
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 13, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Security analysis of hardware crypto wallets

 Student: Lukáš Kozák

 Supervisor: Ing. Jiří Buček, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2020/21

Instructions

Perform a survey of existing attacks on hardware crypto wallets and describe their threat model.

Analyze the Trezor One hardware crypto wallet [1], focus on existing side-channel and fault attacks.
Demonstrate a side-channel attack on the hardware crypto wallet with the aim to discover secret
information such as a PIN or a seed value. Use a vulnerable version of the firmware and describe how the
attack is mitigated.

[1] Satoshi Labs Trezor One, https://trezor.io, https://github.com/trezor/trezor-hw

References

Will be provided by the supervisor.

Bachelor’s thesis

Security Analysis of
Hardware Crypto Wallets

Lukáš Kozák

Department of Computer Systems
Supervisor: Ing. Jiří Buček, Ph.D.

June 3, 2020

Acknowledgements

I would like to thank SatoshiLabs for providing me three units of Trezor One
to play with, Pavol Rusnák, CTO of SatoshiLabs, for answering my questions
regarding the device, and my supervisor, Ing. Jiří Buček, Ph.D., for his help,
especially for teaching me the basics of oscilloscopes.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 3, 2020 .

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Lukáš Kozák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kozák, Lukáš. Security Analysis of Hardware Crypto Wallets. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2020.

Abstrakt

Tato práce analyzuje bezpečnost moderních hardwarových krypto peněženek.
Různé modely ohrožení a hrozby jsou zhodnoceny. Několik současných hard-
warových peněženek je podrobeno recenzi. Potenciální uživatelé jsou poučeni
o tom, jak vybrat správnou hardwarovou peněženku a na nekalé praktiky
některých výrobců. Původní hardwarová peněženka, Trezor One, je podrobena
detailní analýze jak z hardwarové, tak softwarové perspektivy a tvrzení vý-
robce jsou ověřena. Zvláštní důraz je kladen na útoky postranním kanálem a
experimenty s Trezor One.

Klíčová slova Hardwarová krypto peněženka, offline peněženka, kryptoměna,
Trezor, bezpečnost, útok postranním kanálem, odběrová analýza

vii

Abstract

The thesis analyzes the security of modern hardware crypto wallets. Different
threat models and threats for users are assessed with some of the current
hardware wallets reviewed. Potential users are educated how to choose the
right hardware wallet and warned about misleading advertising of some vendors.
The original hardware wallet, Trezor One, is thoroughly analyzed from both
hardware and software perspective and the security claims of the vendor
are verified. A particular emphasis is placed on side-channel attacks and
experiments with Trezor One.

Keywords Hardware crypto wallet, cold wallet, cryptocurrency, Trezor,
security, side-channel attack, power analysis

viii

Contents

Introduction 1

1 Cryptocurrencies Introduction 5
1.1 Introduction to DLT . 5
1.2 Blockchain . 5
1.3 Bitcoin . 7
1.4 Consensus . 7

2 Fundamentals of Crypto Wallets 9
2.1 Public Key Cryptography . 9
2.2 Elliptic Curves . 10
2.3 Digital Signatures . 12
2.4 Mnemonic Sentences . 14
2.5 Storing the Key Pairs . 15

3 Hardware Crypto Wallets 21
3.1 Storing the Cryptocurrency . 21
3.2 Hot vs. Cold Wallets . 21
3.3 Personal Security Devices . 22
3.4 Threat Models . 22
3.5 List of Common Threats . 24

4 Physical Attacks Theory 27
4.1 Classification . 28
4.2 Power Consumption . 29
4.3 Advanced Attacks . 34

5 Evaluation of Hardware Crypto Wallets 35
5.1 Unfixable Attacks . 35
5.2 Trezor One . 36

ix

5.3 Trezor Model T . 36
5.4 Ledger Nano S . 38
5.5 Ledger Nano X . 40
5.6 KeepKey . 42
5.7 Bitfi Wallet . 43
5.8 Conclusion . 45

6 Analysis of Trezor One 47
6.1 Hardware Architecture . 47
6.2 The Casing and Material . 49
6.3 Packaging . 52
6.4 Debugging via SWD/JTAG . 52
6.5 BootROM and Option Bytes 54
6.6 Open Source Repository . 56
6.7 Trezor Protocol . 56
6.8 NORCOW Storage . 60
6.9 Bootloader . 67
6.10 Firmware . 74

7 Side-Channel Experiments 79
7.1 Setup . 79
7.2 Timing Attack on PIN . 81
7.3 OLED Side Channel . 84
7.4 Scalar Multiplication . 90

Conclusion 93

Bibliography 95

A Acronyms 99

B Contents of Enclosed USB Flash Drive 101

x

List of Figures

1.1 Scheme of Blockchain . 6
1.2 Transactions . 6

2.1 Digital Signature Diagram . 10
2.2 Point Addition in ECC . 11
2.3 Keys in JBOK Wallet . 16
2.4 HD Wallet Tree Structure . 17
2.5 Master Node Generation . 18
2.6 Child Key Derivation . 19

3.1 Threat Model Interaction Scheme 23
3.2 Binance Security Survey, December 2018 23

4.1 Naive Picture of the Cryptographic Device Processing Data 29
4.2 Picture of the Cryptographic Device in the Real World 29
4.3 Observing Power Consumption Key Dependency on RSA 31
4.4 Example of Correlation in DPA . 33

5.1 Unlock Screen of Trezor T [26] . 37
5.2 Welcome Screen of Ledger Nano S [27] 38
5.3 Ledger Nano S Architecture [28] 39
5.4 App Selection on Ledger Nano X [29] 40
5.5 Ledger Nano X Architecture [30] 41
5.6 KeepKey Transaction Confirmation 42
5.7 Picture of Bitfi “unhackable” Wallet 43

6.1 Confirming the Transaction with Trezor One [33] 47
6.2 Trezor One Architecture . 48
6.3 Front Side of Opened Trezor One 49
6.4 Reverse Side of Opened Trezor One 49
6.5 Printed Circuit Board . 51

xi

6.6 Holographic Seals on Trezor One Packaging [35] 52
6.7 Pinout of STM32F20x MCUs . 53

7.1 Measurement Setup . 80
7.2 Example PIN Check Power Traces 82
7.3 Measured Time of PIN Check . 82
7.4 One Line Drawn on Display . 84
7.5 Black Bitmap Drawn on Display 84
7.6 Sequence of Frames From 240 FPS Capture of Display 85
7.7 Different Words Imply Different Power Traces 86
7.8 Power Traces of Selected Words . 87
7.9 Power Traces in Firmware with Mitigated OLED Side Channel . . 88
7.10 Mitigation of OLED Side Channel 89
7.11 Scalar Multiplication Side Channel 91

xii

List of Tables

2.1 BIP-39 Mnemonic Summary . 15
2.2 SLIP-44 Registered Coin Types List 20

6.1 Bill of Materials . 50
6.2 SWD/JTAG Pins on STM32F20x MCUs [36] 53
6.3 Flash Memory Organisation [36] 54
6.4 Structure of the 1st Packet of a Message in Trezor Protocol 57
6.5 Structure of the Following Packets of a Message in Trezor Protocol 57
6.6 Flash Memory Layout of Trezor One 60
6.7 Data Entry Categories . 60
6.8 Protected Entry in Storage Area 61
6.9 Public Entry in Storage Area . 61
6.10 Format of the Private Entry with Encrypted Keys 61

xiii

List of Source Codes

6.1 Protobuf Code for PinMatrixRequest Message 59
6.2 Code Generated by Nanopb for PinMatrixRequest Message . . 59
6.3 Protected and Public Entries Stored in the Storage Area 64
6.4 Safe PIN Counter Incrementation 65
6.5 Storage Wipe . 65
6.6 Exponential Waiting Time . 66
6.7 memory_protect function . 69
6.8 mpu_config_bootloader function 69
6.9 firmware_present_new function 70
6.10 signatures_new_ok function 71
6.11 jump_to_firmware function . 71
6.12 Bootloader main function . 73
6.13 check_bootloader function . 75
6.14 Firmware main function . 77
7.1 Naive PIN Check Implementation 81
7.2 Smart PIN Check Implementation 83

xv

Introduction

Bitcoin and cryptocurrencies

On October 31, 2008, an unknown individual or a group under a pseudonym
Satoshi Nakamoto released a whitepaper called Bitcoin: a Peer-to-Peer Elec-
tronic Cash System [1]. This paper outlines a system of a decentralized currency
that would allow payments to be sent from one party to another without going
through a financial institution. It became immediately controversial as it was
released during the financial crisis of 2007–2008 and offered an alternative
to the current centralized financial system governed by central banks and
institutions.

One of the most particular facets of the Bitcoin protocol was use of a public
ledger comprised of blocks of transactions that are added next to each other,
blockchain. Transactions are digitally signed using public-key cryptography.
A concept of a hash-based Proof-of-Work algorithm provides a mechanism
against double-spending of funds. Many people became interested in the
underlying technology and wanted to see Bitcoin in a working state.

On January 3, 2009, the genesis block was mined by Satoshi Nakamoto
with a raw message put into the block: “The Times 03/Jan/2009 Chancellor on
brink of second bailout for banks” and the first decentralized cryptoccurency
was born1.

Since then many new cryptocurrencies2 have emerged, trying to scale the
network for mass use, adding privacy and providing smart contract capabilities.
Notable project in this case is Ethereum, which introduced a concept of smart
contracts, programs running on a decentralized ledger that retain certain state
and allow for more complex operations and use cases.

1https://en.bitcoin.it/wiki/Genesis_block
2https://coinmarketcap.com/

1

https://en.bitcoin.it/wiki/Genesis_block
https://coinmarketcap.com/

Introduction

Transactions
Cryptocurrency can be sent to an address. Concept-wise, it is similar to an
email address. Every cryptocurrency has its own type of an address, and they
are usually not compatible with each other to prevent confusion. You cannnot
send Bitcoin to an Ethereum address and vice versa. To interact with software
nodes of a cryptocurrency network, including, but not limited to, sending
of transactions, we use software clients that talk with the nodes via RPC3.
The most important and frequent is the use of a wallet software in this case,
allowing us to manage our keys, watch new transactions and letting us send
our funds to a different address.

Cryptocurrency is “moved” from an address a to an address B by signing
a transaction with a private key belonging to the address A. Such signed
transaction is then sent to one of the nodes of the cryptocurrency network to
be added to the next block, if it is successfully verified by a protocol of the
cryptocurrency. It is important to note that in cryptocurrencies, coins are not
moved per se as we are used to assets being moved. Instead, the owner of
a given amount of coins is considered to be the address which was last declared
to be the owner by all participants of the cryptocurrency network.

Keeping private keys safe
Various malware and phishing websites of well-known software wallets can
steal your private keys and access your funds. Therefore there is an increas-
ing demand to store and transact cryptocurrencies in a safe manner. The
recommended and most popular way to safely work with cryptocurrencies is
using a specialized device called a hardware cryptocurrency wallet, or in short
hardware crypto wallet, which performs the procedure of signing transactions
and returns the user only signed transactions not revealing the private key
used. a possible attacker cannot access the private keys needed to obtain
control over the funds, via an infected computer or a phishing website. The
main purpose of hardware crypto wallets is to defend against remote attacks.

Goal of this thesis
New types of hardware wallets are created every year and a potential customer
can be confused how they differ, how safe they are to use or what the safe way to
use them is. In my thesis, I am going to introduce general cryptocurrency and
cryptography concepts and standards required to explain how crypto wallets
work in general, assess the overall security of current hardware crypto wallets
on the market today and analyze one specific device, the original hardware
wallet, Trezor One, created in 2014 and manufactured by Czech company

3Remote Procedure Call

2

SatoshiLabs. On this device, I am going to show how hardware wallets are
secured, can be hacked in certain conditions and demonstrate side-channel
attacks to discover secrets of the device, such as a PIN or a seed value.

3

Chapter 1
Cryptocurrencies Introduction

This chapter explains the underlying technology used in cryptocurrencies.
Being a relatively new subject, the material will cover most of the important
topics regarding this matter and also introduce the reader to the most popular
cryptocurrency of today, Bitcoin. Knowledge from this chapter is required to
understand the role of crypto wallets in the cryptocurrency system and help
the reader avoid common misconceptions.

1.1 Introduction to DLT

Distributed ledger technology, or, as we commonly say, DLT, is an um-
brella term used to describe technologies to store and replicate data under
a given consensus and provide means to exchange value for their users.

The rise of Bitcoin and other cryptocurrencies made a term blockchain
familiar to public audience, however, it is only one type of a DLT. Most of
the cryptocurrencies today use a blockchain, examples of them are Bitcoin,
Ethereum or Zcash. But not all cryptocurrencies make use of a blockchain, other
forms of DLT include technologies using a DAG4, Radix DLT5 or Holochain6.

1.2 Blockchain

Blockchain is a chain of validated blocks, a data structure that holds transac-
tions. From the perspective of Computer Science, it’s a form of an ordered
back-linked list of blocks as shown in Figure 1.1. We can look at blockchain as
a database distributed among peers.

4Directed Acyclic Graph
5https://www.radixdlt.com/
6https://holochain.org/

5

https://www.radixdlt.com/
https://holochain.org/

1. Cryptocurrencies Introduction

Figure 1.1: Scheme of Blockchain

All blocks and transactions within blocks are required to meet a set of rules
described in the protocol of a cryptocurrency, otherwise they are denied by
other nodes in a network. Example of such protocol is Bitcoin.

1.2.1 Block

Block is a data structure that includes a header and a variable number of
transactions. Size of the block can be limited by the protocol. In the header
we can find a reference to a previous block hash, timestamp, protocol-related
meta data such as a nonce or a difficulty target of mining and a hash of the
Merkle Tree root of this block’s transactions [2].

The first block in the blockchain is called the Genesis Block, which is
encoded into the client node software and this starting point is used to build
a trusted blockchain.

1.2.2 Transaction

Owner of the coins can transfer coins he has cryptographical and protocol
rights to by digitally signing a message that authorizes the transfer of coins to
a new owner. What it looks like depends on a transaction model of a given
cryptocurrency. Satoshi Nakamoto defined an electronic coin as a chain of
digital signatures, as shown in Figure 1.2. Currently there are two transaction
models used in cryptocurrencies – an original UTXO (Unspent Transaction
Output) model used in Bitcoin and a newer Account-based model that can be
seen in Ethereum or most of the newer cryptocurrencies.

Figure 1.2: Chain of Digital Signatures [1]

6

1.3. Bitcoin

1.3 Bitcoin

There are many ways to define Bitcoin and there will probably never be a short
way that would describe it in its full scientific, economic and political sense. Let
me cite the author of Bitcoin protocol itself, Satoshi Nakamoto, and a notable
Bitcoin advocate, Andreas M. Antonopoulos. In this order:

Bitcoin: a Peer-to-Peer Electronic Cash System
Abstract: a purely peer-to-peer version of electronic cash would
allow online payments to be sent directly from one party to another
without going through a financial institution. . . [1]

Bitcoin is a collection of concepts and technologies that form the
basis of a digital money ecosystem. Units of currency called bitcoins
are used to store and transmit value among participants in the
bitcoin network [2].

Bitcoin is the most prominent cryptocurrency of today, by its popularity
and the market capitalization7. It uses a blockchain as its underlying DLT,
a UTXO transaction model, ECDSa signature algorithm with the Secp256k1
curve and the consensus is enforced via a hash-based Proof-of-Work algorithm
with a rule of the longest chain always being used.

1.4 Consensus

In a traditional system, we depend on a central server running a database
machine that receives requests to read or write, a machine we have to trust to
process our requests and give us correct answers. In a peer-to-peer network
with no central authority we do not have any of that. The network needs to
reach consensus on state of the database, in this case transaction history, in
a way that nodes are not required to trust each other. We must come up with
a decentralized consensus that would help us tackle this problem.

Multiple types of algorithms to reach decentralized consensus have been
invented. There are frequent discussions about their resistance against mali-
cious actors in the network. Today, there are essentially only three consensus
families, the first are classical consensus protocols based on fault tolerance (e. .g.
Byzantine Fault Tolerance), the second is the Nakamoto consensus leveraging
a hash-based Proof-of-Work algorithm and a set of specific rules to help govern
the network. The third and newest family of consensus protocols known today
is called Snow (e. g. Avalanche consensus) [3], introduced in 2018.

7https://coinmarketcap.com/

7

https://coinmarketcap.com/

1. Cryptocurrencies Introduction

1.4.1 Proof-of-Work

A hash-based Proof-of-Work (PoW) algorithm is based on Adam Back’s system
used to reduce the email spam and DDoS attacks called Hashcash [4]. In this
algorithm, a cryptographic hash function, such as SHA-256, is used for hashing
the data of a potential new block by a mining node.

In order for a new block to be accepted by the network, its hash value
generated by a one-way cryptographic hash function must be below a certain
number, represented as a difficulty target that is shared as part of the meta-
data of each block. a miner can change the list of transactions to include in the
block or nonce to change the hash. If a miner happens to find a valid block, i. e.
block whose hash is below the difficulty target, the block will be broadcasted
to the network and the miner receives a block reward. This process is called
mining.

The target is often simplified into a number of leading zeros of such a hash
in binary format, the more zeros, the harder it is to mine a block. The difficulty
grows exponentially with each zero required. Today most mining operations
are pooled, i .e. miners cooperate to find a new block faster and divide the
rewards based on the proportion of their hashrate to the total pool hashrate.

If someone decides not to continue in the current blockchain and forks
the chain at any block, in order to take over the network and his chain to be
considered as the main chain, he must create a chain that is longer than the
initial one. The overall hash power of an attacker must be therefore higher
than of the rest of the network. This is the most known attack, called 51%
attack. The concept of the longest chain is critical and serves as a proof that
it came from the largest pool of hash power.

8

Chapter 2
Fundamentals of Crypto Wallets

Crypto wallet is an ambiguous term term used to describe either a program,
such as a mobile, web or desktop application that can be used to track
cryptocurrency funds ownership, receive and send a cryptocurrency coin, or
this term can also mean only a physical medium, e.g. paper, cryptosteel
cassette or a specialized presonal device called a hardware crypto wallet. In
all cases they work with public key cryptography, as cryptocurrencies are not
stored in any wallets, but in a publicly available ledger, such as a blockchain.

When sending your funds to a different address, you need to prove ownership
of your coins by digitally signing a message allowing the transfer of coins using
the corresponding private key. Ownership of the private key is the only thing
preventing others from using your funds, therefore it must be defended from
attackers. In comparison with the centralized system, there are no refunds
or hotlines to call in order to revert the transaction. Once any transaction is
added to the public ledger, there is not much one can do about it other than
try to attack the network itself.

2.1 Public Key Cryptography

Public key cryptography, or asymmetric cryptography, is an essential part
of information security, modern cryptography and cryptocurrencies. Unlike
symmetric-key algorithms that rely only on a single key shared by both
parties of the communication, this cryptoraphic system relies on a pair of keys:
a private key which is kept secret and a public key that can be shared with
the public.

Public key cryptography can be used for encryption using the recipient’s
public key. Message encrypted this way can be decrypted only with the paired
private key. The other use is authentication. By digitally signing a message
with a private key, the public key can be used to verify that the message has
been signed with the paired private key (Figure 2.1).

