
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Michal Němec

Planning for team of robots in cooperative wall
building task

Department of Control Engineering

Thesis supervisor: Ing. Robert Pěnička

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických princip̊u
při př́ıpravě vysokoškolských závěrečných praćı.

V Praze dne
Podpis autora práce

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457202Personal ID number:Němec MichalStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Planning for team of robots in cooperative wall building task

Master’s thesis title in Czech:

Plánování pro tým robotů v úloze kooperativní stavby zdi

Guidelines:
1. Get familiar with orienteering problem and algorithms used for cooperative task planning.
2. Formulate a variant of the orienteering problem for wall building task as integer linear programming.
3. Implement heuristic solution approach for planning the wall building.
4. Evaluate the proposed method and compare it with optimal solution.

Bibliography / sources:
[1] Roozbeh, Iman, Melih Özlen and JohnW. Hearne. “A heuristic scheme for the Cooperative Team Orienteering Problem
with Time Windows.” ArXiv abs/1608.05485 (2016).
[2] Pieter Vansteenwegen, Wouter Souffriau, Dirk Van Oudheusden. “The orienteering problem: A survey.” European
Journal of Operational Research, Volume 209, Issue 1, 2011, Pages 1-10.
[3] Aldy Gunawan, Hoong Chuin Lau, Pieter Vansteenwegen. “Orienteering Problem: A survey of recent variants, solution
approaches and applications.” European Journal of Operational Research, Volume 255, Issue 2, 2016, Pages 315-332.

Name and workplace of master’s thesis supervisor:

Ing. Robert Pěnička, Multi-robot Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Ing. Martin Saska, Dr. rer. nat., Multi-robot Systems, FEE

Deadline for master's thesis submission: 22.05.2020Date of master’s thesis assignment: 16.01.2020

Assignment valid until:
by the end of summer semester 2020/2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Robert Pěnička
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank my supervisor Ing. Robert Pěnička for his help and guidance
over the writing of this thesis. I would also like to thank my family, partner and friends
who always supported me.

Abstract
This thesis deals with the Wall Building Problem (WBP) by a group
of robots. Problem is motivated by Mohamed Bin Zayed International
Robotic Challenge 2020 competition, where one of the challenges was to
build a wall using a group of robots while collecting maximum reward
withing a specified time budget. The problem is first formalized as a
variation of the Orienteering Problem (OP), where the main goal is to
collect maximum reward given some problem space. Physically building
the wall naturally introduces precedence constraints for each brick
that are not generally present in OP and must also be added to the
formulation. A metaheuristic approach as a variation of GRASP method
is proposed. The method solves a specified Wall Building Problem as an
iterative algorithm. In the later sections, we show how our method can
be extended to account for the heterogeneous group of robots. The last
sections are reserved for performance evaluation and comparison with
optimal solutions obtained by the generic solver.

Keywords: wall building problem, vehicle routing problem, metaheuris-
tics, greedy randomized adaptive search procedure

Abstrakt
V této práci je řešen problém stavění zdi (WBP) pomocí skupiny
robotů. Práce je inspirovaná jednou ze soutěží Mohamed Bin Zayed
International Robotic Challenge 2020. Cílem soutěže bylo postavit zeď
pomocí skupiny robotů a přitom dosátnout největšího skóre v zadaném
časovém limitu. Problém je nejprve definován jako úloha lineárního
programování motivovaném tzv. Orienteering problémem (OP). OP má
za cíl maximalizovat zisk na předem definované trati, po které se mohou
roboti pohybovat. Při stavění zdi se jednotlivé cihly musí pokládat na
sebe. Tato podmínka neni v OP běžně obsažena a metodu je nutné o ni
rozšířít. Pro řešení problému je použit metaheuristický přístup ve formě
iterační metody GRASP. V pozdějších sekcích je naše metoda rozšířena
o plánování pro heterogenní skupinu robotů. Na závěr jsou porovnýny
výsledky navrhnuté metody s optimálním řešením.

Klíčová slova: problém stavění zdi, problém směrování vozidel,
metaheuristika, greedy randomized adaptive search procedure

