Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Trajectory planning for a heterogeneous
team in an automated warehouse

Tomas Rybecky

Supervisor: RNDr. Miroslav Kulich Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Cybernetics and Robotics

May 2020

ii

Acknowledgements

I would really like to thank my supervisor
RNDr. Miroslav Kulich Ph.D. for more
than two years of inspirational leadership
and mentoring. A large part of this work
was developed within the Safelog project,
which also gave me the opportunity to
test the developed Fleet Management Sys-
tem with real industrial AGVs and gain
valuable experience from working in the
applied-robotics environment. Finally, I
would like to acknowledge the co-authors
of the Fleet Management System and its
components, mainly Ing. Lukas Bertl and
Ing. Jakub Hvézda Ph.D..

iii

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 18. May 2020

signature

Abstract

This thesis develops the topic of route
planning for a group of cooperating robots,
specifically in the automated warehouse
environment, which has its specifics in the
field of multi-agent path-finding. The the-
sis discusses possible modifications to ex-
isting planning algorithms based on these
particularities, such as replanning based
on the knowledge of existing plans. Fur-
thermore, the thesis describes the devel-
opment and operation of a management
system for controlling a fleet of automated
guided vehicles (AGVs) that operate an
automated warehouse, which is also ex-
tended with the possibility of safely in-
troducing a human worker. The planning
algorithms and the management system
were implemented in C+4. Their func-
tionality is then discussed, including the
comparison with other methods.

Keywords: route planning, cooperative
robots, automated warehouse

Supervisor: RNDr. Miroslav Kulich
Ph.D.

CIIRC,

Jugosldvskych partyzéanu 1580/3

Praha 6

iv

Abstrakt

Tato diplomova prace rozviji téma plano-
vani trajektorii pro skupinu kooperujicich
roboti, a to konkrétné v prostredi auto-
matizovaného skladu, které ma pro multia-
gentni planovani sva specifika. Préce se za-
byva moznymi modifikacemi planovacich
algoritmu na zakladé téchto specifik, jako
napriklad potieby lokdlnich iprav jiz exis-
tujicich plant. Dale pak popisuje vyvoj a
fungovani systému pro fizeni flotily robot
v automatizovaném skladu, a to vcetné
zahrnuti lidského pracovnika bezpecné se
pohybujiciho mezi roboty. Planovaci algo-
ritmy i kontrolni systém byly implemen-
tovany v jazyce C++. Jejich funkénost je
na zavér diskutovana vcetné srovnani s
jinymi metodami.

Kli¢ova slova: planovani trajektorii,
kooperace robott, automatizovany sklad

Preklad nazvu: Planovani trajektorie
pro heterogenni tym v automatizovaném
skladu

Contents
1 Introduction 1
2 State of the art
2.1 A*-based algorithms 6|
2.2 MAPF solutions evaluation rd
2.3 Agent planning order...........

2.4 Anytime and lifelong path
planning

3 Memory-based Context-Aware

Route Planning 13
3.1 Data structure [14]
3.2 MAPF formulation 14l
33CARPl 15l
3.4 Replanning in MAPF
35MCARP ... 17
3.5.1 Distance to goal
3.5.2 Plan reusing.
3.5.3 Sorting of agents...........

4 Algorithm evaluation 23

4.1 Experiment setup
4.2 Compared algorithms
4.3 Evaluation
4.4 Grouped results
441LF ..o 26
442TF ..o
443MW. .o
4440W ..o 28
4.5 Sorting comparison
4.6 Expansions reduction
4.7 High priority agent count

4.8 Estimate to the goal metrics on a

warehouse map
4.9 Evaluation conclusion 134
5 Fleet Management System
5.1 Description

52 FMS modules 40

5.2.1 Fleet Data
5.2.2 Component Server
5.2.3 Agent Server
5.2.4 Route Planning
5.3 Customization................ 44

6 FMS testing tools

6.1 Simulator 47|
6.2FMT........................ 49|
6.3 Statistics, 50l
7 Human worker in an automated

warehouse 51]
7.1 Problem definition [51]
7.2 Human safety
73Humanin FMS............... 53l

7.3.1 Human-Aware Route Planning

7.3.2 Virtual Reality Location Client

7.3.3 Human Intention Recognition

7.3.4 Simulated distractions

vi

7.3.5 Plotter tool

8 FMS performance and
deployment

8.1 Simulated performance

8.2 Laboratory demonstrator

8.3 Real warehouse demonstrator ..

9 Conclusions

A Bibliography

B Enclosed CD contents

C Project Specification

Figures

2.1 Comparison of failure rate of
CARP with no sorting of
assignments, random shuffles and
several sorting heuristics, LF', DG

and GG. [1]

3.1 Replanning using CARP and
MCARP. Blue path shows the
originally planned path from S to G,
red paths are consequently added
higher priority agents H; and Hs. In
green is the replanned path by each
algorithm. Tiles each replanning
algorithm added to OPEN list are
marked grey. Numbers in (b) and
(d) denote the distance from the
original path....................

3.3 Two agents in a narrow corridor
example. [2]............

4.1 Generated maps with 1008 and
1350 edges (504 and 775 two-way

edges respectively).
4.2 LF heuristic..................
4.3 IF heuristic 28
4.4 MW heuristic 29
4.5 OW heuristic................. 130
4.6 Algorithm comparison

vii

4.7 Comparing the number of
expansions performed by planning
algorithms and the resulting
planning time.

4.8 Algorithm comparison regarding
the number of high priority agents in

PIrOCESS. it 133
4.9 Warehouse map experiment. ...
5.1 AS/RS warehouse schema

displayed in the Safelog Fleet

Manager Terminal...............
5.2 Schema of the WMS. 1391
5.3 Schema of the FMS. A dashed

rectangle marks a data object, solid

rectangles mark thread. Solid lines
mark data access within a program,
dashed lines mark data transfer
between processes with the
communication interface noted in

blue. i 40
6.1 Schema of the Simulator. 48]
6.2 Fleet Manager Terminal GUI. ..
7.1 Warehouse ilustration with safety

levels. Image source : Safelog . ..
7.2 Human in FMT GUL
B 58]

8.2 Plotter tool showing the growing
number of deliveries during the time
and their duration development. The
Y-axis displays both time for delivery
in seconds and number of completed
deliveries. The n — th shade of green
marks the n — th delivery completed
by each AGV. In the Human Actions
plots, the marks denote that at that
time, a new job was assigned to any
human in the warehouse. 58]

8.3 Automated warehouse laboratory
demonstrator, Intelligent and Mobile
Robotics Group, CIIRC CTU.....

8.4 Swisslog Carrypick AGV used in
the Safelog project.
Image source : https :
/Jwww.swisslog.com/...........

viii

Chapter 1

Introduction

The field of multi-agent path-finding (MAPF) is highly covered in many
publications, and the solutions to the general problem are already on high
levels of effectiveness. However, specific applications introduce different
obstacles to deal with, but also opportunities to improve the performance of
the path-finding process.

An application this thesis aims at are automated warehouses, where the
usage of mobile robots'| proves to be beneficial, as described in Chapter 5. A
specific motivation leading to this topic then comes from the EU Horizon 2020
project Safelog?, which presents a novel solution for human-robot cooperation
within automated warehouses and will be further described.

In my bachelor thesis, I showed that sequential assigning of tasks for the
agents introduces new constraints, but can be extended with techniques to
improve the results, meaning the ability to find a solution or improve its
quality [I]. Methods presented in the bachelor thesis were also published
in a conference paper [3]. For convenience, only the bachelor thesis will be
referenced regarding this topic.

To provide a wider background of the topic, Chapter 2| introduces the
MAPF in detail and presents several state of the art methods, along with the

!The naming convention in this thesis uses the term mobile robots (or specifically AG Vs,
Autonomous Ground Vehicles) for the embodied robotic vehicles. Agents, on the other
hand, is a term used for the planned virtual entities seen by a planning algorithm. These
can represent both robots or humans.

2For more information about the project, see http://safelog-project.eu/

1. Introduction

approaches from [I], and, finally, algorithms that serve as an inspiration for the
problem aimed at later in this work. That is the possibility of distinguishing
the agent priorities, as it proves to be beneficial to enable a human worker
to enter the otherwise restricted area without the need to stop the work
altogether.

This problem can be generally formulated as a higher priority agent ap-
pearing in the sequence of assignments coming to the route planner. While
the higher priority agent could be planned first and the others afterward
from scratch, Chapter |3| describes ways to simplify this process. The result of
this re-usage of old planning knowledge promises a significant planing-time
save-up. Furthermore, the need to produce new plans for the agents enables
another possibility to apply the improvement heuristics described in Chap-
ter 2| without any cost. Along with them, more new sorting mechanisms are
proposed and compared.

The proposed algorithms were experimentally evaluated, and the results
are presented and discussed in Chapter |4l

A significant part of this thesis describes the development of an actual
management system for the mentioned automated warehouse that enables
the presence of humans. The Fleet Management System (FMS) that is
described in detail in Chapter [5| was developed within the Safelog project and
incorporates task allocation, route planning, communication with the AGVs,
and several safety and control mechanisms. It is also designed to cooperate
with other Safelog components to operate the automated warehouse. It is
important to mention that significant parts of the FMS, namely the raw
layout implementation, the graphical user interface, and planner structure,
were created by several other people. The system is presented as a whole, but
the main contributions of the author were in reworking the system and its
components to function without errors and in extending it with the human
workers.

Chapter [6| then describes several tools developed together with the FMS
to test and prove its functionality. The problem of a higher priority agent,
namely human, in an automated warehouse is introduced in Chapter [7. The
specifics of this application are described, as well as the necessary safety
precautions. The chapter also describes methods to ensure and possibly
anticipate human behavior, since violations of the given instructions should
be expected. The research cooperation with the University of Zagreb (UNIZG)
also led to a successful publication of a conference paper [4].

2

1. Introduction

Performed experiments and their results are presented and discussed in
Chapter [8. It also discusses the application of the FMS in a real warehouse
demonstrator. Chapter 9], finally, wraps up the developed algorithms, as
well as the management system. Possible future improvements and research
interests are also discussed.

Chapter 2

State of the art

Planning of trajectories for multiple agents moving in a shared area is a
widely studied field with several branches of solver approaches. The optimal
solvers for the multi-agent path-finding problem (MAPF) can be classified as
follows [5]:

A*_based

Increasing Cost Tree Search (ICTS)

Conflict-Based Search (CBS)

constraint programming

The A*-based algorithms use the A* algorithm to search a constrained state
space for each agent. The state space is extended with the time domain in
order to achieve collision-free plansﬂ for the agents. The A*-based algorithms
are addressed in detail in Section since this thesis builds mainly on one
of them.

The ICTS algorithms decouple MAPF into finding the cost of each agent
and then retrieving a solution based on the costs. In the first part, they
attempt to find an optimal solution for every single agent and retrieve its size
- the cost. This vector of costs is taken as a root for an Increasing Cost Tree

n this work, the term plan is used for the timed trajectory of an agent. The term path
is used for the trajectory itself without the time domain.

2. State of the art

(ICT). Its children then add 1 to each element in the vector, and the same
applies to their children. The second part then uses a breadth-first search
to go through the ICT. For each of the nodes representing a vector of costs,
it attempts to find a valid (= collision-free) solution which fits the expected
costs. That means, it searches for individual plans with the given costs and
evaluates the validity of the full set of plans. By searching in a breadth-first
manner, the optimality of the first found solution is verified. Some speedup
extensions of the ICTS then prune the ICT by quickly identifying individual
plans with no valid solution [6].

The CBS approach is very similar to ICTS. It also solves multiple single-
agent path-finding problems, but with the addition of constraints that ensure
their completeness and optimality. The process is again divided into two
levels, and a binary tree is constructed. Within that, constraints (blocked
states in the state space) are added on each level for agents to resolve collisions.
Then a breadth-first search is applied on the tree to find the least constrained
collision-free setup and retrieve its solution [7].

The MAPF problem can also be solved by a general-purpose solver that
is given a set of constraints, ensuring a collision-free solution. For this
approach, the MAPF problem is modeled as either a Constraints Satisfaction
Problem (CSP) or a Constraint Optimization Problem (COP). The main
benefit of these methods is that current general-purpose constraints solvers
are very efficient and constantly further improved [5]. A beneficial property
is also in the ability to choose the optimization domain, e.g., makespan (see
Section 2.2).

B 21 A*-based algorithms

The A* algorithm was originally used to solve the general problem in discrete
time. Such an approach leads to a large state space with a high branching
factor. In the worst case for a graph with |V| vertices and |E| edges, the
size can be |V|*, where k is the number of agents, and the branching factor
would be (%)k Several methods then attempt to improve the algorithm
performance - the Operator Decomposition reduces the branching factor by
iteratively adding actions for the agents in a given order in new steps [§], the
Independence Detection decouples the MAPF problem to smaller problems
with fewer agents by grouping those which would collide on their optimal
paths [8], and M* reduces the branching factor by attempting the progress of
all agents by one step in their optimal path and expanding only in the case

of a collision [9].