9

2. Fundamentals of Crypto Wallets

Data

Hash
function 101100110101

Hash

Encrypt hash
using signer's
private key

111101101110

SignatureCertificate

Attach
to data

Digitally signed data

Digitally signed data

Data

Hash
function

101100110101

Hash

111101101110

Signature

Decrypt
using signer's

public key

101100110101

Hash

?

If the hashes are equal, the signature is valid.

Signing Verification

Figure 2.1: Digital Signature Diagram [5]

It is computationally infeasible to acquire a private key from a public key
by brute force. Public key cryptography offers a convenient way for verifying
digital signatures and encryption if private keys are kept secret.

In cryptocurrencies, the private key is used to prove the ownership of
funds by signing a transaction when sending a cryptocurrency coin and the
paired public key is used to derive a cryptocurrency address. When the user
wants to receive funds, they disclose their address to the sender. In most
cryptocurrencies the ledger is public, i. e all transactions are public, hence only
the authentication feature of public key cryptography is used.

2.2 Elliptic Curves

In general, an elliptic curve consists of all the points that satisfy the equation:

y2 = x3 + ax + b,

where 4a3 + 27b2 6= 0 to avoid singular points and a, b are real numbers.
For illustration purposes, the basics of elliptic curves are explained on real

numbers, but in cryptography we use elliptic curves over finite fields, because
some of the practical requirements include a fixed key size and precision.

10

2.2. Elliptic Curves

Figure 2.2: Point addition of points P and Q, including special cases [6]

2.2.1 Point Addition

We define an operation on the points of the elliptic curve and call it point
addition. By adding two different points P and Q from the elliptic curve, we
get a third point on the curve.

To add points P = [xP , yP] and Q = [xQ, yQ] and receive a point R′ = P +Q,
we draw a line between P and Q. The line will intersect the elliptic curve at
exactly one point R = [xR, yR]. We get the result of the sum by reflecting
the point R over the x-axis and receive the opposite point R′ = [xR′ , yR′],
essentially multiplying the y-coordinate by −1. Note that given the equation
of elliptic curves y2 = x3 + ax + b, the curve is symmetrical about the x-axis
(by taking the square root, we get y = ±

√
x3 + ax + b), therefore by reflecting

the point over the x-axis we always get a point of the curve R.
In a special case that we add two same points (P = Q), we have infinite

choices to draw a line, we choose the tangent line to a curve. If we add two
opposite points (P = −Q), the line between the points will be vertical and
never intersects the elliptic curve. In such case we define R = O (O point) and
P +O = P , O +O = O and O = −O. All cases of point addition can be seen
in Figure 2.2.

It is also handy to define scalar multiplication as the process of adding
a point P to itself k times:

k · P = P + P + . . . + P︸ ︷︷ ︸
k times

2.2.2 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is a type of public key cryptography based
on the algebraic structure of elliptic curves over finite fields [7].

11

2. Fundamentals of Crypto Wallets

2.2.3 Secp256k1

Bitcoin, Ethereum and many other cryptocurrencies use an elliptic curve named
secp256k1 [8]. The name refers to the parameters of the curve and is defined
in Standards for Efficient Cryptography [9].

The finite field of secp256k1 Fp is defined by prime p = 2256 − 232 − 29 −
28 − 27 − 26 − 24 − 1, with the elliptic curve equation y2 = x3 + 7. The
specification [9] also describes a base point generator G, an order of G and
a cofactor.

2.2.4 Private and Public Keys

The general concept for private and public keys stays the same as from
other public key cryptography systems, e. g. ElGamal or RSA. It has to be
computationally infeasible to derive the private key corresponding to a given
public key. The public key is directly calculated from the private key using
elliptic curve scalar multiplication:

K = k ·G,

where k is the private key that should be picked randomly, G is the base
point and K, resulting point of the curve, is the public key. For well-chosen
elliptic curves there is no known algorithm to get k from knowing K other
than by brute forcing every possible multiple of G, either by subtracting G
from K until we get G, or adding G to itself until we get K.

2.3 Digital Signatures
a digital signature is a term used to describe data that allows us to authenticate
origin of digital documents, provide integrity, non-repudiation and can be also
used to verify creation date via a timestamp.

Mathematically, a digital signature is a scheme used to verify the authen-
ticity of digital documents. Public key cryptography is employed. a digital
signature scheme consists usually of three algorithms: a key generation algo-
rithm, a signing algorithm and a signature verifying algorithm.

The key generation takes as input a secret parameter and outputs a private
and public key.

The given signing algorithm takes as input a private key and a message.
The output is a signature.

The signature verifying algorithm takes as input a public key, a signature
and a message. On the output returns a logical value true if the verification
succeeds and false if not.

Currently Bitcoin, Ethereum and most major cryptocurrencies take an
advantage of secp256k1 curve with Elliptic Curve Digital Signature Algorithm
(ECDSA) to ensure that funds can only be spent by their rightful owners.

12

2.3. Digital Signatures

2.3.1 ECDSA

Elliptic Curve Digital Signature Algorithm, or ECDSA, is a digital signature
scheme based on elliptic curves. It is formalized in Federal Information Process-
ing Standard (FIPS) Pub 186-4 [10] issued by National Institute of Standards
and Technology (NIST) in the United States.

In ECC, the fastest known algorithm to solve Elliptic Curve Discrete
Logarithm Problem (ECDLP) for key of size k is

√
k. Therefore 256-bit elliptic

curve secp256k1 provides 128-bit security strength.
The public key in the compressed form must be 257-bit (~33-bytes) long:

256 bits for an x-coordinate and 1 bit to flag odd or even y-coordinate that
is calculated with the knowledge of the x-coordinate. An ECDSa signature
consists of two integers than can range between 0 and n− 1, where n is the
order of the subgroup of EC points, generated by the generator G. Thus,
the signature is twice as long as the private key. For 256-bit elliptic curve
secp256k1, the signature is then 512-bits (64-bytes) long.

When Alice decides to send a signed message to Bob, they first need to
agree on parameters of the curve: the elliptic curve field and equation, a base
point G of prime order and n, the multiplicative order of G. The process to
sign a message m with a private key dA is as follows:

1. calculate h = hash(m), where hash is a cryptographic hash function,

2. let z be the Ln leftmost bits of h where Ln is the bit size of order n,

3. select a cryptographically secure random integer k from the range [1, n−1],

4. calculate the curve point (x, y) = k ·G,

5. calculate R = x mod n. If R = 0, go back to step 3,

6. calculate S = k−1 · (z + r · k) mod n. If S = 0, go back to step 3,

7. the pair (R, S) is the signature.

To verify the signature we need a message m, a public key QA and a previ-
ously agreed parameters of the curve.

1. calculate h = hash(m), where hash is the same hash function used in
signature process,

2. let z be the Ln leftmost bits of h,

3. calculate u1 = z · S−1 mod n and u2 = R · S−1 mod n,

4. calculate the curve point (x, y) = u1 ·G + u2 ·QA,

5. if the R ≡ x mod n, the signature is valid, otherwise not.

13

2. Fundamentals of Crypto Wallets

ECDSa allows for public key recovery from a message and a corresponding
signature. Although this is not a part of the standard verification procedure,
it is used in cryptocurrencies to lower the space required for each transaction.
Transactions do not need to explicitly include public keys resulting in a smaller
sized blockchain.

If the integer k was used for signing two messages, an attacker could trivially
discover the private key. This was exploited in the famous PlayStation 3 hack8.

2.4 Mnemonic Sentences

When using any modern crypto wallet, a user is presented with a list of words
used to restore access to the funds. This list is usually known as a seed phrase,
recovery seed, mnemonic phrase or mnemonic sentence. This concept was
defined in one of the Bitcoin Improvement Proposals, BIP-39 [11] and became
an industry standard.

The motivation for seed phrases was to create a way to store a wallet seed in
a human-readable form instead of raw binary or hexadecimal representations.

An example of a 12-word-long seed phrase:

nuclear video quote supreme first next
opinion discover bargain man wine attract

2.4.1 Mnemonic Sentence Generation

We generate an initial random string of a multiple of 32 bits in the length of
128–256 bits and refer to the length of the this random string in bits as ENT .
We hash the initial random string with SHA-256 and append the first ENT/2
bits to the end of the initial entropy, this works as a checksum. Then we split
the received string of bits into the groups of 11 bits (0–2047) and translate
these groups serving as an index in the word list into words. We use this list
of words, in the exact same order, as a mnemonic sentence.

With longer entropy we get better security at the cost of a longer word
list. For every 32 bits of entropy, we must append 1 more bit, thus we get 3
more words per a multiple of 32 bits of the initial entropy. Table 2.1 provides
a complete summary of the relation between the initial entropy length (ENT)
in bits, the checksum length (CS) in bits and the mnemonic sentence length
(MS) in words.

8https://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-
implementation-of-cryptography/

14

https://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/
https://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/

2.5. Storing the Key Pairs

Table 2.1: BIP-39 Mnemonic Summary [11]

ENT CS ENT+CS MS
of bits # of bits # of bits # of dictionary words

128 4 132 12
160 5 165 15
192 6 198 18
224 7 231 21
256 8 264 24

2.4.2 From Mnemonic Sentence to Binary Seed

a user can choose an optional passphrase to further protect their mnemonic
sentence. If not, an empty string is used as a passphrase. Using a different
passphrase will result in a different binary seed, all seeds will be valid and can
be used for creation of a Hierarchical Deterministic Wallet (HD Wallet).

In order to create a binary seed from the generated mnemonics, the
PBKDF29 function with a mnemonic sentence (in UTF-8 NFKD10) used
as the password and the string “mnemonic” + passphrase (again in UTF-8
NFKD) used as the salt. The iteration count is set to 2048 and HMAC-
SHA512 is used as the pseudo-random function. The length of the derived key
is 512 bits (= 64 bytes).

2.5 Storing the Key Pairs

To understand the concept of the modern way to store the keys, so-called
Hierarchical Deterministic Wallets (HD Wallets) used in all modern state-of-
the-art crypto wallets, we first need to step back and look how ECDSa key
pairs were initially stored and show other ways of storing them. Wallet in this
sense is the storage of key pairs.

2.5.1 Type-0 Nondeterministic (JBOK) Wallets

In the first implementations of Bitcoin clients, when a user wanted to create
a new key pair, the software generated randomly a new private key and derived
a public key. In order to generate 100 wallets like this, the wallet had to store
a key pair for every single one of them (Figure 2.3). This made the wallets
hard to manage, backup and import. This type of a wallet was nicknamed
“Just a Bunch of Keys”, or JBOK [2].

9Password-Based Key Derivation Function 2
10Normalization Form Compatibility Decomposition

15

2. Fundamentals of Crypto Wallets

Figure 2.3: Randomly Generated Keys in JBOK Wallet [2]

2.5.2 Type-1 Deterministic (Seeded) Wallets

This type of a wallet uses a single seed and a hash function. An example how
such generation could work could be this: to generate a private key we simply
take Hash(Seed ‖ n), where Hash is any cryptographic hash function that
generates a hash value of a desired private key bit length, Seed can be the
generated entropy in the hexadecimal format, n can be a number encoded
in ASCII that is incremented when more keys are needed and ‖ denotes
concatenation.

This type of a wallet is an advancement from the type-0 nondetermnistic
wallet, we only need to remember the seed, but offers no advanced features
that are possible with HD Wallets.

2.5.3 Type-2 Hierarchical Deterministic (HD) Wallets

HD Wallet format is the most advanced type of deterministic wallets and was
defined in BIP32 [12]. In Hierarchical Deterministic Wallets, the keys are
derived in a tree structure, where each parent key can derive a sequence of
child keys and each child key can derive a sequence of grandchild keys and so
on. The tree structure is shown in Figure 2.4.

There are two main advantages of HD wallets. The first one is organiza-
tional, each branch can have a different semantical meaning, such as different
department in a company. The second advantage is that you can derive a se-
quence of public keys without knowing the private key, allowing to e-commerce
or cryptocurrency exchanges to issue a new deposit address for each customer
without worrying about the private key being compromised on the server.

16

2.5. Storing the Key Pairs

Figure 2.4: HD Wallet Tree Structure [2]

Master Node Generation

To create a root of the HD Wallet tree structure, in BIP32 called a master
node [12], we need entropy. Based on the BIP32 standard, the entropy must
be a 128, 256 or 512-bit random number and we refer to this number as the
root seed. Usually, we use a binary seed that we generate from a mnemonic
sentence as described by the BIP-39 standard in “Mnemonic Sentences” on
page 14. A user therefore only needs to possess his mnemonic sentence (seed
phrase). The root seed is first hashed using:

HMAC-SHA512(Key = "Bitcoin seed", Data~= rootSeed)

We split the resulting hash into two 32-byte sequences IL and IR and use
IL as a master private key and IR as a master chain code. These two numbers
form an extended private key. The whole process is illustrated in Figure 2.5

Extended Keys

In a sitaution where an attacker steals a private key of the HD Wallet tree
structure, this attacker could generate all possible keys of an infinitely large
subtree. To prevent this, a concept of a chain code was introduced. The Chain
code is a 32-byte random number generated using HMAC-SHA512 function
that adds additional entropy. An Attacker to be able to generate the child
keys, needs not only the private key, but also the chain code, making the attack
significantly harder, if not impossible in most cases.

17

2. Fundamentals of Crypto Wallets

Figure 2.5: Creating a master node from the root seed [2]

An extended private key (c, k)
is a pair of a private key k and a chain code c.

An extended public key (c, K)
is a pair of a public key K and a chain code c.

Child Key Derivation

Child key derivation (CKD) is a process of a child extended key derivation
from a parent extended key. By combining a parent public key, a chain code
and an index number, we can get a child private key and a child chain code.
Public key can be generated from a private key in the usual way. Figure 2.6
illustrates this process. The process is similar to the process of master node
generation, but this time in HMAC-SHA512 we use the chain code as the key
and the public key concatenated with the index number as the data to be
hashed and the left 32-byte sequences IL is added to the parent private key.
Using this so-called normal derivation method, by leveraging the properties of
the elliptic curve point addition, we can also generate child public keys directly
from a parent public key and the parent chain code, not exposing the private
key. However, the normal derivation method comes at a price of security.

There is one more security measure that can make our keys more safe
to be pointed out. Because a single leaked child private key with a leaked
parent chain code could reveal all other child private keys and even worse,
reveal the parent private key [2], we have two ways of generating child keys
with different properties. Normal derivation which was just introduced, and
hardened derivation which lacks this feature. The hardened derivation function
uses the parent private key to derive the child chain code instead of the public
key in normal derivation.

18

2.5. Storing the Key Pairs

Figure 2.6: Normal child key derivation using the parent public key [2]

Derivation Path

Each parent extended key can generate up to 4 billion child extended keys.
This is due to the 32-bit index number that we use as a part of the input of the
HMAC-SHA512 during child key derivation. These childs can continue and
generate 4 billions more child keys each and we can continue like this infinitely.
The tree depth is not limited by anything.

However, it becomes quite hard to navigate through the potentially infinite
tree structure, especially for different HD wallet implementations. BIP-43 [13]
proposed to use the first hardened child key index as “purpose”, which deter-
mines the future structure of the tree.

m / purpose' / *

where m is the master node and an apostrophe signifies that the hardened
derivation version of child key derivation function was used. We often call this
a derivation path.

Further BIP-44 [14] specificies a 5-level derivation path with the purpose
number 44′. Should there be any other derivation scheme, the purpose number
should be described in a new BIP as advised in BIP-43.

This derivation path is defined as follows:

m / purpose' / coin_type' / account' / change / address_index

where each level has a special meaning and an apostrophe marks the hardenered
derivation to be used:

19

2. Fundamentals of Crypto Wallets

purpose
is set to 44′, it determines the tree structure beneath this node.

coin_type
denotes the coin type registered in SLIP-44, see Table 2.2 on the next
page.

account
is a level used to distinguish between identities.

change
indicates whether the key will be used for receiving payments (0) or as
a change address11 (1).

address_index
is a level used for generation of keys that will be used, each index starting
with 0 is a separate child key we can use.

Table 2.2: The beginning of the SLIP-44 registered coin types list [15]. Note: the
hexa value starts with 8 because indices of the hardened keys start form the
upper half of the 32-bit integer

index hexa symbol coin
0 0x80000000 BTC Bitcoin
1 0x80000001 Testnet (all coins)
2 0x80000002 LTC Litecoin
3 0x80000003 DOGE Dogecoin
4 0x80000004 RDD Reddcoin
5 0x80000005 DASH Dash (ex Darkcoin)
6 0x80000006 PPC Peercoin
7 0x80000007 NMC Namecoin
8 0x80000008 FTC Feathercoin
9 0x80000009 XPC Counterparty
10 0x8000000a BLK Blackcoin
11 0x8000000b NSR NuShares
12 0x8000000c NBT NuBits
13 0x8000000d MZC Mazacoin
14 0x8000000e VIa Viacoin
15 0x8000000f XCH ClearingHouse
16 0x80000010 RBY Rubycoin
17 0x80000011 GRS Groestlcoin

11An address to receive the rest of the currency from a spent UTXO.

20

Chapter 3
Hardware Crypto Wallets

3.1 Storing the Cryptocurrency

When one decides to get a hold of any cryptocurrency, they first have to make
up their mind how they will store their coins. If the cryptocurrency is bought
on an exchange, it is recommended to withdraw the funds immediately to your
personal crypto wallet, otherwise it is the exchange holding your coins. The
history shows us, the exchanges are often victims of hacks or insolvency issues
and our funds are at risk. A cryptocurrency wallet does not store the currency,
but instead stores key pairs utilized to sign transactions and to generate receive
addresses.

3.2 Hot vs. Cold Wallets

Crypto wallets can be classified into two main cateogories, namely hot wallets
and cold wallets (also called cold storage). The difference is that the hot
wallets run on devices connected to the Internet and thus in danger of an
attack, the cold wallets are usually specialized devices storing the keys and
performing cryptographic operations requiring user physical interaction, such
as confirming the transaction on a hardware device by physically pressing
a button on the device.

Hot wallets are typically used for day to day transactions. They can be
operated as web, desktop or mobile applications and the security of these
wallets is highly dependant on user’s security habits. Crypto exchanges store
a part of their deposits in their hot wallets to proceed daily withdrawals and
are often a target of hackers. The biggest crypto exchange Binance was hacked
in May 2019 and hackers accomplished to steal $40 millions worth of Bitcoin12.

12https://www.bloomberg.com/news/articles/2019-05-08/crypto-exchange-giant-
binance-reports-a-hack-of-7-000-bitcoin

21

https://www.bloomberg.com/news/articles/2019-05-08/crypto-exchange-giant-binance-reports-a-hack-of-7-000-bitcoin
https://www.bloomberg.com/news/articles/2019-05-08/crypto-exchange-giant-binance-reports-a-hack-of-7-000-bitcoin

3. Hardware Crypto Wallets

On the other hand cold wallets keep the private keys always offline. Users
do not need to worry about hacks or computers infected by malware. They
include hardware wallets and paper wallets. a paper wallet is basically a sheet
of paper with a private key or a mnemonic sentence written on it. a hardware
wallet is a personal security device that does the signing isolated from the
computer and requires a confirmation of every transaction a user does, usually
by pressing a button on the device.

