used
FPGA chip, because different chips has different available logic elements.

The implementation was made for Xilinx Artix 7 FPGA xc7a200tsbg484-1. The implemen-
tation process is fully automated. The first step is the synthesis, when the RTL description
is translated to the netlist of suitable FPGA cells. After the synthesis step, the cells are
placed in the FPGA and all the nets are routed, using the existing routing resources in the
FPGA. If provided placement meets the conditions from the timing constraints file, then the
design is ready, otherwise Vivado tries to optimize the placement and routing steps.

Table 6.1: Number of blocks used in implementation

Ref Name Used
LUT6 3322
DFF 1661
LUT4 1604
LUT5 912
MUXF7 121
LUT3 35
MUXF8 32
LUT2 10
LUT1 6
FIFO18E1 2

In Chapter 4 we described the accelerator that does not contain any communication and
control interfaces. The interfaces we have chosen are described in Chapter 7 and despite
the fact, they have not been yet introduced in this work, we provide the implementation
results, that already contain both interfaces. The results of the implementation for required

38

frequency of 100MHz are shown in Table 6.1.

The implementation results match the expectations from Section 3.2, where we provided
the estimation of the resources needed to implement the accelerator. Comparing Table 6.1
with Table 3.1, we can see that the number of DFFs is almost equal. Implementation output
contains more DFFs due to the counters, used in the kctrl-fifo control unit and resyn-
chronizing modules. The number of lookup tables is also almost equal to the number of logic
elements provided in Table 3.1. Only the number of multiplexers greatly differs between the
estimation and simulation results. This can be explained by the fact that the multiplexers
in our RTL design was translated into built-in multiplexer blocks and combined in different
ways by the implementation and optimization tools. Beside basic logic blocks, two FIFO
memories were used by the implementation, which also matches the fact that we have two
FIFOs in the accelerator.

Having analyzed the implemented design, we provide another Table 6.2 that shows us how
many logic blocks we used relative to the available blocks on the chip.

Table 6.2: FPGA resources utilization

Type Used Available Utilization[%]
LUT 5866 133800 4.38
DFF 1661 267600 0.62
MUXF7 121 66900 0.18
MUXF8 32 33450 0.10

Both tables above tell us that the implementation step has been executed according to our
expectations and that designed accelerator does not take a lot of space on the chip. The
timing analysis of the implemented design gave us the 0.874 ns Worst Negative Slack, which
means that we can decrease the period by approximately 0.5 ns. Despite the fact, that the
period can be further decreased, we tested the accelerator at 100MHz frequency, so that it
has the same frequency with the remaining system, which is described in Chapter 7. De-
creasing the frequency by half a nanosecond will give us only about a 10MHz rise, that, as
we will see in Chapter 8 will not influence the overall effectiveness of the accelerator, because
the most time is spent during data transferring between processor and accelerator and also
during the firmware execution, which runs in clk_io domain.

Although we have chosen the xc7a200t-1sbg484c chip for our implementation and for mea-
surements, it does not mean that the accelerator was designed only for this FPGA chip. We
tried to make our accelerator to be as universal as possible and as can be seen in Subsection
4.3.2, the computational core itself does not use any FPGA-specific components. The com-
putational core is implemented using only the basic logic elements, such as LUTs and DFFs,
which are the part of every FPGA. The only components in our design that are specific for
the chosen chip for the implementation are the two FIFO memories. FIFO memories are
implemented using the Xilinx’s macro that was specific for the Xilinx FPGAs.

39

Chapter 7

SoC Design

In order to evaluate how effective the developed accelerator is, it is necessary to create a
validation environment. Since the module is designed to accelerate the processor computing
SHA-3 function, the validation environment should contain at least a processor. Further, the
processor and the accelerator must somehow communicate with each other, which implies
the use of a communication protocol. For acceleration to make sense, the connection between
the processor and the accelerator should be as fast as possible, otherwise the acceleration
efficiency will be reduced.

Since there are a large number of different ways to send data, and each of them is supe-
rior to the others in specific cases, we need to determine which one suits us best. For this,
we created a special block design that contains all the necessary components to evaluate the
effectiveness of the individual communication protocols. In the beginning of this chapter we
describe the block design used for evaluating which interface is the best for our application.
Later we look at two different interfaces and talk about their advantages and disadvantages
as well as provide the necessary measurements. After the suitable interface has been chosen
we add this interface to the accelerator and create the new block design used for measure-
ments on the real FPGA chip.

7.1 Block Design for Interface Selection

The block design used for choosing the suitable interface is presented in Figure 7.1. The
description of the individual components is presented in the following subsections. Some
signals in the design illustrated in Figure 7.1 are not shown, since we did not want the pic-
ture to be full of common signals, which can be conveniently grouped and referenced in the
text. This is why there are no clock and reset signals. We have already described the clock
domains in Section 4.4.

All bidirectional data connections are shown in Figure 7.1 as thin arrows pointing in two
directions. We placed all master ports on the right side of components and slave ports on

40

the left side. The unidirectional arrows represent the AXI4-Stream interface described in
Section 7.3.

Figure 7.1: Block design for verification and measurements of the suitable interface

The block design presented above does have only two external signals, which are the clock
and reset signal. These two signals are triggered in the appropriate testbench, since the
measurements of the suitable interface took place only in the behavioral simulations.

7.1.1 Clock and Reset Generation

This section describes the Clock and Reset Generation (CRG) block that is responsible for
generation of the global signals, that are later distributed throughout the design. CRG is
made out of two IP cores, which are the necessary part of every design with embedded
processor. These cores are:

• Clocking Wizard

• Processor System Reset

The main and the only task of the Clocking Wizard IP core [22] is to take an input clocks
of some frequency and produce multiple clocks with different frequencies. In our case the
input clocks are the external input and IP core produces clocks for two domains: clk_io
and clk_core. The advantage of using the Clocking Wizard IP core is its simplicity and that
there is no need to create complex frequency dividers in order to create required clock signals.

Processor System Reset IP core [14] is used to generate multiple different resets at the
output, that can be independent on each other. This block is used in the design to create
resets for the MicroBlaze processor, AXI4 and AXI4-Stream interfaces and also a reset sig-
nal for the SHA-3 accelerator (in the design described in Section 7.2). The advantage of

41

using this IP core is the high flexibility in setting the reset conditions and properties, so,
for example, there is no need to create inverters in the design in order to change the reset
polarity.

7.1.2 MicroBlaze Processor

The Xilinx MicroBlaze processor [26] was used as a processor core in the validation environ-
ment. Since the implementation of the project takes place in FPGA, we needed a processor
that can be implemented using only logic blocks. Such processors are called soft processors
and there are a large number of them from various manufacturers. One of such processors
from Xilinx is the MicroBlaze processor, which is excellent for fulfilling our task and has a
number of advantages, such as:

• It can be optimized for better power, frequency or area. Since we want it to work
faster and do not care about area or power consumption, we configured it for maximum
frequency

• Even when MicroBlaze is optimized for frequency, it does not take much FPGA re-
sources on the chip

• Offers different types of communication interfaces, such as AMBA AXI4 [7] and AMBA
AXI4-Stream link [4]

• MicroBlaze is available as a free IP core within the Vivado IDE

• There are a lot of manuals and user guides to MicroBlaze, so the development process
was easier

When instantiating the processor core, other blocks are created along with it, responsible
for synchronous reset and clock signal generation (see Subsection 7.1.1), as well as a block
of the processor’s local memory in which data and instructions are stored.

MicroBlaze is initially connected to its local memory through the dedicated bus available
only for the processor. This bus is called a Local Memory Bus (LMB) and is designed for a
fast data and instructions transferring between the MicroBlaze and memory. Local Memory
Bus is connected to the processor through two ports, called DLMB and ILMB each dedi-
cated to Data and Instructions respectively. The advantage of using this bus for accessing
a local memory is that other buses, such as AXI4 are not busy by transferring the data and
instructions. Another feature of LMB is that the data and instructions are available in one
clock cycle, so there is a minimal latency.

42

7.1.3 AXI Interconnect

Although MicroBlaze has only one AXI4 port we still can connect several slave devices to it.
In order to do so we have to use the AXI Interconnect IP core, which basically functions as
a switch and allows connecting multiple masters with multiple slaves [19]. Since AXI4 inter-
face uses addresses to indicate the transaction destination, switching between slave devices
in AXI Interconnect is accomplished using their addresses. Thus, all slaves later produce a
large address space which is described in Section 7.2. In our design, AXI Interconnect IP
core allows us to connect all AXI4 slaves to the MicroBlaze processor and also include a
DMA (see Subsection 7.1.4) into our design. Since the DMA needs an access to the same
slave devices that correspond to MicroBlaze, it is required that DMA and MicroBlaze share
the same AXI4 link.

Figures 7.1 and 7.2 illustrates that all AXI4 devices are connected to AXI Interconnect
core meaning that they form a common network where the data can be transferred between
every unit.

7.1.4 AXI Central Direct Memory Access

Transferring data between devices is a very time-consuming process. When the processor
handles the data transfer by itself, it has to configure two devices: the one that wishes to
send data and the one that will receive data. Beside that, processor needs to first copy
the necessary data to its local memory and then write the copied data to the destination
location. This is a very time-consuming process, especially when a large blocks of data have
to be transferred. To resolve this problem and free the processor from doing these tasks, the
Direct Memory Access unit can be used. The DMA handles the transfer of data and send
an interrupt to the processor after completing.

In order to carry out the transfer, DMA has to be configured. Basically, the configura-
tion process does not take a lot of time, because the processor only has to configure DMA
source address, destination address and the length of the transfer. After the configuration
has completed, the DMA handles the entire data transferring process. Then, there are two
basic ways how the processor will be informed about the completion of the transfer. The
processor can either periodically check the status register of DMA (polling method) or wait
for the interrupt if DMA is configured to work in the interrupt mode. During the time when
DMA handles the transfer, the processor is free to execute another tasks.