2.2. MAPF solutions evaluation

Coming from mobile robotics applications, where the robots can be allowed
to wait in one place, the need for time discretization creates an even larger
downturn. Furthermore, the planning time needs to be reduced as much
as possible. Planning in continuous time therefore brings in the idea of
time intervals or windows. However, even though the solvers based on these
approaches are simpler and faster, they no longer provide optimality.

The Safe Interval Path Planning algorithm (SIPP) works with the idea
of planning for one agent in a dynamic environment [10]. The nodes in
the search graph are extended with time intervals, which are either safe or
collision. The A* algorithm expansions are then constrained to enter only
the safe intervals. The dynamic obstacles in the environment can be either
considered as some predicted, but not controlled entities, or as the previously
planned agents. Note, that this differentiation also brings in the idea that the
planner should take into account the reliability of the trajectories it expects
the other agents to follow. This uncertainty will be an important topic in
Chapter [7.

The Context-Aware Route Planning algorithm (CARP) similarly works with
so-called time windows. These, either free or occupied, form an occupancy
table of the environment [2]. When expanding the states, the A* algorithm
checks their accessibility in the occupancy table the same way as it is done
in SIPP. CARP generally considers all entities in the area as controlled and
attempts to produce plans for all of them sequentially. The algorithm will be
described in detail in Chapter 3|, as it is used as the base for the proposed
approach.

The sequentiality is then also a variable option since, due to the nature
of planning in time, the plans cannot be produced by parallelized planners.
However, it can be distinguished whether the whole set of assignments is
known in advance and their order can be changed, or if the assignments come
in sequentially and any change of order needs to be applied in runtime - after
some agents were already planned. The influence and benefits of such order
changes will be described in Section 2.3,

. 2.2 MAPF solutions evaluation

In order to evaluate the qualities of the planning algorithms and solvers,
several criteria can be measured and compared. These will also be used to
compare the qualities of the proposed methods in Chapter 4l

7

2. State of the art

Firstly, it is essential that the algorithm finds a solution - a set of collision-
free plans for all given agents - and it finds it in a reasonable time. The
ability to find a plan is measured by the failure rate. That stands for the
percentage of setups from some representative set that the algorithm fails
to solve. The planning time then determines how much time the algorithm
needs to find a set of plans successfully. In order to maintain the validity
of the value, unsuccessful planning attempts should not be included in the
computation of an average planning time.

The second evaluated property is the quality of the plans. Again, only full
sets of plans should be considered. The main measure is the cost of the plans.
For a general planning algorithm, the cost can simply be the length of the
resulting path, however, when planning in the time domain, the agents can
wait on nodes, and this needs to be considered as well. Duration of the plans
is usually denoted in two ways:

B makespan - the time by which the last agent in the set reaches its goal

B flowtime - the sum of execution times across all agents [11]

In this work, makespan will be used to describe the duration characteristic
of the plans. The actual covered distance can be useful as well to see how
many nodes the agent visits. This can help to compare whether it is more
beneficial to wait for a long time or choose a longer path. This measure will
be regarded as length of plans.

. 2.3 Agent planning order

The order in which the assignments are taken - in which the agents are
planned - can have a significant influence on the planning and its results.
Enabling more complicated and longer paths to be planned with a higher
priority than short ones seems to provide a larger chance of finding the set of
plans [12] [I3]. The ability to change the order, however, is either restricted to
planning the whole set of agents together with the knowledge of it in advance,
or it tends to increase the planning time for each agent, as this section shows.

The CARP author presented the idea of order changes along with a highly
effective Longest First (LF') heuristic, which sorts the agents based on their
optimal single-plans costs [12]. The procedure plans each agent with an A*

8

2.3. Agent planning order

algorithm to retrieve the costs and then sequentially uses the CARP algorithm
to plan them in the order going from longest to shortest. The cost can either
be considered as the makespan or the actual path length. Increasing the
priority of the costlier plans has proven to reduce the failure rate highly.
However, the makespan of the resulting plans may get worse with the original
order, since the ordering is based on the length of the optimal paths and
therefore optimizes it [I].

In my bachelor thesis, it was shown that changes in the order of sequentially
assigned tasks during runtime also tend to improve the overall results without
exceeding a reasonable planning time limit given by the application [I]. The
proposed methods attempt to sort the assignments during the planning
process heuristically. In order to do so, the idea of influence between agents’
plans was introduced. The influence is derived from the overall distance
between the agents on their routes in time.

During the sequential adding of agents to the process, a group of the most
influencing agents was found for each new assignment. The group was formed
using a distance matrix, and taken from the planned group to be re-planned
afterward. Two procedures used this approaches, the Direct group (DG),
taking the group of the most influencing agents directly, and Growing group
(GG), which repeatedly adds the one most influencing agent to the group
up to some limit. In a set of experiments, it was shown that after changing
the order of the agents (moving the influential agents to the end each time)
and replanning, the quality of plans, and the chance they will be found rises.
That is achieved even with a small size of the group, namely 4-6 agents out
of 100.

A comparison of failure rate between the named algorithms is shown in
Figure 2.1l The results were produced in a set of experiments with the setup,
that is described in detail in Chapter |4, since it is used for this work as
well. The two versions of CARP numbered 10 and 100 worked with a set of
assignments known in the beginning and performed a corresponding number
of shuffles of the order to find the best result among them. This approach was,
of course, time costly. The DG and GG methods are numbered by the size
of the replanned group. These methods received the assignments sequentially

.

2. State of the art

100

©
o
I

- N _ 3 .
3 o £ S
a ‘e \) e\ N\ \
€ 60 AR T 60 ‘e-o & o
o} \ . @ | \ N .
£ o % £ \ ° \
E Y E Lo
o o o o ! LN
2 o % @ . SR
o 40| m CARP BN S 40| m CARP | L N
2 B CARP10 MR TN 2 B CARP10 A e N
& H CARP100 . LNRVIR) & E CARP100 " . o e
m LF o LIONE mLF . o8
204| O GG 4) S B R 20| O DG_4 * %3
= GG_5 . . L\ = DG_5 . . &,
H GG 6 e, . = DG_6 Se .
. o o o.
0| ® cel10 e 0-0-0-018=0-0 oJ| ™ DG_10 ®-e-0-0-0'8:00

0-0-0-0- 0= g:0c 5.,
el N RN

N

T T
1000 1100 1200 1300 1400 1500

100 +

80 +

e-0-0-0- 0= g-0-;
ce

LNSLN

800

T
1000 1100 1200 1300 1400 1500

Number of edges in the graph Number of edges in the graph

Figure 2.1: Comparison of failure rate of CARP with no sorting of assignments,
random shuffles and several sorting heuristics, LF', DG and GG. [1]

B 24 Anytime and lifelong path planning

A different area of study aims at algorithms, which can work with old planning
information and reuse it. The anytime algorithms usually quickly produce a
sub-optimal path and then reuse the search knowledge to improve the solution.
They do so by inflating the heuristic used by an A* algorithm, making it a
weighted A*, which often provides speedups, but it is at the cost of solution
optimality [I4]. However, if the heuristic is consistent, multiplication by an
inflation factor € > 1 is proved to bound the resulting cost to e times the
optimal cost, which is the idea behind the Anytime Repairing A* (ARA*).
The algorithm repeatedly searches the state space while it lowers the inflation
factor. During that, it reduces the number of expansions in new iterations by
expanding only the states whose cost may no longer be valid with the new e
value [15].

The Anytime Safe-Interval Path Planning algorithm (A-SIPP) even applies
the anytime approach to the multi-agent planning problem [16]. It does
so by introducing a time horizon beyond which it ignores the dynamic
obstacles/other agents and therefore speeds up the plan production while
guaranteeing completeness of the resulting set of plans. Another possible
benefit of the planning knowledge preservation for multi-agent planning will
be proposed in the next chapter.

The lifelong planning algorithms, on the other hand, store their old planning
knowledge to incorporate changes in the environment and adjust the path only
locally, which highly reduces the planning time needed. The most widely used

10

2.4. Anytime and lifelong path planning

algorithm continuously maintaining a least-cost path in a partially unknown
or dynamic environment is D*Lite [I7].

11

12

Chapter 3

Memory-based Context-Aware Route
Planning

The possibility of reusing old planning knowledge to either improve or adjust
a plan has an interesting potential for multi-agent planning and some specific
situations. A setup that could make use of this idea is replanning of a set of
already existing plans. That can either be triggered by the need of changing
the order in which the agents get their plans during the sequential planning
or in the case when a strictly high priority agent enters the environment.

In both cases, a poorly effective way would be planning all other agents again
from scratch. At that point, any reusable information from the previously
planned routes seems to be beneficial. To prove this idea, an algorithm called
Memory-based CARP (MCARP) is proposed. The algorithm very simply
uses the old plan for each agent that is anyhow replanned to improve its
heuristic. By that, it strongly reduces the number of expanded states, which
directly leads to a reduction of the planning time. Furthermore, with the
planning time reduced, the algorithm can aspire to improve its qualitative
results as well. It will be shown, that even with the change of order of the
agents, which leads to improvement in both failure rate and makespan,
the planning time will still be held bellow the time of the original CARP
algorithm planning from scratch.

In this chapter, the multi-agent path finding problem will be formulated,
as well as the situation of the replanning. After that, the original CARP
algorithm will be described in detail as it is an effective tool for solving
the original problem. As a solution of the replanning problem the MCARP
algorithm will be finally proposed with a detailed description of its function.

13

3. Memory-based Context-Aware Route Planning

. 3.1 Data structure

To achieve the desired algorithm performance and properties of the generated
results, which is especially that they are collision-free, a suitable state-space
notation is necessary. Based on the real-world motivation, the automated
warehouses applications, a promising representation is a graph. Mainly it is
because the agents, AGVs in the real world, are expected to follow defined
roads and pass through set intersections. A graph representation then easily
fits the warehouse area.

The graph G = {V, E'} consists of vertices V', matching intersections of
roads, and edges F, the roads themselves. Each edge has a defined length
and the vertices have a defined time for passage through them. For agents
with a defined constant speed, it is then possible to compute the time for
which they occupy each vertex or how long it takes for them to pass an edge
to the next vertex. This is vital for working with continuous time, since there
are no set time steps. Instead, the times of reaching and leaving a vertex
form the so called time windows.

The formulation of an occupancy table is then apparent, since for each
vertex, it stores a set of occupied and free time windows denoting the usage
of the vertex in time. For convenience, each time window contains not only
its start and end times, but also the identifier of the vertex v it belongs to. A
time window is therefore a tuple tw = tg, t., v, where t; and t. are the start
and end time respectively and v is the corresponding vertex identifier.

. 3.2 MAPF formulation

Let us have a set A = {a1, a2, ..., an}, where a; = {rs,74,t} is an assignment
for the j — th agent stating that at time ¢ it appears on the start vertex rg
and desires to go to the goal vertex r,. Based on this set of assignments, an
algorithm solving the MAPF problem should produce a set of collision-free
plans P = {p1,p2, ..., pn}, where the j — th plan p; is a set of time windows
twy. As noted above, each time window consists of the vertex which the
agent passes through, and the times of entry and departure. To maintain
the collision-free property, each of the time windows in the plans should
appear only once in the whole set and the windows for the same vertex in
two different plans must not intersect. Furthermore, it needs to be ensured
that agents don’t attempt to switch positions on two neighbouring vertices.

14

3.3. CARP

The set of assignments is assumed as finite, but repeated adding and
planning of new assignments is also possible [I]. In any real application, the
agents usually do not stay on the final vertex, but rather they continue with
another assignment. However, for evaluation of the algorithms, let us assume
all of the agents start at time ¢ = 0 and stay in their target forever.

B 33 CARP

The Context-Aware Route Planning (CARP) is an A*-based algorithm for
solving the MAPF task. A pseudocode of the CARP algorithm is shown in
Algorithm [1. At the first 3 lines, it attempts to find a starting window in
the starting vertex rg, so that the agent can be deployed in the graph in the
given time ¢. The algorithm then searches the graph G with a standard A*
search with the cost function f(w) = g(w)+ h(w), where g(w) is the real cost
of the partial plan to w and h(w) stands for a heuristic estimate to the goal.
Since CARP needs to distinguish the time at which the vertices are visited,
the open list contains the time windows.

The choice of the value g(w) has to be made based on the criteria that
should be optimised. It can either represent the distance or node count covered
so far, optimising the covered distance. However, the shortest path can last
longer and while planning in the time domain, optimisation of makespan
as defined in Section 2.2 can be more useful. Especially in the autonomous
warehouse application, where time is highly valued. Therefore, the compared
algorithms based on CARP work with g(w) = 7Tstar¢(w). The cost of a state
is the time at which it is reached.