CONTENTS

Contents

1 Introduction 1

1.1 Wall Building Problem . 2

1.2 Orienteering problem . 2

1.3 Metaheuristic . 2

1.3.1 Greedy randomized adaptive search procedure (GRASP) 3

2 Wall Building Optimization Problem 5

2.1 Problem formulation . 5

2.2 Wall layers . 8

2.3 Virtual nodes . 9

2.4 Time constraint objective function . 10

2.5 Geometry representation . 12

2.5.1 Generating precedence rules . 12

2.5.2 Generating concurrence rules . 13

3 Heuristic approach 15

3.1 Plan construction . 17

3.2 Process edges . 18

3.3 Process Nodes . 18

3.4 Assign available nodes . 19

3.5 Time update . 21

3.6 Node placement . 23

3.7 Optimization procedure . 23

3.8 Local Search . 25

3.9 Solution update . 26

4 Heterogenous robot fleet 27

I

CONTENTS

5 Performance evaluation 31

5.1 CPLEX . 31

5.2 Datasets . 31

5.3 Multithreaded performance . 32

5.4 Weakly constraint performance . 34

5.5 Highly constrained performance . 35

5.6 Plan comparison . 37

5.7 Robot utilization limits . 39

6 Experiments 40

7 Conclusion 43

Appendix A List of abbreviations 47

Appendix B CD content 47

II

LIST OF FIGURES

List of Figures

2.1 Simple wall . 7

2.2 Concurrence and precedence rules . 8

2.3 Wall demonstrating example where bricks spans more layers vertically. . . 9

2.4 Graph representation corresponding to Figure 2.3. 9

2.5 Start and end nodes . 10

2.6 Plan solution with end time minimization 11

2.7 Plan solution with reward only . 11

3.1 Resource state transition diagram. 21

3.2 Time update histogram and cumulative sum. 22

5.1 Concurrence and precedence rules . 32

5.2 Multithread model . 33

5.3 Solution of small problem . 37

5.4 Solution of small problem . 37

5.5 Solution of small problem . 38

5.6 Solution of small problem . 38

6.1 Brick reservoirs placement during the simulation. Wall is built in the center
of coordinate system. 41

6.2 Wall used in the simulation . 41

6.3 Wall being built by 2 UAVs. 41

6.4 Simulated camera feedback of the first UAV in Figure 6.3. 42

6.5 Simulated camera feedback of the second UAV in Figure 6.3. 42

6.6 Simulation plan . 42

III

LIST OF ALGORITHMS

List of Algorithms

1 GRASP - general algorithm . 3

2 Construction of precedence set. 12

3 Precedence brick comparison. 13

4 Construction of concurrence set. 13

5 Plan construction procedure. (function plan_construct) 17

6 One iteration step of the construction (function iterate_step) 17

7 Process constraints algorithms. (function process_edges) 18

8 Find available nodes. (function find_available_nodes) 18

9 Find available nodes. (function conccurence_rules_met) 19

10 Greedy assignment procedure. (function assign_available_nodes) 19

11 Find resources assignable to the node. (function get_available_resources) . 20

12 Assign given node to resources. (function assign_available_nodes) 20

13 Find minimal time update procedure. (function update_time) 22

14 Finish assigned node. (function place_assigned_nodes) 23

15 GRASP - main algorithm . 24

16 GRASP - greedy randomized construction.
(function greedy_randomized_construction) 24

17 GRASP - local search. (function local_search) 25

18 GRASP - update solution based on reward. (function update_solution) . . . 26

19 Find all assignable combination of node given available resources. (function
get_available_resources) . 28

20 Greedy assignment procedure. (function assign_available_nodes) 29

21 Assign given node to resources . 29

IV

1 Introduction

Planning has always been one of the extensively researched areas, from task scheduling
up to large-scale planning of manufacturing processes. Wall building task can be split into
multiple areas, from physical safety precautions when automating the build process using
heavy machinery [1], to a more abstract formulation where tasks are formulated decoupled
from actual physical actions required to perform them.

Building process can have multiple criteria in which we build the wall, using general
robot-human cooperation, or fully autonomous solution where one or group of robots co-
operates in building task. This thesis focuses only on abstract planning algorithms using a
fully autonomous group of robots where no additional human interaction is required. We
want our solution to be in some sense optimal. One of the extensively researched areas
is Vehicle Routing Problem (VRP), where the simple question is asked, "What are the
optimal paths for each vehicle in a group given some set of customers?". Here we refer to
customers as some abstract entity that each vehicle must visit to complete the task.

Since it was first proposed by Dantzig and Ramser [2], a lot of research has been
devoted to finding exact/approximate solutions. Many variants of this problem have been
explored, such as the Capacitated VRP (CVRP)[3], in which a homogeneous fleet of ve-
hicles is available and the only constraint is the vehicle capacity. When fixed visitation
time interval is required, VRP with Time Windows (VRPTW)[4] has been developed.
A special case in which certain group members are required to collect the reward from
each customer cooperatively is Cooperative Orienteering Problem (COP). The problem is
extended by conditions where customers must be served within a specified time window
(COPTW).

Real-life applications of VRP can become large such that exact methods [5] can not
be used to obtain an optimal solution. Since the vehicle routing problem specified as lin-
ear programming optimization is NP-hard [6]. Exact algorithms can only be used when
we are solving small instances of the problem. Many heuristic algorithms were developed
[7, 8] to solve such problems. The problem becomes more complex once we introduce some
problem-specific constraints that are not generally included in a formulation. Namely in
wall building problem, we are forced to introduce precedence rules that ensure correct or-
der in which bricks are built. The plan must ensure that bricks are placed on top of each
other. Precedence constraints also arise when one action or multiple actions must finish be-
fore the start of another. Some applications VRP include the dial-a-ride problem (DARP)
[9], airline scheduling [10], bus routing, or tractor semi-trailer problem (TSRP) [11]. The
emphasis has been made on metaheuristics [12], which are methods used to find feasible
solutions quickly. One of the widely known algorithms used is Clark and Wrights saving
method [13], which in original or modified forms can be used to obtain optimal/sub-optimal
solutions. In case of more complex constraints methods using genetic algorithms [14], [15]
has also been explored.

