
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 18, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: People detection using IR camera on a drone for more effective rescue operations

 Student: Matej Glejtek

 Supervisor: Ing. Lukáš Brchl

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2021/22

Instructions

The thesis aims to design and implement an application that will detect people on images captured by an IR
camera placed on a drone for more effective rescue operations. Implementation of the application should
be done in Python language.

- Research existing solutions for people detection from thermograms.
- Study appropriate data collection methods (drone parameters, camera parameters, etc.).
- Design and describe the architecture of the application.
- Implement the application with the help of computer vision algorithms.
- Document the code.
- Test the application on real data.
- Evaluate the resulting application and suggest its future extension.

References

Will be provided by the supervisor.

Bachelor’s thesis

People detection using IR camera on
a drone for more effective rescue operations

Matej Glejtek

Department of Software Engineering
Supervisor: Ing. Lukáš Brchl

June 4, 2020

Acknowledgements

In the first place, I would like to thank my thesis supervisor Lukáš Brchl for
his overseeing of the process and his support. Next, I want to appreciate
the approach of the company Workswell and it’s employees, they provided
the cameras and drones and offered guidance for working with thermograms.
I also want to thank all the volunteers that took part in dataset acquisition.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 4, 2020 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Matej Glejtek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Glejtek, Matej. People detection using IR camera on a drone for more effective
rescue operations. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020.

Abstrakt

Bakalárska práca sa zaobera spojením disciplíny nazývanej temografia so soft-
warovými systémami na dekekciu objektov. Cieľom je pomocou analýzy a tes-
tovania nájsť vhodnú metódu, ktorá dokáže zautomatizovať analýzu dát z ter-
mokamier na dronoch. Využitie tejto práce spočíva napríklad v zefektívnení
záchranných operácií. Pre dosiahnutie daných cieľov bolo potrebné implemen-
tovat aplikáciu v jazyku Python, ktorá realizuje detekciu pomocou dostupných
systémov, ako je Darknet. Pomocou tejto aplikácie som experimentálne preu-
kázal, že detekcia pomocou neurónových sietí predstavuje najlepšiu možnost
a pomocou systému Darknet je možné detekovať objekty dostatočne rýchlo
a presne.

Klíčová slova termografia, UAV, analýza obrazu, neuronové siete, termoka-
mery

vii

Abstract

This bachelor’s thesis investigates the usage of object detection algorithms on
images captured by an infrared camera placed on a drone. The solution will
help to automate the analysis of captured data, targeting to increase the effec-
tiveness of rescue operations. During the completion of the task, I developed
a Python desktop application, that realizes chosen detection methods. The
methods selection was based on an analysis of current approaches and take
advantage of the existing detection systems. The application was used to mea-
sure the accuracy and performance of these approaches on the dataset created
as a part of the thesis. In the end, the conclusion evaluates the possibility
to use image detection on a thermogram, in a real-world application. The
single-stage Region Proposal Convolutional Network showed the best result
and was chosen for future development.

Keywords thermography, UAV, radiometry, thermal cameras, object de-
tection, neural networks, search and rescue

viii

Contents

1 Introduction 1

2 Theoretical Background 3
2.1 Thermography . 3

2.1.1 History of thermography 4
2.2 Thermal cameras . 4
2.3 Physics of Thermography . 5

2.3.1 Equation of Thermography 6
2.3.2 Measurement with thermal cameras 7
2.3.3 Visualization . 8

2.4 Human skin temperature . 9
2.5 Current thermal analysis methods 9
2.6 Unmanned Autonomous Vehicle (UAV) and thermography . . . 10
2.7 Analysis of object detection methods 11

2.7.1 Introduction to image processing and object detection . 11
2.7.2 Object detection approaches 11
2.7.3 Convolutional Neural Networks (ConvNet or Convolu-

tional Neural Network (CNN)) 12
2.7.4 Region Based Convolutional Neural Network 15
2.7.5 Fast Region Based Convolutional Neural Network . . . 16
2.7.6 Faster Region-Based Convolutional Neural Network . . 16
2.7.7 You Only Look Once . 17
2.7.8 Machine Learning Methods 19

2.8 Related work . 19
2.8.1 Doherty & Rudol paper - Human body Detection [40] . 20
2.8.2 Corcoran paper - detecting koalas 20
2.8.3 Chretien paper - wildlife sensing [17] 20

3 Design 21

ix

3.1 Specification of requirements 21
3.2 Use cases . 22
3.3 Chosen technologies . 22

3.3.1 Qt Framework and PySide 2 22
3.3.2 Used libraries . 24

3.4 Software architecture . 24
3.5 Choosing the suitable option object detection method 26

4 Realisation 27
4.1 Data Acquisition . 27
4.2 Application Overview . 30

4.2.1 Project Structure . 30
4.3 Creating Graphical User Interface 30

4.3.1 Application Window design 31
4.3.2 Custom Graphic Components 32

4.4 Application Implementation . 33
4.4.1 Graphical User Interface (GUI) Controllers 34
4.4.2 Image handling . 35
4.4.3 Visualizations . 36
4.4.4 Multithreading . 36

4.5 Detection Implementation . 37
4.5.1 Blob detection algorithm 38
4.5.2 You Only Look Once (YOLO) Detector 43
4.5.3 Faster Region Based Convolutional Neural Network (Faster

R-CNN) Detector . 44
4.5.4 Presentation of results 44

5 Testing and detection evaluation 47
5.1 Detection testing . 47

5.1.1 Testing conditions . 48
5.1.2 Results . 48
5.1.3 Performance . 49

6 Conclusion 51

Bibliography 53

A Contents of enclosed CD 63

x

List of Figures

2.1 Infrared part of the Electromagnetic Spectrum [10]. 6
2.2 Measurement of the surface temperature scheme, modification of

work by J.Sova [8] . 8
2.3 Different visualizations of the same image. 9
2.4 Simple CNN scheme [23]. 12
2.5 Convolution: 1 - green matrix represents one chanel 5x5 input

image for simplicity, 2 - feature detector, 3 - first step of matrix
multiplication, 4 - last step of matrix multiplication [23]. 13

2.6 Max Pooling [23]. 14
2.7 Fully connected layer [23]. 15
2.8 R-CNN scheme [23]. 16
2.9 Faster R-CNN scheme [29]. 17
2.10 YOLO Model [29]. 18

3.1 Signals and slots connection [42] 23
3.2 MVC example: displaying loaded files in a table 25
3.3 Application package diagram. 26

4.1 Camera and Drone setup used for the data acquisition [47]. 28
4.2 Example of captured data, both visible and thermal image. 28
4.3 Example of captured data from session 2. 29
4.4 Setup used during session 2. 29
4.5 Application GUI overview with distinction of the most important

parts. 31
4.6 Application GUI with native look, Linux on the left and MacOS

on the right. 32
4.7 Part of the class model showing the situation with the detection

management. Dashed line notes signal-slot connection. 38
4.8 Examples of blobs or candidate areas. 40
4.9 Examples of blobs that are false positives. 40

xi

4.10 Foreground Extraction. 41
4.11 Field of view of the camera 50 meters above ground[61]. 42
4.12 Blobs with masked contours. Left one is a front part of a car,

another 3 are people. 43
4.13 Application window displaying results of a detection. 45

xii

List of Tables

5.1 Detection results comparison. 48
5.2 Detection speed comparison. 49

xiii

Chapter 1
Introduction

The main goal of this thesis is to investigate and evaluate the possibility
to use image detection methods on images captured by thermal cameras and
thus connect the fields of thermography with image detection. Thermal cam-
eras on drones are helpful for scanning the environments from above and can
survey large areas for temperature disturbances. This thesis aims to take ad-
vantage of the unique functionality of thermal cameras to propose a solution
that would make rescue operations more effective by detecting possible points
of interest automatically. I will use the thermal imprint of mammals to pre-
dict their presence and position. Development is supported by the company
Workswell, which will provide cameras and contribute to the realization, with
the possibility to further utilize the solution into their products.

In the process, I will create a desktop application written in Python
programming language that implements the detection of objects on images
captured by thermal cameras, more specifically cameras on unmanned au-
tonomous vehicles. The application will serve as a demonstration of the con-
cepts presented in this thesis and will be developed concerning future de-
velopment, particularly real-time detection. The desktop version works with
captured thermal images and should provide basic image browsing features
and realization of chosen object detection algorithms, with emphasis on the
detection of people or animals. I would like to use the created application
later to compare the accuracy and performance of chosen detection methods.

Before realization, I will explain the basic concepts of thermography and
temperature measurement with infrared cameras and point out possible dif-
ficulties that may arise when dealing with the task. Next, I will provide an
analysis of image processing and object detection methods and detailed re-
search on relevant algorithms and related work. It is crucial to choose the
detection method that best suits the application needs and can work with the
data the most effectively and efficiently. That is why I will attempt to utilize
more methods to be able to compare them.

After laying out the required theoretical background, realization with sev-

1

1. Introduction

eral stages needs to be completed to achieve the overall goal. Realization
starts with a creating dataset of thermal images that will be used for training
and testing. It is necessary to prepare distinct scenarios and environments to
cover situations that may occur during rescue operations. After completing
and annotating the dataset, I will compare captured data from the first stage
with the capabilities of researched algorithms to select the possible best op-
tions to use in the application. Another dataset collection may be required
in the later stages. After the evaluation of the data, I am going to select
the technology for the application. I will build the application using Python
programming language in conjunction with several libraries for processing im-
ages, a graphical interface framework and most importantly, the implementa-
tion will make use of available systems that implement state-of-the-art object
detection algorithms. The software analysis stage consists of modeling the
use cases, describing the application domain, and proposing the architecture
of the solution. After determining the software architecture and dependencies
I will move to implementation. During development, I will apply the object-
oriented approach and focus on creating a clean structure and apply software
development practices and patterns.

After implementation, I will test the solution using automated evaluation
of detection by comparing application output with the original annotations
and compare results of different methods. Testing will include creating a met-
rics for determining accuracy and performance. I will analyze and exploit
obtained results and make final considerations about the usage of object detec-
tion in thermography, highlighting the most important remarks or difficulties.
Lastly, I will outline possible future development and extensions.

2

Chapter 2
Theoretical Background

This chapter contains basic theoretical background that is required for the
completion of the thesis. I will explain what is a thermography, what tools it
uses and list a few applications. Then I will briefly describe the physics behind
and discuss possible difficulties in measurement. The second part focuses on
the introduction to image processing and object detection, together with the
analysis of available detection algorithms. In the end, I will summarize related
work, pointing out important findings.

2.1 Thermography
The Thermography, or Thermovision, is a technical science discipline. The
goal of a thermography is to measure temperatures without physical inter-
action with measured objects. This is achieved by observing electromagnetic
radiation, especially in the infrared part of the spectrum. The radiation is col-
lected and processed using devices called thermal cameras. There are many
various applications of thermography nowadays basically in every industry. To
name a few, thermal cameras are good quality assurance tool, could detect fire
even before the first flame appears, detect gas leakage, and so on. According
to Jan Sova, thermal cameras are today used to determine surface tempera-
tures in virtually every industrial sector and scientific research, ranging from
heavy metal processing industry to medicine and microbiological research[1].
Medical usage of thermography was made apparent during the Coronavirus
pandemic of 2020, as cameras were adopted as reliable tools for body tem-
perature screening. Nowadays, thermography based-solutions are installed in
public places to help fight the pandemics by detection of people with fever[2].

The application on which I want to focus on is the help with search and
rescue operations. Infrared cameras can see people and animals that would be
otherwise hidden from human sight, for example in a forest and other greenery.
Human, being a homeotherm, is capable of maintaining a constant tempera-

3

2. Theoretical Background

ture of the body, which may be different from surrounding temperature [3].
I plan to utilize this characteristic into the solution that uses temperatures to
detect living objects on thermograms.

2.1.1 History of thermography
Origins of thermography, date back to the 19th century when thermal ra-
diation was discovered. It was discovered by William Hershel when he was
experimenting with passing the light through a glass prism. He unwillingly
placed a thermometer next to the part where the red part of the light shined,
and he discovered that this part is the hottest, even though he could not see
any visible light hitting the thermometer. This way, he demonstrated the
presence of invisible radiation whose energy could be detected by its heating
effect[4]. Hershel discovered a new spectrum of invisible light which we now
know as infrared, meaning “below the red”[5]. Bolometers, which are devices
for measuring thermal radiation, made their appearance in 1880[4]. ”By the
1920s, scientists were using photography to record the infrared spectrum. The
30s, 40s, and 50s saw remarkable improvements in imaging with special in-
frared sensors, thanks in large part to World War II and the Korean conflict,
which used infrared for a variety of military applications, such as troop move-
ment detection. Once these infrared technologies were declassified post-war,
scientists immediately turned to research of their other applications”[5]. The
first company that could bring the thermography to market is the American
company called Forward-looking Infrared (FLIR). They introduced cameras
for commercial use during the 1970s. It is perceived as a pioneer in this
field and also the current global leader in production, even though there are
more manufactures now, one of them being the Czech company Workswell.
The term ”Thermovision”, which is another name for thermography originates
from the name of a company Thermovision, manufacturer of the first thermal
cameras, which was later renamed to FLIR.[6].