Xilinx environment allows us to use the free AXI Central Direct Memory Access IP core
(CDMA [23]). This core provides data transferring between two devices using the AXI4
interface, which is one of the main interfaces in our design. CDMA has one master and one
slave AXI4 port, both connected to AXI Interconnect, so that the processor has the access
to CDMA and also CDMA can access all the processor’s slave devices.

The huge advantage of the CDMA IP core is its ability to realize a burst AXI4 transfer,
meaning that it can send up to 64 blocks of data with a single AXI4 transaction. Using

43

DMA we can greatly decrease the time required to transfer data even from the MicroBlaze’s
local memory, because MicroBlaze is not capable of burst transfers, so CDMA can help here.

7.1.5 Local Memory Bus and AXI BRAM Controllers

To access the memory we need some unit that serves as a bridge between the master device
and memory, because the memory in FPGA is implemented with the BRAM blocks (Block
RAM [21]). After the BRAM IP core is instantiated, it has only one port that can be used for
reading and writing. This port further has to be connected to one of the memory controllers.
The choice of controller depends on the type of the interface we use to access the memory.

As we have already said in Subsection 7.1.2, MicroBlaze processor uses its own Local Mem-
ory Bus due to its high throughput and one clock cycle access [17]. To make the memory
accessible for DMA, we had to use the AXI BRAM Controller IP core [15]. If we would like
to connect the BRAM memory to the Local Memory Bus, we have to use the LMB BRAM
Controller IP core [25].

In our block design (see Figure 7.1) two controllers of each type are used because we have
two physically distinct memories: data and instruction. The BRAM memory IP core was
expanded to two-ports memory with each port connected via AXI4 or LMB. AXI BRAM
Controllers are further connected to AXI Interconnect to include the memory in the common
AXI network. AXI Controllers are used so that the DMA has the access to the memory,
because the data for SHA-3 accelerator will be stored in processor’s local memory and this
allows the DMA to transfer data from the processor to accelerator and back.

Advantage of the BRAM memory and AXI Controller is that with their help we can simu-
late the communication between the processor and the accelerator as if we chose the AXI4
interface. In the block design we can see the SHA-3 AXI block, which is the BRAM memory
connected to AXI4 interface through the AXI BRAM Controller. This instantiated block
allows us to measure the time needed to transfer the message from the processor’s local
memory to the accelerator. The time can be measured for AXI4 interface with and without
using the DMA unit.

7.1.6 AXI4-Stream Data FIFO

To measure the AXI4-Stream data transfer time we need some IP core that will be able
to receive and send the interface signals. One of these IP cores is the AXI4-Stream Data
FIFO [24]. The core acts like a FIFO memory with the AXI4-Stream interface, so it can be
used as a temporary data storage. The block has two ports: master and slave that should
be connected to slave and master ports of another device respectively. In the block design
shown in Figure 7.2 two FIFO IP cores are instantiated. The first one (SHA-3 FIFO) is used
to simulate the SHA-3 accelerator as if it is connected using the AXI4-Stream interface. The
advantage of using that IP core for measurements is its simplicity in integration into the
block design, similarly to the BRAM Memory used to simulate AXI4 interface.

44

The second AXI4-Stream Data FIFO IP core (Debug FIFO) is used for the debug pur-
poses of the firmware program. Due to the fact that interfaces measurements were carried
out in Vivado simulations, and not on the real hardware, we could not use printf function
to debug our program, because it required a virtual serial port and the function would take
a lot of time in relation to all other commands. A much simpler solution was to use the
additional AXI4-Stream Data FIFO core, to which status messages indicating the progress
of the program was sent. Unlike the printf function, writing to the FIFO memory with
the help of AXI4-Stream interface is executed within one clock cycle and only the TDATA
signal in the waveforms had to be tracked.

7.2 Address Space

There are two types of interfaces in the design presented in Figure 7.1. First type does
distinguish between slaves using addresses that every slave is assigned and the second type
does not use any addresses. Both LMB and AXI4 interfaces are a part of the first type and
hence they require that every slave has its unique address or, more precisely, the address
range. This range can be directly related to some of the parameters of used block. For
example, if we want to access the 64KB BRAM memory using the AXI Controller, we will
have a 64KB range in the address space corresponding to that memory. By referring to some
address in that range we will directly refer to the BRAM’s content. If the device is not a
memory, then address range will mean device’s register space. The important condition is
that within one master device different address ranges can not overlap, because addresses
function as a unique identifier for every slave device.

Block design for interfaces measurements has two master devices: MicroBlaze and CDMA,
each of them having its own independent address space. Both address spaces are presented
in Tables 7.1 and 7.2.

Table 7.1: MicroBlaze address space

Device Offset Address High Address
AXI SHA-3 0xC000_0000 0xC000_FFFF
AXI Data Memory 0x4001_0000 0x4001_FFFF
AXI Instr Memory 0x4000_0000 0x4000_FFFF
AXI CDMA 0x44A1_0000 0x44A1_FFFF
LMB Data Memory 0x0001_0000 0x0001_FFFF
LMB Instr Memory 0x0000_0000 0x0000_FFFF

We can see that address space of MicroBlaze contains two types of interfaces: AXI and LMB.
After instantiating the block in the design, Vivado automatically creates offset address for
each device. In order to easily access the local data memory, we remapped the default values
for AXI and LMB data/instruction memories. Having them as shown in Table 7.1 we can
use a simple mask 0x40000000 to access the same data through the AXI interface.

45

Table 7.2: CDMA address space

Device Offset Address High Address
AXI SHA-3 0xC000_0000 0xC000_FFFF
AXI Data Memory 0x4001_0000 0x4001_FFFF
AXI Instr Memory 0x4000_0000 0x4000_FFFF

As shown in the above tables, the same devices do have same addresses for CDMA and
MicroBlaze. The reason for this is that if the processor wish to move data from address
0x41C00000 to 0x40600000, it can simply send these addresses to DMA and that will exactly
define the source and destination. If the processor and DMA would use different ranges, then
we would have to use masking or some complicated address conversion.

7.3 Interface Selection

The selection of a suitable mode of communication is one of the critical aspects. This is due
to the fact that even if the developed accelerator is very effective, the advantages of using
it can be meaningless if sending the message from the processor to the accelerator takes too
long. Therefore, we need to look at several possible options, measure their throughput and
subsequently choose the best one.

The MicroBlaze processor allows us to use two types of interfaces: AXI4 and AXI4-Stream.
Each interface has its advantages and disadvantages and can give different results in differ-
ent situations. This is due to the fact that they are implemented in different ways and, for
example, the AXI4 uses a long handshake process, but allows to connect multiple devices
to the same port at once. In contrast, AXI4-Stream provides a very fast connection, where
data are sent within one clock cycle, but the connection is point-to-point and unidirectional.
Now we will analyze each interface in more detail, and then summarize the analysis.

AXI4-Stream is a protocol from the AMBA family designed for fast unidirectional data
transfer between two devices. Each device using the AXI4-Stream protocol can have two
ports: a master port and a slave port, which are connected to the slave and master ports of
another device respectively. The data bus is 32 bits wide, and reading/writing is executed
in one clock cycle, which is the main advantage of this protocol. Also, the absence of a
handshake process and complex procedures for confirming receipt makes the implementa-
tion of a slave device (accelerator in our case) a fairly simple task. The disadvantage of
the AXI4-Stream interface is that the processor itself sends data, so if there are tasks with
higher priority (that is, the processor will constantly be interrupted), then transferring a
large amount of data can take a lot of time. Thus, this interface is advantageous to use if
the main task of the processor is to transport data.

AXI4 is also a protocol of the AMBA family and is a high-speed method of transmitting
data. High speed and excellent bandwidth are due to the fact that the AXI4 protocol data
path is divided into several parts and has separate reading and writing channels. Thus,
reading/writing can executed in parallel. The width of the data bus in this design is 32

46

bits, as in the case of AXI4-Stream. Despite the fact that simultaneous writing and reading
are an advantage of the AXI4 protocol, this will affect the speed of data exchange with our
accelerator only in certain cases. Since the calculation of the digest will take some time,
processor will not be able to read the digest of the message it just sent immediately. AXI4
interface can also work in burst mode: when the hand-shaking process occurs only once and
remains valid for a large amount of data. Relative to the burst mode mentioned above,
we need to consider one important aspect related directly to the MicroBlaze processor. Its
architecture and instruction set do not support burst mode. However, we can use DMA,
which can transmit data in large blocks with a single transaction. Thus, even before any
simulations, we can make an assumption that the connection between the processor and the
accelerator will be more effective using AXI with DMA than without DMA. However, only
the results of measurements carried out in simulations will give us the exact result.

The shortest possible message that would be sent to the accelerator is 576-bits long (in
case of SHA3-512), that is divided into 18 32-bit words to be sent over some communication
protocol. The AXI4-Stream can handle this transaction in 18 clock cycles. Even if DMA
uses the burst type transfer, it still requires to be configured, which also consumes time and
as a consequent, AXI4-Stream might be the best choice for our application.

7.4 Interfaces Comparison Results

The measurements were carried out in the following way: the value of the debug FIFO
changed, the execution of the necessary program began, and upon its completion the value
of debug FIFO changed again. Then, in simulation output, it was clear how many clock
cycles had passed from the beginning of the function to its completion. Since writing to
AXI4-Stream debug FIFO takes one clock cycle, the measurement result differs from the
real value by only one cycle. This is explained by the fact that when the debug FIFO value
changed for the first time, the processor has already begun to fulfill our function (one clock
cycle of the new function has already passed). Then, when the function is completed, the
processor spends one clock cycle writing a new value to the debug FIFO, and with a rising
edge of the clocks, the debug FIFO value changes. However, to compare the SW and HW
implementation we used AXI Timer, described in Subsection 7.5.3.

