
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 17, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Automated tool for CAN bus message mapping

 Student: Duc Huy Do

 Supervisor: Bc. Martin Pozděna, MSc

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2020/21

Instructions

The goal of the thesis is to research and develop a software framework to support CAN bus message
mapping, similar to the functionality of nmap in TCP/IP network mapping. CAN bus message formats can be
different among different car manufacturers and therefore the framework shall be implemented with
scanning modules. One module for CAN bus message reconnaissance shall be developed to test the
framework functionality.

1. Survey existing research on SW frameworks and tools for CAN bus message mapping.
2. Analyze potential SW framework design and propose an API designed for future plug-in modules.
3. Design, implement and test a software framework for CAN bus message monitoring and mapping.
Discuss further framework design details including functional and non-functional requirements with the
supervisor.
4. Design, implement, and test one CAN bus message reconnaissance module.

References

Will be provided by the supervisor.

Acknowledgements

First and foremost, I would like to thank my supervisor Martin Pozděna from
Auxilium Cyber Security for his patient guidance and lots of insightful and
sharp comments. I am also grateful to Thomas Sermpinis, who helped me find
useful research material and other relevant resources. Finally, a huge thank
you goes to my family and friends for their support and encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on June 2, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Duc Huy Do. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Do, Duc Huy. Automated Tool for CAN Bus Message Mapping. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2020.

Abstract

In this bachelor’s thesis, we first examine the topic of CAN bus message map-
ping and then create a tool to help with such a task. Control Are Network
is a message protocol used in industrial domains, especially the automotive
industry. With CAN bus we can create a cheap and robust communication
network for devices and sensors in the vehicle. Although the CAN messages
themselves are not encrypted by default, we are not able to understand what
they mean or represent. The main reason behind that is the absence of a com-
mon standard for message identification and content formatting. Our goal was
to create a tool that will make the arduous process of message mapping more
effective and automated. The thesis begins with an introduction to the CAN
protocol and the topic of message mapping. Then we walk through existing
solutions and research dedicated to CAN bus analysis so that we can design
and implement our tool. Result of the thesis is an automated framework for
reconnaissance of the bus. What is more, the tool was designed and imple-
mented in modular fashion allowing to implement additional functionality in
form of modules. Lastly, it was succesfully tested using both simulator and a
real car.

Keywords CAN bus, automotive, vehicles, nmap, reconnaissance, monitor-
ing, security, message mappping

vii

Abstrakt

Tato bakalářská práce se zabývá návrhem a implementací automatizova-
ného nástroje pro mapování zpráv sběrnice CAN, která se využívá v mnoha
průmyslových odvětvích a především v automobilech pro komunikaci jednot-
livých zařízení a senzorů ve vozidle. Přestože komunikace na sběrnici CAN je
nezabezpečená, nelze přímo určit význam a data jednotlivých zpráv. V dnešní
době neexistuje žádný obecný standard pro identifikaci a formátování dat ve
zprávě a proto má každý výrobce aut nadefinované vlastní značení zpráv a
strukturu dat, které v nich posílají. Jejím cílem bylo vytvořit nástroj, který
by usnadnil a automatizoval proces dekódování těchto zpráv. Práce začíná
teoretickým úvodem ke sběrnici CAN a problému mapování zpráv. Poté se
zabývá existujícími nástroji a výzkumem, které se věnují analýze dat ze sběr-
nice CAN. Nabyté znalosti jsou využity pro návrh a posléze implementaci
finálního řešení, které je výsledkem této práce. Tento nástroj umožňuje neje-
nom automatizovaný rozbor CAN zpráv a interakci se sběrnicí, ale i snadnou
tvorbu vlastních modulů pro dosažení specifické funkcionality. Na závěr byl
nástroj úspěšně otestován na simulátoru i skutečném automobilu.

Klíčová slova sběrnice CAN, vozidla, automobilový, nmap, odposlouchá-
vání, bezpečnost, mapování zpráv

viii

Contents

Introduction 1

1 Preliminaries 3
1.1 Control Area Network – CAN 3

1.1.1 Physical layer . 3
1.1.2 Data-link layer . 4
1.1.3 Application layer . 7
1.1.4 Security . 8
1.1.5 Message analysis . 8

1.2 Existing solutions . 9
1.2.1 Proprietary . 9
1.2.2 Non-proprietary . 10

2 Analysis and design 13
2.1 Framework design . 13

2.1.1 Mapping process analysis 13
2.1.2 Requirements . 16
2.1.3 Architecture . 17

2.2 API design . 18

3 Implementation 19
3.1 Technology . 19

3.1.1 GNU/Linux platform 19
3.1.2 Socket CAN . 19
3.1.3 Python . 20

3.2 Base modules . 22
3.2.1 Core . 22
3.2.2 Bus . 22
3.2.3 Messages . 23

ix

3.3 API . 24
3.4 CLI application . 25

3.4.1 Inbuilt modules . 25
3.4.2 Custom modules . 26

4 Testing 29
4.1 ICSim . 29
4.2 Automobile CAN bus . 33

Conclusion 39
Summary . 39
Future work . 40

Bibliography 41

A Acronyms 45

B Contents of enclosed USB flash drive 47

x

List of Figures

1.1 CAN bus circuit scheme . 4
1.2 Message ID arbitration . 5
1.3 Standard CAN and Extended CAN data frame bit fields 6
1.4 The Layered ISO 11898 Standard Architecture 7

2.1 DBC definition example . 16
2.2 Framework architecture . 17

3.1 CAN communication layer - with SocketCAN (left) or conventional
(right) . 20

3.2 SocketCAN - read a CAN frame 21
3.3 python-can bus initialization in the Core module 23
3.4 Message decoding using cantools and DBC definitions 24
3.5 CLI application preview . 25
3.6 Plot module . 27

4.1 CAN log for door lock message . 31
4.2 Plot module: graph of door lock message signals 31
4.3 DBC definition for ICSim Central locking system message 32
4.4 Plot module: a graph of speed message signals 32
4.5 DBC definition for ICSim turn signals and vehicle speed 33
4.6 Korlan USB2CAN converter . 34
4.7 Identified message IDs in Toyota Auris 2016 using DBC definitions

from opendbc . 35
4.8 DBC definition for Toyota Auris gas pedal message 35
4.9 Plot module: a graph of gas pedal signals 36
4.10 CANvas module: ECU mapping for Honda CR-V 4th Gen 38

xi

Introduction

Motivation The Control Area Network protocol has various applications
across different industries like automotive, manufacturing, construction and
more. This thesis focuses primarily on the car industry, which may be consid-
ered as one of the most safety and security dependent business for customers.
Nowadays, the main trends in the automobile industry do not move solely to-
wards having faster and well-designed cars, but also getting a vehicle equipped
with the high-end technology that often provides us with more safety, relia-
bility and comfort. However, the usage of smart electronics within our car
brought us the same challenges that we were used to dealing with only in
ICT related domains. Modern cars hold many electronic modules, protocols
or software. Hence it was only a matter of time when someone would start
looking for the same issues that are known in a conventional computer system
and try to exploit them.

Problem statement One of the most critical parts of the vehicle are ECUs
– Electronic Control Units. They can be referred to as individual embedded
systems and are responsible for handling electrical systems of the car such
as engine, brakes, doors or windows and more. Although there are ways
to attack ECUs directly, we are going to focus at the CAN protocol used for
their communication. Interfering ECUs message transmission then allows us to
alter information upon which an ECU will operate, thus invoke an unexpected
behaviour of the whole car. In order to do so, we have to be able to read,
understand and send CAN messages, which are unique for a particular car
model. That itself is a quite challenging task because there are practical
limitations of getting access to the bus in the first place. Secondly, we do
not usually have prior knowledge regarding connected nodes and how they
communicate. However, this work is dedicated mostly to the second part
regardless of the physical access.

1

Introduction

Goals To identify ECUs within the CAN bus network and to analyze mes-
sages sent between them, we will need a tool similar to network utility nmap
with a capability to discover devices within the network and to analyze traffic.
What is more, instead of a narrowly focused application, we are interested in
creating a modular framework with an API, so that users can create their
custom modules for different scenarios. Our goal is to develop the framework
for monitoring and mapping and create a surveillance modules for security
testing.

Thesis outline The thesis begins with a short introduction to CAN pro-
tocol and its architecture, including research of existing tools and solutions
providing us needed capabilities. The following chapter presents a design and
implementation of our framework with both monitoring and reconnaissance
modules. Last but not least, the thesis continues with an experiment report
about testing our tool on a simulator and a real car CAN bus. The final part
is dedicated to a discussion of our results and future work directions. The
appendix consists of source code and documentation.

2

Chapter 1
Preliminaries

The starting point of the thesis consists of a summary of the CAN specification
and presentation of related applications and tools. It covers the necessary
basics and ideas for the framework design and development.