3.3 Personal Security Devices

Personal security devices are devices to keep cryptographic secrets isolated
from infected or potentially vulnerable software running on the user’s com-
puter [16]. a hardware crypto wallet is a type of a personal security device for
cryptocurrencies.

When using a software wallet on a computer, to sign a transaction, the
wallet program has to load a private key into the memory and is susceptible
to attacks like a cold boot attack or a phishing attack. The wallet can be
programmed in a way to send keys to the attacker or keep important temporary
data on the disk revealing the key. This essentially requires us to trust the
competency of authors, the code or even worse, only trust the executable
binary if the wallet is not open source.

This is where personal security devices excel, they not only store the
cryptographic secrets, but allow us to perform certain operations, such as
signing transactions or encryption of e-mails. The computer and not even
the user can access the private keys stored in the device. The communication
happens only in a request-response manner where all the operations involving
secrets are isolated and performed only in the device itself without external
access.

It is important to note that in cryptocurrencies, your personal security
device is not your bank. It only gives you an access to sign transactions. If the
device is damaged or lost, the funds can still be recovered using the standard
BIP-39 mnemonic sentence described on page 14, which acts as a gate to your
crypto assets.

3.4 Threat Models

The typical security model is as follows. a user first unlocks a hardware wallet
to a ready state using a PIN. The user then interacts with an untrusted
environment, usually a computer, but can also be a mobile phone, and prepares
a transanction paying an amount to an address in the software interface of the
wallet.

The transaction is sent to the hardware wallet for assembly of the transac-
tion including the signatures using the private keys only available to the hard-

22

3.4. Threat Models

User

Untrusted Environment

Hardware Wallet

Figure 3.1: Threat model interaction scheme of using a hardware wallet

ware wallet device. The user explicitly confirms the transaction data (the
amount and the receive address) to be signed with the buttons on the device.
The transaction is assembled with the signature in the device and sent back to
the untrusted environment to be broadcasted.

This is different from the software wallet model where the user interacts
with the untrusted environment only and any transactions can be created with
the unencrypted private keys or the keys can be stolen by malware.

3.4.1 Your Threat Model Matters

There is a common misconception that one threat model fits everyone, however,
sadly, this is not true. One should always choose a product based on their
required threat model. a different product could serve better in a different
environment. You can for instance leave physical attacks scenario out and
focus on what is important in your model. The security survey conducted
by Binance in conjunction with Trezor shows that only 5.93% out of 14 471
respondents perceive physical attack as the biggest threat (Figure 3.2).

Figure 3.2: Binance Security Survey, December 2018 [17]

23

3. Hardware Crypto Wallets

3.5 List of Common Threats

a list of some common threats that you may consider to include in your threat
model:

Receive Address Discovery
Manipulation of an insecure display in the untrusted environment must
be taken into account and a user must be able to check his own receive
address on the display of the hardware wallet.

Transmission
When sending a transaction, the untrusted environment utilizing an
insecure display might show a different address and amounts to be
sent. User must be able to check the recipient’s address and amount
of cryptocurrency to be sent before confirming the transaction on the
hardware wallet device.

Loss of Access
In order to prevent a situation where the hardware wallet is damaged,
stolen or lost, a user must be given an option to backup his keys in a sen-
sible way, such as BIP-39 mnemonic sentence that is widely recognized.

Shoulder Surfing
a common social engineering attack is obtaining secret information by
looking over the victim’s shoulder or recording in the public by a CCTV
camera. Security measures must be implemented to make this attack
harder and information for the attacker less predictable, e. g. using
randomization and blind matrices.

Phishing
Covered mostly in “Receive Address Discovery Risk” and “Transmission
Risk”. But there could be numerous more ways how a user can be inten-
tionally misled. Social engineering and protection against it, especially
in big companies, can be tricky.

Flashing Malicious Firmware
Device should recognize unoriginal firmware and must not allow to replace
the check mechanism in a way the warning of the user could be prevented.
Official firmwares should be also digitally signed by the wallet vendor.

Supply Chain Hijacking
a mechanism to prevent users from unknowingly using fake devices or
clones. An attacker could try to attack the weaker parts of the supply
chain and try to replace the original devices with clones with vulnerable
firmware.

24

3.5. List of Common Threats

PIN Brute-force
In case an attacker gets his hand on an initialized hardware wallet, he
must not be able to brute-force the PIN in a sensible time frame, so that
the robbed person or an organization has enough time to safely recover
the funds and send them to a new wallet derived from a new seed.

Seed Extraction
Another case of a physical attack on an initialized device where an attacker
can try to extract the seed from the hardware device, for example by
using a known software vulnerability of the device or using a side-channel
attack.

25

Chapter 4
Physical Attacks Theory

Modern secure systems use cryptographic algorithms to provide CIA13 of data.
It is assumed all details about a given cryptographic algoritm is known. This
principle is called Kerckhoff’s principle and says: “a cryptosystem should be
secure even if everything about the system, except the key, is public knowledge.”

Regular computers are considered insecure due to their nature – they are
usually connected to the Internet, malware14 can be installed on them and
with physical access, an attacker can perform a cold boot attack to read the
RAM including the keys. Computers are also impractical for daily use, such
as authentication when entering a building or paying for a coffee.

In reality we use cryptographic devices, such as a smart card or in our
case, a hardware wallet. More about hardware wallets in Chapter 3 in “Hot
vs. Cold Wallets” and “Personal Security Devices”. They are considered to
provide a protected environment for our cryptographic assets and perform
cryptographic operations as needed, without being connected to the Internet.

This poses a new threat. We not only have to consider the security of
a cryptographic algorithm, but also the security of a cryptographic device
implementing it. When designing a secure cryptographic device, we should
always assume an attacker knows everything about the device and it should
never rely on secrecy of its implementation.

In order to break the physical implementation of the algorithm – steal the
cryptographic secret – there are now several known physical attacks that can
be performed. a physical attack is understood as an attack using physical
means to circumvent the security of a device. They various types of these
attacks mostly differ in cost, time, equipment and expertise needed.

In this chapter, a general classification of physical attacks is provided and
then we look at the most useful and in practice frequently used techniques.

13Confidentiality, Integrity and Availability
14Malicious Software

27

4. Physical Attacks Theory

4.1 Classification
There is not a widely used classification that everyone would agree on. The
following classification is based on [18], as it provides a complete view on the
range of possible attacks.

The first criterion is whether an attack is passive or active:

Passive Attacks
The device is operated within its specifications. The revelation of the
secret happens while observing physical properties of the device (e. g. time-
based attack or power consumption analysis).

Active Attacks
The device is operated within an abnormal environment (electromagnetic
field, temperature) or with different inputs (voltage glitching, changing
clock frequencies.

The second criterion is the interface that is exploited by an attack:

Invasive Attacks
The strongest type of an attack. Anything can be done to the device,
usually the hardest type of an attack because it requires expertise and
possibly expensive equipment. This attack usually starts with depack-
aging of the device. Probing stations, ion beams and laser cutters are
used. An attack is considered passive if a probing station is used only,
for example, a data bus and an active if the functionality of the device
or the signal itself is changed.

Semi-Invasive Attacks
The cryptographic device is also depackaged but no direct contact to the
chip is made, the passivation layer of the chip remains intact. a passive
attack usually aims to read the content of the memory cells without
creating contact to the internal lines and an active attack is focused on
fault injection using electromagnetic field, x-rays, light, etc.

Non-Invasive Attacks
In non-invasive attacks, the cryptographic device is only attacked via di-
rectly accessible interfaces. No evidence is left behind. This attack
does not require costly equipment like invasive attacks. Passive non-
invasive attacks are known as Side-Channel Attacks and have be-
come very popular due to their accessibility and inexpensiveness. Three
main types of these attacks are time-based attacks, power analysis attacks
and electromagnetic attacks. In an active non-invasive attack, the goal
is to insert a fault (fault injection attacks), e. g. by voltage glitching or
changing the clock frequency of the device to induce a fault.

28

4.2. Power Consumption

Cryptographic Device
Input Output

Figure 4.1: Naive Picture of the Cryptographic Device Processing Data

Cryptographic Device
Input Output

Heat

Electromagnetic Field

X-Rays, Light

Side-Channel
(Time Variations, Power Consumption, Electromagnetic Radiation)

Figure 4.2: Picture of the Cryptographic Device in the Real World

4.2 Power Consumption
Power analysis attacks work on an assumption that the power consumption
depends on the processed data and operations performed by the cryptographic
device. More power consuming operations draw more current and different
data processed lead to different power traces when observing the voltage
using an oscilloscope. The voltage drop is proportional to the current and
that is proportional to the power consumption. In Figure 4.1 we can see the
naive picture of the cryptographic device processing some input and giving
some output. In Figure 4.2 it is shown what is actually happening and that
many factors must be taken into consideration when evaluatng the security of
a cryptographic device. We are going to focus only on the power consumption
side-channel.

4.2.1 Integrated Circuits, Transistors

Integrated circuits consume power whenever they do any computations. Almost
all of the current digital circuits are built using transistors. The commonly used
technology for transistors is CMOS15, which makes use of a special arrangement

15Complementary metal-oxide semiconductor

29

4. Physical Attacks Theory

of p-type MOS (PMOS) and n-type MOS (NMOS) transistors.
The transistors form a logic cell, a physical part of the circuit that takes

inputs and based on its logical function provides an output – combinational
circuits. Another type of a circuit is a sequential circuit that takes into
consideration previous inputs using a finite state machine.

We recognize two important parts of consumption of a logic cell:

Static Power Consumption (Pstat)
Static power consumption is the power consumption of the MOS transistor
that is currently turned off. There is still a small current leakage causing
a little power consumption. It is not very significant.

Dynamic Power Consumption (Pdyn)
Dynamic power consumption happens during CMOS transistor switching
from 0 → 1 or 1 → 0. It is the most significant part of the power
consumption.

We can say the total power consumption in CMOS circuits is the sum of power
consumption of all logic cells making the circuit, where power consumption of
each cell is equal to the sum of its static and dynamic power consumptions:

Ptotal =
n∑

i=1
(Pistat + Pidyn)

4.2.2 Power Models for Attackers

The attackers have often very limited knowledge of the device to make an
accurate power model of the device, however, for some power analysis attacks
it is necessary to use a certain mapping of values processed by the devices to
power consumption. We do not really need to get absolute values, but the
relative differences between power consumption values is enough for us. For
this purpose we know two generic models that are often used: the Hamming-
Distance Model and the Hamming-Weight model.

Hamming-Weight Model

The Hamming-Weight model (HW) is the most simple power model we can
think of. The HW model assumes that the power consumption is proportional
to the number of high bits in the processed data value. This model is used
when we do not know the consecutive data values processed, otherwise we
would use the Hamming-Distance Model.

In practice, 0→ 1 lead to a bigger power consumption than 1→ 0 and this
knowledge can be used to improve the HW model by giving greater weight to
the 0→ 1 transitions [18]. Given this statement, we can say that HW model
is still somehow relatable to the power consumption even if we do not know
anything else about the preceding data or the device.

30

4.2. Power Consumption

Hamming-Distance Model

The Hamming-Distance model (HD) counts the number of bits that perform
a transition to the opposite value. This model can be used when we know the
preceding or the following data value processed. The bare HD model works
with an assumption that the unchanged bit does not contribute to the power
consumption and the transitions 0→ 1 and 1→ 0 contribute equally.

When the data value v0 changes to v1, the Hamming-Distance can be
computed as:

HD(v0, v1) = HW (v0⊕ v1)
If we apply the same assumption, as mentioned in the HW model, about

the contribution of 0→ 1 being more significant than 1→ 0, we can further
improve the HD model by giving greater weight to the 0→ 1 transitions.

4.2.3 Simple Power Analysis

Simple Power Analysis (SPA) is a power analysis technique involving interpret-
ing concrete power traces, in some cases, even a single power trace could be
enough. In SPa we try to reveal the key by observing the power consumption
dependency on the key. In practice, this can become a quite challenging task,
an attacker must guess correctly or has to know the implementation of the
algorithm.

An example of this attack can be observing an RSa cipher. RSa is based on
modular exponentiation, which is usually done algorithmically using a square
and multiply algorithm. Reading the binary key from the left, in case of 0 we
only do the square part of the algorithm and in case of 1, we first square and
then multiply. The significant difference is that when a bit of the key is set to
1, in not so careful implementation, more code is executed and hence we can
expect greater power consumption. Successful hack of an RSa key can be seen
in Figure 4.3, the key value obtained is 2E C6 91 5B F9 4A.

Figure 4.3: Observing Power Consumption Key Dependency on RSA [19]

31

4. Physical Attacks Theory

4.2.4 Differential Power Analysis

Compared to SPA, Differential Power Analysis (DPA) does not require detailed
knowledge about the device and for that reason it is a favourite power analysis
attack on cryptographic devices. Precondition of every successfull DPa attack
is that a large number of power traces must be taken.

DPa exploits the data dependency of the power consumption by statistically
analyzing a large set of power traces at the same time as a function of the
processed data [18].

The steps to perform a DPa attack are [18]:

1. Choose an intermediate value of the algorithm that is executed on the
device. The intermediate value v is a function v = f(d, k) of non-constant
data d and a part of the key k.

2. Pick D different data blocks for our measurement. The data blocks can
be written as a vector d = (d1, . . . , dD). For each data block di we record
a power trace t′i = (ti,1, . . . , ti,T), where T denotes the length of the
power trace. Thus we can write the recorded power traces as a matrix T
with dimensions D × T .

3. Calculate hypothetical intermediate values for every theoretical possible
choice of the part of the key k. We write the possible choices as a vector
k = (k1, . . . , kK). For instance, if the relevant part of the key that we
took into consideration in the step 1 is one byte, it would translate into k
being a number in the range from 0 to 255, i. e. K = 256. We refer to the
vector k as “key hypotheses”. Once we have the key hypotheses, we can
calculate hypothetical intermediate values for all D data blocks and for
all K key hypotheses resulting in a matrix of hypothetical intermediate
values V of dimensions D ×K, where each element vi,j is computed as:

vi,j = f(di, ki) i = 0, . . . , D and j = 0, . . . , K

4. We map all the intermediate values in the matrixV to power consumption
values based on a chosen power models, such as the Hamming-Weight or
the Hamming-Distance model discussed in “Power Models for Attackers”.
The result is a matrix of hypothetical power consumption values H of
the same dimensions D ×K.

5. Compare each column of the matrix H with each column of the matrix T.
What this means is that we compare the hypothetical power consumption
values of each theoretical part of the key with all positions of all the
recorded power traces. The result is a matrix R with dimensions K × T ,
where each element ri,j corresponds to a statistical comparison between
hi column of the matrix of hypothetical power consumption values H
and mj column of the matrix of recorded power traces T.

32

4.2. Power Consumption

6. The element ri,j with the highest value of the matrix R then reveals the
position j of the power trace at which the intermediate value has been
processed and the key i used by the device (Figure 4.4).

Figure 4.4: Example of a correlation made between the matrix of recorded
power traces T and the matrix of hypothetical power consumption values
H [20]

Statistical Comparison

Usually, the statistical comparison in DPa attacks is done using the Pearson
Correlation Coefficient (PCC) that ranges in [−1; 1], therefore before looking
for the maximum value in the matrix R, we would first take an absolute
value of all elements in the matrix R. We only care about the absolute values,
because our power model could be inversely correlated to the device’s power
consumption, therefore an inversely correlated element of the matrix R could
still lead to the correct key.

Using the same notation from above, each element of the matrix R using
the PCC is calculated:

ri,j =
∑D

d=1(hd,i − h̄i) · (td,j − t̄j)√∑D
d=1(hd,i − h̄i)2 ·

∑D
d=1(td,j − t̄j)2

33

4. Physical Attacks Theory

4.3 Advanced Attacks
The attacks can get complicated and leakage of information is not always
obvious. The most advanced attacks include use of various statistic methods,
such as analysis of variance (ANOVA) that help us to find a dependency
between the sensitive values and the leakage.

Current state-of-the-art attacks may also involve use of machine learning
in the profiling phase. The profiling phase is then basically an instance of
machine learning classification, where a class label is predicted based on the
input data. Some of the learning methods include neural networks, decision
trees and AdaBoost.

34

Chapter 5
Evaluation of Hardware Crypto

Wallets

In this chapter, the overall security of the most prominent hardware crypto
wallets will be assessed with the focus on hardware design, the most important
security features and also existing attacks that these wallets could face today.

5.1 Unfixable Attacks

5.1.1 Supply Chain Attacks

There is no way the hardware can inspect itself and verify its integrity, therefore
it is important to take into account that no matter what hardware wallet
vendors say, it is impossible to 100% rule out a possibility of having a tampered
device without completely verifying the physical hardware, which might be in
most cases impossible because vendors may provide incomplete pictures and
information (complete attestation is not possible) [17, 21].

5.1.2 Fault Injection Attacks

There is one specific issue of vendors using general-purpose microcontroller
units (MCU). The way they are built, they are not protected from fault attacks,
such as voltage glitching or clock glitching resulting in unexpected behavior
that could cause dropping Read Protection (RDP) levels and dumping SRAM
or flash memory through SWD/JTAG debugging protocols or using MCU
vendor’s System Memory Bootloader to achieve the same. These problems
likely cannot be fixed without an overall design overhaul of the wallets and
incorporating a secure element chip into it.

Trezor One, Trezor T and KeepKey hardware wallets are susceptible to the
voltage glitching attack allowing to dump the flash memory of the MCU and
extract an encrypted seed, which can be then easily bruteforced [22, 23, 24].

35

5. Evaluation of Hardware Crypto Wallets

Trezor in their response to the attack suggests to remove the physical attack
from our threat models or to use a passphrase [17], which is, as described in
BIP-39 [11], using a custom string as the last word of the mnemonic sentence.
This passphrase is never stored on a device and must be entered by a user
every time. KeepKey also suggests to use the passphrase and adds that if
someone has physical access to your device – as well as the time, skill, and
tools necessary – they will always be able to bypass any lock and in the end
do whatever they want with the device [25].

5.2 Trezor One

Trezor Wallet was the first ever hardware crypto wallet released in 2014 by
the Czech company SatoshiLabs. Since then it has seen multiple revisions,
but the Trezor One has become the golden standard in the industry. The
rest of the thesis is dedicated to the Trezor One. The device is thoroughly
analyzed in Chapter 6, “Analysis of Trezor One”, and Chapter 7, “Side-Channel
Experiments”.

5.2.1 Existing Attacks

Trezor One is susceptible to the supply chain attack described in Subsec-
tion 5.1.1, “Supply Chain Attacks”, and the voltage glitching fault attack
described in Subsection 5.1.2, Fault Injection Attacks.

As of April 14, 2020, there are no other publicly known attacks possible if
running the latest device firmware16 (v1.8.3).

5.3 Trezor Model T

Trezor Model T (or shortly Trezor T) is a next-generation hardware wallet
released in 2018, designed with the experience from the original Trezor in
mind17.

5.3.1 Security Review

It is a fully open source and open hardware wallet with code available in
a monolithic git repository18 on Trezor’s GitHub page together with hardware
reference documentation.