Tests were conducted for messages with different lengths and different methods of send-
ing data were also tested (these methods are discussed in Section 8.1). For example, the
different lengths of the messages sent made it possible to verify that the longer is the mes-
sage, the more efficient the DMA unit is. Since DMA configuration always takes the same
amount of time, the longer the message is, the less influence has the duration of DMA con-
figuration on the total message sending time.

In our design we have a total of three different options how to transmit the data from
the processor to the accelerator and back. These options include:

• AXI4-Stream

• AXI4 without DMA

47

• AXI4 with DMA

All three methods were tested under the same conditions and with the same messages. The
results for a 1152-bits message are shown in Table 7.3. The third column indicates how many
clock cycles (CC) is required for sending a single 32-bit word.

Table 7.3: Interfaces comparison

Method Duration in CC CC/32-bit
AXI4-Stream 75 2.08
AXI4 without DMA 363 10.08
AXI4 with DMA 158 4.39

Based on the measurement results, the most suitable option for us would be to use AXI4-
Stream. In second place is AXI4 with DMA, which is expected, since DMA allows using
burst mode when sending messages. The choice of AXI4-Stream is also due to the fact that
we will send messages whose length depends on the version of SHA-3 functions and the
maximum will be 1152 bits. By breaking the longest message into pieces of 32 bits, we get
36 words. DMA, however, begins to show its advantages when sending longer messages. To
verify this, we conducted another test in which a message was sent longer than necessary.
The results are shown in Table 7.4.

Table 7.4: Using DMA with different message lengths

Message length in bits Duration in CC CC/32-bit
1152 158 4.39
2304 259 3.59
4608 394 2.74

As we can see from the test results, the time spent for sending a message increases dispropor-
tionately with the increase in the length of the message, which implies that with increasing
length, the efficiency of using DMA increases. We would also like to add that the main pri-
ority was the speed of the communication, and not the overall effectiveness of the program.
For example, if the processor had a bunch of other tasks, besides communicating with the
accelerator, the use of DMA could justify itself. We would have to sacrifice the speed of data
transfer in favor of the processor having more time to perform other tasks.

7.5 Block Design for HW and SW Comparison

After all the necessary measurements described in Section 7.4 has been completed and the
suitable interface has been chosen, we created the new block design that will help us to
evaluate the effectiveness of designed accelerator. The new block design is shown in Figure
7.2.

48

Figure 7.2: Block design for HW and SW comparison

Some of the blocks in the above design are already known to us from Section 7.1. However
we can also see new components used in this design, such as the SHA-3 accelerator, AXI
Timer, AXI UART and AXI to APB Bridge. Ale new components are described later in this
section. Also, the new block design has additional two ports: rx and tx, which are related
to the UART communication. These ports are connected directly to the FPGA chips pins.
Another difference from the block design in Section 7.1 is that now we use two different clock
domains: one for communication and one for the computational core. It means that Clock
and Reset Generation block has the Clocking Wizard set to generate two clock signals with
two frequencies.

In Chapter 6 the implementation result gave us the frequency at which the accelerator
can operate, which is 100MHz. That means that the clk_core domain will run at 100MHz
frequency. The MicroBlaze processor and all the peripherals also run at 100MHz, meaning
that clk_io domain has 100MHz frequency. From all of the above follows that both do-
mains will be the same in our design. However, the accelerator is still capable to run at
the independent from the I/O domain frequency and it can run either at slower or at higher
frequency, depending on the situation.

7.5.1 SHA-3 Accelerator

Chapter 4 describes the internal structure of the SHA-3 accelerator. In order to connect
the accelerator to MicroBlaze processor we have to upgrade our accelerator and add the
interface for communication. The explanation on why we chose AXI4-Stream interface is
given in Section 7.3. Since the designed accelerator can not work on its own and should
be started by some master device, we need an interface that will be responsible for sending
control/status messages.

49

Sending status and control signals does not require the high throughput of the commu-
nication protocol, so we could choose the protocol that is easy to implement and can be
connected to the master system (which is the MicroBlaze processor in our case). Xilinx’s IP
core library offers us the AXI to APB bridge IP core which will be described in Subsection
7.5.2. The information about AMBA APB Protocol can be found in its specification [3].
In order to translate the APB interface signals into control signals for the accelerator, new
block named keccak-fifo-regs was created. This block serves as the bridge between the
APB interface and the accelerator and has three registers.

Control Register

The structure of the control register is presented in Figure 7.3. This register is available at
address 8’h00 and is a Write-Only register. Due to the fact, that keccak-fifo unit does
not require a lot of control signals, the register is 8-bit long and only first 3 bits are used.

Figure 7.3: Control register structure

The definition of the appropriate bits of control register is given in Table 7.5. Setting the bits
to one will generate the signal transmitted to the keccak-fifo block and the relative action
will begin. The created signal is set to HIGH only for one clock cycle which is sufficient to
initiate an action. Bits values can be set only if the WREN signal is HIGH. WREN signal is
connected to the APB interface and transmits to logic one automatically whenever the write
transaction takes place. One clock cycle after setting the bit, all bits in the control register
are cleared until new write operation arrives.

Table 7.5: Control register bit definitions

Bit Name Description
0 RC RUN_COMPUTE bit. Setting this bit to 1 will

initialize the COMPUTE operation
1 RE RUN_EXPORT bit. Setting this bit to 1 will

initialize the EXPORT operation
2 CLR CLEAR bit. Setting this bit to 1 will trigger

the CLEAR signal, which, in turn, clears the
internal state of keccak-core unit

3-7 X Not used

Status Register

The structure of the status register is presented in Figure 7.4. This is a Read-Only register
and is available at address 8’h01.

50

Figure 7.4: Status register structure

Status register is 8-bit long and contains the information about finished actions. The ap-
propriate bits of this register are set when either computation or export has finished. Bits
remain HIGH until the action started again or until the register value has not been read by
the processor. Register value is read only when the RDEN signal is active, which is auto-
matically active whenever there is a reading operation on the APB interface. The definition
of the single status register’s bits is provided in Table 7.6.

Table 7.6: Status register bit definitions

Bit Name Description
0 CD COMPUTE_DONE bit. Indicates if the com-

putation has finished
1 ED EXPORT_DONE bit. Indicates if the exporting

to output FIFO has finished
2-7 X Not used

This register is used by the processor in order to evaluate if the computation is done and as
follows, if the processor can initiate a next computation or start exporting the data to the
output FIFO.

Config Register

The structure of the config register is presented in Figure 7.5. This is a Read-Write register,
so that the version of the SHA-3 function can be changed and also the processor can check
which version is running now.

Figure 7.5: Config register structure

The definition of the config register’s bits is in Table 7.7.

Table 7.7: Config register bit definitions

Bit Name Description
0-1 SVER SHA-3 VERSION bit. Changing the value of

these bits will cause the accelerator to change
its actual version

1-7 X Not used

51

The lower 2 bits of the config register are connected to the SHA3_version_i input of the
keccak-fifo unit. After the register value has changed, the accelerator is ready to operate
according to the new set value.

In order to receive or transmit any data through the AXI4-Stream interface, designed ac-
celerator should contain the logic that will be responsible for generating all the signals
required by the AXI4-Stream standard. That is why we created two additional blocks each
responsible for transforming master/slave signals of the accelerator. These blocks are called
axis-master-interface/axis-slave-interface and are placed at the master/slave AXI4-
Stream ports respectively. These units are implemented only with combinational logic, so
that there is no unnecessary delay in transactions. The minimum requirement for the AXI4-
Stream interface are the three signals: TREADY, TVALID and TDATA. Signal TDATA is
a 32-bit bus used for data transferring. Signals TREADY and TVALID are the 1-bit control
signals used in the simple handshake process. TREADY is always generated by the slave
device and indicates that the device is ready to obtain the data. TVALID signal indicates
that the master is driving a valid transfer. The data on the link are valid when both TVALID
and TREADY signals are high.

Since the processor is the unit, which initiates both reading and writing from accelerator, we
had to implement the interface in the way that the accelerator’s data will be ready as soon as
possible. For example, axis-slave-interface block has the TREADY signal active when
the input FIFO is not full. This means that the accelerator can immediately receive any data
from the processor if there is a free space for them. Another task of axis-slave-interface
unit is to send a Write Enable signal to input FIFO. The WREN signal is active when
TVALID is high and the input FIFO is not empty.

On the output side of the accelerator axis-master-interface is placed. Its role is sim-
ilar to axis-slave-interface unit with the difference, that it is responsible for TVALID
signal generation and does receive TREADY from the processor. The working principle is
similar to its slave analog in the way that it sets the TVALID signal high when the output
FIFO is not empty, meaning that there are still some data ready for transferring. This device
is also responsible for allowing reading from output FIFO. The Read Enable signal is active
when the output FIFO is not empty and TREADY signal is high. The unit also changes the
byte order inside the 32-bit word to little-endian format in order to later effectively read the
data by the software function, which is described in Chapter 8.

52

Figure 7.6: keccak-axis block diagram

Adding the blocks described above in this Subsection results in the accelerator wrapper,
which we called keccak-axis to reflect that this accelerator uses the AXI4-Stream interface.
Figure 7.6 illustrates the structure of the complete SHA-3 accelerator that can be integrated
in the larger system and has two different interfaces each following its own purpose.

7.5.2 AXI to APB Bridge

The AXI4 to APB Bridge IP by Xilinx [13] is used as a bridge between the AXI4 interface
and the APB bus, which is used as a control interface of the accelerator.

7.5.3 AXI Timer

In order to properly measure the program execution time, some external timer has to be
used. One possibility was to use AXI Time IP core [16]. The single core integrates two
independent 32-bit timers. Provided IP core has several advantages including a very simple
register space and support of AXI4 interface.

