Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Dashboard for secondary monitors with
userbased automation and user bahavior

Bc. Tomas Hodek

Supervisor: Ing. Jifi Sebek

Field of study: Open informatics
Subfield: Software engineering
May 2020

ii

cvut ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

(PFijmeni: Hodek Jméno: Tomas Osobni Cislo: 456948
Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl
Studijni program: Oteviena informatika

L Specializace: Softwarové inzenyrstvi

UDAJE K DIPLOMOVE PRACI

Nazev diplomové prace:

Dashboard pro sekundarni monitory s automatizaci na zadkladé uzivatele a jeho chovani

Nazev diplomové prace anglicky:

Dashboard for secondary monitors with userbased automation and user behavior

Pokyny pro vypracovani:

Mnoho lidi dnes vyuziva sekundarni monitory pro r(izné ucéely. Velmi ¢asto pro prehled
aplikaci, které nevyuzivaji Casto a spis jen sleduji déni, nez aby interagovali s aplikacemi na
sekundarnim monitoru.[1] Pomoci agregace aplikaci, &i jejich vefejnych APl s kombinaci
uzivatelskych pravidel, sledovani uzivatele a jeho chovani by mélo byt mozné vytvofit
automatizovany dashboard obsahujici uzivatelem zvolené aplikace, s plné automatizovanym
chovani, ktery poskytne dokonaly pfehled bez nutnosti ruéniho zasahu uZivatele.[5]
Cilem prace je:

1. Zanalyzovat vyuziti sekundarniho monitoru s moznostmi pfehledd jednotlivych
aplikaci.

a. Navrhnout moznosti vyuziti vefejnych API, &i pfimo jednotlivych aplikaci

v dashboardu.

2. Seznamit se s moznostmi sledovani uzivatele a jeho chovani, jako napfiklad eye
tracking a jiné metody.[3]

3. Navrhnout moznost preddefinovani pravidel samotnym uzivatelem a k nim moznosti
chovani automatizace dashboardu, &i jednotlivych zobrazovanych aplikaci.

4. Naimplementovat dashboard aplikaci integrujici vicero aplikacich, s moznosti
definovani rozlozeni aplikaci, pravidel automatizace a chovani.[2]

a. V ramci implementacni ¢asti naimplementovat vyuZiti eye trackingu pro lepsi
automatizaci.

5. Otestovat aplikaci na uzivatelich, analyzovat vyuziti a pfipadné nedostatky navrhu
oproti vyuzivani sekundarniho monitoru bez této aplikace.

Seznam doporucené literatury:

[1]CERNY, Tomas; a Michael Jeff DONAHOO. Second Screen Engagement of

Event Spectators: [2]JAdvances in Human-Computer Interaction. Waco, TX 76706,

USA, 2018. Research Article. Computer Science, Baylor University.

[3]IDUCHOWSKI, Andrew T. Eye tracking methodology. Theory and practice, 2007, 328.614: 2-3
[4]POOLE, Alex; BALL, Linden J. Eye tracking in HCI and usability research. In: Encyclopedia of human
computer interaction. IGI Global, 2006. p. 211-219.

[5]BADII, Atta, et al. SAM: Dynamic and Social Content Delivery for Second Screen Interaction. In:
Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video.
ACM, 2015. p. 119-124.

CVUT-CZ-ZDP-2015.1 Strana 1z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

-
Jméno a pracovisté vedouci(ho) diplomové prace:

Ing. Jifi Sebek, kabinet vyuky informatiky FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 11.02.2020 Termin odevzdani diplomové prace: 22.05.2020

Platnost zadani diplomové prace: 30.09.2021

Ing. Jifi Sebek podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)

G

ll. PREVZETi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v diplomové praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 Strana2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor Ing.
Ji¥i Sebek for providing support during
writing and also my classmates for valu-
able advices and psychic support during
those rough times.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 20. May 2020

Abstract

The usage of multiple monitors for increas-
ing effectivity of the work is common for
many users nowadays. Part of this thesis
is an analysis of the usage of secondary
monitors and how the applications are
used on them. The goal is to use the re-
sults from the analysis for designing an
application, which would provide a more
organized environment of the secondary
monitor and by that, increase the effec-
tiveness. The design aims to offer cus-
tomizable features such as creating own
persistent applications layout, the abil-
ity to add custom applications or select
from existing ones, and defining rules that
would use user context for automatization
of the application. The final implementa-
tion, done accordingly to design, should
be modular, extendable, and include all
mentioned features to increase the effec-
tiveness of work and ease the usage of
secondary monitors. The overall idea and
design were evaluated together with users
testing the implemented prototype.

Keywords: dashboard, user-context,
hci, multi-monitor, layout, monitor,
user-tracking

Supervisor: Ing. Jii{ Sebek

vi

Abstrakt

Vyuzivani vicero monitoru pro zefektiv-
néni prace je v dnesni dobé bézné u mnoha
uzivateltl. Soucésti této préace je analyza
vyuzivani sekundarnich monitort a ja-
kym zptsobem jsou na nich vyuzivany
jednotlivé aplikace. Cilem je vyuzit vy-
sledkt analyzy k navrzeni aplikace, ktera
by umoznila uzivateli mit organizovanéjsi
prostredi sekundarniho monitoru a tim
zvysit efektivitu. Navrh cili na poskyt-
nuti nastavitelnych vlastnosti jako je vy-
tvoreni vlastniho persistentniho rozlozeni
aplikaci, umoznéni pridani vlastnich apli-
kaci nebo vybér z existujicich a defino-
vani pravidel, diky kterym bude mozné
provést automatizaci aplikace s vyuzitim
kontextu uzivatele. Vyslednd implemen-
tace aplikace dle navrhu by méla byt mo-
dularni, rozsiritelna a obsahovat zminéné
vlastnosti za ucelem zefektivnéni prace a
zprijemnéni pouzivani sekundérnich moni-
tori. Celkova myslenka s navrhem byla v
ramci prace evaluovana s uzivateli pomoci
prototypu.

Klicova slova: dashboard, kontext
uzivatele, uzivatel, hci, dualni monitor,
sledovani uzivatele

Pteklad nazvu: Dashboard pro
sekundarni monitory s automatizaci na
zakladé uzivatele a jeho chovani

Contents

1 Introduction 1
1.1 Motivation
1.2Goals ..o 3
2 Background 5|
2.1 Multiple monitor setup
2.2 Rule-based systems 6
2.3 Knowledge based systems [
2.4 Event-driven applications
2.4.1 Event sourcing.
2.4.2 Command Query Responsibility
Segregation 9
243 Events....................
2.4.4 Event-driven programming . .
2.5 Eye-tracking
2.5.1 Measurement methodologies .
2.5.2 Usage of eye-tracking
2.5.3 Webcam eye-tracking
2.6 HCI - Human computer
interaction, (14
2.6.1 User interface - UI [15]
2.7 User context
2.7.1 User context tracking.......
3 Related work 19
4 Analysis 21|
4.1 Multi monitor usage

4.2 User research - multiple monitor

421 Results 23|
4.2.2 Evaluation of the research. ..
4.3 Organization and user data
4.3.1 Organization applications for
messagingc.couennn.. 27|
432 Userdata 28]
4.4 Rules and automatization 29
4.5 Analysis summarization
5 Design 33
5.1 Dashboard
5.2 Layout module
5.2.1 Layout representation
5.3 App module
5.3.1 App interface..............
5.4 User module [41]
5.5 Rules module
5.6 Design summarization

vii

6 Implementation

6.1 Requirements
6.2 Project structure
6.2.1 Renderer process structure . .
6.2.2 Main process structure
6.2.3 App module structure

6.2.4 Eye-tracking and custom app
implementation
6.3 Installation

7 Testing and evaluation

7.1 User testing
7.1.1 Results
7.1.2 Summary

7.2 Personal evaluation

8 Conclusion

9 Future work

A Bibliography
B Listings
C List of Abbreviations

Figures
2.1 Simple event process example . ..

2.2 System architecture using CSQR
2.3 Bright pupil and corneal reflection

as seen from infra red camera [12
2.4 The reflections of the eye.......
2.5 HCI elements. 15

4.1 Number of monitors results.
Vertical axis is number of monitors,

horizontal number of answers. 23
4.2 Question 2 responses.
4.3 Question 3 responses.
4.4 Question 4 responses.
4.5 Question 7 responses.
4.6 Question 8 responses.

5.1 Base structure of the applicaiton.
5.2 Example layout tree structure. .

5.3 Example layout.
5.4 Result of the JSON example from
listing [5.1).

5.5 App module sequence diagram. .
5.6 User context module sequence

diagram...............
5.7 Rules module data flow. 143
5.8 Application structure.
6.1 Custom layout creation.
6.2 Preview of the application

7.1 Testing environment with
eye-tracking turned on.

viii

Tables

Chapter 1

Introduction

This diploma thesis dives into the problematics of using multiple monitors,
specifically the usage of secondary monitors, then more deeply into the usage of
applications on secondary monitors and automatization of the whole workflow
with secondary monitors. The main factor being taken in mind and connected
to the applications often used on secondary monitors is the logical layout of
the application and overall organization of the secondary monitor‘s screen.

Those factors will be analyzed, separately in the chapter 2| and as a whole
in the chapter 4. The Design and Implementation chapters will dive more
deeply into the detailed and specific problems and will be then evaluated
in the Testing chapter of the thesis. The goal is to present a solution for
an application for secondary monitors that would help user be more efficient
and productive during his work. The idea will be tested and evaluated in
the Implementation and Testing chapters of this thesis.

. 1.1 Motivation

It has become a standard to use more than just one monitor for people who
are working with computers, nowadays even with tablets or some advanced
smartphones. Basically, people are able to connect one or more monitors to
any suitable device. Speaking of work spaces, in most companies, employees
are usually offered second or even third monitor by standard, coming up with
company laptops or a standard workstation. In 2017 the number of people
switching to the dual or more monitor setup went from 20 % to 90 % in
2002.[1] And this trend is increasing in almost every field where computers
are used. From engineers, designers, gamers, and programmers to science
workers, office workers, accountants, lawyers, writers, and many more.

The reason behind those numbers and wide spreading of multi-monitor
setup is simple. Users can be more productive, fast, and even feel more
confident during their work. Using multiple monitors can provide a better
environment for multitasking which leads to increased productivity and faster
work.[4] As laptops are getting smaller for comfort and portability, the screen
size is getting smaller, therefore user might feel frustrated to work only on
their laptops all the time. So it is common to have a second monitor at
the workplace to connect the laptop and enhance the workplace by more

1. Introduction

screen size. Some users have even more monitors, the extreme ones might
have up to 6 monitors to have access to all the information they need. Those
extreme setups can be often seen at business offices or some monitoring
centers, where employees need to have an overview of many things at the
same time, like stock exchange prices or critical systems status.

Many studies regarding the usage of multiple monitors have been made.
Most of them are in consensus, that the multi monitor setup provides more
productivity. Not all studies are having the same results in efficiency increase
ration. In one study, participants agreed that working with multiple monitor
was easier and has helped them find all the information much faster.[2] In
other studies, they found out that the productivity can be increased by up to
50 % with multiple monitor setup. The benefits are not only in productivity
but the enjoyment of work while using multiple monitors increases as well.
Mainly because it can be tiring and frustrating to have a constrained view
over the work and repeatedly switching the windows, which is taking time
and effort.[1] the next advantage of using this setup is the reduced number
of errors users make during completing their tasks. So the results are better
than using a single monitor setup.[3] The results have also shown that there
are improvements regardless of the screen size. Meaning that any second
monitor can help to boost the performance and effectiveness of work.[6]

The numbers and improvements mentioned above are surely dependent
on the usage of multiple monitors. There is an impact on productivity
in many small details. One of them is the posture and physical setup of
monitors. Some users might prefer having two monitors above each other,
maybe third next to them aligned vertically. The others on the other hand
can prefer having all monitors next to each other in horizontal alignment.
The ability to adjust those monitors, based on the current situations can be
helpful. In general, those setups are more subjective but can make a huge
impact on productivity.[5] Another detail worth noting is mental attention to
the multiple monitors. With the wrong usage of the second or third monitor,
the user can be easily distracted and his effectiveness might not be that
higher than using only one monitor. In the worst cases, effectivity might
decrease. But if the user is using his setup properly, and is mentally ready for
comprehending multiple workplaces, the productivity can grow really fast.[3]

As long as the risk of having the additional monitor as a distraction instead
of a productivity booster, the motivation for having the correct application
setup is high. The partitioning of the monitor, creating an applications
layout, can be considered similar to the using the multi monitor approach for
increasing effectiveness again. The difference is that now, the partitioning
is on the software side. By providing partitioned applications layout with
software, more options are available for enhancing the user experience even
more.[7] Not only layout is crucial, but even the behavior of those applications
based on partitioned layout is important. In the end, the whole behavior
of the partitioned monitor layout according to the user and his context can
improve his experience and even automate some of the users’ work and effort.

1.2. Goals

. 1.2 Goals

The goals of this diploma thesis are, at first, to analyze current solutions
and usage of secondary monitors. Then come up with a design and solution
for an application that would provide a user the ability to customize his
partitioned layout for the secondary monitor. Implement a prototype of
the application with basic functionality to show the core features and principles
of the idea. Analyze and test this prototype with users to get feedback about
the usability of this application and future benefits. The analysis itself
during the implementation and testing phase will determine the feasibility of
the whole idea. One of the key features of the application is the automatization
of whole solution and increasing the effectivity of work while using this
application.

In the analysis part, the goal is to properly dive into the usage of secondary
monitors and how users are working with them. Especially what applications
are they using for secondary monitors, how is their work structured and
divided between multiple monitors to better understand the user behavior.
Then look for existing ideas and solutions that are even closely related, to
get inspiration and possible best practices that can be used in this thesis.
Lastly and most importantly, analyze the automatization process of the whole
application. That should include the features, that can be automatized,
the style and behavior of automatization, and as well the sources of data,
which would trigger the automatization, meaning the user context data or
other data connected to the user connect situation. Part of those data is eye-
tracking of the user, which could provide interesting data and additional rules.
This source of data should be designed and attempted to be implemented
into the prototype.

The goal of the design part is to provide general solution for analyzed
features. How would be the application structured, what features it should
include, what data is the application using and also how the automatization
works. This design should be as general as possible, but for specific key
parts, the designing will be aiming towards development in a service-based
web application, build onto the Electron framework, which can build a web
application for desktop usage. Based on the design the prototype will be
implemented. Using web technologies like ReactJS and Electron including
NodelJS.

Lastly, the goal of testing is to find out whether this solution makes sense
for users and if it is feasible. Additionally provide any analysis for future
development and research.

To conclude, the final designed application should be fully customizable
dashboard application, providing the user the ability to select his own layout
for almost any application, he would like to use. For his selected applications
and layout, introduce automatization of the whole application, so users
would not have to interact with second monitor as much as he usually would.
The result would be increased effectiveness, productivity, and overall happiness
of the user.