1

1.1 Wall Building Problem

1.1 Wall Building Problem

This work is motivated by Mohamed Bin Zayed International Robotic Challenge
(MBZIRC) 2020 1, where the main goal is to build a wall using the cooperation of terrestrial
and unmanned aerial vehicles(UAVs). Competition has three challenges, from which second
one is challenge of building wall using group of robots. The main objective is to maximize
total score by building a wall from different types of brick. Wall is built vertically using
the homogeneous group of robots, namely using three unmanned aerial vehicles (UAVs)
and one unmanned ground vehicle (UGV). There are four different types of bricks(red,
green, blue, orange) with different rewards for placing each of them. Each type of bricks
has different dimensions, and the biggest one must be carried using two UAVs at the same
time. Since it is competition, there is a time limit in which we need to place as many bricks
as possible. Based on the competition rules we propose solution in a form of Orienteering
problem.

1.2 Orienteering problem

The orienteering problem (OP) [16] is a routing problem, where we seek to find a
path through specified nodes such that we collect maximum reward associated with each
node. Requesting cooperation of multiple robots with collecting reward leads to the ex-
tension of OP to Cooperative Orienteering Problem (COP) [16]. If reward at each node
can be collected only within a specified time window, we are talking about the Coopera-
tive Orienteering Problem with time windows (COPTW)[17]. All variations of OP can be
defined for a homogeneous or heterogeneous group of robots. The objective function for
OP is commonly defined as a sum of rewards at each collected node using integer only
optimization variables. WBP is formulated as mixed-integer linear programming optimiza-
tion problem that is also NP-hard [18, 19]. Actual solutions are visualized using simple
Gantt chart[20], showing associated actions of each robot. The reward is received for each
successfully placed brick. Since it was a competition wall composed of bricks with different
dimensions and requirements on the cooperation of the robot fleet. Proposed algorithm
must be flexible to be able to incorporate various placement constraints that arise from
the cooperation of UAVs, such as collision avoidance requirements.

1.3 Metaheuristic

Metaheuristic methods do not guarantee solutions to the optimization problems, but
they are used to find improved solutions. They are relatively easy to implement and can
find feasible solutions in a short time compared to the exact solution given by generic linear
programming solver.

1MBZIRC 2020 https://www.mbzirc.com/challenge/2020

2

https://www.mbzirc.com/challenge/2020

1.3 Metaheuristic

There are widely known algorithms for solving VRP, such as the Nearest neighbor al-
gorithm or Clarke-Wright algorithm (CW). One of the popular metaheuristic widely used
is Tabu search. First proposed by Fred Glover in 1986 [21] to improve local search by
accepting non-improving moves within the neighborhood. Tabu search is a metaheuristic
that aims to proceed from a local optimum by allowing non-improving moves. A few years
later in 1989, GRASP was first introduced in [22] as an efficient probabilistic set covering
heuristic.

There are variations of the classical algorithm, such as the Reactive GRASP. In this
variation, the primary parameter that defines the restrictiveness of the Restricted Candi-
date List, see Section 1.3.1, during the construction phase is self-adjusted according to the
quality of the solutions previously found. There are also techniques for search speed-up,
such as cost perturbations, bias functions, memorization and learning, and local search on
partially constructed solutions.

1.3.1 Greedy randomized adaptive search procedure (GRASP)

This thesis presents the GRASP meta-heuristic approach [23] applied to WBP. The
GRASP can be generally defined as seen in 1. Algorithms use pseudorandom number
generators (PRNG) with initial seed that are used throughout the procedure.

Algorithm 1: GRASP - general algorithm
Result:

1 while stopping criterion not met do
2 restart random number generator with different seed;
3 greedy_solution = greedy_randomized_construction();
4 refined_solution = local_search(greedy_solution);
5 update_solution(best_solution, refined_solution);
Output: best_solution

When PRNG is initialized, iteration starts with greedy randomized construction of
a feasible solution. Generally, the solution is generated by incrementally adding elements
from a Restricted Candidate List (RCL). RCL elements are generated based on problem
space and generally represents elements that incrementally improve a partially built so-
lution. Elements are then selected at random to form a feasible solution. Local search
continues with improving the constructed solution. A simple implementation would con-
sist of a refining solution based on comparison with the close neighborhood of the solution.
The refined solution is compared with the actual best solution found. The metric on which
solutions are compared also comes from the problem specification.

In our application algorithm starts from the initial configuration of all robots and state
of all bricks (either placed, not placed, or carried by the robot). The greedy heuristic is
used to find an initial feasible solution during which we save the state of a partial solution
that is used in local search later. We re-optimize saved states with a random set of next
possible permutations. All feasible solutions are compared by the optimization criterion,

3

1.3 Metaheuristic

and the best one is selected. The algorithm iteratively runs until the stopping criterion is
met.

4

2 Wall Building Optimization Problem

In this section, we describe how wall building problem can be formalized in terms of
mixed-integer linear programming. From the competition perspective, we choose to explore
Orienteering problem variation. Wall building can be imagined as an orienteering problem
where we try to maximize the maximum number of placed bricks with maximum reward
associated with each brick. The main difference from COP is additional precedence and
concurrence constraints.