To use the timer, we first had to reset its value to zero. The next step was to start the
timer right before the execution of an appropriate part of the program (that has to be mea-
sured), stop the timer after program finished and read the timer value. All the control and
data signals are transferred over the AXI4 interface. The timer is connected to AXI Inter-
connect to allow the MicroBlaze access its register space.

The timer IP core has a clock signal input that later is a reference during conversion of
the timer output to time units. We connected the timer to clk_io domain, because this is
the domain of the processor and we want to know how fast the accelerator is relative to the
processor computation speed.

53

7.5.4 AXI UART

The usage of the AXI4-Stream Data FIFO as a debug instrument is bounded to the simula-
tions in Vivado. We can not use FIFO for the debug purposes while running the program on
the real hardware, because we do not have the opportunity to follow every signal as we do
in the Vivado waveforms. To be able to debug our program while running it on FPGA, we
used the AXI UART IP core [20]. The core translates AXI4 transactions into serial commu-
nication and do the reverse. UART ports are further connected to USB/UART unit on the
development board, which is further connected to PC’s serial port. The usage of the UART
core allows us to send to PC the data containing, for example, the results of comparing
SW and HW implementation of SHA-3 hash function. Another reason why we chose the
UART IP core is that having the core in the design makes the MicroBlaze to automatically
choose this interface as a standard input/output for xil_printf() function (this is a special
Xilinx’s light version of printf() function).

54

Chapter 8

Analysis of Firmware Function

In order for the developed accelerator to be conveniently used, it is necessary to create a
firmware function to which the message will be passed and which will return the digest. Also,
this function will help us to easily compare the efficiency of computing a hash function with
and without the accelerator.

To compare our firmware function with the chosen software implementation of the SHA-
3 function, we need our firmware function to have the same parameters. The parameters
that are passed to our function are:

• Input message as an array of bytes

• The length of the input message

• Array of bytes for storing the digest value

• The digest length (which also indicates the SHA-3 version)

The message received by the function can be divided into several parts that we often refer
to in this chapter. The structure of the input message is shown in Figure 8.1.

Figure 8.1: Message structure

55

The parts shown in Figure 8.1 have the following meaning:

• P is the length of the message that has to be sent to the accelerator

• N is the part of the received message that can be divided into the real number of the
32-bit words

• M is the length of the message received by the function

• r is the rate size given by the SHA-3 version

• m is the number of bytes of the message that remained after subtracting N and that
does not consist of 32-bit words. The variable m can be either 0, 1, 2 or 3 and hence
is always modulo 4

• v is the number of bytes that should be added to the received message in order to
make the message divisible by 32. Variable v is equal to 4−m

• x is the number of 32-bit words that should be added to form the new message, which
new length M would be divisible by the rate size r

After we have familiarized with the input message structure and the variables that we use,
we can move to describing how the firmware function is executed. The task of the firmware
function is to receive the message as a byte array, add the suffix (see Section 2.1), pad the
message, send the padded message to the accelerator, run the compute and export states,
receive the digest and return it in the function. Basically, our firmware function does follow
this structure and pattern, however, we tried to optimize few steps and now the function is
executed in the following way:

1. Clear the computational core of the accelerator and prepare the accelerator for the new
input message. This is executed by setting the CLR bit of the control register.

2. Create the function variables and set them according to the required SHA-3 version
that has been passed as the argument to the function. These variables include setting
the rate size r, the digest length in words and configuring the SHA-3 version of the
accelerator. Configuring the version is achieved by writing to the SVER bits of the
config register.

3. Since the designed accelerator is capable to process the data and receive the new mes-
sage block simultaneously, the next function step is to try to send the whole message
block and start the computation. This step can be described using Algorithm 3. Vari-
able N_temp is assigned the value of N so that it is not changed by the following
program and can be used later. The number P indicates how many blocks have been
pipelined this way. Algorithm 3 tells us that pipelining is used only when the message
length is higher than rate size r. Also, we wait for compute state to finish only if we
already started the computation once.

4. After the possible pipelining is executed, the function sends the remaining N−r 32-bit
words.

56

5. Next step is to compute all the necessary variables for adding the suffix and applying the
padding rule to the received message. These variables include v and x. If the message
should be padded by multiple 32-bit words, then these words (made of zeroes according
to the Keccak padding rule) are directly sent over the AXI4-Stream interface.

6. After all the data has been transferred to the accelerator, the last computation process
is initiated by setting the RC bit of the accelerator’s control register. All other blocks
and computation steps were initiated in point 3 of this list. The function uses the
polling method to wait until the computation is not finished and checks the CD bit of
the status register.

7. After the computation is over, the program starts the export of data by setting the
RE bit of the accelerator’s control register. Using polling method program waits until
the export to the output FIFO is finished and constantly checks the ED bit of the
accelerator’s status register.

8. The last step is to read the digest value from the accelerator using AXI4-Stream inter-
face.

The pipelining algorithm is shown below:

Algorithm 3: Pipelining the data transfer and computation
P = 0;
N_temp = N
while N >= r do

send r/32 words;
N = N − r;
if P = 0 then

compute;
else

wait for compute to finish;
compute;

end
P = P + 1;

end

The time spent during the execution of the firmware function can be divided into three
categories:

• Data transfer between processor and accelerator

• Data processing

• Other software operations related to calling functions, padding, etc.

Each category is described in this chapter in Sections 8.1, 8.2 and 8.3. These sections also
provide some thoughts on how each process could be optimized in the future. The influence
of every process on the total execution speed is described in Section 8.4.

57

8.1 Data Transferring

There are only few memory accesses that take its place in the beginning and in the end of
the computation. To provide a hash value of the message, the message should be loaded into
the accelerator and then the produced digest should be exported back to the processor. For
more efficient communication between the processor and the computing core, we included
two FIFO memories into the accelerator. The first FIFO memory serves to load the input
message from the processor and then read it by the core, and the second FIFO saves the
digest value so that processor can later read the result. For example, thanks to the FIFO
memories, the processor can send multiple messages, execute other tasks (not related to
SHA-3) and read multiple digest when they are ready. Hence, the communication between
the processor and the accelerator is more efficient in the way, that the accelerator is always
ready to receive the data (until the input FIFO is full, of course) and does not have to
somehow interrupt its computational process. In the similar manner the processor can freely
read the ready digests regardless of what the accelerator is currently doing.

We can divide the communication into data transferring and controlling the loading/exporting
phases of the accelerator. Data transferring takes place only during sending the message to
the accelerator and exporting the result to the processor. Control communication occurs ev-
ery time the accelerator should perform the computation or export the digest to the output
FIFO. However, the computational process (i.e. executing the 24 rounds of the Keccak-f
permutation function) is absolutely autonomous.

In Section 7.3 we looked at different interfaces and compared them between each other.
During the comparison we tried the different ways of transmitting the message and saw how
they affect the overall effectiveness of the data transfer. In Section 7.3 we looked only on
the results of the measurements and did not describe the problems that we encountered.
Since this section is dedicated to the firmware function and the data transferring process,
we decided to look closer to the ways we sent the messages.

Different ways of transmitting a message do not only mean using various communication
protocols, but it also means the different software approach to a given problem, i.e. chang-
ing the way program executes writing to peripherals and reading from them. For example,
the standard compiler settings do not use the most efficient code optimization, as a result
of which many functions are translated into large sequences of assembly instructions that
take too long to execute, which in turn affects the overall duration of the program. Because
of this we used the maximum possible compiler optimization, that is, -o3 (optimize most).
Also, despite the fact that theoretically the AXI4-Stream protocol is capable to send data
in one clock cycle, problems appear during reading from memory and consequent writing to
peripheral. The problem is associated with the processor’s pipeline architecture. Namely,
looking at the assembly code of the function responsible for writing data to the AXI4-Stream
port, shown in Figure 8.2, we can see that it consists of two instructions: lwi and put.

58

Figure 8.2: Standard putfsl function assembly code

The first instruction loads the data from the memory into one of the general-purpose regis-
ters. The second instruction is intended to put the value of the register to the AXI4-Stream
peripheral port. Since MicroBlaze uses a pipelined architecture, the data hazard is created,
because the value of the register r3 (in case shown in Figure 8.2) will change only in the
Write Back pipeline stage, and the pipeline is stalled for two clock cycles, so that the In-
struction Decode of the put instruction will work with correct register value. As the result
we need four clock cycles to send one word. This problem, however, could be solved by rear-
ranging the instructions, so that first there will be four lwi instructions that would change
registers r8, r7, r5, r4 and then there will be four put instructions that will use these
four registers in the same order. After such reordering we give each register a time of three
clock cycles to be written back in the memory, so that put instructions will read the correct
value without the need to stall the processor. Reordered instructions are shown in Figure 8.3.

Changing the order of instructions, along with -o3 level optimization, allows us to send
four 32-bits data words in 12 clock cycles (4 extra cycles to get to the beginning of the for
loop).

Figure 8.3: Optimized putfsl function assembly code

We use the method shown in Figure 8.3 to send the data to the accelerator and to receive
the data from the accelerator. The data transferring is realized in a way, that we try to send
the data by four 32-bit words per single for loop iteration until it is possible and then send
the rest of the words by one word per for loop iteration. This approach optimizes the data
transferring process for long messages, however has a disadvantage for a messages where we
have to send three words, because these words are sent inefficiently. We could divide our
program into more specific cases, where we will try to implement the effective data transfer-
ring for all message types, however this program would have so many if conditions, that it
will waste a lot of time during these if checks. Using the approach of sending data by four
32-bit words we sacrificed the effectiveness for the short messages, however gain effectiveness
for long messages.