Trezor T makes use of a new general-purpose STM32F429 MCU with no
secure element chip as in the case of Trezor One. An OLED display was

16https://github.com/trezor/trezor-firmware/blob/master/legacy/firmware/
ChangeLog

17https://wiki.trezor.io/Trezor_Model_T
18https://github.com/trezor/trezor-firmware

36

https://github.com/trezor/trezor-firmware/blob/master/legacy/firmware/ChangeLog
https://github.com/trezor/trezor-firmware/blob/master/legacy/firmware/ChangeLog
https://wiki.trezor.io/Trezor_Model_T
https://github.com/trezor/trezor-firmware

5.3. Trezor Model T

Figure 5.1: Unlock Screen of Trezor T [26]

replaced with an RGB LCD touchscreen, which now allows to enter the pin
straight on the device itself, instead of using the blind matrix and entering the
PIN on an untrusted display of a computer. The microUSB connector was
replaced by a USB type-C connector and a MicroSD card slot was added for
future use and new features and could be potentially a new source of problems,
as it extends the attack surface.

STM32F429 MCU used in the Trezor T does not suffer from the write-
protection vulnerability19 in STM32F205, the MCU used in Trezor One. Note
that in the original Trezor One, the vulnerability was mitigated by using
Memory Protection Unit (MPU), a part of the processor chip, to achieve the
write-access protection of the bootloader.

The firmware verification model during the boot was considerably improved
in Trezor T compared to the previous Trezor One. The architecture now uses
three distinct parts during the boot process. The first part called boardloader
burned into the chip checks the authenticity of the bootloader, which then
verifies the firmware that does no further checks, as they would be redundant at
this point. This is crucial for the user security as this architecture prevents an
attacker from flashing a custom bootloader that would remove a user warning
from running an unofficial firmware.

19https://blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95

37

https://blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95

5. Evaluation of Hardware Crypto Wallets

5.3.2 Existing Attacks

Trezor T is susceptible to the supply chain attack described in Subsection 5.1.1,
“Supply Chain Attacks”, and the voltage glitching fault attack described in
Subsection 5.1.2, Fault Injection Attacks.

As of April 14, 2020, there are no other publicly known attacks possible if
running the latest device firmware20 (v2.2.0).

5.4 Ledger Nano S

Ledger Nano S is a popular USB hardware wallet first released in 2016 by
a French company Ledger.

Figure 5.2: Welcome Screen of Ledger Nano S [27]

5.4.1 Security Review

It implements a very different design compared to Trezor’s. It is built around
a generic-purpose MCU (STM32F042) and leverages a secure element (SE)
chip (ST31H320), manufactured by STMicroelectronics as in the Trezor’s case.
The device meets the CC EAL5+ certification level.

The device is thus a multi-processor device with the MCU acting as a secure
element proxy. The generic MCU is used to manage the USB communication
with the host, receive input from buttons, control the display screen and
communicate with the SE chip. All cryptographic operations happen within
the SE and all secrets are kept in the memory of the SE and cannot be directly
accessed from the generic MCU. The SE is basically a microprocessor chip
built in the way to minimize possibility of side-channel attacks, fault attacks

20https://github.com/trezor/trezor-firmware/blob/master/core/ChangeLog

38

https://github.com/trezor/trezor-firmware/blob/master/core/ChangeLog

5.4. Ledger Nano S

and software attacks with the only way to communicate with the outside using
a low-throughput UART, because it lacks input/output pins as a normal MCU
would have.

Figure 5.3: Ledger Nano S Architecture [28]

Ledger also incorporates a custom built operating system, called Blockchain
Ledger Operating System (or shortly BOLOS). a user of a Ledger Nano S
wallet installs applications in the SE to support their favourite cryptocurrencies
and BOLOS, using a Memory Protection Unit (MPU) of the ARM processor,
isolates all these applications from interacting with each other. a Bitcoin
app can’t interfere with an Ethereum app and so on. BOLOS stores the
cryptographic secrets and won’t allow the application to directly access them.
Last but not least BOLOS provides a questionable way to attestate the genuity
of the device.

5.4.2 Existing Attacks

Ledger Nano S is susceptible to the supply chain attack described in Subsec-
tion 5.1.1, “Supply Chain Attacks”.

As of April 14, 2020, there are no other publicly known attacks possible if
running the latest device firmware21 (1.6.0).

Supply Chain Attack

I want to explicitly reiterate here what was said before in Subsection 5.1.1,
“Supply Chain Attacks”, because of Ledger claims, such as that there is no
need for an anti-tampering sticker in the packaging, because the cryptographic
mechanism checks the authenticty of the device (a paper you get in the actual
packaging of Ledger devices) or that if you buy a Ledger device from eBay
and perform a full attestation, you can be sure you have a legit device made22.

21https://support.ledger.com/hc/en-us/articles/360010446000
22https://twitter.com/BTChip/status/949679898012078082

39

https://support.ledger.com/hc/en-us/articles/360010446000
https://twitter.com/BTChip/status/949679898012078082

5. Evaluation of Hardware Crypto Wallets

You can never be sure of the genuity without verifying the physical hardware.
Ledger provides pictures23 of hardware revisions for owners to be able to check
the hardware integrity, however, this is not enough for at least two reasons:
one is that we do not see the hardware parts from all sides and the back side
is completely missing, and the second, it is probably not that hard to order
a different MCU with the label of the expected STM32F042. Ledger’s Chain
of Trust anchor is the SE and based on the public key of the device signed
with the ledger’s private key (device’s certificate), it can surely attestate only
the genuity of the SE. We could have an insecure MCU answer in the way
to succeed the attestation. In comparison with Trezor, Ledger doesn’t even
provide tamper-proof seals in its packaging and makes it a little easier for an
attacker in the supply chain.

5.5 Ledger Nano X

Ledger Nano X is the newest Ledger’s hardware wallet and is a significant
improvement over the previous Ledger Nano S wallet.

Figure 5.4: App Selection on Ledger Nano X [29]

5.5.1 Security Review

It has an improved design with, this time, a dual-core generic STM32WB55
MCU and a new ST33J2M0 secure element chip.

The secure element is in charge of user inputs and the display screen. This is
a significant architecture improvement to provide even more secure experience,
as the inputs and the display are no longer controlled by an insecure MCU. The
MCU acts as a simple proxy between the host and the SE inside the device.

23https://support.ledger.com/hc/en-us/articles/115005321449-Check-hardware-
integrity

40

https://support.ledger.com/hc/en-us/articles/115005321449-Check-hardware-integrity
https://support.ledger.com/hc/en-us/articles/115005321449-Check-hardware-integrity

5.5. Ledger Nano X

Figure 5.5: Ledger Nano X Architecture [30]

The screen of Ledger Nano X is now able to display two rows of text,
instead of one, buttons are larger and the device can be used on Android or
iOS smartphones via Bluetooth stack (Bluetooth Low Energy – BLE). Contrary
to the initial public controversy over this decision, Bluetooth transmission
doesn’t affect the security of the device, as it transmits only public data.
Cryptographic secrets never leave the device, even when using a wireless
technology instead of a USB cable, which is still an option. Privacy issues
still stand, because public keys or addresses are still transmitted over the
Bluetooth that could get hacked. Ledger decided to implement a state-of-the-
art Bluetooth protocol24 to minimize the possibility of this happening in the
BLE connections.

Memory limitations of the Ledger Nano S led users to have only the most
important apps installed in the system (usually 3–4 apps). If they wanted to
make a transaction with a different cryptocurrency, they had to temporarily
replace one of the installed apps. Ledger does not provide any information
about the actual flash memory size available for BOLOS applications in the
SE. Based on the datasheets, for Ledger Nano S, STMicroelectronics could
provide up to 320 Kbytes of user flash memory (ST31H320 SE), and the secure
element in Ledger Nano X could, in theory, provide up to 2048 Kbytes of user
memory (ST33J2M0 SE).

5.5.2 Existing Attacks

Ledger Nano X is susceptible to the supply chain attack described in Subsec-
tion 5.1.1, “Supply Chain Attacks”.

As of April 14, 2020, there are no other publicly known attacks possible if
running the latest device firmware25 (1.2.4-1).

24https://www.bluetooth.com/blog/bluetooth-pairing-part-4/
25https://support.ledger.com/hc/en-us/articles/360023346874

41

https://support.ledger.com/hc/en-us/articles/360023346874

5. Evaluation of Hardware Crypto Wallets

5.6 KeepKey
KeepKey is a crypto hardware wallet released in 2015. a notable feature is the
ShapeShift exchange integration and compared to Trezor’s and Ledger’s top
models, a significantly lower price.

Figure 5.6: KeepKey waiting for a transaction confirmation [31]

5.6.1 Security Review

The packaging provides security seals, which makes a supply chain attack
harder, but not impossible. KeepKey is based on STM32F205 MCU, the same
chip as Trezor uses in their Trezor One model. The firmware of the wallet is
fully open source.

When we take a look at KeepKey’s GitHub repository, we can notice
forked-off Trezor repositories and the actual KeepKey repositories sharing
similatiries with Trezor. Based on this simple observation, we can expect the
KeepKey to be prone to the same or similar vulnerabilities.

Back to the hardware design, the KeepKey wallet features a considerably
larger OLED display and only one button to confirm the transactions. I was
not able to verify if it is actually possible to deny a confirmation or the only
way to do it is to plug off the device from the USB.

During the initialization the mnemonic sentence words are shown on the
display and given its size, it is much easier for cameras or someone else to look
over your shoulder and see the words. The PIN is entered in the same fashion

42

5.7. Bitfi Wallet

as on Trezor One. a user is shown a blind matrix on his computer display and
the real matrix with numbers on the KeepKey device, they enter the pin by
clicking on the right positions of the matrix on the blind matrix. Again, given
its size, over the shoulder attacks are much easier than on devices with smaller
displays.

The selling point of the KeepKey wallet is the Shapeshift exchange integra-
tion which allows you to swap between different crypto assets easily. Shapeshift
is a centralized service that can track your funds and identify you for one
reason. Every user of Shapeshift who decides to buy or sell any cryptocurrency
using this platform must undergo a classic KYC/AML process (Know Your
Customer / Anti-Money Laundering) giving a third party information, such
a name, a date of birth, an address, a government-issued ID and linking the
wallet addresses you use to your identity.

5.6.2 Existing Attacks

KeepKey is susceptible to the supply chain attack described in Subsection 5.1.1,
“Supply Chain Attacks”, and the voltage glitching fault attack described in
Subsection 5.1.2, Fault Injection Attacks.

As of April 14, 2020, there are no other publicly known attacks possible if
running the latest device firmware26 (Release v6.4.0).

5.7 Bitfi Wallet
Bitfi Wallet is a Wi-Fi enabled crypto hardware wallet announced in June 2018
and supported by a cyber-security pioneer John McAfee, claiming to be the
first unhackable, open source hardware wallet. a phrase that was later taken
off their website27.

Figure 5.7: Bitfi Wallet that claimed to be unhackable [32]

26https://github.com/keepkey/keepkey-firmware/releases
27https://www.bbc.com/news/technology-45368044

43

https://github.com/keepkey/keepkey-firmware/releases
https://www.bbc.com/news/technology-45368044

5. Evaluation of Hardware Crypto Wallets

5.7.1 Security Review

Although the vendor claims that the wallet is fully open source. We are only
given an absolutely bizarre “developer” website bitfi.dev that is against
everything we know from regular open source development, such as a lack of
any transparency of repository, a way to download and compile firmware, etc.
Also we have nowhere to read what the actual hardware running this wallet is,
because on the first look, it seems to be an Android phone.

5.7.2 Existing Attacks

The hacking community took the Bitfi Wallet by storm and by disassembling28

the device soon discovered that the Bitfi Wallet is powered by MEDIATEK
MT6580, a system on a chip (SOC) used in inexpensive Android smartphones
and without a secure element. The device is not a custom designed piece of
hardware, but a stripped down low-end Android smartphone.

Brute-force Attack on Low-entropy Seed

Instead of BIP-39 mnemonic sentences, Bitfi tells their users to choose a mem-
orizable seven-word minimum passphrase as the key and as a salt they recom-
mend you to use your phone number. If the user chooses a passphrase with low
entropy, which is very likely, as we should not expect our users to be security
experts. If they do not use a method, such as the Diceware method29. With
this assumption and a publicly known algorithm for key derivation used in
Bitfi, it is relatively easy to brute-force the actual seed used to derive the keys.

Using an Unlocked Device

The Bitfi device has no lock facility. If the wallet is stolen, an attacker could
sign a transaction, because there is no PIN needed.

Cold Boot Attack

The Bitfi Wallet makes no attempts to erase the keys used in the RAM,
therefore all keys stay in the volatile memory until the device is powered off
and certain time passes. Bitfi claims the device can last up to 10 days in
stand-by mode making it easy for a very simple Evil Maid-type of an attack.
The attacker does not need special hardware, only a usb cable and a computer.

Malicious Firmware

There is no mechanism to check if the device has been tampered with at
a firmware level. Another example of an Evil Maid attack.

28https://twitter.com/cybergibbons/status/1023667374153773057
29http://www.diceware.com

44

bitfi.dev
https://twitter.com/cybergibbons/status/1023667374153773057
http://www.diceware.com

5.8. Conclusion

Dumping the File System

According to false claims of John McAfee declaring that the device does
not have an internal storage. Bitfi Wallet possesses an 8GB eMMC flash
chip holding the firmware and using an SP Flash Tool, tool used for flashing
MediaTek powered devices, read the complete file system.

SYSTEM PARTITION
.
./lost+found
./app
./app/AdupsFota
./app/AdupsFota/AdupsFota.apk
./app/AdupsFota/oat
./app/AdupsFota/oat/arm
./app/AdupsFota/oat/arm/AdupsFota.odex
./app/AdupsFota/oat/arm/AdupsFota.vdex
./app/AdupsFotaReboot
./app/AdupsFotaReboot/AdupsFotaReboot.apk
./app/AdupsFotaReboot/oat
./app/AdupsFotaReboot/oat/arm
./app/AdupsFotaReboot/oat/arm/AdupsFotaReboot.odex
./app/AdupsFotaReboot/oat/arm/AdupsFotaReboot.vdex
...

Malware Suite Included

The most alarming things are the Adups FOTa suite, Baidu GPS/Wi-Fi
tracker. Both of them were found actively running in the Bitfi Wallet and
communicating over the Internet to China. The Adups FOTa suite is a spyware
platform that allows for the transmission of text, call, location, and app data to
a server in China every 72 hours.

5.8 Conclusion
This chapter included the most important wallets showing how well or badly
the security of user funds can be taken and that companies selling you the
hardware to protect your money, can straight lie to you.

All of the devices presented, except Bitfi, can be recommended to consumers.
Trezor T and Ledger Nano X are currently the only wallets that can be labeled
as “top-tier” hardware crypto wallets, considering the usability and overall
security with one note.

Trezor devices provide a complete open source and open hardware solution,
that makes them a clear winner over the competition (it is fully auditable),
however, if your threat model includes very technically sophisticated attackers

45

5. Evaluation of Hardware Crypto Wallets

that could get physically near your devices, you should remember to set a long
enough passphrase, not just a PIN to secure the initialized device. The other
option is to choose a device with a secure element, such as any Ledger device.
Ledger cannot completely assure security researchers, as the secure element
firmware is not open source, but as a fact, there is so far no proof of a similar
physical attack as was shown on Trezor devices via voltage glitching, reducing
the security of the seed stored in the device basically to the set passphrase.
The passphrase is usually not set by the users, as this feature is considered as
advanced.

46

Chapter 6
Analysis of Trezor One

Trezor One was briefly introduced in Section 5.2, it is the original hardware
wallet that is fully open source and open hardware, created in 2014 by the Czech
company SatoshiLabs and assembled in the Czech Republic. This chapter will
provide an in-depth analysis of both hardware and software of this wallet and
show a few chosen attacks that were possible with older firmwares.

Figure 6.1: Confirming the Transaction with Trezor One [33]

6.1 Hardware Architecture

Trezor One features an STM32F205RET6 MCU of the STM32 F2 family, that
is based on a 32-bit RISC ARM Cortex-M3 processor clocked at 120 MHz.
According to the datasheet [34], this specific MCU model is supposed to provide
512 kB of persistent storage in the form of flash memory. This turned out not

47

6. Analysis of Trezor One

STM32 MCU

Buttons

OLED

USB Host

Figure 6.2: Trezor One Architecture

to be true, as the firmware itself is bigger than that and has to also account
for the system memory bootloader that is automatically included by ST. In
reality, this device has 1 MB of the flash memory, 128 kB of data SRAM, 4
kB of backup SRAM and 512 B of One Time Programmable (OTP) memory.
It also includes a Direct Memory Access (DMA) controller that is able to
manage memory-to-memory, peripheral-to-memory and memory-to-peripheral
transfers. Advanced connectivity can be provided via various communication
interfaces, e. g. USB 2.0 or Ethernet.

The device uses a UG-2864HSWEG01 OLED display, which is a 0.96 inch
128x64 white on black OLED display and is an essential part of the device
allowing the user to check the information directly on the trusted device.

The last fundamental part are the buttons, which are used to confirm
the user’s actions after verifying on the OLED display. This prevents remote
attacks and is what makes the hardware wallet a cold storage.

There is no secure element chip, all cryptographic secrets are directly stored
in the flash memory of the MCU and also in the SRAM of the MCU during
the cryptographic operations. Due to this reason, the device is more prone to
physical attacks, such as side-channel attacks and fault attacks to discover the
secret information in case of a physical access to the device.

The scheme of the Trezor One architecture is shown in Figure 6.2, the
USB Host sends requests to the STM32 MCU and the MCU returns answers,
information is displayed on the OLED display and user confirms actions with
the buttons.

Trezor is open hardware30 and provides a repository with the current
30https://github.com/trezor/trezor-hw/tree/master/electronics

48

6.2. The Casing and Material

revision of Trezor One labelled as trezor_v1.1. a Bill of Materials (BOM)
is provided (Figure 6.1 on page 50) and we can see a source code of the
Printed Circuit Board (PCB) for EAGLE31, a picture of the PCB (Figure 6.5
on page 51), a source code of the Schematic Diagram and a picture of the
Schematic Diagram, all in the repository represented by the following files:

trezor_v1.1.brd
trezor_v1.1.brd.png
trezor_v1.1.sch
trezor_v1.1.sch.png
trezor_v1.1_BOM.csv

6.2 The Casing and Material
As the vendor says32, the casing is made of a reinforced plastic providing
great durability and is put together using a process called ultrasonic welding.
There is no simple way to access the inside of the device without destroying
the case. After applying enough heat, the plastic case could be opened
(Figure 6.3 and 6.4).

