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Abstrakt / Abstract
Diplomová práce se zabývá využi-

tím rozhodovacích stromů při návrhu
pravidel pro detekci poruch technic-
kých zařízení budov. V první části této
práce jsou představeny koncepty strojo-
vého učení a jsou popsány rozhodovací
stromy. Na základě teoretických po-
znatků jsou vybrány vhodné metody
rozhodovacích stromů a to CART, Ran-
dom Forest a šikmé rozhodovací stromy
(OC1). V dalších sekcích je předsta-
vena implementace vybraných metod a
jsou popsány doporučené postupy, jak
dané metody používat a nastavit jejich
parametry. V poslední části diplomové
práce jsou vybrané metody porovnány
na sadách reálných dat z technických
zařízení budov. Jednodušší část tes-
tování proběhla na otopných okruzích
a následně byly metody použity na
diagnostiku vzduchotechnický jednotek.

Klíčová slova: Diagnostika, Rozhodo-
vací stromy, Náhodný les, Klasifikace

This thesis seeks to analyze the usage
of decision trees in diagnostics rule
design in HVAC. At first, theoreti-
cal concepts of machine learning and
decision trees are introduced. Viable
methods are selected based on theoreti-
cal research. These methods are CART,
Random Forest and oblique decision
tree classifier (OC1). Implementation
of selected methods is described as
well as their limitations and guide to
parameter tuning. Lastly, methods
are compared using real-world datasets
from HVAC systems. The comparison
starts at more straightforward tasks
from heating circuits and then follow
up with problems from the air handling
units domain.

Keywords: Diagnostics, Decision
trees, Random Forest, Classification
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Chapter 1
Introduction

HVAC (heating, ventilation, and air conditioning) systems are nowadays present in
almost every building. Quality of control and mechanical conditions of such systems
have an impact on occupant’s comfort, energy usage and maintenance cost. Undetected
failure can lead to increased operating costs even when comfort can be still preserved.
Without the use of diagnostics, such faults can stay undetected for a long time. Many
buildings have SCADA (Supervisory control and data acquisition) systems for online
collection and storage of operating data. With the use of diagnostics operating data can
be analysed to exploit control faults and detect unusual changes in systems performance
that are caused by mechanical faults.

In many applications HVAC systems, especially AHU (air handling units), are not
controlled optimally. Heat recovery is underutilised in cooling dominated buildings and
switching between cooling and heating is common. Detection of such faults can lead to
significant energy savings.

Machine learning methods can be used for fault detection [3] [18]. While the use
of black-box machine learning methods can be very effective, it does not provide any
explanations of trained models which could be checked or used by an expert.

Grey-box machine learning methods can be used on labelled data to describe system
behaviour in the moments of faults. HVAC systems often consist of tenths or hundreds
of sensors. Grey-box machine learning methods can be used to detect significant
features, that can be analysed by an expert later on.

Designing diagnostic rules is very time consuming and requires expert knowledge
in a given HVAC domain. Machine learning methods pose a new approach that can
help experts and perhaps, in some cases, substitute them entirely. Machine learning
methods can also be used to evaluate existing diagnostic rules. A team from UCEEB
(University centre for energy efficient buildings) extensively diagnoses AHU units with
a broad set of diagnostic rules based on their expert knowledge. Up to 100 experiments
were conducted over the past year. One of the ambitions of this thesis is to diagnose
faults from this experiment with decision trees and compare the resulting model with
diagnostic rules.

1.1 Goals and structure of the thesis
This master thesis is focused on the applicability of decision trees in HVAC systems
concerning interpretability. In the control domain interpretability of trained models is
as important as their performance.

The assignment points of this thesis are the following:.Study decision trees and evaluate their utility for HVAC failure detection..Validate the principles of selected decision tree methods for a simple scenario and/or
modify the approaches to suit complex scenarios.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.Apply the developed methods to annotated real building data..Compare the methods in terms of accuracy, robustness, and practicality.

The thesis starts with an introduction and goals of this thesis. Following chapter
focuses on the introduction to machine learning. Chapter 3 contains theoretical research
on decision trees. Implementation of selected methods and examples of trained models
are described in Chapter 4. Parameter tunning is tackled in Chapter 5. Chapters 6
and 7 describe decision tree usage on data from real HVAC systems. Finally, results
are concluded in Chapter 8.

2



Chapter 2
Machine learning

In this chapter basic principles of machine learning are described as well as its basic
taxonomy and properties.

Machine learning, with its data–driven methods, offers a different approach to
engineering problems. Due to experience obtained throughout the years, data–driven
methods are now used alongside with logic–based expert systems. This section will
focus on some basic properties of machine learning methods, counter the question of
when it is appropriate to use them over a logic–based system and primary machine
learning taxonomy will be introduced.

Conventional engineering design flow starts with modelling of the desired system.
System modelling requires domain knowledge as well as information on process and
measurement noises. Some of the required information might not be available due to
many reasons such as unknown sensor parameters, technical or military secrets. If
enough information is available, a mathematical model describing the behaviour of the
given system can be created. Based on the mathematical model, an algorithm solving
the given task is developed. If the model describes the real-world system accurately,
the developed algorithm can provide performance guarantees.

Machine learning methods replace the complex task of system modelling by data
acquisition. With data–driven methods resulting algorithm can often be developed
without any model just with the usage of hypothesis classes and large dataset
representing system behaviour.

A compromising option is to use the best of both worlds. Machine learning methods
can significantly benefit from additional prior information. This information can consist
of sensor accuracies, physical limitations of system behaviour, parameters or additional
knowledge. Necessary information such whether machine was incorrectly calibrated last
week can be crucial for the performance of machine learning methods.[28]

2.1 Machine learning taxonomy
Machine learning methods can be divided into three main classes:.Supervised learning

The input of supervised learning is a set of data tuples. Tuples consist of attribute
parameters and a label. An example of supervised learning would be classification of
cars into insurance categories (labels) based on their age and engine size (attributes).
The result of supervised learning is mapping between attribute space and label space..Unsupervised learning

Unsupervised learning is a machine learning technique that works with data
without labels. Unsupervised learning algorithms such as clustering are used to get
structure or patterns in training data.

3



2. Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.Reinforcement learning

In contrast to supervised learning where all needed or at least all usable information
is already contained in the training set, reinforcement learning uses an agent
approach. It is also referred to as semi–supervised learning and is usually modelled
as a Markov decision process. Learning is done via agent interaction with an
environment to maximise reward function.

2.2 Machine learning usage
This section will provide some guidance on when it is appropriate to use machine
learning methods. The focus is on supervised learning because other approaches are
not utilised in this thesis. There are many papers and scientific work that successfully
tackle the theory behind supervised learning. Most basic methods, such as decision
trees or naive Bayes classifiers, are understood and described very well. [27] There
are also sources for deep networks and similar alternatives. [32] Based on [6] and [28]
these are the criteria which could help you determine when to use supervised machine
learning:.Other methods fail due to model inaccuracies or algorithm flaws

The conventional engineering approach, focused on a mathematical representation
of problems, has its limitations, such as model inaccuracies or complexity problems.
Machine learning methods might succeed even in cases where the conventional
approach fails..Model inaccuracies

As described in 2.1, there are many problems with complex systems modelling.
Many variables or even physical principles could be unknown, which causes model
problems..Algorithm problems

Although the model is accurately representing the real system developed
algorithmic solution can be too complex to be implemented on given hardware.
Many machine learning algorithms, such as decision tree classifiers, are much
faster to use than to train. In some cases, machine learning methods can be
utilised on less powerful devices..Given task does not require the use of logic or domain knowledge
Such a task would probably not benefit from the mathematical model approach,

so machine learning is a good alternative. Machine learning methods can be, in some
cases, simple to use and not as time–consuming as the usage of traditional methods..Given task can be solved by black–box fashion

In some applications, such as fault detection, explanations of how a decision was
made can be as valuable as the decision itself. If it is not the case, the use of a black
box learned algorithm with sufficient performance is a valid option..The task of data acquisition is easy or at least possible

This condition is more of a restriction than a guideline. Deployment of a machine
learning algorithm is limited by data acquisition. Complications with data acquisition
can be caused by a low sampling rate of sensors or insufficient excitation of the system.
For this reason, the system will not be represented by data enough, and the whole
task will be more complicated..Given task does not necessarily need safety or performance guarantees

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Machine learning usage

Machine learning methods mostly cannot provide advanced guarantees as model–
based algorithms. Some warranties can be, to some extent, provided by numerical
simulations.
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2. Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A decision tree model is represented by a tree graph that consists of 3 types of nodes:.Root node has no incoming edges and it is unique.. Internal node is a node somewhere in the tree which has a single incoming edge and
some outgoing edges. The number of outcoming edges varies for multiple decision
tree types..Leaf node is a node with single incoming edge and none outgoing edges. Every leaf
node represents a class label.

