
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Microelectronics

Design of the QSPI master interface

Master’s Thesis

Author: Bc. Jan Němeček
Supervisor: doc. Ing. Jiří Jakovenko, Ph.D.

Year: Prague, 2020

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457113Osobní číslo:JanJméno:NěmečekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra mikroelektroniky

Elektronika a komunikaceStudijní program:

ElektronikaSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Design of QSPI master interface

Název diplomové práce anglicky:

Návrh QSPI master rozhraní

Pokyny pro vypracování:
1. Seznamte se s protokolem QSPI, analyzujte rozdíly mezi Flash paměťmi, které QSPI rozhraní podporují, a připravte
systémový návrh QSPI master IP pro procesor RISC V.
2. Implementujte vybrané bloky QSPI master IP na RTL úrovni v jazyce VHDL.
3. Vybranými metodami prokažte správnou funkci navrženého systému.

Seznam doporučené literatury:
1. W25Q128FV Serial flash Memory with dual/quad SPI & QPI Datasheet, Winbond, Revision 1, 2013
2. Digital Design and Computer Architecture 2nd Edition, D. Harris, S. L. Harris, Morgan Kaufmann, 2012
3. RI5CY: User Manual, A. Traber, M. Gautschi, P. D. Schiavone, ETH Zurich, Revision 4.1, 2019

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Jiří Jakovenko, Ph.D., katedra mikroelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 22.05.2020Datum zadání diplomové práce: 11.02.2020

Platnost zadání diplomové práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
prof. Ing. Pavel Hazdra, CSc.
podpis vedoucí(ho) ústavu/katedry

doc. Ing. Jiří Jakovenko, Ph.D.
podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Declaration

I declare that this thesis has been composed solely by myself and that I have used only
sources (literature, software, ...) listed in the included list.

In Prague, 22. 5. 2020
..

Bc. Jan Němeček

Acknowledgements

I would like to thank to my supervision doc. Ing. Jiří Jakovenko Ph.D. for valuable
advices during the development of this thesis. Also, I would like to express my gratitude
to my colleagues from ASICentrum s.r.o. for cooperation, valuable advices, and guidance
throughout my work. Namely to Ing. Jakub Šťastný Ph.D. Last but not least, I would like
to thank my family for support during whole studies.

Abstrakt
Tato diplomová práce pojednává o návrhu a implementaci QSPI master rozhraní s pro-

cesorovým jádrem RISCV. QSPI protokol byl prostudován z dostupných flash pamětí, které
QSPI rozhraní podporují. Byly porovnány rozdíly v protokolu mezi různými flash paměťmi
a sestaven jednotný popis protokolu. Dále bylo prostudováno RISCV PULP rozhraní, aby
k němu bylo možné připojit QSPI master rozhraní. Protokolové funkce a parametry byly
vybrány a byl vytvořen systémový návrh a specifikace. Jednotlivé bloky návrhu byly imple-
mentovány na RTL úrovni pomocí VHDL. Během VHDL implementace byl návrh průběžně
testován pomocí VHDL testů. Ověření konceptu návrhu bylo provedeno implementací QSPI
master rozhraní společně RISCV procesorem do FPGA. Procesor byl naprogramován a byla
ověřena komunikace mezi procesorem a QSPI rozhraním. Dále byla ověřena komunikace mezi
QSPI rozhraním a připojenou externí flash pamětí. Na závěr byly pomocí UVM verifikačního
prostředí testovány základní scénáře použití. Návrh je tím připraven na rozsáhlé testování.

Klíčová slova
QSPI, PULP, RI5CY, RISCV, FPGA, DDR, Flash paměť, VHDL

Abstract
This master’s thesis deals with the design and implementation of the QSPI master in-

terface with the RISCV processor core. The QSPI protocol was studied from available flash
memories, which support QSPI protocol. Differences in the protocol were compared be-
tween studied flash memories, and a unified protocol description was written. The RISCV
PULP interface was studied to allow connection of the RISCV with the QSPI master in-
terface. Protocol features and parameters were chosen, and system-level design and design
specification was created. Individual blocks of the design were implemented in RTL with
VHDL. The design was continuously tested during the VHDL implementation phase with
the VHDL testbench. Proof of concept was done by the implementation of the design with
the RISCV processor into FPGA. The processor was programmed, and communication be-
tween the QSPI interface and the processor was verified. The QSPI communication was
verified between the QSPI interface and external flash memory. At last, basic use-cases were
verified in the UVM environment implemented in System Verilog. Thereby, the design was
prepared for full verification.

Keywords
QSPI, PULP, RI5CY, RISCV, FPGA, DDR, Flash memory, VHDL

Contents

Abstract 5

List of Figures 8

List of Tables 10

Symbols and Abbreviations 11

1 Introduction 12
1.1 Motivation . 12
1.2 Objectives . 12

2 Theoretical Introduction 13
2.1 QSPI Protocol . 13

2.1.1 Interface . 13
2.1.2 Frame Format . 14
2.1.3 Data Modes . 15
2.1.4 SDR and DDR Mode . 18

2.2 RI5CY PULP . 18
2.2.1 Load Store Unit . 19

2.3 AMBA AHB5 Protocol . 20
2.3.1 Interconnect Logic . 21
2.3.2 Interface . 21
2.3.3 Basic Transfer Protocol . 22

3 QSPI Master Design 24
3.1 Protocol Features Selection . 24

3.1.1 State of the Art . 24
3.1.2 Selection of Protocol Features . 25

3.2 System Level Design . 27
3.2.1 Block Level Design . 27

3.3 Blocks Description and RTL Implementation 29
3.3.1 Clock and Reset Generator . 29
3.3.2 LSU PULP Slave . 31
3.3.3 Configuration Registers . 33
3.3.4 PULP Slave and Rx FIFO Bridge . 42
3.3.5 Tx and Rx FIFO . 43
3.3.6 QSPI Protocol Controller . 44

6

3.3.7 Interrupt Controller . 53

4 Design Verification 54
4.1 VHDL Testbench . 54
4.2 FPGA Proof of Concept . 54

4.2.1 RTL Integration . 55
4.2.2 Physical Implementation . 56
4.2.3 Software Toolchain . 57
4.2.4 Results . 59

4.3 UVM Test Environment . 63
4.3.1 Verification Plan . 63
4.3.2 Results . 63

5 Conclusion 66

Literature 67

Appendix 70

A RTL Codes 70

7

List of Figures

2.1 QSPI interface configuration with single slave device. 13
2.2 Example of full QSPI transaction with highlighted frame phases. 14
2.3 QSPI transaction frame with used all data modes. 15
2.4 SSPI interface configuration. 16
2.5 SSPI a) write and b) read transactions. 16
2.6 DSPI interface configuration. 17
2.7 DSPI transaction using two data lines. 17
2.8 QSPI transaction using all four data lines. 17
2.9 QSPI transaction in a) SDR and b) DDR mode. 18
2.10 LSU a) basic, b) back to back, and c) slow response transaction 20
2.11 AHB interface block diagram with multiple slaves and interconnect logic . . . 21
2.12 AHB master interface . . 21
2.13 AHB slave interface 22
2.14 AHB basic a) read and b) write transactions 23
2.15 AHB read with extended data phase. 23

3.1 WP and HOLD timing. 25
3.2 Non seqentual transfers with SIOO enabled. 25
3.3 The QSPI master design interface. 27
3.4 The block diagram of the QSPI master design. 28
3.5 Block diagram of the clock generator. 29
3.6 Timing diagram of the clock generator. 30
3.7 Block diagram of the reset generator. 30
3.8 Timing diagram of the reset generator. 31
3.9 Block diagram of the LSU PULP slave. 31
3.10 Timing diagram of read access on PULP slave. 32
3.11 Timing diagram of read access on PULP slave with hold. 32
3.12 Timing diagram of write on PULP slave. 33
3.13 Configuration registers block diagram. 34
3.14 QSPICFG0 register bit map. 34
3.15 QSPICFG1 register bit map. 36
3.16 QSPIMODE register bit map. 37
3.17 QSPIINTSTR0 register bit map. 38
3.18 QSPIINTSTR1 register bit map. 38
3.19 QSPIWDATA register bit map. 39
3.20 QSPIRDATA register bit map. 39

8

3.21 QSPISTATUS register bit map. 40
3.22 QSPINTSTS register bit map. 40
3.23 QSPINTENA register bit map. 41
3.24 Block diagram of PULP slave and RX FIFO bridge. 42
3.25 Timing diagram of PULP slave and RX FIFO bridge with memory-mapped

read operation. 43
3.26 Block diagram of the TX/RX FIFO. 43
3.27 Example timing diagram of the TX/RX FIFO. 44
3.28 Block diagram of protocol controller. 45
3.29 Block diagram of protocol controller FSM. 46
3.30 State diagram of protocol controller FSM. 47
3.31 Example timing diagram of protocol controller FSM. 47
3.32 Block diagram of protocol controller transmitter. 50
3.33 Timing diagram of protocol controller transmitter counters. 50

4.1 Example simulation of simple QSPI write transfer. 54
4.2 Block diagram of integrated system with RISCV and QSPI master. 55
4.3 Implemented design in FPGA. QSPI master is highlighted in green and RISCV

processor with crossbar and memories blocks in purple. 57
4.4 Flowchart of simple program for RISCV processor. 58
4.5 Test set-up for implemented QSPI master interface with RISCV on FPGA. . 59
4.6 RISCV PULP bus transactions measured by internal FPGA Vivado logic anal-

yser. 59
4.7 QSPI write transaction measured by a) internal and b) external logic analyser

between QSPI master interface and QSPI flash memory. 60
4.8 QSPI read transaction measured by a) internal and b) external logic analyser

between QSPI master interface and QSPI flash memory. 61
4.9 QSPI DDR read transaction measured by a) internal and b) external logic

analyser between QSPI master interface and QSPI flash memory. 62
4.10 Block diagram of used UVM environment. 63

9

List of Tables

2.1 SPI CPOL and CPHA modes. 16
2.2 Master signals used by Load Store Unit . . 19
2.3 List of AHB interface signals with description 22
2.4 Transfer data size according to HISIZE signal 23

3.1 QSPI flash memories list of features 25
3.2 QSPI master design features list with description and configurations. 26
3.3 Three typical QSPI transaction scenarios described in steps. 28
3.4 Data_be_o and HSIZE conversion table. 32
3.15 Reset and subtract values for bit counter. 51
3.16 Reset values for byte counter. 51
3.17 Load and Shift sizes of TX transmitter shift registers. 52
3.18 Load and Shift sizes of RX transmitter shift registers. 53

4.1 Address space used for PULP interface. 56
4.2 FPGA resource utilization table for QSPI master interface. 56
4.3 FPGA timing report for QSPI master interface with the clock at 50 MHz. . . 56
4.4 Test coverage of verification test-cases. 64
4.5 Simplified verification plan for QSPI master interface. 65

10

.