59

Receiving the digest does slightly vary from sending the message, since we know in ad-
vance how long the received block of data would be. Three of four SHA-3 function versions
does have the digest length divisible by four, which led us to the approach shown in Fig-
ure 8.3. Functions used for communication through the AXI4-Stream interface are putfsl
and getfsl. The approach from Figure 8.3 can be applied to both functions, although we
showed it only for putfsl function. The fact that three versions of SHA-3 function can use
the approach from Figure 8.3 lead us to insert an if condition, which divides the SHA-3
versions into two categories: SHA3-224 and SHA3-256, SHA3-384, SHA3-512. The first cat-
egory (SHA3-224) receives the digest without for loop using a simple list of seven getfsl
functions and buffers between them to get rid of the data hazard. The second category
receives the digest using for loop that gets the digest by four 32-bit words.

8.2 Data Processing

After all the necessary data has been transferred to the accelerator, the data processing part
can begin. Data processing means the execution of the accelerator’s computational core. It
runs in parallel with the processor and hence is independent on the processor. The fact that
the core is independent and can not be interrupted tells us that the necessary amount of
clock cycles, required to process the data, is always the same for the same SHA-3 function
and message length.

In Chapter 4 we described how the accelerator work and told that the execution of the
single round takes only four clock cycles. Further, for every SHA-3 function there are 24
rounds to be executed for a single message block. Since the number of rounds and amount
of clock cycles per round is independent on the SHA-3 version, we can say that the compu-
tational process (COMPUTE state in Subsection 4.3.1) is the same for all SHA-3 versions.
The difference between SHA-3 versions is in the block size and hence changes the duration
of the LOAD state, where every 32-bit word is processed in one clock cycle. After all the
digest has been computed and the command to start exporting the digest arrived from the
processor, the accelerator begins exporting the digest into its internal output FIFO. If we
do not consider now the time that accelerator has been waiting for the commands form the
processor, then we can exactly define how many clock cycles is necessary to execute the
processing of one message block.

Table 8.1: Data processing

Action One block Two blocks
LOAD r/32 2×r/32
COMPUTE 96 2×96
EXPORT l/32 l/32

Table 8.1 shows how many clock cycles is necessary to process a single and two-block input

60

message. Two variables r and l are the rate size and the digest length. We can see from the
table that the EXPORT state does take the same amount of time with increasing message
length. This is due to the fact, that the digest has to be exported only once for a single
message. As we can also see from Table 8.1, the processing of data depends only on the
version of SHA-3 function and on the length of the message.

If we wish to optimize the data processing step, we could only optimize the LOAD and
EXPORT states of the accelerator, because the COMPUTE state is given by the accelera-
tor’s architecture and its parallel approach and does not depend on the SHA-3 version. The
LOAD and EXPORT states can be optimized by expanding the data width of the internal
FIFOs to, for example 64 bits and, hence, loading the message into the accelerator twice as
faster. Exporting will also require twice less time to complete. However, if the data width
of the FIFOs will be incremented, the width of the AXI4-Stream interface should also be
incremented to the same width as FIFO.

8.3 Remaining Operations

Beside the data processing and data transferring steps remain all the other firmware ope-
rations, which have to be executed in order to make the function work. These operations
include function calling, creating and assigning variables, running through if and for loops,
controlling the accelerator and etc. As we will see in Section 8.4 this category takes most
time of the three categories, to which we divided our firmware function.

We divide the firmware operations into several categories and suggest the ways these cate-
gories can be improved in the future work.

1. Controlling the accelerator through the AXI4/APB protocol. During the execution
of the firmware function we use AXI4/APB protocol at least four times: to clear the
accelerator, to configure its version, to start computation and to start export. All these
commands require the communication through the AXI4 protocol, which does have a
long hand-shake process and so to send the single CLEAR command takes about 20
clock cycles. This problem can be eliminated by creation of the control unit in FPGA
for the accelerator that will by itself start the computation and exporting. However,
this control unit will still require the control by the processor, because the control unit
by itself doesn’t know how long the message is and when the processor wishes to read
the digest. So, that will not really solve the problem. Another option would be to
create some unit similar to DMA that will be once configured by the processor in the
way, that the processor will say where the data for SHA-3 are, how many messages are
there and where to store the digest. After configuration, the unit will load the data
into input FIFO, execute the computational state, store digest into required place and
send the interrupt to the processor.

2. Variables assignment. The firmware function requires some internal variables in order
to work correctly, so this step can not be eliminated in our designed function, neither
somehow optimized, because we want our function to be universal and work for every
SHA-3 version. This means that every time we need to define some internal variables.

61

3. Padding of the message. This step is executed with the help of v and x variables
shown in Figure 8.1. Using several if loops, firmware function checks how many bytes
should be added to form a 32-bit word (which later can be send via AXI4-Stream) and
how the padding should be applied. Theoretically, the padding can be executed by the
control unit that we described in the point 1. However, the control unit would have to
know the length of the required output message and then execute the padding.

4. Passing the arguments and variables. The firmware function takes two arrays of bytes.
The first one is the input message and the second one is the digest. Inside our firmware
function we just create a 32-bit pointer to these arrays and thanks to the data alignment
in the processor’s memory, we access the byte array through the word pointer. This is
an already optimized approach, because before that we transposed the byte array into
word array using shifting of the byte variables. The disadvantage of non-optimized
version was that shifting takes a lot of time and hence the execution of the firmware
function is not so effective, especially for the longer messages. Optimized version uses
shifting only for the v bytes to form a 32-bit word.

Basically, the above list presents the main operations that require the most time of the
"other operations" category. Another, less time-consuming operations are returning back to
the for loop and executing if conditions. Their influence is smaller, because we made our
code universal and tried to use as few if conditions as possible.

8.4 Influence of Each Aspect on the Total Execution Time

This section is dedicated to the analysis of how each category from the beginning of the
chapter influences the overall time required to execute the firmware function. First, we want
to know, how many clock cycles is required to execute the whole algorithm and what is the
minimum required amount of clock cycles, which is not possible to further optimize using
our accelerator. The ideal case of digest computation for a single block message is shown in
Figure 8.4.

Figure 8.4: Ideal case of digest computation

To present some concrete values of clock cycles needed to execute single steps, we will look
at the SHA3-256 hash function. The difference between the ideal and real cases is shown in
Table 8.2.

Table 8.2: Ideal vs real firmware execution

Case Write Load Compute Export Read Total
Ideal 34 34 96 8 8 180
Real 106 34 96 8 24 268

62

The numbers in the real row of the table are created using the assumption about the AXI4-
Stream interface from previous chapters and interface analysis. The write operation in Table
8.2 means writing the message into the accelerator. This step is 106 clock cycles because
we need to transfer the 34 words to the accelerator and we said, that we send them by
four words, meaning that one for loop execution (responsible for sending these data) takes
12 clock cycles: eight to send four words and four to return to the beginning of the for
loop. Sending the message this way gives us 8 for loop iterations which sends by four words
and two for loop iterations to send remaining two words. All this in sum gives us 106
(96 + 10). The load, compute and export states are not affected by anything as has been
stated in Section 8.2. The reading of the digest is executed as has been described in Section
8.1 and hence requires only 24 clock cycles. From the comparison results provided in Table
8.2 we can see that the data transferring step has to be optimized in the case if we would
like to have higher accelerator efficiency. The optimization could be done by expanding the
AXI4-Stream data width, however, the MicroBlaze processor is capable to use only a 32-bit
AXI4-Stream interface. So, expanding the data width of the AXI4-Stream interface will not
solve the problem if we wish to use the MicroBlaze processor.

The results in Table 8.2 do not contain the firmware operations beside the data transfer-
ring and processing. To find out, how many clock cycles are spent during other operations,
we need to subtract the "Total" value in Table 8.2 from the value that we obtained in the
real measurements described in Chapter 9. We provide the result of subtraction for three
different message length of SHA3-256 function in Table 8.3 and Table 8.4.

• Length is the length of the input message

• DP is the data processing category

• DT is the data transfer category

• OO is other operations category

If we take the SHA3-256 case for a zero-length input message from Table 9.2, we get 461
clock cycles required to execute the whole firmware function. Subtraction of 268 from 461
gives us 193 (193 = 461 − 268) clock cycles. This amount of clock cycles was spent by the
firmware function on the other operations than data transfers and data processing.

Table 8.3: The influence of each category on the total execution time in clock cycles

Length DP[CC] DT[CC] OO[CC]
0 138 130 193
21 138 130 381
168 268 236 443

63

Table 8.4: The percentage influence of each category on the total execution time

Length DP[%] DT[%] OO[%]
0 30 28 42
21 21 20 59
168 28 25 47

The single AXI4 transaction takes about 20 clock cycles and as we have said in Section 8.3
we make a minimum of four transactions, implying that is consumes 80 clock cycles for all
of them for a single-block message. After subtracting this number from 193 we obtain 113
(113 = 193 − 80) clock cycles, which remained for other operations. The large number of
remained clock cycles can be explained by the polling method of checking the status register
of the accelerator. Every time the firmware wish to check the accelerator status register, it
initialize a read AXI4 transaction, which also requires 20 clock cycles. The status register
reading occurs at least twice giving us another 40 clock cycles. It is important to note that
20 clock cycles for checking the status register is the ideal case, because the register value
can be checked a clock cycle before it is asserted, meaning that this reading will tell the
processor, that computation/exporting is not done yet and the processor should read the
status register value again, wasting 20 more cycles. Subtracting 40 clock cycles from 113
we obtain 73 (73 = 113 − 40) clock cycles. They are required to run through all the if
conditions that are in the firmware function and to create/assign different variables. We
would also like to note that for a zero-length message the data are sent in the following way:

1. Send a suffix 0x00000006

2. Send a necessary amount of words with zero value, which is 32 in the case of SHA3-256.
These words represent the padding zeroes

3. Send the end of the padded message 0x80000000

The above sequence means that not all 34 words are transferred using the for loop, which
could also add few clock cycles to the remained 73 in the firmware function.

The growth of execution time with increasing message length can be explained in larger
data transfers and more complicated padding cases, where the shifting can be required in
order to form a 32-bit word from byte input data.