The algorithm pulls the time window with the lowest heuristic cost f(w)
from the open list at line 5, adds it to the closed list and retrieves the vertex
identifier. If it is the goal vertex r, and it will be free forever, the algorithm
finishes at line 8 and reconstructs the found path using backpointers stored
in the visited time windows.

Otherwise, it computes the time at which the agent will be able to leave
the vertex from the entry time - the start of the window - and the duration
d(r) of the vertex r, which is the time to pass through it. After that, the
expansion is performed at line 10. The set p(r) stands for all time windows in
the neighboring vertices of r. For each of them, the entry time is computed
and the algorithm checks whether the window is reachable.

15

3. Memory-based Context-Aware Route Planning

The reachable windows are then given the entry time and a backpointer to
the window that led to them and are put in the open list.

Algorithm 1 CARP - Plan route [2]

Input: a = {r,,ry4,t} — assignment; start and goal position, start time
G = {V,E} — a graph; vertices (free time windows) and edges
Variables: open, closed
Output: shortest-time conflict-free route plan for a
G ={V,E} — an updated resource graph

Lif 3w [w eV | t € Toart(w) A rs = resource(w)] then

2: add(w, open)

3: entryTime(w) <t

4: while open #) do

5: W 4= ArgMinyy copen f (W)

6: add(w, closed)

7 r < vertex(w)

8: if 7 =7y A Tena(w) = 0o then return followBackPointers(w)
9: texit < Tstart(w> + d(’f’)
10: for w' € {p(r)\closed} do
11: tentry — maw(teacita Tstart (w/))

12: if Tstart(w/) < tentry A\ tentry < Tend(’w/) then
13: backpointer(w') < w

14: Tstart (w,) — tentry

15: add(w', open)

return null

N 34 Replanning in MAPF

As described above, the standard planning process for a group of agents
in a graph-based environment works with the graph G = {V, E} and the
set of assignments A to produce a set of collision-free paths P. Apart from
some possibly pre-computed properties of the graph, which will be applied
in Section |3.5, the algorithm does not receive any further information. This
changes in a special case, when a set of plans already exists and the task is
to adjust them.

Specifically, this happens when the environment is accessed by one or
multiple agents, that have a higher priority than the previously planned ones.
These higher priority agents will be assumed as planned externally, with
their set of collision-free plans H representing an additional set of dynamic

16

3.5. MCARP

obstacles in the graph G. The replanning should then produce a new set of
plans Ppey, so that the joint set {H U Py} is collision-free.

The replanning process works with the same graph G and the set of assign-
ments A as the standard planning. The occupancy table is not completely
free at the beginning, since it already contains the set of plans H, so the old
plans may no longer be valid due to possible collisions. Yet, the set of plans
P exists and might provide useful information for the replanning.

B 35 MCARP

The proposed MCARP algorithm is an extension of CARP aiming to solve
the replanning MAPF task. The main idea behind it is in using the previously
produced plans. Therefore it cannot solve the original MAPF task. The
MCARP also utilizes the opportunity to sort the agents before their replanning
in order to achieve better results. A simple modification of A* estimate to
goal heuristic is applied as well.

Bl 3.5.1 Distance to goal

As it was already mentioned in Section 3.3, the cost g(w) is considered as the
time the vertex w is reached, so that the algorithm optimizes the duration of
the plans, the makespan. The first improvement attempt done by MCARP is
adjusting the second part of the state cost computation, the heuristic estimate
to goal h(w). This value is usually computed as the Euclidean distance from
w to the goal vertex, which is also the case of CARP. The relevancy of this
value depends on the area. If it is possible that the path can aim almost
directly to the target, it is effective. However, in an area with directed roads,
such as in an automated warehouse, the Euclidean distance can be misleading.
Since the area is known, estimating the distance can be replaced by the exact
distance, which can be pre-computed. Based on that, an optional metric
using the exact distance to the target has been added to MCARP.

Before planning, a distance matrix of the graph G is computed with the
application of the Floyd-Warshall algorithm [I§]. This algorithm is used for
finding the shortest paths between all pairs of nodes in a weighted graph
with positive or negative edge weights, but with no negative cycles. That

17

3. Memory-based Context-Aware Route Planning

condition is fulfilled in a graph with positive edge weights representing the
traverse time.

The time it takes to pre-compute this matrix is not included in the planning
time since the graph is the same for the whole process (planning and replanning
of all agents), and the distance matrix is considered as an accessible attribute
of the graph. This assumption holds for the automated warehouse application
as well, since the structure of it does not change, and the distance matrix has
to be computed only once. The distance matrix provides the optimal path
length to goal hy(w). Then h(w) = hg(w)/v, where v is the agent speed, is
the optimal time to reach the goal. However, the optimal path cannot be
expected to be collision-free. Therefore the time h(w) is still only an estimate.

B 3.5.2 Plan reusing

The main extension of the state cost f(w) computation is the incorporation of
old plans. Since the number of the incoming high priority agents is expected
to be limited, so can be expected that the plans P will need only local
modifications, and most of them will still fulfill the collision-free property. If
the algorithm would only modify the path in the area of a potential collision
and kept most of it, the same way as D*Lite does for single-agent path-
finding, the replanning might be achieved in a significantly shorter time. The
algorithm is therefore motivated to stay close to the old path by using the
old path of the j — th agent P; to extend the cost computation formula to
the form

fw) = g(w) + h(w) + d(w, P;). (3.1)

The added element d(w, P;) is the Euclidean distance of the vertex w from
the old path P, i.e., from the closest vertex in it. If the vertex of the newly
expanded time window is in the old plan, the cost is increased by 0. However,
the further the search proceeds from the old path, the larger increase in
cost is applied. An optional version of the heuristic adjustment also adds a
multiplication of d(w, P;) by the length of the old plan {(FP}), i.e., the number
of resources it enters. That ensures that until it is possible to expand the old
path, it will be prioritized in the open list. The benefits and downturns of
this approach will be shown in the experiment part in Chapter [4.

It should be noted that this modification causes the heuristic to lose its
admissibility property. This can be proven by a simple situation with two
agents A; and A, originally planned in lexicographical order. Agent Ao
could be at some point, avoiding the path of agent A; by following a longer
path, which would be faster in that case. Then, if the order of the agents

18

3.5. MCARP

changed for the replanning, this path and the resulting plan would no longer
be optimal. However, the modified MCARP heuristic would penalize the
currently optimal plan while trying to support the old one.

This property of the MCARP algorithm needs to be taken into account,
and the sorting should ensure the reduction of the possibly increased plan
cost.

An essential part of the extension is the calculation of the distance from
the old path. This is performed by finding the closest vertex in the old path
for each newly expanded time window. The complexity of the minimum value
search is O(l(p)) and, if the evaluated vertex is present in the old path, the
search can be quicker. The distance is then retrieved from a pre-computed
distance matrix, so the complexity is constant.

This plan reuse should lead to the reduction of expanded vertices since the
algorithm can search only a limited area in which it is led by the old path.
This result is shown in two examples in Figure [3.1. An agent is planned from
node S to node G in a 4-connected grid, the original plan in an empty map
is marked by a blue line and is the same in both examples ((a), (b) and
(c), (d)). After this plan is produced, two higher priority agents, H; and Ho
are planned. Their assignments are different in the two examples, and the
resulting paths are marked by red lines.

Figures (a) and (c) show replanning by CARP with the resulting path
marked by green line and Figures (b) and (d) then show the result for
MCARP. The grey tiles are those which the algorithms added to the OPEN
list - at least one time window in them was evaluated. For CARP, it is 47
windows in the first and 43 in the second example. MCARP added 24 and 23
windows, respectively. Additionally, these tiles are marked with their distance
from the original path (which is zero for tiles of the path). The number of
time windows actually expanded in the first example is then 23 by CARP
and 10 by MCARP. In the second example, it is 19 windows expanded by
CARP and 9 by MCARP.

The comparison shows that MCARP narrows the search to the area of
the original path and even returns to it after it moves the agent away from
the higher priority ones. The number of expanded time windows shows that
in these cases, MCARP expanded only the new path, reducing the number
of expansions to half when compared to CARP. A promising attribute is
that the path produced by MCARP is of the same length and makespan as
from CARP, but this cannot always be expected due to the non-admissible
heuristic. In Chapter |4, a larger scale statistical comparison is presented to

19

3. I\/Iemory—based Context-Aware Route Planning " B E EEEEEEEEESESESESEEEEEGSE

(a) : Example 1 - CARP. (b) : Example 1 - MCARP.

Hz
(c) : Example 2 - CARP. (d) : Example 2 - MCARP.

Figure 3.1: Replanning using CARP and MCARP. Blue path shows the originally
planned path from S to G, red paths are consequently added higher priority
agents H; and Hs. In green is the replanned path by each algorithm. Tiles each
replanning algorithm added to OPEN list are marked grey. Numbers in (b)
and (d) denote the distance from the original path.

show that this way of old-path-prioritization significantly reduces planning
time while providing similar qualitative results as replanning from scratch.

B 3.5.3 Sorting of agents

As it was described in Chapter [2, the order in which agents are planned
has a significant influence on the quality of the plan and the possibility to
find some at all [I]. An example of the influence is shown in Figure If
agent A plans first, it receives its path and follows it. Agent As will not be
successfully planned in that case, because it cannot evade agent A; and its
starting node is the goal of A;. However, if agent Ao would be planned first,
it can execute its plan while A7 will wait on its start until As moves away.

20

3.5. MCARP

T3

r1 re o\ T4 5

@ [— ;

Figure 3.3: Two agents in a narrow corridor example. [2]

The situation of replanning due to a high priority agent arrival provides
an opportunity to apply the change of order as well since all plans need to be
revised to maintain the collision-free property. Several methods for sorting
the agents were presented in Chapter 2. Their application in replanning can
be much simpler since all of the agents are replanned at once. There is also
the full knowledge of their old plans. Those can be used as a better estimate
of costs for the LF heuristic, or for pre-computing the distance matrix of
agents in time. That can serve for a simplified version of the DG method,
which will sort all agents by their influence with others.

The distance matrix that denotes the influence between agents is produced
by the Algorithm [2, which was proposed along with the DG and GG heuristics
[1]. The algorithm was optimized by removing unnecessary for-loops and
incorporating the computation of the sums of the matrix columns in the
matrix generation to avoid further iterations later. The algorithm also saves
half of the processing time by only computing half of the matrix, which is
above the main diagonal (performed at lines 8-10). The other is copied since
the matrix is symmetric.

The set of sums S = {s1,52,...,8n}, 8 = Xj_;d;;, where d;; is the mean
Euclidean distance between i — th and j — th agent, then provides a numeric
representation of the influence on each agent. The lower this number is,
the closer the agent was to the others and the larger influence on him is
expected. Therefore, the set .S is used to sort the agents. Since the resulting
method differs from the original group-replanning methods (DG and GG), the
heuristic sorting all agents by the influence on them will be called In fluenced
First (IF).

Several other methods for the sorting of agents are proposed as well. These
build directly on the old plan knowledge. The first sorting mechanism comes
from the idea of the LF heuristic, but it aims at reducing the long waiting
times among the old plans. A situation can be imagined, where an agent
could pass through a narrow passage and proceed to a less occupied area, but
due to reaching it later, it has to wait a long time before several other agents
pass. If the agent had a higher priority, it could pass through earlier, and the

21

3. Memory-based Context-Aware Route Planning

other agents could be slowed down insignificantly. To test this hypothesis,
the Maximum Wait (MW) heuristic sorts the agents by the longest waiting
time present in their old plans. Similarly, the Overall Wait (OW') heuristic
sorts the agents by their overall waiting time sum.