Symbols and Abbreviations

AHB Advanced High-performance Bus
APB Advanced Peripheral Bus
ASIC Application-Specific Integrated Circuit
CPHA Clock Phase
CPOL Clock Polarity
CS Chip Select
DDR Dual Data Rate
DSPI Dual Serial Peripheral Interface
FIFO First In, First Out
FPGA Field-Programmable gate array
FSM Finite-State Machine
ILA Integrated Logic Analyser
LSU Load Store Unit
MCU Micro-Controller Unit
MGT Multi-Gigabit transceiver
PCB Printed Board Circuit
PPL Phase-locked loop
PSL Property Specification Language
PULP Parallel Ultra-Low-Power
QIO QSPI Input Output data pin
QSPI Quad Serial Peripheral Interface
RTL Register Transfer Language
RX Receiver
SCLK Serial Clock
SDR Single Data Rate
SIOO Send Instruction Only Once
SOC System On a Chip
SPI Serial Peripheral Interface
SSPI Single Serial Peripheral Interface
TX Transmitter
UVM Universal Verification Methodology
VHDL Very High Speed Integrated Circuit Hardware Description Language
XIP Execute In Place

11

1 Introduction

1.1 Motivation

Nowadays, modern embedded processors boot from external flash memories. Typically
two types can be distinguished. Either a memory is equipped with a parallel interface or
with a serial interface. The parallel interface is usually composed of the address, data, and
control buses. The memory with a parallel interface offers higher performance and faster
transaction speeds. However, it takes up a considerably larger printed circuit board space,
and it uses more processor pins. Therefore it is not suitable for modern smaller low power
designs. These disadvantages are solved by usage of the quad serial peripheral interface
(QSPI). The interface is composed of the chip select signal, clock signal, and four data lines.
Overall, it uses fewer signals to communicate. Therefore signal alignment is simpler. The use
of flash memory with the quad serial peripheral interface can significantly decrease the used
printed circuit board (PCB) area. Consequently, it can lower the overall cost of the PCB.
However, the serial interface has a more complicated design, and it is significantly slower
than the parallel interface. The slower speed of the interface is acceptable in most cases if
data from memory are not read to often [1].

The RISCV processor cores are becoming more and more popular as they are free to
use. They also offer a variety of cores depending on the type of use. For example, RI5CY
PULP is intended for ultra low power applications. There is a need for peripherals to create
a functional system on a chip. That is why it was decided to design the QSPI master interface
block as a peripheral for the RISCV [2].

1.2 Objectives

This master’s thesis focus on the design of the QSPI master interface integrable with
the RISCV processor core. The thesis is divided into several chapters. First, it is needed to
study the QSPI protocol from different sources and create a unified description of the protocol,
which will later be used during the design phase. RI5CY PULP interface is also studied to
design a protocol bridge between the QSPI and PULP protocol. Second, a specification of
the QSPI master interface is prepared based on the study of existing serial flash memories and
their features. A system-level design is created. The design is implemented on the Register-
transfer level (RTL) in Very High-Speed Integrated Circuit Hardware Description Language
(VHDL). The design is verified during the design process by basic VHDL testbench. At
last, the design is verified in the universal verification methodology (UVM) test environment
implemented in System Verilog, and FPGA implementation with RISCV processor core is
done as proof of concept to prove that design can communicate with real processor and QSPI
flash memory.

12

2 Theoretical Introduction

2.1 QSPI Protocol

The Quad Serial Peripheral Interface (QSPI) is a synchronous serial master-slave based
interface mostly used for communication between the processor and external memories.
The protocol allows connection of single memory or multiple memories in parallel. The in-
terface uses only one master. However, it can handle multiple slave devices. The master is
a device that controls the communication. The protocol is based on the classic Serial Pe-
ripheral Interface (SPI) interface. The difference is that QSPI allows communicating on four
data lines. The main benefits of the interface are mainly fully configurable and flexible data
frame format, support of traditional SPI and Dual SPI, reduction of used pins of processor.
It helps to reduce printed circuit board size and final cost. The protocol can offer up to four
times larger throughput and with support of double data rate mode up to eight times larger
throughput than classic SPI [3].

The interface protocol features can vary between different manufactures. The main reason
is the non-existent ISO standard for QSPI. Some companies offer their standards such as
JEDEC’s JESD216 [4] for Serial NOR flash. However, it only describes the content of QSPI
frames and not the entire protocol. The primary purpose of this chapter is to make a summary
of protocol features supported by flash memories from different manufactures and draw united
protocol description. As the main resource device datasheets [1, 3, 5] are used.

2.1.1 Interface

A basic configuration interface with one slave device uses six pins/wires to communicate.
The number of used pins increases with the number of connected slave devices. Master gener-
ates the serial clock signal at (SCLK) pin. The Chip Select (CS) pin is used to select/activate
slave by pulling line low. Every slave device should have its own CS pin driven by the master.
The QSPI uses four Quad Input Output data lines (QIO0-3), for the data transfer. The pin
QIO0 corresponds to Master Out Slave In (MOSI) pin and QIO1 to the Master In Slave Out
(MISO) pin of SPI if it is used in a single SPI mode. An example configuration is shown in
Figure 2.1 [5].

Figure 2.1: QSPI interface configuration with single slave device.

13

2.1.2 Frame Format

The QSPI offers a flexible frame format. The frame can be composed of 5 phases –
command, address, alternate, dummy, and data phase. Some phases can be named differently
by manufacturers. Each phase can be skipped. However, an order of phases does not change.
Users can individually configure length and mode for each phase. Every phase can be sent
over one, two, or four data lines. Example of a QSPI communication frame with highlighted
phases can be seen in Figure 2.2. The description of the depicted phases follows below [3].

Figure 2.2: Example of full QSPI transaction with highlighted frame phases.

Command Phase

Eight bits long instruction is sent from master to slave during the command phase. The
objective of this phase is to specify which operation will be performed (Write enable, Page
program, Quad read, Erase, ...). Instructions or commands are unique to specific slave devices
or manufacturers. This phase can be sent only in Single Data Rate (SDR) mode. Users can
select if the whole byte is sent or phase is skipped. Skipping of the phase is mostly used when
the same type of transactions will follow after an initial transaction with command phase [3].

Address Phase

During the address phase, an address bytes are sent from master to slave device to specify
the address in slave device memory space from/to which data will be read/written. The phase
length is configurable, typically it supports addresses from one byte up to four bytes. The
phase supports Dual Data Rate (DDR) mode. User can also skip this phase [3].

Alternate Phase

This phase is an extra phase supported by most of the manufacturers. Typically after
address phase master sends an extra byte to the slave. The function of this phase can vary
for different manufacturers. Most often it is used to have extra control over operation mode
and to keep the slave in operational mode. It usually means that the next transaction frame
will skip the instruction phase to avoid repetitiveness. The phase length is usually one byte
or in some cases nibble of byte. The phase supports DDR mode [1].

14

Dummy Phase

The main reason of the dummy phase is to ensure enough turnaround time before the
data phase to complete initial read access of the flash array before the master device can
read data, mainly if the high clock frequency is used. During the dummy phase, no bits are
transmitted, but the user can define whether the whole phase is transmitted as High Z or as
0. Users can configure how many dummy cycles shall be transmitted or skip the phase. One
dummy bit lasts one clock cycle even during DDR mode [3].

Data Phase

In this phase, data bytes are sent/received from master/slave to slave/master. It is the
only phase when the slave can send data to the master. The phase length is fully configurable,
and it is theoretically unlimited. Turnaround phase occurs before the phase if the slave is
going to transmit to the master, it means that QIO pins are going to switch directions of
communication. The phase supports DDR mode. The data phase can also be skipped [3].

2.1.3 Data Modes

The user can select through how many data lines communication will occur for each frame
phase. This offers great flexibility for all types of QPSI devices or it can be used to reduce
number of needed GPIO pins. Three separate modes can be distinguished, Single SPI (SSPI),
Dual SPI (DSPI), and Quad SPI (QSPI). The user can select logical values in which data
lines are kept during transactions for unused data lines. An example of the QPSI transfer
with different mode used in each transfer phase is shown in Figure 2.3 [5].

Figure 2.3: QSPI transaction frame with used all data modes.

Single SPI Mode

Only two data lines are used for the SSPI mode. Unused data lines can be set to a
selected logical state. The interface configuration with marked directions of lines is shown in
Figure 2.4. It can be seen that QIO0 is used to transfer data from master to slave and QIO1
from slave to master [6].

15

Figure 2.4: SSPI interface configuration.

This mode is based on a classic SPI interface. However, it supports only half-duplex
transfer and most of the time without availability of all configurations of polarity and phase.
The SPI interface allows users to change Clock Polarity (CPOL) and Phase (CPHA) according
to chosen CPHA and CPOL bit. It determines on which clock edge data are being shifted
out/sampled and at which logic value is serial clock signal during idle state. All possible SPI
modes are shown in Table 2.1.

Table 2.1: SPI CPOL and CPHA modes.

Transaction examples of read and write in SSPI mode are shown in Figure 2.5. It can be
seen that read and write use different data lines [6].

(a)

(b)

Figure 2.5: SSPI a) write and b) read transactions.

16

Dual SPI Mode

The DSPI mode uses only two data lines for data transfer as same as SSPI transfer.
However, both lines are used at the same time to send/receive data. The unused pins QIO2
and QIO3 can be optionally set to specific logical values. The interface configuration can
be seen in Figure 2.6. An example of the data transaction using DSPI mode is shown in
Figure 2.7 [5].

Figure 2.6: DSPI interface configuration.

Figure 2.7: DSPI transaction using two data lines.

Quad SPI Mode

The QSPI mode uses all four data lines thus all pins in hardware configuration are being
used. The data are being received/sent by all four data lines at the same time. Example of
the data transaction using QSPI mode is shown in Figure 2.8 [5].

Figure 2.8: QSPI transaction using all four data lines.

17

2.1.4 SDR and DDR Mode

The Single Data Rate (SDR) means that data are sent on the falling edge and sampled on
a rising edge of the serial clock that corresponds to configuration CPOL = 1 and CPHA = 1
or CPOL = 0 and CPHA = 0 of SPI. The SDR mode is set by default.