Chapter 2
Background

B 21 Multiple monitor setup

Multiple monitor setups are common things nowadays and are widely used
across all fields working in the office and also in home setups. The setup
is consisting of at least two monitors, or screens in case of using a laptop.
The user then can separate the work across those multiple screens he has and
is able to be more productive. The main reason is to fasten the work and limit
the number of switching between application and context. Mainly because
it is time-consuming, the user can lose attention, e.g. if he has to switch
through multiple applications. The next disadvantage can be the process
of switching itself, that it can be just annoying for the user. With using
multiple monitors, different applications can be on different screens, and thus
users can be more focused on one task without any need to switch between
applications and contexts. 9, 4]

There is another helpful tool or technique called snipping, which provide
the user the ability to snip the applications to the corners of the side of
the screen and organize multiple applications at the screen.[9] Multiple moni-
tors highly increase the performance of the user together with the snipping
tool, because the organization of the applications can be done on all of
the screens.

For overall multiple monitor usage there are many types of research using
different methods. One of those methods is eye-tracking, where researches
can track how much is user looking at the other screens and for how long.
Therefore it can be distinguished whether users tend to have those monitors
for a passive usage, they don’t use it that much, or active usage, when users
are actively switching their attention between those screens and making any
actions on them.

More researches are trying to prove the efficiency of using the multiple
monitor setup by doing a usability test. Mostly comparing given tasks on
the setup with one screen and with multiple screens. The result is then
measured by time, precision, and also the quality of the finished task. Most
of these researches have the same results, that efficiency and productivity
increases and quality of work as well.[10, [3] 2]

5

2. Background

B 2.2 Rule-based systems

The rule-based systems are referred to as systems, that use defined rules,
human crafted or generated, to delegate knowledge and interpret the infor-
mation in a specific way. It is often used in artificial intelligence, machine
learning, or data-mining systems. The basics of ruled-based systems can be
seen in almost every program, where logic programming is used. That means,
a system that is changing it is behavior based on results from if and else
statements can be called a ruled-based program.

There are also systems called knowledge systems or expert systems, where
usually the expert systems are more specific versions of knowledge systems.
Those systems are a more complex version of a rule-based system. They aim to
simulate the decision capabilities of an expert when solving complex problems
while using knowledge and experience gained from the expert. The goal is to
make a system that has the quality of an expert in decision making.[20] This
knowledge is expressed using some formal knowledge representation language
and providing a knowledge base for the system.[19]

BN 23 Knowledge based systems

Knowledge-based systems uses a knowledge base to solve complex problems.
The knowledge base represents real-world facts. Often in the form of ontology
or frames, Bayes networks, rules, conceptual graphs, or logical assertions.
The knowledge base is one part of those systems. The second part is an infer-
ence engine. It applies logical rules to the knowledge base and can deduce
new knowledge. In general, there are two modes of inference engine. One is
forward chaining which is taking known facts and creates new ones. Second
backward chaining is given goals at the beginning and determines the facts,
that must be asserted to reach the goals. Knowledge-based systems are often
used in artificial intelligence implementations as it is a great solution for
the representation of human knowledge for machines.[26], 27]

B Predicate logic

Easy representation and also updating the knowledge. The predicates
are logical functions that return Boolean values, so true or false. They
are a generalization of propositional variables, such as variable r can
stand for It is raining and variable v for Adam gets wet. Then the logical
function can stand for If it is raining, Adam gets wet, then the result is
always Boolean value based on the value of the variables.[21]

B Semantic networks

Representation using objects with connections between them, called rela-
tions. The natural representation is graphs, where objects are the vertices
of the graph, and relations are edges between the vertices. The edges
are labeled, so the relations are better recognizable. Those relations

6

2.3. Knowledge based systems

then holds the knowledge base. The semantic networks are compact and
can be complex, but the change of the structure is difficult. The key
features are comprehensibility of the structure, availability of organiza-
tional principles, such as generalization, instantiation, and aggregation
and definition of the access paths between concepts and objects.[22]

Bayesian networks

Bayesian networks are a type of a probabilistic graphical model. They can
be used for a wide range of problems like prediction, anomaly detection,
diagnostic, and other analytic disciplines. In this case they describe
the probabilities of the relations inside the network, so it’s easier to
predict the result of actions.[23]

Frames

A frame is a structure that consists of attributes and their values. This
structure describes a real-world entity. Frames then divide knowledge
into substructures by representing stereotypes situations. The frame
consists of slots and slot values, being any type and size. Those slots are
called facets, which are various aspects of a slot. Facets are providing
the ability to put constraints on the frames, so it is possible to filter
exact knowledge out of frames using those facets. In artificial intelligence
a frame is also called slot-filter knowledge representation.[24] The frames
are usually created from the semantic networks. The main difference is,
that they contain slots with any number of facets, that can have any
number of values. Then the frames are later used as classes and objects.
All the frames are connected and the knowledge representation is struc-
tured, so are objects and classes. That means frames can have relations
similar to those that are known from object-oriented programming, like
decomposition and others.[25]

Rules

Rules are the most common representation of knowledge. They consist
of condition and action, separated into procedural conditions, if situation
then action, or declarative, if assumption then conclusion. The rules
representation consists of three parts - the set of rules, working memory,
and the recognize-act-cycle. This is the cycle, that is responsible for
the evaluation of conditions. First, the agent checks the condition,
if it exists, it select corresponding rule and uses it as an action part.
The working memory has a description of the current state and can
work as a trigger point for other rules. For some conditions, there
can be conflicts, called conflict sets. In those cases, the agent needs
to select a rule from the set. This step is called conflict resolution.
The disadvantage of rules is that they can’t have any learning capabilities
and they are not storing the results for any future uses, also in many
cases, they are not very efficient. But they are highly modular and easy
to manipulate with, remove or add or modify.[20, 25]

7

2. Background

B 2.4 Event-driven applications

Event-driven applications based on event-driven architecture use events for
disseminating the information to all interested parts of the system. Those
parts process the event, evaluate the information, and perform action. This
action can invoke a service, save data, trigger another process or any other
functionality hooked onto this event.[I1] The events may be generated by
the user or the program itself or even some other system that might be
connected to the network or the application.[12]

The event-driven architecture orchestrates behavior around the production,
detection, and consumption of events and reactions on events consumed and
processed. It can consist of creators and event consumers as well at the same
time. Creators are the sources of the events and consumers are processing
events made by creators and then reacting to it. The consumers consists of
event handlers and event listeners. In some cases event listeners can pass
the events to the event handlers, as they can work just as a listener and
middleware for the events. So listeners can be seen as a middleware for
handlers, or better said consumers of those events.[13]

Event Generators Event Channel Event Processing Downstream Event-Driven Activity

Subscribers

- Active
Event-Processor: Actions AL Zﬁ Business
Process

Publish — - Data
et
Event Engine P ing

Low Inventory g
ot Threshold Event m
Y
Event Q _ ——
Source Q Simple Event
Dashboard

Invoke Service

Commit Inventory Low y
Service Threshold Event

Start Business Re-Order
Process Inventory Process

Capture

Tl

Figure 2.1: Simple event process example (taken from [I1])

B 2.4.1 Event sourcing

By the definition mentioned in [I4] (by Fowler 2005b): “Fvent Sourcing
ensures that all changes to application state are stored as a sequence of events.
Not just can we query these events, we can also use the event log to reconstruct
past states, and as a foundation to automatically adjust the state to cope with
retroactive changes.”

The events in the event sourcing pattern are persisted in an event store
where can be reached by the system and the store acts as a source of truth.
The store is publishing those events, so consumers can be notified and handle

oo

2.4. Event-driven applications

those events.[15]
The benefits of event sourcing are:[15]

® Performance and simplicity of persisting data runtime. Meaning the abil-
ity to keep the entire state of an application in-memory, or persist it to
the storage media. That would be used if the system crashes or there is
a need to shut down, the data are used to restore the previous state of
the system.

8 The events are immutable, so using only append operation will provide
consistent event store.

B8 The events are simple object only describing an action that occurred.
They are not directly updating any data store.

® Event sourcing can help to prevent concurrent updates and causing
conflicts or deadlocks in the system. That’s because of not directly
updating the data store. But the model has to be still designed to
protect the potential inconsistency of the data.

® Testing of error scenarios or application states that may occur or may
have not. The state machine can be built upon the possible events and
their behavior inside the system. This can be used for reestablishing
states that caused problems or construct states that have not occurred
yet and test them.

This pattern is usable in many cases, especially when the consistency of data
is crucial. It is widely used in cloud computing systems using microservices.
Also it can be used for systems, where the information about the purpose
or reason for the change is needed and stored. Next can be systems where
dividing the request for a change and change of data needs to be separated,
so the event handlers can work like a middleware. The next use case can be
needed for an audit log for every data change made, because the event store
is simply representing it from a design. 18]

Bl 2.4.2 Command Query Responsibility Segregation

In short CQRS is a pattern often used in combination with event sourcing.
It is a design pattern that reads and write operations over data. Based on
the object-oriented design principle, there are two categories of methods, one
called the command category and query category. The command part of
this pattern changes the system state but does not return any data. On
the other side, query returns the system state, or data, but does not change
anything. [14]

2. Background

Application

Update Write
Informaton Service —— | Command Model

— o e e

ul Network
/

Query Model /
User Query Read
Information Service ~——

Figure 2.2: System architecture using CSQR (taken from [I3])

B 2.4.3 Events

An event is an identifiable occurrence that happens inside or outside the sys-
tem. The event can signify a problem, opportunity, threshold, or a deviation.
In general events usually keep information that is valuable and significant for
the system.

Events usually consists of the event header and the event body. The header
contains information about the occurrence, such as the source of the event,
some identification, timestamp, and it might contain the condition for occur-
rence as well. Event body contains the information itself, which should be
passed. It is a description of what happened that this particular event was
created. It can contain the additional data, which are the result of the event
or just a pointer to them, so event handlers can reach those data and process
them.[12]

The events should be fully described, so there is always a deterministic
result or behavior of the system, after the event handler process the event.
Also the event has to be immutable, relevant to the domain, and usually
happens in the past.[14] To ensure the events are understandable by every
consumer, ontology, lexicon or at least some event rules should be used as
a specification for events.

B 2.4.4 Event-driven programming

Event-driven programming is used often when working with I/O operations,
input, or output operations. Especially when there is a need for using
concurrency. The event-driven programming is used instead of threads in
those cases because it can provide more simplicity and better managing
of the concurrency tasks. Even-based programs are then more stable and
robust.[I6] The paradigm uses event listeners that detect events and then
pass them to the event handlers. In theory event-driven programming can be
used in any programming language. [17]

10

2.5. Eye-tracking

B 25 Eye-tracking

Eye-tracking is a technique that tracks an individual’s eye movement. This
movement can be measured and evaluated as where is the user looking at
any given time and also the sequence of his eye movement, from where to
where was user shifting is attention.[28] There are two types of eye movement
tracking, one that measures the position of the eye relative to the head and
second that measures the orientation of the eye in the space, in other words
point-of-regard. The device for eye movement tracking is usualSoly called eye
tracker.[29)

The most accurate eye-trackers use high-performance cameras, that can
detect near-infrared spectrum light and can benefit from active illumination
in the infrared spectrum. They are highly accurate trackers, but user needs
special equipment for those. It is usually a dedicated camera, that works
in a light room with infrared light sensor, that can track the iris precisely.
Also there is always a need for image processing software, that will process
the eye-tracker data.[28)]

B 25.1 Measurement methodologies

In general, there are four categories of measurement methodologies, that
were or still are being used for eye-tracking tasks. Almost every one of them
requires special equipment, software, proper calibration, and setup. The first
eye-tracking methodologies were introduced in the 1950s and they are still
being enhanced and simplified for better usage in the real world, and not just
scientific researches.

B Electro-OculoGraphy (EOG)

Widely used method in the 1970s. The methodology relies on the measurement
of the skin’s electric potential differences. These differences are measured by
electrodes placed around the eyes. It requires the subject to be steady and is
not very accurate for point of regard measurements, because the measurement
is relative to the head position. So for POR tracking, some sort of head
tracker must be used or the subject needs to be steady, but the accuracy
would be dropping.

B Scleral Contact Lens/Search Coil

It is one of the most precise methodologies, it requires attaching a mechanical
or optical reference object to the contact lens, which is then worn directly
on the eye as normal contact lenses. One of the method is using the wire
coil, other can be reflecting phosphors or line diagrams. Those attachments
are then registered using an electromagnetic field or other magneto-optical
configurations. Although this method is the most precise, it is not very used,
because of the intrusive method of inserting contact lenses into the eye.

11

2. Background

M Photo-OculoGraphy/Video-OculoGraphy (POG/VOG)

Techniques in this category usually do not provide a point of regard mea-
surements, although they could in specific scenarios. This category includes
a wide variety of eye movement recordings and measurements of the movement
of the eyes under different circumstances, like pupil shape, the position of
the limbus, and corneal reflections of the light.

M Video-Based Combined Pupil/Corneal Reflection

For measuring the point of regard, either the head must be fixed so the position
of the eye is relative to the head and point of regard coincide or more features
must be measured to calculate the correct relative position of the eye to
the position and movement of the head. Two of those features, to provide
measurement without fixing the head, are corneal reflection and the pupil
center. Corneal reflection means a reflection of the light source, often infra-red,
from the eye.[31]

Bright pupil Corneal reflection

Figure 2.3: Bright pupil and corneal reflection as seen from infra red camera
(taken from [28])

Corneal reflection of the light source, also called Purkinje reflection, is
measured relative to the location of the pupil center. There are four reflections
formed, due to the construction of the eye. The video-based trackers are
usually using the first one. After calibration procedures, eye trackers are able
to measure the viewer’s point of regard on a surface where are the calibration
points. So in case of a computer, they would be displayed on a monitor, and
calibration would be done against those. So the point of regard would be
on the monitor display. The point is found by trigonometric computations,
where the distance between bright pupil and corneal reflection is measured
and then used to calculate the point of regard.

12

2.5. Eye-tracking

Figure 2.4: The reflections of the eye. (taken from [29])

Bl 2.5.2 Usage of eye-tracking

As technology evolves and high-resolution cameras are more accessible, the eye-
tracking research and usage in practice is increasing.[32] Also the possibility
of real-time eye tracking with current machines is very common as it can be
run on normal computers with average hardware resources and also an almost
average camera. Even software that computes the tracking of eyes does not
need the infrared cameras, as the resolution of the web cameras is getting
better and better.

Regarding using the eye-tracking technology, there are some other factors,
that can be tracked. Human vision has two parts of the area that can be
seen. First, with high resolution, is foveal vision. It has about 2 degrees of
the visual field where humans can see sharply. The other part is peripheral
vision, where humans can see blurry objects, unable to read or distinguish
if he previously did not see them. Based on this fact, there can be tracked
two things. Fixations and saccades. Fixation is, when the eye is "resting"
on something specific. It takes up to a half of a second, but for that time,
the eye is fixed onto one point. The saccade last only about up to one-tenth
of a second a during that phase, human is effectively blind. Eye-tracking
is more focused on fixation phases as at that phase, it can be distinguished
where is the user looking and for how long.[30]

B Human computer interaction

In human-computer interaction is eye-tracking widely used for purposes of
testing. The users are tracked while they are using the tested applications.
While users are being tested and using the application, the tracking software
is gathering data and often creating a heat map. The result is the overall

13

2. Background

heat map of the user’s eye movement across the application. That can be
then evaluated by the authors if the user was behaving as intended.