Root node

Internal nodeLeaf

Leaf Leaf

Figure 2.1. Structure of a decision tree model.

Nodes that are not leaves hold a splitting condition. Splitting conditions are functions
of attributes of classified objects and results in outgoing edges that lead to another node.
After the decision tree model is induced on training data classification of new objects
is straightforward. Starting on the root node, the classification path is determined by
splitting conditions based on the object’s attributes. After going through all nodes with
splitting conditions, path ends at a leaf node that holds a class label. This class label
is used as the result of classifying the examined object.

6



Chapter 3
Decision trees

Decision tree classifiers are supervised machine learning methods that classify objects
using a tree–like model of decisions. Decision trees are widely used due to their
simplicity and easy interpretation. A decision tree can be trained as a classifier by
computer algorithms, but they also can be made by hand to describe processes with
conditional control statements. Transparent interpretation of decision trees allowed
their usage in medicinal diagnostics, where other machine learning methods, such as
neural networks, are often unusable because of their black–box nature. [21]

3.1 Decision tree induction
Finding an optimal decision tree is an NP–hard problem. However, there are efficient
algorithms that can induce suboptimal trees with excellent performance. Decision
tree induction is generally much less demanding on data quantity and computational
resources than deep neural networks and many other machine learning methods.

3.1.1 Hunt’s algorithm
Hunt’s algorithm recursively induces decision trees. It is straightforward and is the core
of many advanced and better–known decision tree algorithms. [11] Let D be training
set of data with vector of attributes a = (a1, a2, .., an). This training set consists of
objects from classification classes c. As we induce a decision tree model, every node
with splitting conditions splits the training set into subsets. A subset of training set
associated with node N is denoted DN . Hunt’s algorithm can be recursively defined as
follows:.Choose leaf type

If all objects in DN have the same classification c, node N is a leaf node with
classification c. If not, N is an internal node, and DN must be further split into
smaller subsets..Select an attribute splitting condition

New child node is created for every outcome of a selected splitting condition. Most
decision trees use binary conditions, but it can vary. For every new node, Dnew assign
the subset of DN based on the condition outcome.

3.1.2 General splitting options
There are multiple options how to split objects based on their attributes. For better
clarity attribute types and splitting conditions are showcased on an example of guitar
classification. Attributes can be categorical such as guitar kind in or numerical,
for example, guitar neck length or the number of frets. Based on the number of
outcomes, splitting conditions are distinguished as binary or multiway. Some decision
tree algorithms such as CART (classification and regression tree) use only binary

7



3. Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
splits. In order to use categorical multiway splits in CART, splits must be substituted
by all combinations of binary splits between two subsets of categories. Examples of
these splits are shown in Figs. 3.2 and 3.1. Numerical attributes can be treated as a
categorical binary split with conditions such as

ai > treshold (1)

where ai is an attribute of classification object in binary numerical split 3.4, or
multiway split 3.3 where objects are split into multiple result intervals.

Guitar Kind

Electric Acustic Electro-
Acustic

Figure 3.1. Example of cathegorical attribute multiway split.

Guitar Kind

Electric, Acustic Electro-
Acustic

Guitar Kind

Electric, Electro-
Acustic Acustic

Guitar Kind

Acustic,Electro-
Acustic Electric

Figure 3.2. Example of cathegorical attribute binary split.

Figure 3.3. Example of numerical attribute multiway split.

3.1.3 Splitting criteria
After a general splitting option is chosen, there is a question of how to evaluate the
goodness of a splitting condition. Many splitting criteria are mentioned in literature
[4], [29]. Particular criteria typically outperform others on some specific datasets.
Most commonly used impurity functions are the Gini (2) that is used by decision tree
algorithms introduced by Breiman [5] and Gelfand [12] and the entropy (3) used by
Quinlan’s ID3, C4.5 and others. [23]

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Pruning

Figure 3.4. Example of numerical attribute binary split.

φ(p) =
∑

j

pj(1 − pj) (2)

φ(p) = −
∑

j

pj log(pj) (3)

Where p0, ..., pj are node proportions and φ(p) is impurity function.

Important note for this thesis is that for a small number of classes, all splitting
criteria should give very similar results. When a diagnosis of a specific error is made by
classification into two classes (normal state and error state), the selection of splitting
criteria should be negligible from accuracy perspective. Entropy is more demanding to
compute due to logarithm in equation (3), so Gini criteria should be preferred to save
computational power. This conclusion is discussed in detail in [4].

When dealing with a higher number of classification classes, splitting criteria should
be chosen according to the desired properties of splits. Gini construct splits where
majority class separation is emphasised. This behaviour can lead to highly unbalanced
splits at the begging of a decision tree. Entropy prefers even splits into 50/50 groups.
Entropy splits are often chosen from a larger group of equally good splits at the
moment of selection, where optimality depends on the future evolution of given subtrees.
Breiman [4] suggests that entropy splits should be done with a look–ahead approach.

3.2 Pruning
An unconstrained decision tree inducing algorithm will result in a huge decision tree
with many splits and nodes. Training data can be noisy or just very hard to describe
with available splitting conditions. Example of such data is shown in Fig. 3.7. Basic
decision tree inducing algorithms (Hunt’s 3.1.2) create new splits as long as classification
objects are not separated into pure nodes. This complex decision tree suffers from
overfitting. They are hard to interpret and inaccurate on objects that were not part
of the training process. There are two options on how to solve this issue. The first
is to terminate the decision tree algorithm prematurely to limit the final tree size.
This option is called a pre–pruning. The second option is post–pruning the tree,
which prunes the decision tree after it is generated. This option is also known as
backward pruning. Pruning a decision tree increases computational efficiency as well
as classification accuracy. [19]

9



3. Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Pre–pruning

Pre–pruning restricts tree expansion in non–significant directions. The restriction is
done by terminating conditions. A simple terminating condition is for example the
minimal number of objects for a given node. When the inner node’s splitting condition
affects a meagre part of objects, the resulting split will not be statistically significant,
and it can likely be omitted. Good terminating condition is a minimum impurity
decrease. This condition is used in CART.

Pre–pruning is done not only to increase the performance of classifiers but also to
reduce the complexity of tree building. Pre–pruning must be applied with caution
because it can reduce performance when done excessively. What seems like insignificant
last split on training data can be the difference between good and excellent classifier
on real data. [30]

3.2.2 Post–pruning
Post–pruning methods remove non–significant branches from decision trees. This
branches could reflect the effect of noise on training data. Such branches harm
classification accuracy and are not desirable. The most simple and clear method for
post–pruning is reduced error pruning proposed by Quinlan [23].

A complete decision tree is tested against a validation dataset. This test gives a base
accuracy score. Post–pruning is done iteratively as follows:. Inner node selection

An inner node is selected as a candidate for pruning. This can be done randomly
or systematically over all nodes..Removal of a subtree

The selected inner node is converted into a leaf node with a prevailing classification
class. This results in a subtree cut–off..Performance evaluation

Pruned tree accuracy is evaluated against the primary tree. If the error rate of
the pruned tree is equal or smaller than before, the inner node is kept as a leaf node.
Example is shown in Fig. 3.5.

The reduced error pruning method has linear computational complexity and results
in smaller trees with similar or better accuracy than most pruning methods [1].

Next, more advanced and time–consuming option on how to post–prune a tree is tree
raising. This method erases all except one child node of a given subtree. The root of
that subtree is then replaced by its only child. Objects which were originally in erased
subtrees must be distributed to other nodes based on their attributes. Note that on
tree raising example shown in Fig. 3.6 from [30] nodes 1, 2, 3 are marked 1’, 2’, 3’
because they also contain all objects from 4 and 5.