Figure 6.3: Front Side of Opened Trezor One

Figure 6.4: Reverse Side of Opened Trezor One

31An electronic design automation (EDA) software
32https://wiki.trezor.io/Security:Hardware__T1

49

https://wiki.trezor.io/Security:Hardware__T1

6.
A

nalysis
of

T
rezor

O
ne

Table 6.1: Bill of Materials

Qty Value Device Package Parts Description
1 12k R_0402 402 R7
1 1M R_0603 603 R9
1 1k5 R_0402 402 R6
1 1n/200V C_0603 603 C19
1 22k R_0402 402 R8
1 2u2 C_0603 603 C5
1 390k R_0402 402 R10
1 4u7 C_0603 603 C10
1 8MHz CRYSTALCTS406 CTS406 Q2 CRYSTAL
1 BAT60BWS DS_SOD323 SOD323 D2
1 DISPLAY "DISP_OLED_UG-2864HSWEG010.96"";UG-2864HSWEG01_0.96IN_WRAPAROUND""" U3 UG-2864HSWEG01 OLED display
1 MF-FSMF020X-2 POLYSWITCH_0603 603 R2
1 PRTR5V0U2X PRTR5V0_SOT143B SOT143B D1
1 STM32F205RET6 STM32F10XRXT6 TQFP64 U1 STM32F101/103 64pin LQFP
1 SWD SWD SWD K2 SWD
1 USB5_USB_MICRO_MOLEX475890001 USB5_USB_MICRO_MOLEX475890001 USB_MICRO-MOLEX475890001 K1

50

6.2.
T
he

C
asing

and
M
aterial

Figure 6.5: Printed Circuit Board51

6. Analysis of Trezor One

Figure 6.6: Holographic Seals on Trezor One Packaging [35]

6.3 Packaging
Every device package is protected by two tamper-evident holographic seals
on both sides of the package (Figure 6.6). There is no holographic seal on
the device itself. It is glued and hard to open without tearing the package
apart. The customer gets two 24-word recovery seed paper cards to record their
mnemonic sentences after setting up the device. By using 24 words mnemonic
sentence, the Trezor developers chose the highest entropy to be the default for
their users while following the BIP39 standard [11].

6.4 Debugging via SWD/JTAG
The MCU used in Trezor One can function in two debug modes: Serial Wire
Debug (SWD) and Joint Test Action Group (JTAG).

JTAG is an industry standard debugging interface and protocol for testing
PCBs and programming internal memories, it uses 5 pins (Mode Selection,
Clock, Data Input, Data Output and optionally Reset). SWD is an ARM-
specific debugging interface and protocol, using only 2 pins (for Clock and
Data I/O). The pins of both interfaces, as the reference manual states (Fig-
ure 6.2), overlap. And in the datasheet of the MCU we can find the pinout
(Figure 6.7).

To debug we need an SWD or a JTAG probe, physically connect the
required pins with the probe (requires soldering) and appropriate software on
the computer host to communicate with the probe that is communicating with
our device. One of the probes is ST-LINK/V2 or we could use a development
boards, e. g. STM32 Nucleo or Discovery, which already come with the probe
as a part of it. STM32 ST-LINK Utility then provides a software interface.

52

6.4. Debugging via SWD/JTAG

Table 6.2: SWD/JTAG Pins on STM32F20x MCUs [36]

Figure 6.7: Pinout of the LQFP64 (10 × 10 mm) version of STM32F20x
MCUs [34]

53

6. Analysis of Trezor One

6.5 BootROM and Option Bytes

The question is whether the debugging using the SWD/JTAG interface is
viable and if yes, under what circumstances. The only non-volatile memory
in the MCU used by Trezor One is the flash memory. So all the code that
runs when the device is connected via USB to the host, and all the device
parameters, cryptographic secrets, etc, must reside in this place.

In Table 6.3 we can see the structure of the flash memory. Main memory
(Sector 00–11) are usually used by vendors for their custom bootloaders and
firmwares, One Time Programmable memory can be used to store permanent
cryptographic secrets or some vendor specific data, but once written, cannot
be rewritten or erased. System Memory in STM32 MCUs is programmed
only once33 (during production) and it stores bootloaders developed by ST, it
can’t be used by the user to store their bootloader. The last block is called
Option Bytes. Option Bytes are configured based on the application-specific
requirements.

Table 6.3: Flash Memory Organisation [36]

33https://community.st.com/s/question/0D50X00009XkWTwSAN/custom-bootloader-
on-system-memory-is-it-possible

54

https://community.st.com/s/question/0D50X00009XkWTwSAN/custom-bootloader-on-system-memory-is-it-possible
https://community.st.com/s/question/0D50X00009XkWTwSAN/custom-bootloader-on-system-memory-is-it-possible

6.5. BootROM and Option Bytes

6.5.1 BootROM

BootROM is the very first code which is executed by the processor on power-
on or reset. The BootROM performs the essential initialization including
programming the clocks, stacks, interrupt set up etc. Based on the value on
pins BOOT0 and BOOT1, the System Memory Bootloader is loaded from the
System Memory, continues from the Flash Memory or jumps to boot from the
SRAM. The ST-made System Memory Bootloader allows for communication
through one of the available serial peripherals (USART, CAN, USB, etc). The
purpose of the System Memory Bootloader that can be loaded is to transfer
data to the flash memory.

During the BootROM execution Option Bytes are read [23], the debugging
features and the System Memory Bootloader are disabled in this step. If any
fault attacks focuses on this, there is nothing the hardware wallet vendor can
do, as the bootloader and firmware created by the hardware wallet vendor are
not loaded yet.

6.5.2 Option Bytes

Options bytes are the place to store security configuration parameters. Two
main features that can be set in Option Bytes are Read Protection (RDP) and
Write Protection.

Read Protection

There are three RDP Levels:

• Level 0: no read protection
All reads and writes in the user area are permitted if no write protection
is set. Flash and SRAM accessible via SWD/JTAG.

• Level 1: memory read protection
No access to Flash memory or backup SRAM while in debug mode or
in system bootloader. SRAM can be still accessed via SWD/JTAG.
Changing to Level 0 causes wipe of the flash memory and SRAM.

• Level 2: disable debug/chip read protection
Protections provided by Level 1 are still active, not possible to boot the
system bootloader, Option Bytes can no longer be changed, JTAG/SWD
completely disabled. Irreversible once set.

Trezor uses by default RDP Level 2, so in theory, we can’t use SWD/JTAG to
read the flash memory or SRAM.

55

6. Analysis of Trezor One

Write Protection

The user sectors of the flash memory can be write protected. This is a nice
feature, especially for custom bootloaders created by the vendor to prevent
reflashing of the bootloader, but allowing the users to upgrade their firmware.
This security measure was initially used in Trezor One to lock the bootloader,
however, a vulnerability34 was found rendering the write protection of STM32
MCUs useless. The vulnerability was mitigated by using a so-called Memory
Protection Unit (MPU), a different part of the chip, to achieve the write-access
protection of the bootloader. Using of the MPU was accepted by ST as a valid
solution of the problem.

6.6 Open Source Repository

Trezor’s Firmware is fully open source and SatoshiLabs provide the whole
firmware repository on Trezor’s GitHub page35 as a one big mono-repository.
The repository contains both Trezor One and Trezor Model T firmwares,
modules used by both devices, trezor command-line interface, documentation,
tests and some other miscellaneous files.

Our interest is mainly in the core Trezor One parts of the repository, which
are all written in C programming language, except for Protocol Buffers36

definition files, Makefiles and some of the build Shell and Python scripts:

legacy Trezor One firmware implementation

crypto Cryptography library used by Trezor devices

storage NORCOW storage implementation used by Trezor devices, described
on page 60 in this chapter in Section 6.8, “NORCOW Storage”

6.7 Trezor Protocol

Trezor communicates using a simple request-response protocol. It is a syn-
chronous protocol where the host sends a request to the device and the device
answers back with a response. The response can be a success message, a failure
message, or a specific answer given by the request data. For instance, a simpli-
fied transaction signing process could look like: the request can be the host
asking the device to sign a transaction using the given parameters and the
response can be a message signalling waiting for the button press. By pressing
the button the transaction is acknowledged, signed in the device and sent to
the host via another response.

34https://blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95
35https://github.com/trezor/trezor-firmware
36https://developers.google.com/protocol-buffers

56

https://blog.trezor.io/trezor-one-firmware-update-1-6-1-eecd0534ab95
https://github.com/trezor/trezor-firmware
https://developers.google.com/protocol-buffers

6.7. Trezor Protocol

offset length type contents
0 3 char[3] ’?##’ magic constant
3 2 BE uint16_t numerical message type
5 4 BE uint32_t message size
9 55 uint8_t[55] first 55 bytes of message encoded in Proto-

col Buffers (padded with zeroes if shorter)

Table 6.4: Structure of the 1st Packet of a Message in Trezor Protocol

offset length type contents
0 1 char[1] ’?’ magic constant
1 63 uint8_t[63] following bytes of message encoded in Pro-

tocol Buffers (padded with zeroes if shorter)

Table 6.5: Structure of the Following Packets of a Message in Trezor Protocol

Trezor uses Google’s Protocol Buffers (Protobuf) to create a programming
interface. With Protobuf, we only write .proto files with descriptions of
our data structures and the protobuf compiler creates a source code of these
structures in a given language with parsing and encoding of the structures into
an efficient binary code that can be exchanged over a USB HID37 and accepted
by the client running on a host, such as trezorctl38, or a software wallet. Trezor
uses Nanopb39 Protobuf implementation to generate a small size code with
a little overhead compared to text-based serialization methods like using JSON
or XML. This choice is therefore perfect for resource-constrained MCUs and
should provide a secure and an efficient way to transmit data between the host
and the device.

Messages are sent in packets of 64 bytes, the structure of the first packet is
shown in Table 6.4 and the structure of the following packets in Table 6.5.

6.7.1 Initialize/Features

The initialize packet is a packet that will cause the device to halt what it is
doing at the moment and respond with a features packet as a response. This
packet contains information about the device’s features and settings and the
initialize packet can be used to recover the device from previous errors.

6.7.2 Buttons

During an operation where the device requires user to confirm certain action,
it replies with a ButtonRequest message to the host. The host returns a But-

37Human Interface Device
38Trezor Command-Line Interface
39https://jpa.kapsi.fi/nanopb/

57

https://jpa.kapsi.fi/nanopb/

6. Analysis of Trezor One

tonAck message to acknowledge the request and the device shows instructions
on its display and the information to be confirmed. The device will wait for the
button press and if the operation is cancelled by the user, it returns a Failure
message.

6.7.3 Entering PIN

When unlocking the device, or after certain period of time of inactivity, the
device is locked and for further use requires to be unlocked. In such case
the device replies with a PinMatrixRequest. The host will show an empty
3× 3 matrix, the Trezor’s display will also show a 3× 3 matrix, however, with
cells containing numbers 1 to 9 ordered randomly. The User enters their PIN
by pressing the corresponding matrix cells on the host computer’s display. This
is known as a Blind Matrix. After the user finishes inputting the PIN, the
host sends the encoded PIN to the device with a PinMatrixAck message.

6.7.4 Entering Passphrase

If the enabled the passphrase feature, the device will ask the user with
a PassphraseRequest, the host computer will ask the user to input the
passphrase and send it over in clear text with a PassphraseAck message.

6.7.5 Protobuf Example

There are many more API workflows in Trezor than presented here. This was
meant only to introduce the way the device actually communicates with the
host and to show it is programmed in a very elegant way. There is no way the
Trezor would answer an unknown message type with a response including data it
should not disclose. All of the Trezor Protocol message definitions (.proto
files) can be found in legacy/firmware/protob/. These files are compiled
with Nanopb to .c and .h source code files, that can be used in the firmware.
It contains the data structures and additional metadata that are used to encode
the data into the raw binary data that can be exchanged over USB and parsed
on the other side of the communication. An example of one of the messages
used in Trezor, PinMatrixRequest from messages-common.proto, is shown
in Listing 6.1 and the Nanopb compiled data structure after preprocessing
with gcc -E messages-common.c (otherwise we only see Nanopb macros) in
Listing 6.2.

58

6.7. Trezor Protocol

/**
* Response: Device is asking computer to show PIN matrix
* and awaits PINencoded using this matrix scheme
* @auxstart
* @next PinMatrixAck
*/

message PinMatrixRequest {
optional PinMatrixRequestType type = 1;
/**
* Type of PIN request
*/
enum PinMatrixRequestType {

PinMatrixRequestType_Current = 1;
PinMatrixRequestType_NewFirst = 2;
PinMatrixRequestType_NewSecond = 3;
PinMatrixRequestType_WipeCodeFirst = 4;
PinMatrixRequestType_WipeCodeSecond = 5;

}
}

Listing 6.1: Protobuf Code for PinMatrixRequest Message

typedef enum _PinMatrixRequestType {
PinMatrixRequestType_PinMatrixRequestType_Current = 1,
PinMatrixRequestType_PinMatrixRequestType_NewFirst = 2,
PinMatrixRequestType_PinMatrixRequestType_NewSecond = 3,
PinMatrixRequestType_PinMatrixRequestType_WipeCodeFirst = 4,
PinMatrixRequestType_PinMatrixRequestType_WipeCodeSecond = 5

} PinMatrixRequestType;

typedef struct _PinMatrixRequest {
_Bool has_type;
PinMatrixRequestType type;

} PinMatrixRequest;

Listing 6.2: Code Generated by Nanopb for PinMatrixRequest Message after
preprocessing with gcc -E messages-common.c

59

6. Analysis of Trezor One

6.8 NORCOW Storage

In legacy/memory.h we are lucky to find a commented flash memory layout
(Table 6.6) that is not available in any documentation provided by Trezor.
Given the fact that the mnemonic sentence, which is used to derive all keys,
must be stored in the persistent storage, and the only such storage is the
flash memory, it must be stored here. We need to check how Trezor stores
the data and what role does the PIN entered play here. Note that this is the
layout of user space memory of the STM32 MCU, fully chosen by Trezor. Our
interested is in the Sectors 2 and 3 (32 kB) – Storage Area. The reason why
Trezor calls this NORCOW Storage is the fact, that can be confirmed in the
source code of storage/norcow.c. When you rewrite a data entry, it is copied
and the old entry is overwritten with zeros. The flash memory used is based
on NOR logic gates, hence NORCOW.

name range size function
Sector 0 0x08000000 - 0x08003FFF 16 KiB bootloader
Sector 1 0x08004000 - 0x08007FFF 16 KiB bootloader
———– ———————————– ——— ————–
Sector 2 0x08008000 - 0x0800BFFF 16 KiB storage area
Sector 3 0x0800C000 - 0x0800FFFF 16 KiB storage area
———– ———————————– ——— —————–
Sector 4 0x08010000 - 0x0801FFFF 64 KiB firmware
Sector 5 0x08020000 - 0x0803FFFF 128 KiB firmware
Sector 6 0x08040000 - 0x0805FFFF 128 KiB firmware
Sector 7 0x08060000 - 0x0807FFFF 128 KiB firmware
Sector 8 0x08080000 - 0x0809FFFF 128 KiB firmware
Sector 9 0x080A0000 - 0x080BFFFF 128 KiB firmware
Sector 10 0x080C0000 - 0x080DFFFF 128 KiB firmware
Sector 11 0x080E0000 - 0x080FFFFF 128 KiB firmware

Table 6.6: Flash Memory Layout of Trezor One

6.8.1 Storage Format

Trezor uses (APP, KEY) pairs [37] to identify data entries in the storage
area and assigns access control based on the APP value (Table 6.7).

Category Condition Read Write
Private APP = 0 Never Never

Protected 1 ≤ APP ≤ 127 Only when unlocked Only when unlocked
Public 128 ≤ APP ≤ 255 Always Only when unlocked

Table 6.7: Data Entry Categories [37]

60

6.8. NORCOW Storage

Data KEY APP LEN IV TAG ENCRDATa
Length (bytes) 1 1 2 12 18 LEN− 28

Table 6.8: Protected Entry in Storage Area [37]

Data KEY APP LEN DATa
Length (bytes) 1 1 2 LEN

Table 6.9: Public Entry in Storage Area [37]

Private entries are used to store storage-specific information and cannot be
directly accessed through the storage interface. Protected entries store data en-
crypted with Chacha20Poly130540 with initialization vector and authentication
tag available, the format is shown in Table 6.8. The format of public entries
can be seen in Table 6.9, no encryption is used.

6.8.2 PIN, Random Salt, (E)DEK, (E)SAK and PVC

Trezor does not store the PIN itself [37], but only a 64-bit PIN Verification
Code (PVC).

The PIN is used to decrypt a 256-bit Encrypted Data Encryption Key
(EDEK) to Data Encryption Key (DEK) and a 128-bit Encrypted Storage
Authentication Key (ESAK) to Storage Authentication Key (SAK).

DEK is used to decrypt protected entries and SAK is used to generate
a Storate Authentication Tag (SAT), which is stored as a protected entry,
checked during every get operation on the storage and updated after any
protected entry is added or deleted.

The last thing we get from decryption using ChaCha20Poly1305 is an
authentication tag (MAC), whose first 64 bits are compared with the stored
PVC. That confirms whether the correct PIN was entered.

The decryption process in Trezor also requires 32-bit random salt generated
during the initialization of the device or setting a new PIN.

Even if we are lucky to enter an incorrect pin resulting in the same PVC,
an attacker is not able to get the correct DEK or SAK.

The tuple (Random Salt, EDEK, ESAK, PVC) is stored in a private entry
under APP=0 and KEY=2 with the format shown in Table 6.10.

Data KEY APP LEN SALT EDEK ESAK PVC
Length (bytes) 1 1 2 4 32 16 8

Value 02 00 3C 00

Table 6.10: Format of the Private Entry with Encrypted Keys [37]

40Defined in RFC 7539 available at https://tools.ietf.org/html/rfc7539

61

https://tools.ietf.org/html/rfc7539

6. Analysis of Trezor One

6.8.3 Unlocking the device (PIN Verification)

The algorithm [37] is following:

1. Read the private entry with the (Random Salt, EDEK, ESAK, PVC)
tuple from the storage area under APP=0 and KEY=2,

2. gather the constant hardware data (serial numbers, unique device IDs
from system resources, etc) and concatenate them with the random salt,
creating the final salt,

3. ask the user to enter the PIN, prepend “1” in base 10 to the PIN and
convert the PIN number to 4-byte integer in Little Endian byte order,

4. Compute:

PBKDF2(PRF = HMAC-SHA256, Password = pin, Salt = salt,
iterations = 10000, dkLen = 352 bits)

5. Use the first 256 bits of the output as Key Encryption Key (KEK) and the
last 96 bits as Key Encryption Initialization Vector (KEIV). Let’s refer
to the concatenation of EDEK and ESAK as ekeys and concatenation of
DEK and SAK as keys. With these values, compute:

(keys, tag) = ChaCha20Poly1305Decrypt(kek, keiv, ekeys)

6. Compare the PVC stored in the flash memory with the first 64 bits of
tag. If there is a mismatch, fail. The keys are then stored in a global
variable.

7. When needed, decrypt the protected entries (e. g. the BIP39 mnemonic
sentence) by loading the protected entry and computing:

(data, tag) = ChaCha20Poly1305Decrypt(dek, iv, key || app,
encrdata)

Compare the TAG of the protected entry stored in the flash memory
with the computed tag. If there is a mismatch, fail.

62

6.8. NORCOW Storage

6.8.4 Protected Entries

So far we know that the Trezor stores the information related to the PIN
(but not the PIN itself) and encryption of the protected entries in a special
private entry. Let’s see if we can find what kind of information is stored in the
protected and public entries.