The Dual Data Rate (DDR) or the Dual Transfer Rate (DTR) is transfer mode where the
data are sampled/sent on both rising and falling edge of the serial clock. The first data are
sent on falling edge with the last section sent on rising edge if configuration corresponds to
CPOL = 1 and CPHA = 1 or CPOL = 0 and CPHA = 0. The data are always sampled half
clock cycle after they are sent. The DDR mode can theoretically double data throughput. It
can be very useful, especially when the system runs at lower clock frequency. The command
phase is always sent in SDR mode as well as dummy phase, during which each dummy bit
lasts one clock cycle. Examples of both SDR and DDR transactions with equal settings of
phases and data modes are shown in Figure 2.9. It can be seen that command phase is
always sent in SDR mode [1].

(a)

(b)

Figure 2.9: QSPI transaction in a) SDR and b) DDR mode.

2.2 RI5CY PULP

RI5CY PULP is 32-bit RISC V processor core with extended support of additional instruc-
tions that are not supported in standard RISC V ISA. Parallel Ultra-Low Power (PULP) adds
core-specific extensions as post incrementing load and stores, multiply-accumulate extensions,
ALU extensions, and hardware loops. A Load Store Unit (LSU) ensures communication with
peripheral memories [2].

18

2.2.1 Load Store Unit

The LSU is used to access a data memory. The data can be loaded or stored either
as words (32 bits), half-words (16 bits), or bytes (8 bits). The unit supports misaligned
accesses, when access is not aligned on a natural word boundary. The unit needs at least two
clock cycles to perform a misaligned access because operation is internally separated into two
word-aligned accesses. The LSU also supports post-increment instructions. It ensures that
during load/store operations the base address is incremented by specified offset to reduce the
number of required instructions [2].

Protocol

The LSU is master-slave based protocol. The master device initiates transactions. LSU
signals described in Table 2.2 are used for communication with a memory. Every trans-
action starts by setting a valid address at data_addr_o bus and data_req_o signal high.
Data_req_o has to be kept high until data_gnt_i is set high for one clock cycle. It indicates
that request is accepted, and address at data_addr_o bus can be changed in the next cycle.
The data_we_o signal is used to indicate if write or read operation is performed. It can not
change if data_req_o is set high. After the request is accepted, the slave sets read data at
data_rdata_i bus and signal data_rvalid_i high to indicate that data are valid. Even during
write transaction data_rvalid_i needs to be set high. The write data that should be written
to the memory are sent through data_wdata_o bus at the same time data_req_o is sent.

Table 2.2: Master signals used by Load Store Unit [2].

19

The examples of transaction timing diagrams are shown in Figure 2.10. It shows protocol
differences based on speed of reply as well as back-to-back read transaction [2].

(a)

(b)

(c)

Figure 2.10: LSU a) basic, b) back to back, and c) slow response transaction [2].

2.3 AMBA AHB5 Protocol

The Advanced High-performance Bus (AHB) is a bus interface for a high clock frequency
and high-performance designs. It is used as a connection between components of System-on-
Chip (SoC). It implements series of features for high-performance systems like burst transfers,
single clock edge operation, non-tristate implementation, locked transfers, error transfer ter-
mination, protection control, and wide data bus configurations from 32 bits up to 1024 bits.
The protocol supports both little-endian and big-endian systems. Advanced Peripheral Bus
(APB) protocol is used instead for slower devices. A bridge can be implemented to connect
APB and AHB. The AHB supports both multiple master and slave devices. However, the
bus does not have three-state character thus interconnect logic has to be implemented [7].

20

2.3.1 Interconnect Logic

The interconnect logic is used to provide arbitration and signal route control between
multiple masters and slaves due to the two-state character of the bus. The most simple form
of interconnect logic is in the case of one master and multiple slaves, where only a decoder
and a multiplexor is needed. The decoder is used to decode addresses from the master. The
decoder provides control signals for multiplexor and drives select signals for slaves according
to the current address. The multiplexor connects read data from a proper slave to a master.
An example block diagram of the AHB interface with a single master and multiple slaves
with interconnect logic is shown in Figure 2.11. In case of multi-master system, additional
arbitration logic is needed [7].

Figure 2.11: AHB interface block diagram with multiple slaves and interconnect logic [7].

2.3.2 Interface

A master device provides address, write data, and control signals to operate bus and
interconnect logic. The simplified master device interface is shown in Figure 2.12.

Figure 2.12: AHB master interface [7].

A slave device responds to a master according to provided address and control signals. Slaves
are mostly memory devices or high speed peripherals. Interface of a slave device is shown in
Figure 2.13.
A simplified version can be used if advanced features of the bus are not needed. The most
important protocol signals are described in Table 2.3 [7].

21

Figure 2.13: AHB slave interface [7].

Table 2.3: List of AHB interface signals with description [7].

2.3.3 Basic Transfer Protocol

Every transaction is started by a master device by providing a valid address and by driving
control signals that provide specific information to slaves about which type of transfer will be
performed. A write transfer occurs if data are being transferred from master to slave otherwise
it is read transfer. The basic read and write transactions are shown in Figure 2.14. First,
each transfer starts with the address phase that lasts a single clock cycle if it is not extended
by the previous data phase. Second, the data phase follows, where data are provided by a
master (write) or by a slave (read) at their corresponding data buses for one clock cycle. The
master drives the HWRITE signal low for reads and high for writes to distinguish between
operations. The address phase for the next transfer is in progress during current data phase
[7].

22

(a)

(b)

Figure 2.14: AHB basic a) read and b) write transactions [7].

The HREADY signal is used by a slave to request an extension of the data phase by a
master. If a slave is not ready to receive data, it drives HREADY signal low as can be seen
in Figure 2.15. Read and write accesses can be combined during single burst transfer by
alternating HWRITE signal value between bursts.

Figure 2.15: AHB read with extended data phase.

A master can indicate a bit size of data in the transfer by HSIZE signal. All possible transfer
sizes are listed in Table 2.4. Naturally, the upper limit is limited by used bus width [7].

Table 2.4: Transfer data size according to HISIZE signal [7].

23

3 QSPI Master Design

3.1 Protocol Features Selection

3.1.1 State of the Art

A variety of QSPI flash memories from different manufacturers were compared to decide
which features shall be supported by the QSPI master design. Datasheets from Micron
[12, 13], Macronix [10, 11], Winbond [5, 9], Cypres [1], NXP [8], and STM [3] were used as a
reference. The objective was to study the QSPI protocol and point out deviations between
them. Hardware parameters were also compared. Devices sometimes offer special features
that are not part of the basic QSPI protocol, but they can improve the overall efficiency
and usability of the protocol. Special features were taken into consideration while choosing
prospective design features.

All compared QSPI flash memories shared almost the same definition of the QSPI protocol
with differences in supported lengths of phases, support of DDR mode, and alternate byte
phase. The maximal dummy phase length typically ranges from 8 up to 32 cycles, but no
more than 16 cycles are needed in most cases. All memories support a 3-byte address phase.
However, a 4-byte address phase is more often supported with the current increase in memory
sizes. The alternate phase definition varies the most. Typically a master sends data of size
from 1 bit up to 8 bits before the dummy phase. Maximal serial clock frequencies were
compared, to show maximal theoretical data throughputs and speed of the interface. Typical
maximal values of frequencies in SDR mode vary between 104 MHz and 166 MHz, and in
DDR mode between 66 MHz and 100 MHz. Some instructions can operate only at much
lower frequencies. The timing of the CS signal after the transaction end can vary as a result
of different clock frequencies. This period is called Chip Select High Time. It determines
how long the CS should stay high before the next transfer. Typically it can last from one up
to several clock cycles [1, 3, 5, 8, 9, 10, 11, 12, 13].

Special Features

All compared QSPI flash memories have several special functions that can be implemented
as an addition to the basic protocol. Almost all of them support HOLD, Write Protection
(WP), RESET, and Execute In Place (XIP). A less common feature is Send Instruction Only
Once (SIOO). The WP and HOLD are only used in DSPI and SSPI modes. Usually, the
HOLD is mapped to the QIO3 pin and the WP to the QIO2 pin. The HOLD is set low to
hold transactions while the CS stays high. It is used if more slaves share the same QSPI data
lines. The WP signal prevents writes accesses to the status registers if set high. Example of
typical timing diagrams for the WP and the HOLD signals are shown in Figure 3.1. Some
memories have multiplexed HOLD and RESET functionality at the QIO2 pin.

24

Figure 3.1: WP and HOLD timing.

The XIP mode allows the master to access memory only with the requirement of address
without need of commands. The SIOO function ensures that the command phase is trans-
mitted only once in the non-sequential transfer, as shown in Figure 3.2. This function is
usually set/reset during the command or alternate phase [1, 3, 5, 8, 9, 10, 11, 12, 13].

Figure 3.2: Non seqentual transfers with SIOO enabled.

The summary Table 3.1 was created to show the essential features of compared QSPI
flash memories and chosen protocol functions for the QSPI master design. Features that are
supported by all QSPI devices like DSPI and SSPI are not mentioned in the table.

Table 3.1: QSPI flash memories list of features [1, 3, 5, 8, 9, 10, 11, 12, 13].

3.1.2 Selection of Protocol Features

The QSPI master design has to support a flexible frame format to anticipate its all possible
combinations. Thus the user should be able to set length and data modes for each phase.

25

Supported data modes are QSPI/DSPI/SSPI and SDR/DDR. The 4-byte address phase will
be implemented as 4-byte addressing is more common nowadays. The design will support
dummy phase length from 1 up to 31 cycles. It should be sufficient for most commands.
Maximal data phase length of 511 bytes was chosen, considering that most memories use
256-byte page size. The alternate phase will allow to send from 1 bit up to 8 bits. The design
shall be able to change logical values of QIO2 and QIO3 data lines while in SSPI or DSPI
modes to support WP and HOLD functions. The clock prescaler of 1/2/4/8 division will be
used to allow a user to slow down the output serial clock. Memory-mapped mode with SIOO
function will be supported to allow the execution of code via the QSPI interface. Memory
transfer caused by an instruction fetch of an microcontroller unit (MCU) will be translated
to read access on the QSPI interface. Alternatively, if MCU contains a cache, the interface
will react to requests for fetching cache lines, which are issued by the cache controller. The
summary of all supported features with descriptions is listed in Table 3.2.

Table 3.2: QSPI master design features list with description and configurations.

26

3.2 System Level Design

The design is aimed to create a QSPI master IP core with the following features:
– Easy to integrate with the RISCV processor with the PULP bus.
– Support all protocol features as discussed in subsection 3.1.2.