Post–prunning alone can preserve some combined predictors, where two attributes
which alone do not seem to split data efficiently are very informative when combined.
For this reason, most decision tree algorithms emphasise post–pruning rather than pre–
pruning. [30]

3.3 Decision tree algorithms
In this section, some of the important algorithms will be briefly presented. There
are many open–source implementations as well as many modifications to original
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Figure 3.5. Example of subtree erasing, where node C is replaced by a leaf node. Leaf 123
contains all data from previous nodes 1, 2, 3 with classification of majority.

Figure 3.6. Example of subtree raising, where node C is “raised” to subsume node B. [30]

algorithms. For example, the later used decision tree algorithm from Scikit–learn
package is an optimised version of the CART algorithm. [20]
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3.3.1 ID3

ID3 is the first decision tree inducing algorithm that sparked international interest. [24]
Compared to other more recent algorithms, it is considered very simple. ID3 works with
categorical features and multiway splits. It does not handle missing values or numerical
values. Information gain is used for splitting criteria. A tree grows until all objects are
divided between leaves with given classification classes or information gain for best split
is not greater than zero. The biggest drawback of ID3 was its restriction to categorical
data.

3.3.2 C4.5
C4.5 was published in 1993 by Quinlan [26] as an extension to his previous algorithm
ID3. It is probably one of the most popular decision tree inducing algorithms. [31]
C4.5 uses information gain as splitting criteria and multiway splits similarly to ID3. It
is highly popular because it resolved many ID3 problems. A system for discretisation of
continuous numerical attributes was introduced. The original approach was modified
throughout the years to improve C4.5 performance on numerical attributes. [25]
Continous values are partitioned into multiple intervals based on thresholds which are
determined locally. C4.5 is one of the first decision tree algorithms which defined its
behaviour when attribute values are missing. When an attribute value is missing, all
options are explored. A prediction is made for each subnode, and classification class
with the most significant density is chosen as the result.

C5 also exists, but it is released under a proprietary license. It is capable of building
smaller trees while using less memory with superior accuracy results.

3.3.3 CART
CART is along with C4.5 one of the most used algorithm for decision trees. Compared
to C4.5, it utilises Gini as a splitting criteria (2) and can process numerical attributes. It
was proposed by Leo Breiman [5]. CART uses a greedy search and has no termination
conditions. The complete tree is built and then post–pruned. CART has many
modifications as well as open-source implementations in major languages as Python,
C, and R. CART can do linear splits by using one attribute at a time. Surrogate
splits handle missing values, and some implementations allow misclassification costs.
CART, especially in a Random Forest, has proved to be very efficient and accurate on
many real–life applications, but as a single decision tree classifier has its weaknesses,
for example it can be unstable. Only a small change in the training dataset results in
a completely different tree. This behaviour happens because every split is affected by
the change of the parent split, and a small change can result in a different tree root.
One of the disadvantages discussed later in section 3.4 is that CART cannot efficiently
classify objects with linearly dependent attributes. These disadvantages are not only
CART specific but also apply to many others.

3.4 Oblique Decision trees
Decision tree induction algorithm such as C4.5, ID3 or CART are also called
orthogonal, because they use splits orthogonal to features. This property leads to great
comprehensibility of induced trees, but there are applications where orthogonal splits
produce very complex trees with poor performance. Such application is classification
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Figure 3.7. Comparison of classification using oblique and axis paralel splits on object
with 2 dependent features.

task described in Fig. 3.7. Oblique decision trees are modification decision trees that
make use of oblique splits.

Oblique decision trees have shown accuracy improvement when working with
dependent features. Oblique trees are typically much smaller and at least as accurate
as orthogonal decision trees. This property is obvious because an oblique decision tree
can perform the same mapping function as an orthogonal decision tree, but it can not
be said vice versa.

3.4.1 CART–LC
The first oblique decision tree algorithm was CART–LC introduced in 1984 [5], where
LC stands for linear combinations. The idea was to use a linear combination of multiple
features rather than just one at the time. CART–LC algorithm creates hyperplanes by
finding locally optimal coefficients that maximise the goodness of split at every decision
node. Splits are fully deterministic. Therefore coefficients estimation can get stuck in
a local minimum. [8] Hyperplanes can be described by equation

n∑
i=1

(ωiDai) + ω0 > 0, (4)

where ai are attributes of object D with coefficients ω1, ..., ωn, n is number of
attributes. Constant ω0 is the treshold to be determined from the data.

Oblique splits are more difficult to interpret compared to univariate splits. To
preserve as much comprehensibility backwards–deletion procedure is proposed. This
procedure simplifies splits used in the final model by neglecting attributes with low
impact on final classification performance.

13
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3.4.2 OC1

OC1 is a widely used decision algorithm that was developed to tackle crucial problems
of CART–LC. OC1 uses CART–LC’s gradient optimisation methods for coefficients
estimation and also employs stochastic elements. After coefficients estimation converges
to a local minimum, the resulting hyperplane is perturbed in random directions. This
perturbance, together with multiple random restarts of coefficients estimation, leads
to superior performance results. Trees induced by OC1 are smaller and more accurate
compared to CART–LC. OC1 has limited number of perturbations for each hyperplane
which leads to time constraints on tree induction. OC1 spends only polynomial time
on each node in the tree. CART–LC does optimisation of coefficients one at the time
without a given time limit. OC1 does not exploit any advanced pruning or stop–splitting
criteria. As explained in [17], a simple impurity threshold condition for cutting off
subtrees performed well enough. No impurity measure is declared to be superior to
others. The best measure is determined by the data for a given task.

3.5 Random Forest
Random Forest is a decision tree modification that was introduced by Breiman in 2001.
[13] Random Forest was created to utilise some of Breiman’s older research such as
CART method combinations [5] and bagging [4]. Random Forest developed into a
framework of models that have great practical success.

Random Forest algorithm use multiple decision trees as independent models.
Prediction is made by averaging over all used models. The induction of particular
decision trees varies among algorithms. The method used in the original Random
Forest algorithm is to utilise feature subsets that can be used for splitting. This
restricted feature set is chosen randomly for every split in every decision tree. Modified
algorithms that use some knowledge about training data rather than pure randomness
for choosing feature subsets also exist. Each decision tree is trained separately.

Despite many successful applications of Random Forest, underlying mathematical
properties are still not well understood. There are two main properties of Random
Forest to discuss: convergence and consistency. Breiman proved the convergence of
classification error of random forest algorithm alongside with existence of its upper
bound. [13] Consistency for decision tree algorithm has not yet been established. [10]

3.5.1 Random Forest parameters
When building a Random Forest, many parameters need to be set. Some of these
parameters are crucial such as the choice of decision tree algorithm, which will train
individual trees. The choice here could be randomised ID3, CART or oblique decision
tree algorithm, OC1. Other parameters are more of a tuning tool for a given application.
Well known and widely used algorithm for Random Forest induction commonly have
parameter tuning guidelines. These recommendations are usually based on real–life
usage experience. Tuning parameters are the ones used by decision tree algorithms as
well as parameters used for forest induction.

Parameters for tree algorithms contain the minimal size of leaves, size of feature
subsets for splitting, splitting criteria, maximum tree depth etc. The most important
parameter for forest induction is the total number of trees. Breiman’s convergence proof
points in the direction of creating as many trees as possible, but other sources suggest
different options. [2] Based on [22], the biggest improvement of performance occurs
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within the first 100 trees made. This result was also confirmed in an article [14]. Fig. 3.8
from article [14] shows that the classification error rate decreases with an increase in the
number of decision trees. After reaching the 100 trees, the classification error trends to
be stable (approximately 0.01). With a growing number of trees, further improvements
slowly diminish, so one of the options on how to save computational power is to stop
forest induction when the last N new trees do not improve performance.