1.1 Control Area Network – CAN
Control Area Network is a message protocol used for communication between
microcontrollers and devices within a so-called CAN bus. It was first intro-
duced by Robert Bosch GmbH in 1986 and then in 1991 in version CAN 2.0 [1].
International Standard Organisation also published specification for CAN as
a standard ISO 19898 [2]. CAN operates as a broadcast system, where data
frames are not transmitted directly from sender to receiver, but distributed
through to the network to every endpoint. Such implementation can be cheap,
robust, efficient and flexible. In the context of the ISO/OSI communication
model, CAN architecture takes place at the physical and data-link layer. Vehi-
cles use CAN bus system to enable data exchange for control units or sensors
installed in them.

1.1.1 Physical layer

Although CAN bus protocol does not specify a transmission medium to be
used, only a bit timing requirements and synchronisation, we will discuss the
most prevalent way of the CAN bus implementation at a physical level. In
most cases, all nodes on the bus are interconnected through two signal line
(CANH, CANL) bus, where each wire consists of a twisted pair terminated
with 120 Ω characteristic impedance resistors to prevent signal reflections.
CAN uses differential signalling providing high immunity to electrical inter-
ference in combination with the usage of twisted-pair cables. Both CANH and
CANL are passively set on 2.5 V that is called recessive state. In a dominant

3

1. Preliminaries

Figure 1.1: CAN bus circuit scheme

state, CANH is raised to 3.5 V, while CANL voltage is lowered to 1.5 V, cre-
ating a differential 2 V signal. This signal is then interpreted by driver input
to 1-bit or 0-bit otherwise. However, the CAN bus might be realised in the
form of a single wire or optical fibres as well [3].

1.1.2 Data-link layer
This layer can be divided into two sublayers – Logical link control (LLC) and
Media access control (MAC). LLC layer provides Message filter, Overload
notification and Recovery management functions. On top of it, MAC layer
takes care of Message framing, Arbitration, Acknowledgment, Error detection
and Signalling [1].

Bus access and arbitration

There are no explicit rules or access control for bus communication, but a
method called bitwise arbitration. Inverted logic of driver input and output
forms an original approach to the access arbitration, where the message IDs are
used to decide its priority and who gets control of the bus. Signals for zeroes
set the bus to the dominant state, which always overrides the recessive. Hence,
the lower the device ID, the longer it keeps the CAN bus in the dominant state
and wins over other messages. Such method is a very simple yet effective way
to determine the order of messages sent to the bus. Feature like this favors
the usage of CAN in real-time systems. This technique, in combination with
an error handling, ensures data consistency, when a message is received by all
or none nodes.[3].

Error handling

Several safety mechanisms prevent errors from occurring: error detection es-
tablished by monitoring (comparing transmitted bit levels from the device and

4

1.1. Control Area Network – CAN

Figure 1.2: Message ID arbitration

on the bus) and checking data integrity with a control hash of the message.
Error signalling marks faulty frames and requests its repeated transmission.
Nodes causing permanent failures are switched off [1].

CAN message

Every message, also referred to as a CAN frame, should be given in fixed
format with a limited length which can vary depending on the size of data
content. The message itself does not indicate any information about the sender
or receiver. The identifier serves only as a descriptor of the data carried by
the frame. Every ECU is individually programmed to receive and send a
particular set of messages. Nowadays, two formats are described in ISO 11989
standard – Standard CAN and Extended CAN with the main difference being
the length of the identifier. The message consists of several bit fields to store
an identifier, data or control flags. One ECU might send and receive more
messages with a different ID. CAN protocol defines four message types:

Data frame a frame containing node data for transmission

Remote frame a frame requesting the transmission of a specific identifier

Error frame a frame transmitted by any node detecting an error

Overload frame a frame to inject a delay between data or remote frame

5

1. Preliminaries

Figure 1.3: Standard CAN and Extended CAN data frame bit fields

SOF The Start Of Frame bit marks the beggining of a message and is used
to synchronize transmissions on a bus

Identifier The identifier sets the priority of the message, lower binary value
means higher priority

RTR, SRE The single remote transmission request bit is set for remotes
frames

IDE The identifier extension bit signals if the frame has a standard CAN
identifier with no extension

r1, r0 Reserved bit

DLC Data length code represents number of transmitted bytes of data

Data The Data Field contains message payload of size up to 64 bits

CRC Cyclic redundancy check contains the checksum (number of bits trans-
mitted) of the preceding application data for error detection

ACK Acknowledgment bit is sent by the receiver when accepting a valid
message

EOF The end-of-frame marks the end of a CAN frame

IFS The inter frame space is a bit field to seperate data frames and error
frames from preceeding frames

6

1.1. Control Area Network – CAN

Figure 1.4: The Layered ISO 11898 Standard Architecture

1.1.3 Application layer

On top of lower levels of CAN, the application layer takes place in the form
of various implementations depending on the utilization of the bus. Some ex-
amples might be flow control, message segmentation, security, or routing. A
few noteworthy protocols are: ISO-TP - enables sending messages larger than
frame size [4], CANopen – extends CAN with more complex communication
models and protocol [5], UDS – standardized diagnostics services [6]. Besides,
manufacturers themselves sometimes use their proprietary protocols. Gener-
ally speaking, certain functionality CAN protocol lacks is achieved within this
layer.

CAN types

Nowadays, we can distinguish two versions of CAN bus: High-speed CAN
(ISO 11898-2) and Low-speed fault-tolerant CAN (ISO 11898-3). The first
one is capable of the transmission rate of 1 Mbps, while the latter has its
rate limited to 125 kbps. In contrast, the low-speed variant operates with
higher voltage swings and its CAN bus is terminated at every node, so that
the communication can be established even if there is a wiring issue in the
bus. Car manufacturers usually use a High-speed CAN for systems such as
engine control unit or brakes, where higher transfer rate is required for im-

7

1. Preliminaries

mediate respondency. Low-speed CAN usually connects comfort units like
air-conditioner, windows or seats, etc. [7].

1.1.4 Security
By default, CAN protocol does not include any particular security measures.
Therefore, message sniffing and spoofing or a denial of service may be accom-
plished if access to the bus is already granted. However, at least a certain
level of security has been attained by “the security through obscurity” princi-
ple, because every vendor develops their own ECUs and its special firmware.
Without knowledge of how a device is identified and what data it uses, it is
very challenging and time-consuming to determine what is happening on the
CAN bus. Nonetheless, with a thorough analysis and right tools, the bus is as
vulnerable as any other computer network. For instance, well-known report
by Miller and Valasek demonstrates remote exploitation of a Jeep Cherokee
2014 [8]. They were able to access the car remotely and gain control of an
ECU. Afterwards, they just had to determine which CAN messages to inject,
so as to affect physical systems.

In order to enhance the security of the CAN bus, some additional protec-
tive methods outside the ISO 19898 standards are adopted in the industry.
Physical level solutions are sub-networks or gateways, contributing to nec-
essary redundancy and isolation of the logical sets of connected nodes. An-
other way to supervise incoming messages is to employ an intrusion detection
module, which should detect malicious frames and ECUs planted by an at-
tacker. There are ongoing research efforts to design algorithms discovering
CAN bus attacks [9]. Furthermore, encryption and authentication could be
implemented as application layer protocols. Such an approach, however, has
its limitations due to bus performance or requirements for additional hardware
modifications [10].

1.1.5 Message analysis
Capturing CAN bus messages

For the task of reading CAN messages and processing them in a software
application, we have to examine ways of bringing the data from the bus to a
computer device and vice versa. The bus communication on the physical layer
is handled by a CAN transceiver, which converts binary data to electrical sig-
naling. On the data-link layer a CAN controller is responsible for serialization
and deserialization of a data stream and error handling. A processor unit
fetches the data from the controller and makes some use of them depending
on the application. Usually, a microcontroller includes a CAN controller, and
it is programmed to either process the data itself or forwards it to another
interface like USB so that a computer with more sophisticated software can
access it. In this work, we will design a tool operating only at the application

8

1.2. Existing solutions

layer using any intermediary device for establishing a connection to the CAN
bus. Depending on the interface, a corresponding device driver is required to
deliver CAN messages to the program.

Message mapping

When it is possible to capture CAN messages from a CAN bus, the next step
is to analyse them. Not only researchers but also car enthusiasts often attempt
to reverse engineer CAN traffic from their car. While some are more successful
than others, no universal method has been invented yet to reverse engineer
a CAN message completely. One common, but quite elaborate technique is
to record data from CAN bus and the car activity at the same time. Then
it is possible to find some patterns in the log to match them with a certain
function of the car. The need for effective automated methods, which will
reduce manual efforts in this task is evident.

Huybrechts et al. [11] suggested using a machine learning method to facil-
itate the reverse engineering process. They were able to identify some inter-
esting signals, but the conclusion was not very convincing in favor of machine
learning. Others have also focused on analysing the structure and the be-
haviour of signals in a data field. Markovitz and Wool developed a classifier
for signal fields in CAN message to recognise field types like sensors, coun-
ters, multi-values or constants [12]. In similar work, Marchetti and Stabili
invented an algorithm using bit-flip rate of the message data to determine
signal boundaries [13]. One common challenge mentioned in these papers was
lack of real testing data from the CAN bus, both raw messages and their
definitions needed to evaluate correctness.