The QSPI master interface is shown in Figure 3.3. It can be observed that two PULP
LSU interfaces are used. The PULP LSU is used to connect the RISCV processor to the
memory space. The first PULP bus (PPI) is intended for basic operations. The second
(PCI) is used for memory-mapped mode only. The QSPI interface is composed out of four
data input/output signals, the serial clock, chip select signal, and four output enable signals.

Figure 3.3: The QSPI master design interface.

The design can be operated in different scenarios. Three basic scenarios were chosen for
simplification – basic read, basic write, and memory-mapped mode. A typical process for
each scenario is described in Table 3.3. Configuration registers must be set before the start
of the transfer as it can be seen from each scenario. Data need to be written to the TX FIFO
while in write mode otherwise protocol controller will hold the transaction. Both FIFOs are
observed for an empty or full status flag in order to write data to TX FIFO and read data
from RX FIFO.

3.2.1 Block Level Design

The QSPI master was decomposed into smaller functional blocks. The Block diagram of
the system is shown in Figure 3.4. PULP slaves convert the PULP bus to internal AHB.
The AHB is used to control configuration registers and the RX FIFO in the memory-mapped
mode. The conversion bridge is used between RX FIFO and PULP slave. Configuration
registers are used to store configuration data for QSPI protocol. Two FIFOs are implemented

27

Table 3.3: Three typical QSPI transaction scenarios described in steps.

to buffer RX/TX data from/to QSPI protocol. The QSPI protocol controller block is designed
to operate the QSPI protocol. Each sub-block was designed to fulfill the selected protocol
functions discussed in the subsection 3.1.2.

Figure 3.4: The block diagram of the QSPI master design.

28

3.3 Blocks Description and RTL Implementation

The objective of this section is to provide a detailed description of each sub-block. Func-
tionality and implementation of each sub-block is described. Each block of the design was
implemented on the Register-transfer level (RTL) in Very High Speed Integrated Circuit
Hardware Description Language (VHDL). RTL codes are not included in this chapter. How-
ever, they are included in the appendix chapters only for printed version of this text. Asser-
tions were written in Property Specification Language (PSL) to help with debugging on the
RTL level.

3.3.1 Clock and Reset Generator

Clock Generator

The clock generator block was implemented to generate the QSPI protocol clock and a
request for the system clock. The clock structure of the design is implemented as synchronous
with only one input system clock. The design is intended for clock frequencies from 50 MHz
up to 100 MHz. The prescaler was used to create the QSPI protocol clock with a lower
frequency than the system clock.

The block diagram of implementation is shown in Figure 3.5. The system clock request
is generated by OR logical function between all sub-block requests. Thus result request is
active while at least one sub-block request is also active. The request is assumed glitch-free
behavior for each sub-block.

Figure 3.5: Block diagram of the clock generator.

29

The prescaler divides the system clock by 1/2/4/8 to generate the QSPI protocol clock. The
value for a division is set in the configuration registers block. It is assumed that the prescaler
value can not change while the transaction is active. The prescaler is not active when the
prescaler is set to 1. In this case the QSPI clock is implemented as a direct copy of the system
clock gated by the OR gate. Otherwise, a 3-bit counter is used for dividing by 2/4/8. The
counter counts up by one on each rising edge while it is active. Each divided clock signal is
represented by one bit of the counter (/2 – first bit LSB, /4 – second bit, /8 – third bit).
The timing diagram is shown in the Figure 3.6. It describes the intended functionality of
the block. Clock gating is used to disable the clock signal if it is not needed to lower power
consumption.

Figure 3.6: Timing diagram of the clock generator.

Reset Generator

A reset generator was implemented to handle the input global reset. It is assumed that
the input global reset is asynchronous to the system clock, therefore synchronization of the
release was needed. The Synchronization is done by two registers, as shown in Figure 3.7
[15]. It can be seen that the block is requesting a clock when the reset is in an active state.
Otherwise, internal clock gating is used to disable a clock signal if it is not needed. The block
also generates reset for the QSPI protocol controller and both FIFOs from system reset and
the QSPI enable signal to keep mentioned blocks in the reset state while the QSPI interface
is disabled. The timing diagram is shown in Figure 3.8. It describes the functionality of the
block [16].

Figure 3.7: Block diagram of the reset generator.

30

Figure 3.8: Timing diagram of the reset generator.

3.3.2 LSU PULP Slave

The PULP slave block was designed to convert the PULP LSU to/from the AHB protocol.
The block acts as a PULP slave for RISCV PULP master and an AHB master for internal
AHB. The block diagram of implementation is shown in Figure 3.9. Both protocols were
described in section 2.3 and section 2.2.

Figure 3.9: Block diagram of the LSU PULP slave.

The HADDR signal is connected as a direct copy of the data_addr_o signal during both
write and read operations. The same goes for HWDATA and data_rdata_i, as they are
directly driven by data_wdata_o and HRDATA. The data_be_o is converted to the HSIZE
according to Table 3.4. Unaligned accesses are not supported.

31

Table 3.4: Data_be_o and HSIZE conversion table.

Read access on the PULP and the AHB is in principle similar. Therefore only one clock
cycle is needed to read data except for the first phase, as shown in Figure 3.10. A transaction
can be held by driving the HREADY signal low for read operations, as shown in Figure 3.11.

Figure 3.10: Timing diagram of read access on PULP slave.

Figure 3.11: Timing diagram of read access on PULP slave with hold.

Write access needs two clock cycles because PULP protocol requires to acknowledge data by
the data_gnt_i as shown in Figure 3.12.

32

Figure 3.12: Timing diagram of write on PULP slave.

Read Access

The data_gnt_o is driven by data_req_o if the HREADY is high. Otherwise, it is set low.
The HWRITE is kept low. The HSEL is a direct copy of data_req_o unless the HREADY
is low. The data_rvalid_i is set high if HREADY is high.

Write Access

The HREADY is not used to hold transactions during write access because it could block
the bus for writing to the register-map. The data_gnt_o is driven by an inverted value of the
registered data_req_o signal, while data_req_o is active. The HWRITE has always inverted
the value of data_gnt_i while data_req_o is high. The same applies to the HSEL. The
data_rvalid_i is driven same as during read access.

3.3.3 Configuration Registers

The block is used to store configuration data for the QSPI protocol controller and to
allow read, enable, and clear interrupt and status flag registers. A block diagram is shown in
Figure 3.13. It can be observed that the core of the block is formed by the tool generated reg-
ister map with access through AHB. Each register has 32-bit size. Registers were generated
to support all configurations for QSPI features, as discussed in subsection 3.1.2. Altogether
ten 32-bit registers were generated. Configuration registers (QSPICFG0, QSPICFG1, QSPI-
MODE, QSPIINTSTR0, QSPIINTSTR1) are read/write type except for transaction request
register. The write-only register is implemented for the basic mode transaction request reg-
ister. The register is cleared at the moment when the QSPI controller stops being busy.
Interrupt and status registers are used to notify a user about the current state of the device.
Status registers (QSPISTATUS) are read-only thus can not be cleared or rewritten by the
user. Interrupt registers are divided into interrupt write-only enable registers (QSPINTENA)
and read-only interrupt status registers (QSPINTSTS). Interrupt status registers are cleared

33

by writing one to the register. To write/read to/from TX/RX FIFO registers (QSPIW-
DATA, QSPIRDATA) are implemented as write-only/read-only type registers and act only
as a bridge between AHB and FIFOs.

Figure 3.13: Configuration registers block diagram.

Registers

QSPICFG0

Figure 3.14: QSPICFG0 register bit map.

[31] qspi_req
Initiates the Basic mode request only if the QSPI enable bit is set to ’1’
and device is set to Basic mode.
This bit is automatically cleared by hardware after the transaction is done.

[30] qspi_mode
Select device mode:
0 - Basic mode
1 - Memory Mapped Mode
This bit can be modified only if QSPI is not in a busy state.

34

[29:28] qspi_prescaler
Prescaler to divide system clock to QSPI clock:
00 - Do not divide
01 - Divide by 2
10 - Divide by 4
11 - Divide by 8
The field can be modified only if QSPI is not in a busy state.

[27] qspi_sioo
Send instruction only once. When enabled, the Command phase
will be sent only during the first QSPI transfer while device
in Memory Mapped mode.
This bit can be modified only if QSPI is not in a busy state.

[26:24] qspi_cs_ht
Define a minimal number of clock cycles after the
end of the transaction, during which
the chip select signal stays high before the next transaction.
0x0 - 1 clock cycle
...
0x7 - 8 clock cycles
The field can be modified only if QSPI is not in a busy state.

[23:15] qspi_data_length
Number of bytes sent during the Data phase of the QSPI transaction.
0x0 - no data bytes
...
0x1FF - 511 data bytes
The field can be modified only if QSPI is not in a busy state.

[14:10] qspi_dummy_length
Number of clock cycles in the Dummy phase of the QSPI transaction.
0x0 - no dummy cycles
...
0x1F - 31 dummy cycles
The field can be modified only if QSPI is not in a busy state.

[9:6] qspi_cfg_length
Number of bits in the Alternate/Config. phase of the QSPI transaction.
0x0 - no Alternate phase
...
0x8 - 8 bits
The field can be modified only if QSPI is not in a busy state.

[5:3] qspi_addr_length
Number of bytes in the Address phase of the QSPI transaction.
0x0 - no Address phase
0x1 - 1 Byte
0x2 - 2 Bytes
0x3 - 3 Bytes
0x4 - 4 Bytes
The field can be modified only if QSPI is not in a busy state.

[2] qspi_cmd_length
1 - Command byte is sent.
0 - Command byte is not sent.
This bit can be modified only if QSPI is not in a busy state.

35

[1] qspi_wr
For the Basic mode data phase:
1 - write
0 - read
For Memory Mapped mode, it’s not relevant - read is always performed.

[0] qspi_en
QSPI interface enable bit. Any QSPI transactions are initiated only
if this bit is set to ’1’.
If set to ’0’ then the QSPI interface is kept in the reset state.

QSPICFG1

Figure 3.15: QSPICFG1 register bit map.

[5] qspi_sclk_mode
SPI clock mode idle state of the QSPI clock
0 - mode 0 (idle low)
1 - mode 1 (idle high)
This bit can be modified only if QSPI is not in a busy state.

[4] qspi_data_ddr
Data bytes are received/sent in the DDR mode.
This bit can be modified only if QSPI is not in a busy state.

[3] qspi_addr_ddr
Address bytes are sent in the DDR mode.
This bit can be modified only if QSPI is not in a busy state.

[2] qspi_dummy_hiz
Controls whether the dummy phase is transmitted as High Z or as O.
0 - ’Z’
1 - ’0’
This bit can be modified only if QSPI is not in a busy state.