2.1 Problem formulation

To fully describe the optimization problem, we introduce number of variables re-
quired, as seen in Table 1.

Table 1: Overview of basic variables used in problem definition.

Name Description
xrij bool if used edge between nodes vi and vj for robot r
zij bool if edge between nodes vi and vj is used
yi wether node i was visited
si visit time of node vi
pi reward of node vi
ti duration of node vi
βr start node of robot r
R number robots
Vf all non-termitationg nodes
eij edge between vi and vj
vN terminationg node
ρi number of robots required in node vi
M max time M = Tmax + max ti + max |eij|
N number of nodes N = |V |

V = {vi} the set of all nodes
E = {eij} the set of all edges between nodes vi and vj

Vf the set of non-terminating nodes

5

2.1 Problem formulation

Optimization problem is then formulated as:

maximize
∑
vi∈V

piyi, (2.1)

s.t.
∑
vi∈V

xrβr i = 1 , ∀r ∈ (1, . . . , R) , (2.2)∑
r∈(1,...,R)

∑
vi∈V

xriN = R , (2.3)

sβr = 0 , ∀r ∈ (1, . . . , R) , (2.4)
yβr = 1 , ∀r ∈ (1, . . . , R) , (2.5)
yN = 1 , (2.6)∑
vi∈V \{vc}

xric =
∑

vi∈V \{vc}

xrci , ∀vc ∈ Vf , ∀r ∈ (1, . . . , R) , (2.7)

∑
r∈(1,...,R)

∑
vi∈V

xrci = ρcyc , ∀vc ∈ V , (2.8)

∑
r∈(1,...,R)

xrij ≤ Rzij , ∀eij ∈ E , (2.9)

si + ti + |eij| ≤ sj +M(1− zij) , ∀eij ∈ E , (2.10)

where (2.1) is objective function that maximizes collected reward. Objective function
is then subjected to multiple constraints. Constraint (2.2) ensures start of each robot in
designated start position. Constraint (2.3) ensures that all nodes return to terminating
node. Constraint (2.4) ensures start nodes to have initial time set to zero. Constraint (2.5)
ensures that starting nodes are already visited. Constraint (2.6) marks end node to be
visited. Constraint (2.7) conserves flow between edges, forcing incoming and outgoing edges
to be visited. Constraint (2.8) introduces cooperative properties. Constraint (2.9) together
with (2.8) ensures that collected reward at each node is dependent on resource requirement,
and traveling group members through an edge is bounded by maximum number of robots.
Final classical OP constraint (2.10) ensures start time continuity between used edges.
Sufficient constant M is chosen to be M = Tmax + max ti + max |eij|. WBP introduces
precedence constraints set Π = {πi |πi = (vb, va)}, with node before vb and node after va.
Generation of the precedence set is discussed in Section 2.5.1. Constraints

yb ≥ ya , ∀πi ∈ Π , (2.11)
sa ≥ sb + ybtb , ∀πi ∈ Π , (2.12)

enforce order in which bricks are placed. Equation 2.11 ensures that node va can be placed
only after vb is placed.

6

2.1 Problem formulation

Equation 2.11 ensures starting time sa of placing node va starts only after node vb is
placed at time sb + tb. Concurrence constraints restricts placement of multiple bricks that
are close to each other.

sb ≥ sa + yata ∨ sa ≥ sb + ybtb , ∀γi ∈ Γ , (2.13)

where Γ = {γi | γi = (va, vb)} is the set of concurrence rules, with nodes vb and va that
can not be built simultaneously.

Wall building is optimized on some time interval 〈0, Tmax〉. Constraint is generally
defined from OP as:

0 ≤ si ≤ Tmax , ∀vi ∈ V . (2.14)

Constraint visual representation

We can visualize defined optimization problem using a simple two-layer wall, as shown
in Figure 2.1.

1 2 3 4

8765

Figure 2.1: Simple wall used for demonstration of the problem, and used for visualization
reference.

Each brick represents node vi ∈ V . Edges eij are omitted from visualization because
they would form a fully connected graph. Precedence and concurrence rules extracted from
the wall layout are seen in Figure 2.2.

7

2.2 Wall layers

5 6 7 8

1 2 3 4

Figure 2.2: Concurrence (red) and precedence (black) rules visualization generated from
Figure 2.1. Precedence rules πij correspond to πk ∈ {π15, π16, ...}. Concurrence rules γij
correspond to γk ∈ {γ12, γ21, ...}.

For clarity, we marked them with two indexes as πij and γij, but they correspond to
single elements πk and γk as seen in the definition of MILP.

2.2 Wall layers

We define layers of bricks as set of bricks that are located only next to each other
as there are no physical restrictions for them to be built simultaneously. From the visual
representation of the wall in Figure 2.1, we can intuitively see two layers, where the first
layer is composed of bricks {1, 2, 3, 4} and second layers {5, 6, 7, 8}.