Some new apps are trying to experiment with controlling the interface, or
the whole app using eye-tracking techniques. So users might scroll with their
eyes, or stop the video, when they are not looking.[30]

B 25.3 Webcam eye-tracking

The webcam usually does not have infrared light to scan the reflection
from the pupil and the corneal reflection. Webcams have only a visual
spectrum, with limitations of resolution as many webcams do not have that
high resolution, because for common use it is not needed. The next drawback
could be the latency or the frame rate, which can be resolved by lowering
the resolution, but then the image of the eye can be one blurry picture.
Also webcams are highly dependent on the light, so good light conditions are
important. So the process of eye-tracking with webcam is often in the following
steps:

Detect location of the face.

Detect location of eyes within the face.

Detect orientation of left and right eye.

Map the orientation of the eyes onto the screen coordinate system.

The kay part for mentioned steps to work is the calibration, which is done
the same way as with standard eye-trackers but here it could be crucial for
the result.[31]

B 26 HCI- Human computer interaction

Human-computer interaction, or in short HCI, is a field of study focusing
on the interaction of humans with computers. HCI studies the design of
the applications and hardware elements of computers, to be as user friendly
as possible. The main reason why are these researches increasing is the fact,
that more and more people are using computers and are in need to use them
on every day basis. Therefore it is important to make usage of computers
and related technologies as accessible as possible. [35, [36]

14

2.6. HCIl - Human computer interaction

Humans

Design

Tasks Technology

Figure 2.5: HCI elements. (taken from [33])

B 2.6.1 User interface - Ul

The user interface provides the user the ability to communicate with the com-
puter. It can be perceived as a bridge that connects the computer with
the user. The study behind this bridge is backed by the HCI field. As more
people are using computers, the more crucial is the development of Ul for
any programs that people work with.

The main focus of Ul development is to provide user-accessible, easy to
use, and effective interface. The interface must be also intuitive, so the users
do not have to read manuals and undergo any lectures that would teach them
how to use those programs. Another important parts of Ul are esthetics,
emotions that users have during using the program, and also the experience
that would user get. Those are also key factors when developing a good user
interface.[34]

In general user interface does not have to mean the software program or
an application graphics. By Ul we mean also mechanical things, buttons, and
so on, which can be interacted with by the user. In software development,
the Ul specification is GUI, a graphical user interface. The world, graphical
is often missed, when the context of a software application development is
clear. So sometimes it can be the same thing. In this thesis, the short Ul
will be used, as the context is strict to the software application.

The graphical user interface, next just user interface, can be divided into
two parts. The static user interface and the dynamic, or adaptive, user
interface. [33]

Il Static Ul

Static user interfaces are almost immutable when it comes to the layout of
the elements in the application. The only part, that is changing is the data
and content. The main advantage of the static Ul is that it can be easily
remembered. Thus the user can use the application more by memory then

15

2. Background

recognition of the elements, which is increasing his effectiveness and fastening
the task he is doing. Also it is much more easier and comfortable the more
he uses the application. For those advantages to work, the Ul must be well
designed, that there are no annoying elements or distractions. Because if
there were any, users would be more unhappy with using the application for
a long time.

B Dynamic UI

Dynamic user interface is on the other hand not immutable. It can change
its elements as well as layout and data with content. The changes might be
affected by context, user preferences, or some effects from outside the appli-
cation.

The very similar design is the adaptive user interface. That is more focused
on adapting the user interface through the time and trying to achieve the most
suitable interface for the user. It can adapt to one user specifically, be tracking
user context, user data, and also his preferences, or in general to all users
based on global user usage data collected over time.

The advantage of those systems is the behavior that can be achieved through
the adaptation, it could be exactly the one that user needs and it could be
perfectly tailored to his need or needs of a group of users. The example can be
adaptive menus, that can change based on usage of the tools from the menu,
as well as the layout of the menu can be changed based on user-specific usage.

The disadvantage of adaptive and dynamic user interfaces is the cost and
effort that needs to be put into the development. With wrongly designed
adaptive Ul, the user can be quickly annoyed and stop using the application,
because he does not like the Ul after the adaptations.

. 2.7 User context

The user context can be understood in many ways. In software development
the user context consists of relevant information about the user, better his
environment and situation. There are many aspects when creating a user
context and what is in the user context and what should be in a global context
of the application or the overall situation.[41]

The information inside the user context can more general, like the estimated
location, could be as a place of interest or the type of situation the user is in,
like working, traveling, or other. Then there is more concrete information,
like temperature, used applications, noise around the user, or light conditions.
There can be many more and it depends mostly on the device the software is
installed and permissions the user gives to the software.[42]

Persisting and processing user context can be challenging and the challenge
can the representation of the user context. The store for the context should
be in specific format, that can be easily processed, manipulate, and can also
have some relations or other features useful for work with the user context.
That information can be really complex, so it is necessary to have a robust

16

2.7. User context

format, which is also readable by humans and machines as well. There have
been introduced some basic requirements for such a format:[41]

® Structured

Information should be structured, so it is effective with search but also
with delete, add, or update operations.

® Interchangeable

The context should be able to move to other applications and should not
be dependent on a specific application.

® Composable/Decomposable

Distribution of the data across multiple storages should be possible.

® Uniform

For all use cases and applications, the context format should be all
the same.

® Extensible

The ability to add more information is a must for format storing user
context information.

® Standardized

Format should be standardized for the communication between different
sources, so both of these sources know the standard.

Most of the existing formats are based on the Resource Description Frame-
work (RDF), which is a standardized framework using XML for storing and
passing information over the web and HTTP.

B 2.7.1 User context tracking

Tracking of the user context is widely used in mobile phone applications
because of the presence of multiple sensors, which can access multiple user
information. In mobile phone software such tracker applications are called
context-awareness applications, because they are connected to the user context
almost directly.[38]

Another tracking of user context can be seen everywhere on the internet,
where Google and other companies are tracking our searches and then provide
more relevant and personalized advertisements, products, or results from
our search. This tracking is then used by companies, to see if their ads are
working well and people are buying their products.[37, [39]

By user tracking it is also possible to see how users are evolving. Those
data from the context can be stored and evaluated over some periods of time.
Applications can then adapt based on those evaluations or authors can change
their approach and make some changes. The software can also learn from
those evaluations and change the behavior for some specific tasks.[40]

17

2. Background

The more interesting user context tracking for this thesis is tracking of
the local context. Or even better real-time context of the user. The informa-
tion about what is user doing at the moment, what application is he using,
where is he sitting, and also where is he looking can be used for automatization
of processes in the applications or adapting the user interface. Also if some
applications need tracking to be live, because their behavior can be based on
in. [38]

18

Chapter 3

Related work

There are many related papers and researches when it comes to multiple
monitors. Mostly from years after 2000, when multiple monitors started to
rise even for personal usage. Those researches are focusing only on the usage
of secondary monitors in terms of efficiency.[5] Trying to prove, that it is better
to use them and that the productivity of the user increases. As mentioned in
chapter Motivation, they were successful in proving that.

Nowadays, there is a huge support of multiple monitor setup from operating
systems itself. But they lack the user-friendly layout organization when it
comes to working with secondary monitor. Therefore snipping tools were
introduced, which helps organize applications on the screen by snipping them
to the corners and dividing the screen into the sections. For macOS there
need to be third party applications installed, but Windows and Linux are
supporting this feature natively.

The examples of those applications can be KDE Window manager for Linux,
macOS Spaces, Tiles, Magnet, and Spectacle. All of those are providing almost
the same functionality, dividing the screen layout, so the user can have a more
organized applications layout on all monitors. Unfortunately there is no
integration of the applications or even persisting the layout setup in most of
these. And also the customization of the layout if often quite limited.

With focusing on application integration, there are more possibilities.
The one category are applications which are integrating many web apps and
providing user to have all those tools at one place. They are using web
technologies to provide the whole integrated application, additionally imple-
ment notifications and small additional features. The user only selects which
services he would like to use from the list of available services. The difference
in those is that they can show and use only one service at the time. So user,
have to interact with the application every time he wants to switch to different
service. Despite this limitation, these applications provide an enhancement
in the organization of the services user likes to use. The examples for these
applications could be Station[45], Franz[46], and Ferdi[47]. And there are
many other similar applications.

The drawback of the above-mentioned applications could be their perfor-
mance. As they behave like web browsers and they are not always optimized
that well. Overall I found no application with a similar complex purpose as

19

3. Related work

is the aim of this thesis. Existing applications are facing only the problems
mentioned above.

20

Chapter 4

Analysis

This chapter of the thesis includes the overall analysis of the problem, the ex-
isting and related solutions and their approach, and techniques mentioned
in the background chapter. In addition, part of the analysis is a personal
research which was made for this thesis using a questionnaire and specific
group of users. The goal is to provide a better understanding of the problem
and better starting point for the design part. The possible technologies and
principles, that can be used can be mentioned as well.

B 4.1 Multi monitor usage

Following the motivation part of this thesis, multi monitor usage is becoming
almost a standard for most of the office workers and also users at home.
The results of multiple researches claims to prove the increased efficiency
when using multiple monitor setup. The next step of analyzing the usage of
multiple monitors is aiming at the efficiency of multiple monitor control and
app usage itself as well as the organization of the tasks across the monitors. It
is essential for users to use multiple monitors in a way, that they are not being
distracted from work, which would affect the overall efficiency in a negative
way. So the key part for achieving the most efficient work space with multiple
monitors is the appropriate configuration and application layout. For every
user this may be different, and it is up to every individual what setup is least
distracting and most supportive for their work.

B 4.2 User research - multiple monitor usage

The user research to support the analysis of the multiple monitor usage was
done using a questionnaire, which would lead to a better understanding of
user behavior and the most common usage in a particular targeted groups.
The participants were all from IT companies and mostly programmers
and people working in the same field. The total amount of participants was
46. The results of this research should show how are users currently using
secondary monitors or in general, multiple monitor setups and whether they
see any disadvantages or a space for the improvements. This research has not

21

4. Analysis

included any information about the current thesis and its idea, so participants
are not influenced and it is possible to analyze the real current situations.
The questions were following:

1.

10.

How many monitors are you using in total? Response was a number and
laptop screen counted as a monitor.

What screen setup are you currently using? If you are switching between
different setups, please feel free to write down those and reasons why.

B Next each other

® Above each other

® Other
If you are using laptops, are you using laptop monitor as your main
monitor?

® Yes

® No

® [a not using laptop
How often do you switch between main and secondary screens?

® Often - every couple minutes

B Not so often - every 15 minutes

® Sometimes - every 30 minuts

B Rarely - every hour

® Almost never - every couple hours

Please, shortly describe purpose of your secondary screen. Open question.
What apps are you using on your secondary screen? Open question.

How much is your secondary screen organised? 1 - it is a mess, 10 -
perfectionist dreams Response was a number from 1 to 10.

What OS are you running?

® Windows
B MacOS

® Linux

Do you use any apps for managing apps/windows on your screens? If so,
which? Open question.

What are the biggest disadvantages of a secondary screen for you? If
you see any, what would you change in using secondary screens? Open
question.

Almost half of these questions are open. The reason is to collect various

thoughts from users about using multiple monitors. Also it will help future
analysis about existing ideas or show missed questions that should be tackled
in the analysis process.

22

4.2. User research - multiple monitor usage

B 4.2.1 Results

B 1. How many monitors are you using in total?

0 10 20 30 40

Figure 4.1: Number of monitors results. Vertical axis is number of monitors,
horizontal number of answers.

The target groups were people with multiple monitors, so every respondent has
two and more monitors. Where the monitor counts as a laptop screen, so there
is no need to differentiate between desktop and laptop users. The majority
uses two monitors, a total of 32 respondents. Thirteen of them use 3 monitors
and one of them uses 5 monitors.

B 2. What screen setup are you currently using? If you are switching
between different setups, please feel free to write down those and
reasons why.

68.9% Mext each other 31 responses
22.2% Above each other 10 responses
8.9% Other 4 responses

Figure 4.2: Question 2 responses.

The majority of respondents have monitors next to each other. Four respon-
dents who selected the "Other" option also have some variety of next to each
other setup, mostly two next to each other and one under them.

23

4. Analysis

B 3. i you are using laptops, are you using laptop monitor as your
main monitor?

63% No 29 responses
34.8% Yes 16 responses
0% | am not using laptop. 0 responses
2.2% Other 1 response

Figure 4.3: Question 3 responses.

Most users tend to have their laptop as a secondary monitor and work with
the external one as the main one. That can be the case for bots main setups,
above each other, and also next to each other. But for example, it’s easier to
track if the user is paying attention to the second monitor or not if we would
use laptops web camera.

B 4. How often do you switch between main and secondary screens?

71.7% Often - every couple minutes 33 responses
10.9% Not so often - every 15 minutes 5 responses
5.5% Almost never - every couple hours 3 responses
¥ P
4.3% Rarely - every hour 2 responses
Y
2.2% Sometimes - every 30 minutes 1 response
4.3% Other 2 responses

Figure 4.4: Question 4 responses.

More than two-thirds of users tend to use the secondary monitor very actively.
Only a small percentage of them are using a secondary monitor passively
their work. That means either their application layout is not ideal and some
of those switches are unnecessary or they might have some terminal or other
features that require some sort of interaction, set on the secondary monitor.

B 5. Please, shortly describe purpose of your secondary screen.

All respondents almost agreed and were in consensus that the secondary
screen is a place for not that much-used application. Some of them are

24

4.2. User research - multiple monitor usage

using it for a web browser or actual application they are working on. Many
of the users, almost 3/4 of them are having chats, emails, and some other
information-gathering applications on the secondary monitor. Also it can be
a place for applications that can be potentially disturbing.

Users with 3 monitors usually have their third one as more passive ones
and using it for music applications, emails, chats, and less used applications.
But all of them agreed that it is mainly for increasing their effectiveness
during work.

B 6. What apps are you using on your secondary screen?

Many users responded with browsers, chats, and email applications. The other
are very often terminals or IDEs. Followed by applications like dev tools and
adobe products (illustrator, photoshop, etc.).

B 7. How much is your secondary screen organized? 1 - it’s a mess,
10 - perfectionist dreams

Figure 4.5: Question 7 responses.

Respondents secondary monitors are usually organized. The main reason for
that is probably the fact, that they are professionals and use their setups all
the time. So being organized is also the key to effectiveness and productivity.
But not all of them are having perfectly organized secondary monitor layouts.

B 8. What OS are you running?

54.3% Mac 25 responses
32.6% Windows 15 responses
13% Linux (7 T=TETEs

Figure 4.6: Question 8 responses.

25

4. Analysis

The MacOS is a bit more popular in fields like IT, but regarding multiple
monitor setup it has weaker support than Windows or Linux, as it does
not have integrated snipping tools like Windows and Linux does. That is
the reason why many Mac users have third party applications for snipping
and setting up the layout on their monitors.