2.2 Thermal cameras
Thermal camera is a device that captures and measures infrared radiation
and processes the radiation into output in form of temperature for each pixel.
A thermal camera consists of several parts, namely the optics, core, comput-
ing unit and housing. The most important component is the camera core with
bolometers. These are small devices, one per each camera pixel, that capture
radiation and output values of resistance. The stronger the radiation, the
higher the resistance. The active element in a bolometer is typically a resistor
with a large temperature coefficient of the resistance[7], which means that
resistance increases rapidly with the change in the temperature. As a conse-
quence, a significant change in resistance occurs when the detector is heated
by incident infrared radiation. Camera computing unit then applies several

4

2.3. Physics of Thermography

computations to work out the final temperature from the measured values
of resistance. This computations involve working with physical parameters
which influence the measurement. These parameters needs to be added by
the user to correct for the external impacts. Another indispensable part of
the camera is the lens, which is usually made of precious germanium glass,
because such lens enables passing of the light just in the infrared spectrum.
Output of a camera is a two dimensional map of pixels, similar to classic digital
image, but values of each pixels represent thermal radiation, not brightness.
Such images are called thermograms. Notably, the cameras split into two
categories - radiometric and non-radiometric. Radiometric thermal camera
is able to measure the actual temperature per each pixel in absolute scale and
using the SI units. On the other hand, non-radiometric cameras only compare
the apparent temperature of objects on scene and visualize the temperature
differences in relation to objects on a scene. One easily imaginable represen-
tative of non-radiometric thermal camera is the night vision device. For the
purpose of this thesis, I will focus on the radiometric thermal cameras and
refer to them as just thermal cameras from now on.

Thermal cameras could be very different from each other, from low end
handheld devices with accuracy worse than 1 degree to a scientific cameras
with cooling. The most important parameters, when speaking about accuracy
of measuring temperature, are resolution and uncertainty of measurement[8].
I am going to use cameras that are adjusted to usege with drones, with
lightweight construction and firmware compatible with drone operating sys-
tems.

2.3 Physics of Thermography

All materials continuously emit and absorb electromagnetic waves, or photons,
by lowering and raising molecular energy levels. The strength and wavelengths
of emission depend on the temperature of the emitting material[9]. We per-
ceive the thermal radiation as heat. Infrared is the part of the electromagnetic
spectrum with the wavelength longer than the visible light and shorter than
microwaves. Thermal cameras benefit from the fact that the intensity of in-
frared radiation emitted by each object rises with the rising temperature of
the object. This is very useful for determining the temperature, but on the
other hand, we could not forget that also material parameters influence the
amount of radiation and we need to correct for them.

5

2. Theoretical Background

Figure 2.1: Infrared part of the Electromagnetic Spectrum [10].

To be able to model thermal radiation, scientists come up with an idea of
the blackbody. According to thermal radiation theory, a blackbody is consid-
ered as a hypothetical object that absorbs all incident radiation and radiates
a continuous spectrum according to Planck’s law[9]. Blackbody represents
and the ideal case for thermography because it emits spectrum that is de-
termined by the temperature alone. However, objects in the real world emit
the radiation differently and exact measurement requires knowledge about the
material we want to measure.

The fact, that the intensity of thermal radiation from the surface of objects
increases with the surface temperatures, could be utilized in measuring the
surface temperature. And it actually is, but the situation is a bit complicated
in practice and it is necessary to know and take care of parameters of mea-
surement and work with so-called ”Equation of thermography”, which takes
into consideration the influence of the atmosphere and other nearby objects.
[1].

2.3.1 Equation of Thermography

The equation of thermography describes the radiation which enters the camera
and its relation with detected temperature[8]. All the factors playing part in
a measurement are represented by this equation [1]. They usually need to be
filled in by the user of the cameras, therefore it is important to understand
their role. Details will be presented in the next section. Visual explanation of
the equation is displayed on Figure 2.2

6

2.3. Physics of Thermography

2.3.2 Measurement with thermal cameras

It is important to keep in mind that the are many variables playing part in
the measurement in thermal cameras. Thermal cameras do not measure the
temperature directly, but it determines the temperature based on thermal
emission and given parameters [8]. The most important is the emissivity. It
is a property of a surface that can be described as an effectiveness of emit-
ting heat. Its value is a fraction of the emissivity of a surface blackbody that
emits thermal radiation at the highest possible rate. The emissivity also in-
fluences how much other variables affect the measurement. The emissivity of
human skin is reported to be almost constant and its value is 0.98 [3]. Most
of the cameras, as well as the camera used for this project, offer emissivity
correction directly in the camera. Another important variable is the reflected
temperature. This variable stands for the thermal radiation that originates
from other objects and reflects off the object we want to measure. Its impact
is lowered with lower values of emissivity [8]. Other parameters include the
description of an atmosphere (humidity) and parameters of the optics used,
but they are not so influential and can be omitted in most cases. All the
mentioned parameters play their part in an equation of thermography, which
is used to compute the final temperature. To conclude, measurement using
thermal cameras can be very useful, but it is not totally exact and may be
dependent on external factors. Also, it is necessary to perceive the resulting
temperature as the temperature of a surface, not a whole object.

7

2. Theoretical Background

Figure 2.2: Measurement of the surface temperature scheme, modification of
work by J.Sova [8]

1. Heat radiation of the surroundings, which reflects on surface of the mea-
sured object,

2. Surface of the measured object,

3. Atmosphere, which attenuates the radiation from other objects as well
as emits own.

4. Camera Lens, resulting radiation is the sum of the previous points.

2.3.3 Visualization

During the measurement, only the invisible infrared light is captured. All the
colors we see on thermograms are a result of visualization and are artificial.
Visualization is done using color palettes, which define a range of usually 256
colors and one color represents a specific temperature range. For each pixel,
the color for that pixel is calculated from its temperature. This aritificial
coloring gives me big manuevering space, as I can modify visualizations by
highlight specific color ranges or using custom palettes.

8

2.4. Human skin temperature

Figure 2.3: Different visualizations of the same image.

2.4 Human skin temperature
In order to be able to correctly identify the humans on thermograms, it is im-
portant to know for what temperatures to look for. Normal human skin tem-
perature on the trunk of the body varies between 33.5 and 36.9 °C, though the
skin’s temperature is lower over protruding parts, like the nose, and higher
over muscles and active organs [11]. The temperature of human skin varies
with the environment. Researchers from the School of Mechanical Engineering
in the USA and Tianjin University in China measured temperatures of human
skin in various conditions with temperatures ranging from -0.1 to 32 °C. The
study is summed up in a paper[12], which also presents results. The study
used 24 people as test subjects. They were exposed to various temperatures
in a climatic chamber and researchers measured their surface temperature on
various body parts. They found out that in a cold environment, human fa-
cial skin can have just 18 degrees Celsius. Generally speaking, the highest
temperature is on the head and abdomen and lowest on hands and nose.

To conclude, the average human body temperature varies between 30 and
34 degrees Celsius, with a minimum of 24 degrees. However, only certain
parts of a body are exposed normally, so I need to concentrate mainly on the
temperature of the head, arms, and legs, as most of a human body is covered
with clothes. I will be testing the temperature of humans during the dataset
collection.

2.5 Current thermal analysis methods
Companies that are manufacturing thermal cameras usually provide software
for the analysis of thermograms and thermal sequences. Their desktop soft-
ware is usually proprietary and it is accessible mainly to camera owners. From
the functionality point of view, they offer basic temperature visualization,
elaborating certain regions of interest on the image, changing the parameters
discussed in the previous section, and finally, creating reports. However, none
of the tools I came across offer task automation or any form of object de-
tection or another service for rapid evaluation and search of many sources for

9

2. Theoretical Background

objects. The alarm function, which highlights a certain part of the image with
a temperature above or under a given threshold, may be useful but could not
be used reliably because the temperature of an environment varies and also
influences the temperature of target objects. Examples of thermal analysis
software may be CorePlayer by Workswell[13] or FLIR Tools+ by FLIR [14].
Image data collected from aerial surveys are often interpreted manually, but
this can be tedious, time-consuming, and is still subject to interpreter bias
with a tendency towards the low probability of detection and high rates of
false negative error [15] [16]. Automated detection in remotely sensed im-
agery can reduce bias and increase the accuracy and precision of surveys, but
few methods have been developed and tested in the field [16]. For mammals,
the automated detection methods are shown to be most accurate thus far have
been applied to thermal imagery, as the large temperature gradient between
mammals and their background environment allows computer vision to easily
detect and count their thermal signatures. [17]

2.6 UAV and thermography

Currently, UAVs, otherwise known as drones, are finding their way into many
aspects of our lives. One of the most obvious applications is equipping the
vehicle with a camera and flying above unreachable areas. Such systems are
today widely used by filmmakers and photographers to capture wonderful
shots, but the UAV has the even bigger potential as a tool helping in search and
rescue operations. Operation of the drone must obey laws which differ between
the countries. The authorities in these countries may require the operator
to hold a license and several areas are restricted, such as densely populated
areas or plane corridors and airports. In a Czech republic, the regulator is the
Czech Republic Civil Aviation Authority. According to the guidelines[18],
published by this institution, the drone operation is legal with certain rules.
The commercial usage is permitted only with a license. The operations is are
generally permitted in the airspace in from the ground up to 300 meters above
the ground. A visual line of sight must be maintained with the UAV at all
times by the drone pilot [19]. The Czech company Workswell is a significant
player in manufacturing thermal cameras specially for drones. Their camera
WIRIS is fully compatible with Dà-Jiāng Innovations (DJI) Drone and it
is easy for the operator to control the drone and camera simultaneously. The
signal is transmitted directly to remote control with a tablet connected to
the drone, so the operator can see thermal as well as digital pictures in real
time. The functions of the camera can be accessed directly from the same
remote control. For the dataset collection, I am going to use camera WIRIS
Pro, which is the third iteration [20], together with DJI Matrice drone. The
equipment was provided by Workswell.

10

2.7. Analysis of object detection methods

2.7 Analysis of object detection methods
In this section I will introduce the topic of object detection on images, listing
various concepts used. Subsequently, I will explain selected methods, based
on research by a number of computer scientists and describe available systems
that implement these methods. Most of the algorithms proposed for these
tasks have open-source implementations, that are ready to be used.

2.7.1 Introduction to image processing and object detection
Digital image processing is a discipline of computer science. In simple words,
it is the usage of a computer to manipulate the images. The field of image
processing itself covers different topics, from image enhancement to compres-
sion, restoration, and analysis. In my thesis, I will concentrate on the analysis
part, which also includes object detection. The image processing gains more
publicity and recognition, as it is used for face detection, vision text process-
ing, and many other uses, many of which we have in our smartphones. Object
detection is a technique of image processing for locating and classifying the
objects captured on images or videos.

2.7.2 Object detection approaches
There are various approaches to object detection. They can be roughly divided
into categories according to the paradigm used. There are methods that use
traditional programming and also that use artificial intelligence and machine
learning or deep learning approach. Standard algorithms, that are not based
on machine learning, and working with data, excel in solving the tasks, which
can be easily defined. For example, a task to process an online shop order can
be easily defined in a straightforward code. It consists of creating n database
entry, filling in invoices, managing payment, and others.

Considering the case I am attempting to solve, it is not perfectly clear
whether the solution can be described procedurally. Straightforward imple-
mentation could focus on the analysis of the temperature data and looking for
a specific temperature range and filtering candidate ideas by shapes. On the
other hand, this solution would be very error-prone, as it would not be able
to adapt well to various new situations.

For task that does not have a simple workflow, scientist came up with an
idea to imitate human reasoning and simulate the neural network in software.
The network is similar to that in a human brain, but simpler, obviously. This
network has a learning ability and is capable to train itself using large amounts
of data. After training, the network can do its job with a high probability
of success. It is important to keep in mind that neural networks are suitable
just for certain types of tasks and the result is always in a form of probabil-
ity. The downside of them is the requirement of a lot of training data and

11

2. Theoretical Background

computing power.[21]. Basically, object detection with some form of Artificial
Inteligence (AI) is based on two main approaches: Either deep learning or ma-
chine learning approaches. The difference is whether the algorithm has some
prior knowledge about the image features before the detection. In machine
learning-based approaches, it detects the features using Haar, Scale-Invariant
Feature Transform (SIFT) and Histograms of Oriented Gradients (HOG) then
for classification it can use Support Vector Machines (SVM) [22], whereas in
deep learning approaches it generally uses the CNN for the object detection
without requiring any knowledge about the features.