Algorithm 2 Distance matrix [I]

Input: P = {plan;}! ; — a set of n planned routes

Output: M — a square matrix of size n representing mean distances between
routes
S — a set of column sums of the matrix M

1: for j€0,1,...,n do

2 for k€0,1,...,n do

3 if j ==k || P[j] ==0 || Plk] == 0 then

4 M{j][k] = oo

5: else if k£ < j then

6 M{j][k] = M[K][j]

. S += Mk

8 else

9: d=10

10: for step;, stepy, € length(P[j]),length(P[k]) do
11: notSet = true

12: while notSet do

13: twj = P[j][step;].timeW indow

14: twy, = P[k][stepg].timeWindow

15: if twl Ntw2 then

16: resource; = P[j|[step;].resource
17: resourcey, = P[k|[stepy].resource
18: notSet = false

19: else
20: if tw;.start < twy.start then
21: step; + +
22: else
23: stepy, + +
24: dU euclid_dist(resourcej, resourcey,)
25: Mj][k] =d
26: S[jl += M[j][k]

return M,

22

Chapter 4

Algorithm evaluation

In order to evaluate the contribution of the proposed adaptations to the
CARP algorithm in the replanning task, a set of experiments was performed
on a computer equipped with Intel Xeon E5-2690. The proposed MCARP
algorithm is compared to the original CARP algorithm, while also only partial
modifications are applied, to evaluate the effect of each of them properly. The
comparison is performed based on the characteristics described in Section
that is:

8 Failure rate
B Planning time
B Makespan

® Path length

B a1 Experiment setup

The ability of the algorithms to produce a set of collision-free plans is mostly
tested when the state-space consists of fewer states, graph vertices in this
case, and therefore the agents are less operable. In order to test the methods’
capabilities as much as possible, the experiments were performed on a set of
21 maps. All of the maps, in the form of a graph G = {V, E}, are built on

23

4. Algorithm evaluation

the same set of 400 vertices V. The sets of edges E;, where j € (0;20), in the
maps then form a set ranging from a spanning tree to a mostly 4-connected
graph. These maps were created by generating a complete square graph with
the size of 20*20 vertices. The graph was then simplified to a spanning tree,
and, finally, approximately 50 random edges from the complete graph were
added 20 times, to create the set of 21 maps of density ranging from 800 to
1500 edges in the graph. An example of a generated map with 1190 edges is
in Figure 4.1/

"
i

[]
T
T

I
- 1]
},

[

Figure 4.1: Generated maps with 1008 and 1350 edges (504 and 775 two-way
edges respectively).

A set of 500 random assignments, each for a group of 100 agents, was
then generated for planning on each of the 21 maps. The sets of maps and
assignments are the same as those used for the experiments in [I]. The sets
of assignments were then split into two subsets - the standard agents and the
high priority ones. To evaluate the influence of the size of this group, it’s size
ranged from 0 to 10 agents.

The experiments were then performed in two waves, as the task suggests.
Firstly, the agents were planned by the original CARP algorithm (using a
distance matrix proposed in Section |3.5| for a heuristic estimate to goal com-
putation). Then, the high priority agents were planned, with the possibility of
a failure here taken to account as well - such cases were not considered as the
failure of the replanning algorithms. Especially in the less dense maps, the
inability to find a plan even for a lower number of agents is expected. Finally,
the main group of agents was replanned with the constrained occupancy table
and with the availability of the old plans for the methods that use it.

24

4.2. Compared algorithms

B a2 Compared algorithms

We study several variants of the MCARP algorithm, which can be categorized
by the choice of memory use, estimate to a goal used, and the sorting. Firstly,
the versions use either no memory, purely the distance from the old path
added to heuristic, or the forced prioritization of old path nodes. These
memory versions are labeled as follows:

® My - no memory applied
® M, - distance from the old path added to heuristic

®)M, - old path nodes hard-prioritized

Differentiation was also made by application of the duration to the goal metric
used for the heuristic estimate to the goal, which is compared to the standard
Euclidean distance used. Both were used to pre-compute a distance matrix
later used by the planner. The labeling is § for the duration to goal and & for
Euclidean distance to the goal.

Finally, MCARP versions are compared based on the sorting heuristics.
The applied were:

® NS - not sorted

8 LF - based on the makespan of each old plan

® [F - based on the influence between agents in the old plans

® MW - based on the longest window (waiting) in each old plan

® OW - based on total excess waiting in each old plan

The proposed methods are compared to the original CARP algorithm. It
solves the replanning task the same way as it does for the standard planning;
it plans all assignments from scratch. Generally, it is the same algorithm as
MCARP with the Euclidean distance to the goal estimate, unsorted agents,
and no memory used. Therefore, the results of the replanning CARP will be
named My-e-N S according to the above notation.

25

4. Algorithm evaluation

. 4.3 Evaluation

To evaluate the influence of the A* heuristic adjustments (memory and
distance to goal estimate), the algorithms were first grouped based on the
sorting versions. Each of these groups was then compared to the results of
the unsorted versions and between each other. Based on this comparison, the
best settings could be selected to perform the final comparison also between
the sorting heuristics.

This processing was based on the growing density of the maps. The number
of incoming high priority agents for this set was 5, resulting in a group of 95
planned agents. The influence of the high priority group size will be shown as
well, but the differences between algorithms’ results were not that significant
to compare them. Other characteristics and trends in the results will be
addressed, as well.

. 4.4 Grouped results

B 441 LF

The first evaluated sorting heuristic is the Longest First method. As can
be seen in the Figure [4.2] in the combination with Ms it significantly re-
duces failure rate. This version of memory usage also expectedly reduces
expansions and therefore the planning time. However, application of the
LF sorting strongly increases the makespan leading to worse results than
those achieved by the original CARP algorithm. This applies for all kinds of
memory usage.

The overall best performance can be seen with the usage of M;. Even
though in makespan it is outperformed by the versions not sorting the agents
at all, the failure rate reduction is still significant, and it also provides
the shortest paths among all versions. Of the distance to goal metrics, the
duration to goal provides slightly better results.

26

4.4. Grouped results

100

e T i
| e e
e 1T e o s
. P - — MeeNs --- MpelF
o 025 N s MpGNS e MyGLF
— MyeNS --- Myelf
Lo
£ g
f ¢
2o
£
.
% Gy By U By G, By by s Uy G Ry R By Gy By G % % Y G,
5% B % % % % N % N N e e T 7 1220 1254 129 1320 1350 1380 1410 1440 1474 1504
Number of edges Number of edges
(a) : Failure rate depending on (b) : Planning time depending on
edges count in map. edges count in map.
s T
bere |~ s
1675 i —— Mp-eNS === My-elF
\ e MpGNS e MyGALF
el i
= 1600
H
1900 1575
=
s .

(c) : Makespan depending on edges (d) : Path length depending on edges
count in map. count in map.

Figure 4.2: LF heuristic

B 442 IF

Similarly as for LF', the I F' heuristic utilizes My for failure rate reduction,
but forcing the agents to stay on their old paths causes bad qualitative results
again, as seen in Figure [4.3l For this sorting algorithm, the softer memory
usage achieves the best makespan and length results. For the I'F' case, the
better metric is again the duration to the goal, although the difference is
much smaller.

B 443 Mw

Figure shows that the MW heuristic performs the same or worse regarding
failure rate, in some cases the increase is up to 10%. However, the MW

27

4. Algorithm evaluation

Fail rate [%]

2 & & 9 G Yoy Yoy Loy Yo Yo Gy W G Loy Gon b e, Y dg
% B D By o 0y 0y Yy s Yy B Oy Ly 0y B Ny G, B B, G,
B Vo D0 Y B Gy % %, %, Y, Y, R R, R N N, N, 0, T B, Y,

(a) Failure rate depending on
edges count in map.

Number of edges

Mean planning time (5]

0225
0200
0175 : <
0150
0125
0100

0075

My-0-NS
—— MyeNS
—- MyoNS -
— MeNs -
—n MONS e
— MyeNs

Mo-6-1F
Mo-e-IF
My6F

- Melf

My-6F

- Myelf

0,050

109 1220 1254 1290 1320 1350 1380 1410

(b) :
edges count in map.

1440

1504,

Planning time depending on

2300

2200

2100

2000

Mean plan duration [s]

1900

1800

1700

Mean plan length

1750

1700

1650

1600

1550

1500

— MooNS
Mo-e-NS.
—- My5NS

Mo-G-1F
Mo-e-1F
My-GF

1190 1220 1254 1200 1320 1350 1380 1410 1440 1474 1504

(c) : Makespan depending on edges
count in map.

109 1220 1254 1290 1320 1350 1380 1410
Number of edges.

1440

1504

(d) : Path length depending on edges

count in map.

Figure 4.3: IF heuristic

heuristic aims to optimise plan duration by reducing the waiting times. With
the help of the old paths M, it is successful in this metric. The difference
between distance to the goal estimates is again very small, although the
Euclidean distance performs slightly better in makespan. Although the
differences in path length may seem large between the maps, range of the
y-axis is relatively small and the differences are within a 5% range from
average.

B 444 OW

Reducing the overall waiting time leads to generally better results in fatlure
rate, again mainly with Ms. The main benefit of this approach is, however, in
makespan, where OW has even better results than MW, as Figure [4.5shows.
The estimate to the goal difference is again negligible and M; performs best
overall.

28

4.5. Sorting comparison

My-6-NS Mo-G-MW
. —— MyeNS - Mye-RMW
N T = MoNs e
s — MyeNs ---
—e MpONS e '
— MyeNs --- Mye

0225

0200

0175

0150

Fail rate [%]

0125

Mean planning time (5]

0.100

0075

0,050

P
o

oy 1290 1320 1350 1380 1410 1440 1474 1504

Number of edges Number of edges

D S B G G Y oy Yoy oy s o Dy B L oy Yy L
2 B D L B B, 0y 0y %y Ry R G, Ly 0y 0y %,
B Vo R U B Gy R, %, %, U, Y R, R N N, B, %,

(a) : Failure rate depending on (b) : Planning time depending on
edges count in map. edges count in map.

2100

= Mo-6-NS Mo-6-MW = Mp-6-NS Moy-5-MW
\ Moens - Myesuw 150
o MoNs o Mo

2000

1560

1540

Mean plan length

1520

1700

1500

1290 1320 1350 1380 1410 1440 1474 1504, 1290 1320 1350 1380 1410 1440 1474 1504
Number of edges Number of edges

(c) : Makespan depending on edges (d) : Path length depending on edges
count in map. count in map.

Figure 4.4: MW heuristic

B a5 Sorting comparison

Figure [4.6| shows the comparison of the most promising algorithms. It is
necessary to point out that the values for the algorithms can be different from
those in their grouped comparison. For each set of plots, separate filtering
was performed, so that they incorporate results for all assignments that all of
the algorithms were able to plan.

The combined benefits of Ms metric combined with LF' sorting in failure
rate are clearly visible here, reducing the number of failed assignments by up to
20% compared to the original CARP (My—e¢). While these are also the fastest
algorithms to find the results, the quality of the plans is significantly worse.
Even with the otherwise successful M; metric, the Longest first sorting
does not achieve the makespan results of the original CARP. However, the

29

4. Algorithm evaluation

0225
Mo-6-NS 1o-5-0W

—— MyeNS My-e-ROW
—- My6NS, 1-6-0W
0.200 —— MyENS - Mye

0175

0150

g

Fail rate [%]

0125

Mean planning time (5]

0.100

0,075

w 3

B B % % B g gy e, ey, ey %,y oy ity %y
(a) : Failure rate depending on (b) : Planning time depending on
edges count in map. edges count in map.

2200 —:= Mp-6-NS Mo-G-OW
Moens Mo-cROW

1650

2100

1625

2000
1600

1900 1575

Mean plan duration [s]
Mean plan length

1800 1550

1525

1700

1500

1600

1220 1254 1200 1320 1350 1380 1410 1440 1474 1504 1220 1254 1290 1320 1350 1380 1410 1440 1474 1504
Number of edges Number of edges.

(c) : Makespan depending on edges (d) : Path length depending on edges
count in map. count in map.

Figure 4.5: OW heuristic

difference in length of the plans is smaller, and M; metric performs better
than CARP.

The MW sorting with M7 memory has promising results in makespan and
plan length, but it struggles to find the plans at all. The modified version that
considers overall waiting time instead of maximum, OW, has much better
results. With both My or M; memory, it is the best regarding makespan
and M, tops in length as well. Both of these then maintain a similar failure
rate to CARP, cutting down the planning time by half.

The overall best performing sorting is I F'. Even with no memory it reduces
the failure rate by 10-15% and by up to 20% with M;. Furthermore, it also
succeeds in decreasing both the makespan and length.

30

Fail rate [%]

D G B % G b oy Yoy Loy o Y Gy G G Loy on oo Y, Y dus 4
2 B D L B B, 0y 0y %y Ry R Ly Ly %oy G Y, e, 4,
B Vo R U B Gy Ry %, %, U, Yy Ry R, R Ny N, B, R, T, B, Y,

(a

Number of edges

Failure rate depending on

edges count in map.

4.6. Expansions reduction

0225

0200

0175

0150

0125

Mean planning time (5]

0100

0075

0,050

My-e-NS
My-GLF
- MpelF
MyGLF
Mo-o-1F
My-G-IF
—=- MpeMw
Mo-5-0W
1-6-0W
My-5-0W

1220

(b) :

1254 129 1320 1350 1380 1410 1440 1474 1504
Number of edges

Planning time depending on

edges count in map.

2200

2100

1700

1600

1660

1640

1620

1600

1580

Mean plan length

1560

1540

1520

1500

1220 1254 1290 1320 1350 1380 1410 1440 1474 1504

Number of edges

1220

1254 1200 1320 1350 1380 1410 1440 1474 1504
Number of edges

(c) : Makespan depending on edges
count in map.