64

Chapter 9

Comparison of the SW and HW
Approaches

After the analysis provided in Chapter 8 we move on to the measurements of the accelerator’s
effectiveness on the real hardware. To get a meaningful results of the acceleration, we need
a software implementation of the SHA-3 function. Having both hardware (accelerator) and
software approaches, we can compare them and provide the conclusion for the accelerator
presented in this work. Both implementations should be tested under the same conditions,
such as the same SoC design, same processor and the same data set.

This chapter provides the results of measurements of both SHA-3 executions: with and with-
out accelerator. To measure the execution time without accelerator, we needed a software
implementation of SHA-3. For this purpose we have chosen the tiny_sha3 implementa-
tion by Markku-Juhani O. Saarinen [30]. This implementation was chosen for the following
reasons:

• As the title of the implementation states, this is a small and readable implementation

• The SHA-3 function is implemented using only two files: one source and one header

• Small implementation does not only mean few lines of code, but also that it can easily
fit onto the embedded processor.

• Author of the implementation also provides a user guide on how the function should be
used and some useful functions for testing, such as test_readhex which converts the
char array into uint8_t array. This function has later been used in our measurements.

After the suitable software implementation has been chosen and we ensured that our firmware
function works as expected, we proceeded to comparison of these two functions. All the mea-
surements were provided using the following algorithm:

65

Algorithm 4: Measurements flow
for i = 0; i < 4; i = i+ 1 do

testdata = "";
set digest_length according to i;
digest = "";
for j = 0; j < 255; j = j + 1 do

message = test_readhex(testdata);
message_length = length(message);
timer.start();
sha3_hw(message, message_length, digest, digest_length);
timer.stop();
timer.start();
sha3_sw(message, message_length, digest, digest_length);
timer.stop();
compare if the results are the same;
print hw and sw results;
testdata = testdata + "12";

end
end

Algorithm 4 gives us an overview of how the measurements were conducted. We can see
that there is an outside for loop, that goes over all four SHA-3 hash functions. Inside is the
second for loop that is intended to create a data set and call both firmware and software
functions. The execution time in terms of clock cycles is measured for both functions, the
results are compared and printed to the PC console.

9.1 FPGA Development Board

We have chosen the Digilent Nexys Video FPGA Board [18]. The development board con-
tains the Artix-7 FPGA xc7a200t-1sbg484c from Xilinx.

Beside the huge number of logic gates, there are some other advantages of using this board,
such as the presence of the USB/UART bridge. Subsection 7.5.4 describes the AXI UART
IP core that allows us to use the UART protocol with the MicroBlaze processor. To later
connect the output of the AXI UART IP core (rx and tx signals) to the PC, we needed the
USB/UART bridge that would allow to connect the PC via the micro-USB cabel. Figure
9.1 illustrates how the bridge is connected on the board and which pins of the FPGA chip
are used for the UART. The V18 and AA19 pins are later mapped to the rx and tx signals
of our design in the constraints file.

66

Figure 9.1: USB/UART bridge [18]

By connecting the micro-USB cabel to connector J13 of the Nexys development board we
can monitor how the program is executed on the processor and get the results of the mea-
surements using xil_printf() function.

The Nexys development board includes an on-board 100MHz oscillator that provides a clock
input to the FPGA chip. As has been said in Subsection 7.1.1, the Clocking Wizard IP
core can later be used to create clock signals with different frequencies, which will be created
using the 100MHz input clock signal. The pin connected to the oscillator (R4 pin) is mapped
into our design using the constraints file. The reset signal of our design is connected to the
CPU reset button of the Nexys development board.

9.2 Data Set for Measurements

Our aim was to test the effectiveness of the accelerator on the different messages. For this
purpose we had to create a suitable data set that will cover all the possible cases. As has
been said in the beginning of this chapter, we conducted the tests using the structure shown
in Algorithm 4. First for loop allows us to test all the SHA-3 functions and the second for
loop is used to generate the input message for firmware and software functions.

The input message to both functions starts from zero length and continuous until the mes-
sage length is not equal to 255. We did not conduct the test with larger input message,
because 255 is enough to see the relation between SHA-3 execution with and without ac-
celerator. With every iteration of the second for loop the length of the message increases,
which can later give us an overview how the acceleration changes with increasing message
length. Every for loop iteration the same two chars "12" were added to the message and
resulted in new message, which always had the structure as "1212...12". Using for loop and
the same appendix is an easy-to-implement approach.

The fact that input message is periodical and always consists of "12" sequence does not
have any impact, because SHA-3 function does not distinguish between the messages of the
same length, so it does not matter, if the message is "12" or "f3" or anything else. Analo-
gously, our accelerator only takes the sequence of bits and also does not see the difference
between two messages of the same length.

67

9.3 Measurements Results

Now that we have described the FPGA board and the data set we can move on to the
results of the measurements. The amount of clock cycles required to execute the firmware
and software function was measured using the AXI Timer described in Subsection 7.5.3. As
has been described in Algorithm 4 we start the timer right before the function begins and
stop the timer after the function finishes its execution. To provide the exact results, we
measured how many clock cycles takes the configuration of timer, meaning how many clock
cycles should we subtract from every measurement result in order to get only the clock cycles
required to execute the function. We measured it in such a way, that we started the timer
and stopped it with subsequent reading of the result. The test gave us nine clock cycles.

Table 9.1: SHA3-224 results

Length Blocks HW SW Acceleration
0 1 442 320256 724
21 1 630 320576 508
42 1 674 320891 476
63 1 692 321206 464
71 1 692 321326 464
72 1 693 321341 463
84 1 688 321521 467
103 1 718 321806 448
104 1 719 321821 447
105 1 729 321836 441
126 1 750 322151 429
135 1 752 322286 428
136 1 736 322301 437
143 1 753 322406 428
144 2 891 642010 720
147 2 908 642058 707
168 2 928 642373 692
189 2 954 642688 673
207 2 974 642958 660
208 2 960 642973 669
210 2 975 643003 659
215 2 966 643078 665
216 2 967 643093 665
231 2 979 643018 657
252 2 996 643633 646

In this section we provide four different tables with the measurements results. Each table
corresponds to one of the SHA-3 functions.

68

In Section 9.2 we said that the message length was incremented by one, but in tables from
this section we see that the length of the message almost always increases by 21. We did so
because leaving all 255 measured values would result in very large table, so we selected only
some values from a 0 to 255 range. Incremental number 21 was chosen on purpose and not
randomly. Using an odd number we get all the cases for m and v variables shown in Figure
8.1.

Table 9.2: SHA3-256 results

Length Blocks HW SW Acceleration
0 1 461 320300 694
21 1 649 320620 494
42 1 678 320935 473
63 1 696 321250 461
71 1 711 321370 451
72 1 697 321385 461
84 1 707 321565 454
103 1 737 321850 436
104 1 723 321865 445
105 1 733 321880 439
126 1 754 322195 427
135 1 751 322330 429
136 2 904 641934 710
143 2 924 642042 694
144 2 910 642057 705
147 2 927 642102 692
168 2 947 642417 678
189 2 959 642732 670
207 2 979 643002 656
208 2 965 643017 666
210 2 980 643047 656
215 2 985 643122 652
216 2 986 643137 652
231 2 998 643362 644
252 2 1001 643677 643

The first column of Tables 9.1, 9.2, 9.3 and 9.4 shows the message length displayed in bytes.
The second column tells us how many message blocks are formed after the input to the
function is padded to the required length. The amount of message blocks depends on the
version of SHA-3 function and can be calculated as (M/r) + 1, where M is the message’s
length and r is the rate size of the appropriate SHA-3 function. This column is included to
clarify why there are leap changes in the computation time.

69

The third and fourth columns provide the amount of clock cycles which were required for
the SHA-3 function be executed with and without accelerator respectively. These columns
are also illustrated with the help of two Figures 9.2 and 9.3 which will be described later in
this section. Each figure represents the graph and refers either to HW or SW approach and
both results are not shown in the same graph due to the different range of measured values.

Table 9.3: SHA3-384 results

Length Blocks HW SW Acceleration
0 1 444 320476 721
21 1 632 320796 507
42 1 661 321111 485
63 1 679 321426 473
71 1 694 321546 463
72 1 680 321561 472
84 1 690 321741 466
103 1 700 322026 460
104 2 831 641630 772
105 2 841 641648 762
126 2 865 641963 742
135 2 881 642098 728
136 2 882 642113 728
143 2 888 642218 723
144 2 874 642233 734
147 2 891 642278 720
168 2 908 642593 707
189 2 920 642908 698
207 2 920 643178 699
208 3 1072 962782 898
210 3 1087 962815 885
215 3 1092 962890 881
216 3 1078 962905 893
231 3 1108 963130 869
252 3 1110 963445 867

The fifth column of the tables shows the acceleration of SHA-3 function computation. We
defined the acceleration as the relation between the amount of clock cycles required to execute
the SHA-3 function without accelerator to the amount of clock cycles required for SHA-3
function with accelerator. Simply said, the numbers in the fifth column represent the ratio
between the fourth and the third columns of the tables. The acceleration is different for every
SHA-3 version and also varies with the length message. The reasons for that are given in
Section 9.4 together with Figure 9.4 that graphically illustrates the acceleration dependence.

70

As can be seen in every table, the message length is not always incremented by 21, but
sometimes there is an increase by one. The reason is that we wanted to capture the changes
in the computational speed at the moment when padded messages begins to consist of one
more block than before. For example, for SHA3-224, shown in Table 9.1, we see the leap
change of the required clock cycles appeared at 144 message length. The second column helps
to clarify why the leap change occurred and indicates that starting from 144 the message is
composed of two blocks.