In the further section, we discuss weakly and highly constrained WBP for which we
define useful boolean variable as:

Lfirst =

{
true, bricks layers are fully connected by precedence rules ,
false, bricks layers are connected only by their position . (2.15)

Example of Lfirst = false has been demonstrated in Figure 2.2. In general there might
not exists straightforward distinction between layers as shown in Figure 2.3 and 2.4.

8

2.3 Virtual nodes

5

43

1

7

2

6

98

Figure 2.3: Wall demonstrating example
where bricks spans more layers vertically.

1 2

3 45 6

87 9

Figure 2.4: Graph representation corre-
sponding to Figure 2.3.

Wall shown in Figure 2.3 has total of 5 layers, shown in blue boxes, 3 layers containing
multiple bricks {1, 2}, {3, 4}, {7, 8, 9} and remaining 2 layers with only contain one brick
each, {5} and {6}. Layers that contains only one brick must be separated due to the
concurrence rules that are presented between two layers in the middle. We could possibly
merge layers {5}, {6}, and {1, 2} into one layer, but that would introduce more restriction
on the planning algorithm. Black edges seen in Figure 2.4 corresponds to precedence rules.
Red edges correspond to concurrence rules. The precedence graph is created using Lfirst =
true, and concurrence created by taking into account only bricks directly next to each
other side by side.

2.3 Virtual nodes

For implementation purposes, we introduce virtual nodes into the problem specifica-
tion. When implementing MILP we need to specify the starting node of each robot, as
shown in Figure 2.5. Virtual nodes are added to the problem in order to specify the start-
ing point of each robot. Edges shown as dotted lines are not precedence nor concurrent.
From MILP formulation, they would be contained inside.

In a case where robots are in the starting position, we need to create additional nodes
apart from nodes representing bricks. Starting nodes are then connected with a set of start-
ing bricks.

9

2.4 Time constraint objective function

5 6 7 8

1 2 3 4

end

start start

Robot	1 Robot	2

Figure 2.5: Visualization of virtual nodes.

Starting brick can be any brick that has no precedence or active concurrence rules
applied to it; see Figure 2.5.

2.4 Time constraint objective function

Algorithm proposed here is a fast iterative method that can be used to obtain feasible
solutions.

In case where Tmax is greater then total time needed to build whole wall plan starts
to contain gaps where no robot is utilized, see Figure 2.7. Time after which full wall is

10

2.4 Time constraint objective function

built, further referred as T ′. For time t > T ′ objective function

maximize
∑
vi∈V

piyi
t>T ′
−−→ constant (2.16)

starts to be constant since no further bricks can be placed. We propose modified objective
function which includes minimization of the time placement with respect to terminal nodes.

max
∑
vi∈V

piyi ∧ min sN (2.17)

Both conditions can be merged into one as

maximize
∑
vi∈V

piyi −
1

W
sN , (2.18)

where W is normalization constant which should be chosen such that sum of rewards is
always greater than the sum of starting placement times. Rewards pi are always integer
values pi ≥ 1. In that case, we know the minimal possible value of the collected reward is
zero or greater than one. For known Tmax we can easily choose W = Tmax, restricting time
optimization part to evaluate on interval 〈0, 1〉. If our goal is to build the whole wall, we
can discard part for collecting reward and use only the time optimization part.

t[s]

R0

R1

R2

TmaxT ′
0 40 80 120

2 1

4

3 4

Figure 2.6: Plan shows how minimization
term changes final solution for Tmax = 130s
and Tmax > T ′.

t[s]

R0

R1

R2

Tmax0 40 80 120

1

2 4

3 4

Figure 2.7: Optimal plan solution for Tmax =
130s without end time optimization crite-
rion.

Figures 2.6 and 2.7 shows how resulting plan changes when we include end time
constraint to the objective function. Times si have a certain degree of freedom to fill
empty space. This empty space can differ based on used solver, but we can clearly see that
time component forces plan to be tightly packed within the requested time limit.

11

2.5 Geometry representation

2.5 Geometry representation

We introduce set of bricks B = {bi} (using simplest cuboid shape) defined by their
center coordinates ~ri =

[
xi yi zi

]
, reward ρi, their type and orientation around z-axis

ϕi (assuming z axis is normal to the ground). Brick type defines their width, height and
depth. Equivalent representation would be to represent brick by 8 vertices for each corner.

Assuming rotation only around z-axis we can always define up, down and side faces
of the cuboid given only corner coordination. Graph representation requires knowledge of
the relative position of each brick to others.

2.5.1 Generating precedence rules

Precedence set is obtained by comparing top-bottom facing faces of two bricks, de-
scribed in Algorithm 2. We define the brick set to correspond to the graph node set directly.
Precedence rules are generated using Algorithm 2 which performs each to each comparison
of bricks and returns precedence rules set.

Algorithm 2: Construction of precedence set.
Input: Set of all bricks B
Result: Π, precedence rules set

1 Π = {};
2 N = |B|;
3 i = 1;
4 while i ≤ N do
5 j = i;
6 while j ≤ N do
7 (bbottom, btop) = sort_by_z(bi, bj);
8 if precedence_check(bbottom, btop) then
9 Π = Π ∪ {(vbottom, vtop)};

10 j = j + 1;
11 i = i+ 1;

Output: Π

First, we compare z components to check if they are in different heights. Then we use
a ray casting algorithm, for coordinates in 2D xy-plane is used to determine if brick lies
on top of the other(see Alg. 3).