B. Number of decision trees selection

Fig 9 shows that the classification error rate decreases with an increase in the number of deci-

sion trees. After reaching the 100 trees, the classification error trends to be stable (approxi-

mately 0.01). However, the training time of the model increases with the increase in the

number of decision trees. Therefore, considering the problem of time complexity, we selected

100 decision trees that comprised the random forest, to classify and predict the electrical signal

sample sets. This approach not only ensures the accuracy of the classification but also shortens

the time needed for training and classification.

C. Comparison of different algorithms

The classification accuracy and classification time are the important symbols of the evaluation

algorithm. In this paper, we use different algorithms, including Naive Bayesian Model,

K-Nearest Neighbour, Support Vector Machine, and random forest, to classify the spacecraft

electrical signal data, and we obtain the classification results of the different algorithms. At the

same time, PCA and DBN are used for feature extraction, and then, we classify and recognize

the electrical data. Finally, we compare the performance of different algorithms before and

after feature extraction. By comparison, it is found that when the feature dimension is too

large, the classification accuracy will be reduced because of the curse of dimensionality. The

reduction of the sample dimension can not only improve the calculation speed, but also

improve the classification accuracy of the signal.

We randomly selected 50% sample data as training set, the other 50% samples as a test set,

the algorithm model is trained on the training set and test set for classification. Before the

Fig 9. Number of decision trees and OOB error rate curve. Fig 9 shows that the classification error rate

decreases with an increase in the number of decision trees. After reaching the 100 trees, the classification

error trends to be stable (approximately 0.01).

https://doi.org/10.1371/journal.pone.0176614.g009

Multi-label spacecraft electrical signal classification method based on DBN and random forest

PLOS ONE | https://doi.org/10.1371/journal.pone.0176614 May 9, 2017 11 / 19

Figure 3.8. OOB error rate curve based on the number of decision trees. [14]

The performance of Random Forest is most of the time superior to estimators based
on a single decision tree. A significant drawback of using Random Forest is the reduction
of final model comprehensibility. A Random Forest frequently contains a large number
of decision trees, so its usage is more of a grey to black–box fashion.
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Chapter 4
Implementation

The goal of this thesis is to assess the usability of various decision tree algorithms in the
domain of HVAC systems diagnosis. Python was chosen as the primary programming
language for this thesis due to its popularity in the machine learning domain, but other
languages such as Cython and C were used. For usability assessment, it is necessary to
solve the following tasks:.Determine dataset structure and create tools for dataset creation.. Implementation of the primary decision tree algorithm.. Implementation of the Random Forest algorithm.. Implementation of the oblique decision tree algorithm.

Datasets used in this thesis consist purely from real–world data provided by company
Energocentrum Plus. Dataset structure is described in section 4.1. The structure
of decision tree model evaluation and comparison is proposed in section 4.2. Every
implemented decision tree algorithm is described in its own section. These sections also
contain examples of exported models with guidance on how to read them.

4.1 Dataset creation
Datasets for decision trees must contain tuples of features and class labels. The class
label for a normal state is 0. The fault (alarm) state is labelled as 1. Datasets are created
from data of multiple HVAC systems. Apart from features and class labels, every record
contains origin identification. This identification string allows cross–validation between
subsets from different sites or equipment. Example of dataset structure is given in
Table 4.1.

identification feature 1 feature 2 feature 3 class label
circuit1 1 52 32 0
circuit1 0 53.25 12 0
circuit2 1 12 11 1

Table 4.1. Structure of dataset.

Datasets are exported from Skyspark. Skyspark is an analytical tool developed
by SkyFoundry LLC. Data in Skyspark consist of records such as site or equipment
records and data points. Metadata denote Skyspark records. Additional metadata fully
describe data points. Metadata are stored in the form of tags. Tags can store various
data types such as booleans, strings, numbers or references. Example of datapoint’s
tags is in Fig. 4.1. The first row contains tags which are markers. From given tags, it
can be identified that this data point is a sensor of valve position in a heating circuit.
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Figure 4.1. Tags of Skyspark datapoint.

Tag point role: setpoint indicates that the valve position is requested value rather than
the actual measurement.

Data points contain reference tags which describe connections between individual
points. This approach is very convenient for creating datasets. It is possible to gather
data from the HVAC system with a single function. Functions that export datasets
from Skyspark into .csv files were implemented in scripting language AXON1.

4.2 Decision tree evaluation
Decision tree methods are used for fault detection. This task is a form of binary
classification. The trained model performance is evaluated based on prediction
accuracy. Prediction accuracy is the fraction of predictions which model predicted
correctly. Prediction errors can be divided into false–negative and false–positive errors.

Trained models of decision tree methods can be compared based on accuracy.
Decision tree methods, except for Random Forest, can also be compared based on the
tree size. The decision tree models can also be compared by interpretability. This
comparison requires domain knowledge and can be very subjective.

4.3 Implemented decision tree methods
There are three main approaches of how decision trees are utilized. The primary one is
the single feature split decision trees which are also called orthogonal. More advanced
approach is to use oblique decision trees. The last commonly used method is a Random
Forest. Implementations of selected algorithms from these groups are described in the
following sections.

4.3.1 Orthogonal decision trees
There is a wide variety of open–source decision trees algorithms. Selected decision tree
algorithm is from the Python package scikit–learn [20]. This package uses an optimized
version of the CART algorithm which does not support categorical variables or missing
values. Both of these restrictions do not interfere with the intended use. Scikit–learn
package contains few datasets often used as a benchmark and many functions for dataset
handling. Scikit–learn is very popular, and many other machine learning methods and
projects use compatible API (Application programming interface) [7].

1 https://axoniq.io/
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Figure 4.2. Example of decision tree exported to graphviz file.

The input of used algorithm CART consists of 2–dimensional numpy array of features,
1–dimensional numpy array of classification classes, list of feature names and class
labels. The trained model can be exported into a text file or more conveniently into a
graphviz1 (.gv) file. Example of graphviz file visualization is shown in Fig. 4.2.

The first decision tree node is a root node with a splitting condition on a feature
named valve position. All records with valve position smaller or equal to 90.906 proceed
to the right node. Records with greater valve position proceed to the left. Gini value
for the given split is 0.165. Attribute samples show the percentage of records which are
affected by this node. This value can be used to detect significant paths in a decision
tree. Attribute value shows how data of the given node are split into classification
classes. In this example, the root node contains 0.909 of class OK records and 0.091
class Error records. Both leaf nodes are pure, with only one class present. Last attribute
class shows the majority class in a given node. If a node is a leaf node, the attribute
class contains the final classification.

4.3.2 Random Forest
Random Forest algorithm is also implemented in the scikit–learn package. Decision tree
algorithm used in a Random Forest is the same as described in section 4.3. Due to the
nature of the Random Forest model, it is complicated to fully understand the trained
model. Random Forest is used only for accuracy comparisons, and trained models are
not visualized in any way.

4.3.3 Oblique decision trees
Oblique decision tree implementation is based on the original OC1 source code. With
the use of Python API from Andriy Mulyar [16] it is possible to use CART with linear
combinations, OC1 algorithm and OC1 algorithm with an option of orthogonal splits
in Python. Source code downloaded from Andriy Mulyar consist of original C code,
Cython2 bridge between C and Python and Python demo. Model training is done via

1 https://www.graphviz.org/
2 https://cython.org/
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the original C library. Evaluation and exports of trained models are done predominantly
in Python.

All implemented algorithm works with the same inputs. Cython part of the code
accepts Python scikit–learn compatible datasets with the exception of feature names
and classification classes. An oblique decision tree is represented by the equations of
corresponding splitting hyperplanes. Example of oblique tree representation is shown
in Fig. 4.3.

Figure 4.3. Oblique decision tree representation using hyperplane equations.

Every inner node of an oblique decision tree is fully described by its location within
the tree, data split, and hyperplane equation. The root node is denoted by the word
Root. Other nodes are localized by a sequence of l and r letters which stand for left and
right if decision tree is searched from the root node in a depth–first manner. Symbol
x[n] denotes the n-th feature.

Records are split based on their relative position to the splitting hyperplane. Records
above the splitting hyperplane proceed to the right node. Records below proceed to
the left node.

Oblique decision trees can be saved into and loaded from text files with methods
from the original OC1 library. Trained models occupy limited storage space and can
be modified by hand. For example, a fully grown tree can be trained by original code
and pruned later.