[1] qspi_out2
Controls QIO[2] data line when is not used by QSPI protocol.
This bit can be modified only if QSPI is not in a busy state.

[0] qspi_out3
Controls QIO[3] data line when is not used by QSPI protocol.
This bit can be modified only if QSPI is not in a busy state.

36

QSPIMODE

Figure 3.16: QSPIMODE register bit map.

[15:11] qspi_tx_fwl
TX FIFO Watermark level.
This field can be modified only if QSPI is not in a busy state.

[10:6] qspi_rx_fwl
RX FIFO Watermark level.
This field can be modified only if QSPI is not in a busy state.

[5:4] qspi_data_mode
Mode used during the QSPI data phase:
0x00 - SSPI
0x01 - DSPI
0x10 - QSPI
0x11 - reserver
This field can be modified only if QSPI is not in a busy state.

[3:2] qspi_address_mode
Mode used during the QSPI address phase:
0x00 - SSPI
0x01 - DSPI
0x10 - QSPI
0x11 - reserver
This field can be modified only if QSPI is not in a busy state.

[1:0] qspi_cmd_mode
Mode used during the QSPI command phase:
0x00 - SSPI
0x01 - DSPI
0x10 - QSPI
0x11 - reserver
This field can be modified only if QSPI is not in a busy state.

37

QSPIINTSTR0

Figure 3.17: QSPIINTSTR0 register bit map.

[31:0] qspi_addr
Address sent during the QSPI Address phase. Relevant only in Basic mode.
This field can be modified only if QSPI is not in a busy state.

QSPIINTSTR1

Figure 3.18: QSPIINTSTR1 register bit map.

[15:8] qspi_cmd
Command sent during the QSPI Command phase.
This field can be modified only if QSPI is not in a busy state.

[7:0] qspi_cfg
Byte sent during the QSPI Alternate phase.
This field can be modified only if QSPI is not in a busy state.

38

QSPIWDATA

Figure 3.19: QSPIWDATA register bit map.

[31:0] qspi_write_data
Write data to TX FIFO.
32 bit write always expected
Data can be written only if the QSPI interface is enabled.

QSPIRDATA

Figure 3.20: QSPIRDATA register bit map.

[31:0] qspi_read_data
Read data from RX FIFO.
32 bit read always expected
Data can be written only if the QSPI interface is enabled.

39

QSPISTATUS

Figure 3.21: QSPISTATUS register bit map.

[6] qspi_tx_fwl
TX FIFO watermark level reached status

[5] qspi_rx_fwl
RX FIFO watermark level reached status

[4] qspi_rx_full
RX FIFO full status

[3] qspi_rx_empty
RX FIFO empty status

[2] qspi_tx_full
TX FIFO full status

[1] qspi_tx_empty
TX FIFO empty status

[0] qspi_busy
QSPI transaction is in progress status

QSPINTSTS

Figure 3.22: QSPINTSTS register bit map.

[6] qspi_int_tx_fwl
TX FIFO watermark level reached interrupt.
Clear by writing ’1’.

[5] qspi_int_rx_fwl
RX FIFO watermark level reached interrupt.
Clear by writing ’1’.

40

[4] qspi_int_rx_full
RX FIFO full interrupt.
Clear by writing ’1’.

[3] qspi_int_rx_empty
RX FIFO empty interrupt.
Clear by writing ’1’.

[2] qspi_int_tx_full
TX FIFO full interrupt.
Clear by writing ’1’.

[1] qspi_int_tx_empty
TX FIFO empty interrupt.
Clear by writing ’1’.

[0] qspi_int_done
QSPI transaction is finished interrupt.
Clear by writing ’1’.

QSPINTENA

Figure 3.23: QSPINTENA register bit map.

[6] qspi_int_tx_fwl_en
TX FIFO watermark level reached interrupt enable.

[5] qspi_int_rx_fwl_en
RX FIFO watermark level reached interrupt enable.

[4] qspi_int_rx_full_en
RX FIFO full interrupt enable.

[3] qspi_int_rx_empty_en
RX FIFO empty interrupt enable.

[2] qspi_int_tx_full_en
TX FIFO full interrupt enable.

[1] qspi_int_tx_empty_en
TX FIFO empty interrupt enable.

[0] qspi_int_done_en
QSPI transaction is finished interrupt enable.

41

3.3.4 PULP Slave and Rx FIFO Bridge

The bridge was needed to connect the AHB bus of PCI PULP slave and RX FIFO. The
objectives of the block are to be able to read from RX FIFO via AHB, notify PCI PULP
that transaction should be held while RX FIFO is empty, to generate memory-mapped QSPI
transaction request, load address for QSPI transaction, and to multiplex read signals from
PCI PULP and PPI PULP depending on the selected QSPI mode. The block diagram is
shown in Figure 3.24.

Figure 3.24: Block diagram of PULP slave and RX FIFO bridge.

A register for the memory-mapped request was implemented. The memory-mapped re-
quest is set high if the device is in memory-mapped mode, QSPI protocol controller is not in
a busy state, and transaction on the AHB is active. The register is kept high while the QSPI
interface is busy. It is reset if a transaction done signal from the QSPI interface is active.
Bytes for the address phase needs to be obtained. Thus first address on the AHB bus is
registered exactly before the transaction becomes active. The HREADY signal is set low if
the Rx FIFO is empty. The PPI PULP and the PCI PULP read signals are multiplexed for
RX FIFO according to set QSPI mode to ensure that both PULP slaves are able to read RX
FIFO. Example timing diagram of read operation from RX FIFO during memory-mapped
mode can be seen in Figure 3.25.

42

Figure 3.25: Timing diagram of PULP slave and RX FIFO bridge with memory-mapped read
operation.

3.3.5 Tx and Rx FIFO

Both FIFOs are used to buffer data between PULP and QSPI interface. The 32-bit data
width was chosen due to the 32-bit size of the PULP data signal. A generic variable sets
the depth of FIFOs with supported widths, which equals 2n, where n is a natural number.
The block was designed as synchronous. FIFO also supports watermark reach, empty, full
status flags and write/read operations in one clock cycle. The block diagram is shown in
Figure 3.26. The design is decomposed into general FIFO with dual-port RAM and wrapper
with design specific functions. An example timing diagram is shown in Figure 3.27.

Figure 3.26: Block diagram of the TX/RX FIFO.

The dual-port RAM was used as a memory component to be able to read and write
to/from RAM at the same time. Write and read pointer counters were implemented to keep
track of addresses for write and read. Each counter has a generic bit size, which equals to
the size of the RAM address bus plus an additional bit. The write request is filtered out if
the request is active and FIFO is full. Otherwise, the write pointer is increased by one. The

43

Figure 3.27: Example timing diagram of the TX/RX FIFO.

write pointer points to the position to which will be written during the next request. Write
request also operates as enable signal for RAM. The data are written to the memory on a
rising edge of the clock. Read request operates similarly as write with a difference that data
are read and the read pointer points to the current read register. The data are read on a
rising edge of the clock [17].

Empty and full conditions are determined by comparing write and read pointers with the
use of an additional bit for both them. An empty condition is set when both pointers are
equal. A full condition is also set when both pointers are equal except for an additional bit,
which is not equal [17].

A watermark level was calculated from write and read pointer. The generic variable is
implemented to distinguish between RX and TX FIFO. The watermark level for TX FIFO is
set if the total number of words stored in the RAM is greater than the set watermark level.
RX FIFO watermark is set if the total number of words stored in RAM is lesser then set
watermark level.

Protocol wrapper around FIFOs is implemented to filter read and write requests from
the QSPI protocol controller while a prescaler is used. Because one request from the QSPI
protocol can last more than one clock cycle and will cause more than one read/write operation.
The request is let through during the first clock cycle and loaded to a register. The output
of the register is compared with the current request value. The request is filtered out if both
compared values are set high.

3.3.6 QSPI Protocol Controller

The protocol controller block was designed to control the QSPI protocol as a master
device. Features of the protocol block were chosen to support the most functions of the
current QSPI flash memories, as was in more detail described in subsection 3.1.2. The
most notable implemented features are DDR mode, Memory Mapped mode, XIP, alternate
phase, and SIOO. The block was decomposed into two separate sub-blocks, as it is shown
in Figure 3.28. The FSM sub-block controls the protocol, thus generates clock and control

44

signals for transmitter sub-block and QSPI interface. The transmitter sub-block controls
data path, therefore converts data between QSPI interface and internal FIFOs, and notifies
the FSM whether all data bytes were transmitted/received. All configuration signals are led
from the configuration registers block. It was described in subsection 3.3.3.

Figure 3.28: Block diagram of protocol controller.

Protocol Controller FSM

The FSM block drives clock and control signals for the QSPI protocol interface and
transmitter block. The composition of the transaction frame is configured via the input con-
figuration bus from the configuration registers block. The sub-block itself can be decomposed
into smaller functional parts, as it is shown in Figure 3.29. It can be seen that the main
part is made up of a Finite State Machine (FSM), which acts as control logic for the whole
protocol controller block.

The clock request for the block is set while the interface is enabled, set to correct mode and
any transaction request is active. Only basic mode requests can be accepted if the basic mode
is set. The same applies to the memory-mapped mode and its request. This is to prevent
the FSM to run a transaction in incorrect mode. The appropriate data for the address phase
are selected according to set request mode. The address phase bytes are loaded from the
configuration registers for the basic mode. The memory-mapped mode takes the first address
used in the PULP transaction, which initiates the request. For each phase, a enable signal
was created to notify the FSM about all phases that shall occur during a transaction frame.

45

Figure 3.29: Block diagram of protocol controller FSM.

A phase is enabled when its length is more than zero. However, the command phase in
memory-mapped mode can be active only during the first transaction, while SIOO is high.
Therefore register for SIOO was implemented. The register is set after the first transaction
with a command phase. It sets the command enable signal low until the register value is set
low. The register resets when the device is switched to the basic mode or the QSPI interface
is disabled.

The FSM operates on a falling edge of the QSPI clock. It is implemented with nine states,
as it is shown in Figure 3.30. The diagram is simplified and shows only possible transitions
between states and it does not show unnecessary conditions for transitions. Each phase can
be left out. The order of phases is always respected and it is not possible to shuffle it. The
example of a typical timing diagram of the FSM with control signals is shown in Figure 3.31.
All transmitter counters are reset and new data are loaded to shift registers before the next
phase. A request for transition to the next state is initiated by byte counter done signal from
the transmitter, except for the data phase. The data byte counter done signal is used for the
data phase.

46

Figure 3.30: State diagram of protocol controller FSM.

Figure 3.31: Example timing diagram of protocol controller FSM.