In our test examples, we assume only simple orientation if the bricks around their
z-axis. In the case of general relative positions, we would need to perform sample each face
of the brick and then perform the same xy-axis projection to other bricks to find out if

12

2.5 Geometry representation

brick lies next to or above the other bricks.

Algorithm 3: Precedence brick comparison.
Input: Bricks bi, bj
Result: Boolean

1 valid = False;
2 zi = top_face_z(bi);
3 zj = bottom_face_z(bj);
4 if zi < zj then
5 if is bottom face xy-corners are inside top face then
6 valid = True;
Output: valid

In the case of using fully connected layers, as discussed in Section 2.2, we can simplify
the process by only determining the relative position of each layer. Then we just create
precedence connection between bricks of they layers on top of each other.

2.5.2 Generating concurrence rules

Given the center of each bricks, concurrence rule is determined by the distance of their
center positions described by Algorithm 4. Concurrence constraints are generally needed
to avoid collisions between participating robots. When we build the wall using UAV’s we
must ensure non-collision trajectories generated. Despite the fact that collision avoidance
is not a main concern in this work, having it as an additional parameter helps to create a
plan that can be executed without additional collision avoidance systems in action.

Algorithm 4: Construction of concurrence set.
Input: Set of all bricks B
Result: Γ, concurrence rules set

1 Π = {};
2 N = |B|;
3 i = 1;
4 while i ≤ N do
5 j = i;
6 while j ≤ N do
7 dij = center_distance(bi, bj);
8 if dij ≤ dmin then
9 Γ = Γ ∪ {(bi, bj), (bj, bi)};

10 j = j + 1;
11 i = i+ 1;

Output: Γ

13

2.5 Geometry representation

Placement distance dmin, seen in Alg. 4, is set to

dmin = dplace min
bi,bj∈B

{||~ri − ~rj||} , dplace ∈ R , (2.19)

where dplace is chosen constant. Vectors ~ri, ~rj corresponds to center of the bricks bi, bj.
We chose to create concurrence rules based only on relative distances between the bricks
but we can easily add other empirically generated rules such as adding concurrent rule for
bricks that lies next to each other without relaying on their real relative position.

14

3 Heuristic approach

Our method was inspired by the graphical representation of precedence and concur-
rence rules as shown in Figure 2.2. In this section, we primarily focus on the description of
the method applied to the problem with a homogeneous group of cooperating robots.

We start by identifying all necessary variables needed for full description of the state of
the problem. Iterative plan construction algorithms are presented that are used to obtain
feasible solution using greedy heuristic. Each iteration is split into multiple sub-problem as
finding all available brick that can be picked by a robots at specified times while meeting all
constraints inherited from precedence and concurrence rules. Construction is then applied
in metaheuristic GRASP algorithms that is used to refine our feasible solution.

The geometric representation of the wall is firstly converted to a special graph represen-
tation. Wall bricks are represented by nodes vi ∈ V, same as defined in MILP formulation.
For each constraint type we define standalone set of edges ekij ∈ Ek. Wall is then repre-
sented by multigraph V,E = {

⋃
k E

k}. We consider Ek sets representing precedence Ep

(corresponds to set Π), concurrence rules Ec (corresponds to set Γ).

Edges

The Wall Building Problem is time-dependent, meaning each node of a graph is visible
only when all precedence edges are available, which depends on the time of the placement
of the respected node. We assign each edge ekij with:

• τ kij visitation time and

• ξkij variable which is true if edge was visited, false otherwise.

Visitation time is a variable that corresponds to the time in which the end node vj of
edge eij can be visited.

Algorithm performs forward-time evolution on interval t ∈ 〈O, Tmax〉 from initial con-
figuration to obtain feasible solution.

Nodes

Bricks are interchangeably referenced as nodes. Individual node vi has associated pa-
rameters :

• ρi number of required resources to process node vi,

15

• εi time it takes to go from placed brick to its reservoir,

• pi node reward, and

• ti time it takes to process node (place corresponding brick).

Resources

Group of robots is interchangeably referenced as Resources Φ. Each resource φi has
parameters associated with it

• ηi node ηi ∈ V assigned to the resource φi,

• σsi start time when node processing began (brick is picked),

• σei end time when node processing is done (brick is placed),

• σai time in which resources is available to process new node (brick is placed),

• λi resource state.

The state λi can be written

λi =


WORKING, for σsi ≤ t < σei ,
RESTING, for σei ≤ t < σai ,
IDLE, for t ≥ σai .

(3.1)

Available time σai is introduced for handling resource resting time when brick is placed
and we must return to brick reservoir.

Plan configuration

We define plan configuration as collective state of sets Ze
u, Ze

v , Zn
u , Zn

v , Ω, state of all
resources φi, edges eij, nodes vi, actual time t. Plan reward θi is defined based on actual
used objective function.