(d) : Path length depending on edges
count in map.

Figure 4.6: Algorithm comparison

B 46 Expansions reduction

Algorithms using the old path memory achieve lower planning time. As ex-
pected, prioritizing the old path greatly saves up expansions needed to search
the state space, and Figure shows the correlation with the final planning
time. Namely, the M; memory reduces around 30% of the expansions needed
for planning, while Ms cuts up to 60% expansions. The great reduction
achieved by Ms is, however, paid by the limited ability of the algorithm to
improve the plan in terms of makespan and length. An interesting attribute
is the usually top performance of My in failure rate. The explanation is
that these algorithms use the full knowledge of the old path, i.e., they already
have a solution in terms of a path. They only have to add more waiting to
follow it, which explains the increase in makespan.

31

4. Algorithm evaluation

Figure 4.7 also shows the significant difference in planning times between
algorithms using the Euclidean distance and the time to reach the goal.
Although it could be seen that the qualitative results of these two metrics do
not differ that much, directing the search by the duration to target reduced
the expansions. This result is expected since, with a more accurate estimate
of a state’s cost, the A* algorithm needs fewer expansions to reach the goal.
With no memory applied, the reduction is around 20-30%, while with more
memory applied, the individual effect of the estimate to goal gets smaller.

1090 1124 1154 1190 1220 1254 1290 1320 1350 1380 1410 1440 1474 1504 54 1290 1320
Number of edges Number of edges

(a) : Number of expansions depend- (b) : Planning time depending on
ing on edges count in map. edges count in map.

Figure 4.7: Comparing the number of expansions performed by planning algo-
rithms and the resulting planning time.

B a7 High priority agent count

Figure 4.8 shows a comparison of the results of the top selected algorithms
from Section [4.5| regarding the number of high priority agents introduced
before replanning. Note that the resulting set always consists of 100 agents.
The results are from planning on a map with 1350 edges.

This setup can be apprehended as a MAPF solver having gradually lower
control over the situation, which remains the same. An increasing set of
agents is planned from an external source, and the planner has fewer agents
to control in a more restricted state-space. Based on this, it is expected that
the results for each algorithm should not differ too much with the increasing
number of high priority agents. Therefore, the results in Figure [4.8| may seem
meaningless, but they confirm this assumption.

It can be seen that algorithms suffer a decrease in quality since the effect
of the sorting gets smaller. With more pre-planned agents, this trend would

32

4.8. Estimate to the goal metrics on a warehouse map

bring results of the sorting algorithms to the values of the unsorted version.
In the end, all of the agents would be planned by the external source, the
standard CARP, in this case.

The results in path length may seem noisy, but the differences of each
algorithm are within a 5% range from the average length values among all
high priority agent counts.

- i i

—=- MyedF
My-G-LF

Mo-G-IF Moo

e MGF 018 e MyOF
[-=- MreMw —-- MpEMW
60 g S Mo-6-0W bl

Mi-6-0W -0
I 016 My-G-OW
M-6-0W e MyG-OW

e MyeLF

High priority agents. High priority agents

(a) : Failure rate depending on num- (b) : Planning time depending on
ber of high priority agents. number of high priority agents.

1580
2000

5 1560
Z 1900 mnd

Mean plan length

1540
1800

Mean plan duratio

1520
1700 {— e T T S o

1500

1 2 3 4 H 6 7 8 9 10 1 2 3 4 5 6 7 8 i
High priority agents

10

(c) : Makespan depending on num- (d) : Path length depending on num-
ber of high priority agents. ber of high priority agents.

Figure 4.8: Algorithm comparison regarding the number of high priority agents
in process.

. 4.8 Estimate to the goal metrics on a warehouse
map

The motivation to use the real duration to goal J instead of the standard
Euclidean distance € comes from the deployment. The warehouse area consists
mainly of one-way routes, and in such case, Euclidean distance might be

33

4. Algorithm evaluation

misleading regarding the real-time it will take to reach the target. A set of
assignments was therefore tested on a map of an actual warehouse shown in
Figure 4.9/ (a) consisting of 490 nodes connected with 1520 partly one-way
routes. The testing set again consisted of 500 sets of random assignments for
19 agents each, with only one high priority agent introduced. The number of
agents corresponds to the real warehouse deployment.

Figure |4.9 (b) shows the results of the experiment which are sorted by
makespan for better readability. The plot shows the effect on the planning
of an unsorted set of agents with no memory and also on the best performing
algorithm regarding makespan, OW sorting with M; memory. It can be
seen that the assumption was incorrect, as the difference between ¢ and ¢
metrics is insignificant, similarly to the undirected graphs results shown in
Section 4.3l

. 4.9 Evaluation conclusion

This chapter has shown the main specifics of the various versions of the
MCARP algorithm. Two of the variable metrics achieved their original goals.
The usage of old plan memory proved to save up planning time during
replanning and even improve the ability of the algorithms to find a solution.
The sorting heuristics proved to be a promising way to the improvement of
all qualitative characteristics of the plans. On the other hand, the alternative
metric for a heuristic estimate to the goal did not achieve better results than
the Euclid distance metric, even on a mostly oriented graph.

Out of the evaluated combinations, the overall best is M;-6-1F. Even
better results could be, however, achieved by a combination of two setups.
Since the significant time saving achieved by the combination of memory and
0 metric, two runs of the planning would be affordable.

The best combination could consist of the best performing setup for
makespan and length, M;-6-OW, and the least failing version, Ms-0-LF,
which would attempt to find any suitable solution in case of failure of the
first. The combined planning time could still be held below half of the value
achieved by the original CARP.

34

4.9. Evaluation conclusion

(9!

(a) : Oriented graph of a warehouse map for 20 robots.

500
MCARP My €

MCARP My G
MCARP M; £ ROW
MCARP M1 G ROW

475 4

450 +

425

Makespan
£y
(=3
o
!

375 A

350 A

325

300 T T T T T T T T
0 50 100 150 200 250 300 350

Assignment set

(b) : Makespan comparison between § and ¢ metrics on warehouse map.

Figure 4.9: Warehouse map experiment.

35

36

Chapter 5

Fleet Management System

With the growing market of e-commerce and the resulting demands on logistics
([19]), there are various designs of automated warehouses already in operation
in the world. The most widely spread automation implementations are [20]:

Autonomous Ground Vehicles (AGVs)

Autonomous Mobile Robots (AMRs)

Automated Storage and Retrieval Systems (AS/RS)

Aerial drones

The AGVs, AMRs, and AS/RS solutions use some kind of mobile robots
equipped with sensors and a specific ability to transport and manipulate the
stored merchandise. The movement of AGVs is limited to a given preset route,
and they mostly use magnetic tracks, tags, or other external localization
systems. AMRs, on the other hand, are far more autonomous and able to
plan their tasks and routes through the warehouse. The AS/RS are complete
solutions of the warehouses, which use AGVs to move whole storages around
the warehouse. This solution will be further addressed in this chapter. The
last-mentioned aerial drones are usually used to maintain inventory and
monitoring of the warehouse. They can quickly reach distant locations while
not taking up the space used for deliveries.

The AGV/AMR designs can be based on human pickers using the help
of autonomous carts, some use autonomous or partially manually operated

37

5. Fleet Management System

forklifts with pallet detection, or the warehouse can be a completely robot-
occupied workspace with forklift-like mobile robots. The usage of such mobile
robot solutions proves to be [21]

® Flexible - thanks to easy reprogramming and rescheduling of the robots,

® Highly efficient - due to the possibility of adding more robots to cover
an increase in demand, by reducing the labor costs and work time limits,

® Safe - by application of collision-avoidance mechanisms.

The AS/RS automated warchouses that this chapter aims to use AGVs that
can drive under the storages, lift them, and move them from their positions
to picking stations. The picking stations are operated by human workers or
robotic manipulators that take the goods from the storages and assemble the
orders for delivery.

I

“ .

! .

Figure 5.1: AS/RS warehouse schema displayed in the Safelog Fleet Manager
Terminal.

A scheme of an AS/RS warehouse layout is shown in Figure The layout
comprises of road nodes (red) and directed road segments (black lines with
arrows). Four special kinds of nodes are distinguished apart from the road
nodes. These are the picking stations (one in the scheme, dark blue), nodes
of the queue in front of the picking station (light blue), charging stations for
the AGVs (orange), and the storage locations. In the schema, the storage
locations are occupied by outlines of the storages (green).

38

5.1. Description

For such a solution, a complex management system is necessary to control
the AGVs, plan their routes, and ensure they fulfill them correctly. Such
a management system, the Fleet Management System (FMS), has been
developed as a part of the Safel.og project.

B 51 Description

In the structure of AS/RS warehouse control, the FMS is located between
the Warehouse Management System (WMS), which acquires new orders of
which picking station requires what goods, and the AGVs themselves. When
seen as an I/O system, the input of the FMS is a sequence of jobs from the
WMS through a so-called NorthInterface. The jobs say what storage should
be delivered to which picking station, while the AGV, which will move it, has
to be chosen by the FMS. As an output, the FMS sends commands to AGVs
through a Southlnterface while ensuring they fulfill their plans at the correct
time to avoid collisions. The components are displayed in Figure |5.2

Northinterface

IR

Figure 5.2: Schema of the WMS.

The optional output of the system is a stream of updates of the warehouse
state to the Fleet Manager Terminal (FMT), which is a graphical user interface.
In a real deployment, the FMS also updates all AGVs’ and storages’ positions
to the Location Server (LS), which is another SafeLog component. Both of
these will be described later.

Figure [5.3| shows the components in detail with a schema of their imple-
mentation, the transferred data streams, and used communication interfaces.
All components and modules will be described in this and in the following
Chapters.

39

5. Fleet Management System

GUI

ltasks, layout.xml, humans, configuration

VRLC|

humans positions . .. AGVs + storages positions
P,

human position\‘\i\.

P ' \ SouthInterface
{ isimulation data UIIDPI'XTCP
INPROC ' V
2 =
- receiver
data exchange

Figure 5.3: Schema of the FMS. A dashed rectangle marks a data object, solid
rectangles mark thread. Solid lines mark data access within a program, dashed
lines mark data transfer between processes with the communication interface
noted in blue.

. 5.2 FMS modules

The FMS consists of several modules which will be described in this section
and are displayed in the center of Figure Three of the main modules are
implemented as threads of the program, as they continuously work with their
assignment. These are the Component and Agent servers and Route Planning.
Fleet Data is then a data object equipped with mutexes that ensure safe data
access from the threads.

40

5.2. FMS modules

B 5.2.1 Fleet Data

Fleet Data (FD) serves as a storage of all data used by the FMS. It holds
representations of all agents (AGVs as well as humans, which will be introduced
later in Chapter 7)) with their current states, future plans, and service data.
It also maintains data that is on the way from the Simulator to the FMT
GUI, both external components that are described in Chapter [6.

B 5.2.2 Component Server

The Component Server (CS) module is the core of the system. It communicates
with all external components of the FMS, reacts to them, and updates the FD.
Most importantly, CS extracts current simulation time from the simulator
data, keeping the system synchronized. In the case of real-world deployment,
another source of clock is applied.

The CS maintains binary communication with the components. For the
Simulator that is in-process (INPROC) transport mechanism, for the Fleet
Manager Terminal user interface that is inter-process (IPC). Both can be
substituted by the secondary TCP network communication. Each component
is handled by a separate thread that calls proper static handlers upon reception
of new messages.

In case the system is in a simulation mode, the simulation state data is
received by CS. The content of it is not meant for the FMS, because the data
describes states it would not have the knowledge about in a real deployment,
such as exact positions of agents and storages. This data is only stored and
then optionally sent to the Fleet Manager Terminal for user visualization.
The FMT, if running, delivers information about possible user actions in the
GUI That is stopping or changing the speed of the simulation, new jobs
for the WMS, and actions regarding humans. All of these functions will be
described in detail in Chapter 6l The simulation related data is redirected to
the Simulator, the new jobs are stored in FD for the planner.

Finally, CS invokes the synchronized functions of the AgentServer, which
are described in Section [5.2.3l

41

5. Fleet Management System

B 5.2.3 Agent Server

For communication with the AGVs, an interface called South Interface is used.
It defines the format of the messages sent to and from the AGVs, as well as
the procedures of the communication. Since the South Interface description
is a classified document provided by the real AGVs manufacturer, it will
be described only in general. The South Interface distinguishes messages
going from the FMS to the AGVs (down) and from them (up). The first
group consists of messages providing a new command, a request for status,
or an acknowledgment of the received status. The AGVs send only the status
messages.