Storage uses storage_get as a getter and storage_set as a setter for the
storage. They are defined in storage/storage.c. Via this public interface,
it is only possible to read the protected and public entries. By grepping
through the codebase, we can see the calls of this function come only from
the legacy/firmware/config.c file. Inside of this file we can see C macros
defining (APP, KEY) pairs in the storage area (Listing 6.3). Trezor works only
with pairs, e. g. the KEY_MNEMONIC is actually a 2-byte (APP, KEY). Following
the storage format introduced earlier we can see which entries are public and
which are protected. The ones using APP in bitwise OR are protected, those
with FLAG_PUBLIC_SHIFTED are public. However, we see a new type of an entry
that was never documented anywhere, after applying FLAGS_WRITE_SHIFTED
we get an entry that acts as a public entry, but can be written to even when
Trezor is locked, let’s refer to that as a special public entry.

Here is a short list of the most important entries and what they do based
on studying the source code:

KEY_UUID (public)
Randomly generated number identifying the device, set to zero if the
device is uninitialized.

KEY_VERSION (protected)
Stores a hardcoded number different for each firmware version (incre-
mented with new versions), if the firmware is downgraded, the firmware
is able to recognize it and wipe the device and set a new KEY_VERSION.

KEY_MNEMONIC (protected)
This is the place where the BIP39 mnemonic sentence is stored, the most
important piece of data in the storage.

KEY_PASSPHRASE_PROTECTION (public)
When Trezor sees the passphrase protection enabled, it asks the user to
enter their passphrase after entering the PIN. Passphrase is a part of the
BIP39 standard.

KEY_NEEDS_BACKUP (protected)
Trezor lets users see once the mnemonic sentence to make a backup. Once
the user makes a backup, it is no longer possible to see the mnemonic
sentence.

63

6. Analysis of Trezor One

// file: storage/storage.h

// If the top bit of APP is set, then the value is not encrypted.
#define FLAG_PUBLIC 0x80

// If the top two bits of APP are set, then the value is not encrypted and it
// can be written even when the storage is locked.
#define FLAGS_WRITE 0xC0

// file: firmware/config.c

#define APP (0x01 << 8)
#define FLAG_PUBLIC_SHIFTED (FLAG_PUBLIC << 8)
#define FLAGS_WRITE_SHIFTED (FLAGS_WRITE << 8)

#define KEY_UUID (0 | APP | FLAG_PUBLIC_SHIFTED) // bytes(12)
#define KEY_VERSION (1 | APP) // uint32
#define KEY_MNEMONIC (2 | APP) // string(241)
#define KEY_LANGUAGE (3 | APP | FLAG_PUBLIC_SHIFTED) // string(17)
#define KEY_LABEL (4 | APP | FLAG_PUBLIC_SHIFTED) // string(33)
#define KEY_PASSPHRASE_PROTECTION (5 | APP | FLAG_PUBLIC_SHIFTED) // bool
#define KEY_HOMESCREEN (6 | APP | FLAG_PUBLIC_SHIFTED) // bytes(1024)
#define KEY_NEEDS_BACKUP (7 | APP) // bool
#define KEY_FLAGS (8 | APP) // uint32
#define KEY_U2F_COUNTER (9 | APP | FLAGS_WRITE_SHIFTED) // uint32
#define KEY_UNFINISHED_BACKUP (11 | APP) // bool
#define KEY_AUTO_LOCK_DELAY_MS (12 | APP) // uint32
#define KEY_NO_BACKUP (13 | APP) // bool
#define KEY_INITIALIZED (14 | APP | FLAG_PUBLIC_SHIFTED) // uint32
#define KEY_NODE (15 | APP) // node
#define KEY_IMPORTED (16 | APP) // bool
#define KEY_U2F_ROOT (17 | APP | FLAG_PUBLIC_SHIFTED) // node
#define KEY_DEBUG_LINK_PIN (255 | APP | FLAG_PUBLIC_SHIFTED) // string(10)

Listing 6.3: Protected and Public Entries Stored in the Storage Area

64

6.8. NORCOW Storage

6.8.5 Cracking the PIN

Trezor limits the maximum of PIN tries to 16, the user is required to wait
2n−1 seconds (Listing 6.4), where n is the number of consecutive fail attempts.
After 15 failures, the user has to wait about 9 hours and 6 minutes for the
last attempt. Once n ≥ 16, the storage is wiped (Listing 6.5). Not only that,
the procedure is written neatly against fault injection attacks, before the PIN
is even verified after decryption against the stored PVC, it is incremented,
checked once more if the counter was incremented and then tried to unlock
the device.

if (sectrue != storage_pin_fails_increase()) {
return secfalse;

}
// Check that the PIN fail counter was incremented.
uint32_t ctr_ck = 0;
if (sectrue != pin_get_fails(&ctr_ck) || ctr + 1 != ctr_ck) {

handle_fault("PIN counter increment");
return secfalse;

}
// Check whether the entered PIN is correct.
if (sectrue != decrypt_dek(kek, keiv)) {
...

Listing 6.4: Safe PIN Counter Incrementation (storage/storage.c)

// Wipe storage if too many failures
wait_random();
if (ctr >= PIN_MAX_TRIES) {

storage_wipe();
error_shutdown("Too many wrong PIN", "attempts. Storage has",

"been wiped.", NULL);
return secfalse;

}

Listing 6.5: Storage Wipe (storage/storage.c)

65

6. Analysis of Trezor One

Trezor also implements a fault injection safe way to store the PIN counter
and instead of classic boolean values of zero for false and non-negative value
for true, it uses a secure version of these boolean values. 0xAAAAAAAAU as
sectrue (secure true) and 0x00000000U as secfalse (secure false) defined
in legacy/secbool.h. Another measure is randomizing the times during
which certain operations are done using wait_random function. This prevents
possible timing attacks or precisely timed fault injections on the USB input.

// Sleep for 2^ctr - 1 seconds before checking the PIN.
uint32_t wait = (1 << ctr) - 1;
ui_total += wait;
uint32_t progress = 0;
for (ui_rem = ui_total; ui_rem > ui_total - wait; ui_rem--) {

for (int i = 0; i < 10; i++) {
if (ui_callback && ui_message) {

if (ui_total > 1000000) { // precise enough
progress = (ui_total - ui_rem) / (ui_total / 1000);

} else {
progress = ((ui_total - ui_rem) * 10 + i) * 100 / ui_total;

}
if (sectrue == ui_callback(ui_rem, progress, ui_message)) {

return secfalse;
}

}
hal_delay(100);

}
}

Listing 6.6: Exponential Waiting Time (storage/storage.c)

6.8.6 Extracting the Mnemonic Sentence

With custom firmware, we could think of possibly extracting the mnemonic
sentence on a device previously initialized device with an official firmware. For
instance by using a custom-built firmware that would expose the encrypted
private entry with EDEK, protected entry with the mnemonic sentence, and
then brute-forcing the PIN on a computer, which is computationally feasible
(PIN code is up to 9 digits long). However, this is not possible, as is explained
in the Section 6.9 “Bootloader”, the unofficial firmware is detected and the
bootloader wipes the storage.

66

6.9. Bootloader

6.9 Bootloader

a bootloader is a small piece of software that is run after starting a device
and at the end of the process starts executing the code of the firmware. It is
an essential part of many embedded devices mainly because it gives us the
possibility to download or upgrade the firmware.

We want to be able to upgrade the firmware without the need of attaching
SWD/JTAG adapter to the PCB, which is often inaccessible without breaking
the case of the device and the security protections, such as RDP Level 2 of
STM32 MCUs, would not allow us to reprogram the flash memory.

The bootloader is usually write protected to prevent unintentional bricking
of the device and avoids attackers who would like to change some of the desired
security behaviours, notably user warnings of running an unofficial firmware.

Trezor created its own bootloader, which is stored in the first 2 sectors
(64 kB) of the user space flash memory. The flash memory layout is shown
in Table 6.6 on page 60. The bootloader used to be write protected using
the standard STM32 flash controller’s write protection feature, but since the
security bug discovery explained in “Write Protection” on page 56, Trezor has
been relying on the Memory Protection Unit of the ARM Cortex M3 chips to
protect the desired memory sectors of the bootloader instead.

6.9.1 Boot Modes

For completeness, STM32 MCU used in Trezor can also boot from the System
Memory Bootloader, which is programmed and burned into the flash memory
by ST and from SRAM. The boot mode (Flash Memory, System Memory,
SRAM) is decided upon detecting high or low values on BOOT0 and BOOT1
pins.

Since the RDP Level 2 is set, we cannot boot from the System Memory
Bootloader. If we booted from SRAM, for example by loading our code
via a custom firmware to SRAM, changing the values on BOOT0 and BOOT1
pins and then resetting the device, we still would not be able to read the flash
memory, as reading the flash memory from the System Bootloader and from
SRAM is not allowed in RDP Level 1 and 2.

When you buy Trezor, it is already set to RDP Level 2 and this is an
irreversible operation. Trezor will always start executing the bootloader from
the flash memory in a standard environment, not considering fault injection
attacks as shown by Ledger Donjon [22] and Kraken Security Labs [23].

6.9.2 Malicious Bootloader

Before the MPU replaced the STM32 write protection, it was theoretically
possible to put a malicious bootloader on the device. Trezor One comes with
a cross-check verification of the bootloader and the firmware. The bootloader

67

6. Analysis of Trezor One

checks the authenticity of the firmware and the firmware checks the authenticity
of the bootloader. The bootloader can now be rewritten only by a firmware
signed by SatoshiLabs, but the authenticity check from the firmware’s side
is still required for the potential rare case that the device was hacked and
the bootloader replaced before the MPU fix was introduced and the device
upgraded.

None of this is possible on the new Trezor Model T as it uses an on-the-chip
burned boardloader, which is loaded even before the bootloader and cannot
be changed. This boardloader checks the authenticity of the bootloader and
the bootloader checks the authentity of the firmware. No further checks are
needed.

However, with the changes made on Trezor One, we can say both Trezor One
and Trezor Model T now provide an equivalent level of the bootloader and, as
an implication of it, firmware safety.

6.9.3 Bootloader Code

Before we look at the bootloader main function itself. Let’s see first what the
important functions called, when the bootloader initializes, do.

memory_protect (Listing 6.7)

The body of the is not stripped by the preprocessor only if the bootloader
is compiled with MEMORY_PROTECT set, which is always true for the official
SatoshiLabs’ builds. Custom built firmwares must set MEMORY_PROTECT to
zero. What we can see in this function is a check of Option Bytes, which are
used to set nWRP (not write protection bits) and RDP Level 2. If it is not
already set, the Option Bytes are changed accordingly. Note again that setting
RDP Level 2 is an irreversible process and once set, it is not possible to change
the Option Bytes anymore. In an email conversation with Pavol Rusnok, the
CTO of SatoshiLabs, I was able to confirm that this function is for the first
time called on the very first boot during the hardware testing after the device
assembly. Therefore it should not be possible to buy a device without the
Option Bytes set properly.

mpu_config_bootloader (Listing 6.8)

In this function, it is first checked if the MPU is really disabled and then the
code starts setting the MPU protection rules, notably the last 32 Bytes of
the second sector are set to be not accessible, code execution from SRAM is
disabled, DMa controller access is disabled and MPU is enabled. We still do
not see the write protection of the bootloader.

68

6.9. Bootloader

void memory_protect(void) {
#if MEMORY_PROTECT

if (((FLASH_OPTION_BYTES_1 & 0xFFEC) == 0xCCEC) &&
((FLASH_OPTION_BYTES_2 & 0xFFF) == 0xFFC) &&
(FLASH_OPTCR == 0x0FFCCCED)) {

return; // already set up correctly - bail out
}
...
flash_unlock_option_bytes();
flash_program_option_bytes(0x0FFCCCEC);
flash_lock_option_bytes();

#endif
}

Listing 6.7: memory_protect function (legacy/memory.c)

void mpu_config_bootloader(void) {
// Disable MPU
MPU_CTRL = 0;
...
// Everything (0x00000000 - 0xFFFFFFFF, 4 GiB, read-write)
MPU_RBAR = 0 | MPU_RBAR_VALID | (0 << MPU_RBAR_REGION_LSB);
MPU_RASR = MPU_RASR_ENABLE | MPU_RASR_ATTR_FLASH | MPU_RASR_SIZE_4GB |

MPU_RASR_ATTR_AP_PRW_URW;
// Flash (0x8007FE0 - 0x08007FFF, 32 B, no-access)
MPU_RBAR =

(FLASH_BASE + 0x7FE0) | MPU_RBAR_VALID | (1 << MPU_RBAR_REGION_LSB);
MPU_RASR = MPU_RASR_ENABLE | MPU_RASR_ATTR_FLASH | MPU_RASR_SIZE_32B |

MPU_RASR_ATTR_AP_PNO_UNO;
// SRAM (0x20000000 - 0x2001FFFF, read-write, execute never)
...
// Don't enable DMa~controller access
...
// Enable MPU
MPU_CTRL = MPU_CTRL_ENABLE | MPU_CTRL_HFNMIENA;
...

}

Listing 6.8: mpu_config_bootloader function (legacy/setup.c)

69

6. Analysis of Trezor One

firmware_present_new (Listing 6.9)

This function is called to check whether a firmware is available on the device.
The code does it by checking a magic constant in the firmware and length of
the code. If it is incorrect, it is either a sign of a wrongly flashed firmware, or
a missing firmware.

bool firmware_present_new(void) {
const image_header *hdr =

(const image_header *)FLASH_PTR(FLASH_FWHEADER_START);
if (hdr->magic != FIRMWARE_MAGIC_NEW) return false;
...
if (hdr->codelen > FLASH_APP_LEN) return false;
if (hdr->codelen < 4096) return false;
return true;

}

Listing 6.9: firmware_present_new function (legacy/bootloader/signatures.c)

signatures_new_ok (Listing 6.10)

This is the part where the signatures of the firmware, which is found in
the firmware’s header, is verified with the public key of SatoshiLabs. The
ECDSa public keys are also found in legacy/bootloader/signatures.c.
SatoshiLabs currently store 5 ECDSa public keys in the source code of the
bootloader in a static global variable.

jump_to_firmware (Listing 6.11)

As the last thing, the bootloader jumps to the firmware, but the behaviour
is different, depending if the firmware was an official one, i. e. signed by
SatoshiLabs, or not. If it is the official firmware, the Interrupt Vector Table
(IVT), which is a data structure that contains interrupt handlers, the reset
value of a stack pointer and a start address, is relocated. After it runs
ivt->reset(), the firmware code starts executing, as the Program Counter
changes to the start of the firmware (address 0x08010000). In case we run
a custom firmware, the IVT is not relocated and mpu_config_firmware is
executed, which, among other things, enables the write protection of the
bootloader and sets an unprivileged mode of the processor, not allowing to
disable the MPU anymore. This is the reason why only SatoshiLabs can
reflash the bootloader, the process can be done in the firmware.

70

6.9. Bootloader

int signatures_new_ok(const image_header *hdr, uint8_t store_fingerprint[32]){
uint8_t hash[32] = {0};
compute_firmware_fingerprint(hdr, hash);
...
if (0 != ecdsa_verify_digest(&secp256k1, pubkey[hdr->sigindex1 - 1],

hdr->sig1, hash)) { // failure
return SIG_FAIL;

}
if (0 != ecdsa_verify_digest(&secp256k1, pubkey[hdr->sigindex2 - 1],

hdr->sig2, hash)) { // failure
return SIG_FAIL;

}
if (0 != ecdsa_verify_digest(&secp256k1, pubkey[hdr->sigindex3 - 1],

hdr->sig3, hash)) { // failure
return SIG_FAIL;

}
return SIG_OK;

}

Listing 6.10: signatures_new_ok function (legacy/bootloader/signatures.c)

#define FW_SIGNED 0x5A3CA5C3
#define FW_UNTRUSTED 0x00000000

static inline void __attribute__((noreturn))
jump_to_firmware(const vector_table_t *ivt, int trust) {

if (FW_SIGNED == trust) { // trusted signed firmware
SCB_VTOR = (uint32_t)ivt; // * relocate vector table
// Set stack pointer
__asm__ volatile("msr msp, %0" ::"r"(ivt->initial_sp_value));

} else { // untrusted firmware
timer_init();
mpu_config_firmware(); // * configure MPU for the firmware
__asm__ volatile("msr msp, %0" ::"r"(_stack));

}

// Jump to address
ivt->reset();
...

}

Listing 6.11: jump_to_firmware function (legacy/util.h)

71

6. Analysis of Trezor One

main (Listing 6.12)

In Listing 6.12 we can see main function of the bootloader. By looking at
the Makefiles for compilation of the bootloader, we can see APPVER is not set,
therefore the lines between #ifndef APPVER and #endif will not be stripped
off by the compiler’s preprocessor. The first thing what the code does is to
set some interfaces and clocks for GPIO, SPI and enable RNG, all in setup
function call. The function calls of our interest are memory_protect and
memory_protect.

memory_protect checks if the Option Bytes are set correctly. Effectively,
the setting is done only once, during the production when the bootloader is
launched for the first time.

oLedInit initializes the OLED display and mpu_config_bootloader pre-
pares some of the MPU protection rules (disabling execution from SRAM,
DMa controller access, etc) and enables the MPU.

Trezor checks for the button press. If the left button on the device is
physically pressed, or the firmware is not found, it skips loading of the firmware
and goes directly to bootloader_loop. Trezor starts looping in the bootloader
waiting for commands that can be sent to it via “Trezor Protocol” over the
USB from the host. You can flash a new firmware, check features, wipe the
firmware, etc.

If the left button is not pressed and a firmware is available on the device, it
draws a logo on the OLED display, checks the signatures against SatoshiLabs’
public ECDSa keys in signatures_new_ok and show the user a warning of an
unofficial firmware if it fails. This is a crucial security step that must be done.
check_firmware_hashes then checks if the hash of the firmware is the same
as the hash in the header of the firmware.

If everything is alright, MPU is disabled for the time being via the function
call of mpu_config_off and load_app is called. What load_app does is that
it fully erases the SRAM and calls the jump_to_firmware that will change
the program counter to the firmware position and relocates the IVT if the
firmware is officially signed by SatoshiLabs or write protects the bootloader
and sets an unprivileged mode, in case of a custom firmware.

72

6.9. Bootloader

int main(void) {
#ifndef APPVER

setup();
#endif

__stack_chk_guard = random32(); // this supports compiler provided
// unpredictable stack protection checks

#ifndef APPVER
memory_protect();
oledInit();

#endif

mpu_config_bootloader();

#ifndef APPVER
bool left_pressed = (buttonRead() & BTN_PIN_NO) == 0;

if (firmware_present_new() && !left_pressed) {
oledClear();
oledDrawBitmap(40, 0, &bmp_logo64_empty);
oledRefresh();

const image_header *hdr =
(const image_header *)FLASH_PTR(FLASH_FWHEADER_START);

uint8_t fingerprint[32] = {0};
int signed_firmware = signatures_new_ok(hdr, fingerprint);
if (SIG_OK != signed_firmware) {

show_unofficial_warning(fingerprint);
}

if (SIG_OK != check_firmware_hashes(hdr)) {
show_halt("Broken firmware", "detected.");

}

mpu_config_off();
load_app(signed_firmware);

}
#endif

bootloader_loop();

Listing 6.12: Bootloader main function (legacy/bootloader/bootloader.c)

73

6. Analysis of Trezor One

6.10 Firmware

a Firmware is an actual operating system loaded by the bootloader. For Trezor,
it initializes the device, generates a random mnemonic sentence using its own
TRNG, performs HD wallet derivations according to the given derivation
paths and performs transaction signing based on the chosen cryptocurrency
and its transaction model (a digital signature scheme and curve parameters,
a transaction format, etc). The firmware basically answers the message requests
sent by the computer host with its responses, e. g. a failure, a success or a signed
transaction, all defined in “Trezor Protocol” in Section 6.7.