Algorithms additional uses sets to keep track of already processed nodes and edges

• Ze
u unvisited edges

• Ze
v visited edges

16

3.1 Plan construction

• Zn
u unvisited nodes (bricks that has been visited at least once, but precedence rules

are not met)

• Zn
v available nodes (bricks that can be placed)

• Ω already processed nodes (placed bricks)

How these sets are operated is seen in the description of the forward-pass evolution.

3.1 Plan construction

The plan construction is essentially iterative procedure, as shown in Algorithm 5, in
which we simulate time forward wall building procedure.

Algorithm 5: Plan construction procedure. (function plan_construct)
Input: Starting plan configuration plan.
Result: Feasible time plan for each robot

1 while stopping criterion not met do
2 iterate_step(plan);
3 return plan;

One iteration step shown in Algorithm 6 checks all visible edges Ze
v , edges that are

collectively visible from each robot’s point of view.

Algorithm 6: One iteration step of the construction (function iterate_step)
Input: Plan configuration on which iteration is performed

1 process_edges();
2 find_available_nodes();
3 minimum_required = assign_available_nodes();
4 if no nodes were assinged then
5 update_time(minimum_required);
6 if t < Tmax then
7 place_assigned_nodes();
8 else
9 signalize stop;

Iteration is decomposed to multiple sub-procedures. First we process all edges and
update their state based on actual time t. Based on the state of the edges we are able
to find all node candidates that can be assigned to the resources. Then assignment is
performed using greedy heuristic. When no nodes were assigned, we update time t. After
the update we check if time constraints are met and if not, placement of the nodes is
performed.

17

3.2 Process edges

3.2 Process edges

Although Algorithm 7 finds all available edges in the graph that are visible in the
simulation’s current time.

Algorithm 7: Process constraints algorithms. (function process_edges)
Result: Set of possible node candidates Zn

u

1 foreach epij ∈ Ze
v do

2 if t ≥ τij then
3 ξij = true;
4 Zn

u = Zn
u ∪ {vj}

For each precedence edge eij, from node vi to node vj, we add end node vj to set of
unvisited nodes Zn

u . If node vj is already in the set, we skip this step. After procedure
finishes, set Zn

u contains all possible candidates on nodes that might be assignable to the
resources. The next step is to actually check for each candidate if all constraints are met.

3.3 Process Nodes

One of the main parts of our method is described by Alg. 8. We construct a list of all
nodes that can be assigned to resources by first checking if all precedence rules are met.
Precedence rules are met when all precedence edges epij, associated to node vj, has been
visited.

Algorithm 8: Find available nodes. (function find_available_nodes)
1 foreach vi ∈ Zn

u do
2 precedence_visited = 0;
3 foreach outgoing epij ∈ Ze

v do
4 if ξpij then
5 precedence_visited = precedence_visited + 1;
6 if precedence_visited = ||

{
., epij, .

}
|| then

7 if conccurence_rules_met(vi) then
8 Zn

v = Zn
v ∪ {vi};

9 Zn
u = Zn

u\{vi};

When precedence rules are met, we perform the check for concurrence rules, described
in Algorithm 9. This can be implemented using a fixed lookup table. If no constraints are
violated, we move node vi from the unvisited set Zn

u to visited set Zn
v . The visited set is

18

3.4 Assign available nodes

used in decision which nodes are assigned to the resources.

Algorithm 9: Find available nodes. (function conccurence_rules_met)
Input: Node vi
Result: Boolean values if concurrence constraints are met. (function

concurrence_rules_met)
1 foreach ingoing ecij do
2 if ξcij then
3 return false;
4 return true;

3.4 Assign available nodes

Algorithm 10 performs the Greedy assignment of the nodes based on their reward.
Given available nodes and available resources, it assigns the maximum number of resources
with maximum reward. Algorithm 10 shows how we implemented greedy heuristic in our
method. In the case of multiple nodes are having the same effective reward, we pick choose
between them randomly.

Algorithm 10: Greedy assignment procedure. (function assign_available_nodes)
Result: In case of no resources assigment, returns number of needed resources

available, else returns 0.
1 max_reward = 0;
2 max_reward_nodes = {};
3 minimum_resources_required = ∞;
4 foreach vi ∈ Zn

v do
5 if ρi < minimum_resources_required then
6 minimum_resources_required = ρi;
7 ra = get_available_resources(vi);
8 if |ra| ≥ ρi then
9 if pi > max_reward then

10 max_reward = pi;
11 reward_nodes = {};
12 if pi = max_reward then
13 max_reward_nodes = max_reward_nodes ∪{vi} ;
14 if max_reward_nodes is not empty then
15 vp = pick random node from max_reward_nodes;
16 assign node vp to available resources;
17 return 0;
18 return minimum_resources_required;

Random pick from maximum reward set of nodes is implemented using integer uni-

19

3.4 Assign available nodes

form distribution U (1, |max reward nodes|) where we chose element on the position ob-
tained from one random choice from the distribution. Given node vi, available resources
are obtained based on their actual state, as shown in Algorithm 11. Under the assumption
of all resources to be equivalent, we can stop iteration after necessary number of needed
resource ρi is found.