B 9 Do you use any apps for managing apps/windows on your
screens? If so, which?

Half of the respondents are using no application for secondary monitor
management. This means they have to manually organize their applications
or use native snipping tools integrated for example in windows. Other users,
mainly mac OS users are using tools like Magnet, Mac OS Spaces, Spectacle,
KDE default, and Tiles. Those applications are only for setting up the layout
of your applications by snipping them to the corners or using short cuts.
None of them is adding any more features, and users are not able to save
those layouts persistently and change them according to context for example.

B 10. What are the biggest disadvantages of a secondary screen for
you? If you see any, what would you change in using secondary
screens?

About 20 % of respondents see the disadvantages in the physical setup of
their monitors and fact, that for long term use of the secondary monitor, user
can have bad posture and hurt his neck or back. Few of those respondents
also mentioned portability. Sometimes they need to move to meetings or just
sit on a couch or even work from home and they are not able to move their
setup with them. Also difficult cable management and monitor positions were
mentioned in responses.

This leads to another issue that was mentioned. With bad portability
comes issues with workflow and setting up the layout of the applications.
Respondents are having trouble setting up the layout properly every time
they disconnect from monitors or even come home, where they might have
a different setup and also different context of work.

The last issue that was mentioned a few times, in like 10 % of responses,
was bad optimization from operating systems, resource demand, and also
a hard organization of the applications. Also one respondent mentioned that
he or she sees disadvantages in applications that require a manual click or
some interaction for just showing some news and that the notifications are not
enough for getting the whole information. That makes the need for an extra
unnecessary interaction with the secondary monitor.

B 4.2.2 Evaluation of the research

Based on the result of the questionnaire we can surely say, that focusing
the research towards multiple monitor setup does make sense, as the majority
of people are using it. And many will join them as technology grows and

26

4.3. Organization and user data

those setups are being more and more available. Supporting fact is, that even
programmers and I'T workers, who should be the ideal users of complicated
setups, are having some issues with using secondary monitors and still find
some missing features and space for improvements. As it was mentioned
before, the goal of this thesis is to provide a solution for better productivity
and usage of secondary monitors, also their automatization. Simply, make just
users life much more easier while using multiple monitor setup. Regarding
the results, users might appreciate the mentioned features that is being
designed in this thesis. Such as the layout selection and set up, which can
be persistent and the user might choose one regarding the context, or even
better, it might change itself based on context change. Or automatization, so
the user is not forced to switch between monitors so much with his controls
and ease his movement over the workplace.

B a3 Organization and user data

The result from the questionnaire and also results from the researches men-
tioned above are clear. Organization is the next key to be more efficient and
productive while using the multi monitor setup. This supports the idea, that
providing customizable layout for the user might help him to achieve a better
workplace, where he would feel better.

Having a good layout, that suits users, seems to be increasing efficiency
by a lot. Native operation systems are also supporting this thought, as
they are starting to natively provide the possibility to set the layout of your
applications on the screen.[48] The Windows have it natively as a snipping
tool, where the user drags the application to the side or corners and application
snips to that part of the screen. Similar applications are also on macOS,
but the user has to download them from third-party providers as those
tools are not integrated. On Linux systems, this functionality depends on
the distribution, some of them have it natively or users are able to download
additional extensions that would give them the functionality.

The snipping tools have one missing feature and that is the persistence
of the layout. At least for most of the tools mentioned by users and found,
there is no option to save the current layout of the applications. Every time
user moves with the layout, turn off the computer or very often just unplug
the monitor and then plug it again, the layout is lost. Then the user has to set
up the layout again manually with applications he wants. Although it does
not usually take long and it is mostly intuitive, it can give some frustration to
the user, especially when the user is changing his environment a lot, so he has
to do it many times per day. He might even abandon the organization and
snipping and get used to the application anarchy or just partial organization.

B 4.3.1 Organization applications for messaging

As an organization application we can consider the applications mentioned in
the chapter Related work, like Station, Franz, or a fork of Franz, Ferdi. Those

27

4. Analysis

applications work on a WebView principle, they provide the interface for
the application itself and then the view of the application user wants to show.
The behavior is similar to the usual internet browser but the difference is in
the setup and persistence. Those applications provide persistent setup and
can be even moved to another system and still keeps the user setup. The main
advantage is that the user can have all his most used web applications in one
place, so it helps him to be more organized. The potential drawback of those
applications is the usage of RAM. The apps are not displayed all at the time,
but can have some services running for notifications for example. With those,
the resource need might be increasing.

An interesting feature of apps like Ferdi or Station is the option to add cus-
tom service. Applications are written in JavaScript and providing an option to
write a custom service using a predefined template. It’s a complete standalone
module with its own ‘package.json‘ file that describes the configuration of
the module. Then there are two files, each exporting one function that ac-
cepts their provided module, having the API for customizing the application.
There are possibilities like enhancing notification, work with external API
for fetching, or having a custom URL. They are not providing the rendering
customization, so at the end, the application always renders provided URL
by the user, but with customized behavior.

B 4.3.2 User data

User data, including user context are the essential part for this thesis as they
are the base of the following rule-based approach and automatization. In
this case user data consists of user context and data the user provides to
the application as config files or some other inputs. Together they create
a user context. As mentioned in the Background chapter, there are two parts,
storing the context and tracking or retrieving the user context data. There
are many ways of storing and retrieving those data, but it has to be kept
in mind, that this application will probably run on a desktop computer or
laptop, instead of a web application or so.

As those data are the core of the rules and automatization, the quality and
usage of them is crucial. The advantage, in this case, might be the environment
in which the application would be running. Operating systems can be, with
some of the user approvals, very opened for sharing user context information.
In the best-case scenario it could provide and track the whole user behavior
inside the system. That includes the application usage, time in applications,
some basic settings, and even others. Then there is the access to the camera,
microphone and other peripheries connected to the system. In overall, the user
context can be full of information and really complex on personal computers.

With the data gathered and stored there is also an ability to retrieve user
behavior as a part of the user context. That can be done by analyzing some of
the retrieved data. From the analysis, some behavioral models can be made
and stored together with user context as a user context data. The reason
for this could be seen when it comes to rules and automatization, which can
be based on user behavior. Mostly because of the fact that it is just more

28

4.4. Rules and automatization

informational as it is more complex.

The tracking of the user itself can also provide useful information. Regard-
ing the eye-tracking, the application is able to detect whether the user is
paying attention or not, or if he is even currently being present at the com-
puter. With advanced eye-tracking there might be the possibility to even
detect where exactly on the screen is the user looking. With multiple monitor
setup and information about all running applications, we can detect on which
monitor and which application is the user looking at the moment. That
would provide valuable information for future automatization and ruled based
behavior. On the other hand, the computation of the eye-tracking can be very
resource-consuming and also the precision of the tracking using for example
a web camera is not very good, which can lead to false-positive results.

. 4.4 Rules and automatization

Before designing the rule-based part and follow up automatization, it is
necessary to determine the scope. The reason is, that without a scope, we
can start from some if/else statements to a fully knowledge-based system,
that uses machine learning and artificial intelligence for improving the rules
and making better automatization decisions. Therefore first it’s necessary to
narrow down the scope in order to design the application properly.

To better understand the complexity of the rules, here are be some basic
examples:

® When some music player is present in the application, the app will mute
the player when another sound is played in the system. Other sounds
should be defined, like YouTube video or a movie.

® Eye-tracking can detect whether the user is focusing on the work or not
and what app is he currently using. So when the user is in focus mode,
the app would mute notifications and do not make any too visually
noisy changes. After the user switch focus to the application, those
notifications would appear and the app would unmute itself.

8 The application can change contexts based on what is user doing or
where is the user currently staying. For example, if he is in the office,
the office context would be chosen. If he is at home, context switch, so
for example social media are present.

B Specific rules based on used application behavior. Like special notifica-
tions when combined with user data.

® Automatic scroll-based on the attention of the user.

Many more rules can be applied. Those use cases can be simple, but also
quite complex in terms of combining the data. But the decision model, at
least for this thesis, will stay simple and the results would be exact values
or true/false conditions. For this purpose, the knowledge-based system is

29

4. Analysis

unnecessarily complex. On the other hand, it cannot be solved using only
hardcoded if statements, so other approaches will have to be used. The other
issue is the diversity of the rules. There can be some basic rules, that would
follow up the same pattern but most of them are different from their inner
structure and behavior. But overall the rules can be applied like a pipeline
or a middleware between the layout module and user context. As it can just
basically manipulate the incoming data from user context and then sending
the result of the applied rule to the application.

The automatization is connected to the rules. The rules more or less
define automatization processes and which one should be triggered. Then
automatization is done in the global application or the applications used
in the layout. Thus the whole layout or the applications inside it would
need to hold the automatization processes and those would be triggered once
some rule is applied that would trigger those automatizations. Simply said,
the automatization is a result of the applied rule.

In overall, rules and automatization can be seen as two parts, front-end
and back-end, where rules, the back-end part, would provide an interface,
that would trigger the automatization on the front-end part.

B a5 Analysis summarization

The analysis of different parts of the systems shows the key features, that
have to be taken into consideration during the design of the application. For
the system to be innovative and providing users the most efficiency increase
possibility, only the best parts of each analysis need to be used. It can be
considered that the application will consist of four main parts or modules.
The first one is the layout module, second is the application module, third is
the rules module, and fourth is the user module. Each of these is an essential
part of the system.

First part, the layout module will consist of the layout management. It
will let the user choose the desired layout, he will have the possibility to
create his own and store it for later use. In connection to the layout, there
is an application module, app module in short. This module will provide
applications that can be used inside the layout. Possibly, it can be any
integrated application, or a link to the website which would be shown. Those
two modules will need to be connected because the applications will be directly
integrated into the layout. The purpose of the user module is to track, retrieve,
and store user data. It can be connected to any outer API or service, to
get and store more data. Those data are then passed to the application as
a part of the user context. As mentioned above, between the user module and
applications, there will be the rules module. Once the user context changed,
the pipeline would be triggered. Data will be passed from the user module
to the rules module, where correct rules will be found and applied. Then
the rules module will notify applications with new data and requests for
automatization, which will be part of the layout module or even the app
module and applications.

30

4.5. Analysis summarization

So the key features of the system will be be:
® Layout customisation, persistence and adaptability.

® Various applications for use, possibility to provide a link to the web page,
or choose an integrated application. Even create a custom application.

® Define rules and behavior as an automatization result from the applied
rules. Automatization of the behavior of layout and applications.

® Select tracking data, that would be stored inside user context to either
enhance automatization, as rules can get more complex or ease tracking
of the user and choose less automatization.

31

32

Chapter 5
Design

In this chapter I will go through the design of the application architecture
and individual modules architecture. Designing is based on the results from
the Analysis chapter. Also the whole design is supposed to be in a general
view, so it can be used with any implementation and any programming
language suitable to reflect the desired architecture.

For the overall architecture of the application, the scalability and modularity
is very important. Every module in the application should be easily replaceable
for a better one, or with just a different implementation. Also the scalability
is important, because the application might grow as more features, trackers,
rules, and applications are being added to it. If those two are considered
during the design, it will open up a space for future solutions, enhancements,
and also potential research regarding this topic.

Following the main concept of customizability and automatization, which
are the core features of this project, the final application should work with
generic rules and interfaces. As well as the ability to add own apps or rules
by the user. With that, the user would have a free hand to choose his own
way of using the application. Combined with the properties mentioned above,
the application will be composed of five modules. Those are the layout
module, dashboard (the rendering module), application module (app module
in short), rules module, and user module. Those modules were mentioned
also in the analysis where I described possibilities. The final functionality
will be described here as well as the connections between them and their
architecture.

The figure 5.1 shows the basic model of the application structure. Green
modules can be considered as a back-end part, the dashboard is a fronted
part which is communicating with the user, and layout manager and store
are the front-end module, that takes care of the layout functionality.

33

5. Design

N

LayoutStore

]
TJ UserModule
£ £ Edl
LayoutManager Dashboard RulesModule

Figure 5.1: Base structure of the applicaiton.

. 5.1 Dashboard

The base of the application is the Dashboard. It’s basically just a rendering
process, which is accessing to the layout manager, where it can create or
get currently used layout and then render the layout to the user interface.
The other connection is by providing the interface for the app module, which
is implementing this interface for each application and that is then accessible
from the dashboard and able to be rendered in a given layout.

B 52 Layout module

The layout module can be considered as manager and store. The manager is
handling the custom layout creation, connections, and work with the storage
of layouts. Store is shown as a different component of the module as it can be
fetched from different sources and could have some sharing logic in the future.
Meaning sharing custom layouts with other users and other functionalities.
The key feature of the layout module is to provide full customization of
the whole dashboard for the end-user. Basically, the user can set up any
layout he wants or choose some predefined layouts.

The layout itself consists of so-called nodes. The whole layout from a ren-
dering point of view can be seen as a tree structure. It is assembled from row
and columns, making it a similar structure to the grid system in CSS method-
ologies or a table representation from tables as we know them. The root node
of the tree structure then can be a single simple row as a start. This row
then contains at least one column. Therefore each column can contain either
nothing, making it the leaf node holding an application, or another row, so it
can go deeper into the layout tree.

34

5.2. Layout module

Row
[1
Y Y
App Column Column
[1
Y Y
Row Row
A Y
App Column App Column

Figure 5.2: Example layout tree structure.

The tree diagram showed in figure |5.2| is representing a single three app
layout structure with one app on the left side of the dashboard and then two
apps on the right side above each other as shown in figure [5.3. It could be
possibly simplified and the two rows having just app column leaves could
be omitted. But as mentioned above, those rows helps to keep consistency
and provide more flexibility in any case of changes that need to be made to
the layout itself.

Figure 5.3: Example layout.

The leaves of the tree then contain the final app provided by the app
module. Dashboard will simply mount the right apps to the leaf columns
while rendering the layout.

Bl 5.2.1 Layout representation

The structure of the layout definition needs to be easy to read and render as
well for writing and changing the layout. The representation of the layout

35

5. Design

will be stored in JSON format because it is easy to write and read and also
representing actual hash map or normal object, which can be used in any
other technology.

One way, which is more focused on rendering, is to copy the structure as
rendered HTML code as mentioned above. That will result in the tree-based
structure with nested nodes. This structure is good for reading and rendering
as it copies the HTML structure of the code, meaning firstly it has rows
and they contain columns such as a grid system. That is the best solution
for rendering these layouts.

Example of nested structure:

Listing 5.1: Layout tree representation in JSON
"layout_one": {
"rows": [
{
"key": "row_1",
"columns": [

{
"key": "1_1",
"span": 12
X,
{
"key": "1_2",
"span": 12
+
]
X,
{

"keyll : "row_2|| s
"columns": [

{
llkey": ll2 1"’
"span": 12

s

{
llkeyll: ll2 2"’
"span": 12

b

36

5.2. Layout module

Figure 5.4: Result of the JSON example from listing [5.1

This structure is readable and it is easy to imagine what the layout looks
like, so it is also easy to write manually. But once it comes to dynamically
creating the layout, it is hard to manipulate with nodes, and adding or
removing a single node means a big overhead. Firstly, the correct row needs
to be found and extended by a new column, or if adding a new row, a correct
column needs to be found and then row can be added. This is unnecessarily
complex and it can be simplified.