2.7.3 Convolutional Neural Networks (ConvNet or CNN)

CNN is a very popular algorithm for image classification. It is a type of
deep learning network, based the mathematical operation called convolution.
Convolutional networks perceive images in three dimensions, rather than flat
canvases to be measured only by width and height. Digital color images have
a Red Green Blue (RGB) encoding, mixing those three colors to produce the
color spectrum humans perceive. A convolutional network ingests such im-
ages as three separate strata of color stacked one on top of the other. Those
depth layers are referred to as channels. Convolutional neural networks ingest
and process images as tensors, and tensors are matrices of numbers with ad-
ditional dimensions. As images move through a convolutional network, they
are being discribed in terms of input and output volumes, expressing them
mathematically as matrices of multiple dimensions.

There are four main operations in CNN: Convolution, Non-Linearity(Rectified
Linear Unit (ReLU)), Pooling, Classification(Fully connected layer).

Figure 2.4: Simple CNN scheme [23].

Convolution

The purpose of the convolution step is to extract features from the image.
Convolution preserves the spatial relationship between pixels by learning im-
age features using small squares of input data [23].

12

2.7. Analysis of object detection methods

Figure 2.5: Convolution: 1 - green matrix represents one chanel 5x5 input
image for simplicity, 2 - feature detector, 3 - first step of matrix multiplication,
4 - last step of matrix multiplication [23].

The convolution step has two matrices as input, one of them being the
input image and second matrix is called a filter. In the process, filter is placed
over the image and for every position, element wise multiplication is applied,
performing dot product.The result matrix is called a feature map. ”Using
different filters will produce different feature maps. In practice, a CNN learns
the values of these filters on its own during the training process. The more
number of filters we have, the more image features get extracted and the better
our network becomes at recognizing patterns in unseen images” [23].

Non Linearity - ReLU

After each convolution step, activation function is applied. The activation
function models the biological processes and is an abstraction for the rate of
action potential firing in the cell. In its simplest form, this function is binary—
that is, either the neuron is firing or not. In CNN, negative values in feature
maps are replaced by zeros by function textttmax(0, val). Browniee[24] de-
scribes this step in the following words: ”The function is linear for values
greater than zero, meaning it has a lot of the desirable properties of a linear
activation function when training a neural network using backpropagation.
Yet, it is a nonlinear function as negative values are always output as zero”.

The Pooling Step

Spatial Pooling (also called subsampling or downsampling) reduces the di-
mensionality of each feature map but retains the most important information.
Spatial Pooling can be of different types: Max, Average, Sum, etc.

In case of Max Pooling, we define a spatial neighbourhood (for example,
a 2×2 window) and take the largest element from the rectified feature map
within that window. Instead of taking the largest element we could also take
the average (Average Pooling) or sum of all elements in that window. In
practice, Max Pooling has been shown to work better.

13

2. Theoretical Background

Figure 2.6: Max Pooling [23].

Fully Connected Layer

The purpose of this layer is to make use of the features extracted in previ-
ous steps. It uses softmax activation. ”The output of convolution/pooling
is flattened into a single vector of values, each representing a probability that
a certain feature belongs to a label. For example, if the image is of a cat,
features representing things like whiskers or fur should have high probabilities
for the label cat” [25]. ”Fully Connected layers in a neural networks are those
layers where all the inputs from one layer are connected to every activation
unit of the next layer. In most popular machine learning models, the last few
layers are full connected layers which compiles the data extracted by previous
layers to form the final output” [26].

14

2.7. Analysis of object detection methods

Figure 2.7: Fully connected layer [23].

As I stated before, CNN is a tool for image classification. To successfully
detect humans on thermograms, I need not only to classify the objects, but also
work out their location. For the object detection, there are four approaches:

• Region Based Convolutional Neural Network (R-CNN),

• Fast Region Based Convolutional Neural Network (Fast R-CNN) [27],

• Faster R-CNN [28],

• YOLO [29] [30].

Listed approaches can be divided according to their architecture, which
can be one stage or two stage. Two stage frameworks address this issue by
adding an object proposal method and then classifies these proposals using
CNN. These are the first three from the list. The last one uses one stage
architecture.

2.7.4 Region Based Convolutional Neural Network
R-CNN generates 2000 proposal in a first step and CNN is then applied to
each one of these region proposals for the classification. Region proposal
uses selective search algorithm [31], that consists of initial generation and
combining similar regions to larger ones. ”The CNN acts as a feature extractor
and the output dense layer consists of the features extracted from the image

15

2. Theoretical Background

and the extracted features are fed into an SVM to classify the presence of the
object within that candidate region proposal” [32]. This method takes long
time to both train and use, and definetely could not be used in real time, as it
takes about 40 seconds to run the method on one image. Also, first stage
is fixed and does not use any learning.

Figure 2.8: R-CNN scheme [23].

2.7.5 Fast Region Based Convolutional Neural Network

The difference between R-CNN and Fast R-CNN is that the second one ap-
plies the CNN first, before region prosal. It uses CNN just once, making
a significant increase in speed. ”Instead of feeding the region proposals to the
CNN, we feed the input image to the CNN to generate a convolutional feature
map”[32]. From the convolutional feature map, the algorithm identifies the
region of proposals and warp them into squares. By using an Region of Inter-
est (RoI) pooling layer these squares are reshaped into a fixed size so that it
can be fed into a fully connected layer. From theRoI feature vector, a softmax
layer is applied instead of SVM to predict the class of the proposed region and
also the offset values for the bounding box.

2.7.6 Faster Region-Based Convolutional Neural Network

Faster R-CNN starts in the same way as the Fast R-CNN creating the feature
map. Instead of using a selective search algorithm on the feature map to
identify the region proposals, a separate network is used to predict the region
proposals. It replaces selective search with a region proposal network [33].
The predicted region proposals are then reshaped using an RoI pooling layer
which is then used to classify the image within the proposed region and predict
the offset values for the bounding boxes[32].

16

2.7. Analysis of object detection methods

Figure 2.9: Faster R-CNN scheme [29].

2.7.7 You Only Look Once

The original YOLO paper [29] describes the object detection model that
uses a single convolutional network to simultaneously predict multiple object
bounding boxes in full images as well as class probabilities for those boxes.The
network architecture of this model has 24 convolutional layers and two fully
connected layers. The convolutional layers perform feature extraction while
the fully connected layers predict the bounding box locations and their prob-
abilities. The system first divides the input image into a square grid. Two
bounding boxes and corresponding class confidences are associated with each
grid cell, so at most two objects can be detected within a cell, and if an object
occupies more than one cell, the centre cell is selected to be the holder of
prediction for that object [34]. For each of the bounding boxes, the network
outputs a class probability and offset values for the bounding box. The bound-

17

2. Theoretical Background

ing boxes having the class probability above a threshold value is selected and
used to locate the object within the image [32].

Figure 2.10: YOLO Model [29].

It is quite easy to start developing with YOLO, as pre-trained models
and image datasets can e found on the internet. One of them is called Com-
mon Objects In Context (COCO) [35].YOLO is one of the most successful
algorithms today and there have been certain attempts to use it for thermal
images too. However, because of its nature, the original YOLO is not suitable
for detecting small objects. According to paper on this topic [34], the fea-
tures that YOLO has learned on a large COCO dataset of RGB images will
still provide a reasonable baseline for thermal images. Unfortunately, due to
the difference between visual and thermal images, the original YOLO model
(bYOLO) has achieved average precision of only 7% for person detection in
the thermal images. That result is significantly worse than the results YOLO
achieves on the images of the visible spectrum where the results depending on
the scenario range around 90 %. To make the precision much higher, addi-
tional training is compulsory. To fully train the network, thousands of images
are required, Luckily, there is a method called transfer learning, which takes
a pre-trained network and applies additional training on new data. This way,
the network can be modified using just hundreds of images.

18

2.8. Related work

2.7.8 Machine Learning Methods

Machine learning aims to create rules from observations, guided by the knowl-
edge representation required for a specific system. There are various machine
learning techniques used in the development of image interpretation systems
[36]. Learning can be supervised or unsupervised. They differ in a fact that
with supervised learning the criteria for labeling data are known explicitly.
Given some training data describes in terms of a set of features and their
labels, the goal is to find a partitioning of a feature space that allows correct
classification of all training data, as well as unseen, similar data [36]. Most
of the implementations follow popular pipeline with three main steps: region
proposal generation to generate a set of candidate boxes that may cover ob-
jects, proposal feature extraction to extract features from these proposals, and
proposed classification to classify each proposal as an object class, or back-
ground [37]. I would like to use a similar pipeline, with the exploitation of
thermal data in the region proposal step. To extract features, several feature
descriptors are used. A feature descriptor is a representation of an image or
an image patch that simplifies the image by extracting useful information and
throwing away extraneous information [38]. HOG and SVM are examples of
feature descriptors. In the HOG feature descriptor, the distribution (his-
tograms) of directions of gradients (oriented gradients) are used as features.
[38]. The HOG can be calculated using OpenCV, as shown in the article [38].
Support vector machines are a core machine learning technology.

2.8 Related work

In this section, I will go through the relevant related work, published on
a science papers on the internet archives, such as Arvix or IEEE. The papers
usually go through peer reviews and community acceptance, thus are regarded
reliable. I will state the challenges, solutions and important notes from the
each case. There have been a many initiatives regarding object detection on
thermal images as the infrared detectors have big potential in autonomous
vehicles. For this, purpose, the free dataset was created. According to FLIR,
the ability to sense thermal infrared radiation, or heat, provides both comple-
mentary and distinct advantages to existing sensor technologies [39]. On the
other hand, there are not many examples to use object detection for thermal
cameras on drones. One such example is the paper by Doherty and Rudol
[40]. When considering using thermal cameras to detect animals, I was able
to find works on koalas [41] and wildlife [17]. In the sources I found, authors
used several different detection methods. I will take a closer look on these
three papers in the following subsections.

19

2. Theoretical Background

2.8.1 Doherty & Rudol paper - Human body Detection [40]
In their paper, Doherty and Rudol present an interesting technique for peo-
ple detection using thermal imaginary on UAV. Their setup involves thermal
camera, digital camera and hardware unit on board the mini helicopter. They
employ both cameras to work complementary, as they decided to separate the
detection into two phases. As they stated, ”The technique presented detects
humans at a rate up to 25Hz (sporadically lower for scenes with high num-
bers of potential bodies) by first analysing an infrared image to find human-
temperature silhouettes and then using the corresponding colour image regions
to classify human bodies. A thermal image is analysed first to find human
body sized silhouettes. Corresponding regions in a colour image are subjected
to a human body classifier which is configured to allow weak classifications”.In
their conclusion, they stated that the detection had a significant number of
false positive, as a result of weak classifications. The approach using both
cameras holds potential for my case, however, much of their work focuses on
calculating the right transformations between the images ad the thermal and
visible cameras have different resolutions and field of view.

2.8.2 Corcoran paper - detecting koalas
Another interesting paper is by Australian researchers. They aim to monitor
the presence and distribution of endangered animal species. In their words:
”This study introduces a new automated method for detection using published
object detection algorithms to detect their heat signatures in UAV-derived
thermal imaging” [41]. The detection method used combines R-CNN and
YOLO, creating a pipeline. Images are reviewed by both detectors and then
the results are combined. The results show that the automated method had
an overall probability of detection at 85 percent.

2.8.3 Chretien paper - wildlife sensing [17]
The subject of this paper is animal detection in nature using thermal imagery
and drones. The author aims to research the possibility of automation in the
monitoring of wildlife. Even though the paper focuses on animals, it is quite
relevant as the author tackled the problems of height and low resolution.
The proposed method consists of creating Multicriteria Object-Based Image
Analysis (MOBIA). The paper results ”showed that all bison and elks were
detected without errors, while for deer and wolves, 0–2 individuals per flight
line were mistaken with ground elements”. As the author states, ”This method
also demonstrated its potential to perform the census of a single targeted
species using its specific threshold values. However, more research is needed
to improve the detection rate of each species”.

20

Chapter 3
Design

The purpose of this chapter is to propose and describe solution that will be
implemented during the realisation. First, I will specify requirements from
the point of view of a user, formulate use cases and functional requirements.
Then I will move to the non functional requirements, elaborate the software
architecture and specify principles that will be use to create user interface.