1.2 Existing solutions
The demand to analyze CAN bus communication is covered by various prod-
ucts ranging from robust commercial industry-oriented software to community
driven, open-source or research solutions. This section offers a closer look at
a few of them.

1.2.1 Proprietary
CANoe, Vector Informatik GmbH

CANoe [14], is full–fledged software tool used for development, automated
testing and analysis of automotive electronics and entire ECU networks such
as CAN bus. However, it supports only hardware interfaces available from
Vector, so the user is bounded to use complete product stack by Vector to
work with the CAN bus. Their products are mainly intended for companies,
who are actually developing CAN networks and ECUs.

9

1. Preliminaries

CAN BUS Analyzer, Microchip Technology Inc.

CAN BUS Analyzer Tool [15] is another example of comprehensive CAN bus
analysis product consisting of both hardware and software components. Its
primary function is monitoring CAN bus traffic via a hardware module and
displaying it with a GUI application on the PC. In addition, the tool can
transmit messages back to the nodes on the bus. It aims to be a lightweight,
low-price alternative to more expensive tools like CANoe.

1.2.2 Non-proprietary

SocketCAN can-utils

Linux comes with a suite called can-utils [16], userspace utilities based on
SocketCAN [17] – an implementation of CAN protocols for Linux contributed
by Volkswagen Research. As they could be run only in the console, their main
feature is simplicity and usability. Each tool has a specific function.

candump display or log received messages

canplayer replay logfiles

cansend send CAN message

cangen generate random messages

cansniffer show differences in incoming CAN messages

Wireshark

Wireshark is well-known software for capturing and filtering network traffic.
In Linux, Wireshark can be used without any external modules, because it
can treat any CAN device as a network interface thanks to SocketCAN. On
the other hand, Windows version requires a plugin for each vendor-specific
CAN interface.

Kayak

Kayak [18] is a GUI Java application with similar functionality as can-utils.
Additionally, it uses Kayak CAN definition format to store CAN message de-
scriptions. Rather than having a dedicated tool for one designated operation,
it combines all the features in a single graphical environment. Its core library
with complete CAN bus abstraction model could be utilized in other projects.
The application core is also built upon SocketCAN layer.

10

1.2. Existing solutions

Python-can

This library provides a useful CAN abstraction for Python programmers. Its
modular backend was designed to support numerous CAN interfaces while
having a common API for sending and receiving CAN frames. A part of the
library are console scripts for logging, replaying and viewing messages [19].

Kvaser CANlib SDK

Kvaser [20] is primarily a hardware manufacturer and sells CAN interfaces and
loggers. Not only its drivers are supported by Socket CAN, but Kvaser also
offers the CANlib SDK compatible with its hardware platforms. The SDK
comes with an open universal API for all Kvaser device drivers, but it can
create a virtual CAN device for testing purposes as well.

asammfd

Assamfd stands for ASAM (Association for Standardisation of Automation
and Measuring Systems) and MDF (Measurement Data Format). Some log-
gers like CANedge [21] records and stores CAN bus messages in open standard
MDF format. Such device delivers a different approach to examining CAN
bus messages by collecting the data in internal or external storage for fur-
ther evaluation instead of the way of real-time interaction. Assamfd tool can
read and extract CAN log data in MDF format for later processing involving
conversion, graphical plotting, editing and exporting [22].

11

Chapter 2
Analysis and design

This part is dedicated to proposing a suitable architecture for our framework.
Previous sections demonstrate several different approaches to CAN bus anal-
ysis to help us find the right ideas and meaningful baseline to start designing
the tool. Next part describes application programming interface design and
properties. Putting together all these segments should give us a blueprint for
a modular framework with automated mapping features we intend to build.

2.1 Framework design
To begin with, we will define the mapping process from a conceptual level
to identify the main requirements, both functional and non-functional and
outline the scope of the project. Then, we will suggest an architecture to
meet these requirements.

2.1.1 Mapping process analysis
As most generally available software nowadays can only read and send raw
CAN messages, our effort is to offer more complex and detailed interaction
with the CAN bus. By default, CAN protocol does not include any secu-
rity measures, only relying on obfuscation. There is no explicit information
indicating the number of ECUs and which messages they send and receive.
Having just a CAN bus traffic, we are also unable to detect what is the mean-
ing and context of a message without a manufacturer’s specifications. Our
goal is to create a framework to automate and simplify this process for CAN
bus analysis. Users should be able to write custom modules for message con-
text mapping so that for a specific message ID, we will be able to understand
its meaning and content type. Such a task requires an API to access our
processed data in a convenient and versatile way.

For simplicity, we will break down our project into smaller segments. Then
we can find or create a solution for each of them separately.

13

2. Analysis and design

1. Read CAN bus messages

a) Live CAN bus monitoring
b) Load CAN bus log

2. Assort messages and detect connected ECUS

3. Decode or encode CAN messages

4. Provide interface to manipulate with the processed data

This partition also hints at the structure of our architecture, where one
layer deals with one of the tasks. For each problem, we will have a discussion
to figure out the best way to solve it. If there is an already existing component,
which can do the work for us, we will try to incorporate it into our framework.
Otherwise, we must design and build it ourselves.

Read CAN bus messages

There are two ways of fetching data from the CAN bus. Firstly, the bus must
be connected to the computer for us to receive messages and handle them on
the fly with our application. The second approach is post-processing when
we only record some traffic and save it for later evaluation. When deciding
between one or the other, it usually comes down to the hardware limitations
and accessibility to the CAN network.

In the first chapter, we have demonstrated various platforms for creating
a communication channel with CAN bus. Many hardware drivers are na-
tively included in Linux kernel, therefore supported by SocketCAN. Because
it gives us needed features to read messages conveniently, it makes perfect
sense to use it in our implementation. Moreover, we can avoid programming
and configuration sockets in low-level C/C++ environment with python-can
library, which offers a complete CAN bus abstraction layer in Python above
SocketCAN implementation.

Reading recorded messages from a file pose technical challenges regarding
lack of standard data format. Every tool for logging CAN bus traffic stores
messages differently. Implementing serialization for every possible format is
neither needed nor feasible in the scope of the thesis. Therefore we will select
the most important ones. Industrial CAN loggers mainly store messages in
MDF, binary file format aiming for efficiency and high-performance. Another
common way to read and log messages is SocketCAN utility candump. Be-
ing a part of Linux official package repositories has made candump generally
adopted as a tool for quick and effortless experimenting with the bus. For
simplicity, we can use only the can-utils log format, because it is possible to
export MDF files to it with a converter.

14

2.1. Framework design

Assort messages and detect connected ECUs

Mapping requires a list of unique messages and the data they contain. We
can create such a catalogue by registering message IDs to the database and
assign them values received in the data field. This data could be later accessed
through API calls for further operations. Another useful information we can
obtain is a list of connected ECUs and related message IDs which can be
achieved with CANvas mapping module [23]. CANvas by Kulandaivel et al.
can identify transmitting ECUs using a pairwise clock offset tracking algorithm
and receiving ECUs by forced ECU isolation. To understand the behaviour of
a signal in the message and support the CANvas module, it is also necessary
to keep the whole message as it was received from the CAN bus, including its
timestamp, so that we can observe how its values changed in time.

Decode or encode CAN messages

Mere knowledge of unique messages and ECUs do not tell us anything about
their meaning and what they represent. If we are able to determine which
physical action triggered a particular message and discover some patterns, we
can create those associations by ourselves to some degree of accuracy. Even
though message mapping is embedded in ECUs, thus not available publicly,
some message definitions might be put together as a community effort or
leaked from the manufacturer. Two most popular file formats are:

• DBC by Vector Informatik GmbH, proprietary [24]

• KCD – Kayak CAN definition, XML based, open-source [25]

They describe how information could be decoded in a CAN frame. Struc-
ture of a database consists most importantly of nodes and messages, including
their signals. For every message, an ID, message name, message size and trans-
mitter name is defined. Each message also has a list of signals placed in it.
A signal description consists of starting position, size, byte order, value type,
linear function, value range, unit and a receiver.

For illustration, we will show you an example of a DBC definition. As
can be seen in Figure 2.1, we have two nodes: Engine and Gateway. Message
EngineData with ID 100 and size of 8 bytes is sent from the Engine node. One
of its signals – EngTemp has an offset of 16 bits and length of 7 bits. Value byte
order is big-endian, and it is unsigned. To make the linear transformation from
a physical (real) value to a raw value, one must subtract −50 from physical
value and divide the result by 2. The expected range of values goes from −50
to 150 degrees Celsius. Finally, the receiver of the message is the Gateway
node.

At this point, it should be clear how difficult it is to map a raw CAN
message to its actual interpretation without any syntactical nor semantical
information given apriori.