For storage of secrets and other important data, it uses the Trezor’s own
“NORCOW Storage” model described in Section 6.8.

For cryptographic operations, Trezor uses its own cryptography library
that can be found in the Trezor’s Firmware repository under crypto. The
analysis of this library is out of the scope of this work as it could become
a foundation for a separate thesis.

If the firmware is signed by SatoshiLabs’ ECDSa private keys, whose public
keys are stored in the bootloader code, the firmware is launched in a privileged
mode. In this mode it allows the firmware to upgrade the bootloader itself.
If a user flashes an unofficial (custom) firmware, i. e. not an officially signed
firmware, it is launched in an unprivileged mode with enabled MPU protection
rules for bootloader sectors that cannot be changed, not allowing the custom
firmware to reflash the bootloader to a malicious one. a malicious actor
therefore cannot for example remove the warning of launching an unofficial
firmware.

6.10.1 Firmware Code

Before we look at the firmware main function itself. Let’s see first what the
important functions called, when the firmware launches, do.

check_bootloader (Listing 6.13)

Checks the hash of the bootloader installed on the device by comparing
with hashes of known bootloaders in known_bootloader function. For official
firmwares it allows to flash the bootloader.

This function is effectively run only when compiled with MEMORY_PROTECT
set, which is the case for official builds. If an unsigned firmware was built
with this set, it would return after the is_mode_unprivileged call and if
a custom firmware removed this part, it would crash the device on an attempt
to unlock the bootloader sectors by calling memory_write_unlock, which uses
the undocumented feature/bug of STM32 flash controller (unlocking bootloader
sectors setting FLASH_OPTCR register with desired Option Bytes), explained on
page 56.

74

6.10. Firmware

void check_bootloader(void) {
#if MEMORY_PROTECT

uint8_t hash[32] = {0};
int r = memory_bootloader_hash(hash);

if (!known_bootloader(r, hash)) {
layoutDialog(&bmp_icon_error, NULL, NULL, NULL, _("Unknown bootloader"),

_("detected."), NULL, _("Unplug your Trezor"),
_("contact our support."), NULL);

shutdown();
}

if (is_mode_unprivileged()) {
return;

}
...
// unlock sectors
memory_write_unlock();

for (int tries = 0; tries < 10; tries++) {
// replace bootloader
flash_wait_for_last_operation();
flash_clear_status_flags();
flash_unlock();
for (int i = FLASH_BOOT_SECTOR_FIRST; i <= FLASH_BOOT_SECTOR_LAST; i++) {

flash_erase_sector(i, FLASH_CR_PROGRAM_X32);
}
for (int i = 0; i < FLASH_BOOT_LEN / 4; i++) {

const uint32_t *w = (const uint32_t *)(bl_data~+ i * 4);
flash_program_word(FLASH_BOOT_START + i * 4, *w);

}
...
flash_wait_for_last_operation();
flash_lock();
// check whether the write was OK
...

}
...
shutdown();

#endif
}

Listing 6.13: check_bootloader function (legacy/firmware/bl_check.c)

75

6. Analysis of Trezor One

mpu_config_firmware (altered Listing 6.8)

Similar to mpu_config_bootloader from the bootloader, this function sets
the correct MPU protection rules with an exception that this function actually
sets the MPU to write protect the bootloader and sets the processor to an
unprivileged more by calling set_mode_unprivileged, not allowing to change
critical processor registers that could be used to disable MPU or to modify
FLASH_OPTCR register.

main (Listing 6.14)

During a usual compilation, APPVER is set to the correct firmware version
number, so the execution starts with check_bootloader, which by comparing
hashes of known bootloaders and the running bootloader, verifies the authen-
ticity of the bootloader and if there is a new bootloader ready, flash it. This
happens only for the officialy signed firmwares, as explained earlier.

The setupApp function call does some necessary tweaks to the RNG,
enables CSS (Clock Security System), instructs the GPIO mode and initializes
HMAC-DRBG in drgb_init with the value from Trezor’s TRNG implemented
in crypto/rand.c.

The bootloader sectors are write protected using the MPU protection rules
set in mpu_config_firmware and the processor is switched to an unprivileged
mode preventing changes to important registers. After this step, the firmware
can no longer change the bootloader code (or break any other MPU protection
rule) even when running an officially signed firmware.

Trezor draws a logo on its display and continues with initializating the
device in config_init. This function call initializes the device if the device
was wiped or never initialized, this means setting setting a random UUID
number to the flash storage area and also storing the version of the firmware.
If the firmware was downgraded it wipes the storage area with all secrets and
important information. If the previous firmware was really old, it upgrades
the storage area.

In layoutHome the Trezor draws a screensaver on the display with warn-
ings for a user, such as “SEEDLESS”, “BACKUP FAILED!” and “NEEDS
BACKUP!”. Following is the usbInit which initializes the USB connection
with the host computer and WebUSB41 API, which is used as a communication
API for the software interface running on the host computer to securely provide
access to the USB device connected to the computer host.

In the infinite loop, Trezor just polls the read buffer, i. e. reads messages
sent by the host, execute what is necessary and send a response. It also makes
sure all data in the out buffer is sent to the host in the usbPoll. There
is a security measure and user can lock their device or the device is locked
automatically after a defined period of time in check_lock_screen.

41https://wicg.github.io/webusb/

76

https://wicg.github.io/webusb/

6.10. Firmware

int main(void) {
#ifndef APPVER

setup();
__stack_chk_guard = random32(); // this supports compiler provided

// unpredictable stack protection checks
oledInit();

#else
check_bootloader();
setupApp();
__stack_chk_guard = random32(); // this supports compiler provided

// unpredictable stack protection checks
#endif

drbg_init();

if (!is_mode_unprivileged()) {
collect_hw_entropy(true);
timer_init();

#ifdef APPVER
// enable MPU (Memory Protection Unit)
mpu_config_firmware();

#endif
} else {

collect_hw_entropy(false);
}

...

oledDrawBitmap(40, 0, &bmp_logo64);
oledRefresh();

config_init();
layoutHome();
usbInit();
for (;;) {

usbPoll();
check_lock_screen();

}

return 0;
}

Listing 6.14: Firmware main function (legacy/firmware/trezor.c)

77

Chapter 7
Side-Channel Experiments

This chapter aims to present some of the experiments performed during the
testing of Trezor One on side-channel attacks.

The device tested, Trezor One, is presumably protected against most side-
channel attacks, as suggested by the software implementation and various
side-channel issues reported42 and fixed in the past.

It is powered by ARM Cortex M3 processor clocked at 120 Mhz, which
makes it harder to attack compared to typical smart cards with processors
clocked at one tenth of this frequency or even less – this matters as instructions
are executed way faster. Another thing is that after testing multiple devices
provided by SatoshiLabs, each device has shown mildly different characteristics
and one of the devices was so noisy during the voltage measurement over
a shunt resistor that it prevented capturing any meaningful information from
the power consumption.

7.1 Setup

All measurements were executed using the Teledyne LeCroy HDO9404 oscillo-
scope with different probes to measure voltage drops over a shunt resistor for
power analysis and electromagnetic leakage on the MCU’s chip (Figure 7.1).

An active USB hub was used to reduce the noise that would normally be
caused by an unstable USB port of a computer.

Triggering of the oscilloscope could be done in many ways, some of them
include manually starting the measurement from a computer connected to the
oscilloscope via VISA43 API, setting the trigger on the oscilloscope, signal sent
over a serial interface to the oscilloscope, such as UART or creating a rising or
a falling edge by manipulating one of the free GPIO44 pins of the MCU.

42https://thecharlatan.github.io/List-Of-Hardware-Wallet-Hacks/
43Virtual instrument software architecture
44General-purpose input/output

79

https://thecharlatan.github.io/List-Of-Hardware-Wallet-Hacks/

7. Side-Channel Experiments

(a)

(b)

Figure 7.1: (a) Capturing of the electromagnetic emission on a DIY holder
made from a 3D printer, (b) Measurement of voltage drops over a 10 Ω shunt
resistor

During the first measurements we used to data sent over UART as a signal
to trigger the oscilloscope to get an idea where to look. The signal was
sent before sending a message over the USB to the Trezor One to execute
a cryptographic operation. For communication with the device, trezorctl45,
a command-line client written in Python, was used. In later phases, PA13 pin
(normally used by JTAG/SWD as JTMS/SWDIO pin) was reprogrammed to
create a rising edge right before the watched cryptographic operation and this
signal used as a oscilloscope trigger, giving the best possible estimate where
the device is performing critical operations. The side effect is more noise.

45https://pypi.org/project/trezor/

80

https://pypi.org/project/trezor/

7.2. Timing Attack on PIN

7.2 Timing Attack on PIN

Before reimplementation of the storage module in Firmware v1.8.0 in 2019,
the PIN used to be stored on the device itself in the flash memory and checked
in a verifying function.

For the purpose of this thesis, this functionality was intentionally reim-
plemented in verify_pin function (Listing 7.1) to the current firmware with
a little change: code execution time now depends on the number of correctly
guessed digits. Let’s call this a “naivePIN” implementation and see if we
can perform a successful timing attack, how feasible it would be in reality,
mitigations and current implementation.

Trezor allows the PIN to be from 1 to 9 digits long, zeros are not permitted.
If we were able extract the PIN based on the timing attack and without
considering other countermeasures like exponential waiting time and wipe after
16 unsuccessful attempts, it would take us at maximum 9 · 9 = 81 tries to crack
the maximum-length PIN.

secbool verify_pin(const char *pin) {
const char *sPIN = stored_PIN;
size_t i = 0;

for (i = 0; pin[i] != 0 && i < len; ++i) {
if (sPIN[i] != pin[i]) {

return secfalse;
}

}

return sectrue;
}

Listing 7.1: Naive PIN Check Implementation (legacy/firmware/config.c)

In our example, we use a 6-digit-long PIN that is known to us to test the
attack. On the next page in Figure 7.2 we can see the power traces when
6, 5 and 4 digits of the PIN are entered correctly. We can see clearly there’s
a time side channel as expected.

Given the fact, the processor used is relatively powerful and clocked at 120
MHz, the difference in time is very small. The time added with one more digit
guessed correctly varies around 110 ns. An attacker would have a hard time
with any cheap oscilloscopes on the market that have their sampling rate only
about 10 to 100 MS/s. 10 MS/s translates to a new point every 100 ns, for
100MS/s it is every 10 ns and we have to count for the noise, our success rate
decreases with worse equipment.

81

7. Side-Channel Experiments

In Figure 7.3 we can see the complete comparison of power traces for 0 to
6 PIN digits guessed correctly confirming what we found.

0 ns 200 ns 400 ns 600 ns 800 ns 1000 ns
Time

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Vo
lta

ge

Example traces for verify_pin function
6 Digits
5 Digits
4 Digits

Figure 7.2: Example PIN Check Power Traces

Figure 7.3: Measured time of PIN check procedure with different number of
correctly guessed PIN digits showing a time side channel

82

7.2. Timing Attack on PIN

7.2.1 Attack Mitigation

In order to prevent a timing attack on operations involving secrets stored on
the device, we should always write our functions in a way to have the same
or very similar execution time. This might often require creating dummy
operations when certain branching happens or creating additional noise in
various possible ways.

The actual pin verifying function used in Trezor prior Firmware v1.8.0 is
shown in Listing 7.2. We can see the PIN stored in the device is accessed
via storageRom->pin pointer. The execution time relies only on the user’s
input, presented_pin pointer to the user’s PIN input, giving no valuable
information to the attacker. This is a classic way to compare arrays in a safe
manner. Instead of substraction we could also use XOR. At the end it is
checked whether the PIN checked was not only a substring of the real PIN
(sizes of strings pointed by storageRom->pin and presented_pin are the
same).

bool storage_containsPin(const char *presented_pin)
{

char diff = 0;
uint32_t i = 0;
while (presented_pin[i]) {

diff |= storageRom->pin[i] - presented_pin[i];
i++;

}
diff |= storageRom->pin[i];
return diff == 0;

}

Listing 7.2: Smart PIN Check Implementation (legacy/firmware/config.c)

Even though there is no time side channel in this storage_containsPin
function, there might still power analysis or electromagnetic emission based
attacks possible, which was proven to be true [38]. Ledger Donjon accomplished
to crack the PIN with a state-of-the-art profiled attack using Machine Learning.
After building a database of power traces, they were able to crack the PIN
after trying 10 random PINs with 100% success rate on the 11th try. Even
with exponential waiting time countermeasure and max PIN attempts limit,
this attack is in reality feasible and works well.

In Firmware v1.8.0 the complete storage module of Trezor was rewritten
and the device no longer stores the PIN. The inserted PIN is only used to
decrypt internal secrets as explained in “PIN, Random Salt, (E)DEK, (E)SAK
and PVC” on page 61. Every PIN is treated equally, including the incorrect

83

7. Side-Channel Experiments

ones, which will result in wrong PVC and being unable to decrypt any protected
entries in the storage area.

7.3 OLED Side Channel

Trezor One features a UG-2864HSWEG01 128x64 0.96" Monochrome White
OLED display using an SSD1306 controller. It was discovered that common
SSD1306-like displays are prone to information leakage via power consumption
side channel [39] that can be observed for instance by measuring voltage drops
over a shunt resistor on the USB cable powering the device.

We start with a little observation. First we draw one line on the display
(Figure 7.4) and then a black bitmap (Figure 7.5). We can see multiple periods
for both cases and it seems that the power consumption is significantly affected
by what is being drawn on the OLED display.

Figure 7.4: One Line Drawn on Display

Figure 7.5: Black Bitmap Drawn on Display

84

7.3. OLED Side Channel

(a) 1st Frame (b) 2nd Frame (c) 3rd Frame

Figure 7.6: Sequence of Frames From 240 FPS Capture of Display

Power traces measured during the testing showed that the refresh rate of
the display should be around 90 Hz – if what we measured, really was affected
by the display and not something else. However, we were not able to confirm
this from the public information.

To confirm the frequency, a short 240 FPS video of the device, showing
one of the seed words during the backup, was taken. In Figure 7.6 we can
see three consecutive frames showing it takes approximately 3 frames to draw
one full refresh of the display. Thus one period is 3/240 = 1/80 of a second
and the frequency should be 80 Hz. Based on our captured video we can see
it is a bit faster and the refresh rate of 90 Hz is plausible. Another valuable
information from the video that confirms our observation from the oscilloscope
is that the image is drawn from the bottom on line-by-line basis. The power
consumption spike shown earlier in Figure 7.4 is caused by the line of the text
at the end of the display refresh period.

To sum up, our initial findings are:

• Refresh rate of the display is around 90 Hz

• Display starts drawing from the bottom on line-by-line basis

• OLED display shows a distinct power consumption side channel

• White pixels impact the power consumption significantly at the time the
particular line is drawn on the display

85

7. Side-Channel Experiments

7.3.1 Seed Backup

This side-channel vulnerability could be exploited by providing a modified
USB cable with a malicious measurement circuitry and a way to transmit
the data to the attacker. a malicious cable could be inserted in the shipping
process by hijacking the supply chain, for more information see “Supply Chain
Attacks” on page 35.

The question is whether by measuring the power consumption, we can
distinguish backup words shown on the device when the user is writing down
the recovery phrase to be later able to recover his cryptocurrencies even if the
lost the device or the device stopped functioning properly. If there is a distinct
correlation between the power consumption of each of the possible words and
their respective power consumption, this attack is plausible.

After performing multiple measurements to check different words, we could
find the exact spot that is different for every word. An example with words
“evil” and “frame” is shown in Figure 7.7 and the critical part of power traces
of six other words in Figure 7.8.

Figure 7.7: Different Words Imply Different Power Traces

86

7.3. OLED Side Channel

(a) trash (b) glow

(c) hard (d) lemon

(e) merit (f) owner

Figure 7.8: Power Traces of Selected Words

87

7. Side-Channel Experiments

This side channel can also be abused in the recovery process, which is very
similar to the backup process and also in the process of entering PIN by the
user.

When the user sends the PIN code to the device, the computer should
encode the PIN as if the numbers are ordered like they are on the numeric
keypad. With a modified USB cable, we could sniff the encoded PIN digits
sent over the data wire of the USB cable to the Trezor and the randomized
blind matrix shown on the display via the power wire of the USB cable. This
gives the attacker a full picture about the user’s PIN. The attacker would then
need to physically steal the device from the user, use the discovered PIN to
unlock the device and send the funds over to his address.

7.3.2 Mitigation

The issue can be mitigated by introducing more noise to the power consumption.
An obvious solution is to light up enough of the pixels around the word, so
that an attacker cannot find a correlation between the power traces and the
words like previously.

The issue was mitigated in Firmware v1.8.2. Most space of the rows that
make up the word are lightened up, except for the word itself, which is now
black (Figure 7.10). This significantly increases the power consumption while
rendering the critical lines of the display making it in practice impossible to
find any correlation with the words. The increased power consumption can be
seen in Figure 7.9 in the first part of the graph and is almost identical for all
words leaving no space for a successful statistical analysis.

0.0 0.2 0.4 0.6 0.8 1.0
Time 1e7

0.2

0.3

0.4

0.5

0.6

V
o
lt
a
g
e

milk

ostrich

Figure 7.9: Power Traces in Firmware with Mitigated OLED Side Channel

88

7.3. OLED Side Channel

Figure 7.10: Mitigation of OLED Side Channel

89

7. Side-Channel Experiments

7.4 Scalar Multiplication

From all cryptographic operations performed by the device cryptocurrencies in
general, the elliptic curve scalar multiplication is absolutely the most prominent
one. Therefore it is worthy taking a look if it is possible to observe anything
meaningful.

One of the important steps before watching scalar multiplication, is modi-
fying the firmware to disable the OLED display, otherwise we would need to
change the setup how we measure the power consumption due to the signifi-
cant noise from drawing the image on the display. It is, however, possible to
accomplish the same without disabling the display.

In practice, before performing an attack on an unchanged, not manipulated
device, most observations and attacks are first studied isolated and often with
help of artificial triggers from GPIO pins, as we did when measuring the timing
attack on PIN.

To study scalar multiplication we need an operation done by the device. We
look for an operation that works with a private key. We could choose to sign
a transaction operation or sign a message operation, however, these operations
without further modifications of the firmware, require physical confirmation
on the device.

We choose the get-public-node operation, which in the background performs
operations defined in BIP32 [12] and mainly “Child Key Derivation” described
on page 18. Note that when normally using the device, every situation when
the device shows us our cryptocurrency address, e. g. a Bitcoin address, this
operation is performed and the final public key is hashed in a smart way defined
by the cryptocurrency into the final form called an address, which can be used
to receive the cryptocurrency.

We would like to derive a public node for Bitcoin according to the derivation
path of m/49'/0'/0'/0/0. According to the BIP32 standard, this requires
generating a root node from the binary representation of the mnemonic sentence,
performing three CKDs from parent to a hardened child private key (index
numbers with an apostrophe), then two CKDs from parent to non-hardenered
child private key (index numbers without an apostrophe) and finally a public
key derivation from our destination node (its private key).