The Agent Server (AS) handles communication with the AGVs (and in the
simulation also with humans) w.r.t. the South Interface. Upon reception of
a status message, a handler is called and firstly sends an acknowledgment.
Then, based on the data in the status message, it determines the AGV status,
which leads to the next action. The AGV could be

B responding to a new command,
B it can be announcing the completion of its current command,

B or it could have just been requested to send the status.

If a command was received, AS only acknowledges the reception and erases
the command from the queue of commands for this AGV. The queue and
command creation, as well as the idle queue, will be described in Section |5.2.4.
If the AGV has completed all of its commands, which corresponds to the
second and third cases, the AGV is added to the idle queue until the time of
the next command, in the case that there is such. Otherwise, the AGV has
completed its plan, and the planner will plan its next phase.

From the status message sent from the AGV, the FMS also gets the
knowledge of the current position of that AGV. Since the AGVs are not
tracked externally, they localize themselves using ground markers and add
this information as a part of the status. They also inform about current
deviation from the node, battery status, etc.

The AS also provides several time-synchronized functions invoked by CS.
That is sending new command messages to all AGVs that ran out of their idle
time - they are popped from the queue. To ensure reliable communication

42

5.2. FMS modules

over the UDP or TCP network interface, AS also maintains a memory of
the last broadcasted message to each AGV, and if no response is received (if
expected) until a set timeout, the message is re-sent.

Furthermore, to ensure an efficient workflow of the warehouse, AS attempts
to lower the unnecessary waiting times of the agents. That is done by
checking the next idle time for each AGV (time until the next command is to
be executed) within a defined range from the target picking station queue.
If the time exceeds a defined threshold, AS asks RP to attempt a re-plan
of the AGV in order to achieve a shorter waiting and delay, possibly. This
possible delay is caused by the planner not knowing the future state of the
picking station queue at the time it plans an AGV path. It, therefore, adds a
safety delay at the end of the plan to ensure avoiding collision with the AGV
that might be occupying the queue start. But once the AGV is within the
range of the queue and it will not be overtaken by other AGVs, more efficient
timing can be reached for it.

B 5.2.4 Route Planning

A new job from the WMS is directed to the Route Planning (RP) module.
That consists of a state machine handling new jobs, as well as new phases of
the ongoing jobs. RP is equipped with a planner that holds the necessary
occupancy table and a resource graph describing the warehouse map. The
planner was described in Chapter 3| in detail. The AGV that will be given
a new task is chosen based on its distance from the job start - the target
storage. A route plan is then produced for it and passed to the system. For
convenience, the process of fulfilling a task is split into five parts, namely:

1. To a storage

2. To a picking station queue
3. Movement within a queue
4. Returning to a storage

5. To a next storage/back to a charging station

When an AGYV is in one of the first four states, it is considered busy, and
each time it completes one of these phases, the planner plans the next one for
it. Once the AGV returns the rack, it turns free, and the planner leads it

43

5. Fleet Management System

back to its charging station, or if there is another job, and this is the closest
AGYV, it is assigned to it.

The FMS then maintains a set of timed plans (trajectories) for the AGVs.
The RP produces the plans in the South Interface format. That means the
plans are split to single actions, such as proceed one node forward, turn, pick
up storage, etc. These timed command messages can be serialized and sent
directly to the AGVs. To maintain collision-free execution, the AGVs should
execute each step of the plan at a time given by the planner. Therefore,
AGVs are moved to the idle queue until the time of their next movement -
command. The idle queue sorts the AGVs waiting for their commands by the
time they will go on with their plan so that checking and then commanding
of these idle AGVs is faster. After the plan is produced, a request for the
status is sent to the corresponding AGV. This will make it report itself to
AS, which will then send it the commands.

. 5.3 Customization

The FMS provides several customizable options. Firstly, multiple serialization
formats and communication protocols and mechanisms are implemented.

Apart from the predefined messages in the South Interface, the FMS
primarily exchanges binary messages with its components. The other option
is the significantly larger JSON format. To be compatible with the real AGVs,
the FMS uses the UDP network protocol for the South Interface. The TCP
network protocol can be used optionally in simulation. For communication
with the components (Fleet Manager Terminal and Simulator), the FMS uses
shared memory transport mechanisms from the nanomsg C++ library/!l The
Simulator runs in the same process as the FMS, so the in-process (INPROC)
mechanism is used. The Fleet Manager Terminal is a separate program and
communicates with the inter-process (IPC) mechanism. Both components
can optionally communicate over TCP network protocol.

The other main customizable option is whether the FMS runs with a
simulated or a real warehouse. Also, the introduction of humans is available
with the possibility to assign their tasks by hand in Fleet Manager Terminal
or to load a prepared assignment file. The user can also select whether to
enable distractions of humans - a simulated free-willing behavior of humans
sometimes not following given paths. The features regarding humans will be

1For more information about the library, see https: //nanomsg.org.

44

5.3. Customization

described in Chapter [7. Finally, it is possible to launch an online plotting
tool that displays statistics and graphs about the warehouse operation. This
tool will be described in Chapter Chapter 6| along with the FMT.

45

46

Chapter 6

FMS testing tools

Several tools were developed to test the function of the implemented FMS. The
main idea was to avoid the need for testing with a real warehouse demonstrator
and real robots, which would be costly and ineffective. Therefore, the FMS
was equipped with two external components, the Simulator and the Fleet
Manager Terminal. These tools allow us to simulate, display, and control the
process of an automated warchouse, providing useful feedback for debugging
and other improvements of the system before the real-world deployment.

. 6.1 Simulator

The Simulator imitates the actions performed in the warehouse. It maintains
communication with the Agent Server, acting as the AGVs, and performs
the received commands by calculating the positions of AGVs and storages in
time. Its detailed scheme is shown in Figure 6.1

The Simulator holds a representation of all AGVs. The separate modules
in this set can be easily used as the core for a real AGV control program,
as described in Section However, in the Simulator, all of them are just
data objects without being split to separate threads. This resulting approach
was selected for a better simulation performance when compared to using a
separate thread for each AGV.

47

6. FMS testing tools

A A
P \ Southinterface
UDP/TCP

binary simulation data
INPROC | !

[
1
[
'
'
1 [l
i
]
1
'
[

'

'

1
'
[

LY

data exchange receiver

-, commands
positions
status

frequency, pause AGV representations

timestamp

positions
commands

time increment

simulation step

computation

sleep

Figure 6.1: Schema of the Simulator.

Processing of all AGVs is therefore done in a pair of threads. The receiver
imitates the AGV communication; it receives messages for all the AGVs and
calls the corresponding handlers in them. The AGV object than either notes
a new command and confirms reception back to FMS, or it only sends a
status message. All is according to the described South Interface routines. A
mechanism for resending messages after a defined timeout was implemented
here the same way as in the FMS. AGV objects are given the current simulation
time and record the time of the last broadcast. The computation thread
then triggers periodic checks of the time since the broadcast, and after a set
timeout, the status message is sent again.

The second thread running in the Simulator performs the computation
itself. In a routine shown at the bottom of Figure 6.1, it firstly increases
the timestamp of the simulation, the simulation time. Then it performs
the response timeout check as described above, and finally, it performs the
simulation step by evaluating the state of all AGVs and takes proper action.
An AGV can either have no commands - then it is skipped - or have a
command for execution. In that case, a handler is called for the particular
command type to compute the current AGV’s position. If an AGV has
completed its command, the status message is sent right after. After all of
the AGVs are evaluated, the sleep time is computed based on the duration of
the simulation step to maintain a constant frequency.

The last thread in the Simulator serves for data exchange. It communicates
with the FMS by requesting a possible pause or speed change and sending

48

6.2. FMT

the current positions of all AGVs and storages as a reply. These serialized
packages of data are redirected through the CS to the Fleet Manager Terminal.

B 62 ruT

The Fleet Manager Terminal is a graphical user interface (GUI) that displays
the process in an automated warehouse, as shown in Figure It is not
dependent on the usage of the Simulator and is able to display the activity
also in a real warehouse or demonstrator operated by the FMS. It can also
be used to limitedly operate the warehouse as a substitute of the WMS, or
control the simulation.

Warehouse simulation

T s

Figure 6.2: Fleet Manager Terminal GUI.

The primary function of the FMT is the visualization of the current execu-
tion state of the warehouse. That is based on data that the communication
thread of the FMT queries from the CS. Based on the received data, the
FMT window content is updated in a defined refresh rate.

The opposite direction of communication serves to deliver information
about user actions in the GUI. The user can:

49

6. FMS testing tools

® Pause the simulation or change its speed

Operate the visualization - zoom and move image

Display AGVs and their exact positions

Simulate the WMS - add an assignment for the AGVs by clicking on a
chosen storage and then on a target picking station

Display current routes of the AGVs by clicking on them

. 6.3 Statistics

An additional GUI feature is a plotter program. It is an optional tool
implemented in Python that communicates with the FMS over an IPC
interface and receives JSON messages noting new assignments and performed
deliveries for all AGVs. From this data, the program counts the new fulfilled
assignments in time and displays them in a plot, online. Along with that, it
computes and displays the developing time needed for each delivery.

The main purpose of this tool, however, is to show how the warehouse
process is affected by the presence of humans and their behavior. This will
be described in the following Chapter in detail.

50

Chapter 7

Human worker in an automated warehouse

The main idea which this thesis is based on is the cooperation of agents
with different priorities. Specifically, it can be a human worker and mobile
robots working in the same area, while the human must not be endangered
by the AGVs. With this multi-priority setup and even the idea of the human
entering the area while the robots already fulfill their tasks, the following
situation arises. That is, the robots have their plans and mostly do not have
to be affected by the moving human. However, they should evade the area
the human will occupy.

. 7.1 Problem definition

Most of the current solutions of automated warehouses enable the possibility
for a human worker to enter the area, e.g., to perform a maintenance task.
However, this causes the whole warehouse or its significant part to shut down
completely since the industrial robots are not equipped with certified safety
measures and sensors to avoid causing danger to the human. Such a situation,
causing an indefinite delay in delivery completion, is highly ineffective for the
whole warehouse process. Enabling most of the AGVs to continue their work
while only changing their paths or slowing them down, with a very limited
number of AGVs that would need to be stopped, means a large improvement
and cost-saving.

o1

7. Human worker in an automated warehouse

From the safety point of view, it needs to be ensured that the AGVs
maintain a safe distance from the human, slow down when closer to him, and
in case of reaching a close safety zone, they stop their movement completely.
From the view of the planner, the human is a highly prioritized agent, as
described in Chapter |3| since he cannot be requested to wait for a long time
or use a seemingly longer path - human free will should be expected and
respected already in planning. The second level of this human anticipation is
that even when the path given to the worker seems the easiest, the system
cannot fully expect him to follow it. Either the human can exceed the expected
mean speed, or he can change the planned direction completely. All these
requirements should be taken to account when designing a system that would
successfully provide an environment for human-mobile-robot cooperation that
is safe and efficient.

B 72 Human safety

Figure 7.1: Warehouse ilustration with safety levels. I'mage source : Safelog

Several safety mechanisms are applied in the Safelog project to meet the
described requirements. They can be split into hardware and software ones.
The hardware mechanisms, developed by other Safelog partners, are:

® Safety Vest

® Augmented Reality (AR) glasses

52

7.3. Human in FMS

They provide the human worker the information about his surroundings,
including the path he should follow or a notification that an AGV is nearby,
and in the opposite way, inform the system about the current human position.
Through a Location Server (LS), this data is transferred to and from the
FMS. The software mechanisms are the following:

® Safety Levels
® Human-Aware Route Planning

8 Human Intention Recognition

The safety levels are three. The widest level is the area of the whole
warehouse where the AGVs are planned by the FMS and can move at full
speed. When an AGV enters the middle level, the human is informed about
its presence, and the AGV slows down. Finally, the closest level acts as a
simulated electromagnetic pulse that turns off all AGVs that enter it. The
function of planning and intention recognition modules will be described in
the following sections.

. 7.3 Human in FMS

For communication with the humans, i.e., sending them their plans, the
FMS distinguishes in its modes. If it is running as a simulation, the sim-
ulated humans are handled the same way as the AGVs, which means by
the AgentServer. For that, a special type of South Interface message was
designed. This command message contains the whole path which it provides
to the human directly. The Simulator then moves the human object along the
given path with a set velocity, without communicating on each node as for
the AGVs. In the case of the real warehouse deployment, the path is handed
over to the Location Server, also at once. It is then sent to the AR glasses,
which display it to the worker to lead him through the area.

The opposite direction of information, data about the human’s position,
is also processed differently according to the mode. In the simulation, the
human is again grouped with other agents, and its position is extracted from
the simulation data. It is the only entity the FMS gets the exact position
of. In a real deployment, the safety vest uses a camera to localize the human
using the position markers placed in the warehouse. The position data is
then sent through the Location Server, which provides it to the FMS.