IDLE State
The FSM always starts in an IDLE state. During this state, the device anticipates a

request for the start of a new transfer frame. All counters in the transmitter are kept in a
reset state. The protocol clock signal is disabled and the chip select signal is kept high. A
transition to the next phase occurs when a transaction request becomes active. The next

47

phase is chosen according to enable signals and priority order of the phases. The QSPI
busy flag is set high and chip select is set low. The internal clock request for the QSPI and
transmitter clock signals is enabled.

TX COMMAND State
The command phase is transmitted. Therefore transmit registers are enabled. During

this state, the DDR mode is always disabled. Transition to a next phase occurs when the
byte counter done signal is high.

TX ADDRESS and TX ALTERNATE State
The address or alternate phase is transmitted. Transmit registers are enabled. DDR

enable signal is set high for both states if DDR is enabled for the address phase. Transition
to a next phase occurs when the byte counter done signal is high.

DUMMY State
The dummy phase is transmitted. No data are sent or received during this state, therefore

transmit and receive registers are disabled. DDR mode is always disabled. Transition to a
next phase occurs when the byte counter done signal is high.

TURN-AROUND State
The turn around state is used to insert one wait clock cycle before the read data phase,

therefore receive registers are disabled. However, this does not apply in the case of DDR
read. Transition to an RX data state occurs after one clock cycle.

TX and RX DATA States
Only one RX or TX data state can be used per a transfer frame. During these states, data

are sent/received. Transmit/receive registers are enabled. DDR is enabled if it is configured
for the data phase. Request for read/write from/to FIFO blocks is generated while the byte
counter done signal is set to high. If TX FIFO becomes empty during the TX data phase,
the transaction is held until new data are written to the FIFO. A similar case applies to the
RX data phase. If RX FIFO becomes full, then the transaction is held until data are read
from the FIFO. Both empty and full FIFO signals are resynchronized. The transactions are
held by disabling the QSPI output protocol clock and transmitter block registers. Transition
to a Chip select high time state occurs when the data byte counter done signal is high.

48

CHIP SELECT HIGH TIME State
This state is always the last before the IDLE state. The transaction has ended and QSPI

done flag signal is generated for one clock cycle. The QSPI busy flag is set low and the
transmitter block is disabled. However, Chip select signal is kept high for a set number of
cycles before the next transaction can start. This allows the user to start the next transaction
immediately after chip select high time. A 3-bit binary counter was implemented to count
high time clock cycles. Transition to an IDLE state occurs after chip select high counter is
done.

Output Clock Gating
Gating of output interface QSPI clock was implemented to provide a clock signal for the

QSPI interface. Enable clock signal is generated by the FSM. Two basic gates and registers
are used to create two clock signals, which correspond to SPI clock mode 0 and mode 3. The
OR gate is used for the gating clock signal for the SPI mode 3. The AND gate is used to
create a clock for SPI mode 0. A multiplexer was added to select a correct clock signal to
the interface output according to clock mode configuration.

Pads Output Enable Register
This register is used to enable outputs of interface pads. It is always set according to the

current data mode and phase. The output is always disabled in a reset state and if the QSPI
interface is disabled. QIO2 and QIO3 data lines outputs are enabled to support HOLD and
WP functions if all phases are set to SSPI or DSPI.

Protocol Controller Transmitter

The transmitter block was implemented to control a data path between FIFO blocks and
the QSPI interface. The primary function is to convert 1,2, or 4-bit size QSPI data bus
to/from 32-bit size data buses of FIFOs and registers, and to count transmitted and received
bytes to be able to notify the FSM about phase end. The block is composed out of three
data counters, transmit/receive shift registers, and receiver buffer, as can be observed in the
Figure 3.32.

One bit counter and two-byte counters were implemented. Namely bit, byte and data
byte counter. The timing diagram describing the functionality of all counters is shown in
Figure 3.33. It can be observed dependency of byte and date byte counters on the bit
counter.

49

Figure 3.32: Block diagram of protocol controller transmitter.

Figure 3.33: Timing diagram of protocol controller transmitter counters.

Bit Counter
The bit counter was implemented as a 3-bit wide binary counter. Its primary function is

to count bits of the transaction. The counter is always reset before the next phase. Start and
subtract values are also set. That is because each phase has a different number of bits that
are transferred per one clock cycle and the phase length can be less than eight bits. Both
values are chosen according to phase settings, as is described in the Table 3.15. It ensures

50

that the current value corresponds to a number of transmitted bits, which is for example used
for sorting received data in the design. The counter subtracts set value on falling edge of
clock signal after counter reset was released. Bit counter done signal is set high while value
of the counter reaches zero.

Table 3.15: Reset and subtract values for bit counter.

Byte Counter
The byte counter was implemented as a 2-bit binary counter. The function of the counter

is to notify the FSM that the current phase is done except for a data phase where it serves as
a notifier that four bytes were received/transmitted. The counter is reset and the start value
is set before the next phase. The start value is chosen according to next phase as is shown in
the Table 3.16. That is because each phase can have a different length. One is subtracted
on each falling edge of the clock after the reset was released. Byte counter done signal is set
high while value of the counter is zero. The done signal can be set high regardless of the
counter current state in special cases during which whole phase lasts only one clock cycle.

Table 3.16: Reset values for byte counter.

51

Data Byte Counter
The function of the counter is to count data bytes during the data phase. The counter

is kept in a reset state until the data phase occurs. The start value is set according to its
length. The data byte counter done signal is set high to notify the FSM about the end of the
phase.

Data Transmitter
The transmitter part of the block is composed out of sorting muxes, two shift registers and

output gating. Muxes sorts data from data registers or TX FIFO depending on the current
phase and its properties such as length. Data are arranged to ensure direct connection from
a position in the shift register and specific pad. Sorted data are then sampled by two shift
registers. Both have eight-bit length. First, data are sampled on the falling edge by first shift
register. Second, data are sampled on the rising edge by second shift register. Thus data can
be sent on both clock edges during DDR mode. Both shift registers can be disabled when
they are not used. Each register shifts and load data according to phase and its properties,
as is described in the Table 3.17. The Shifting and loading of data is enabled by transit
enable and register update signals from the FSM. If only SDR mode is used, then only a
falling edge register is enabled. An effort was made to put as less as possible combinational
logic between shift registers and pads during design phase to minimize clock skew and signal
glitches. However, three-stage gating was implemented to be able to use DDR mode and
force outputs to selected values.

Table 3.17: Load and Shift sizes of TX transmitter shift registers.

The first stage consists of a multiplexer. Its inputs are driven by outputs of shift registers.
Its output is connected to the next stage. The gated clock signal is used ss a select signal.
The signal disabled and kept at a constant value in SDR mode. The Clock signal is enabled
and switches multiplexer each half cycle of the clock during DDR mode. The second and
third stage is a combination of OR and AND gate to be able to force values to logic high
or low. This is used mainly in SSPI or DSPI mode where QIO[2] and QIO[3] data lines are
forced to a specific value by setting in configuration registers.

52

Data Receiver
The receiving part of the transmitter block has 32-bit buffer and also two 8-bit shift

registers for each polarity of the clock signal and sorting muxes. Input data from QSPI
interface pads are sorted and sampled by shift registers. The load position depends on the
current phase setting, as is described in Table 3.18. Both registers sample data if DDR is
enabled. Otherwise, only falling edge polarity register is active. Sampled byte is sorted and
stored to the corresponding position in a 32-bit buffer. The data are written to RX FIFO in
one clock cycle on a rising edge if the buffer becomes empty or the transaction has ended.

Table 3.18: Load and Shift sizes of RX transmitter shift registers.

3.3.7 Interrupt Controller

The block is used to notify the processor unit that an interrupt in the system had occurred.
The block controls the interrupt output signal. The design supports up to five different sources
of interrupts – TX FIFO watermark level reached, RX FIFO watermark level reached, RX
FIFO full, RX FIFO empty, TX FIFO full, TX FIFO empty, and QSPI transaction done. For
each interrupt source, three signals are used – interrupt enable, interrupt set, and interrupt
clear. The interrupt output signal is set if at least one set signal from all sources is active
and its enable signal is active. Clear signals are used to set output register low. It is assumed
that a clear input signal is active only if the corresponding interrupt is enabled and active.
Interrupt is set high if clear and set signals became active in same clock cycle. Level based
interrupts are set again after clear is low, but if the set value is still in an active state.

53

4 Design Verification
The verification of the design was divided into three steps. First, a simple VHDL testbench

was used to verify basic functionality during the design phase. Second, the design was
implemented with the RISCV processor on FPGA as a proof of concept. The processor was
programmed to configure the QSPI master interface. The interface programmed/erased/read
data to/from external QSPI flash memory. Last, the UVM verification environment was used.
Tests were written for typical use cases for the QSPI master interface.

4.1 VHDL Testbench

A simple VHDL testbench was used during the design phase to verify basic system func-
tionality on the RTL. Checks were done visually or by PSL assertions, which are placed inside
design. The testbench is directly connected to the design. It also provides clock signal, pad
models, and power up reset signal. The testbench contains a variety of QSPI transactions,
mostly of a random character. The design was verified to the stage when it could be used
for FPGA implementation. The example of simulation on RTL is shown in Figure 4.1. The
figure shows QSPI write transfer with DDR mode set for the address phase.

Figure 4.1: Example simulation of simple QSPI write transfer.

4.2 FPGA Proof of Concept

An FPGA implementation was chosen, to prove that protocol specification was understood
properly and the design is able to communicate with real flash memory. The main goal was
to verify integration with the RISCV processor core and QSPI interface functionality. So
it would be possible to run a simple program in the processor core. It will configure QSPI
master, initiate transactions, and write/read/erase flash memory.

54

4.2.1 RTL Integration

The block diagram of integrated system is shown in Figure 4.2. The integration of
subsystems with the processor core is done through the PULP interface. The RISCV uses
PULP to access instruction memory, data memory, and JTAG for debug purposes. Therefore
it contains three master PULP interfaces. Thus QSPI master is accessed as a slave PULP
memory from the processor standpoint. ROM (4096 Byte) and RAM (4096 Byte) were also
integrated. The ROM was used as an instruction memory with a stored program. The
purpose of the RAM was to store program variables and processor STACK. Both memories
were implemented as PULP slaves. Register with AHB interface was used to control LEDs. A
conversion block between AHB and PULP was needed to be able to connect the register map
with the processor. The PULP crossbar was implemented to route PULP master request and
data to appropriate slave memory. For the crossbar, the pre-generated RTL template was
edited. A specific address space was chosen for each PULP as it is described in Table 4.1.
Upper bits were used as identifiers and then filtered out from output address heading to a
memory space. The boot address of the processor was set to the start of the ROM.