Original representation of oblique decision tree is fully descriptive but not exactly
easy to understand. For this reason, Python methods that provide more complex
export into .csv file are implemented. The convenient way to analyze oblique decision
tree is to identify essential features for given splits. A simple proposed method for
importance evaluation is to use average feature values and coefficients of given splits.
When evaluating splitting condition feature coefficients are multiplied by feature values.
A binary feature with values limited to 0 and 1 is going to have a much higher coefficient
than features such as temperature or pressure with values of higher orders. Important
features can be determined using average feature values. After the multiplication
of coefficients with average feature values resulting values in splitting conditions are
scaled–down to the range of <-1, 1>. The scaling coefficient is the highest positive
or the lowest negative number. This approach allows for quick detection of important
values while preserving ratios of features importance. Example of selected export is
shown in Fig. 4.4.

Exported oblique decision tree is trained on a dataset containing three features. This
example shows that feature with the smallest coefficient can be the most significant.
For this reason, it is crucial to identify feature value ranges when interpreting decision
trees. All feature values are multiplied by coresponding average values. Minimal value
is represented by feature 2 where −1.076 is multiplied with 4.9 resulting in −5.2724.
Maximum value is represented by feature 3 where 0.274 is multiplied by 23.12 resulting
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Figure 4.4. Example of feature importance analysis export - root only.

in 6.3349. All values are scaled–down by extreme with higher absolute value which is
6.3349 in this case. For clarity, features with a positive impact on splitting result are
coloured blue, and features with negative impact are coloured orange.

Feature importance can be evaluated on every inner node of the oblique decision
tree. For trees with multiple nodes average values must be computed for every node.
Collums are denoted the same way as inner nodes with l and r letters. Export of such
non–trivial tree is shown in Fig. 4.5.

Figure 4.5. Complex example of feature importance analysis export.

From the values and colour highlight of the first feature in Fig. 4.5, it can be seen
that this feature is essential in root splitting condition. The average value of the first
feature increased from 1.250 to 1.720 for the left node and decreased from 1.250 to
0.431 for the right node. The average values can be used for a quick overview of how
the records are separated based on features values. For further understanding, it is
convenient to go through the decision tree and look at the data subsets various nodes
of the classification path.
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Chapter 5
Parameter settings

All implemented decision tree algorithms have various parameters that need to be set.
Reasonable ranges for various parameters are recommended in this chapter. The process
of finding optimal parameters for a given task is often referred to as a parameter tuning.

5.1 CART and Random Forest parameter tuning
Optimal CART parameters are hard to set because they change accordingly on data. In
this thesis, classification is binary. Therefore splitting criteria should not play any role.
Gini criterium is used in all decision trees because of its fast evaluation. This conclusion
confirms theoretical assumptions made in section 3.1.3. Trained models should work
as a grey-box, where the main focus is on comprehensibility. Decision tree depth must
be limited to a reasonable level, which might differ for various tasks. In the best–case
scenario, the vast majority of alarm class data should follow the same classification
path. For detailed parameter tuning see this article [15] or the original paper [5].

The Random Forest consists of many CART decision trees. Finding parameters
for CART tree in the Random Forest is at least as challenging as in CART alone.
Random Forest is used only for accuracy comparison, so there is no ambition to look
into individual trees. The number of classifiers trained is set to 100. This number is
chosen based on theoretical research [22], [14] and also on the recommended default
value by the scikit–learn library. Accuracy comparisons between CART and Random
Forest in this thesis are always made on models trained with the same parameters.

5.2 Oblique decision tree methods comparison
There are three possible algorithms to choose from: CART with linear combinations,
OC1 and OC1 with the possibility of orthogonal splits. In this section, all algorithms
are compared based on their accuracy and tree depth. The best algorithm is selected
after a series of tests, and reasonable ranges for parameters are recommended.

The first test is going to test tree accuracy for various sizes of training dataset.
Decision trees should detect state, where two feature values are compared, and another
feature value is above a threshold. A real–world example of such classification would
be underheating while the building is occupied or detection that a car is turning to one
side based on engine revs and wheels rotation speeds. Training dataset is systematically
reduced from 50 000 of each classification class down to 100 each. The number of restarts
and number of perturbation is set to 10. Importance of these parameters is discussed
later. Results of this test are shown in Fig. 5.1.

From theoretical point of view, an oblique split should always surpass orthogonal
split because orthogonal split can be described as an oblique split with zero weights on
all but one feature. OC1 and OC1 with orthogonal splits had the same accuracy for all
datasets. After further testing on other datasets, it seems that OC1 almost exclusively
prefer oblique splits. OC1 orthogonal will not be part of further testing.
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Figure 5.1. Accuracy comparison of CART, OC1 and OC1 with orthogonal splits with
different training dataset size.

CART with linear combinations shows lower accuracy across all datasets greater
than 250 records of both classification classes. The difference between OC1 and CART
accuracy for big datasets is minimal (0.5 %). In the following test accuracy of both
induced tree is compared on each level. Due to stochastic properties of OC1 algorithm is
started from 10 different random states, and resulting accuracies are averaged. Results
are shown in Fig. 5.2. OC1 induced tree is considerably more accurate with small
tree depth which is excellent for comprehensibility. Larger decision trees with more
levels are more likely to suffer from overfitting. Based on Occam’s razor principle, trees
build with OC1 algorithm should generalize problems better and are expected to be
preferable. From now on in this thesis, all comparisons between oblique trees and other
methods will use OC1.

Figure 5.2. Accuracy comparison of CART and OC1 based on tree depth.

5.3 OC1 parameter tuning
OC1 algorithm has few tuning parameters. Basic parameters are defined in OC1.h
header file. These parameters with corresponding values are shown in Table 5.1.
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parameter name value
MAX COEFFICIENT 1.0
MAX NO OF ATTRIBUTES 4020
MAX DT DEPTH 50
MAX NO OF STAGNANT PERTURBATIONS 10
MAX CART CYCLES 100
TOO SMALL THRESHOLD 2.0
TOO SMALL FOR ANY SPLIT 3
TOO SMALL FOR OBLIQUE SPLIT 2 * no of dimensions

Table 5.1. Default configuration of OC1 parameters.

Basic parameters are set in the original code by Breiman. These values are used for
all experiments and tests. Other configurable parameters of OC1 are the number of
restarts and the maximum number of hyperplane perturbations. The following test is
done on the dataset containing five features. Alarm state in this dataset compares two
features with each other and other two features with a threshold. OC1 algorithm is run
with multiple settings from one restart and one perturbation up to 250 restarts and 250
perturbations. Resulting heatmap showing the depth of trained trees is shown in Fig.
5.3. Accuracy heatmap is shown in Fig. 5.4.

Figure 5.3. Heat map of decision tree depth based on the number of restarts and
perturbations.

Using heatmap visualization, it is clear that the increasing number of perturbations
and restarts have a positive effect on the tree depth. This result is expected because
more perturbations can only improve splitting properties of each node. The number of
restarts seems to be as important as the number of perturbations, but that is probably
highly dependent on a given problem. High–dimensional problems with many local
minima will probably require more restarts than more straightforward tasks.

Figure 5.4. Heat map of decision tree accuracy based on the number of restarts and
perturbations.
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The preprunning conditions of OC1 determined by basic parameters stop the building

process when nodes are pure or too small to be split further. Smaller trees are the ones
that managed to split data more efficiently with a simpler model. These trees are likely
to be more accurate. Smaller trees are expected to exceed bigger trees, especially on
cross–validation with data from different equipment. They are more likely to display
general system behaviour rather than only overfit data. The expected behaviour is
supported by the results shown in heatmaps, but accuracy is high even for medium–
sized trees.

Decision tree training time heatmap is shown in Fig. 5.5. Training time is affected
by both number of restarts and the number of perturbations approximately in the same
manner. All tests were done on a computer with the intel i7–9750h processor.

Figure 5.5. Heat map of decision tree training time [s] based on the number of restarts
and perturbations.

Recommended values from this test are at least 100 restarts and 100 perturbations.
This recommendation is applicable only for a reasonably big dataset. OC1 algorithm
is utilizing only CPU core. Tree building time can easily get into hours when training
decision trees on bigger datasets.