15

2. Analysis and design

BU_: Engine Gateway
BO_ 100 EngineData: 8 Engine

SG_ PetrolLevel : 24|8@1+ (1,0) [0|255] "l" Gateway
SG_ EngPower : 48|16@1+ (0.01,0) [0|150] "kW" Gateway
SG_ EngForce : 32|16@1+ (1,0) [0|0] "N" Gateway
SG_ IdleRunning : 23|1@1+ (1,0) [0|0] "" Gateway
SG_ EngTemp : 16|7@1+ (2,-50) [-50|150] "degC" Gateway
SG_ EngSpeed : 0|16@1+ (1,0) [0|8000] "rpm" Gateway

Figure 2.1: DBC definition example [24]

A conversion tool called CANBabel serves to translate data from DBC to
KCD format. Moreover, both formats could be parsed with CAN BUS Tools
utility and used for decoding and encoding CAN messages [26].

Provide interface to manipulate with the processed data

Previous points have shown us ways to receive or read CAN frames and sort
them out to make mapping efforts more effective. Now we have to design an
interface for a user to manage this framework and perform CRUD operations
with our internal structures. It is evident that our framework combines many
independent components, and we must create a core module to bind them all
together and an API to access and set up all this functionality in a unified
and practical manner.

2.1.2 Requirements

Functional

• Automated message mapping: Message mapping nowadays requires lots
of manual work in order to figure out what does a message represent.
We aim to delegate as much workload as possible from a user to our
framework.

• Live/Offline execution: Getting direct physical access to a CAN bus
with a computer may not often be possible, especially for a meaningful
amount of time to collect enough data. That is why mapping for both
live data stream and stored data logs must be achievable.

• Modularity: Users should be able to write own modules, which would
be automatically loaded to the framework so that they can run their
custom functions using our framework.

16

2.1. Framework design

Non-Functional

• CLI : The framework by itself does not need any graphical user inter-
face. Visual elements could be implemented in the form of modules.
Command–line interface also suits better for our command based ap-
proach. Furthermore, it also takes up fewer system resources and does
not require any additional libraries.

• Open-source distribution: We want our tool to be available for everyone
at no costs. Inherently, the way of open-source will encourage crowd-
sourcing and cooperation, which plays a vital role in the CAN messages
definitions disclosure.

• Hardware independent: Our tool shall not be dependent on any specific
device for CAN bus logging or its drivers. Users should be free to choose
any hardware they seem fitting their needs and resources.

2.1.3 Architecture
For our architecture, the logical partition of the framework reflects the lay-
ered model discussed in the previous chapter. Our model consists of three
tiers – physical, backend and frontend. CAN bus physical and data-link layer,
which in reality involves the CAN bus, CAN transceiver, CAN controller and

Figure 2.2: Framework architecture

17

2. Analysis and design

a hardware interface to a computer will be implemented by python-can. Back-
end part deals with an integration of external components and translation of
the interface and raw data to the internal representation exposed via API.
Frontend consists of user modules using the API and a console application.

2.2 API design
API should provide a convenient way to interact with our framework and
access useful information for mapping. We also consider having an API layer
essential for modularity. Users do not have to be familiar with the framework
internals, we want them to effectively create interesting and useful modules,
which will add the main mapping functionality to our framework. Based on
the previous process analysis, we defined four tasks the API must support.

• Read messages: return messages for a requested message ID. Having a
complete history of a message is necessary to study changes in the data
field and its structure. That could help users recognize particular signals
and its values.

• List messages: return all unique message, including statistics and values.
The output might resemble a DBC database without a context. The
method should serve as an overall picture of a CAN bus traffic providing
information such as all detected unique message IDs, message count,
message interval or received values for each byte in the data field.

• Send messages: send message to the CAN bus. Injecting messages to
the bus can also be very helpful in mapping efforts. This approach is
only useful when being connected to the real CAN bus so that we can
see if our spoofing triggered anything in the car. Another use-case is
security testing when we would flood a bus with a message, which can
lead to the Denial of Service in an ECU or even an interruption of the
communication.

• Decode message: decode a CAN message using imported definitions.
Our framework will support importing DBC or KCD databases. Thus
we should provide an option to decode the message if there is a definition
for it.

18

Chapter 3
Implementation

Next comes the practical part, where we describe the development of the
framework we named as CANdy. In the beginning, we present used technolo-
gies and the reasoning behind our decisions. Afterwards, we will go through
the main segments and challenges we faced when creating them. Last section
is dedicated to modules, which form the main reconnaissance functionality of
the framework.

3.1 Technology
3.1.1 GNU/Linux platform
We decided to write the tool in the first place for GNU/Linux operating sys-
tems, because of their native support of SocketCAN.

3.1.2 Socket CAN
With SocketCAN, CAN device drivers, most often realized as character de-
vices, are turned to network interfaces and could be accessed through socket
interface as an ordinary network device. Many third-party drivers are al-
ready included in the library. Using the socket abstraction has several useful
implications:

1. There are no limitations for number of processes using the device simul-
taneously in comparison with character device or serial interface.

2. Programmers can develop applications regardless of a CAN controller
drivers as there is no abstraction layer with unified API for them.

3. Using Berkeley socket API should be easier and more familiar than in-
teracting directly with the drivers unless they provide some high-level
SDK.

19

3. Implementation

Figure 3.1: CAN communication layer - with SocketCAN (left) or conventional
(right)

3.1.3 Python

Python is an interpreted, high-level programming language often used for data
processing and analysis, where CAN bus message mapping certainly belongs.
Being embedded in most Linux distributions makes it even more favorable for
our project. For its popularity and relative simplicity for beginners, it is also
the right choice for writing user modules. Another advantage is that many
microcontrollers such as Arduino devices can run Python code too, which
would give our tool more versatility. Also, there are some useful Python
libraries that we can use in the framework.

python-can

This library provides Python implementation of CAN bus abstraction over
SocketCAN interface and other device-specific interfaces. Though the library
does not have any mapping functionality, we can easily configure and execute
read/write operations on the CAN bus. What is more, python-can fulfils
the requirement for hardware independency, most importantly, its modular
backend, which should make our tool applicable for most hardware interfaces.

cantools

We can easily parse both DBC and KCD files using cantools. When imported
to some application, the library can decode captured CAN message if a defi-
nition for it exists in the database.

20

3.1. Technology

int s;
struct sockaddr_can addr;
struct ifreq ifr;

strcpy(ifr.ifr_name, "can0");
ioctl(s, SIOCGIFINDEX, &ifr);

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

s = socket(PF_CAN, SOCK_RAW, CAN_RAW);
bind(s, (struct sockaddr *)&addr, sizeof(addr));

struct can_frame frame;

nbytes = read(s, &frame, sizeof(struct can_frame));
nbytes = write(s, &frame, sizeof(struct can_frame));

Figure 3.2: SocketCAN - read a CAN frame [17]

CANvas

CANvas, automotive network mapper aims to improve security testing meth-
ods regarding CAN bus networks. The tool is capable of identifying connected
ECUs and matching them with sets of outgoing and incoming message IDs, de-
spite having no previous information about the network. Researchers designed
the tool to be fast, cheap and as non-intrusive as possible. At the moment,
only core modules for source and destination mapping are published. We
deemed this program worth integrating into our framework, because ECUs
are the building blocks of the CAN network and as such we should be aware
of them as much as possible. However, due to the technical limitation, we
can apply only source ECUs identification that is conducted algorithmically
whereas detection of the destination ECUs requires a hardware module.

venv

The virtual environment allows us to use isolated site directory with its Python
binaries, pip package installer and external packages. With venv, there is
no need to install requirements for our tool on the whole system, and this
independency from system installation sustains compatibility as well.

21

3. Implementation

3.2 Base modules

3.2.1 Core

The central part of our framework is the Core module. It is responsible for
the orchestration of the framework, managing modules and initializing internal
objects.

Initalization

Given the arguments from the user, the core module initializes the framework
with a CAN bus interface or without it. The latter, what we call an offline
mode, must load a CAN dump file and serves solely for the purpose of post–
processing without any interaction with a CAN bus. Launching the framework
in a live monitoring mode will setup Bus instance on a user defined interface
and capture messages sent to it. The Message database instance is also created
for storing information about received or loaded messages.

Modules management

Next responsibility of the core is to deal with loading and running user mod-
ules. We use importlib package to find modules and invoke them when re-
quested. When the module is launched, an API object is linked to it which
exposes API methods for a module to use. Every module must follow a defined
structure to be plugged into our framework.

Listener daemon

Like any network communication, listening to the CAN bus is an asynchronous
process as we ought to wait for data from an I/O device. That is why we de-
cided to run the message listener function in a separate thread next to the CLI
application as a daemon. While the listener is processing incoming messages
in one thread, the main application and the modules run independently in the
other. This implementation decision logically leads to achieving a level of con-
currency and a cleaner structure of the code. For the thread-based paralellism
we used Python threading library.