Figure 4.2: Block diagram of integrated system with RISCV and QSPI master.

55

Table 4.1: Address space used for PULP interface.

4.2.2 Physical Implementation

Artix-7 xc7a200tfbg484 FPGA was chosen for synthesis and physical implementation.
Timing and FPGA pads constraints were written specifying clock, reset signals and pad
delays, package location and I/O standard. Clock source was specified according to the used
development board Trenz te0712. The board has two clock sources phase-locked loop (PPL)
at 50 MHz and Multi-Gigabit transceiver (MGT) at 125 MHz. The PPL clock was used
as a source clock for implemented design. A synthesis was done using the Vivado 2019.1
tool. The hierarchy flattening was switched off for synthesis to keep netlist hierarchy similar
to RTL hierarchy. It was needed for debugging purposes. The Integrated Logic Analyser
(ILA)/hardware debug core was created using Vivado debug Wizard, after the design was
synthesized. The debug core operates in implemented design as an internal logic analyser,
which communicates via JTAG with the VIVADO. The result of implementation with the
highlighted QSPI master is shown in Figure 4.3. Resource utilization for the QSPI master
design is described in Table 4.2 and timing report from timing analysis after implementation
is described in Table 4.3. A bitstream was generated to be able to program the FPGA [18].

Table 4.2: FPGA resource utilization table for QSPI master interface.

Table 4.3: FPGA timing report for QSPI master interface with the clock at 50 MHz.

56

Figure 4.3: Implemented design in FPGA. QSPI master is highlighted in green and RISCV
processor with crossbar and memories blocks in purple.

4.2.3 Software Toolchain

Before the FPGA was programmed, program data needed to be loaded into ROM instance.
Populating of memory is done in the Vivado tool by rewriting the original bitstream with
memupdate command. The command needs bitstream, ".elf" and ".mmi" files as its input.
As a result, a new bitstream is generated with data loaded into specified memory cells. The
".mmi" is an XML file that is defined by used address space in ".elf" file, memory type and
cell position in an FPGA. The elf file was compiled using riscv32-pulp-elf-gcc toolchain. The
toolchain uses linker ".ld", control ".S", and C program file ".c" for compilation. Address
spaces of used RAM and ROM were specified inside the linker file so it can link ROM as
instruction memory and RAM as data and stack memory. The control file initiates processor.
A simple test program was written into the ".c" file. The test should set appropriate QSPI
registers and QSPI flash registers, write data to the flash and read data from the same address
out. Data are compared and LEDs are lighted if data are the same. The program is described
by a flowchart, which can be seen in Figure 4.4 [19].

57

Figure 4.4: Flowchart of simple program for RISCV processor.

58

4.2.4 Results

The test set-up consists of the FPGA evaluation board (Artix-7 xc7a200tfbg484 FPGA),
an eight-channel logic analyzer (MCU123 Saleae Logic clone), and module with QSPI flash
memory (FLASH 4 CLICK – S25FL512S flash memory) [14]. It is shown in Figure 4.5.
Internal and external logic analysers verified the implemented design. The results from both
analysers were compared with the theoretical assumption for the timing diagrams.

Figure 4.5: Test set-up for implemented QSPI master interface with RISCV on FPGA.

First, the communication was checked between RISCV and QSPI master interface. The
example of measured PULP transactions is shown in Figure 4.6. It shows that the processor
without problem can access the PPI PULP slave, and it can set configuration registers inside
the interface.

Figure 4.6: RISCV PULP bus transactions measured by internal FPGA Vivado logic analyser.

Second, QSPI transactions were observed between the QSPI master interface and external
flash memory. Each QSPI transaction was operated at 1.5 MHz with a clock prescaler set
to 8 to run at the lowest transaction frequency. This was set because the QSPI protocol
uses single-ended signaling with all data lines referenced against common ground and the
flash memory is too far from the FPGA. Thus long ground loop is created. It causes that

59

impedance of data lines changes and noise resistance is worsen. The example of measured
QSPI write transfer by internal and external logic analyser is shown in Figure 4.7. The
write transfer consists of the command phase (SSPI, SDR, 38’h), address phase(SSPI, SDR,
00001234’h), and TX data phase (QSPI, SDR, 16 bytes – 1) ABCDEFAB’h, 2) 3552DCBA’h,
3) 12345678’h, and 4) BFDC3552’h). It shows that the transfer captured by both analysers is
the same, and it corresponds with the theoretical timing diagram provided by flash memory
datasheet. The written were verified by following read transfer.

(a)

(b)

Figure 4.7: QSPI write transaction measured by a) internal and b) external logic analyser
between QSPI master interface and QSPI flash memory.

The read consists of the command phase (SSPI, SDR, 6B’h), address phase (SSPI, SDR,
00001234’h), and RX data phase (QSPI, SDR, 16-bytes). The measured read transfer is shown
in Figure 4.8. It shows that the transfer captured by both analysers is the same, and it corre-
sponds with the theoretical timing diagram provided by flash memory datasheet. Data read
by transaction are 1) ABCDEFAB’h, 2) 3552DCBA’h, 3) 12345678’h, and 4) BFDC3552’h.
The data are equal to written data, thereby proving that protocol specifications were imple-
mented. The other transactions(sector erase, status register read and write, ...) were also

60

observed. Each command was checked, whether it corresponds to theoretical assumptions.
The memory sector with data was erased and then read to verify the sector erase command.
Data read from the erased sector was all set high [14].

(a)

(b)

Figure 4.8: QSPI read transaction measured by a) internal and b) external logic analyser
between QSPI master interface and QSPI flash memory.

61

At last, DDR read transaction was measured. The clock frequency of system was needed
to be decreased due to previously mentioned connection between the FPGA and the external
memory. The QSPI transactions were operated at 400 kHz during this measurement. The
DDR read consists of command phase (SSPI, SDR, EE’h), address phase (QSPI, DDR,
00001234’h), alternate phase (QSPI, DDR, FF’h), dummy phase (3 cycles), and RX data
phase (QSPI, DDR, 16-bytes). The measured read transfer is shown in Figure 4.9. It
shows that the transfer captured by both analysers is the same, and it corresponds with the
theoretical timing diagram provided by flash memory datasheet. Data read by transaction
are 1) ABCDEFAB’h, 2) 3552DCBA’h, 3) 12345678’h, and 4) BFDC3552’h. It equals to
written data [14].

(a)

(b)

Figure 4.9: QSPI DDR read transaction measured by a) internal and b) external logic analyser
between QSPI master interface and QSPI flash memory.

62

4.3 UVM Test Environment

The UVM environment in development written in System Verilog was used for verification
of the QSPI master design on RTL. The objective of this phase was to prepare a basic
verification plan, write test cases, and fix bugs of the design. Overall, full verification is an
extensive and time-consuming phase in design development. The verification usually takes
up about 70% time done on a project. Therefore, only the basic use-cases were verified in
this chapter to prepare the design for further verification. The structure of the used test
environment is shown in Figure 4.10. It consists of two PULP agents, the QSPI agent,
and the scoreboard. All agents drive their corresponding buses according to the set test
sequence. Each test is defined by a sequence, which describes test inputs and procedures.
The scoreboard is used to compare the inputs of a test and responds to them.

Figure 4.10: Block diagram of used UVM environment.

4.3.1 Verification Plan

A verification plan was written to describe individual test cases to test the main func-
tions of the design, especially of the QSPI protocol block. The description of each test case
consists of input data, settings of configuration registers, and test objectives, as can be seen
in simplified Table 4.5. Configurations of registers not mentioned in the table are all set to a
random value. Tests listed in the table are sorted from higher to lower priority. The priorities
have been assigned to divide time effort for each test appropriately to its importance.

4.3.2 Results

All write or random access previously mentioned test cases were created. However, the
UVM environment currently does not support read transfers yet. Therefore read access
test cases were not added to the environment, and only simpler VHDL testbenches were
temporarily used. All major bugs were fixed, so the basic functionality of the design was
verified. Test coverage of each test-case is shown in Table 4.4. Since code coverage and
functional coverage are not 100%, it is still possible that the design contains uncovered

63

parts and therefore bugs. Achieving 100% coverage (so-called verification closure) is a time-
demanding task and was beyond the scope of this thesis. Usually verification takes up about
70% time done on a project.

Table 4.4: Test coverage of verification test-cases.

64

Table 4.5: Simplified verification plan for QSPI master interface.

Alternate

phase

Data

phase

length mode length length direction length

QSPI disabled

Interface is

disabled.

Transaction has

random

configuration.

Check if transaction

starts with disabled

QSPI interface

1 disabled random random random random random random random random random random random random

1 enabled basic 8 bits QSPI 4 Bytes QSPI SDR 8 bits write
511

Bytes
QSPI SDR disabled

2 enabled basic 8 bits QSPI 4 Bytes QSPI SDR 8 bits read
511

Bytes
QSPI SDR disabled

1 enabled basic 8 bits QSPI 1 Byte QSPI SDR 1 bit write 1 Byte QSPI SDR disabled

2 enabled basic 8 bits QSPI 1 Byte QSPI SDR 1 bit read 1 Byte QSPI SDR disabled

1 enabled basic 8 bits QSPI 4 Bytes QSPI DDR 8 bits write
511

Bytes
QSPI DDR disabled

2 enabled basic 8 bits QSPI 4 Bytes QSPI DDR 8 bits read
511

Bytes
QSPI DDR disabled

1 enabled basic 8 bits QSPI 1 Byte QSPI DDR 1 bit write 1 Byte QSPI DDR disabled

2 enabled basic 8 bits QSPI 1 Byte QSPI DDR 1 bit read 1 Byte QSPI DDR disabled

QSPI SDR

random

Basic mode

request. QSPI and

SDR mode are set

for all phases.

Random length of

phases. Random

phase lengths.

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

1 enabled basic random QSPI random QSPI SDR random random random QSPI SDR disabled

QSPI DDR

random

Basic mode

request. QSPI and

DDR mode are set

for all phases.

Random phase

lengths.

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

1 enabled basic random QSPI random QSPI DDR random random random QSPI DDR disabled

SSPI SDR

random

Basic mode

request. SSPI and

SDR mode are set

for all phases.

Random phase

lengths.

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

1 enabled basic random SSPI random SSPI SDR random random random SSPI SDR disabled

SSPI DDR

random

Basic mode

request. SSPI and

DDR mode are set

for all phases.

Random phase

lengths.