Due to substantial time demands, training dataset size importance is evaluated.
OC1 algorithm is used on a balanced dataset with samples of each class ranging from
100 to 50 000 with 100 increments. Algorithm parameters are set to 10 restarts and
10 perturbations. Each step is also repeated ten times to evaluate the deviation of
accuracy. The resulting accuracy mean, and the standard deviation are shown in Figs.
5.6 and 5.7.

Figure 5.6. Accuracy of OC1 based on the size of training dataset.
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Figure 5.7. Standard deviation of OC1 classifier accuracy based on the size of training
dataset.

Based on the results from previous experiments, it is highly recommended to use
datasets with at least 10 000 samples of both classes. If there is enough computational
power or time available, it is probably best to use the biggest possible training set.
Computational time requirement based on the dataset size is shown in Fig. 5.8.

Figure 5.8. Training time of OC1 classifier accuracy based on the size of training dataset.

Training time is proportional to the number of features. The main issue is the size of
training dataset. It is also worth mentioning that these times in Fig. 5.8 are achieved
on a problem which resulted in smaller trees. When it is hard for OC1 to fit training
data, computational times become significantly longer, because the number of nodes in
each following level is up to double. In general, it is a good idea to start with smaller
datasets and parameter values to evaluate time consumption and iterate from there.
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Chapter 6
Methods comparison

In this chapter, decision tree methods are compared using three simple problems from
the domain of heating circuits. Heating circuits are part of almost every building.
Faulty control of heating circuits can lead to energy waste and discomfort. Heating
circuits are one of the modest HVAC systems and provide an excellent environment
for simple tests. Heating circuits usually contain four sensor data points and control
datapoint with requested temperature. Schematic of a heating circuit with feature
labels is shown in Fig. 6.1.

Figure 6.1. Schematic of heating circuit with feature labels.

Feature names are used in the visual interpretation of trees in shortened form.
Complete list of features is:.pump – a binary signal of pump state (1 – on, 0 – off),. return wt – the temperature of the water returning from a heating circuit [◦C],. supply wt – the temperature of the supply water coming from threeway valve [◦C],. supply wt req – requested supply temperature [◦C],.valve – valve position [%].
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The first detection problem is valve saturation. Valve saturation requires decision

trees to detect if two features are above a given threshold. The pump state must be
1 and the valve position greater than 99%. All methods are expected to achieve high
accuracy and interpretability on this problem.

The second detection problem is underheating. Underheating should be detected
when supply wt is under supply wt req by more than 0.5 ◦C. This problem should test
CART classification performance on dependent features.

The last detection problem combines both valve saturation and underheating and
should demonstrate decision tree usage on a more complex problem.

Heating circuit dataset was exported from SkySpark. It is composed of over
8.5 million records from approximately 100 different heating circuits. All records are
from the year 2019. Heating circuits are sampled with a sampling period of 5 minutes,
but the timestamp is not used for classification.

Based on the properties of OC1 discussed in section 5.3, training dataset size is set to
10 000 samples for each classification class. With the dataset made of over 8.5 million
records, it is beneficial to use large validation dataset. The size of validation dataset is
100 000 for each classification class in order to quarantee same validation dataset size
across all diagnosed problems. Records are assigned to training and validation datasets
randomly.

6.0.1 Valve saturation
Valve saturation in a heating circuit is generally a sign of fault within the system. Valve
saturation is defined as a state when valve position is over 99 % and the pump is on.
This problem should suit CART decision trees because the evaluating condition can be
expressed as a logical conjunction of two single feature splits.

Resulting CART induced decision tree has two nodes as expected. The decision tree
shown in Fig. 6.2 is accurate and easy to interpret.

Random Forest algorithm achieved perfect accuracy as well as CART.

Figure 6.2. CART induced decision tree for valve saturation problem.
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An oblique decision tree is able to split records based on both valve position and

pump state in a single split. This approach generally leads to smaller trees. The oblique
tree requires additional nodes to classify all training records. The induced tree is shown
in Fig. 6.3. Root node splitting condition is analyzed by coefficient scaling. The results
are shown in Fig. 6.4. Most significant features are pump state and valve position.
Unexpectedly return wt is also quite significant. Accuracy of an oblique tree consisting
only from the root node is 0.985645.

Figure 6.3. OC1 induced oblique decision tree for valve saturation.

Figure 6.4. Analysis of feature importance in root node splitting condition.

In theory, it is possible to find an oblique decision tree with just a root node, which
would have 1.0 accuracy as CART. The reason why OC1 did not find this tree is
probably a high resolution of valve position. All data is taken directly from SkySpark,
and valve position has up to 8 decimal places accuracy. Training and validation dataset
were rounded up to 1 decimal place in order to test this hypothesis. Rounded datasets in
combination with a high number of hyperplane perturbations and restarts resulted in a
perfect oblique tree with just root node and accuracy 1.0. This hyperplane decision tree
is shown in Fig. 6.5. Rounding decimal places has enormous impact on this problem,
but it does not seem to be significant for other tested datasets. Rounding of values is
not used for any other dataset in this thesis.

Figure 6.5. Oblique decision tree for rounded datasets of valve saturation.

All partial results are summarized in Table 6.1.
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Method Model size Accuracy

CART 2 nodes 1.0
Random Forest 100 estimators 1.0
OC1 root node 0.9856
OC1 4 nodes 0.9996
OC1 rounded root node 1.0

Table 6.1. Accuracy comparison of different methods on valve saturation.

6.0.2 Underheating
Faulty control or mechanical defects can result in different supply water temperature
than requested. The most common variant of this problem is underheating.
Underheating can cause discomfort, and it is often an indication of failure within
the system. Underheating in this test is defined by supply wt + 0.5◦ < supply wt req
while the pump is on. This problem should exploit the CART’s inability to compare
feature values.

CART induced decision tree depth was limited to 5 layers. The resulting tree is
shown in Fig. 6.6. Root node utilized the pump state to filter out most records from
a normal class. Records with running pump are further split based on supply wt and
supply wt req. These splits try to approximate feature comparison on given values.

Figure 6.6. CART induced decision tree for the underheating problem (UH).

This approach does not achieve high accuracy and is hard to interpret. What might
be surprising is that unpruned decision tree is more accurate even though it consists
of over 800 nodes. Decision trees of this size are hardly ever interpretable and usually
suffer from overfitting, which causes lower accuracy. In this test, nodes in lower tree
levels are approximating comparison between supply wt and supply wt req. As shown
in Fig. 3.7, it is hard to fit oblique split even with an enormous number of binary splits.

Classification paths of this CART tree are dividing feature space into big areas far
away from the true splitting line, where classification is easy and small areas near the
true splitting line. A dataset with many records near the splitting line forces CART to

29



6. Methods comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.7. Section of unpruned decision tree for underheating problem.

create an enormous amount of layers. Classification path from the unpruned tree that
is highlighted with a light blue colour in Fig. 6.7 is described using a scatter plot in
Figs. 6.8 and 6.9.

In Fig. 6.8, the subset of records from training dataset affected by a given
classification path is plotted using a scatter plot. True evaluation condition is
represented by a red line. Decision tree splitting conditions are represented by black
dashed lines. In following Fig. 6.9, parts of the scatter plot are highlighted in different
colours based on which split cut off given part. The first four splitting conditions cut
off areas in the order: red, green, blue and yellow. The last splitting condition divides
remaining records into two pure leaves. The example shown in this figure demonstrates
that the oblique splitting condition is approximated with an accuracy determined by
training dataset. Small training datasets lead to poor accuracy, and big datasets lead
to enormous trees.

The induced oblique decision tree is smaller, has superior accuracy and is easier
to interpret than the CART tree. The resulting oblique decision tree with feature
importance analysis is shown in Fig. 6.10. Root node filters records from normal
classification class very effectively. The left node contains another splitting condition
which further split records based on supply wt, supply wt req and the pump. Oblique
decision tree should have all the properties needed to solve this problem completely.
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Figure 6.8. Visualization of the decision path of CART tree in underheating problem.

Figure 6.9. Visualization of the cutaway areas in the decision path of CART tree in
underheating problem.