3.1 Specification of requirements
From the functional point of view, the application has a clear operation do-
main. Images are given as input, and the product is the set of bounding boxes
with detected objects.The exact ways in which the application could be oper-
ated follows in the subsequent section. However, the application must obey
certain non-functional requirements. The desktop version will serve as a prove
of concept and test for the future real time version which will run in real-time.
Therefore the application should have clear division between the backend de-
tection implementation and user interface. In the future development, the
graphical interface could be swapped for Application Programming Interface
(API) deployed on server, exposing the functionality using web services.

• Run on desktop computers with all the operations system, thus be plat-
form independent

• Event-driven, thus the flow is not sequential but controlled by user

• Following object oriented programming principles to maintain scalabil-
ity, ease of maintenance

• Design with regard to future development

• Layered application with a clearly distinguishable graphical interface
and backend parts

21

3. Design

3.2 Use cases
Even though the main usage is the testing of detection methods, application
will also serve as image viewer for thermograms.

• Browse captured thermal images from the thermal camera with the op-
portunity to examine measured temperatures

• Survey the metadata saved to thermal images, e.g. GPS tags or camera
information

• Browse digital images attached to thermal images

• Classify objects on the images and find their location

• Store the detected objects

3.3 Chosen technologies
To implement the desired application, I decided to use Python programming
language, as it is the most used language for the image processing with big
community and wide range of libraries and frameworks. All the papers and
studies regarding the topic of image processing consider a Python their go-to
language. Many of the algorithms I came across were implemented in this
language, and many useful methods are already implemented in a libraries,
such as OpenCV. I will take advantage of the python support of object oriented
programming to create application structure and distribute responsibilities
across classes grouped to logical application components.

3.3.1 Qt Framework and PySide 2
Another important choice is the choice of the frontend framework. I need
Python framework that enables rapid development of GUI with native look
on every platform. PySide is the ideal candidate, not only it meets the re-
quirements but also I have an experience with continuous development using
Qt Framework, in which PySide2 belongs to. Even through I used the Qt
Framework just for C++ language, using in it Python is similar and uses the
same graphical components and development principles. The application cre-
ated by PySide2 framework is event-driven, and the most significant feature
is the introduction of Signal-Slot system. Signals and slots are used for
communication between objects. The signals and slots mechanism is a cen-
tral feature of Qt and probably the part that differs most from the features
provided by other frameworks [42]. Signal is a message, that instance emits,
and slot is a method that is connected to this signal. This enables commu-
nication between the instances together, the system contributes to program

22

3.3. Chosen technologies

flow control. It is an alternative to callbacks. Callbacks are a pointers to
functions that ongoing function calls. Signals and slots are part of the Qt
Meta-Object System and may be predefined in the Qt classes, but new ones
can be created by subclassing. To enable Qt features, created classes must be
derived from QtObject [43]. Another important part of the framework is the
Event System. Citing from the Qt Documentation: ”Events are objects,
derived from the abstract textttQEvent class, that represent things that have
happened either within an application or as a result of outside activity that
the application needs to know about. Events can be received and handled by
any instance of a textttQObject subclass, but they are especially relevant to
widgets.

Figure 3.1: Signals and slots connection [42]

23

3. Design

3.3.2 Used libraries

In the backend, PIL Image library is used to load image, and then in will be
processed as a NumPy array, which offers convenient way to process the data
numericaly. I also need a library for reading exif tags and sending network
request for finding out elevation. I selected exifread and urllib, respectively.

3.4 Software architecture

The software architecture of the application is partially determined by tech-
nologies used. Basically, the application can be split into two layers - backend
and frontend layers. Frontend layer implements user interface, presents data
and handles user input. In the backend layer, we have the application logic,
communication with operating system, accessing the file system and most im-
portantly, the detection algorithm. It is important to clearly distinguish the
layers and do not mix them, to maintain low coupling, extensibility and ease
of the code maintenance.

The part of the application user directly interacts with, is called GUI.
I will create an interface that in intuitive, simple and easy to use. Then,
after presentation layer is outlined, I will need controller classes that will
handle user inputs, present data from backend into graphical interface and
handle overall communication between frontend and backend. To manage
the relationship between data and the presentation to the user, I will use the
traditional Model-View-Controller (MVC) scheme. Model is the data provided
by backend, view is the graphical interface component and controller, that
handles user inputs from view and updates model.

24

3.4. Software architecture

Figure 3.2: MVC example: displaying loaded files in a table

The backend mainly manages application logic and implements the chosen
detection algorithm, as well as stores data. Classes communicate with the
operation system using known APIs. The application require access to the
file system and the internet. The detection should be independent of user
interface implementation, as well as specific libraries or frameworks using just
core Python tools and established libraries.

25

3. Design

Figure 3.3: Application package diagram.

Figure 3.3 shows package model of the application packages with depen-
dencies.

3.5 Choosing the suitable option object detection
method

Concerning deep learning methods, it is apparent from the theoretical back-
ground section, that R-CNN would be too slow for the task. YOLO seems
much more promising, but because some sources state that is not good with
small objects [44]. I will also implement the Faster R-CNN to be able to com-
pare them. I will also implement straightforward method without machine
learning, using blob detection and thresholding, to see whether such solution
could be reliable, especially when dealing with different environments.

26

Chapter 4
Realisation

Following chapter reports about the process of implementing the requirements
specified in the previous chapter. The chapter starts with a description of
the dataset collection, followed by a summary of the implementation stage.
I will describe a whole implementation procedure, highlighting the interesting
and important parts, and explaining used concepts. The realization of the
application consists of creating GUI, input, and output handling and detection
module, that will implement the detection algorithms.

4.1 Data Acquisition

Despite the great progress in general computer vision algorithms, such as de-
tection and tracking, these algorithms are not usually optimal for dealing
with sequences of images captured by drones, due to various challenges such
as viewpoint changes and scales. However, studies toward this goal are se-
riously limited by the lack of publicly available large-scale benchmarks or
datasets [45] [46]. Because of this, I have decided to create my own dataset
for training and evaluation. I could not find a compatible dataset on the
internet.

Thermal camera and drone for the data acquisition were provided by the
company Workswell and company operator Miroslav Kleinbaurer handled the
operation of the drone. We used the camera Workswell Wiris Pro, which
is the thermal imaging system for UAV. It is a lightweight all-in-one system
equipped with a thermal imaging camera and a visible spectrum camera [20].
The drone used was the Matrice M600 by DJI.

27

4. Realisation

Figure 4.1: Camera and Drone setup used for the data acquisition [47].

The first session was held on 25 January 2020 near Prague. We captured
about 200 thermal and digital images with a drone. Scenes were set in forest,
field, or rocks environments and covered one to five persons. Persons were
positioned into varied postures and body positions, such as running, laying on
the ground, or crouching. The drone flew in height from 30 to 50 meters above
the ground. The resulting data are in the form of three images captured at
the same time: thermal Joint Photographic Experts Group (JPEG), thermal
Tagged Image File Format (TIFF), and visible JPEG. All three will be used.

Figure 4.2: Example of captured data, both visible and thermal image.

The second session took place also in Prague in May of 2020. This time
we focused mainly on taking pictures of people in greenery and fields. As the
first session was done during the winter, the second session was necessary to
be able to test the adoption of algorithms to changing temperatures of the
environment and seasonal changes in the country. Captured images proved
that it was easier to hide from the camera’s sight in vegetation. Silhouettes

28

4.1. Data Acquisition

were also sometimes irregularly shaped because they were covered by dense
trees or bushes.

Figure 4.3: Example of captured data from session 2.

Figure 4.4: Setup used during session 2.

After the image acquisition, data need to be sorted and interpreted. After
duplicate or irrelevant pictures were deleted, I marked the positions of objects
manually, creating annotations. To create simple bounding box annotations,

29

4. Realisation

I used a tool called LabelImg for Python, which is open source and accessible
using public repository [48]. Annotations are saved in the XML file format
or YOLO specific format, which is a text file, one file per each image. These
annotations will be used later for the training or evaluation in a ratio of
approximately 80 to 20. When the data were captured and ready to be used,
I advanced to the application.

4.2 Application Overview
To implement the project I decided to use Qt Creator Integrated Development
Environment (IDE). I used its project wizard do create PySide2 Application
with Qt Widgets. IDE provides tools for running, debugging, and deploying
PySide2 projects. Files in the project are divided into several directories.
Python source files are stored in the directory source, .ui files in directory
ui. Directory detection_helper_files contains required resources for detectors,
such as trained YOLO weights. At the root of the project, there is a configu-
ration file with a list of all the files and one Python source that holds the main
application procedure within the ThermalDetector class. This class wraps the
whole application and contains the main routine. The application is launched
by the run method, which calls utility methods to initiate the GUI, backend,
and signal-slot connections. I also included test dataset in the project. The
directory test-dataset contains sources from both sessions. These images were
not used for training.

4.2.1 Project Structure
Python source files are further organized into subdirectories. Directory app
contains backend classes that use the Qt Meta-Object System and are an inte-
gral part of the Qt application. RadiometricImage encapsulates all the data
about one image, ImageList holds these image instances. There are also han-
dler classes implementing tasks such as a file or palette loading. Classes in the
directory controllers are used to control graphical components by handling
user inputs and presenting data from backend classes. Detector directory
contains detection implementations, which all implement the DetectorIn-
terface, together with helper classes for image processing. These are imple-
mented without Qt libraries and can be used with Python. More information
about all the modules will be provided in the following sections.

4.3 Creating Graphical User Interface
The PySide2 framework offers very convenient way to create user interfaces.
I used the Qt Designer to simply draw the required components without writ-
ing code. These components are called Widgets. Example of such components

30

4.3. Creating Graphical User Interface

are: label, PushButton, ComboBox. The interface consist of several separate
.ui files. Each of these files can be modified in the Designer application, which
then converts the component and layout to code. Programmers can compose
and customise windows or dialogs in a what-you-see-is-what-you-get manner,
and test them using different styles and resolutions. Widgets and forms cre-
ated with Qt Designer integrate seamlessly with programmed code, using Qt’s
signals and slots mechanism, so that programmers can easily assign behaviour
to graphical elements. [49]

4.3.1 Application Window design

My interface is inspired by known and well established layout of almost all the
image viewing applications, for example MacOs Preview [50]. It will consist
of one window. Creation of the window content starts with outlining the
main layout. Center part of the interface is the view of a current image with
a toolbar located above the image. On the right side I have a panel with tab
view. There are three tabs, from the left: list of loaded files, file information,
detection. Lastly, application offers menu with file loading options, which are
also accessible using keyboard shortcuts. In my application, I have two ui
files. MainWindow file holds the application window. The window is filled
with CentralWidget.CentralWidget file contains whole layout as described.

Figure 4.5: Application GUI overview with distinction of the most important
parts.

31

4. Realisation

Components persist a native look on a platform used.

Figure 4.6: Application GUI with native look, Linux on the left and MacOS
on the right.

4.3.2 Custom Graphic Components

Customisation and modification of behaviour of graphic components in Qt
is enabled by subclassing widgets from the QtWidgets library. This is use-
ful e.g. for implementation of mouse or other input events. In my applica-
tion I will subclass QGraphicsView and QGraphicsScene classes and override
methods to make it suitable for displaying both thermal and visible images,
which have different resolution and aspect ratio. I will override mouseMoved
method to track mouse position on image and show the temperature of pixel
under the cursor. Another subclassed component is the ImageLabel, which
is the simple way to display image without zoom or mouse tracking. Show-
Pixmap method is overriden. Because the application uses multiple threads,
I need to implement handlers for safely terminating the running thread. For
this purpose I subclassed MainWindow, reimplementing closeEvent, in which
threads are notified about window being closed.

32

4.4. Application Implementation

image scene , reimplemented to enab le mouse t rack ing and zoom
draws the image given as numpy array with RGB data
class ImageScene (QGraphicsScene) :

mousePosChanged = Signa l (int , int)

def __init__(s e l f , width , he ight) :
QGraphicsScene . __init__(s e l f)
s e l f . __mapped_width = width
s e l f . __mapped_height = height
s e l f . setSceneRect (0 ,0 , width , he ight)

def draw(s e l f , imarray) :
s e l f . c l e a r ()
s e l f . __drawImage(imarray)

def __drawImage(s e l f , imarray) :
image = QImage(imarray , imarray . shape [1] , imarray . shape [0] ,

imarray . shape [1] ∗ 3 , QImage . Format_RGB888)
pixmap = QPixmap(image)
s e l f . addPixmap(pixmap . sca l ed (s e l f . __mapped_width ,

s e l f . __mapped_height)) ;

def mouseMoveEvent (s e l f , event) :
s e l f . mousePosChanged . emit (event . scenePos () . x () ,

event . scenePos () . y ())

Listing 4.1: Subclassing GUI Component.