3.2.2 Bus

Bus class represents the CAN bus and extends Bus class from python-can.
Our abstraction takes care of configuration of the python-can Bus instance
and adds a custom listener for recording and storing CAN bus traffic. It also
provides an interface for interaction with the rest of the framework.

22

3.2. Base modules

self.can_bus = can.ThreadSafeBus(
bustype="socketcan",
channel="can0",
bitrate=500000,
receive_own_messages=True,

)

Figure 3.3: python-can bus initialization in the Core module

Read CAN messages

When the python-can Bus instance is all set and ready, we can start receiving
messages. Every message is kept in the Bus history object to preserve the
history for further analysis. Every message is also saved into the Message
database.

Send CAN messages

We can create a CAN message and transmit it to the CAN interface using
python-can Bus API. There are also options to send a message periodically
within the specified amount of time.

Filter

Bus manages a set of filters which are applied to the CAN bus. One filter rule
consists of an ID and mask. Message ID matches the filter when following
condition is met:

received_id & filter_mask == filter_id & filter_mask

In other words, if the mask bit is set to zero, the corresponding ID bit will
automatically be accepted, regardless of the value of the filter ID bit. When
the mask bit is set to one, received ID bit is compared with the filter bit.

3.2.3 Messages
Messages class implements messages and definitions database with functions
to analyze them.

CAN message

For every unique message ID, we keep its count number, all the values ap-
peared in each byte of the message, a label and an interval estimation. Al-
though we may not know the position and length of the signals, saving unique

23

3. Implementation

Raw CAN message
2C1#08FF4D0000BA00D9
1C4#03681F0834003ED1

Decoded CAN message
0x2C1 {'GAS_RELEASED': 0, 'GAS_PEDAL': 0.665}
0x1C4 {'RPM': 1578.90625}

Figure 3.4: Message decoding using cantools and DBC definitions

values of every byte of the data field could give us some clues about the mes-
sage. What is more, we are keeping a change flag for every message, which
tells us whether the message has a new value or not.

Definitions

Using cantools library, we can import definition databases and decode mes-
sages we have received.

3.3 API
API methods were implemented to offer functionality discussed in the design
section. Users can call them to manipulate with the Bus and Message objects
in our framework. Parameters marked with * are optional, message IDs,
message data and filters use hexadecimal values.

• read() return one message from the message queue (FIFO)

• get_messages(msg_id*) return a single message by its ID or a list of
all unique messages

• get_message_log(msg_id, n*) return all or n last received messages
with a certain ID

• send_message(msg_id, msg_data) send a CAN message

• send_periodic_time(msg_id, msg_data, period, limit*) periodi-
cally send CAN messages for a specified time limit

• send_periodic_count(msg_id, msg_data, period, number) - peri-
odically send a specified number of CAN messages

• decode_message(msg) decode message using imported DBC/KCD def-
initions

24

3.4. CLI application

• label_message(msg_id, label) set a label for a message ID

• set_filter_rule(msg_id, mask) set a filter for CAN messages and
return existing filter rules

• reset_filter() reset a filter for CAN messages

• find_nodes() detect nodes using CANvas module

• get_nodes() returns detected nodes

3.4 CLI application
We created the command-line application with the help of python cmd frame-
work, which takes care of prompt mechanism and formatting, generating help
section or command history and adding autocomplete feature.

According to given parameters, the application sets up internal structures
and then looks for user plugins in a specified folder. Then a command line
prompt is issued, and the user can start entering commands or modules in it
for execution. A preview of the application can be seen in Figure 3.5.

CANdy - Automated tool for CAN bus message mapping
Version: 1.0
Starting monitoring session on vcan0
Loaded modules: dos liveplot newsig plot
Use 'help' for commands or 'mod' for modules
>>
>> help

Documented commands (type help <topic>):
==
filter get help import label mod monitor nodes quit send

>>

Figure 3.5: CLI application preview

3.4.1 Inbuilt modules
We wanted our framework to provide a basic functionality by default, which
is why we incorporated them into our CLI application. We consider these
modules as the most elementary tasks users should be able to do.

• Get This module shows either all unique messages, their count and avail-
able definitions or detailed information about one message.

25

3. Implementation

• Filter Users can setup filtering for incoming messages and view used
filters.

• Monitor Like a candump from can-utils, monitor prints incoming mes-
sages to the screen, but is also able to translate using imported defini-
tions.

• Nodes Integrated CANvas module is able to compute existing source
nodes on the CAN bus.

3.4.2 Custom modules
One of the main advantages of our framework is the possibility to write user
modules and use them in combination with others. Modules are loaded at the
start of our CLI application, and they can be invoked as a command in our
CLI application. We will present some modules we created for the framework
to support message mapping and reconnaissance.

• Plot One of the best ways to understand how some data changed in
time is visualisation. The time series graph may give us some interesting
observations about the message signals. As suggested in [12] a signal can
hold one constant value or multiple. It can also serve as a counter or
carry a physical value from a sensor. We can distinguish these types
from the shape of a plotline in the graph as can be seen in Figure 3.6.
The module is based on the Python library Matplotlib [27].

• Liveplot When analysing live CAN bus, one might be interested in
plotting a graph of a signal to see how it changes when performing
a physical action like opening a door, pressing a gas pedal or brakes,
increasing a car speed etc. User can choose a message ID and a signal
byte they are curious about, and the module will create a plot that
updates itself when a new message is received.

• Newsig In order to find message ID which could be related to using
turn signals, we created this module to indicate messages that were
received with a new signal value. This can help us see which messages
had changed when something happened in the car so that we can link
that event with a message ID.

• DoS Arbitration based on message ID and the broadcast nature of CAN
protocol makes the bus susceptible to DoS attacks. This module per-
forms such attack by periodically sending a specified amount of messages
to the bus. One security testing scenario is using a low message ID, which
will prevent ECUs from receiving real messages. Secondly, we can try to
target a single ECU and force it to the error state or even take control
of it. There are more DoS variations [28], but for now, the module offers
only basic functionality and could be improved.

26

3.4. CLI application

Figure 3.6: Plot module

Even though we implemented only a few module ideas for the scope of
the thesis, we want to share some suggestions for the future. Firstly, modules
using mentioned algorithms to classify and detect message signals [12, 13]
would make a beneficial addition for message mapping. As of security testing,
we can imagine having a fuzzing module to test the robustness of the bus and
connected ECUs against excessive values. Moreover, with the knowledge of
message definitions, we can create a dashboard simulating a car control panel
to show a speedometer, RPM gauge, door status indicator and more. If we
can identify a message with GPS data, we might be able to render a map
showing a car route. All of this should be possible with our framework and
the API.

27

Chapter 4
Testing

For the evaluation of our completed tool, we needed to acquire some actual
CAN bus data in the first place. We searched for some CAN dump files posted
online, but at the end, we made some ourselves and conducted the testing
with real cars and a CAN bus simulator. Firstly, we will describe how was the
testing prepared and carried out. Next, the results and our experiences will
be assessed at the end of the chapter.

4.1 ICSim
Instrument Cluster Simulator is a training utility for CAN bus hacking by
OpenGarages project [29]. The tool simulates basic actions in the car like
pressing the gas pedal, opening and locking the door or using turn signals.
Such actions trigger sending CAN messages for the user to reverse engineer
them. ICSim can be used with either keyboard or a game controller to control
simulated car systems. Even though the tool generates only synthetic data,
which may not be sufficient for more advanced analysis as reported by Schap-
pin [9], this tool offers an interactive way to create interesting CAN bus traffic.
Moreover, using a virtual CAN bus system like ICSim comes in handy during
the development phase, because we can manipulate with the data source. In
contrast, establishing a physical connection to a real CAN bus every time we
need to is impractical for obvious reasons.

During our testing phase, we followed some advice from the renowned
book The Car Hacker’s Handbook: A Guide for the Penetration Tester [30],
which demonstrates various techniques for hacking cars systems. Chapter 5 –
Reverse engineer the CAN bus describes a few ways how to identify a message
ID for a specific function of the car. Regardless of the used tool, these are the
general steps for message recognition:

29

4. Testing

1. Find out which message ID appears when a particular event occurs.

2. Analyze its payload to determine, how is the event represented and the
format of the information.

3. Describe discovered signals and test the results.

At the start, we were interested in mapping messages for every action pos-
sible with ICSim. Secondly, we wanted to obtain some additional information
about the bus itself. For the first step, we used a newsig module, which prints
out message IDs that were received with a new value. After launching CANdy,
we waited for a few minutes to register as many message IDs and its values as
possible, so they would not be marked as changed. Thus, the newsig output
should be empty when no special action is done. On the other hand, triggering
something new would be caught by the module and shown to us. For instance,
we started off with detecting door lock/unlock the message. When we began
monitoring the bus, the only value in the message, yet unknown to us, must
have indicated that all doors are locked. That would not have changed un-
til we opened them manually. So before doing that, we also run the newsig
module, which revealed that the only message changed when we opened the
door was 0x19b. The ID became our candidate carrying information about
the car doors. After acquiring the message ID, there are two ways to proceed
next. The first is to set a filter for this ID and run a monitor mode to see if
the message is sent when the door opens or closes. This might also hint us the
position of the data, see 4.1. The second way is to run a plot module for the
ID and see if the changes in the graph correspond to our activity. The plot
module will also indicate which byte holds the information we are looking for,
see 4.2.