Figure 6.10. Oblique decision tree for underheating.
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What are the records that are misclassified?
The validation dataset of 200 000 records is split by decision tree among the nodes

in the same ratio as in the training dataset. There are three leaf nodes. These nodes
are referred to as r, ll and lr corresponding to their position within the decision tree.
The total number of misclassified records is 598. The majority of these errors (539)
ends up being classified by leaf ll, and the rest (59) is classified by leaf r. Leaf node
lr classifies all records correctly. Records from validation dataset are filtered according
to classification paths of ll and r leaves in order to detect any similarities between
misclassified records.

Misclassifications – leaf r
All misclassifications made by leaf r are false–positive. Misclassified records can

be split into two groups. The bigger group contains records, where supply wt is
right under threshold value for underheating while temperatures are above average.
The relatively high coefficient for return wt in combination with high temperature
causes an incorrect classification. Maximum return wt in validation dataset is 95.4 ◦C.
Whenever return wt reached 95.4◦C, supply wt is at a much lower temperature. This
extremely high temperature is present in most misclassified records. This value is very
likely to be a sensor fault. The smaller group of errors contains records where high
valve position (90 – 100 %) is combined with the small difference between supply wt
and supply wt req (0.1 – 0.4 ◦C). Most controllers in heating circuits do not use that
aggressive valve control near the requested value. These records are not represented
in dataset sufficiently. This type of misclassification is responsible for 15 errors from a
total of 200 000 records.

Misclassifications – leaf ll
All misclassifications made by leaf ll are false–negative. A small part of misclassified

records contain records where supply w is higher than supply wt req by more than 2 ◦C.
The majority of errors falls into the last group. This group contains records where the
difference between supply wt and supply wt req is very close to the threshold. The
average difference from threshold from over 500 cases is 0.0046 ◦C with the highest
value 0.00660 ◦C. In heating circuits temperature sensors often work with the accuracy
of 0.1 ◦C or worse.

The analysis of misclassified records shows the importance of quality of training
datasets and limitations of the split search methods. This analysis also shows the
importance of grey-box nature of decision trees. Expert opinion can be used to asses
each classification branch.

All partial results are summarized in Table 6.2.

Method Model size Accuracy
CART depth 5 – 16 nodes 0.8612
CART unlimited – 842 nodes 0.9809
Random Forest depth 5 – 100 estimators 0.8669
Random Forest unlimited – 100 estimators 0.9737
OC1 2 nodes 0.9971

Table 6.2. Accuracy comparison of different methods on underheating.

6.0.3 Valve saturation and underheating
The last problem from the domain of heating circuits is the combination of valve
saturation and underheating. This problem contains aspects which might benefit
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CART with feature comparison suitable for oblique decision trees. Valve saturation
and underheating can be a sign of undersized or suboptimally performing heat source.
Detection of such behaviour can be used for predictive maintenance before further
damage to the heat source is done. Alarm state is defined by valve position greater
than 99%, supply wt being more than 0.5◦C lower than supply wt req and the pump
state on. For clarity valve saturation and underheating is referred to as VSU.

Results from this experiment solidify the experience acquired from the past two
tests. CART induced decision tree has no problems detecting valve saturation and
pump state, but struggles to fit feature comparison with single feature splits. Pump
and valve position splits significantly reduce the number of records that proceed to the
lower parts of the decision tree. This reduction provides higher accuracy compared to
the underheating problem. CART induced tree pre–pruned to the depth of five levels
is shown in Fig. 6.11.

Figure 6.11. CART induced decision tree for valve saturation and underheating problem.

33



6. Methods comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fully grown CART tree starts with pump and valve nodes and then follow the same

structure as the decision tree from the underheating problem. The unpruned tree is
more accurate than the pruned one, but with over 150 nodes, it is difficult to interpret.

Random Forest performance is very similar to CART. With little accuracy advantage
which also stands only for pruned trees, there is not much motivation to use Random
Forest over CART for this problem.

The oblique decision trees show superior accuracy and interpretability to both CART
and Random Forest. Oblique decision trees, as well as CART, have higher accuracy
compared to the underheating problem. The fully grown oblique tree is shown in Fig.
6.12.

Figure 6.12. CART induced decision tree for VSU.

Based on the misclassification analysis similar to the underheating problem, most
classification errors are caused by records extremely close to the underheating threshold.

While oblique decision trees are much smaller than CART thus more manageable to
explain, an oblique split can be much more difficult to understand fully. First two nodes
of the oblique decision tree correctly classify all but 82 records from training dataset.
The results of feature importance analysis of these splits are shown in Fig. 6.13.

Figure 6.13. Feature importance analysis for oblique decision tree pruned to two nodes
for VSU.

From feature importance, it can be deduced that the first split combines condition
on pump state with the condition on valve saturation. The second splitting condition
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further divides records based on the difference between supply wt and supply wt req.
This approach closely describes evaluating condition with just two conjugated oblique
splits. Combining multiple single–feature splitting conditions into a single oblique split
shrinks tree size, but it is not intuitive and might be hard to understand with an
increasing number of features.

All partial results are summarized in Table 6.3.

Method Model size Accuracy
CART depth 5 – 10 nodes 0.9838
CART unlimited – 158 nodes 0.9977
Random Forest depth 5 – 100 estimators 0.9851
Random Forest unlimited – 100 estimators 0.9976
OC1 2 nodes 0.9952
OC1 5 nodes 0.9993

Table 6.3. Accuracy comparison of different methods on VSU.

6.1 Heating circuits decision tree usability conclusion
Oblique decision trees are superior to other methods in cases of underheating and VSU.
CART decision trees can be trained using the same datasets, and training takes very
little computational time compared to OC1. As demonstrated with valve saturation
problem, CART can provide very small and descriptive decision trees on some problems.
Due to minimal amount of extra effort required, it is worth to train CART tree just
for comparison and other insight into the studied problem. Oblique trees show better
interpretability and performance and are suitable for more challenging tasks. Decision
tree methods can be successfully used for heating circuit diagnostics.
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Chapter 7
Application in air handling units domain

After decision tree method comparison on the easier HVAC system in Chapter 6, oblique
decision trees alongside with CART are tested on problems from AHU domain. There
is an ongoing project[9] in UCEEB that tries to diagnose AHU based on a set of
expert–designed rules. Series of tests were conducted in order to create datasets to
evaluate the performance of designed rules. This dataset was created prior to the idea
of using machine learning methods. Some pitfalls of using this dataset with decision
tree methods are described in the following section. Decision tree methods are used on
various selected faults.

7.1 Dataset description
The dataset consists of normal state records and records of various faults. Faults are
recorded on up to 6 AHU units for the duration of 2 hours. AHU units data are sampled
with a sampling period of 5 minutes. Records representing the normal state of AHU
units are from periods where was no testing done. The resulting dataset consists of
tenths of thousands of records of normal states and up to 144 records of each fault.

The use of decision tree methods requires records to be consistent in the number of
features. Some of the AHU units have extra sensors that are not present in others.
Therefore, these extra features are omitted. An example scheme of an air handling unit
is shown in Fig. 7.2.

The dataset consists of the following features:

. fanE log – exhaust air fan position (1 – open, 0 – closed),. fanF log – fresh air fan position (1 – open, 0 – closed),.AHU log req – run request signal from control system,.AHUS vfr – volumetric flowrate,.hreBy con – bypass position,.heater log – heater state (1 is running),.heater vlv – heater valve position,.heaterOut tw – measured water temperature after heater,.chiller vlv – chiller valve position,.chillerOut tw – measured water temperature after chiller,.oda ta – measured outdoor air inlet temperature,. sup ta – measured outlet air temperature,.zone ta – measured space temperature,
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.eta ta – measured exhausted air inlet temperature,.eha dmp – air damper position on exhaust air outlet (1 – open, 0 – closed),.oda dmp – air damper position on fresh air inlet (1 – open, 0 – closed).

In this application decision tree methods build models that try to split records
accurately and straight-forwardly. The induced decision trees have accuracy 1.0 on
all selected faults and consist only from the root node. These results are suspicious,
and further analysis shows that all faults were recorded on Fridays. Requested measured
space temperature was the same on all weekdays except for Friday. This means that the
decision tree could perfectly distinguish any faults just by checking this temperature.
CART induced tree is shown in Fig. 7.1.