A better solution is using a hash map to store all the nodes in one object.
Each node would have its own unique key making it accessible without going
through the whole layout definition. The structure will be defined using
properties of objects stored with those node keys like in listing |5.2.

Listing 5.2: Layout node representation

"node_1":
{
"row": true,
"level": O,
"children": ["node_2"],
"parent": [],
},

Each node will have at least 4 main properties. First is an indication
if the node is a row or a column. Represented by row Boolean attribute.
Second is the level for easier manipulation. Third is an array children
of nested nodes. And fourth is the parent attribute so it is easier to move
through the nested nodes both ways. Top to down and down to top. Fifth,
not shown attribute, is span attribute which is representing a width of
the column, meaning it is required only for column nodes.

For each node that has "level": 0 it is considered that it is a child of
a root node. Better said, whole layout container, which renders the whole
layout. So basically the parent of those level zero nodes is a root row node,
but it is not specified inside layout definition.

Listing 5.3: Layout representation using nodes
"layout_one_hash_map": {
"node _1": {

37

5. Design

"row": true,

"level": O,
"children": ["node_ 3", "node_4"],
"parent": [],

Ir,

"node 2": {
"row": true,
"level": O,
"children": ["node_5", "node_6"],
"parent": [],

I

"node_3": {
"row": false,
"level": 1,
"children": [],
"parent": "node_1",
"span": 12,

Ir

"node _4": {
"row": false,
"level": 1,
"children": [],
"parent": "node_1",
"span": 12,

I

"node 5": {
"row": false,
"level": 1,
"children": [],
"parent": "node_2",
"span": 12,

I

"node 6": {
"row": false,
"level": 1,
"children": [],
"parent": "node_2",
"span": 12,

1,

b

Code from listing [5.3| results in the same render as previously mentioned
code. There are six nodes, two rows, each with two columns. Some empty
values can be omitted to save space and make those definitions more readable
if necessary. As it is shown, for column nodes there is span attribute giving
those nodes width. Fach row consists of 24 blocks. Therefore the total span
value of columns inside a row node have to be 24. It counts for each row, so

38

5.3. App module

nested row can also have 24 blocks even if it is contained in the column with
"span":12.

B 53 App module

The app module contains all integrated applications. They are implementing
the interface, so the dashboard module can consume those and integrate
them into the layout. Customization is also the primary goal for this module
as well as for others. That means, there should be a generic solution for
integrating applications into the dashboard, so any suitable application can
be used. There is the interface from the dashboard rendering side, which
can be implemented and used with almost every other app. So looking for
possible solutions on how to make the integration of other applications more
easier and user-friendly results in those ideas.

The first option for application integration is to use public APIs of 3rd
party applications. In some cases those APIs are publicly accessible, in other
cases, you need to authorize using some token or private keys. For the APIs
with the private key or token, the implementation of the application should
contain those tokens or private keys and use them securely for accessing
the APIL. Some of API providers also provide the component or some widgets
for the connection to their applications. Therefore it is easier to implement
those, as the only necessary thing is to connect those components or widgets to
the dashboard interface, so it could be rendered. Simply said, the dashboard
would just render the API call result into the selected layout and that is
all. All other interactions with the application would go through the same
API. The example might be some server-side rendered application or just
a provided component with basic data and features.

The second option is the most simple one. Some services do not have to
have public APIs and are accessible only on their web pages. So the solution
for this type of service is using the generic implementation of the interface.
This implementation takes only the URL of services user wants and render
the whole service as a browser would. This might be the most common case
as it is easiest to use. The drawback of this is, that there is no implementation
of application or custom rules for those services as the dashboard application
won’t have access to those because of the CORS policies and prevention from
CSRF or XSS attacks.[49] Most likely all those integrated applications using
their URL will be just about rendering whole web applications, or other on
provided URL, into the correct layout using the generic implementation of
the dashboard interface. This solution would require using the embedded
browser or in the most simple way, usage of iframe if we use some web
technology as an implementation for the dashboard app. Most of the new
applications are blocking iframes, so there is a need to use some kind of
embedded browser, which can be provided for example by the Electron
framework.

The next option is using custom components. The only rule for those is
to implement the dashboard interface, but otherwise there are almost no

39

5. Design

restrictions. So if the user would like to have its own application integrated into
the dashboard, the easiest solution for him is to provide an implementation
of the interface and it’s up to him, if he provides any custom rules and rule
behavior for his implementation.

The first and last solutions seem to be similar or almost the same. The main
difference is, that in the first option, we are talking about integration of third
party applications that have the rules for the usage and also can have their
components or widgets prepared. For the last option, a good example would
be implementing a home service connected to the users API for watching
movies he is storing inside NAS he has in his own network. Or another
example can be implementing a custom player, that would connect to various
services like Spotify or Apple Music and play music from them.

B 5.3.1 App interface

So in general all the integrated applications must implement the interface.
Then the dashboard will just get those implementations and use the interface
to render them. The interface will is quite simple, as in general the only
method that is needed is render method for the component returned by
the application. Therefore the interface will store just a component and
an URL if there is no component provided, so the web page is rendered.

Listing 5.4: App interface example
interface AppInterface () {
string URL;
Component component = GenericComponent (URL) ;

If no component is set, the generic component is provided with a defined
URL. So at least one of those values is mandatory to implement. Behind
the component can stand whole application, which exposing the main compo-
nent, or a page, that would be rendered.

User Layout Module Dashboard App Module

void selectOrCreateLayout()

vaid savelLayout()

-)

void selectAppsMapping()

showDashboard()

getLayoutAndMapping()

LayoutAndMapping-------- -
getApps()

i - --AppRender
- RenderApplications. . -......... PRSP

Figure 5.5: App module sequence diagram.

40

5.4. User module

. 5.4 User module

The user module serves as a controller of the user data, user context, and is
also responsible for distributing the context and its changes to the system.
It consists of three main parts and be referred to as the user context, as
it is basically controller for the whole user context. That includes tracker
data, user configuration, and also the environment. The three parts are user
context controller, store, and provider.

The user context controller is a main part of the module. It delegates
the flow of the data from trackers to the store and then to the provider as
well. References to trackers are also kept in the controller, as they can be
turned off or on, which is a controller functionality. The tracker could be in
another standalone module, but for this use case, it is better to keep then
connected, yet separated logically, and control them from the user context
controller, so it is easier to keep the correct data.

Next is the user context store. It is simply a store for all the user data,
retrieved by trackers, configuration data, or an environment data. The store
is represented by a simple store controller that can have a database, or a file
system connection inside. But in the design it will be considered as one,
because the store controller is just managing operations with the data inside
the database, file system, or other. The added functionality to the store is
a returned value from save or add operations, which is telling the if the data
were changed or not. For example some trackers might produce data every
second, so it is effective to know, if the result from the tracker is the same or
different as it was before, which can be decided when storing the new data to
the store.

The last part is the user context provider. The part that is responsible for
emitting the changes of the store to the applications. The provider is based
on an event-driven paradigm mentioned in the Background chapter. On every
change or a trigger from a user context controller it generates an event and
sends it to the system. Then there will be event listeners, that would consume
the events with the provided data from the user context. Every event has its
own key, mostly the name of the source, from where they were retrieved, and
the data itself.

As shown in figure [5.6] the user context controller is responsible for the data
flow. It triggers the trackers and listen to the results given by the trackers.
Once it got data from trackers and add operations is triggered and data are
stored into the context store. The store returns the information about if
the data were changed. If they were, the context controller takes the data and
passes them to the context provider. Context provider generates an event, fills
it with the key and data, and emits the event to the system, or application.

41

5. Design

Context

Trackers Context Strore Context provider
Controller

initTracking() i tracking()

—

©Userbata

storeData()

" DaaMutated 0T

Allt

dataMutated = true

sendDataToSystem()

D emitEvent()

Figure 5.6: User context module sequence diagram.

. 5.5 Rules module

The rules module, as it was mentioned in the Analysis is sort of a middleware
between the user context and application. Its purpose is to take provided data
from the user context, apply rules to those data, and then pass the results of
the applied rules to the application.

The rules inside the rules module are stored as a pipeline functions. Those
functions have to parameters as the input. One is a key of the data from
the context module and the second is the object with data. On the output,
there is also the pair value of key and object with data, which might be
changed by applied rule.

The rules module also has event listeners, that listens for the emitted events
from the context store. As well as another provider, or more a notification
emitter, which would send the notification to the applications, that specific
rule was applied and an automatization or any other task must be executed.

The definition of the rules has a default rule, which just passes the data
to the application without any mutation. This rule is for cases where no
rule is requested by an application. Then there might be some other default
rules, which can be generic for the whole application, like changing the light
or context of the application. And the last type of definition are custom
rules, that can be provided together with the custom application integration.
The author of the custom application is able to write a custom rule, as
a separate function, which has the same template as defined rules. Accepts
pair (key, value) and return also pair (key, value). Thus the user is able to
create a custom rule for his custom app, that can return an object he desires.
Meaning he is able to control the whole process of retrieving the data from
user context and applying them to his application.

The usage of rules is specified together with registering an application. For

42

5.6. Design summarization

every application there can be any number of rules, that would be used on
the data. The configuration is made by specifying the user context source
and adding a corresponding rule to that type of data.

Listing 5.5: Rules configuration example
"rules": {
"active_app": "news-example-app/ExampleAppRule.js",
"user_attention": null

The example in listing |5.5| specifies exactly two user context inputs for
the application. The first one is active_app which is information about
the currently used applications in the system. Second is user_attention.
For the first one, the custom rule ExampleAppRule.js function is used.
So the data from the active_app tracker goes through this function and
then to the application. For user_attention there is no rule used, so
data from this source are being just forwarded to the application. Without
the specification in the rules configuration, the data would not be event
sent to the application, that is why a null rule can be specified as well
when the raw data are needed or the rule does not have to be applied on
the back-end process.

At the end of the process data are emitted in the same principle as from
the user context. But the final implementation might be different because
the data are being forwarded to the applications running on the front-end
part, so this part is implementation-dependent.

No———» Default rule

User context User Context Fetch rules for Emit e
. Event event Notification = g

!

Yes——» Custom rule
Rules

7 - Incoming data - Data store @ - Process <> - Decision C) - Terminator

Figure 5.7: Rules module data flow.

B 56 Design summarization

Every part of the application was described and designed separately above.
Those separated modules are designed in a way, that they can be replaceable
and thus the application is modular as much as possible. Also the scalability
is provided by this design, as every module can work in a standalone pro-
cess and use different channels for data exchange, designed as event-based
communication.

43

5. Design

The overall behavior of the application is shown in the following diagram.
Each module has its own behavior and their inner functionality and behavior
were mentioned above, so this diagram is simplified to a module-level scope.

Layout Module £]

Layout Manager

Dashboard

Dashboard

Rules module €] User module 1]

Notifications | <<provides>] User Context

Layout Emmiter Provider
1
App module 2 <<Notify>> I

User Context
Context Event Store

Rules Controller
Consumer

<<interface>>
App

Apps Controller

User Context

0.
App Rules + <Provides>: Base Rules Source

Figure 5.8: Application structure.

44

Chapter 6

Implementation

This chapter is describing the implementation of the prototype application
which is following the designed architecture and representing the key features.
The application is implemented in ReactJS using the Electron framework to
work as a native application, so the user is able to run it without the web
browser natively in the system as any other application.

The Electron framework provides a possibility to build cross-platform
desktop applications using web technologies like HTML, CSS, and JavaScript.
It is open-sourced and the application can be build to most of the platforms
like Windows, Mac OS, and Linux. Also with correct configuration it can be
also built as a web application as well. The framework provides two processes,
that are used in the application. The main process contains the Electron
instance and also integrates NodeJS and has access to all NodeJS features.
The renderer process is visible for the user and basically is run by the Electron
framework using chromium. Simply said, it behaves as a simple web browser.
The Electron then renders the web page inside the renderer process using
BrowserWindow .

Listing 6.1: Creating BrowserWindow example

const { app, BrowserWindow } = require(’electron’)

function createWindow () {
// Create the~browser window.
let win = new BrowserWindow ({
width: 800,
height: 600,
webPreferences: {
nodeIntegration: true
}
1))
// and load the~index.html of the~app.
win.loadFile(’index.html’)

app.whenReady () . then(createWindow)

45

6. Implementation

I have chosen these technologies mainly because of the personal expe-
rience with web application development and also because of the easily
achievable modularity of the application. Web frameworks like ReactJS
are component-based and that provides space for many improvements in
the future. The integrated applications are in many cases web services, so
the integrations are easier. This implementation also provides easier integra-
tion of custom applications and components as it was mentioned in the design.
Those components are just written like any web component, which is easy
to learn and implement then reproduce this feature in any other desktop
technology, like in Java or C++ frameworks.

B 61 Requirements

The final built application can be installed like any other application in
the system, so the requirements are dependent on the build for the operating
systems. Then the usual hardware requirements should be met the same as
for Google Chrome browser as the Electron framework is based on chromium
using the V8 engine, same as Google Chrome and other web browsers.

For this thesis the application was not built for an installation as the built
process for Electron is platform-specific and the configuration is quite complex.
Also as the app is using experimental features, like eye-tracking, it is not very
safe to not have control of the running processes in the background, that
could be consuming many resources as it is not optimized for the produc-
tion environment. The final requirements for this implementation will be
mentioned together with a manual in the Installation chapter.

B 6.2 Project structure

The project structure combines a React web application structure for the ren-
dering part and Electron usage for the main process part. The logical structure
then copies the designed architecture from the Design chapter.

The modules that run in the main process, that includes trackers, rules
module, user context module, and Electron itself are logically separated in
the project. The app module is separated as well from renderer and main
process, because of the access for developers and logically, it is a separate
module providing the applications. Then in the React part of the application
is structured as a usual web application, including the layout module, which
is strongly front-end module. I will describe the structure more deeply from
the React part to the main Electron part of the code.

B 6.2.1 Renderer process structure

The rendered process structure is basically a ReactJS application, which is
being rendered by Electron. It consists of usual index.js and App.jsx as

46

6.2. Project structure

main files. The index.js is rendering and App.js inside the DOM and
then other pages and components are being hooked to App.js.

Basic react-router-dom is used for navigating inside the application. Sim-
ilar to web application, pages are routed using URL paths, like /setup-layout
path, that leads to the layout setup page. The overall state of the application
is stored inside the React context. The context is then provided to the whole
application so it is accessible from every module.

Listing 6.2: App.jsx file.
const App = () =>
(
<UserContextProvider>
<Router>
<BaseLayout>
<Routes/>
</BaselLayout>
</Router>
</UserContextProvider>

)

Providing the context is then resolved by propagating the context data to
the children of the parent components, which is the UserContextProvider
as can be seen in the above code snippet.