From both figures, we can see that the state of all doors is encoded with
four bits starting at 20th bit of the data field. In our experiment, we observed
this behaviour in the third byte of the message:

• 0f (1111) – all doors locked

• 0e (1110) – left front door unlocked

• 0b (1011) – left back door unlocked

• 0d (1101) – right front door unlocked

• 07 (0111) – right back door unlocked

Now we could easily describe the message and its signals regarding the
doors, shown in 4.3. We used a DBC format for a more structured look.
There is no linear transformation, therefore factor is 1 and offset 0. Also, we
do not know who is the receiver of the signals, hence the XXX denoting an
unknown node.

30

4.1. ICSim

Timestamp ID DLC Data Channel
1590774572.068368 019b 6 00 00 0e 00 00 00 vcan0
1590774573.665996 019b 6 00 00 0a 00 00 00 vcan0
1590774598.761461 019b 6 00 00 0e 00 00 00 vcan0
1590774659.227013 019b 6 00 00 0f 00 00 00 vcan0
1590774660.521353 019b 6 00 00 0b 00 00 00 vcan0
1590774712.555436 019b 6 00 00 0f 00 00 00 vcan0
1590774728.632295 019b 6 00 00 07 00 00 00 vcan0
1590774748.907103 019b 6 00 00 0f 00 00 00 vcan0
1590774750.406659 019b 6 00 00 0d 00 00 00 vcan0
1590774945.864442 019b 6 00 00 0d 00 00 00 vcan0
1590774946.519650 019b 6 00 00 05 00 00 00 vcan0
1590774948.134589 019b 6 00 00 07 00 00 00 vcan0
1590774948.466710 019b 6 00 00 0f 00 00 00 vcan0
1590774986.484967 019b 6 00 00 0e 00 00 00 vcan0

Figure 4.1: CAN log for door lock message

Figure 4.2: Plot module: graph of door lock message signals

Finally, we created some fake messages and sent them to the bus, which
worked for the simulator as our message saying all doors are unlocked made
the display panel show that they are opened.

Using the same technique, we were able to detect message IDs and signals
for speed and turn signals. Regarding the speed, it was quite interesting to
watch the liveplot module graph changing as we were either accelerating or
slowing down. Also, raw values for the speed ranged from 0 to 56, while the
actual speed went up to 100 mph. We assumed we could scale the value range
from (0, 56) to (0, 100), which gave us a multiplication factor 1.78571 and

31

4. Testing

BU_: CLS (Central locking system)
BO_ 19b DOOR_STATE: 6 CLS

SG_ RIGHT_BACK : 20|1@1+(1,0) [0|1] "" XXX
SG_ LEFT_BACK : 21|1@1+(1,0) [0|1] "" XXX
SG_ RIGHT_FRONT : 22|1@1+(1,0) [0|1] "" XXX
SG_ LEFT_FRONT : 23|1@1+(1,0) [0|1] "" XXX

VAL_ 19b DOOR_STATE 0 "unlocked" 1 "locked";

Figure 4.3: DBC definition for ICSim Central locking system message

offset 0. Given the fact the transformation is linear, we tested our theory
by finding the raw value of the speed 50 mph, which was 28 as expected
(50÷1.78571 ≈ 28). Therefore, we are confident enough to say that we figured
out the linear factor used in the conversion from raw to physical value and
vice versa. The last byte was periodically oscillating between 0 and 255. From
the graph in Figure 4.4 we can see some correlation between the acceleration
in the speed signal (red line) and the unknown signal (purple line), but we
can hardly tell what exactly does it represent. Remaining messages for the
rest of ICSim actions are listed in Figure 4.5

We have detected 36 unique messages out of which we were able to map
three of them - speed, doors and turn signals, which are the only messages we
were able to interact with. CANvas module did not find any ECUs, probably
because of the synthetic nature of the data.

Figure 4.4: Plot module: a graph of speed message signals

32

4.2. Automobile CAN bus

BO_ 188 STEERING_LEVERS: 4 XXX
SG_ TURN_SIGNALS : 6|2@1+(1,0) [0|3] "" XXX

BO_ 244 SPEED: 5 XXX
SG_ SPEED : 24|8@1+(1.78571,0) [0|100] "" XXX
SG_ UNKNOWN : 32|8@1+(1,0) [0|255] "" XXX

VAL_ 188 TURN_SIGNALS 0 "none" 1 "left" 2 "right" 3 "both;

Figure 4.5: DBC definition for ICSim turn signals and vehicle speed

4.2 Automobile CAN bus
We also wanted to try out the tool using a real car, which required more effort
than may be expected, because of several limitations. Every car model has a
unique specification, and it is not trivial to find a functional entry point to
the CAN bus. Thorough research is recommended to get familiar with the
target system. Finding some detailed technical information might be quite
challenging as well because they are kept secret by the vendors. Furthermore,
not every car has their CAN bus exposed via the Onboard Diagnostic port,
referred to as OBD-II, which is the first place to look at when finding a way
to the CAN bus. However, some car manufacturers put a gateway between
the OBD-II port and the CAN bus subnetworks to filter outcoming traffic.
Passthrough can be requested, but the handshake procedure or request meth-
ods are again not publicly available for apparent business reasons. Another
way is to find the bus wires and get on the bus directly.

Either way, having a car for solely testing purposes would be great but is
not feasible given the circumstances. We had to use only cars in our personal
possession or ask around our friends. For instance, our first attempts with
cars like Škoda Fabia or Volkswagen Golf did not yield any data from the
CAN bus as we have found out they both have a gateway module behind the
OBD-II. BMW X1 sends only one CAN message to the OBD port by default
indicating whether the engine is on or off. Ultimately, we were given an
opportunity to have a test drive with Toyota Auris and Honda CR-V that do
not restrict listening to the CAN bus traffic via OBD-II. Apart from recording
the live CAN bus traffic, there are also CAN bus datasets from Opel Astra and
Renault Clio available at 4TU Centre for Research Data repository [31]. In
every testing session, we were using Korlan USB2CAN converter from 8devices
[32], shown in Figure 4.6, which connects a CAN bus device to the computer
via USB port. Luckily for us, we also found an online DBC database [33]
containing message definitions for a variety of car models. These definitions
are part of the opendbc project – an open-source programme for enabling self-
driving capabilities in a personal car. Therefore, all of the DBC definitions are

33

4. Testing

Figure 4.6: Korlan USB2CAN converter [32]

slightly modified for their self-driving agent. Besides, we must not forget they
did not come from an official resource, the vendor, but a collection put up
by a community. Hence they are not complete and may contain inaccuracies.
Nevertheless, replaying a log from our ride and mapping the messages using
DBC definitions helped us a lot to verify the functionality of our modules.

Once again, there are two ways how to process a CAN log without being
connected to a live CAN bus. First of all, we can import the log directly
into our framework, which will preserve original timestamps but will not give
us the same live experience as if we were connected to the bus. That could
be achieved with canplayer from can-utils, which can replay messages from
the log to a virtual can interface, acting like a real CAN bus. However, the
timestamps will be different, even though it sends the messages in the same
intervals. Some modules such as CANvas could be affected by that, because
they are using algorithms working with the transmission time.

Every testing should start with looking up the existing message database
for the target car model. Unfortunately, we could not find any DBC or KCD
definitions for Toyota Auris messages, so instead, we used definitions for Toy-
ota Corolla available at opendbc repository. As we have later found out, Auris
is only a rebranded version of Corolla hatchback model for Europe and some
other countries [34], so the database should be applicable to some certain
degree.