Figure 7.1. CART induced tree for AHU dataset that uses just requested temperature
that has nothing to do with recorded fault.

This example demonstrates how easy it is to produce a dataset that might be suitable
for the expert–design analytical approach but useless for machine learning methods.
The requested temperature was removed from the dataset.

7.2 Shut down fans while heating
This test was conducted on all AHU units and is represented by 84 faulty records.
Fault state is defined by at least one of the fans being shut down while the AHU unit
is heating. CART induced tree is shown in Fig. 7.3.

Interpretability of this decision tree is hard. Two–thirds of fault states are classified
based on eha dmp and AHU log req, and just one third takes fans into account.
Accuracy of this decision tree is 0.998, but the accuracy is highly misleading due to the
size of the dataset.

The trained oblique decision tree consists of just two nodes. Root node successfully
filters out 43 out of 45 fault states in the training dataset. The second node further splits
records into a large pure group of normal states and a small group of just one normal
and two fault records. The interpretability of the root node decision is important.
Feature importance analysis of a subtree containing just the root node is shown in Fig.
7.4.
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Figure 7.2. AHU scheme with sensors and actuators labels.
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Figure 7.3. CART induced tree for shut down fans while heating fault.

Full feature importance is extensive; therefore, features with low importance are not
displayed. It is clear that the root node is affected by both fanE log and fanF log as
well as chillerOut tw and heater log.

From the feature weights in root splitting condition, it can be deduced that at least
one of the fans must be closed and heater log must be on. This explanation follows the
real fault and shows that this decision tree can be used for diagnostics of such fault.

7.3 Pressure sensor fault
The second experiment was designed to demonstrate the fault of a differential pressure
sensor. This fault leads to different states of fanE log and fanF log. CART induced
tree is shown in Fig. 7.5.

This decision tree has accuracy 0.995, but its interpretation is impossible. Both
fanE log and fanF log are not present in any splitting condition.

The oblique decision tree consists of two nodes. Root node splits all fault records
with five normal states into one branch and the rest of the normal states into the other.
The second node filters out the remaining five normal states. Feature analysis shown
in Fig. 7.6 is done only on the root node. Features with very low importance are not
displayed.
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Figure 7.4. Feature importance analysis of oblique tree for shutdown fans while heating
fault.

Maximum values for some temperature features suggest that normal state records in
the dataset contain some corrupted records. Values of zone ta should not reach 150 ◦C.
Higher quality dataset could improve the performance of decision tree methods. The
major issue is probably the low number of fault records.

7.4 Bypass stuck in the open position
The last problem from AHU domain is bypass stuck in the open position. This fault
was simulated using false sensor data. This means that the control system, as well
as data in the dataset, think that bypass is working properly, even though it is stuck
in a fully open position. CART induced decision tree achieves excellent accuracy, but
after further inspection, it is clear that it does not truly model the problem. Decision
tree uses combinations of upper and lower limits on various features to extract fault
records. This behaviour is described in section 6.0.2 and demonstrated in Fig. 6.8. This
problem is caused by small dataset and insufficient excitation of the system during fault
simulations. The induced tree is shown in Fig. 7.7. Colours highlight combinations of
upper and lower limits.

Oblique decision tree resulted in 5 nodes with the accuracy of 0.9990. Analysis of
feature importance shows that almost all features have similar importance and oblique
splitting conditions are impossible to interpret. Dominant features are the same as in
the CART decision tree. Oblique decision trees try to filter out faulty records in the
most efficient way. With a small number of faulty records, a decision tree can overfit
data rather than describe faulty behaviour of the system.

7.5 Results and AHU usage conclusion
CART and oblique decision trees are trained for three selected problems from the
AHU domain. The first problem is the detection of shutdown fans while the AHU
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Figure 7.5. CART induced tree for pressure sensor fault.

is heating. CART decision tree contains splitting conditions on fanE log and achieves
high accuracy, but it can not be interpreted. The oblique decision tree has even higher
accuracy. Feature importance analysis highlights expected features of the root node.
These features contain both fans signals as well as features that can be used to detect
heating such as heater log.

Both further problems do not result in any usable models. All trained decision trees
have accuracy over 0.995 but are not applicable in the real-world. Further analysis of
trained models shows that decision trees use signals that have nothing to do with the
faults and just overfit the data. CART ability to filter records based on upper and
lower limit splits on some features such as temperatures is shown in Fig. 7.7. Resulting
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Figure 7.6. Feature importance analysis of oblique tree for pressure sensor fault.

Figure 7.7. CART induced tree for pressure sensor fault.
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models analysis leads to the conclusion that the training dataset is too small for the
application of the decision tree methods.

The vital advantage of grey–box nature of decision tree models lies in detecting
when trained models are not usable despite their high accuracy. It is impossible to
evaluate trained models without proper validation dataset or the ability to analyse
trained models. The results from conducted tests show the advantage of decision trees
over black–box methods in this application.
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Chapter 8
Conclusion

Nowadays, expectations of energy efficiency and reliability of many HVAC systems are
higher than before. It is requisite to use diagnostics to meet these requirements. Faulty
systems can lead to wasted energy, discomfort or even danger. Expert time is costly
and limited, which calls for automated diagnostics using diagnostic rules or methods
based on models.

This thesis investigates the usability of decision trees in fault detection in HVAC.
At first, decision tree principles were explained alongside with their drawbacks and
advantages. Based on literature, decision tree modifications such as Random Forest
and oblique decision trees were presented.

Selection of decision tree methods was implemented using Python library scikit–learn
and OC1 classifier code. Implemented methods were compared on a real–world dataset
from the heating circuit domain that consists of over 8 million records. Decision tree
methods were also utilised on AHU dataset from UCEEB. This usage tested whether it
is possible to provide an alternative to an expert–designed set of diagnostic rules using
already existing dataset.

CART induced trees were able to achieve good accuracy on most problems, but
their interpretability was problematic. HVAC systems and process control in general
work with feature comparison and dependent variables. Dependent variables are, for
example, requested and measured values of various temperatures, pressures or positions.
CART is not able to handle these problems and preserve the interpretability of trained
models.

Oblique decision trees were superior to CART in both accuracy and interpretability.
In heating circuit domain OC1 induced trees contained a small number of nodes.
They were easy to interpret and had excellent accuracy. In AHU domain trained
decision trees revealed that despite the great accuracy (over 0.995) they are not usable
in this application. Due to the small size of the dataset decision trees managed to
classify records based on features unrelated to the detected fault. Notwithstanding its
limitations, one of the AHU faults demonstrates well that oblique decision trees can
also be successfully used on more complex systems.

In general, decision trees especially oblique decision trees seem to be an excellent
tool for diagnostic rule design. Its grey–box nature allows experts to check how is
trained model working and compare splitting conditions with existing diagnostic rules.
Interpretability of trained models allows decision tree models to work as a foundation
for expert–design rules. Trained models can also be manually tweaked based on expert
experience.

Decision trees usage has its limitation in dataset size. The tested AHU dataset
consists of simulations from multiple units in the duration of hours. The biggest
challenge of decision tree usage is the creation of a sufficiently large and diverse dataset.
The solution to this problem could be cooperation with manufacturers that might be
able to produce sufficient datasets.
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Appendix A
Abbreviations

AHU . Air handling unit
API . Application programming interface
CART . Classification and regression tree
CPU . Cetral processing unit
ČVUT . Czech Technical University in Prague
FEL . Faculty of electrical engineering
HVAC . Heating, ventilation, air conditioning
ID3 . Iterative Dichotomiser 3
ID4.5 . Iterative Dichotomiser 4.5
OC1 . Oblique clasifier one
OOB . Out of bag classification
SCADA . Supervisory control and data acquisition
UCEEB . University centre for energy efficient buildings
VSU . Valve saturation underheating
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Appendix B
Contents of the enclosed CD

The electronic version of the diploma thesis is present on enclosed CD. This CD also
includes source code, datasets and results of all tests mentioned in the presented work.
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