53

7. Human worker in an automated warehouse

The FMS Simulator allows two ways of control in the simulation. Firstly,
a predefined file with timed assignments for the human or humans can be
loaded by the system, which will then execute the tasks autonomously. The
FMT, if running, displays messages when the human is assigned, whether the
planning was successful, and when his movement will start. Alternatively,
the user can operate the human through the FMT during the simulation. A
limited number of humans can be added to the process, and upon clicking on
some of them, the user can set their new goal. A message shows to inform
the user whether the planning was successful and when the movement will
start, which can be seen in Figure

Warehouse simulation
Time: Speed

Zoor Humans
Il 51458 1x M4 PM 100x | 11

m
P|P 100% |+ 13 Distract

Figure 7.2: Human in FMT GUL

B 7.3.1 Human-Aware Route Planning

A special part of the RP handles human presence in the warehouse. Firstly,
once a human target is known, it attempts to plan the human towards the goal.
For that, all AGVs are stopped, and the highest priority (empty occupancy
except for static robots’ positions) is given to the human. It is possible that
the planning fails - the stopped AGVs still represent an obstacle, and a valid
path might not exist. In that case, the planner attempts to move the AGVs
away from the desired human plan and retries the planning. If one of the
attempts is successful, the plan for the human is either set to be sent to the
simulated human at a given start time, or the planned path is updated to

o4

7.3. Human in FMS

the LS, again with the expected start time. After that, AGVs are planned
towards their goals with respect to the human path and the safety proximity.
At this point, the old plan knowledge speeds up the replanning, as described
in Chapter [3|

The RP also checks, based on the current AGVs’ status and human position,
whether the safety radius is violated and takes the corresponding action. That
is stopping the robot and alerting the human or just planning the robot with a
lower speed in the area. The emergency stop is doubled, as it can be triggered
either by the RP based on the computed distance or by a radio measuring
module mounted on the AGVs.

B 7.3.2 Virtual Reality Location Client

The Virtual Reality Location Client (VRLC) is an optionally launched com-
ponent of the FMS that handles communication with the Location Server
(LS) in a real warehouse deployment. This communication over TCP socket
provides the current position of a localized human to the FMS. The FMS, on
the other hand, updates the positions of AGVs and storages to the LS. Once
it connects to LS, the FMS also informs the server about the positions of all
node markers and storages in the warehouse layout. Finally, as was noted
above, the FMS updates the LS with new plans for humans.

B 7.3.3 Human Intention Recognition

The purpose of the Human Intention Recognition (HIR) tool is to check that
a human is fulfilling a given plan and, if not, provide a prediction of a possible
new path followed by the human. This allows the planner to take actions
for the AGVs - update their plans - prior to a possible interrupt caused by a
proximity violation.

This part of the FMS, developed mainly by colleagues from University of
Zagreb, Faculty of Electrical Engineering and Computing (UNIZG-FER),
takes the plans for humans and their actual positions, and in the first level, it
checks whether the human is within tolerance from the expected position in
time. The second level comes to work at the point when the plan is violated.
A simpler situation is when the human stops - in that case, the HIR provides
the planner with that information, and the planner adjusts the AGVs paths
so that they will avoid the area, or, in case they cannot, stops some of them.

55

7. Human worker in an automated warehouse

A more interesting situation arises in the case the human changes his
direction completely. At that point, the HIR reacts by attempting to detect
a possible new target of the human from a set of possible points of interest
through the warehouse. It then plans the expected paths to a set of these
and provides the planner with the most probable one. The planner takes it
as the new plan for the human and again adjusts the routes for all AGVs.

The cooperation in implementation and testing of the HIR module led to
a successful conference journal publication [4].

B 7.3.4 Simulated distractions

To fully test the function of the HIR module, the FMS is able to simulate
the human violating the given plan. This can be achieved either by providing
a file with the distraction assignments, similar to the one with standard
assignments for humans or by the humans being controlled through the FMT
GUI. To distinguish, whether the user assigns a standard job, or a distraction,
this mode is set by a dedicated button at the top of the FMT screenshot in
Figure 6.2l

The so-called distraction job is then passed to the RP, which plans it while
ignoring all AGVs. On the contrary to a standard job, however, it does not
store the occupancy information or the job itself. It just sends the modified
command to the simulated human. The Simulator then switches to following
this new plan, and it is the task for the HIR module to detect the deviation,
once the human leaves the expected old path.

B 7.3.5 Plotter tool

Added human assignments, as well as distractions, can be displayed in the
plotter tool described in Section 6.3l With the development of completed
deliveries and their duration, this provides a useful insight into how human
activity in the warehouse affects its production, fully online. The plotter also
displays at which time the HIR reacted.

56

Chapter 8

FMS performance and deployment

The function of the FMS and its components has been evaluated in three areas
of application. Firstly, the Simulator setup was extended with a statistical
tool described in Sections|6.3)and [7.3.5 that allows evaluating the performance
of the system under different conditions. The FMS was also applied in a
laboratory demonstrator to operate a fleet of TurtleBot2 robots simulating
the AGVs in a real warehouse. Finally, the FMS is currently integrated into
a real warehouse demonstrator to operate the Safelog designed warehouse.

. 8.1 Simulated performance

Although the main benefit of the Simulator is the possibility to develop and
debug the FMS without the need for any costly hardware, it can be used for
the final system evaluation as well. With the usage of the plotter tool, the
performance of the automated warehouse can be compared based on different
scenarios. The FMS can work with various warehouse layouts, fleet sizes, and
the presence and behavior of humans can differ as well.

Figure |8.2| presents the results of some of these scenarios on the map shown
in Section The expected number of AGVs for this map is 22, and the
results of this standard process are in plot (a). The AGVs start in their
charging stations, which causes the slow development of delivery durations
in the beginning. After the first delivery wave (one shade of green), the

o7

8. FMS performance and deployment

delivery times stabilize around 150 s since the AGVs already move between
the storages, and the closest is selected for each task.

Deliveries Deliveries
300 300
B - Time for delivery 200 + Time for delivery 200
250 - -+ Completed deliveries - 250 . Completed deliveries
3 150 -150
200 / L
= £ i 4 = / TR N AL EYY N LY A ¢
S1s0- f b | —— / = L100- RS SR AN AV WA B S ia -100
o g i g g A 1Y [ORNA VA e By
£ 100- = 1005 E / ! e E
= / / o = s0- samer 50 o
50 - -50 peese
0- -0 0- S -0
-50 =50
0 250 500 750 1000 1250 1500 1750 2000 0 200 400 600 800 1000 1200
Time [s] Time [s]
(a) : Warehouse with 21 AGVs. (b) : Warehouse with 11 AGVs.
Human actions Human actions
HIR alarm - HIR alarm -
Distraction - Distraction - . . emn
Assignment - - - . - Assignment - e o -
6 260 460 660 860 1060 12‘00 6 160 260 360 460 560 660 760 860
Time [s] Time [s]
Deliveries Deliveries
300 - -300 300 - . -300
200 - -200 v 200 - 200 v
-] — 8
o 2 o 2
- [- o
P g o g
£ 100 -100 ?_) £ 100 100 E_l
= a = PR L X o
0 eaneermeee= T - Timefordelivery o 04 = il [- Time for delivery
Completed deliveries Completed deliveries
6 260 460 560 860 1060 lZ‘UU 6 160 260 360 460 560 560 760 860
Time [s] Time [s]
(c) : Human worker moves inside (d) : Humans not following orders,
warehouse. HIR switched off.

Figure 8.2: Plotter tool showing the growing number of deliveries during the
time and their duration development. The Y-axis displays both time for delivery
in seconds and number of completed deliveries. The n — th shade of green marks
the n — th delivery completed by each AGV. In the Human Actions plots, the
marks denote that at that time, a new job was assigned to any human in the
warehouse.

Plot (b) shows a similar process with only 11 AGVs. The average time for
delivery is lower, around 100, since the robots do not have to wait before the
picking stations. The overall speed is lower, however, since there are fewer
AGVs to meet the demand.

In the plot (c) it can be seen how the process can be affected by a human
moving in the warehouse. Note that since the first appearance, the human is
still present in the warehouse and therefore serves as an additional obstacle.
In the area where the AGVs move mostly on one-way routes, the influence
depending on the exact location can be high. The dependence on the human

o8

8.2. Laboratory demonstrator

location can be seen later in the process, where the human starts to slow
down the deliveries more significantly.

The impact of an arbitrarily moving human can be seen in plot (d). Since
the HIR was turned off in that case, the human quickly caused major delays
and completely disabled the warehouse afterward. Since the AGVs are not
designed to react to their surroundings, it is the FMS that needs to be
informed about the human’s location to react in time.

B 82 Laboratory demonstrator

The laboratory demonstrator is shown in Figure [8.3) has been developed by a
group of students, including the author, as a team project. This comprised of

B setting the real environment,

® designing and implementing ROS modules to control the robots, and

® assembling the components and designing a way to repeatedly launch
the demonstration.

Figure 8.3: Automated warehouse laboratory demonstrator, Intelligent and
Mobile Robotics Group, CIIRC CTU.

The center of this demonstrator is the nearly unchanged FMS. In order
to avoid any collisions caused by possible delays, it was only equipped with
an additional node blocking tool. This reactive node blocking ensures robots
access only nodes, which are free at the time of execution. Such delays are
possible due to the limited precision of the hardware - correction of, e.g.,
orientation error can take arbitrary time.

99

8. FMS performance and deployment

The Simulator core is used as well, but only as of the source of the clock for
the FMS. An optional function is a connection to the Vicon motion-capture
system over UDP protocol and using its data as an external localization of
the robots. This data is then packed the same way as in simulation and used
for continuous visualization in FMT. It is not used for the FMS itself.

The robots localize themselves using a simplified version of the actual
Automated Storage and Retrieval System (AS/RS) approach. The laboratory
is equipped with a grid of unique markers - AprilTags [22]. Based on the
South Interface, the robots do not get the information about the position they
need to reach, and they also do not localize themselves absolutely. Instead,
they know the ID of the marked node they need to reach, and that is supposed
to be in their route ordered by the FMS. Once the robot has the visual contact
with the target marker, it navigates on top of it, while storing its relative
orientation. Before reporting command completion, it corrects the orientation
error based on the target orientation of the current command.

The robots use standard PCs equipped with ROS [23]. The robot controlling
program is split into localization, motion control and communication, similarly
as in the Simulator. Also, the base of the communication and data maintaining
part is taken from the Simulator as proposed in Chapter 6.1l Retrieving of
the AprilTag information from the camera is based on the apriltag_ros
package 'l The motion control is based on a proportional controller for speed

Uspeed(t) = KPespeed(t) (81)

and a PI controller for turning

t
usteer<t) = KPesteer(t) + KI/O esteer(t/)dt/' (82)

The achieved precision of motion is within 5 ¢m position error and 0.02 rad
orientation error.

. 8.3 Real warehouse demonstrator

The main purpose of the FMS is its deployment in control of a real automated
warehouse along with other Safelog components described in Chapters |5
and |7, This deployment is currently in progress and brings in several other
challenges and necessary adjustments of the FMS so that it will be able to
operate the real AGVs running their black box firmware. The FMS is also

!For more information about the package, see http://wiki.ros.org/apriltag_ ros.

60

8.3. Real warehouse demonstrator

adjusted to work with standard industrial safety routines, such as external
emergency stop, photoelectric sensor triggered emergency, etc. From the
nature of the warehouse operation process, the FMS can no longer be a
once ran application, but it should be adaptable to the current state of the
warehouse, for example, AGV and storage positions.

swisslog

—-

Figure 8.4: Swisslog Carrypick AGV used in the Safelog project.
Image source : hitps : | Jwww.swisslog.com/

61

62

Chapter 9

Conclusions

This thesis deals with the topic of warehouse automation from two different
views. In the first half, an approach for the solution of a specific instance of
the multi-agent path-finding problem was proposed. The motivation for this
came from the development of a real autonomous warehouse management
system, which was presented in the second half.

In the structure of the automated warehouse layout where humans can
enter the area used by AGVs, replanning of these robots becomes a regular
task, and its optimization is in place. From the nature of the situation - a fleet
of AGVs that already have collision-free plans - the multi-agent path-finding
algorithm-based planner module can make use of the knowledge it already
has and computation it already performed.

Several techniques were therefore proposed and combined in Chapter [3|
These build on the Context-Aware Route Planning (CARP) algorithm and,
based on the usage of memory, are jointly named MCARP. The application
of memory, a more precise heuristic estimate of cost-to-goal for states, and
heuristic sorting of agents have shown promising results in the experiments
presented in Chapter 4 Not all expectations were met since, even in a
mostly oriented graph, the precise estimate to the goal did not outperform
the Euclidean distance. The rest of the assumptions were, however, confirmed.
The usage of memory significantly reduces the time needed for replanning
and can also ensure lower failure rate. The more precise heuristic cost
computation based on the exact travel time to a vertex also reduces the
number of expanded states. And finally, two of the proposed techniques for

63

9. Conclusions

the sorting of agents served for the best performing planners among those
compared.