4.4 Application Implementation
The implementation consists of classes with given responsibilities. These
classes make up logical sets, according to the service they implement. I di-
vided the services into controllers, handling interaction with the GUI, classes
for image manipulation, and data storage and detection itself. The code fol-
lows Python guidelines and conventions, for example, maximum line length,
indentation, blank lines. I used guidelines from the document [51], which
gives coding conventions for the Python code comprising the standard li-
brary in the main Python distribution. Classes are named with capitalized
CamelCase, methods, and instance variables with non-capitalized underscore
notation. Because Python does not contain access modifiers, I decided to use
mangling to mark private methods. Mangling is noted with two underscores
before the name, and it prevents accidental overrides.The wrapper class for the
whole application is the ThermalDetector class. On the startup, command-
line arguments are processed and QApplication, which is the Qt application
class, is launched. BeanPool is the container for all the instances that are cre-
ated during application runtime. It is a singleton class, so only one instance
exists at all the time. This way, the instances inside the pool can be accessed
using the singleton from anywhere in the application without the need to hold

33

4. Realisation

references. BeanPool also manages connections between the instances.

4.4.1 GUI Controllers
After creating the Graphical Interface, the next step is to create controller
classes that will handle the user interaction with the interface and contribute
to the MVC architecture for presenting data to GUI. I have decided to create
one controller class per logical component of the interface. These controller
classes implement handler methods, that are called when certain events oc-
cur, for example, click on a detect button will trigger respective handler, which
will notice the DetectorHandler instance to fetch the data and start the al-
gorithm. Furthermore, when the detection finishes, the detector class will
notify the corresponding controller to present the result to the frontend. The
controller classes serve as a connection between backend and graphical inter-
face components. Object communication using Qt Signals and Slots system
[42].

def ine s i g n a l
image_selected = Signa l (object)
connect to g raph i ca l component s i g n a l
s e l f . __image_table . c e l l C l i c k e d . connect (s e l f . __handle_table_click)

emits s i g n a l image_selected when user c l i c k s the row in a t a b l e
@Slot (object , object)

def __handle_table_click (s e l f , row , column) :
s e l f . image_selected . emit (row)

. . .
connection to select_image method of image l i s t

s e l f . __image_list_control ler . image_selected . connect (
s e l f . __image_list . select_image)

Listing 4.2: Signals and Slots demonstration.

There are 6 controller classes:

• MainWindowController - handling actions from main window menu, like
loading and saving files,

• CentralWidgetController - drawing image, mouse tracking, image
zoom,

• ToolbarWidgetController - image visualization corrections from the
upper toolbar,

• DetectorWidgetController - triggering detection and setting parame-
ters, presenting results,

• ImageListWidgetController - loaded files list, current image selection,

• FileInfoController - displaying selected file metadata.

34

4.4. Application Implementation

Each of these handles action from the respective graphic components and
propagates the actions towards backend classes. On the program startup,
.ui files are loaded using class QUiLoader. The QUiLoader class provides
a collection of functions allowing programmers to create widgets based on
the information stored in UI files [52]. As a result, parent widget of the
file is accessible as a Python class and its components can be connected to
signals and slots of backend classes. To approach specific components, such
as buttons, findChild method of parent component can be used.

loading components from ui f i l e created by Qt Designer
ui_loader = QtUiTools . QUiLoader ()
form = ui_loader . load (QFile (f i l ename))
f ind button
s e l f . __run_button = centralWidget . f indChi ld (

QPushButton , ”runButton”)

Listing 4.3: Loading ui files into Python code.

4.4.2 Image handling
To carry out access to the file system and loading files I used standard Python
libraries. The responsibilities are delegated to several classes. FileHandler
class contains methods for loading images using the PIL library, as well as sav-
ing them. An instance of this class exposes public methods for loading image
or directory, as well as saving them. PIL library provides extensive file for-
mat support and is designed for fast access to data stored in a few basic
pixel formats [53]. I use it to convert TIFF images to NumPy arrays directly.
NumPy is the fundamental package for scientific computing with Python [53].
NumPy arrays provide a very convenient way for data storing and manipu-
lation. Data are stored in a two-dimensional array, each pixel is represented
by one 16 bit number. This array is loaded directly from the image. A pixel
value is convertible to degree celsius using simple formula:

temperature = pixel_value/25 − 100 (4.1)

For the internal representation of the image, I constructed class RadiometricIm-
age, with pixel data in NumPy arrays and image metadata. Metadata are
obtained from the Exchangeable Image File Format (EXIF) tag of the JPEG
image. PieExif is another library I used, this time to read the EXIF tags.
It includes the tools necessary for extracting and manipulating and writing
EXIF data to both JPEG and TIFF files [54].FileHandler is in fact a factory
for RadiometricImage instances. RadiometricImage instances are stored in
ImageList throughout the run of the application. ImageList manages loaded
sources and holds the reference to the currently selected source. After the de-
tection, the result can be saved in a JavaScript Object Notation (JSON) file.
This notation can be later used to transport data using web API.

35

4. Realisation

4.4.3 Visualizations

Settings for visualizations of the measured temperatures can be altered using
the toolbar. I have included several palettes commonly used in thermography
software [13]. There are also options to change minimum and maximum tem-
perature used, or mask pixels above or bellow certain threshold. Calculation
of the colors for each pixel is implemented by RadiometricImage.

Using right visualization can have a significant impact on the accuracy of
the detection. I have created auto_adjust method to automatically adjust
colors and prepare for the detection. This is done by applying analysis of
the temperatures, suppressing pixels bellow the mode value and above cer-
tain threshold, given by maximum skin temperature. User can calibrate the
settings on one image and then apply it on all the images, for example when
analyzing images collected during one session.

4.4.4 Multithreading

The application uses threads to implement demanding tasks which could take
longer time to complete. Qt framework offers multithreading support with
its QThread class. ”Instantiating a QThread provides a parallel event loop,
allowing QObject slots to be invoked in a secondary thread”[55]. This means
that during the completion of a heavy task, primary thread remains active,
so user can be informed about a progress or cancel a task. I created 3 different
QThread subclasses, one for loading multiple images, one for running a detec-
tion on more images and finally, one for batch processing loaded images. Data
are loaded to thread instance by constructor. textttrun_flag is used for con-
trol the flow, and thread can be stopped using textttstop method. Calling this
method will place it in the parallel event loop and will be planned to execute
accordingly[56]. This way, there is no need for synchroziation primitives, like
textttQMutex.

36

4.5. Detection Implementation

worker for s e t t i n g min/max, mask to more images
class ToolbarWorker (QtCore . QThread) :

updateProgress = QtCore . S igna l (int)
workDone = QtCore . S igna l ()

def stop (s e l f) :
s e l f . __run_flag = False

def __init__(s e l f , l i s t , pal , min , max, mask_type , mask) :
QtCore . QThread . __init__(s e l f)
s e l f . __list = l i s t
s e l f . __pal = pal
s e l f .__max = max
s e l f .__min = min
s e l f . __mask_type = mask_type
s e l f .__mask = mask
s e l f . __run_flag = True

def run (s e l f) :
i = 0
for image in s e l f . __list :

i f not s e l f . __run_flag :
s e l f . workDone . emit ()
return

s e l f . updateProgress . emit (i)
i += 1
image . set_range (

s e l f .__min, s e l f .__max, s e l f . __pal ,
s e l f . __mask_type , s e l f .__mask)

s e l f . workDone . emit ()

Listing 4.4: Thread-derived worker class.

4.5 Detection Implementation
Detecting humans and animals in thermal imagery poses additional challenges
such as lower resolution, halos around hot or cold objects, and smudging
artifacts in case of camera movement [40]. To overcome these challenges,
I decided to combine various approaches and do comparisons of their accuracy
and performance.

I defined DetectorInterface, which is the base class for the detector
implementations. This way, it has well defined basic functionality and the
particular implementations can be used interchangeably. Base class contains
methods for loading the input data and setting parameters. Another method
is for for triggering the detection. In it, input images are iterated over and
for each one, an abstract method _detectImage, is called. Each type of
detector will be realise this method differently. Because Python itself does
not contain strong inheritance mechanisms, I decided to use the library abc
to mark method abstract and prevent instances of DetectorInterface [57].

37

4. Realisation

The DetectorInterface and all the derived classes are implemented in such
a way that enables their usage outside Qt. There are no Qt dependencies,
so these core classes can be used in future projects independently.

In an application class model, class DetectorHandler manages the de-
tection and holds collection of available detectors. When a user triggers the
detection, selected RadiometricImage instances are loaded to the desired de-
tector instance and the algorithm starts. DetectorInterface controls the
algorithm flow and calls support procedures, that are divided across support
classes. The separation was done according to single responsibility and low
coupling principle, so individual tasks can be modified or replaced.

Figure 4.7: Part of the class model showing the situation with the detection
management. Dashed line notes signal-slot connection.

First, I start with a procedural routine for blob detection, that analysis
the data and computes results based on given temperature thresholds, shape
descriptors and other features. Then I will take a step towards machine and
deep learning principles, take advantage of pre-trained networks, and open
source systems.

4.5.1 Blob detection algorithm

For a procedural analysis, an algorithm with three stages is proposed. In
the first stage, I will analyze the captured data numerically, then I will apply
image segmentation to the foreground and background and finally, classify the
candidate objects.

38

4.5. Detection Implementation

The environment temperature is important for the task, as it affects the
target object’s temperature, as shown in chapter 2. It is important to gain
as much information about the scene as possible before running the detection
itself. Some of the information can be extracted directly from EXIF saved
to JPEG source, such as Global Positioning System (GPS) location. As the
drone is equipped with a GPS locator, the altitude of the drone can be used
to calculate height above the ground. I used Google Maps API [58] to find
elevation by calling their web service with coordinates saved in TIFF It is free
to use with a limited number of requests per day, which is sufficient for me.
By subtracting the elevation from altitude saved by the drone locator, we get
height above the ground. All these parameters can be also changed by a user.

When all required information had been gathered, the second part of the
detection can launch. It is a task to split the scene into the background and
foreground with candidate objects. Such objects are called blobs. A Blob
is a group of connected pixels in an image that share some common prop-
erty [59]. For his purpose, I used a blob detection algorithm by OpenCV,
implemented by class KeypointFinder. OpenCV provides a convenient way
to detect blobs and filter them based on different characteristics. [59].

The class implements a simple algorithm for extracting blobs from an
image [60]:

1. Convert the source image to binary images by applying thresholding with
several thresholds from minThreshold (inclusive) to maxThreshold (ex-
clusive) with distance thresholdStep between neighboring thresholds.

2. Extract connected components from every binary image by findCon-
tours and calculate their centers.

3. Group centers from several binary images by their coordinates. Close
centers form one group that corresponds to one blob, which is controlled
by the minDistBetweenBlobs parameter.

4. From the groups, estimate final centers of blobs and their radiuses and
return as locations and sizes of keypoints.

After the blobs were detected, I will work out the temperatures of them and
filter them accordingly. Blobs with a temperature too high or too low are
removed instantly. After this stage, several candidate areas will remain that
will be processed in the next part.

39

4. Realisation

Figure 4.8: Examples of blobs or candidate areas.

Figure 4.5 shows human silhouettes on thermograms captured in height
around 50 meters. No details of the subjects are visible, although the shape
resembles a human body with one ax significantly shorter. The shape of
a silhouette varies because of the angle of sight, from directly above, the shape
is more circular. Even with this combination, the shape is distinguishable from
another object that may appear on the scene, as shown in figure 4.6.

Figure 4.9: Examples of blobs that are false positives.

Figure 4.6. shows examples of areas, that may be part of the results
of blob detection. These include a car, a fireplace, and a terrain or other
features. Most of these can be filtered out easily, but others may posses
a great challenge.

40

4.5. Detection Implementation

Figure 4.10: Foreground Extraction.

To verify whether the candidates from the previous step belong to classes
we look for, I implement various filters based on size, shape, and color. Fil-
tering by temperatures works by determining upper and lower temperature
bounds. Because the temperature of a surface of a body varies with an en-
vironment, it is important to base these calculations on the current situation
captured on a scene. By statical analysis, I define environment temperature,
which will be used as a lower bound. Upper bound will be set by a user. An-
other type of filter is the size filter. The apparent size of an object depends on
distance and type of lens. The thermal camera can have lenses with various
focal lengths equipped. The full list of lenses was given by Workswell. Focal
length are saved in an EXIF file, so from this information, I can work out
pixel size and thus minimum and maximum area in pixels.