Each non-hardenered child private key derivation uses scalar multiplication
to get a public key of the parent, which is then used in the non-hardened
private key derivation. This means we should see two scalar multiplications for
CKDs and one for the final public key derivation using the private key from
the destination node. The private key that would be used to sign a transaction.
Therefore we care only about the last scalar multiplication, because only this
operation involves the private key of our interest.

90

7.4. Scalar Multiplication

We execute the following command on the computer:

trezorctl btc get-public-node -n "m/49'/0'/0'/0/0"

and observe the following power consumption side channel in Figure 7.11:

0.0 0.5 1.0 1.5 2.0 2.5
Time 1e7

0.2

0.3

0.4

0.5

0.6

Vo
lta

ge

Figure 7.11: Scalar Multiplication Side Channel

We were able to identify that the two wide bulks are the scalar multiplication
operations executed by the device, missing the third one. After studying the
implementation, we were able to discover the issue why the third bulk, the
third scalar multiplication, is not shown.

The reason why is that during our testing, we perform the operation in
a loop and the device uses its own implemented caching of nodes and the
last parent node is always cached in the memory. This cache can hold up
to 10 nodes. If the node has been previously cached, the parent node of the
destinaton node is found, the last CKD (non-hardenered) is executed to get
the destination node’s private key and then the final public key is derived.
This is equal to exactly two scalar multiplications.

The second bulk, in a cached derivation shown in Figure 7.11, therefore
exposes the final scalar multiplication involving the private key of our interest.

We proved that there is an operation dependent power consumption side
channel, however, if this side channel can be used to recover the private key, or
at least part of it, remains unanswered and would require further investigation.
Even if the answer is yes, this operations requires the knowledge of the PIN
and if an attacker already knows the PIN and has access to the device, they
can send all the funds to themself.

91

Conclusion

Threat models and common threats of hardware wallets were assessed. Six
models of modern hardware crypto wallets were analyzed and their security
reviewed with Bitfi Wallet being a rip-off with its vendor lying to their cus-
tomers. The conclusion of the security evaluation is that users cannot simply
go and buy any hardware wallet on the market, but first should decide what
they expect from it, do at least a brief research, have a rough idea how the
device works and then make an educated purchase. In general, customers will
not make a mistake if they buy leading products from Trezor or Ledger.

The original hardware wallet, invented in the Czech Republic in 2014,
Trezor One, was thoroughly analyzed from both hardware and software per-
spective. Given little to no official documentation and some information only
available in the comments inside the code, or in the program logic itself, this
thesis provides readers the first chance to look under the hood of such device
without them going deeply into the code and hardware themselves. This thesis
also verifies the security claims of SatoshiLabs and shows how important being
Open Source is. Especially when it comes to money and other digital assets,
as other vendors can make empty promises that cannot be verified and are
often proven false, as we have seen at competitors.

Although hardware crypto wallets protect users mainly from remote attacks,
the users should not forget about the physical security. If their device is stolen,
it is only a matter of time and expertise before the cryptographic secret
is revealed either by a currently unknown side-channel vulnerability or by
injecting a fault and reading the memory inside. We even saw that a human
error of the chip supplier STMicroelectronics can cause breaking of the security
model of devices using their chips. And it is worth pointing out that we cannot
surely avoid supply chain attacks, as buyers we can only minimize the chances
of ourselves being attacked by buying the hardware in recommended stores
or directly from the vendor. We are never absolutely safe, but our security is
definitely increased by using one of these devices.

93

Bibliography

1. Nakamoto, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System
[online]. 2008 [visited on 2020-03-05]. Available from: https://bitcoin.
org/bitcoin.pdf.

2. Antonopoulos, Andreas M. Mastering Bitcoin: Programming the Open
Blockchain. 2nd Edition. Sebastopol, CA: O’Reilly Media, 2017. ISBN
978-1491954386.

3. Rocket, Team. Snowflake to Avalanche: A Novel Metastable Consensus
Protocol Family forCryptocurrencies [online]. 2018 [visited on 2020-05-10].
Available from: https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4Yu
vJh5o2FYopNPVYwrRVGV.

4. Back, Adam. Hashcash – A Denial of Service Counter-Measure [online].
2002 [visited on 2020-03-05]. Available from: http://www.hashcash.org/
papers/hashcash.pdf.

5. Acdx. Diagram illustrating how a simple digital signature is applied and
verified. [online]. 2008 [visited on 2020-03-09]. Available from: https:
//commons.wikimedia.org/wiki/File:Digital_Signature_diagram.
svg.

6. SuperManu. Example elliptic curves [online]. 2007 [visited on 2020-
03-10]. Available from: https://commons.wikimedia.org/wiki/File:
ECClines-2.svg.

7. Hoffstein, Jeffrey; Pipher, Jill Catherine; Silverman, Joseph H. An In-
troduction to Mathematical Cryptography [online]. New York, NY: Springer
New York, 2008 [visited on 2020-03-10]. ISBN 978-0-387-77993-5. Available
from DOI: 10.1007/978-0-387-77993-5.

8. Antonopoulos, Andreas M.; Wood, Gavin. Mastering Ethereum: Build-
ing Smart Contracts and DApps. Sebastopol, CA: O’Reilly Media, 2018.
ISBN 978-1491971949.

95

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
https://commons.wikimedia.org/wiki/File:Digital_Signature_diagram.svg
https://commons.wikimedia.org/wiki/File:Digital_Signature_diagram.svg
https://commons.wikimedia.org/wiki/File:Digital_Signature_diagram.svg
https://commons.wikimedia.org/wiki/File:ECClines-2.svg
https://commons.wikimedia.org/wiki/File:ECClines-2.svg
https://doi.org/10.1007/978-0-387-77993-5

Bibliography

9. Certicom Research. SEC 2: Recommended Elliptic Curve Domain
Parameters [online]. 2010 [visited on 2020-03-15]. Available from: https:
//www.secg.org/sec2-v2.pdf.

10. Standards, National Institute of; Technolog. FIPS 186-4 – Digital
Signature Standard (DSS) [online]. 2013 [visited on 2020-03-22]. Available
from: https://csrc.nist.gov/publications/detail/fips/186/4/
final.

11. Palatinus, Marek; Rusnak, Pavol; Voisine, Aaron; Bowe, Sean. BIP39:
Mnemonic code for generating deterministic keys [online]. 2013 [visited
on 2020-03-17]. Available from: https://github.com/bitcoin/bips/
blob/master/bip-0039.mediawiki.

12. Wuille, Pieter. BIP32: Hierarchical Deterministic Wallets [online]. 2012
[visited on 2020-03-17]. Available from: https://github.com/bitcoin/
bips/blob/master/bip-0032.mediawiki.

13. Palatinus, Marek; Rusnak, Pavol. BIP43: Purpose Field for Determin-
istic Wallets [online]. 2014 [visited on 2020-03-17]. Available from: https:
//github.com/bitcoin/bips/blob/master/bip-0043.mediawiki.

14. Palatinus, Marek; Rusnak, Pavol. BIP44: Multi-Account Hierarchy
for Deterministic Wallets [online]. 2014 [visited on 2020-03-17]. Available
from: https://github.com/bitcoin/bips/blob/master/bip-0044.
mediawiki.

15. Rusnak, Pavol; Palatinus, Marek. SLIP44: Registered coin types for
BIP-0044 [online]. 2014 [visited on 2020-03-17]. Available from: https:
//github.com/satoshilabs/slips/blob/master/slip-0044.md.

16. Ledger. Personal Security Devices [online] [visited on 2020-03-19]. Avail-
able from: https://ledger.readthedocs.io/en/latest/background/
personal_security_devices.html.

17. SatoshiLabs. Our Response to Ledger’s #MITBitcoinExpo Findings
[online]. 2019 [visited on 2020-03-20]. Available from: https://blog.
trezor.io/our-response-to-ledgers-mitbitcoinexpo-findings-
194f1b0a97d4.

18. Mangard, Stefan; Oswald, Elisabeth; Popp, Thomas. Power Analysis
Attacks [online]. Boston, MA: Springer US, 2007 [visited on 2020-04-16].
ISBN 978-0-387-30857-9. Available from DOI: 10.1007/978- 0- 387-
38162-6.

19. KOÇ, Çetin K. (ed.). Cryptographic Engineering [online]. Boston, MA:
Springer US, 2009 [visited on 2020-04-16]. ISBN 978-0-387-71817-0. Avail-
able from DOI: 10.1007/978-0-387-71817-0.

20. Buček, Jiří. HW Security: Side-Channel Attacks [Lecture]. Prague: Czech
Technical University in Prague, Faculty of Information Technology, 2019.

96

https://www.secg.org/sec2-v2.pdf
https://www.secg.org/sec2-v2.pdf
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/satoshilabs/slips/blob/master/slip-0044.md
https://github.com/satoshilabs/slips/blob/master/slip-0044.md
https://ledger.readthedocs.io/en/latest/background/personal_security_devices.html
https://ledger.readthedocs.io/en/latest/background/personal_security_devices.html
https://blog.trezor.io/our-response-to-ledgers-mitbitcoinexpo-findings-194f1b0a97d4
https://blog.trezor.io/our-response-to-ledgers-mitbitcoinexpo-findings-194f1b0a97d4
https://blog.trezor.io/our-response-to-ledgers-mitbitcoinexpo-findings-194f1b0a97d4
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-71817-0

Bibliography

21. Salem, Rashid. Breaking the Ledger Security Model [online]. 2018 [visited
on 2020-03-20]. Available from: https://saleemrashid.com/2018/03/
20/breaking-ledger-security-model/.

22. Ledger Donjon. Unfixable Seed Extraction on Trezor – A practical
and reliable attack [online]. 2019 [visited on 2020-03-22]. Available from:
https://donjon.ledger.com/Unfixable-Key-Extraction-Attack-
on-Trezor/.

23. Kraken Security Labs. Kraken Identifies Critical Flaw in Trezor
Hardware Wallets [online]. 2020 [visited on 2020-03-22]. Available from:
https://blog.kraken.com/post/3662/kraken-identifies-critica
l-flaw-in-trezor-hardware-wallets/.

24. Kraken Security Labs. Inside Kraken Security Labs: Flaw Found in
Keepkey Crypto Hardware Wallet [online]. 2019 [visited on 2020-03-22].
Available from: https://blog.kraken.com/post/3245/flaw-found-
in-keepkey-crypto-hardware-wallet/.

25. ShapeShift. ShapeShift Security Statement [online]. 2019 [visited on
2020-03-20]. Available from: https://medium.com/shapeshift- sto
ries/responding- to- ledgers- 2019- breakingbitcoin- findings-
4213849a4fb.

26. Slush. Trezor Model T Photo Front [online]. 2018 [visited on 2020-05-25].
Available from: https://en.bitcoin.it/wiki/File:Trezor-model-t-
photo-front.jpg.

27. Murzika. Ledger Nano S Photo [online]. 2018 [visited on 2020-05-25].
Available from: https://en.bitcoin.it/wiki/File:Trezor-model-t-
photo-front.jpg.

28. Ledger. Hardware Architecture [online]. 2017 [visited on 2020-03-17].
Available from: https://ledger.readthedocs.io/en/latest/bolos/
hardware_architecture.html.

29. Ledger. Ledger Nano X Product Page [online]. 2019 [visited on 2020-
03-17]. Available from: https://shop.ledger.com/products/ledger-
nano-x.

30. Ledger. Ledger Nano X & Bluetooth – Security Model of a Wireless
Hardware Wallet [online]. 2019 [visited on 2020-03-17]. Available from:
https://www.ledger.com/ledger- nano- x- bluetooth- security-
model-of-a-wireless-hardware-wallet/.

31. Dstanchfield. Ledger Nano S Photo [online]. 2015 [visited on 2020-05-
25]. Available from: https://en.bitcoin.it/wiki/File:Keepkey.jpg.

32. Bitfi. Bitfi Wallet Product Page [online]. 2018 [visited on 2020-03-17].
Available from: https://go.bitfi.com/product/bitfi-hardware-
wallet/.

97

https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://donjon.ledger.com/Unfixable-Key-Extraction-Attack-on-Trezor/
https://donjon.ledger.com/Unfixable-Key-Extraction-Attack-on-Trezor/
https://blog.kraken.com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/
https://blog.kraken.com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/
https://blog.kraken.com/post/3245/flaw-found-in-keepkey-crypto-hardware-wallet/
https://blog.kraken.com/post/3245/flaw-found-in-keepkey-crypto-hardware-wallet/
https://medium.com/shapeshift-stories/responding-to-ledgers-2019-breakingbitcoin-findings-4213849a4fb
https://medium.com/shapeshift-stories/responding-to-ledgers-2019-breakingbitcoin-findings-4213849a4fb
https://medium.com/shapeshift-stories/responding-to-ledgers-2019-breakingbitcoin-findings-4213849a4fb
https://en.bitcoin.it/wiki/File:Trezor-model-t-photo-front.jpg
https://en.bitcoin.it/wiki/File:Trezor-model-t-photo-front.jpg
https://en.bitcoin.it/wiki/File:Trezor-model-t-photo-front.jpg
https://en.bitcoin.it/wiki/File:Trezor-model-t-photo-front.jpg
https://ledger.readthedocs.io/en/latest/bolos/hardware_architecture.html
https://ledger.readthedocs.io/en/latest/bolos/hardware_architecture.html
https://shop.ledger.com/products/ledger-nano-x
https://shop.ledger.com/products/ledger-nano-x
https://www.ledger.com/ledger-nano-x-bluetooth-security-model-of-a-wireless-hardware-wallet/
https://www.ledger.com/ledger-nano-x-bluetooth-security-model-of-a-wireless-hardware-wallet/
https://en.bitcoin.it/wiki/File:Keepkey.jpg
https://go.bitfi.com/product/bitfi-hardware-wallet/
https://go.bitfi.com/product/bitfi-hardware-wallet/

Bibliography

33. Slush. Confirming transaction with TREZOR [online]. 2014 [visited on
2020-05-25]. Available from: https://en.bitcoin.it/wiki/File:
Trezor-tx.jpg.

34. STMicroelectronics. STM32F205xx Datasheet [online]. 2019 [visited
on 2020-05-25]. Available from: https://www.st.com/resource/en/
datasheet/stm32f205rb.pdf.

35. SatoshiLabs. Holographic Seals [online]. 2019 [visited on 2020-05-25].
Available from: https://wiki.trezor.io/Holographic_seal.

36. STMicroelectronics. STM32F205xx Reference manual [online]. 2018
[visited on 2020-05-25]. Available from: https://www.st.com/resou
rce/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-
stm32f215xx- and- stm32f217xx- advanced- armbased- 32bit- mcus-
stmicroelectronics.pdf.

37. SatoshiLabs. Trezor Storage [online]. 2019 [visited on 2020-03-17]. Avail-
able from: https://github.com/trezor/trezor- firmware/tree/
master/storage.

38. Ledger Donjon. Breaking Trezor One with Side Channel Attacks [on-
line]. 2019 [visited on 2020-03-23]. Available from: https://donjon.
ledger.com/Breaking-Trezor-One-with-SCA/.

39. Reitter, Christian. OLED side channel – summary October 2019 [online].
2019 [visited on 2020-04-20]. Available from: https://blog.inhq.net/
posts/oled-side-channel-status-summary/.

98

https://en.bitcoin.it/wiki/File:Trezor-tx.jpg
https://en.bitcoin.it/wiki/File:Trezor-tx.jpg
https://www.st.com/resource/en/datasheet/stm32f205rb.pdf
https://www.st.com/resource/en/datasheet/stm32f205rb.pdf
https://wiki.trezor.io/Holographic_seal
https://www.st.com/resource/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://github.com/trezor/trezor-firmware/tree/master/storage
https://github.com/trezor/trezor-firmware/tree/master/storage
https://donjon.ledger.com/Breaking-Trezor-One-with-SCA/
https://donjon.ledger.com/Breaking-Trezor-One-with-SCA/
https://blog.inhq.net/posts/oled-side-channel-status-summary/
https://blog.inhq.net/posts/oled-side-channel-status-summary/

Appendix A
Acronyms

BIP Bitcoin Improvement Proposal

BLE Bluetooth Low Energy

CKD Child Key Derivation

CMOS Complementary Metal-Oxide-Semiconductor

DLT Distributed Ledger Technology

DMA Direct Memory Access

DPA Differential Power Analysis

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

(E)DEK (Encrypted) Data Encryption Key

(E)SAK (Encrypted) Storage Authentication Key

FIPS Federal Information Processing Standard

FOTA Firmware Over The Air

GPIO General-Purpose Input/Output

HD Hamming Distance

HD Wallet Hierarchical Deterministic Wallet

HW Hamming Weight

JBOK Just a Bunch of Keys

JSON JavaScript Object Notation

99

A. Acronyms

JTAG Joint Test Action Group

KEK Key Encryption Key

MAC Message Authentication Code

MCU Microcontroller Unit

MPU Memory Protection Unit

NIST National Institute of Standards and Technology

NORCOW NOR Copy-on-Write

OLED Organic Light-emitting Diode

OTP One Time Programmable

PCB Printed Circuit Board

PCC Pearson Correlation Coefficient

PIN Personal Identification Number

PVC PIN Verification Code

RAM Random Access Memory

RDP Read Protection

RISC Reduced Instruction Set Computer

RPC Remote Procedure Call

SAT Storage Authentication Tag

SOC System on a Chip

SPA Simple Power Analysis

ST STMicroelectronics

SWD Serial Wire Debug

(T)RNG (True) Random Number Generator

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VISA Virtual Instrument Software Architecture

XML Extensible Markup Language

100

Appendix B
Contents of Enclosed

USB Flash Drive

README.md............the file with USB Flash Drive contents description
src.......................................the directory of source codes

firmwares........the directory of firmwares used during experiments
scripts.............the directory of trezor scripts used while testing
traces........the directory of oscilloscope traces and plotting scripts
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

101

	Introduction
	Cryptocurrencies Introduction
	Introduction to DLT
	Blockchain
	Bitcoin
	Consensus

	Fundamentals of Crypto Wallets
	Public Key Cryptography
	Elliptic Curves
	Digital Signatures
	Mnemonic Sentences
	Storing the Key Pairs

	Hardware Crypto Wallets
	Storing the Cryptocurrency
	Hot vs. Cold Wallets
	Personal Security Devices
	Threat Models
	List of Common Threats

	Physical Attacks Theory
	Classification
	Power Consumption
	Advanced Attacks

	Evaluation of Hardware Crypto Wallets
	Unfixable Attacks
	Trezor One
	Trezor Model T
	Ledger Nano S
	Ledger Nano X
	KeepKey
	Bitfi Wallet
	Conclusion

	Analysis of Trezor One
	Hardware Architecture
	The Casing and Material
	Packaging
	Debugging via SWD/JTAG
	BootROM and Option Bytes
	Open Source Repository
	Trezor Protocol
	NORCOW Storage
	Bootloader
	Firmware

	Side-Channel Experiments
	Setup
	Timing Attack on PIN
	OLED Side Channel
	Scalar Multiplication

	Conclusion
	Bibliography
	Acronyms
	Contents of Enclosed USB Flash Drive