Out of 98 unique messages, we mapped DBC definitions to 18 of them,
see Figure 4.7. However, the database contains 38 definitions, so there are
another 20 definitions that did not match any message ID and 80 message IDs
without any definition. One apparent reason for such discrepancy is simply
that Toyota Auris 2016 is a different car than Toyota Corolla 2017. While
Auris is a hatchback, Corolla is a sedan, and they were also released in different
years. What have we learned though, is which messages and equipment they

34

4.2. Automobile CAN bus

ID count period (ms) message name
24 2206 20 KINEMATICS
25 4419 10 STEER_ANGLE_SENSOR
aa 4396 10 WHEEL_SPEEDS
b4 2201 20 SPEED
1c4 1869 23 ENGINE_RPM
224 1466 30 BRAKE_MODULE
228 2199 20 ACCELEROMETER
260 2201 20 STEER_TORQUE_SENSOR
262 1097 40 EPS_STATUS
2c1 1393 31 GAS_PEDAL
399 43 1024 PCM_CRUISE_SM
3b7 150 295 ESP_CONTROL
3bc 44 1001 GEAR_PACKET
413 44 1000 TIME
611 60 986 UI_SETTING
614 6 8094 STEERING_LEVERS
620 204 294 SEATS_DOORS
622 62 970 LIGHT_STALK

Figure 4.7: Identified message IDs in Toyota Auris 2016 using DBC definitions
from opendbc

BO_ 705 GAS_PEDAL: 8 XXX
SG_ GAS_RELEASED : 3|1@0+ (1,0) [0|1] "" XXX
SG_ GAS_PEDAL : 55|8@0+ (0.005,0) [0|1] "" XXX

Figure 4.8: DBC definition for Toyota Auris gas pedal message

have in common. Regarding the testing, we shall present one example for
demonstration – gas pedal message. According to the DBC definition 4.8,
there are two signals: GAS RELEASED and GAS PEDAL. The first only
indicates whether the pedal is pressed (0) or not (1) and the second tells how
much. Looking at the graph in Figure 4.9 where the blue line is for GAS
RELEASED signal and pink line for GAS PEDAL signal, we can clearly see
that this functionality works as expected.

Testing our tool on Honda CR-V 4th Gen would be similar to the previous
case, so we decided to analyze the CAN bus from a new angle. This time, we
found a DBC database directly for Honda CR-V, which contained 26 message
definitions. In the CAN log, we identified 50 unique messages, and 16 of them
were given a definition. It is possible that some messages were not sent at
all during the test drive. Furthermore, instead of mapping the messages, we

35

4. Testing

Figure 4.9: Plot module: a graph of gas pedal signals

focused on mapping ECUs connected to the bus. The DBC definition listed
these nodes: EBCM, ADAS, PCM, EPS, VSA, SCM, BDY, EPB, EON. As
you can see, it would be helpful to know what exactly each node name stands
for, which is described next. We also added messages they transmit according
to the DBC file to get a better idea about their purpose.

EBCM Electronic Brake Control Module

ADAS Advanced Driving Assistance System

• 506 BRAKE_COMMAND
• 780 ACC_HUD (Adaptive Cruise Control - Head-up display)
• 829 LKAS_HUD (Lane Keeping Assist System)

PCM Powertrain Control Module

• 344 ENGINE_DATA
• 380 POWERTRAIN_DATA
• 419 GEARBOX
• 804 CRUISE

36

4.2. Automobile CAN bus

• 892 CRUISE_PARAMS

EPS Electric power steering

• 342 STEERING_SENSORS
• 399 STEER_STATUS
• 427 STEER_MOTOR_TORQUE

VSA Vehicle Stability Assistance

• 420 VSA_STATUS
• 432 STANDSTILL
• 464 WHEEL_SPEEDS
• 487 BREAK_PRESSURE
• 490 VEHICLE_DYNAMICS
• 597 ROUGH_WHEEL_SPEED

SCM Suspension Control Module

• 422 SCM_BUTTONS
• 660 SCM_FEEDBACK

BDY Body Control Module

• 773 SEATBELT_STATUS
• 1029 DOOR_STATUS

EPB Electronic Parking break

EON Device containing range of sensors required for self-driving – this was
probably added for opendbc project [35] and we will ignore this node in
our analysis

Given this information about nodes, we employed the CANvas module
to detect source ECUs and compare the results. We had to load the whole
CAN log file instead of replaying it to use original timestamps. The output
from the module, see Figure 4.10., consists of enumerated ECUs with a list of
transmitted messages. We can tell from the result that ECU number 1 could
relate to the BDY, number 3 to the SCM and number 6 to the PCM, because
they have overlapping groups of messages. The rest remains unknown as the
linked messages are not defined in the DBC file. However, this information
help us assign new message IDs to already existing nodes like in case of SCM
and PCM.

37

4. Testing

0 ['1024', '1036', '1108', '1125', '983']
1 ['1029', '1064', '1296']
2 ['1365', '57']
3 ['422', '542', '660', '661']
4 ['538', '597']
5 ['777', '882', '884', '888']
6 ['803', '804', '808', '892']

Figure 4.10: CANvas module: ECU mapping for Honda CR-V 4th Gen

38

Conclusion

In the final chapter, we will sum up our achievements and discuss how much
were our goals fulfilled and propose improvements for the future.

Summary
The main objective of our project was to develop a tool that would aid CAN
bus testing and CAN message analysis. In order to design and create such
software, we divided the thesis in a theoretical and a practical part.

The former begins with an introduction of the CAN bus protocol and
the topic of message mapping. Then we researched solutions for CAN bus
monitoring and analysis. Although there are many existing applications and
tools, many of them require proprietary hardware devices and have a high
price-tag. Also, a lot of utilities served only a single purpose in the process of
CAN bus analysis. Given the obtained knowledge from the research, we were
able to identify requirements for our tool and find possible components, which
could be employed in it.

The second part consists of the design and implementation sections. First
of all, we described the procedure of mapping CAN messages and how to carry
out every step of it. This approach gave us an idea of what must be imple-
mented and which functionality could be achieved using existing components.
Our tool is designed to work as a modular framework, allowing users to write
their own modules fitting their specific needs and efforts in a simple and effi-
cient manner. There is yet no universal way to decode raw CAN messages, and
with our framework users can use or create different methods to unfold the
context and meaning of certain messages. Such modularity is possible with an
API provided in the framework to interact with CAN bus and the data from
it effortlessly. The framework is controlled with CLI giving the user access to
the core functionality as well as user modules. Implementation of this frame-
work consisted of building core modules and integrating useful libraries for

39

Conclusion

operating CAN bus or fulfilling smaller tasks related to CAN message analy-
sis, developing API layer and CLI application and lastly creating modules for
reconnaissance. Experimenting with both simulation environment and real
drive testing data rendered our work successful and shown the potential of
the tool in various CAN bus testing scenarios.

Future work
Here are a few ideas on how to improve this project apart from the sugges-
tions proposed at the end implementation and testing chapter. Inspired by
the Metasploit framework, a module database could be managed to collect
interesting modules created by the users and share them with others. Many
car enthusiasts cooperate together when trying to analyze CAN message for
a car model. Still, these efforts are usually conferred casually on a variety of
internet forums, which is not really convenient in terms of sustainability and
accessibility. We can also collect and share CAN message dumps from various
cars so that others can use them and help each other decoding messages.

Secondly, the tool now fully supports only the Standard CAN message
format. However, another two extensions to the original protocol exist today:
part B of the CAN 2.0 specification describes Extended CAN message format
and CAN FD (CAN with Flexible Data-Rate) from 2012 [36]. As CAN FD is
expected to replace classic CAN protocol in new car models since this year,
some revision of the framework will be unavoidable in a few years.

Furthemore, we would like to conduct an interactive testing with a real
vehicle using the valuable experience from both ICSim and offline CAN log
analysis. Every car has a different difficulty in terms of the CAN bus access
and the more challenging ones require more invasive procedures. However,
acquiring a car as a testing object was not financially viable in this setting.

40

Bibliography

1. ROBERT BOSCH. CAN Specification 2.0. 1991. Available also from:
http://esd.cs.ucr.edu/webres/can20.pdf.

2. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO
11898-1:2015 Road vehicles - Controller area network (CAN) - Part 1
[online]. 2015 [visited on 2020-03-03]. Available from: https://www.iso.
org/standard/63648.html.

3. TEXAS INSTRUMENTS. Introduction to the Controller Area Network
[online]. 2002 [visited on 2020-03-01]. Available from: http://www.ti.
com/lit/an/sloa101b/sloa101b.pdf.

4. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO
15765-2:2016 Road vehicles — Diagnostic communication over Con-
troller Area Network (DoCAN) - Part 2 [online]. 2016 [visited on 2020-
03-10]. Available from: https://www.iso.org/standard/66574.html.

5. CSS ELECTRONICS. CANopen Explained - A Simple Intro [online].
2020 [visited on 2020-03-10]. Available from: https://www.csselectronics.
com/screen/page/canopen-tutorial-simple-intro.

6. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO
14229-1:2020 Road vehicles - Unified diagnostic services (UDS) - Part
1 [online]. 2020 [visited on 2020-03-10]. Available from: https://www.
iso.org/standard/72439.html.

7. NATIONAL INSTRUMENTS. Controller Area Network (CAN) Overview
[online]. 2019 [visited on 2020-05-25]. Available from: https://www.
ni.com/cs-cz/innovations/white-papers/06/controller-area-
network--can--overview.html.

8. MILLER, Chris; VALASEK, Charlie. Remote Exploitation of an Un-
altered Passenger Vehicle [online]. 2015. Available also from: http://
illmatics.com/Remote%20Car%20Hacking.pdf.