41

4. Realisation

Figure 4.11: Field of view of the camera 50 meters above ground[61].

The final filter assesses the shapes of objects. To be able to examine the
shapes, exact contours need to be found. For this task, I will again use the
OpenCV library. Contours are a curves joining all the continuous points along
the boundary. The full set of characteristics commonly used to describe shapes
was formulated by John C and F. Brent [62]. Here I list the ones that I will
use:

• Formfactor,

• Roundness,

42

4.5. Detection Implementation

• Aspect Ratio,

• Convexity,

• Solidity,

• Compactness,

• Extent.

Analysis by shape is required to thermal traces, because generally speak-
ing, the human body has a round silhouette. However, there may be certain
cases in which shape may be irrelevant, for example when part of the trace
is covered by plants. Also, traces of moving bodies have irregular shapes.
I will use shape descriptors mainly to filter out obvious false detections.

Resulting blob detection procedure is just partially successful, as it de-
tects many false positives and can hardly cope with the changing environ-
ment. Filters helped to suppress false positives, however, the overall accuracy
is not high enough. Shape Filters can be altered by setting parameters in file
global_defs.

Figure 4.12: Blobs with masked contours. Left one is a front part of a car,
another 3 are people.

4.5.2 YOLO Detector
As stated in a theoretical background chapter, YOLO is one of the most pop-
ular detection methods with very good results. I will use You Only Look Once
version3 (YOLOv3) implementation, which has improved accuracy. To try it
on thermograms, I created class YoloDetector, implementing the _detect_-
image() method. All the support files are located in a folder app_root/yolo3.
These are config files, weights, and class labels [63]. Config file holds the pa-
rameters used for the particular model. I used pre-trained COCO at first,
but as the thermograms look significantly different from RGB images, it was
clear that the model needs to be re-trained. For this purpose, I used captured
data, with images split to training and control parts. For the training, I used
the Darknet framework. I have chosen YOLOv3 implementation. Description

43

4. Realisation

of the algorithm and full workflow is summed up by Manivannan Murugavel
[64]. To sum up, this particular implementation uses 53 convolutional layers
with filter size 3x3 and 1x1 The network is fully described in a paper by it’s
creators [65]. The paper also includes comparison of speed and accuracy of
various networks, e.g. RetinaNet. YOLOv3 is very fast and still maintains
good precision.

The training was done in ImproLab with NVidia RTX 1080 graphics card
used the technique called transfer learning, which means using pre-trained
weights and apply another training session with custom data. I prepared a set
of 400 thermal images from drones with annotations. Then I split the data
into training and test sets. I used the default YOLOv3 config file which deter-
mines the number of layers used. Usage of the trained weights is implemented
by YOLODetector. Three files are required for detection, these are weights file,
configuration file, and object category list. YOLODetector uses OpenCV to
read trained model using function cv2.dnn.readNet. Then input blob is cre-
ated from the image using cv2.dnn.blobFromImage and set as input for net
created in a previous step. Then detector runs inference through the network
and gather predictions from output layers using net.forward(self.get_-
output_layers(net)). For each detection from each output layer, algorithm
outputs get the confidence and bounding box position. Detections with a con-
fidence lower than 0.5 are considered weak detection and are ignored. Detected
objects are then saved to image instance and drawn on the image.

4.5.3 Faster R-CNN Detector
To test how Faster R-CNN would perform with thermograms, I decided to
use implementation which is part of Detectron2 [66]. Detectron2 is Face-
book AI Research’s software system that implements many state-of-the-art ob-
ject detection algorithms. Detectron2 is powered by the PyTorch framework.
PyTorch is an open-source machine learning library that enables Graphics
Processing Unit (GPU)-accelerated deep neural network programming[67].To
start the training on thermal images, I first need to prepare a dataset for
this particular implementation by changing annotation files and creating the
required structure. For this purpose, I will create a Python script that pre-
pares the data and runs the training. Annotations for training are given in
absolute coordinates, not by ratios as in the case of YOLO. In the process,
I will use the detectors DefaultTrainer class and then interpret the result
using the DefaultPredictor class. Full process of the training and inference
is described in a tutorial by Detectron2 creators [68].

4.5.4 Presentation of results
After the detection was complete by one of the detectors, results are shown
in a table. Each table entry contains position of the bounding box, and in-

44

4.5. Detection Implementation

formation about temperatures. Entries can be also selected for displaying the
RGB data of that box to small image view bellow the table.

Figure 4.13: Application window displaying results of a detection.

45

Chapter 5
Testing and detection

evaluation

In this chapter, I will describe how the application will be tested, with the
emphasis on testing the accuracy of the detection. I will compare the results
from the application with the control part of the dataset.

5.1 Detection testing
To test the success rate of the detection I wrote a simple Python script. This
script takes a directory path as an input parameter. For each tiff image entry,
the script tries to load the original annotation, JSON file with objects detected
by an application, and compares them, calculating how individual entries over-
lap and outputs the total detection score. Despite that this script is not a part
of the application itself and will not be available to users, I decided to develop
it within the application project. Qt Creator enables running each Python
project script with the concept of Run configurations. My project will have
the main configuration called thermal detector, which runs the application and
second configuration called thermal detector-test, which runs the test script.
For each image entry found in a given directory, two files are read. One of
them is a solo annotation created in LabelImg and the other is a JSON with
serialized data from the application. Yolo annotation contains one line per
object and coordinates are fractions of the image size, so values range from 0
to 1. These values need to be calculated for real image coordinates. Detection
results are serialized and saved to JSON file by the application. Saved anno-
tation file contains a list of objects representing bounding boxes definitions.
Parameters of these objects are top-left point coordinates, width, and height.
The format is the same for all the detectors. To compare annotations with
the detection result, I calculate how much area these bounding boxes have in
common. Firstly I work out their intersection and then two ratios which are

47

5. Testing and detection evaluation

an area of the first box divided by area of an intersection and are of the second
one divided by intersection area. For each original annotation, the test proce-
dure finds detected objects with the highest overlap and connects these boxes.
If overlap exceeds a certain threshold, which is variable, detection is counted
as successful. Then false positives and not detected objects are noted. After
examining each file, overall statistics are printed to standard output.

5.1.1 Testing conditions
For testing, I used Central Processing Unit (CPU) inference on MacBook
Pro 2015 with IntelCore i7, CPU inference on Linux computer, and GPU
inference using NVidia RTX 2080 Graphic card on the same Linux machine
in ImproLab. Before the training and implementation, I did randomly choose
images for testing, that were not used for training. These images make up the
primary test sample. I will also run the detection of all the images gathered.

5.1.2 Results

Test
Run Algorithm Total

Objects Detections False
Positives Accuracy

1 YOLOv3 807 658 59 81 %
1 Faster R-CNN 807 645 81 80 %
2 YOLOv3 60 54 5 90 %
2 Faster R-CNN 60 53 7 89 %
3 Blob Detection 60 36 16 60 %
3 YOLOv3 60 55 0 91,5 %
3 Faster R-CNN 60 51 7 85 %
3 Blob Detection 60 42 16 70 %
4 YOLOv3 23 22 2 95 %
4 Faster R-CNN 23 16 7 69 %
4 Blob Detection 23 12 10 52 %
5 YOLOv3 37 34 2 91 %
5 Faster R-CNN 37 37 3 100 %
5 Blob Detection 37 23 0 62 %
6 YOLOv3 807 682 26 84 %
6 Faster R-CNN 807 674 47 83 %
6 Blob Detection 807 554 71 68 %

Table 5.1: Detection results comparison.

I did several test runs with different data:

1. all the data with default visualizations,

2. test collection with default visualizations,

48

5.1. Detection testing

3. test collection, visualization correction by textttauto_adjust,

4. test collection, visualization correction by textttauto_adjust, images
just from session 1,

5. test collection, visualization correction by textttauto_adjust, images
just from session 2,

6. final set with all the data, visualization correction by textttauto_adjust

Results show, that YOLOv3 is even more accurate than a Faster R-CNN.
This is a surprise to me, as I expected that the two-stage region proposal
network would be more successful. Both deep learning algorithms have slightly
better results when the visualization is adjusted before the detection, but the
difference is very small. On the other hand, the number of false positives
decreased significantly. The blob detection algorithm has considerably worse
results, as the hard-coded feature detection is not as effective as the deep
learning approach.

For test runs 4 and 5 the test data were into images captured during winter
and spring. Results show, that generally, detection is more accurate in the
winter environment, as the temperature differences are higher. Temperatures
similar to human skin temperature cause more false positives and decrease
success rate, mainly in the case of blob detection. This shows that results
depends highly on the environment, but some of these problems can be tackled
by setting right parameters for the visualization.

5.1.3 Performance

Device Method Platform Inference Time
CPU YOLOv3 MacOS 1.3 - 1.5 sec
CPU Faster R-CNN MacOS 7.5 - 8.2 sec
CPU Blob Detection MacOS 0.7-1.0 sec
CPU YOLOv3 Linux 0.8-0.9 sec
CPU Faster R-CNN Linux 2.2-2.4 sec
CPU Blob Detection Linux 0.3 sec
GPU YOLOv3 Linux 0.08-0.11
GPU Faster R-CNN Linux 0.9 sec

Table 5.2: Detection speed comparison.

Performance tests prove that YOLO is the fastest, with the maximum per-
formance it can handle images at 10 frames per second. If the visualization
is being altered before the detection, it may slow down the process. For real-
time detection, visualization would have to be adjusted on the camera, not in
the detection module.

49

Chapter 6
Conclusion

In my thesis, I have shown that it is indeed possible to use object detection
methods with thermograms. The developed application realizes a simple in-
terface to the detection module, which was build based on the analysis of
image detection methods. I took advantage of existing image detection im-
plementations and systems, which I integrated into my solution. I introduced
a disciple of Thermography, explaining the important concepts and obstacles
behind.

I achieved significant accuracy using deep learning and transfer-learned
neural networks. I have compared the performance and accuracy of neural
networks with different architecture and also a blob detection algorithm based
on color, shape, and temperature analysis.

The results show that the YOLO algorithm is not only the fastest, when
running on GPU, but also the most accurate. I perceive it as a suitable op-
tion for future development. The network was developed and tested using
only about 400 images and it may be prone to overfitting. Larger datasets
that would cover more real-world situations and areas are required to train
the network. Tests also proved that the environment conditions, like air tem-
perature and humidity, as well as vegetation have a significant impact on the
accuracy. To combat all these challenges, netwoir would have to be build on
a larger dataset.

For me, this thesis represented a great challenge. It was demanding not
only as an implementation task but as a whole, as all the parts from data
acquisition to analysis had a big impact. As I did not have any prior experience
with Python programming language or any image processing technology, the
understanding presented concepts widen my horizons, especially the research
on CNNs.

The real-world usage of the proposed solution may be limited due to the
fact, that thermal cameras are still a high-profile product and the user base
is not so high. On the other hand, I see big potential in the cooperation of the
company Workswell, which already showed an interest in future development.

51

6. Conclusion

A complete solution would have to be integrated with the camera firmware,
sending images to an application deployed to the server, which would run the
YOLO detector on GPU. It is not possible to run the inference directly on the
camera computing unit.

52

Bibliography

[1] Sova, J. Bezdotykové měření teplotních polí I. Aldebaran Bulletin [online],
2017, [cit. 2020-05-08]. Available from: https://www.aldebaran.cz/
bulletin/2017_18_ter.php

[2] Skalický, M. České nemocnice budou monitorovat termokamery. Jak
fungují a nedají se zneužít? (Czech). ”Český rozhlas [online], 2020,
[cit. 2020-05-31]. Available from: https://radiozurnal.rozhlas.cz/
ceske-nemocnice-budou-monitorovat-termokamery-jak-funguji-
a-nedaji-se-zneuzit-8197374

[3] Jones, B. A reappraisal of the use of infrared thermal image analysis
in medicine. IEEE Transactions on Medical Imaging [online], 1998, [cit.
2020-05-10]. Available from: https://ieeexplore.ieee.org/abstract/
document/746635

[4] Gaussorgues, G. Infrared Thermography. Dordrecht: Springer Sci-
ence+Business Media, third edition, 1994, ISBN 978-94-010-4306-9.