These sorting heuristics, namely sorting by influence - distance - between
agents in the original set of plans and by their overall waiting time during
these, may serve as an inspiration for more general usage. For example, sorting
of agents can be performed even during the original planning process and has
proved to have a major impact on the quality of the plans [I] [I2]. Further
research is also necessary for the leading idea of the MCARP algorithm,
application of the distance from the original path to the A* heuristic. As
was already mentioned, this causes the heuristic to lose the admissibility
property. In the specific case assessed in this work, this should not affect
the quality of the results. Still, the properties of the heuristic should be
evaluated to, for example, find suitable bounds to the sub-optimality [15].
The use in the original MAPF solving is then also possible even for memory
usage, for instance, in the combination of pre-computed paths in the known
environment.

The inspiration for the usage of old plans to speed up replanning came from
the D*Lite algorithm. Its modifications for MAPF were already proposed,
but are usually highly limited based on the data structure [24]. The first
issue arises from the fact that D*Lite builds the paths from the goal to start.
Then, in case of a change in the path, it rebuilds only the segment around
the new obstacle and keeps the rest of the path. In multi-agent path-finding,
the time domain has to be taken into account, and a path segment reached
later than originally planned may no longer be accessible without collision.
Therefore, both of these properties need reworking in order to comply to that.
Instead of these modifications, this thesis aims to assess the problem from the
other side - modifying a MAPF solver to incorporate the previously planned
path. As it showed as a promising direction, the future work regarding this
topic can build on it.

The second half of this thesis presents the FMS and its components.
Although presented here as a whole, the project was developed by multiple
people in time. The contribution of the author was especially in finalizing the
components and processes to work fluently. In the first phase, this consisted of
reworking the communication between Agent Server and the simulated AGVs,
fixing the command generation process, and debugging several related issues
in both Simulator and FMS. Performance optimization was also performed
by reduction of the threads in the Simulator and replacing serialization and
communication protocols with faster solutions based on binary messages and
shared memory, respectively. A whole new area was the introduction of
humans, the design of their control, rules, and movement execution.

64

9. Conclusions

The development of the FMS is still in progress, especially concerning
the human distractions simulation and FMS integration in the real-world
warehouse demonstrator. At this moment, however, it is already a useful tool
for the evaluation of automated warehouses application and their extension
with human workers. Additionally, it is used for full control over a laboratory
demonstrator of the automated warehouse.

Three conference papers were published with a link to the work presented
in this thesis. The methods DG and GG, introducing the influence between
agents’ plans and using it for their sorting, were proposed in a paper for
the 21st International Conference on Intelligent Transportation Systems
(ITSC 2018) [3]. The joint work with the researchers from the University
of Zagreb, Faculty of Electrical Engineering and Computing, on the inten-
tion recognition approach with the application in the presented FMS was
accepted for the 28th Mediterranean Conference on Control and Automation
(MED 2020) [4]. Finally, the laboratory demonstrator originally designed for
FMS was modified to perform experiments for a planner using the AA-SIPP
planning algorithm [25]. In cooperation with the researchers from the Federal
Research Center for Computer Science and Control of Russian Academy of
Sciences, the application of the planning algorithm in a warehouse-like pick-up
and delivery problem was accepted for the 17th International Conference on
Informatics in Control, Automation and Robotics (ICINCO 2020) [26].

65

66

Appendix A
Bibliography

T. Rybecky. Planning for a team of cooperating mobile robots. CTU in
Prague, Bachelor thesis, 2018.

Adriaan W. ter Mors, Cees Witteveen, Jonne Zutt, and Fernando A.
Kuipers. Context-aware route planning. Delft University of Technology,
The Netherlands, 2011.

J. Hvezda, T. Rybecky, M. Kulich, and L. Preucil. Context-aware route
planning for automated warehouses. 21st IEEE International Conference
on Intelligent Transportation Systems (ITSC 2018), 2018.

Tomislav Petkovic, Jakub Hvezda, Tomas Rybecky, Ivan Markovic,
Miroslav Kulich, Libor Preucil, and Ivan Petrovic. Human intention
recognition for human aware planning in integrated warehouse systems.
28th Mediterranean Conference on Control and Automation (MED 2020),
2020.

Roni Stern. Multi-Agent Path Finding — An Overview, pages 96-115. 10
2019.

Sharon G., Stern R., Goldenberg M., and Felner A. The increasing cost
tree search for optimal multi-agent pathfinding., page 470-495. 2013.

Sharon G., Stern R., Felner A., and Sturtevant N.R. Conflict-based
search for opti-mal multi-agent pathfinding., page 40-66. 2015.

T.S. Standley. Finding optimal solutions to cooperative pathfinding
problems. page 173-178, 2010.

Wagner G. and Choset H. Subdimensional expansion for multirobot path
planning., page 1-24. 2015.

67

A. Bibliography

[10]

[11]

[12]

[14]

[15]

[16]

[17]
18]
[19]

[22]

M. Phillips and M. Likhachev. Sipp: Safe interval path planning for
dynamic environments. in Proceedings - IEEE International Conference
on Robotics and Automation (2011), page 5628-5635, 2011.

Yu J. and LaValle S. M. Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics. page 1163-1177, 2016.

Adriaan W. ter Mors. Evaluating heuristics for prioritizing context-aware
route planning agents. Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, The Netherlands,
4 2011.

A. Andreychuk and K. Yakovlev. Two techniques that enhance the
performance of multi-robotprioritized path planning. AAMAS 2018,
Stockholm, Sweden, 2018.

Dave Ferguson, Maxim Likhachev, and Anthony Stentz. A guide to
heuristic-based path planning. School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA.

Likhachev Maxim, Gordon Geoffrey, and Thrun Sebastian. Ara*: Any-
time a* with provable bounds on sub-optimality. in Proceedings - Ad-
vances in Neural Information Processing Systems (2003), 16, 01 2003.

V. Narayanan, M. Phillips, and M. Likhachev. Anytime safe interval
path planning for dynamic environments. in Proceedings - IEEE/RSJ
International Conference on Intelligent Robots and Systems (2012), pages
4708-4715, 2012.

Koenig Sven and Likhachev Maxim. D*lite. pages 476-483, 01 2002.
Ingerman Peter Z. Algorithm 141: Path Matriz. 1962.

W. Matthews and S. Dawson. The shed of the future e-
commerce: its impact on warehouses. Online, available:
http: //www?2.deloitte.com/uk/en/pages/real-estate /articles /shed-
of-the-future.html, 2014.

Ruthie Bowles. Warehouse robotics: Everything you need to know
in 2019. Online, available: hitps://www.logiwa.com/blog/warehouse-
robotics, 2020.

Custodio Larissa and Machado Ricardo Luiz. Flexible automated ware-
house: a literature review and an innovative framework. The Inter-
national Journal of Advanced Manufacturing Technology, 106:1-26, 01
2020.

Wang J. and Olson E. Apriltag 2: Efficient and robust fiducial detection.
In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2016)., 2016.

68

[23]

[24]

A. Bibliography

Quigley M., Conley K., Gerkey B. P., Faust J., Foote T., Leibs J.,
Wheeler R., and Ng A. Y. Ros: an open-source robot operating system.
ICRA Workshop on Open Source Software, 2009.

Alsulaiman Mansour, Emaduddin Muhammad, Hedjar Ramdane, Mattar
Ebrahim, and Al mutib Khalid. D* lite based real-time multi-agent path
planning in dynamic environments. International Journal of Engineering
Research and Applications, 2:1414-1419, 2012.

Konstantin S. Yakovlev and Anton Andreychuk. Any-angle pathfinding
for multiple agents based on SIPP algorithm. Conference on Automated
Planning and Scheduling (ICAPS 2017), page 586-593, 2017.

A. Andreychuk T. Rybecky M. Kulich, K. Yakovlev. On the application of
prioritized safe-interval path planning with kinematic constraints to the
single-shot pickup and delivery problem. 17th International Conference
on Informatics in Control, Automation and Robotics (ICINCO 2020),
2020.

69

70

Appendix B

Enclosed CD contents

The root directory of the enclosed CD contains the following items

thesis.pdf: This thesis

figures: A directory containing all presented figures and images

source: A C++ project containing the implementation of all mentioned
algorithms

tex: A IXTEXproject of this thesis

stats: Python script for the statistics processing

readme.txt: Instructions to running the C++ project and the statistics
generation, list of CD contents

71

72

cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
e N
Student's name: Rybecky Tomas Personal ID number: 457220

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics

L Branch of study: Cybernetics and Robotics

J
Il. Master’s thesis details
e N

Master’s thesis title in English:

Trajectory planning for a heterogeneous team in an automated warehouse

Master’s thesis title in Czech:

Planovani trajektorie pro heterogenni tym v automatizovaném skladu

Guidelines:

1. Get acquainted with current approaches to collision-free trajectory planning for a team of cooperating agents.

2. Design and implement a planning algorithm for a team of robots operating in an automated warehouse. Focus on the
case when replanning of already generated trajectories is needed.

3. Design and implement a control system for a fleet of autonomous vehicles in an automated warehouse.

4. Realize an environment for testing and evaluation of the developed system.

5. Extend the control system with the possibility of planning for a human.

6. Evaluate experimentally properties of the implemented control system. Describe and discuss obtained results.

Bibliography / sources:

[1] S. Koenig and M. Likhacheyv, “D* Lite,” in Proceedings of the National Conference on Artificial Intelligence, 2002, pp.
476-483.

[2] J. Hvézda, T. Rybecky, M. Kulich, L. Pfeucil. Context-Aware Route Planning for Automated Warehouses. In Proceedings
21st International Conference on Intelligent Transportation Systems (ITSC). |IEEE Intelligent Transportation, 2955-2960,
Maui, USA, November 2018.

[3] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy for multi-robot task allocation,” The International
Journal of Robotics Research, vol. 32, no. 12, pp. 1495-1512, Oct. 2013.

[4] M. Likhacheyv, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime search in dynamic graphs,” Artificial Intelligence,
vol. 172, no. 14, pp. 1613-1643, 2008.

[5] V. Narayanan, M. Phillips, and M. Likhacheyv, “Anytime Safe Interval Path Planning for dynamic environments,” in IEEE
International Conference on Intelligent Robots and Systems, 2012, pp. 4708-4715.

[6] M. Phillips and M. Likhacheyv, “Planning in domains with cost function dependent actions,” in Proceedings of the 4th
Annual Symposium on Combinatorial Search, SoCS 2011, 2011, pp. 203—-204.

[7]1 M. Phillips and M. Likhacheyv, “SIPP: Safe interval path planning for dynamic environments,” in Proceedings - IEEE
International Conference on Robotics and Automation, 2011, pp. 5628—-5635.

[8] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-based path planning,” Proceedings of the International
Workshop on Planning under Uncertainty for Autonomous Systems, International Conference on Automated Planning and
Scheduling (ICAPS), pp. 1-10, 2005.

[9] M. Likhachev, G. Gordon, and S. Thrun, “ARA *: Anytime A * with Provable Bounds on,” Science, pp. 767--774, 2014.

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Name and workplace of master’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D., Intelligent and Mobile Robotics, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 12.02.2020 Deadline for master's thesis submission: 22.05.2020

Assignment valid until:
by the end of summer semester 2020/2021

RNDr. Miroslav Kulich, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.

\ Supervisor’s signature Head of department’s signature Dean’s signature

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

	Introduction
	State of the art
	A*-based algorithms
	MAPF solutions evaluation
	Agent planning order
	Anytime and lifelong path planning

	Memory-based Context-Aware Route Planning
	Data structure
	MAPF formulation
	CARP
	Replanning in MAPF
	MCARP
	Distance to goal
	Plan reusing
	Sorting of agents

	Algorithm evaluation
	Experiment setup
	Compared algorithms
	Evaluation
	Grouped results
	LF
	IF
	MW
	OW

	Sorting comparison
	Expansions reduction
	High priority agent count
	Estimate to the goal metrics on a warehouse map
	Evaluation conclusion

	Fleet Management System
	Description
	FMS modules
	Fleet Data
	Component Server
	Agent Server
	Route Planning

	Customization

	FMS testing tools
	Simulator
	FMT
	Statistics

	Human worker in an automated warehouse
	Problem definition
	Human safety
	Human in FMS
	Human-Aware Route Planning
	Virtual Reality Location Client
	Human Intention Recognition
	Simulated distractions
	Plotter tool

	FMS performance and deployment
	Simulated performance
	Laboratory demonstrator
	Real warehouse demonstrator

	Conclusions
	Bibliography
	Enclosed CD contents
	Project Specification