41

http://esd.cs.ucr.edu/webres/can20.pdf
https://www.iso.org/standard/63648.html
https://www.iso.org/standard/63648.html
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://www.iso.org/standard/66574.html
https://www.csselectronics.com/screen/page/canopen-tutorial-simple-intro
https://www.csselectronics.com/screen/page/canopen-tutorial-simple-intro
https://www.iso.org/standard/72439.html
https://www.iso.org/standard/72439.html
https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network--can--overview.html
https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network--can--overview.html
https://www.ni.com/cs-cz/innovations/white-papers/06/controller-area-network--can--overview.html
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf

Bibliography

9. SCHAPPIN, C. N. I. W. Intrusion detection on the automotive CAN bus.
2017. Master’s thesis. TU Eindhoven.

10. RADU, Andreea-Ina; GARCIA, Flavio. LeiA: A Lightweight Authenti-
cation Protocol for CAN. Computer Security – ESORICS 2016. 2016.
isbn 978-3-319-45743-7.

11. HUYBRECHTS, Thomas et al. Automatic Reverse Engineering of CAN
Bus Data Using Machine Learning Techniques. Advances on P2P, Paral-
lel, Grid, Cloud and Internet Computing. 2017. isbn 978-3-319-49108-0.

12. MARKOVITZ, Moti; WOOL, Avishai. Field classification, modeling and
anomaly detection in unknown CAN bus networks. Vehicular Commu-
nications. 2017, vol. 9.

13. MARCHETTI, Mirco; STABILI, Dario. READ: Reverse Engineering of
Automotive Data Frames. IEEE Transactions on Information Forensics
and Security. 2019, vol. 14, no. 4.

14. VECTOR INFORMATIK. CANoe [online]. 2020 [visited on 2020-02-
20]. Available from: https://www.vector.com/int/en/products/
products-a-z/software/canoe.

15. MICROCHIP TECHNOLOGY. CAN BUS Analyzer Tool [online]. 2020
[visited on 2020-02-25]. Available from: https://www.microchip.com/
Developmenttools/ProductDetails/APGDT002.

16. LINUX-CAN. can-utils [online]. 2020 [visited on 2020-01-20]. Available
from: https://github.com/linux-can/can-utils.

17. OLIVER HARTKOPP ANDURS THUERMANNANDOTHERS. Sock-
etCAN - Controller Area Network [online] [visited on 2020-02-08]. Avail-
able from: https://www.kernel.org/doc/html/latest/networking/
can.html.

18. MEIER, Jan-Niklas. Kayak [online]. 2020 [visited on 2020-02-15]. Avail-
able from: https://dschanoeh.github.io/Kayak.

19. THORNE, Brian. python-can [online]. 2020 [visited on 2020-02-15]. Avail-
able from: https://github.com/hardbyte/python-can.

20. KVASER. Kvaser CANlib SDK [online]. 2020 [visited on 2020-02-15].
Available from: https://www.kvaser.com/developer/canlib-sdk.

21. CSS ELECTRONICS. CANedge2 [online]. 2020 [visited on 2020-02-15].
Available from: https://www.csselectronics.com/screen/product/
can-lin-logger-wifi-canedge2.

22. HRISCA, Daniel. asammdf [online]. 2020 [visited on 2020-02-15]. Avail-
able from: https://github.com/danielhrisca/asammdf.

23. KULANDAIVEL, Sekar et al. CANvas: Fast and Inexpensive Automo-
tive Network Mapping. 28th USENIX Security Symposium. 2019.

42

https://www.vector.com/int/en/products/products-a-z/software/canoe
https://www.vector.com/int/en/products/products-a-z/software/canoe
https://www.microchip.com/Developmenttools/ProductDetails/APGDT002
https://www.microchip.com/Developmenttools/ProductDetails/APGDT002
https://github.com/linux-can/can-utils
https://www.kernel.org/doc/html/latest/networking/can.html
https://www.kernel.org/doc/html/latest/networking/can.html
https://dschanoeh.github.io/Kayak
https://github.com/hardbyte/python-can
https://www.kvaser.com/developer/canlib-sdk
https://www.csselectronics.com/screen/product/can-lin-logger-wifi-canedge2
https://www.csselectronics.com/screen/product/can-lin-logger-wifi-canedge2
https://github.com/danielhrisca/asammdf

Bibliography

24. VECTOR INFORMATIK. DBC File Format Documentation. 2007. Avail-
able also from: http://read.pudn.com/downloads766/ebook/3041455/
DBC_File_Format_Documentation.pdf.

25. MEIER, Jan-Niklas; KRUEGER, Jens. kcd [online]. 2017 [visited on
2020-02-20]. Available from: https://github.com/julietkilo/kcd.

26. MOQVIST, Erik. CAN BUS tools [online]. 2019 [visited on 2020-04-28].
Available from: https://cantools.readthedocs.io/en/latest/.

27. THE MATPLOTLIB DEVELOPMENT TEAM. Matplotlib: Visualiza-
tion with Python [online]. 2020 [visited on 2020-04-02]. Available from:
https://matplotlib.org/3.2.1/index.html.

28. MURVAY, Pal-Stefan; GROZA, Bogdan. DoS Attacks on Controller Area
Networks by Fault Injections from the Software Layer. ARES ’17: Pro-
ceedings of the 12th International Conference on Availability, Reliability
and Security. 2017, vol. 29.

29. OPENGARAGES. Instrument Cluster Simulator for SocketCAN [on-
line]. 2020 [visited on 2020-03-30]. Available from: https://github.
com/zombieCraig/ICSim.

30. SMITH, Craig. The Car Hacker’s Handbook: A Guide for the Penetration
Tester. San Francisco: No Starch Press, 2016. isbn 978-1-59327-703-1.

31. DUPONT, Guillaume; LEKIDIS, Alexios. Automotive Controller Area
Network (CAN) Bus Intrusion Dataset v2 [online] [visited on 2020-04-10].
Available from: https://data.4tu.nl/repository/uuid:b74b4928-
c377-4585-9432-2004dfa20a5d.

32. 8DEVICES. Korlan USB2CAN [online] [visited on 2020-01-25]. Available
from: https://www.8devices.com/products/usb2can_korlan.

33. COMMA.AI. opendbc [online] [visited on 2020-04-09]. Available from:
https://github.com/commaai/opendbc.

34. AUTOEVOLUTION. TOYOTA Auris 5 Doors 2013 - 2015 [online]. 2020
[visited on 2020-05-20]. Available from: https://www.autoevolution.
com/cars/toyota-auris-5-doors-2013.html.

35. COMMA.AI. FAQ - EON [online]. 2019 [visited on 2020-05-21]. Available
from: https://community.comma.ai/wiki/index.php/FAQ#EON.

36. ROBERT BOSCH. CAN with Flexible Data-Rate. 2012.

43

http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
https://github.com/julietkilo/kcd
https://cantools.readthedocs.io/en/latest/
https://matplotlib.org/3.2.1/index.html
https://github.com/zombieCraig/ICSim
https://github.com/zombieCraig/ICSim
https://data.4tu.nl/repository/uuid:b74b4928-c377-4585-9432-2004dfa20a5d
https://data.4tu.nl/repository/uuid:b74b4928-c377-4585-9432-2004dfa20a5d
https://www.8devices.com/products/usb2can_korlan
https://github.com/commaai/opendbc
https://www.autoevolution.com/cars/toyota-auris-5-doors-2013.html
https://www.autoevolution.com/cars/toyota-auris-5-doors-2013.html
https://community.comma.ai/wiki/index.php/FAQ#EON

Appendix A
Acronyms

API Application programmable interface

CAN Control Area Network

CANFD Control Area Network with Flexible Data-Rate

CLI Command line interface

ECU Electronic control unit

GPS Global Positioning System

GUI Graphical user interface

ISO International Standard Organisation

I/O Input/Output

KCD Kayak CAN definition

LLC Logical link control

MAC Media access control

MDF Measurement Data Format

SDK Software development kit

XML Extensible markup language

45

Appendix B
Contents of enclosed USB flash

drive

README.md...................the file with USB drive contents description
src...the directory of source codes

CANdy .. implementation sources
candy_app.py........................CANdy application launcher
setup.sh...install script
setup_vcan.sh....................script for setting up virtual can
base............................folder containing the Core module
lib...CANdy libraries
modules..CANdy modules
misc..testing files and other

thesis...............the directory of LATEX source codes of the thesis
demo.........................demo video of using CANdy with ICSim

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

47

	Introduction
	Preliminaries
	Control Area Network – CAN
	Physical layer
	Data-link layer
	Application layer
	Security
	Message analysis

	Existing solutions
	Proprietary
	Non-proprietary

	Analysis and design
	Framework design
	Mapping process analysis
	Requirements
	Architecture

	API design

	Implementation
	Technology
	GNU/Linux platform
	Socket CAN
	Python

	Base modules
	Core
	Bus
	Messages

	API
	CLI application
	Inbuilt modules
	Custom modules

	Testing
	ICSim
	Automobile CAN bus

	Conclusion
	Summary
	Future work

	Bibliography
	Acronyms
	Contents of enclosed USB flash drive