Listing 6.3: User context return

return (
<UserContext.Provider value={value} {...props}>
{children}
</UserContext.Provider>

The key part of the code in the renderer is the Layout module, which takes
care of creating, selecting, and rendering layouts. In the implementation,
the layouts are stored just inside the local storage of the application, which
behaves in the same way as in the usual browser. In future implementations,
this will be probably replaced by a database or any other persistent and
more manageable storage. But for the purpose of this application, having
local storage as a database is enough. The local storage also acts as a source
of truth for the user context, where user context is being updated together
with local storage and whenever it needs new data, the application reloads or
just start, it fetches the data from local storage and distribute them across
the application.

The layout module itself provides the selection of a layout. The user can
pick an existing layout or create his own by simply adding new rows or
columns.

47

6. Implementation

Figure 6.1: Custom layout creation.

The layouts are stored as a JSON format mentioned in the design part.
Then rendered using a generic component, which is responsible for ren-
dering all the layouts called LayoutContainer. It is a generic compo-
nent, that takes four attributes. The layout, name of the layout column,
which is a component that will be rendered inside the leaf nodes and cus-
tom styles. The column to be rendered is a generic component provided
by a module, that needs to render the layout. For selection, those are
the PreviewContainerContent components. For rendering the final layout
with the application, it is an AppModule component, that takes care of
rendering correct application.

Listing 6.4: Layout container
const LayoutContainer = (
{layout, name, renderColumn, customStyles}
) = {
const styles = ‘layout ${customStylesl}‘;
const rootKeys = layout && Object.keys(layout)
.filter(key => layout[key].level === 0);

const renderColumns = (key, children, span) => (
<Col className="col" span={span} key={key}>
{children.length
? renderLayout (children)
: renderColumn(key)}
</Col>
)3

const renderRows = (key, children) => (
<Row
className="row"
key={key}

{renderLayout (children)}

48

+;

6.2. Project structure

</Row>
)

const render = {
false: renderColumns,
true: renderRows,

};

const renderLayout = (keysToRender) => (
keysToRender .map (key => {

const {
row = false,
children = [],
span = 24

} = layout[key];

return render [row] (key, children, span)

b;
);
return (
<div className={styles} key={name}>
{layout && renderLayout (rootKeys)}
</div>
)

The rendered AppModule component is responsible for rendering service.
The component gets the configuration of the service, retrieves the source
of the main class implementing the App interface, and gets the instance of
the application. The instance is then stored as a state of the AppModule
component and passed to the AppComponent that renders the final application
component and also is responsible for fetching the data from rules notifications.

Listing 6.5: AppModule component

const AppModule = ({app}) => {

const [appInstance, setAppInstance] = useState(null);
if (lapp) {
return <div>No app selected</div>
}
const {src, key} = app;
const requireCustomApp = (file) => (

require(‘../../apps/store/${file}")
)

49

6. Implementation

if (!appInstance) {
if (src) {
const customApp = requireCustomApp(src);
setAppInstance(new customApp.default(null));
} else {
setAppInstance(new AppInterface(app));

return applnstance
? <AppComponent
instance={appInstance}
appKey={key}
/>
: <div>loading...</div>;
};

The AppComponent is using Reacts useMemo for storing the listeners for
the notifications. That prevents multiplying the listeners as to components
re-render upon the data change. Those re-renders then provide the ability to
adapt and make automatization or any changes of context inside them.

Listing 6.6: AppComponebt

const AppComponent = ({instance, appKeyl}) => {
const [data, setData] = useState({});

const processData = (inputData) => {
const {key, value} = inputData;
const newData = {...data};
newDatalkey] = value;
setData(newData) ;

useMemo (
O =>(
NotificationEventListener (appKey, processData)
)
5 115

return instance.component(data) ;

The listeners are listening for the events, or notifications, from the rules
notification provider, same as mentioned in the design. Because the Rules
module is running inside the main process, there is a need for inter-process
communication. Electron provides a solution for this called IPC, inter-process

50

6.2. Project structure

communication, and it has two providers. The ipcMain is an Event Emitter
and listener module for the main process, and ipcRenderer is for the renderer
process. It can listen on any specified event specified by a string key value.

Listing 6.7: ipcRenderer listener
const NotificationEventListener = (appKey, callback) => {
ipcRenderer.on(appKey, (event, data) => {
callback(data);
9

To summarize this flow, it can be looked from top to bottom as follow. Lay-
out container renders the layout and for leaf nodes it renders the AppModule
component, that is responsible for requiring the application. The AppModule
then creates an instance of the application and passes it to the AppComponent
that hooks the listeners, keeps the data of the application, and renders
the application component. The application component is then rendered in
the LayoutContainer for the user.

B 6.2.2 Main process structure

The main process is where the Electron runs. The main. js file is called
on the start of the Electron app, it creates the window and then renders
the application inside it.

Once the window is created, all other modules can be initialized. The main
module, which is the core, is the UserContext module. It is a static class,
in JavaScript represented by an object, that has the init() function, that
initializes the trackers and then emitData function, which is used to delegate
data across the modules. In the module, in JS it is represented by a . js
file, also instances to the UserContextStore and UserContextProvider
are kept.

Listing 6.8: UserContext module controller
export const store = new UserContextStore();
export const provider = new UserContextProvider();
const trackers = {};

const UserContext = {

init: O => {
for (let tracker in Trackers) {
const trackerInstance = new Trackers[tracker] ();
const {name} = trackerInstance;
trackers[name] = (trackerInstance);
provider.initSubject (name) ;

o1

6. Implementation

emitData: (key, value) => {
const saved = store.save(key, value);

if (saved) {
provider.emitEvent (key, value);

export default UserContext;

The trackers are implemented by using a class Tracker that has a con-
nection to the UserContext. The class provides the emit method of
the UserContext so all trackers that extend this class have access to the emit
function and can call it.

Listing 6.9: Tracker class

export default class Tracker {
constructor () {
this.emmit = UserContext.emitData;

¥

The emit function stores the data inside the UserContextStore. In this
implementation, no database is used, the same as for the layout store in
the renderer process. There is the only need for storing the latest values
because the module needs to know if those data were changed or nothing
in the context has changed. Thus function save return a Boolean value
representing the change of the data. Then if data were changed, a provider is
called and he emits the event with the data and key of the tracker.

The connection between the Rules module and Context provider is done
using the RxJS framework. The context provider is keeping Subjects for
every event source it has. Then through those subjects, events are emitted.
Those subjects are then accessible in the application and every module that
calls .subscribe on the Subject is going to be notified every time an event
is emitted.

So at last a Rules module is initialized and during the initialization, one
of the first steps is to set up the subscriptions for the subjects provided
by the user context module. For every app, there can be any number of
subscriptions based on how many trackers, or type of data, are required. For
every tracked data, a subscription is created and stored. The subscription has
a next method that is called every time an event occurs. It passes the value
from the event and a callback is called. The callback then calls appropriate
rule function, which is decided on the configuration if the application has
a custom rule or a default rule should be used.

52

6.2. Project structure

Listing 6.10: Subject subrscription
const ruleFunction = rules[tracker]
? this.requireCustomRule(rules[tracker]) .default
: DefaultRuleParser;

this.contextListeners[appKey] [tracker] = subject
.subscribe ({
next: (value) =>
this.rulePipeline(ruleFunction(tracker, value), appKey)

b

In the code from listing 6.10] a ruleFunction method is called, that
apply the rule and the result of the rule is then passed to the runPipeline
method. This method is using the RuleNotificationService to send
a notification event to the renderer process. This service has a static method
that sends a type of an IPC message to the renderer process. The drawback
of ipcMain is, that it cannot initiate the communication and is designed
only for replying to the request from the renderer process. Because of
that, the webContents.send method, that is accessible on the instance of
the BrowserWindow is called. This method triggers the event, that can be
listened to by using ipcRenderer as mentioned above

Listing 6.11: Sending data to renderer process
export default class RuleNotificationService {
static setWindow (window) {
mainWindow = window;

static sendNotification (data, appKey) {
mainWindow.webContents.send (appKey, data);

}

Il 6.2.3 App module structure

The third part of the code infrastructure is the App module. It contains a store
with all the custom applications, the AppInterface, used for application
integration, and a config file, for configuring the paths to the applications.
The generic component for rendering all the applications that use only URL
is also stored in this module, called WebViewContainer .

The app interface is simple class following the design shown in listing [6.12}

Listing 6.12: Applnterface
export class AppInterface {
constructor(url = null) A{
this.url = url;
this.component = (_) => (

6. Implementation

<WebViewContainer app={{url: this.url}}/>;

get getComponent() {
return this.component;

3

The applications just extend this class and set the component variable or
url variable. The component variable should be a function that returns
the component, by default it returns the WebViewContainer component
using set url variable. So at least one of them must be specified.

The generic component WebViewContainer is responsible for rendering
the application, or services, that are required only by defining URL. Ren-
dering the specified URL inside the renderer process is made by using
the react-electron-web-view library. It uses the Electron tag <webview>
which is based on Chromium’s webview .

Listing 6.13: WebViewContainer

const WebViewContainer = ({app}) => {
const {url} = app;

return (

<ElectronWebView
style={{width: "100%", height: "100%"}}
className="web-view"
autosize
src={url}
allowpopups

/>

There is also the configuration JSON file for the integration of applications.
It works as a place to register the users custom applications. Then all
modules, that need to load custom functions, like the application itself or
rules, are looking into this configuration. The following example shows
a News example app that has a custom component in src and uses rules
for two trackers and for one of them it provides custom rule function.

Listing 6.14: App configuration
"news-example-app": {
"name": "News Example App",
"src": "news-example-app/NewsExampleApp.js",
"rules": {
"active_app": "news-example-app/ExampleAppRule.js",
"user_attention": null

o4

6.2. Project structure

B 6.2.4 Eye-tracking and custom app implementation

In the prototype, one of the goals was to experiment with the eye-tracking
implementation as the source of the user context and follow up automatization
based on this input. That is using the laptop web camera to keep track of
the user and his eye movement. The ideal result would be the information,
where exactly is the user currently looking, and which application is he paying
attention to. Then those data can be retrieved and based on the context
and the application he is looking at, an adaptation or automatization can be
made. The example use case can be the following. Application with news
headlines and some basic description is scrolling or sliding through the news
constantly, like in public TVs, so users can see more news at the moment.
But once the user starts paying attention to the news application and starts
reading the headline with the description, the scrolling should be stopped, so
he has time to read through the description and does not have to wait until
the headline is shown again.

I attempted to implement exactly this use case, using custom news appli-
cation, that would use slide automatic slideshow and stops whenever the user
starts paying attention to the slideshow. Finding the right library for eye-
tracking was a challenge. Usually users use prepared software and special
eye-tracking cameras, but that was not an option or it would be too complex
for this prototype. Also, the resource consumption had to be taken in mind.

The best candidate is the OpenCV library, used in many existing eye-
tracking solutions. This library is quite complex, I attempted to use their
JavaScript solution, but there was an issue of running this script inside
the Electron renderer process, as the compatibility was not ideal. The next
possibility and the best one was running the OpenCV library in the main
process. This solution would not slow down the rendering process and with
the correct setup of the video from the camera, it could work out the best.
The video input could be retrieved from the renderer process, using web
principles and video input, or it could be handled in the main process using
access to the system resources, which requires more complex setup and
enabling access. Then the OpenCV library would run as a separate task
connected to the main process using an opencv4nodejs library integration.
The disadvantage of this solution is the OpenCV running on the background,
almost separately, and needs to be installed as well. Also, the integration to
the Electron is quite complicated and I was not able to sync the node module
versions, as it is quite a common problem with Electron, because it has its
own versions of node modules.

So the final solution was to use wegGazer [50], a JavaScript implementation
of gazer tracking using a web camera. This solution is implemented and used
for the news slide-show stopping. But it has its limitations, as the computation
of the face and eyes position is made from data from the mouse pointer and

55

6. Implementation

camera, using two monitors then disrupts the mouse source and tracking
is not very accurate. Also retrieving the precise information about where
the user is looking is impossible. As the data from this webGazer are relative
coordinates to the application and they are not very precise. So the only
thing left is to track the focus of the user. Once the user stops moving his
head and eyes, also cursor, it is possible to say he is paying attention. At
this point it is not possible to determine whether the attention is to the news
app or somewhere else. But once he starts focusing, the slide-show should
be stopped, because he might be reading the headline and description of
the article.

The computation of the attention is a simple tracking of average coordinates
output from webGazer. When there is a constant output with some allowed
deviation for three seconds, user is paying attention. The tracking module
triggers this information to the tracker and the information goes through
the same flow mentioned above and gets to the news application. Then
the slide-show is stopped until the user makes a move and disrupt the incoming
data over the allowed deviation. Then the opposite information is distributed
and slide-show starts playing again.

Listing 6.15: Attention detection pseudocode
int sum = 0;
int count = O;
int currentAvg = O;
bool looking = false;

attention_tracking (coord) {
if (abs(currentAvg - coord) < DEVIATION_CONSTANT) {
sum += coord;
count += 1;
currentAvg = sum/count;
if (count > 10 && !'looking) {
looking = true;
emmit (*User is paying attention’);
}
} else {
if (looking) {
emmit (’User stopped looking’);
looking = false;

+
sum, currentAvg = coord;
count = 1;

Current implementation runs in the renderer process as a standalone script,
triggered by React application. The messages are then sent via ipcRenderer
to the main process to the corresponding tracker, where the data flow starts

56

6.3. Installation

as designed.

Another custom application implemented is the Spotify player and an active
app tracker. The active app tracker uses active-win library for NodeJS,
which is using an access to the native code and the system. It returns
the currently active window in the system, so it is possible to track what
application is the user currently using. With this information I implemented
a simple demonstration of rule usage. The Spotify player stops playing
whenever the user opens a browser window with YouTube in its title. Then
whenever the user use a different application, the player starts playing again.
This demonstration uses the implemented features as designed, so it proofs
the concept.

. 6.3 Installation

The application prototype is not built as a package, that could be installed
like a native application. The reason for this is the security and ability to
track resource consumption because this implementation is not optimized well
as it would add complexity above the goals of this thesis, as well as perfectly
working eye-tracking solution, which is now not optimized at all.

For running the application, following is needed.

® Node 10
(Can be installed from https://nodejs.org/en/download/)

B Yarn package manager
(Can be installed from https://yarnpkg.com/getting-started /install)

® Python (node-gyp is used for building the application, which requires
python installed)
(Can be installed from https://www.python.org/downloads/)

® For windows, windows-build-tools might be needed, also build-tools for
Mac OS
Installed using npm install --global windows-build-tools

or yarn global add windows-build-tools

With those installed, running the run.sh script or yarn run-app will
install, rebuild, and run the application. It starts up the React application
first, then Electron application which renders the React app. Killing the script
will close the application. Tested on Windows 10, Mac OS might have different
behavior for shutting down the run script, read README.md file for more
information.

o7

6. Implementation

rglades National Park & Gt ve
another

1The
venemous snakes found in Everglades National Park. Can you

peci e
guess which one’

Photo by Sean M. McHugh

— "

Grand Canyon NPS@
Even though SR 67 is now open between Jacob Lake and the North Entrance
Grand Canyon National Park - the North Rim of the park remains closed

e. AS 500n a5 we have the opening dae for the North Rim, we vall

9 Eleven - Instrumental

Playing

QLD

IATIONAL PARK {

Figure 6.2: Preview of the application

o8

Chapter 7

Testing and evaluation

In this chapter I will go through a brief testing of the implemented application
and more through the evaluation of the results of this thesis and the idea.