[5] International Association of Medical Thermographers. History of
Thermography [online]. [cit. 2020-05-31]. Available from: https://
iamtonline.org/history-of-thermography/

[6] WikiSkript. Termografie [online]. 2018, [cit. 2020-05-08]. Available from:
https://www.wikiskripta.eu/index.php?title=Termografie&oldid=
407681

[7] Van Hoof, C.; Moor, D. P. Handbook of Infra-red Detection Technolo-
gies. Elsevier Science, 2002, ISBN 978-1-85617-388-9, [cit. 2020-05-31].
Available from: http://www.sciencedirect.com/science/article/
pii/B9781856173889600012

[8] Sova, J. Screening horečnatých stavů pomocí termokamery [online].
2020, [cit. 2020-05-11]. Available from: https://www.slideshare.net/

53

https://www.aldebaran.cz/bulletin/2017_18_ter.php
https://www.aldebaran.cz/bulletin/2017_18_ter.php
https://radiozurnal.rozhlas.cz/ceske-nemocnice-budou-monitorovat-termokamery-jak-funguji-a-nedaji-se-zneuzit-8197374
https://radiozurnal.rozhlas.cz/ceske-nemocnice-budou-monitorovat-termokamery-jak-funguji-a-nedaji-se-zneuzit-8197374
https://radiozurnal.rozhlas.cz/ceske-nemocnice-budou-monitorovat-termokamery-jak-funguji-a-nedaji-se-zneuzit-8197374
https://ieeexplore.ieee.org/abstract/document/746635
https://ieeexplore.ieee.org/abstract/document/746635
https://iamtonline.org/history-of-thermography/
https://iamtonline.org/history-of-thermography/
https://www.wikiskripta.eu/index.php?title=Termografie&oldid=407681
https://www.wikiskripta.eu/index.php?title=Termografie&oldid=407681
http://www.sciencedirect.com/science/article/pii/B9781856173889600012
http://www.sciencedirect.com/science/article/pii/B9781856173889600012
https://www.slideshare.net/workswellEU/screening-horenatch-stav-pomoc-termokamery-koronavirus
https://www.slideshare.net/workswellEU/screening-horenatch-stav-pomoc-termokamery-koronavirus

Bibliography

workswellEU/screening-horenatch-stav-pomoc-termokamery-
koronavirus

[9] Modest, M. Radiative Heat Transfer. California: Academic Press, second
edition, 2009, ISBN 9780123869906.

[10] Inc., E. O. The Correct Material for Infrared (IR) Applica-
tions [online]. 2018, [cit. 2020-05-15]. Available from: https:
//www.edmundoptics.com/knowledge-center/application-notes/
optics/the-correct-material-for-infrared-applications/

[11] Bierman, W. The Temperature of the Skin Surface. Journal of the Amer-
ican Medical Association [online], 1936, [cit. 2020-05-24]. Available from:
10.1001/jama.1936.02770140020007

[12] Lai, D.; Zhou, X.; et al. Measurements and predictions of the
skin temperature of human subjects on outdoor environment. En-
ergy and Buildings [online], volume 151, 2017: pp. 476 – 486,
ISSN 0378-7788, doi:https://doi.org/10.1016/j.enbuild.2017.07.009, [cit.
2020-05-24]. Available from: http://www.sciencedirect.com/science/
article/pii/S0378778817305601

[13] Workswell. Core Player [software]. [cit. 2020-05-31]. Available from:
https://workswell-thermal-camera.com/workswellcoreplayer/

[14] FLIR Systems Inc. FLIR Tools+ [software]. 2020, [cit. 2020-05-31]. Avail-
able from: https://www.flir.com/products/flir-tools-plus/

[15] LaRue, M. Satellite imagery can be used to detect variation in abundance
of Weddell seals (Leptonychotes weddellii) in Erebus Bay, Antarctica.
Polar Biology [online], 2011, [cit. 2020-05-11]. Available from: https:
//ieeexplore.ieee.org/abstract/document/746635

[16] Hodgson, J. Drones count wildlife more accurately and precisely than hu-
mans. Methods in Ecology and Evolutions [online], 2018, [cit. 2020-05-11].
Available from: https://ieeexplore.ieee.org/abstract/document/
746635

[17] Chrétien, L. P.; Jérôme, T.; et al. Wildlife multispecies remote sensing
using visible and thermal infrared imagery acquired from an unmanned
aerial vehicle (UAV). International Conference on Unmanned Aerial
Vehicles in Geomatics [online], 2015, [cit. 2020-05-10]. Available
from: https://www.researchgate.net/publication/281462647_
Wildlife_multispecies_remote_sensing_using_visible_and_
thermal_infrared_imagery_acquired_from_an_unmanned_aerial_
vehicle_UAV

54

https://www.slideshare.net/workswellEU/screening-horenatch-stav-pomoc-termokamery-koronavirus
https://www.slideshare.net/workswellEU/screening-horenatch-stav-pomoc-termokamery-koronavirus
https://www.slideshare.net/workswellEU/screening-horenatch-stav-pomoc-termokamery-koronavirus
https://www.edmundoptics.com/knowledge-center/application-notes/optics/the-correct-material-for-infrared-applications/
https://www.edmundoptics.com/knowledge-center/application-notes/optics/the-correct-material-for-infrared-applications/
https://www.edmundoptics.com/knowledge-center/application-notes/optics/the-correct-material-for-infrared-applications/
10.1001/jama.1936.02770140020007
http://www.sciencedirect.com/science/article/pii/S0378778817305601
http://www.sciencedirect.com/science/article/pii/S0378778817305601
https://workswell-thermal-camera.com/workswellcoreplayer/
https://www.flir.com/products/flir-tools-plus/
https://ieeexplore.ieee.org/abstract/document/746635
https://ieeexplore.ieee.org/abstract/document/746635
https://ieeexplore.ieee.org/abstract/document/746635
https://ieeexplore.ieee.org/abstract/document/746635
https://www.researchgate.net/publication/281462647_Wildlife_multispecies_remote_sensing_using_visible_and_thermal_infrared_imagery_acquired_from_an_unmanned_aerial_vehicle_UAV
https://www.researchgate.net/publication/281462647_Wildlife_multispecies_remote_sensing_using_visible_and_thermal_infrared_imagery_acquired_from_an_unmanned_aerial_vehicle_UAV
https://www.researchgate.net/publication/281462647_Wildlife_multispecies_remote_sensing_using_visible_and_thermal_infrared_imagery_acquired_from_an_unmanned_aerial_vehicle_UAV
https://www.researchgate.net/publication/281462647_Wildlife_multispecies_remote_sensing_using_visible_and_thermal_infrared_imagery_acquired_from_an_unmanned_aerial_vehicle_UAV

Bibliography

[18] Czech Republic Civil Aviation Authority. Letecké předpisy[online].
[cit. 2020-05-12]. Available from: https://www.caa.cz/dokumenty/
predpisy/letecke-predpisy/

[19] Coach, U. Drone Laws in Czech Republic [online]. 2015, [cit. 2020-
05-12]. Available from: https://uavcoach.com/drone-laws-in-czech-
republic/

[20] Workswell. Workswell Wiris Pro User Manual [online]. 2019, [cit. 2020-
05-11]. Available from: http://workswell-thermal-camera.com/docs/
UAV_WWP_UM.pdf

[21] IT Network. Úvod a motivace do programování neuronových
sítí v Pythonu [online]. 2019, [cit. 2020-05-13]. Available from:
https://www.itnetwork.cz/python/neuronove-site/uvod-a-
motivace-do-programovani-neuronovych-siti-v-pythonu

[22] Sun, Z.; Bebis, G.; et al. Monocular precrash vehicle detection: Features
and classifiers. Proce. IEEE Trans. Image Processing [online], 2006, [cit.
2020-05-13].

[23] Ujjwalkarn. An Intuitive Explanation of Convolutional Neural Net-
works [online]. 2016, [cit. 2020-06-01]. Available from: https://
ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

[24] Browniee, J. A Gentle Introduction to the Rectified Linear
Unit (ReLU) [online]. 2019, [cit. 2020-06-04]. Available from:
https://machinelearningmastery.com/rectified-linear-
activation-function-for-deep-learning-neural-networks/

[25] Fully Connected Layers in Convolutional Neural Networks:
The Complete Guide [online]. [cit. 2020-06-01]. Available from:
https://missinglink.ai/guides/convolutional-neural-networks/
fully-connected-layers-convolutional-neural-networks-
complete-guide/

[26] Singh, S. P. Fully Connected Layer: The brute force layer of a Ma-
chine Learning model [online]. [cit. 2020-06-04]. Available from: https:
//iq.opengenus.org/fully-connected-layer/

[27] Girshick, R. Fast R-CNN. Proceedings of the IEEE International Confer-
ence on Computer Vision [online], 2015: pp. 1–9, [cit. 2020-05-11].

[28] Ren, S.; He, K.; et al. Faster R- CNN: Towards real-time object detection
with region proposal networks. Advances in Neural Information Process-
ing Systems [online], 2015, [cit. 2020-05-13].

55

https://www.caa.cz/dokumenty/predpisy/letecke-predpisy/
https://www.caa.cz/dokumenty/predpisy/letecke-predpisy/
https://uavcoach.com/drone-laws-in-czech-republic/
https://uavcoach.com/drone-laws-in-czech-republic/
http://workswell-thermal-camera.com/docs/UAV_WWP_UM.pdf
http://workswell-thermal-camera.com/docs/UAV_WWP_UM.pdf
https://www.itnetwork.cz/python/neuronove-site/uvod-a-motivace-do-programovani-neuronovych-siti-v-pythonu
https://www.itnetwork.cz/python/neuronove-site/uvod-a-motivace-do-programovani-neuronovych-siti-v-pythonu
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-layers-convolutional-neural-networks-complete-guide/
https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-layers-convolutional-neural-networks-complete-guide/
https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-layers-convolutional-neural-networks-complete-guide/
https://iq.opengenus.org/fully-connected-layer/
https://iq.opengenus.org/fully-connected-layer/

Bibliography

[29] Redmon, J.; Divvala, S. You only look once: Unified, real-time object
detection. IEEE conference on computer vision and pattern recognition
[online], 2016: p. 779–788, [cit. 2020-05-12].

[30] Mittal, U.; Srivastava, S.; et al. Object Detection and Classification
from Thermal Images Using Region based Convolutional Neural Network.
Journal of Computer Science [online], 2019, [cit. 2020-05-13]. Available
from: https://thescipub.com/pdf/10.3844/jcssp.2019.961.971.pdf

[31] Uijlings, J. Selective Search for Object Recognition [online]. 2012,
[cit. 2020-06-01]. Available from: https://ivi.fnwi.uva.nl/isis/
publications/2013/UijlingsIJCV2013/UijlingsIJCV2013.pdf

[32] Gandhi, R. R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Ob-
ject Detection Algorithms [online]. 2018, [cit. 2020-06-01]. Available
from: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-
r-cnn-yolo-object-detection-algorithms-36d53571365e

[33] Zhang, A.; Lipton, Z. C.; et al. Dive into Deep Learning. 2020, https:
//d2l.ai.

[34] Pobar, M. Human Detection in Thermal Imaging Using YOLO. 2019,
[cit. 2020-05-12]. Available from: https://www.researchgate.net/
publication/333360405_Human_Detection_in_Thermal_Imaging_
Using_YOLO

[35] Tsung-Yi L, M. M. B. S. J. Microsoft COCO: Common Objects in
Context. CoRR, volume abs/1405.0312, 2014. Available from: http:
//arxiv.org/abs/1405.0312

[36] Caelli, T.; Bischof, W. T. Machine Learning and Image Interpretation.
Springer Science & Business Media, third edition, 1997, ISBN 978-1-4899-
1818-5.

[37] Tang, P.; Wang, X. Weakly Supervised Region Proposal Network and
Object Detection. In The European Conference on Computer Vision
(ECCV), September 2018.