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

1 enabled basic random SSPI random SSPI DDR random random random SSPI DDR disabled

1 enabled memory 8 bits random random random random random random random random random enabled

2 enabled memory 8 bits random random random random random random random random random enabled

DSPI SDR

random

Basic mode

request. DSPI and

SDR mode are set

for all phases.

Random phase

lengths.

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

1 enabled basic random DSPI random DSPI SDR random random random DSPI SDR disabled

DSPI DDR

random

Basic mode

request. DSPI and

DDR mode are set

for all phases.

Random phase

lengths.

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

1 enabled basic random DSPI random DSPI DDR random random random DSPI DDR disabled

PPI basic mode

random

All configurations

are random

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

1 enabled basic random random random random random random random random random random disabled

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

• phases lengths

• input/output

phases data

• status/interrupts

registers

PCI memory

mode random

Memory mode

request. Random

phases settings.

Command

enabled. SIOO

eanbled

• if command is send

only once

• initiation of transfer

and read data by PCI

PULP

Test-case

QSPI DDR max

QSPI DDR min

Basic mode

request. QSPI and

DDR mode are set

for all phases.

Maximal length is

set for each phase

Basic mode

request. QSPI and

DDR mode are set

for all phases.

Minimal length is

set for each phase

QSPI SDR min

Basic mode

request. QSPI and

SDR mode are set

for all phases.

Minimal length is

set for each phase.

QSPI SDR max

• phases lengths

• input/output

phases data

• status/interrupts

registers

Configurations

SIOO
Description Checks Transfer QSPI

enable

request

mode

Command phase Address phase

mode mode

Data phase

Basic mode

request. QSPI and

SDR mode are set

for all phases.

Maximal length is

set for each phase.

• phases lengths

• input/output

phases data

• status/interrupts

registers

• FIFO full/empty

transfer hold

65

5 Conclusion
The objective of this thesis was to design the QSPI master interface integrable with the

RISCV processor. First, the QSPI protocol was studied from different sources, and a unified
description of the protocol was written. The RI5CY PULP interface was also studied to
design a protocol bridge between the QSPI and PULP protocol. Second, the specification of
the QSPI master interface was created based on the study of existing serial flash memories
and their features. A system-level design was prepared from the specification. The design
was implemented on the RTL in VHDL. It was continuously verified during the design phase
by a simple VHDL testbench.

At last, the interface was implemented with the RISCV processor in Artix7 FPGA as
a proof design works with real memory. The processor was programmed, and the commu-
nication was checked between the QSPI master interface and external QSPI flash memory.
The interface was able to write/read/erase to/from the memory. The design was verified in
the UVM test environment implemented in System Verilog. The verification plan for UVM
verification was written. Tests were created for UVM according to the verification plan. The
basic functionality of the design was verified.

The thesis tasks were fulfilled, and the QSPI master interface development will continue in
the ASICentrum s.r.o. To use QSPI IP Core in ASIC, finishing verification to 100% coverage
would be desirable as well as performing ASIC synthesis.

66

Bibliography
[1] S79FL01GS – Serial flash memory. Cypress., 2018, [online], [ref. 2020-05-22]. available

from:
http://cypress.com/file/177986/.

[2] Traber, A. Gautschi, M. Schiavone, P. RI5CY: User Manual. Pulp platform., 2019, [on-
line], [ref. 2020-05-22]. available from:
http://pulp-platform.org/docs/ri5cy_user_manual.pdf.

[3] AN4760 – Quad-SPI interface (QUADSPI). STMicroelectronics., 2019, [online], [ref.
2020-05-22]. available from:
http://st.com/resource/en/application_note/dm00227538-quadspi\

-interface-quadspi-on-stm32-microcontrollers-stmicroelectronics.pdf.

[4] JESD216D.01. JEDEC SOLID STATE TECHNOLOGY ASSOCIATION., 2019, [online],
[ref. 2020-05-22]. available from:
http://jedec.org/standards-documents/docs/jesd216b?destination=node/8406.

[5] W25Q32JW-DTR – Serial flash memory. Winbond., 2017, [online], [ref. 2020-05-22].
available from:
http://winbond.com/resource-files/w25q32jw/20dtr/20revb/20dtr/201512017.

pdf.

[6] Dhaker, P. Introduction to SPI Interface. Signal integrity journal., 2018, [online], [ref.
2020-05-22]. available from:
http://signalintegrityjournal.com/articles/967-introduction-to-spi-interface.

[7] ARM AMBA 5 AHB Protocol specification. ARM Developer., 2015, [online], [ref.
2020-05-22]. available from:
http://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_

spec.pdf.

[8] Quad Serial Peripheral Interface module. NXP., 2012, [online], [ref. 2020-05-22]. available
from:
http://nxp.com/docs/en/application-note/AN4512.pdf.

[9] W25Q128FV – Serial flash memory. Winbond., 2013 ,[online], [ref. 2020-05-22]. available
from:
http://winbond.com/resource-files/w25q128fv_revhh1_100913_website1.pdf.

67

http://cypress.com/file/177986/
http://pulp-platform.org/docs/ri5cy_user_manual.pdf
http://st.com/resource/en/application_note/dm00227538-quadspi \-interface-quadspi-on-stm32-microcontrollers-stmicroelectronics.pdf
http://st.com/resource/en/application_note/dm00227538-quadspi \-interface-quadspi-on-stm32-microcontrollers-stmicroelectronics.pdf
http://jedec.org/standards-documents/docs/jesd216b?destination=node/8406
http://winbond.com/resource-files/w25q32jw/20dtr/20revb/20dtr/201512017.pdf
http://winbond.com/resource-files/w25q32jw/20dtr/20revb/20dtr/201512017.pdf
http://signalintegrityjournal.com/articles/967-introduction-to-spi-interface
http://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf
http://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf
http://nxp.com/docs/en/application-note/AN4512.pdf
http://winbond.com/resource-files/w25q128fv_revhh1_100913_website1.pdf

[10] MX35LF2G14AC – Serial flash NAND memory. Macronix., 2017, [online], [ref. 2020-
05-22]. available from:
http://macronix.com/Lists/Datasheet/Attachments/6867/MX35LF2G14AC,/203V,

/202Gb,/20v1.0.pdf.

[11] MX66L1G45G – Serial flash memory. Macronix., 2018, [online], [ref. 2020-05-22].
available from:
http://macronix.com/Lists/Datasheet/Attachments/7543/MX66L1G45G,/203V,

/201Gb,/20v1.4.pdf.

[12] MT25QU512AB – Serial NOR flash memory. Micron., 2013, [online], [ref. 2020-05-22].
available from:
http://micron.com/-/media/client/global/documents/products/data-sheet/

nor-flash/serial-nor/mt25q/die-rev-b/mt25q_qlkt_u_512_abb_0.pdf.

[13] N25Q128A – Serial NOR flash memory. Micron., 2012, [online], [ref. 2020-05-22].
available from:
http://micron.com/-/media/client/global/documents/products/data-sheet/

nor-flash/serial-nor/n25q/n25q_128mb_1_8v_65nm.pdf.

[14] S25Fl512S – Serial flash memory. Cypress., 2019, [online], [ref. 2020-05-22]. available
from:
http://cypress.com/file/177971/.

[15] Cummings, C. Asynchronous & Synchronous Reset Design Techniques. Sunburst Design,
Inc., 2003, [online], [ref. 2020-05-22]. available from:
http://sunburst-design.com/papers/CummingsSNUG2003Boston_Resets.pdf.

[16] Stastny, J. FPGA prakticky. BEN – odborna literatura s.r.o., 2011, [ref. 2020-05-22].

[17] Cummings, C. Simulation and Synthesis Techniques for Asynchronous FIFO Design.
Sunburst Design, Inc., 2002, [online], [ref. 2020-05-22]. available from:
http://sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf.

[18] Vivado Design Suite User Guide – Synthesis. XILINX., 2019, [online], [ref. 2020-05-22].
available from:
http://xilinx.com/support/documentation/sw_manuals/xilinx2019_1/

ug901-vivado-synthesis.pdf.

[19] Waterman, A. Asanovic, K. The RISC-V Instruction Set Manual. RISC-V., 2017, [on-
line], [ref. 2020-05-22]. available from:
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf.

68

http://macronix.com/Lists/Datasheet/Attachments/6867/MX35LF2G14AC,/203V,/202Gb,/20v1.0.pdf
http://macronix.com/Lists/Datasheet/Attachments/6867/MX35LF2G14AC,/203V,/202Gb,/20v1.0.pdf
http://macronix.com/Lists/Datasheet/Attachments/7543/MX66L1G45G,/203V,/201Gb,/20v1.4.pdf
http://macronix.com/Lists/Datasheet/Attachments/7543/MX66L1G45G,/203V,/201Gb,/20v1.4.pdf
http://micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/mt25q/die-rev-b/mt25q_qlkt_u_512_abb_0.pdf
http://micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/mt25q/die-rev-b/mt25q_qlkt_u_512_abb_0.pdf
http://micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/n25q/n25q_128mb_1_8v_65nm.pdf
http://micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/n25q/n25q_128mb_1_8v_65nm.pdf
http://cypress.com/file/177971/
http://sunburst-design.com/papers/CummingsSNUG2003Boston_Resets.pdf
http://sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
http://xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
http://xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
http://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Used software:
Microsoft Office 365, Logic 1.2.18, MiKTeX 2.9, CorelDRAW X7, Draw.io 13.0.9, Wavedrom
2.6.3, Vivado 2019.2, NCSim 15.20.07

——————————–

69

A RTL Codes
RTL codes for the design and FPGA implementation are not available in the public/online

version of the thesis. All codes are confidential to ASICentrum s.r.o.

70

	Abstract
	List of Figures
	List of Tables
	Symbols and Abbreviations
	Introduction
	Motivation
	Objectives

	Theoretical Introduction
	QSPI Protocol
	Interface
	Frame Format
	Data Modes
	SDR and DDR Mode

	RI5CY PULP
	Load Store Unit

	AMBA AHB5 Protocol
	Interconnect Logic
	Interface
	Basic Transfer Protocol

	QSPI Master Design
	Protocol Features Selection
	State of the Art
	Selection of Protocol Features

	System Level Design
	Block Level Design

	Blocks Description and RTL Implementation
	Clock and Reset Generator
	LSU PULP Slave
	Configuration Registers
	PULP Slave and Rx FIFO Bridge
	Tx and Rx FIFO
	QSPI Protocol Controller
	Interrupt Controller

	Design Verification
	VHDL Testbench
	FPGA Proof of Concept
	RTL Integration
	Physical Implementation
	Software Toolchain
	Results

	UVM Test Environment
	Verification Plan
	Results

	Conclusion
	Literature
	Appendix
	RTL Codes