For proper testing applications like this one, testing with users is the best
solution. It would be preferable to do the testing for a longer time, track their
behavior, and let them get used to the application features.[52] Then evaluate
the progress they made after some period of time and see if the efficiency
increased and the users are keen to use the application. But that would require
almost production ready prototype, and overall usability is not in scope of this
thesis. Tt is important to show the full potential of the application, so at least
the basic services should be integrated and the overall user experience should
be at a high level. Next is the installation and optimization of the resource
consumption, so the application can be tested in the real environment with
other applications and should not cause slowing the system.

To be able to test the application like mentioned above, the implementation
must be close to the production product. But that is not the scope of
this thesis, as the goal was to test the idea, approach, and feasibility of
the solution. With the prototype implemented, it is not even possible to test
in a real environment as the application with eye-tracking is very resource
consuming. So the testing was made with the potential first target group for
the application, which is developers, as they are able to use full potential and
functions of the application and they were the target group for the analysis
as well.

B 71 User testing

I prepared an easy script for the installation, as mentioned in the installation
and two integrated applications. For the developers I tested with, a simple
scenario was made that they followed to get the feel and idea of the application
features and possibilities. Requirements for the developer was the same as
for the installation and also a functional web camera to test the eye-tracking
feature. The next but not mandatory was a Spotify account, so the Spotify
custom app could be tested. During the testing they were given an explanation
of the feature and how it works, so they are aware of the possibilities they
have and comprehend the whole concept of the application. Testing was done

99

7. Testing and evaluation

with four participants, that went through the whole application scenario.[51]
The scenario was following. Firstly, they installed the application and run
it.
® With no layout set, the first task was to create a custom layout, the struc-
ture of the layout was also defined.

m Next was the selection of the applications. Two integrated applications
were selected, to the top-right node the news application, to the right
bottom the Spotify application. On the left, any web services or site
could be selected via inserting the URL.

® Once they have selected layout, they went to the home page, where
the applications were rendered using selected layout.

B First, they tested the Spotify reaction on using the browser and opening
the YouTube site, which would stop the playing Spotify song. It served as
a demonstration also with an explanation of the possible enhancements
of this feature.

B Secondly test of eye-tracking. The eye-tracking is run by right-clicking
the News application and start the tracking. Based on their behavior,
every time they focus on one spot, the news slide-show should be stopped
and then after a user activity resumed again.

After going through these scenarios, a discussion was initiated on three
main topics.

B Layout - selection, persisting and its functionality.
B Custom applications - style of implementation and usage.

® Rules and automatization.

Dangerous Fire
Weather &
Strong Winds

Figure 7.1: Testing environment with eye-tracking turned on.

60

7.1. User testing

B 7.1.1 Results

B Participant 1

The first participant was using the Mac OS system. Installation was smooth
and also the layout setup went well. The only thing he mentioned was the user
experience which is not very good as the application is just a prototype. Then
he had some issues with login to Spotify, as to login opens in the whole
application, not just in the node of the layout and it was hard to get back to
the home section. Next issue during testing was the eye-tracking, which is
being not very accurate and was making some glitches, which made it almost
unusable for stopping the slide-show.
Discussion:

1. Layout Setting up the custom layout is a good practice and the participant
is using it on his system as well. The real improvement and a key
to success is the persistence of the layout and applications, and also
the customizability.

2. Custom applications The integrated applications can be useful, but
participants would not want to write any, so he prefers already defined
ones. Also some sort of configuration for those apps would be preferable,
to be able to customize even defined ones.

3. Rules and automatization According to participant it has potential,
but needs to be specified well. Also some of the changes might be too
distracting. The eye-tracking might be used for switching to focus, so
he can start writing once he looks at the application. He sees potential
in the rules based on the system context changes, like the working
environment, and then switching to the gaming environment.

B Participant 2

The second participant was using Linux distribution Ubuntu. The installation
went smoothly after the requirements were installed and the application runs
correctly. The participant had no issues, only the layout selection was not
very intuitive, so I had to help him going through it.

Discussion:

1. Layout The layout selection is a similar idea to work-spaces and virtual
desktop, so it could be useful. Also, the persistence is very useful.

2. Custom applications For participants, it added value to the overall
application and it seems reasonable. He would need to see more services
used as a custom application to try them.

3. Rules and automatization The participant is not a fan of eye-tracking
and using a camera for automatization or adaptation, so he was very
skeptical about it. Also it not very safe and the precision is not at

61

7. Testing and evaluation

the point of using it in the production, even if a better library and
framework were used, according to the participant. He would like to
have some standby mode, that would save what he missed while he was
away from the computer.

B Participant 3

The third participant was using Mac OS and had some difficulties while
installation, mainly because of the permissions setup in the system. He had
no issues going through the scenario and the application was running smoothly
until the eye-tracking was started. In his system it was quite unstable and
unable to adapt to his movements, so the accuracy was bad.

Discussion:

1. Layout The creation of the custom layout should be more intuitive and
provide more freedom for the user. The persistence of the layout comes
handy.

2. Custom applications It is the most valuable feature of the application,
as he can be using it for almost everything, that is web service-related.

3. Rules and automatization According to the participant, rules and au-
tomatization might not be even necessary for the whole application. He
personally does not need them, maybe use them as a parental control,
when the rules would be reacting based on the user.

B Participant 4

The fourth participant was running Windows 10, the installation went
smoothly and the application was running without any problems. The partic-
ipant liked the overall idea, as it would improve the current solutions, that
are still too manual and require too much interaction.

Discussion:

1. Layout The participant did not like the application selection, which
is a simple prototype. It is a key part of setting up the layout, so in
production it should be more intuitive and easy.

2. Custom applications The participant would like to see the configurations
of the application when selecting them. Each configuration could be
generated as a form, so it is more user friendly and the user can configure
each custom app.

3. Rules and automatization The participant cannot really imagine using
the rules widely, only for some small tasks. Also, he suggested, that
some rules might be predefined for types of users. And then selected as
a set of rules according to the user.

62

7.2. Personal evaluation

B 7.1.2 Summary

The testing of the application was adapted to the prototype implementation
and the main goal of the testing was to gather feedback from potential target
user group. The participants of the testing were helpful and provided useful
feedback for potential future work as well as tips on what to improve and
what to avoid. The most critical part of the testing was testing eye-tracking
as it is not working as it should and the calibration with multi-monitor usage
and embedded applications is just too unstable. So there was a need to more
interact with participants, to give them more details about the ideal workflow
of the eye-tracking related features.

In summarization, the concept was approved by all participants, and all
the key features were found useful and interesting. That is a confirmation and
proof of the overall concept described in this thesis. Another good feedback
from the participants was an interest in the future of this project and shown
interest in a production solution or any similar application, that would help
them be more efficient during their work.

. 7.2 Personal evaluation

There was another perspective on the testing part in this thesis. It was to
prove that the design an overall idea is feasible and can be implemented
according to the design, without any changes in structure or functionality.
As there was no similar application existing, the concept was challenged and
implemented accordingly to the testing. The implementation architecture
corresponds to the design and behaves as intended. Also the modularity was
achieved, and any part of the implementation can be enhanced or replaced
by a better solution without changing the overall structure or other modules.
The only negative result of personal and user testing was found in the eye-
tracking implementation. The library webGazer was not an ideal choice
and as it works quite well when the calibration is done properly (by simply
moving around the application a keep eyes on the cursor), it is not useable for
common usage, as the precision is small and also the data are hard to process.
The testing with users also shown, that they do not trust in eye-tracking usage
for automatization and adaptation of the application, as in common there
are too many errors, even with high end tracking software and hardware.

63

64

Chapter 8

Conclusion

The goal of this thesis was to analyze and design a solution for an application
for secondary monitor that would improve user effectivity while using multi
monitor setup. Part of this thesis was proving the feasibility of the design
by implementing the prototype. The key features of the solution were cus-
tomizability, ruled-based automatization using user context data, custom
app integration, and overall modularity. Furthermore, another goal was to
implement the prototype based on design which would prove the feasibility
of the solution. The prototype implements the core features and demon-
strates the ruled-based behavior based on user context data retrieved from
eye-tracking. Finally an evaluation and testing with users was performed.

In chapter [3, I went through the related existing solutions. Information
from those solutions were then analysed in the chapter 4. In the analysis,
a user research was done in order to understand user behavior and their
needs when working with multiple monitor setup. Together with analysis of
the problem, the base requirements for the design were set. To use the best
practices and cover missing features and disadvantages, the solution provides
easy layout customization and its persistence, then the ability to map selected
services to the layout and their customizability. The rule-based behavior
and automatization should be fully configurable, as well as the user context
tracking.

Based on the analysis, the design focused on modularity and scalability.
Only with high modularity, the final solution can be easily maintainable and
customizable from the user perspective. The scalability is then needed in order
to cover potential growth of the solution as more application can be integrated
and user context can grow together with rule definitions and automatization
patterns. The design presented the architecture with five main modules
and covered the needs from the analysis. The designed solution was made
as generic as possible to provide various possible ways of implementation,
following modern trends and technologies.

The implemented prototype of the designed solution was written in JavaScript
using technologies ReactJS and Electron, thus the application can be run
on desktop machines and multiple system platforms. The implementation
followed the designed architecture and proved its feasibility and also the mod-
ularity in the process of adding new features and enhancing the prototype.

65

8. Conclusion

The prototype includes an integrated example applications with default cus-
tom rules in order to evaluate the design. Implementation of those examples
showed the benefits of the design and ability to easily extend the application.
The only issues were in the implementation of eye-tracking source, which was
described in section |6.2.4. The eye-tracking source of data is in overall a
challenging problem, which was confirmed by users in section [7| who did not
felt comfortable using it.

Despite concerns regarding eye-tracking, the results from user testing
and evaluation of the solution were very positive. In general, users liked
the application and the concept. Every feature was reviewed and explained to
the users from the chosen group of developers. The most appreciated features
were the custom layout creation together with persistence of the application
mapping and the custom integrated applications. Some of them found
the ruled-based automatization, very useful when used correctly, but were
not sure it they would use it themselves.

To conclude the thesis, it was shown that the idea and designed solution
is feasible. The implemented prototype successfully proved the architecture
design and its key features - modularity and scalability, which means that
the current drawbacks and imperfections of the implementation can be easily
replaced or improved. The ability of easily extendable applications, context
sources and rules was also achieved and shown. Regarding the evaluation from
the users, the solution stood up well, all questioned users reacted positively
and were keen to the idea of trying the application in production environment
as it could improve their work experience.

66

Chapter 9

Future work

First of all, the overall application can be optimized and built for all platforms,
so the installation is easier and the application can be installed by any user.
That would mean prepare the built scripts, optimize the code in terms of
memory usage and prevent the errors connected to these optimization. For
individual platform, there might be different behavior or needs for menus,
permissions and other, which need to be taken in mind as well.

B a1 Layout and apps

Improvements can be done on any module, the application is modular, so there
is no need to improve all parts of the application together. First the layout
module can be improved in terms of user experience to provide better feeling
and be more intuitive. The layout store then can be stored in more persistent
place like a database or for defined layouts, it can be packed in the installation
bundle.

The app module has a big potential. The whole module can be separated
from the application as standalone service storing the custom apps separately.
Another future work might be introducing sub-package system. Meaning
every custom application is working as a module with own packages and
dependencies. Then it is built and used as another module inside the main
app module. This would bring the possibility to add new custom applications
to the existing built, at least for the web URL based apps. Regarding user
research, some configuration process of the custom apps could be introduced,
which would ease the workplace setup.

. 0.2 Rules, context and automatization

For the back-end part, meaning rules module, user context module and
automatization, there is wide range of opportunities. There is even potential
to create a knowledge base application, or module, that would have abilities to
adapt the rules and behavior, meaning the automatization, based on the user
context changes and user reaction to the changes. With this, the whole
process of automatization can be improved while using the application and

67

9. Future work

suit the user perfectly as it would be adapted to his needs. But as a start,
the first step could be the user interface that would let user configure the rules,
tracking data and automatization manually without touches to the code.

With better sources of the user context, improved eye-tracking the rules
would have more potential. The data could be used for the custom applications
as well, as they can be almost of any type. Data like computer statistic then
could be parsed and showed in the custom application to the user, because
they might have more value for the user then just a trigger for the rules.

Another interesting improvement of the user context data might be connec-
tion via public API. That would add ability to connect IoT devices, phone
and other services to the application and provide more user context data or
a way to interact with the application.

B 93 Userand community

To create more user attractive and growing application, the user profile and
user management system could be used. The user then would have the ability
to see his configurations and change them in his profile.

Additionally, the custom layouts and custom application might be shared
across the community. Every user would have the ability to publish his
custom application, or contribute to others. By that, the selection of custom
applications might increase and the user community could help with growth
of the application. Mentioned sharing could also work for the custom rules
and even user context trackers. As the app is modular and scalable it should
not take much effort to introduce those sharing possibilities.