Table 9.4: SHA3-512 results

Length Blocks HW SW Acceleration
0 1 437 320652 733
21 1 625 320972 513
42 1 654 321287 491
63 1 672 321602 478
71 1 667 321722 482
72 2 776 641326 826
84 2 785 641509 817
103 2 818 641794 784
104 2 819 641809 783
105 2 829 641824 774
126 2 836 642139 768
135 2 852 642274 753
136 2 836 642289 768
143 2 839 642394 765
144 3 969 961998 992
147 3 986 962046 975
168 3 991 962361 971
189 3 1017 962676 946
207 3 1037 962946 928
208 3 1021 962961 943
210 3 1034 962991 931
215 3 1024 963066 940
216 4 1155 1282670 1110
231 4 1181 1282898 1086
252 4 1187 1283213 1081

The values right before and after the changes in block amount were taken not only when
the message composes of two blocks instead of one, but at every increase in the amount of
blocks for the message. This is well illustrated in both Figures 9.2 and 9.3 for SHA3-512
version, where in the range from 0 to 255, message is composed of 1, 2, 3 and even 4 blocks.

Using the first and the third columns of the tables from this chapter we created a graph
illustrated in Figure 9.2. The X axis of the graph represents the message length in bytes and
the Y axis represents the amount of clock cycles required to execute the appropriate SHA-3

71

function. We can see how the amount of clock cycles for a zero-length message varies from
non-zero length message. This is due to the fact, that zero-length message does require only
simple padding and does not contain any shifting described in Section 8.3. The difference
between non-zero-length and zero-length message case nicely illustrates how the padding and
presence of additional for loops and if conditions influences the execution.

0 32 64 96 128 160 192 224
0.4

0.6

0.8

1

1.2

Message Length

C
lo
ck

C
yc
le
s
×

10
3

HW results

SHA3-224
SHA3-256
SHA3-384
SHA3-512

Figure 9.2: Graph illustrating SHA-3 computation with accelerator

We can see from Figure 9.2 that the execution time does grow with the increasing message
length. As we described in Section 8.4, the time required to execute the LOAD, COMPUTE
and EXPORT states is not influenced on the message length and is given only by the SHA-3
version. The clock cycles growth in Figure 9.2 shows us how the firmware function execution
is affected by the length of the message. Sometimes we can see a decrease in clock cycles
with increasing message length. This can be explained by the fact, that if we have m from
Figure 8.1 equals to one, then we have to XOR this byte with 0x00000600. If m equals two,
then one byte should be shifted left by 8 and subsequently XORed. This byte shift increases
the amount of clock cycles required to execute the firmware function. However, since the m
is modulo four, after the message length increased from, for example 7 to 8, the m value is
zero and no shifting is required meaning the amount of clock cycles will decrease from the

72

previous one.

Figure 9.3 represents the graph created from the values of the first and fourth columns
of the tables from this chapter. Similarly to graph in Figure 9.2, the X axis represents the
message length and Y axis represents the amount of clock cycles required to compute the
digest of the appropriate SHA-3 function.

0 32 64 96 128 160 192 224

0.32

0.64

0.96

1.28

Message Length

C
lo
ck

C
yc
le
s
×

10
6

SW results

SHA3-224
SHA3-256
SHA3-384
SHA3-512

Figure 9.3: Graph illustrating SHA-3 computation without accelerator

At first sight it might seem, that the amount of clock cycles does not grow with the increasing
message length (until the huge leap change), but this is only due to the fact, that the growing
is very small regarding to the total number of clock cycles and is not visible in the graph.

9.4 Acceleration Dependence on the Message Length and SHA-
3 Version

The most important data are located in the fifth columns of the tables in this chapter. As
we said, the fifth column contains the ration between the approach without and with the

73

accelerator. In other words, it tells us how effective the accelerator is for a given SHA-3
version and message length. Data from each fifth column forms a graph illustrated in Figure
9.4. We have already explained, why the zero-length message is processed faster than other
single-block messages, so the high effectiveness of the accelerator for a zero-length message
does not cause the misunderstanding.

0 32 64 96 128 160 192 224

400

600

800

1,000

Message Length

A
cc
el
er
at
io
n

Acceleration

SHA3-224
SHA3-256
SHA3-384
SHA3-512

Figure 9.4: The acceleration dependence on the message length and SHA-3 version

With the increasing message length (within the same blocks amount that form the message)
the effectiveness of the acceleration decreases. This is caused by the fact, that with increas-
ing the length of the message by 21, the amount of clock cycles for the software approach
changes only by 0.098%. This was calculated for SHA3-512 version and message lengths 42
and 21. In contrast, the number of clock cycles for the approach with accelerator changes
by 4.64%, which explains why we see the decreasing line in the accelerator’s effectiveness in
Figure 9.4.

The accelerator shows its real advantages when used for the messages composed of multiple
blocks. We can see in Figure 9.4 and Table 9.4 that for SHA3-512 the acceleration minimum
and maximum values are 478 and 1110. Another important and interesting observation is

74

that with increasing amount of blocks the acceleration does not grow proportionally. We
will describe it on the SHA3-512 version. When the amount of blocks in the second column
of Table 9.4 changes from 1 to 2 the acceleration changes by 344. The the amount of blocks
changes from 2 to 3, the acceleration changes by 227; when blocks change from 3 to 4, the
acceleration changes by 170. The decreasing acceleration growth can be explained by the
fact, that data transferring and other firmware operations (both described in Sections 8.1 and
8.3 respectively) influence the overall effectiveness of the accelerator more and more. The
same can be observed for the SHA3-384 version and explained in the same manner. Other
two versions of SHA-3 function will demonstrate the same dependence, however it cannot be
seen in the provided graphs, because we conducted the tests only for 0-255 message length.

75

Chapter 10

Conclusion

The main goal of this work was to propose an implementation of the Keccak algorithm
in FPGA and verify it using an SoC design. The implementation is described in Chapter 4
and the SoC design used for verification is described in Chapter 7. During the development
process we used the advantages of the programmable logic to propose the effective and fast
implementation. As a result, we get the functional component that can effectively execute
the SHA-3 hash function. This component, or accelerator, can be connected to the processor
via one interface for communication and another interface for control. The processor sends
the data for the SHA-3 function, starts the accelerator and receives the provided result. The
accelerator is packaged as an IP core and is ready to be used in any design that contains the
desired processor.

Comparison results of the software and hardware implementations are given in Chapter
9. Graph 9.4 shows the ratio between the execution time of software and hardware imple-
mentations. More precise values can be found in Tables 9.1, 9.2, 9.3 and 9.4. We denoted
this ratio as the acceleration and in Sections 9.3, 9.4 we describe in detail the reasons why the
acceleration depends on the input message’s length and the version of the SHA-3 function.
From the graphs provided in Section 9.3 we can see that for the given data set the minimum
value for the acceleration is 427 and the maximum value is 1110. According to these values
we can conclude, that the acceleration makes sense and the designed accelerator can execute
the Keccak algorithm very effectively.

During this work we faced several difficulties. Most of the difficulties were related to writing
an optimal firmware function for the accelerator. As we saw in Section 8.4, the firmware has
about 40-60% impact on the total SHA-3 execution time and that is why we devoted a lot
of time to writing the firmware function and a whole chapter to analyze it. Other difficulties
include writing the effective control unit for the computational core, solving the clock do-
main crossing problem and selection of a suitable communication interface for which we had
to create a good validation environment in order to provide the correct measurements results.

The future work would consist of optimization of accelerator control tasks. For this pur-
pose, the special unit can be designed which would control the operation of the accelerator
and handle all the data transfers between the processor and the accelerator.

76

Appendix A
Contents of the attached CD

/
Diploma-pdfFolder with PDF document

Diploma-thesis.pdfDiploma PDF document
SHA3-acceleratorVerilog files for the accelerator

keccak-axisVerilog files for keccak-axis
RTLRTL files for keccak-axis block
TESTBENCHTestbench files for keccak-axis block

keccak-coreVerilog files for keccak-core
RTLRTL files for keccak-core block
TESTBENCHTestbench files for keccak-core block

keccak-fifoVerilog files for keccak-fifo
RTLRTL files for keccak-fifo block
TESTBENCHTestbench files for keccak-fifo block

s3Verilog files for S3 sources
global-cellFolder with global files

RTLRTL S3 files
memory-filesFolder with memory files for testbenches

PythonFolder with python project to generate keccak-
core.v file

VivadoFolder with vivado projects
SHA3-acceleratorFolder with Vivado project for SHA-3 accelera-

tor
SoC-interface-selectionFolder with Vivado project for interface-

selection SoC design
SoC-sw-hw-comparisonFolder with Vivado project for sw-hw-

comparison SoC design

77

Bibliography

[1] Ronald Rivest. “The MD5 Message-Digest Algorithm”. MIT Laboratory for Computer
Science and RSA Data Security, Inc. 1992. url: https://tools.ietf.org/html/
rfc1321.

[2] William Stallings. Cryptography and Network Security Principles and Practices, Fourth
Edition. Prentice Hall, 2005.

[3] ARM. “AMBA APB Protocol”, 2010. url: https://static.docs.arm.com/ihi0024/
c / IHI0024C _ amba _ apb _ protocol _ spec . pdf ? _ga = 2 . 102145668 . 467062489 .
1588411576-1017671257.1588411576.

[4] ARM. “AMBA4 AXI4-Stream Protocol v1.0”, 2010. url: https://static.docs.arm.
com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf.

[5] G. Bertoni J. Daemen M. Peeters G. V. Assche. “Cryptographic sponge functions”,
2011. url: https://keccak.team/files/CSF-0.1.pdf.

[6] G. Bertoni J. Daemen M. Peeters G. V. Assche. “The Keccak reference”, 2011. url:
https://keccak.team/files/Keccak-reference-3.0.pdf.

[7] Xilinx. “AXI Reference Guide”, 2011. url: https://www.xilinx.com/support/
documentation/ip_documentation/ug761_axi_reference_guide.pdf.