[38] Mallick, S. Histogram of Oriented Gradients [online]. 2016, [cit. 2020-
05-13]. Available from: https://www.learnopencv.com/histogram-of-
oriented-gradients/

[39] FLIR Systems Inc. Free FLIR Thermal Dataset for Algorithm Training
[online]. 2019, [cit. 2020-05-10]. Available from: https://www.flir.com/
oem/adas/adas-dataset-form/

56

https://thescipub.com/pdf/10.3844/jcssp.2019.961.971.pdf
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013/UijlingsIJCV2013.pdf
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013/UijlingsIJCV2013.pdf
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://d2l.ai
https://d2l.ai
https://www.researchgate.net/publication/333360405_Human_Detection_in_Thermal_Imaging_Using_YOLO
https://www.researchgate.net/publication/333360405_Human_Detection_in_Thermal_Imaging_Using_YOLO
https://www.researchgate.net/publication/333360405_Human_Detection_in_Thermal_Imaging_Using_YOLO
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.flir.com/oem/adas/adas-dataset-form/
https://www.flir.com/oem/adas/adas-dataset-form/

Bibliography

[40] Doherty, P.; Rudol, P. Human Body Detection and Geolocalization for
UAV Search and Rescue Missions Using Color and Thermal Imagery. 2008
IEEE Aerospace Conference [online], 2008, [cit. 2020-05-10]. Available
from: https://ieeexplore.ieee.org/document/4526559

[41] Corcoran, E.; Denman, S.; et al. Automated detection of koalas using
low-level aerial surveillance and machine learning. Sci Rep [online], 2019,
[cit. 2020-05-10]. Available from: https://doi.org/10.1038/s41598-
019-39917-5

[42] Nokia Corporation. Qt Reference Documentation [online]. [cit. 2020-05-
10]. Available from: https://doc.qt.io/archives/qt-4.7/index.htmls

[43] Nokia Corporation. Qt Reference Documentation [online]. [cit. 2020-05-
10]. Available from: https://doc.qt.io/archives/qt-4.7/index.htmls

[44] Du, Z.; Yin, J.; et al. Expanding Receptive Field YOLO for Small Ob-
ject Detection. Journal of Physics: Conference Series, volume 1314, oct
2019: p. 012202, doi:10.1088/1742-6596/1314/1/012202. Available from:
https://doi.org/10.1088%2F1742-6596%2F1314%2F1%2F012202

[45] Zhu, P.; Wen, L.; et al. Vision Meets Drones: A Challenge [on-
line]. 2018, [cit. 2020-05-11]. Available from: https://arxiv.org/pdf/
1804.07437.pdf

[46] Mueller, M.; Smith, N.; et al. A benchmark and simulator for UAV track-
ing. Proceedings of European Conference on Computer Vision [online],
2016, [cit. 2020-05-11]. Available from: https://ieeexplore.ieee.org/
abstract/document/746635

[47] Workswell. Workswell Wiris Pro Quick Start Guide [online]. 2019, [cit.
2020-05-11]. Available from: https://workswell-thermal-camera.com/
docs/UAV_WWP_QSG.pdf

[48] Tzutalin. Label Img [online]. 2015, [cit. 2020-05-11]. Available from:
https://github.com/tzutalin/labelImg

[49] Nokia Corporation. Qt Designer Manual [online]. [cit. 2020-05-10]. Avail-
able from: https://doc.qt.io/qt-5/qtdesigner-manual.html

[50] Apple, Inc. Preview User Guide[online]. [cit. 2020-06-02]. Available from:
https://support.apple.com/guide/preview/welcome/mac

[51] Python Software Foundation. PEP 8 – Style Guide for Python Code [on-
line]. 2013, [cit. 2020-05-15]. Available from: https://www.python.org/
dev/peps/pep-0008/

57

https://ieeexplore.ieee.org/document/4526559
https://doi.org/10.1038/s41598-019-39917-5
https://doi.org/10.1038/s41598-019-39917-5
https://doc.qt.io/archives/qt-4.7/index.htmls
https://doc.qt.io/archives/qt-4.7/index.htmls
https://doi.org/10.1088%2F1742-6596%2F1314%2F1%2F012202
https://arxiv.org/pdf/1804.07437.pdf
https://arxiv.org/pdf/1804.07437.pdf
https://ieeexplore.ieee.org/abstract/document/746635
https://ieeexplore.ieee.org/abstract/document/746635
https://workswell-thermal-camera.com/docs/UAV_WWP_QSG.pdf
https://workswell-thermal-camera.com/docs/UAV_WWP_QSG.pdf
https://github.com/tzutalin/labelImg
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://support.apple.com/guide/preview/welcome/mac
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Bibliography

[52] Nokia Corporation. QUiLoader Class[online]. [cit. 2020-05-16]. Available
from: https://doc.qt.io/archives/qt-4.7/index.htmls

[53] Lundh, F. Pillow Overview [online]. Secret Labs AB, [cit. 2020-
05-12]. Available from: https://pillow.readthedocs.io/en/stable/
handbook/overview.html

[54] Matoba. PieExif Documentation [online]. 2018, [cit. 2020-05-12]. Avail-
able from: https://piexif.readthedocs.io/en/latest/index.html

[55] Nokia Corporation. Multithreading Technologies in Qt [online].
[cit. 2020-05-24]. Available from: https://doc.qt.io/qt-5/threads-
technologies.html

[56] Nokia Corporation. Synchronizing threads [online]. [cit. 2020-
06-04]. Available from: https://doc.qt.io/qt-5/threads-
synchronizing.html

[57] Python Software Foundation. abc - Abstract Base Classes [online].
[cit. 2020-05-13]. Available from: https://docs.python.org/3/library/
abc.html

[58] Google Inc. Google Maps Elevation API. 2020, [cit. 2020-05-08]. Avail-
able from: https://developers.google.com/maps/documentation/
elevation/start

[59] Mallick, S. Blob Detection Using OpenCV [online]. 2015, [cit. 2020-05-
10]. Available from: https://www.learnopencv.com/blob-detection-
using-opencv-python-c/

[60] Open Source Computer Vision. SimpleBlobDetector Class Reference [on-
line]. [cit. 2020-06-03]. Available from: https://docs.opencv.org/3.4/
d0/d7a/classcv_1_1SimpleBlobDetector.html

[61] Workswell, s.r.o. Field of View Calculator [online]. 2020, [cit. 2020-05-
11]. Available from: https://workswell-thermal-camera.com/field-
of-view-calculator/s

[62] John, C.; Brent, F. The image processing handbook. Boca Raton: CRC
Press, Taylor & Francis Group, 7th edition, 2016, ISBN 978-1-4987-4026-
5.

[63] Ponnusamy, A. YOLO Object Detection with OpenCV and
Python [online]. 2018, [cit. 2020-05-15]. Available from: https:
//www.arunponnusamy.com/yolo-object-detection-opencv-
python.html

58

https://doc.qt.io/archives/qt-4.7/index.htmls
https://pillow.readthedocs.io/en/stable/handbook/overview.html
https://pillow.readthedocs.io/en/stable/handbook/overview.html
https://piexif.readthedocs.io/en/latest/index.html
https://doc.qt.io/qt-5/threads-technologies.html
https://doc.qt.io/qt-5/threads-technologies.html
https://doc.qt.io/qt-5/threads-synchronizing.html
https://doc.qt.io/qt-5/threads-synchronizing.html
https://docs.python.org/3/library/abc.html
https://docs.python.org/3/library/abc.html
https://developers.google.com/maps/documentation/elevation/start
https://developers.google.com/maps/documentation/elevation/start
https://www.learnopencv.com/blob-detection-using-opencv-python-c/
https://www.learnopencv.com/blob-detection-using-opencv-python-c/
https://docs.opencv.org/3.4/d0/d7a/classcv_1_1SimpleBlobDetector.html
https://docs.opencv.org/3.4/d0/d7a/classcv_1_1SimpleBlobDetector.html
https://workswell-thermal-camera.com/field-of-view-calculator/s
https://workswell-thermal-camera.com/field-of-view-calculator/s
https://www.arunponnusamy.com/yolo-object-detection-opencv-python.html
https://www.arunponnusamy.com/yolo-object-detection-opencv-python.html
https://www.arunponnusamy.com/yolo-object-detection-opencv-python.html

Bibliography

[64] Murugavel, M. How to train YOLOv3 to detect custom objects. 2018, [cit.
2020-06-04]. Available from: https://medium.com/@manivannan_data/
how-to-train-yolov3-to-detect-custom-objects-ccbcafeb13d2

[65] Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv
[online], 2018. Available from: https://pjreddie.com/media/files/
papers/YOLOv3.pdf

[66] Wu, Y.; Kirillov, A.; et al. Detectron2. InfoWorld [online], 2019, [cit.
2020-05-29]. Available from: https://github.com/facebookresearch/
detectron2[online]

[67] Yegulalp, S. Facebook brings GPU-powered machine learning to
Python [online]. 2017, [cit. 2020-05-29]. Available from: https:
//www.infoworld.com/article/3159120/artificial-intelligence/
facebook-brings-gpu-powered-machine-learning-to-python.html

[68] Facebook Inc. Detectron2 Beginner’s Tutorial [online]. 2020, [cit. 2020-
05-15]. Available from: https://colab.research.google.com/drive/
16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5

59

https://medium.com/@manivannan_data/how-to-train-yolov3-to-detect-custom-objects-ccbcafeb13d2
https://medium.com/@manivannan_data/how-to-train-yolov3-to-detect-custom-objects-ccbcafeb13d2
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://github.com/facebookresearch/detectron2 [online]
https://github.com/facebookresearch/detectron2 [online]
https://www.infoworld.com/article/3159120/artificial-intelligence/facebook-brings-gpu-powered-machine-learning-to-python.html
https://www.infoworld.com/article/3159120/artificial-intelligence/facebook-brings-gpu-powered-machine-learning-to-python.html
https://www.infoworld.com/article/3159120/artificial-intelligence/facebook-brings-gpu-powered-machine-learning-to-python.html
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5

Acronyms

AI Artificial Inteligence. 12, 43

API Application Programming Interface. 21, 25, 35, 38

CNN Convolutional Neural Network. ix, xi, 12, 13, 15, 16, 49

COCO Common Objects In Context. 18, 42

CPU Central Processing Unit. 46, 47

DJI Dà-Jiāng Innovations. 10, 27

EXIF Exchangeable Image File Format. 34, 38

Fast R-CNN Fast Region Based Convolutional Neural Network. 15, 16

Faster R-CNN Faster Region Based Convolutional Neural Network. x, xi,
15–17, 26, 43, 46, 47

FLIR Forward-looking Infrared. 4, 10, 19

GPS Global Positioning System. 38

GPU Graphics Processing Unit. 43, 46, 47, 49, 50

GUI Graphical User Interface. x, 24, 29, 33

HOG Histograms of Oriented Gradients. 12, 19

IDE Integrated Development Environment. 29

JPEG Joint Photographic Experts Group. 28, 34, 38

61

Acronyms

JSON JavaScript Object Notation. 35, 45

MOBIA Multicriteria Object-Based Image Analysis. 20

MVC Model-View-Controller. 24, 33

R-CNN Region Based Convolutional Neural Network. 15, 16, 20, 26

ReLU Rectified Linear Unit. 13

RGB Red Green Blue. 12, 18, 42, 43

RoI Region of Interest. 16

SIFT Scale-Invariant Feature Transform. 12

SVM Support Vector Machines. 12, 16, 19

TIFF Tagged Image File Format. 28, 34, 38

UAV Unmanned Autonomous Vehicle. ix, 10, 20, 27

YOLO You Only Look Once. x, xi, 15, 17, 18, 20, 26, 29, 42, 43, 47, 49, 50

YOLOv3 You Only Look Once version3. 42, 43, 46, 47

62

Appendix A
Contents of enclosed CD

app.......................the directory with the application source codes
source ... Python sources
ui..Graphical Interface sources
detector_helper_files Weights and configurations used by the
application for detection
test-dataset.....................Scipt used for detection evaluation
readme.md ... the file with the application description and installation
guide
thermaldetector.pyprojectthe file with the Qt project configuration
thermaldetector.py..........................Main application class

thesis..................the directory of LATEX source codes of the thesis
text.. the thesis text directory

BP_Glejtek_Matej_2020.pdf..........the thesis text in PDF format
dataset................directory with thermograms for testing purposes

63

	Introduction
	Theoretical Background
	Thermography
	History of thermography

	Thermal cameras
	Physics of Thermography
	Equation of Thermography
	Measurement with thermal cameras
	Visualization

	Human skin temperature
	Current thermal analysis methods
	uav and thermography
	Analysis of object detection methods
	Introduction to image processing and object detection
	Object detection approaches
	Convolutional Neural Networks (ConvNet or cnn)
	Region Based Convolutional Neural Network
	Fast Region Based Convolutional Neural Network
	Faster Region-Based Convolutional Neural Network
	You Only Look Once
	Machine Learning Methods

	Related work
	Doherty & Rudol paper - Human body Detection doherty
	Corcoran paper - detecting koalas
	Chretien paper - wildlife sensing wildlife

	Design
	Specification of requirements
	Use cases
	Chosen technologies
	Qt Framework and PySide 2
	Used libraries

	Software architecture
	Choosing the suitable option object detection method

	Realisation
	Data Acquisition
	Application Overview
	Project Structure

	Creating Graphical User Interface
	Application Window design
	Custom Graphic Components

	Application Implementation
	gui Controllers
	Image handling
	Visualizations
	Multithreading

	Detection Implementation
	Blob detection algorithm
	yolo Detector
	fasterrcnn Detector
	Presentation of results

	Testing and detection evaluation
	Detection testing
	Testing conditions
	Results
	Performance

	Conclusion
	Bibliography
	Contents of enclosed CD