68

1]

Appendix A
Bibliography

MOYERS, STEPHEN. Understanding the Potential of Adap-
tive User Interfaces [online]. 2018 [cit. 2018-05-09]. Available on:
https://speckyboy.com/adaptive-user-interfaces/

PEDDIE, Jon. Jon Peddie Research: Multiple Displays can In-
crease Productivity by 42% [online]. 2017 [cit. 2020-05-18]. Avail-
able on: https://www.jonpeddie.com/press-releases/jon-peddie-research-
multiple-displays-can-increase-productivity-by-42/

Dual Monitors Boost Productivity, User Satisfac-
tion [online]. 2011 [cit. 2020-05-18]. Available on:
https://www.dell.com/downloads/global /products/monitors/en/dual
monitors_ boost_ productivity_whitepaper.pdf

BATT, Simon. Do Dual Monitors Improve Productivity? [online]. 2018
[cit. 2020-05-18]. Available on: https://www.maketecheasier.com/do-dual-
monitors-improve-productivity/

Jacob M. Truemper, Hong Sheng, Michael G. Hilgers, Richard H.
Hall, Morris Kalliny, and Basanta Tandon. 2008. Usability in multi-
ple monitor displays. SIGMIS Database 39, 4 (November 2008), 74-89.
DOIhttps://doi.org/10.1145/1453794.1453802

How Multiple Monitors Affect Wellbe-
ing [online]. [cit. 2020-05-18]. Available on:
https://www.steelcase.com /research/articles/topics/wellbeing/how-
multiple-monitors-affect-productivity-and-wellbeing /

OWENS, Justin W., Jennifer TEVES, Bobby NGUYEN, Amanda
SMITH, Mandy C. PHELPS a Barbara S. CHAPARRO. Exam-
ination of Dual vs. Single Monitor Use during Common Office
Tasks. Proceedings of the Human Factors and Ergonomics Soci-
ety Annual Meeting [online]. 2016, 56(1), 1506-1510 [cit. 2020-05-
18]. DOI: 10.1177/1071181312561299. ISSN 1541-9312. Available on:
http://journals.sagepub.com/doi/10.1177/1071181312561299

69

A. Bibliography

[8] LEE, Sangsu, Hyunjeong KIM, Yong-ki LEE, Minseok SIM a Kun-pyo
LEE. Designing of an Effective Monitor Partitioning System with Ad-
justable Virtual Bezel. KUROSU, Masaaki, ed. Human Centered De-
sign [online]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 2011,
s. 537-546 [cit. 2020-05-18]. Lecture Notes in Computer Science. DOI:
10.1007/978-3-642-21753-160.ISBN978 — 3 — 642 — 21752 — 4. Availableon :
http : //link.springer.com/10.1007/978 — 3 — 642 — 21753 — 140

[9] HUTCHINGS, Dugald Ralph a John STASKO. Quantifying the Perfor-
mance Effect of Window Snipping in Multiple-Monitor Environments.
BARANAUSKAS, Cécilia, Philippe PALANQUE, Julio ABASCAL a Simone
Diniz Junqueira BARBOSA, ed. Human-Computer Interaction — INTER-
ACT 2007 [online]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
2007, s. 461-474 [cit. 2020-05-18]. Lecture Notes in Computer Science. DOLI:
10.1007/978-3-540-74800-742.1SBN978 — 3 — 540 — 74799 — 4. Availableon :
http : //link.springer.com/10.1007/978 — 3 — 540 — 74800 — 742

[10] TRUEMPER, Jacob M., Hong SHENG, Michael G. HILGERS, Richard
H. HALL, Morris KALLINY a Basanta TANDON. Usability in multi-
ple monitor displays. ACM SIGMIS Database: the DATABASE for Ad-
vances in Information Systems [online]. 2008, 39(4), 74-89 [cit. 2020-
05-18]. DOI: 10.1145/1453794.1453802. ISSN 0095-0033. Available on:
https://dl.acm.org/doi/10.1145/1453794.1453802

[11] MICHELSON, Brenda M. Event-Driven Architecture Overview [on-
line]. 2011 [cit. 2020-05-18]. Available on: http://elementallinks.com/el-
reports/EventDrivenArchitectureOverview glemental Links peb2011.pdf

[12] ROUSE, Margaret. [online]. [cit. 2020-05-18]. Available on:
https://searchitoperations.techtarget.com /definition/event-driven-
application

[13] BARNKOB, Mark; KRUKOW, Jonathan. Event Sourcing and Command
Query Responsibility Segregation Reliability Properties. Computer Science
University of Aarhus.—2018.—C, 2018, 21-39.

[14] Model Event Sourcing [online]. 2017 [cit. 2020-05-18]. Available
on: https://docs.microsoft.com/cs-cz/azure/architecture/patterns/event-
sourcing

[15] DABEK, Frank, Nickolai ZELDOVICH, Frans KAASHOEK, David MAZ-
IERES a Robert MORRIS. Event-driven programming for robust software.
In: Proceedings of the 10th workshop on ACM SIGOPS European workshop:
beyond the PC - EW10 [online]. New York, New York, USA: ACM Press,
2002, 2002, s. 186- [cit. 2020-05-18]. DOI: 10.1145/1133373.1133410. Available
on: http://portal.acm.org/citation.cfm?doid=1133373.1133410

[16] MEIER, R. Taxonomy of Distributed Event-Based Program-
ming Systems. The Computer Journal [online]. 2005, 48(5), 602-

70

A. Bibliography

626 [cit. 2020-05-18]. DOI: 10.1093/comjnl/bxh120. ISSN 0010-
4620. Available on: https://academic.oup.com/comjnl/article-
lookup/doi/10.1093 /comjnl/bxh120

[17] Event-driven programming [online]. In: . 2018 [cit. 2020-05-18]. Available
on: https://www.computerhope.com/jargon/e/event-driven-prog.htm

[18] FOWLER, Martin. Event Sourcing [online]. 2005 [cit. 2020-05-18]. Available

on: https://martinfowler.com/eaaDev/EventSourcing.html

[19] What is Knowledge System [online]. [cit. 2020-05-18]. Available on:
https://www.igi-global.com /dictionary /towards-web-unifying-architecture-
next/16468

[20] JIRINA, Marcel. Znalostni systémy [online]. [cit. 2020-05-18]. In:
https://courses.fit.cvut.cz/BI-ZNS

[21] ULLMAN, Jeffrey D. Predicate Logic [online]. [cit. 2020-05-18]. Available
on: http://infolab.stanford.edu/ ullman/focs/ch14.pdf

[22] PIRNAY-DUMMER, Pablo, Dirk IFENTHALER a Norbert M. SEEL. Se-
mantic Networks. SEEL, Norbert M., ed. Encyclopedia of the Sciences of
Learning [online|. Boston, MA: Springer US, 2012, 2012, s. 3025-3029 [cit.
2020-05-18]. DOI: 10.1007/978-1-4419-1428-6,933.1SBN978 — 1 — 4419 —
1427 — 9. Availableon : hitp : //link.springer.com/10.1007/978 — 1 — 4419 —
1428 — 6,933

[23] Bayesian networks. Bayes server [online]. [cit. 2020-05-18]. Available on:
https://www.bayesserver.com/docs/introduction/bayesian-networks

[24] HAYES, P.J. The Logic of Frames. Readings in Artificial Intelli-
gence [online]. Elsevier, 1981, 1981, s. 451-458 [cit. 2020-05-18]. DOLI:
10.1016/B978-0-934613-03-3.50034-9. ISBN 9780934613033. Available on:
https://linkinghub.elsevier.com /retrieve/pii/B9780934613033500349

[25] JavaTpoint: Techniques of knowledge representation [online]. [cit. 2020-05-
18]. Available on: https://www.javatpoint.com/ai-techniques-of-knowledge-
representation

[26] SMITH, Reid G. Knowledge-Based Systems [online]. Schlumberger-Doll
Research Old Quarry Road Ridgefield, CT USA 06877, 1985, May 8
[cit. 2020-05-18]. Available on: https://www.reidgsmith.com/Knowledge-
Basedgystems_conceptstechniquespramplesg8 — May — 1985.pdf

[27] HAYES-ROTH, FREDERICK, WATERMAN, LENAT a DOUGLAS B.
Building expert systems [online]. 5. 1983 [cit. 2020-05-18]. Available on:
https://archive.org/details/buildingexpertsy0Otemd /page/38

[28] BALL, Linden J. E Eye Tracking in Hci and Usabil-
ity Research [online]. 2016 [cit. 2020-05-18]. Available on:
https://www.semanticscholar.org/paper /E-Eye-Tracking-in-Hci-and-
Usability-Research-Ball /51d4795836{562bc1bdc9375d2b70{560d68b56dextracted

71

A. Bibliography

[29] DUCHOWSKI, Andrew T. Eye Tracking Methodology [online]. Cham:
Springer International Publishing, 2017 [cit. 2020-05-18]. DOI: 10.1007/978-
3-319-57883-5. ISBN 978-3-319-57881-1.

[30] NIELSEN, Jakob a Kara PERNICE. Eyetracking Web Usability. New Riders,
2010. ISBN 9780321714077.

[31] JENSEN, Ole Baunbaxk. Webcam-Based Eye Tracking vs. an
Eye Tracker. Imotions [online]. [cit. 2020-05-18]. Available on:
https://imotions.com/blog/webcam-eye-tracking-vs-an-eye-tracker/

[32] OBAIDELLAH, Unaizah, Mohammed AL HAEK a Peter C.-H.
CHENG. A Survey on the Usage of Eye-Tracking in Computer
Programming. ACM Computing Surveys [online]. 2018, 51(1), 1-58
[cit. 2020-05-18]. DOI: 10.1145/3145904. ISSN 0360-0300. Available on:
https://dl.acm.org/doi/10.1145/3145904

[33] MIKOVEC, Zdenék. User Interface Design [online]. [cit. 2020-05-18]. In:
https://moodle.fel.cvut.cz/courses/BAM3INUR

[34] RAMACHANDRAN, Krish. Adaptive user interfaces for health care appli-
cations. From the developerWorks archives [online]. 2009, 2009, 1-3 [cit. 2018-
01-12]. Available on: https://www.ibm.com/developerworks/web/library/wa-
uihealth/

[35] HASSENZAHL, Marc a Noam TRACTINSKY. User experience: a research
agenda. Behaviour and Information Technology [online|. 2006, 25 (2): 9197
[cit. 2015-12-06]. DOI: 10.1080,/01449290500330331. ISSN 0144929x. Available
on: http://www.tandfonline.com/doi/abs/10.1080,/01449290500330331

[36] Human-Computer Interaction (HCI). Interaction design foundation
[online]. [cit. 2020-05-18]. Available on: https://www.interaction-
design.org/literature/topics/human-computer-interaction

[37] Google Analytics [online]. [cit. 2020-05-18]. Available on:
https://support.google.com/analyticstopic=3544906

[38] BRAGA, Reinaldo Bezerra, Sécrates DE MORAES MEDEIROS DA COSTA,
Windson Viana DE CARVALHO, Rossana Maria DE CASTRO ANDRADE a
Hervé MARTIN. A Context-Aware Web Content Generator Based on Personal
Tracking. DI MARTINO, Sergio, Adriano PERON a Taro TEZUKA, ed. Web
and Wireless Geographical Information Systems [online]. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, 2012, s. 134-150 [cit. 2020-05-18]. Lecture
Notes in Computer Science. DOI: 10.1007/978-3-642-29247-7;1.1SBN978 —
3 — 642 — 29246 — 0. Availableon : http : //link.springer.com/10.1007/978 —
3 — 642 — 29247 — 711

[39] KOYCHEV, Ivan. Tracking Changing User Interests through Prior-
Learning of Context. DE BRA, Paul, Peter BRUSILOVSKY a Ricardo
CONEJO, ed. Adaptive Hypermedia and Adaptive Web-Based Systems

72

A. Bibliography

[online]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, 2002-5-23,
s. 223-232 [cit. 2020-05-18]. Lecture Notes in Computer Science. DOI:
10.1007/3-540-47952-X94.1S BN 978 — 3 — 540 — 43737 — 6. Availableon : http :
//link.springer.com/10.1007/3 — 540 — 47952 — X»4

[40] BUTOIANU, Valentin, et al. User context and personalized learning: a fed-
eration of contextualized attention metadata. Journal of Universal Computer
Science, 2010, 16.16: 2252-2271.

[41] KORPIPAA, P.,J. MANTYJARVI, J. KELA, H. KERANEN a E.- J. MALM.
Managing context information in mobile devices. IEEE Pervasive Computing
[online]. 2003, 2(3), 42-51 [cit. 2018-01-13]. DOI: 10.1109/MPRV.2003.1228526.
ISSN 1536-1268. Available on: http://ieeexplore.ieee.org/document /1228526

[42] HELD, Albert; BUCHHOLZ, Sven; SCHILL, Alexander. Modeling of context
information for pervasive computing applications. Proceedings of SCI, 2002,
167-180.

[43] TAUBERER, Joshua. What Is RDF. In: XML.com [online|. July 26, 2006 [cit.
2018-01-13]. Available on: https://www.xml.com/pub/a/2001/01/24 /rdf.html

[44] FERENC, Jakub. Kontextualizace a definice User Experience
Designu. Academia [online]. , 2-5 [cit. 2018-01-12]. Available on:
https://www.academia.edu/19563748

[45] Station [online]. [cit. 2020-05-18]. Available on:
https://getstation.com/features

[46] Franz [online|. [cit. 2020-05-18]. Available on: https://meetfranz.com/
[47] Ferdi [online]. [cit. 2020-05-18]. Available on: https://getferdi.com/

[48] HARATY, Mona, Syavash NOBARANY, Steve DIPAOLA a Brian FISHER.
AdWiL. In: Proceedings of the 27th international conference extended ab-
stracts on Human factors in computing systems - CHI EA ’09 [online].
New York, New York, USA: ACM Press, 2009, 2009, s. 4177- [cit. 2020~
05-18]. DOI: 10.1145/1520340.1520636. ISBN 9781605582474. Available on:
http://portal.acm.org/citation.cfm?doid=1520340.1520636

[49] Cross Frame Scripting. OWASP [online]. [cit. 2020-05-19]. Available on:
https://owasp.org/www-community /attacks/Crosspramegcripting

[50] WebGazer [online]. [cit. 2020-05-19]. Available on:
https://webgazer.cs.brown.edu/

[51] NIELSEN, Jakob. How Many Test Users in a Usability Study? [online].
2012 [cit. 2020-05-19]. Available on: https://www.nngroup.com/articles/how-
many-test-users/

[52] Usability Evaluation Methods. Usability.gov [online]. [cit. 2018-
05-19]. Dostupné z: https://www.usability.gov/how-to-and-
tools/methods/usabilityevaluation/index.html

73

74

Appendix B

Listings
5.1 Layout tree representation in JSON 36]
5.2 Layout node representation 37
5.3 Layout representation using nodes 137
54 App interface example 40
5.5 Rules configuration example 43
6.1 Creating BrowserWindow example 45|
6.2 AppJjsxfile. 47|
6.3 User context return 47
6.4 Layout container 48
6.5 AppModule component 49
6.6 AppComponebt 50
6.7 ipcRenderer listener L1l
6.8 UserContext module controller BI1
6.9 Trackerclass 52|
6.10 Subject subrscriptiono B3l
6.11 Sending data to renderer process B3
6.12 Applnterface 53l
6.13 WebViewContainer 54
6.14 App configuration 541
6.15 Attention detection pseudocode 506]

75

76

Appendix C
List of Abbreviations

HCI
Ul
AUI
SW
HW
OS
URL
API
RAM
NAS
CSRF
XSS
CORS
IDE

Human-Computer Interaction
User Interface

Adaptive User Interface
Software

Hardware

Operating System

Uniform resource Locator
Application Programming Interface
Random Access Memory
Network Attached Storage
Cross-site Request Forgery
Cross-site scripting
Cross-origin resource sharing

Integrated Development Environment

77

	Introduction
	Motivation
	Goals

	Background
	Multiple monitor setup
	Rule-based systems
	Knowledge based systems
	Event-driven applications
	Event sourcing
	Command Query Responsibility Segregation
	Events
	Event-driven programming

	Eye-tracking
	Measurement methodologies
	Usage of eye-tracking
	Webcam eye-tracking

	HCI - Human computer interaction
	User interface - UI

	User context
	User context tracking

	Related work
	Analysis
	Multi monitor usage
	User research - multiple monitor usage
	Results
	Evaluation of the research

	Organization and user data
	Organization applications for messaging
	User data

	Rules and automatization
	Analysis summarization

	Design
	Dashboard
	Layout module
	Layout representation

	App module
	App interface

	User module
	Rules module
	Design summarization

	Implementation
	Requirements
	Project structure
	Renderer process structure
	Main process structure
	App module structure
	Eye-tracking and custom app implementation

	Installation

	Testing and evaluation
	User testing
	Results
	Summary

	Personal evaluation

	Conclusion
	Future work
	Layout and apps
	Rules, context and automatization
	User and community

	Bibliography
	Listings
	List of Abbreviations