[8] Quynh Dang. “Recommendation for Applications Using Approved Hash Algorithms”.
National Institute of Standards and Technology, 2012. url: https://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf.

[9] G. Bertoni J. Daemen M. Peeters G. V. Assche R.V. Keer. “Keccak implementation
overview”, 2012. url: https://keccak.team/files/Keccak-implementation-3.2.
pdf.

[10] “Secure Hash Standard (SHS)”. National Institute of Standards and Technology, 2012.
url: https://csrc.nist.gov/csrc/media/publications/fips/180/4/final/
documents/fips180-4-draft-aug2014.pdf.

[11] Bruce Morton and Clayton Smith. “Why We Need to Move to SHA-2”, 2014. url:
https://casecurity.org/2014/01/30/why-we-need-to-move-to-sha-2/.

[12] Federal Information Processing Standards Publication. “SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions”, 2015. url: https://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

78

https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321
https://static.docs.arm.com/ihi0024/c/IHI0024C_amba_apb_protocol_spec.pdf?_ga=2.102145668.467062489.1588411576-1017671257.1588411576
https://static.docs.arm.com/ihi0024/c/IHI0024C_amba_apb_protocol_spec.pdf?_ga=2.102145668.467062489.1588411576-1017671257.1588411576
https://static.docs.arm.com/ihi0024/c/IHI0024C_amba_apb_protocol_spec.pdf?_ga=2.102145668.467062489.1588411576-1017671257.1588411576
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://keccak.team/files/CSF-0.1.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/4/final/documents/fips180-4-draft-aug2014.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/4/final/documents/fips180-4-draft-aug2014.pdf
https://casecurity.org/2014/01/30/why-we-need-to-move-to-sha-2/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[13] Xilinx. “AXI to APB Bridge v3.0”, 2015. url: https://www.xilinx.com/support/
documentation / ip _ documentation / axi _ apb _ bridge / v3 _ 0 / pg073 - axi - apb -
bridge.pdf.

[14] Xilinx. “Processor System Reset Module v5.0”, 2015. url: https://www.xilinx.com/
support/documentation/ip_documentation/proc_sys_reset/v5_0/pg164-proc-
sys-reset.pdf.

[15] Xilinx. “AXI Block RAM (BRAM) Controller v4.0”, 2016. url: https://www.xilinx.
com/support/documentation/ip_documentation/axi_bram_ctrl/v4_0/pg078-
axi-bram-ctrl.pdf.

[16] Xilinx. “AXI Timer v2.0”, 2016. url: https://www.xilinx.com/support/documentation/
ip_documentation/axi_timer/v2_0/pg079-axi-timer.pdf.

[17] Xilinx. “Local Memory Bus (LMB) v3.0”, 2016. url: https://www.xilinx.com/
support/documentation/ip_documentation/lmb_v10/v3_0/pg113-lmb-v10.pdf.

[18] Digilent. “Nexys Video FPGA Board Reference Manual”, 2017. url: https://reference.
digilentinc.com/_media/reference/programmable-logic/nexys-video/nexysvideo_
rm.pdf.

[19] Xilinx. “AXI Interconnect v2.1”, 2017. url: https://www.xilinx.com/support/
documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.
pdf.

[20] Xilinx. “AXI UART Lite v2.0”, 2017. url: https://www.xilinx.com/support/
documentation/ip_documentation/axi_uartlite/v2_0/pg142-axi-uartlite.pdf.

[21] Xilinx. “Block Memory Generator v8.3”, 2017. url: https : / / www . xilinx . com /
support/documentation/ip_documentation/blk_mem_gen/v8_3/pg058-blk-mem-
gen.pdf.

[22] Xilinx. “Clocking Wizard v5.4”, 2017. url: https://www.xilinx.com/support/
documentation/ip_documentation/clk_wiz/v5_4/pg065-clk-wiz.pdf.

[23] Xilinx. “AXI Central Direct Memory Access v4.1”, 2018. url: https://www.xilinx.
com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034- axi-
cdma.pdf.

[24] Xilinx. “AXI4-Stream Infrastructure IP Suite v3.0”, 2018. url: https://www.xilinx.
com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/
v1_1/pg085-axi4stream-infrastructure.pdf.

[25] Xilinx. “LMB BRAM Interface Controller v4.0”, 2018. url: https://www.xilinx.com/
support/documentation/ip_documentation/lmb_bram_if_cntlr/v4_0/pg112-
lmb-bram-if-cntlr.pdf.

[26] Xilinx. “MicroBlaze Processor Reference Guide”, 2019. url: https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2019_1/ug984-vivado-microblaze-
ref.pdf.

[27] Defuse Security. “Salted Password Hashing - Doing it Right”, Last modified: June,
2019. url: https://crackstation.net/hashing-security.htm.

79

https://www.xilinx.com/support/documentation/ip_documentation/axi_apb_bridge/v3_0/pg073-axi-apb-bridge.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_apb_bridge/v3_0/pg073-axi-apb-bridge.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_apb_bridge/v3_0/pg073-axi-apb-bridge.pdf
https://www.xilinx.com/support/documentation/ip_documentation/proc_sys_reset/v5_0/pg164-proc-sys-reset.pdf
https://www.xilinx.com/support/documentation/ip_documentation/proc_sys_reset/v5_0/pg164-proc-sys-reset.pdf
https://www.xilinx.com/support/documentation/ip_documentation/proc_sys_reset/v5_0/pg164-proc-sys-reset.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v4_0/pg078-axi-bram-ctrl.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v4_0/pg078-axi-bram-ctrl.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v4_0/pg078-axi-bram-ctrl.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_timer/v2_0/pg079-axi-timer.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_timer/v2_0/pg079-axi-timer.pdf
https://www.xilinx.com/support/documentation/ip_documentation/lmb_v10/v3_0/pg113-lmb-v10.pdf
https://www.xilinx.com/support/documentation/ip_documentation/lmb_v10/v3_0/pg113-lmb-v10.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-video/nexysvideo_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-video/nexysvideo_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-video/nexysvideo_rm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uartlite/v2_0/pg142-axi-uartlite.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uartlite/v2_0/pg142-axi-uartlite.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_3/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_3/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_3/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_4/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_4/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/lmb_bram_if_cntlr/v4_0/pg112-lmb-bram-if-cntlr.pdf
https://www.xilinx.com/support/documentation/ip_documentation/lmb_bram_if_cntlr/v4_0/pg112-lmb-bram-if-cntlr.pdf
https://www.xilinx.com/support/documentation/ip_documentation/lmb_bram_if_cntlr/v4_0/pg112-lmb-bram-if-cntlr.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug984-vivado-microblaze-ref.pdf
https://crackstation.net/hashing-security.htm

[28] Magnus Daum and Stefan Lucks. “Hash Collisions (The Poisoned Message Attack).
"The Story of Alice and her Boss"”. url: https://web.archive.org/web/20100327141611/
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/.

[29] Keccak in VHDL. url: https://keccak.team/hardware.html.

[30] Markku-Juhani O. Saarinen. Very small, readable implementation of the SHA3 hash
function. url: https://github.com/mjosaarinen/tiny_sha3.

[31] National Institute of Standards and Technology. Examples with Intermediate Val-
ues. url: https://csrc.nist.gov/projects/cryptographic- standards- and-
guidelines/example-values.

[32] Third-party implementations. url: https://keccak.team/software.html.

[33] Chalermpong Worawannotai and Isabelle Stanton. “A Tutorial on Slide Attacks”. url:
http://docplayer.net/45146691-A-tutorial-on-slide-attacks.html.

[34] Xilinx. Xilinx 7 Series FPGA and Zynq-7000 All Programmable SoC Libraries Guide
for HDL Designs. url: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx14_7/7series_hdl.pdf.

80

https://web.archive.org/web/20100327141611/http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
https://web.archive.org/web/20100327141611/http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
https://keccak.team/hardware.html
https://github.com/mjosaarinen/tiny_sha3
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://keccak.team/software.html
http://docplayer.net/45146691-A-tutorial-on-slide-attacks.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf

	Introduction
	Thesis Structure
	Hash Function
	Common Hash Algorithms
	MD5 Message-digest Algorithm
	SHA-1 and SHA-2 Secure Hash Algorithms
	SHA-3 Secure Hash Algorithm

	SHA-3/Keccak Algorithm Description
	Sponge Construction and State Variables
	Absorbing Phase
	Squeezing Phase
	Long Messages Processing
	State Variables

	Algorithm Steps
	Specification of
	Specification of
	Specification of
	Specification of
	Specification of

	Algorithm Analysis
	Key Parameters of the Keccak for Hardware Implementation
	Estimation of Resources
	Conclusion

	HW Accelerator Description
	Block Diagram
	List of Ports
	HW Accelerator Hierarchy
	Main Control Unit
	Computational Core
	Internal Input and Output Memories
	Keccak Cell Unit
	XOR5 Auxiliary Block
	Output Multiplexer

	Clock Domains

	Design Flow
	Tools Used for Development
	Verification Environment

	Implementation Results
	SoC Design
	Block Design for Interface Selection
	Clock and Reset Generation
	MicroBlaze Processor
	AXI Interconnect
	AXI Central Direct Memory Access
	Local Memory Bus and AXI BRAM Controllers
	AXI4-Stream Data FIFO

	Address Space
	Interface Selection
	Interfaces Comparison Results
	Block Design for HW and SW Comparison
	SHA-3 Accelerator
	AXI to APB Bridge
	AXI Timer
	AXI UART

	Analysis of Firmware Function
	Data Transferring
	Data Processing
	Remaining Operations
	Influence of Each Aspect on the Total Execution Time

	Comparison of the SW and HW Approaches
	FPGA Development Board
	Data Set for Measurements
	Measurements Results
	Acceleration Dependence on the Message Length and SHA-3 Version

	Conclusion