Algorithm 11: Find resources assignable to the node. (function
get_available_resources)
Input: Assignment node vi

1 Φa = {};
2 forall resources φk in Φa do
3 if λk = IDLE then
4 Φa = Φa ∪ {φk};
5 if |Φa| = ρi then
6 return Φa;
7 return Φa;

Assignment to the resources, used in Algorithm 6 is then performed for selected node
vi, used in Algorithm 12.

Algorithm 12: Assign given node to resources. (function as-
sign_available_nodes)
Input: Assignment node vi to selected resources Φa

1 forall φk in Φa do
2 σsk = t;
3 σek = t+ ti;
4 σak = t+ ti + εi;
5 ηk = vi;
6 foreach outgoing ecik do
7 ξcik = true;

During node assignment, we also keep the reference of a node with the minimum num-
ber of resources required to process it. When there is not enough resources to process any
node, we return this number for performing a time update procedure.

Resource transition diagram in Figure 3.1 shows how each state of node vi, prece-
dence, concurrence edges, and internal resource variables change during assignment and
placement of a brick. Resource φi gets assigned node vj at time t = 0. The diagram shows
how resource state λi propagates with different simulation times. We can see how states of
outgoing edges ejk changes with time.

20

3.5 Time update

Figure 3.1: Resource state transition diagram.

Time updates are generally not directly related to one resource σei , but it is determined
by finding minimum timestep required to process the next available node in unvisited nodes
(Zn

u) set.

3.5 Time update

When we exhaust all possible resource assignment at some time t, we need to compute
minimal time needed to free needed resources. The processs described in Algorithm 13. The
algorithm finds the closest possible time where the state of the search increments number
of available resources, or state of any resource is changed. We create a histogram of the
times where robots are placing bricks and when they are available to pick the next one.

21

3.5 Time update

Algorithm 13: Find minimal time update procedure. (function update_time)
Input: number of resources required ρ
Result: Minimal time needed to ensure avaibility number of ρ resources

1 initialize histogram of available resources;
2 foreach φi do
3 add entry (εi, φi);
4 time = 0;
5 cumulative_sum = 0;
6 foreach histogram entry (εk, Φk = {φl, ...}) do
7 time = σak ;
8 cumulative_sum = cumulative_sum + |Φk|;
9 if cumulative_sum ≥ ρ then

10 break;
11 return time

Performed cumulative search is visualized in Figure 3.2. Based on search we find the
closest time when the requested number of robots ρ is available. Iterations are done in
ascending order of time entries.

Figure 3.2: Time update histogram and cumulative sum.

22

3.6 Node placement

3.6 Node placement

When no nodes are assigned and time is updated, we perform check for all active
resources, as described Algorithm 14. We check if simulation time t is greater than the end
time of the resource σei . If true, we add the node to the plan that has been assigned to the
respected resource. Node is inserted from time σsi to σei .

Algorithm 14: Finish assigned node. (function place_assigned_nodes)
1 foreach φi do
2 if has assigned node ηi and t ≥ σai then
3 add node to current plan, placed at time σsi to σei ;
4 vk = ηi;
5 foreach outgoing epkj do
6 τ pkj = σei ;
7 Ze

u = Ze
u ∪ {e

p
kj}

8 foreach outgoing ecjk do
9 ξcjk = false;

10 ηi = {};

When a node is placed, we iterate all outgoing precedence edges and add them to
unvisited edge set Ze

u from where they are processed in the next iteration. Concurrence
edges eckj are disabled by explicitly setting their visited flag ξcik to false.

3.7 Optimization procedure

Our heuristic greedy search can be used in the GRASP optimization algorithm; see
Algorithm 15. Stopping criterion is defined using Kmax, maximum number of iterations,
and Kmaxnot improved, maximum number of iteration where best solution did not improve.

The GRASP optimization procedure can be used to improved already found solutions.
Mersenne twister [24] pseudorandom number generator is used throughout our implemen-

23

3.7 Optimization procedure

tation.

Algorithm 15: GRASP - main algorithm.
Result:

1 kiter = 0;
2 knot improved = 0;
3 best_solution = initial_solution;
4 while kiter < Kmax ∧ knot improved < Kmaxnot improved do
5 restart random number generator with different seed;
6 greedy_solution = greedy_randomized_construction(initial_solution);
7 solution = local_search(greedy_solution);
8 update_solution(best_solution, solution);
9 if best_solution did not improve then

10 knot improved = knot improved + 1;
11 kiter = kiter + 1;

Output: best_solution

At each iteration, see Alg. 16, we construct plan that satisfies all constraints. During
the creation, we specify snapshots. We define snapshot as a partially built plan with a
complete state of the graph, states of all resources, nodes, and edges. A partial plan can
be saved and later used as an initial solution of the construction procedure shown in Alg. 16.

Algorithm 16: GRASP - greedy randomized construction.
(function greedy_randomized_construction)
Input: initial_partial_solution, global B?

max

Result: Feasible solution that satisfies all constraints
1 solution = initial_partial_solution;
2 snapshots = {};
3 placed_node = 0;
4 ∆s = generate_snapshot_positions(B?

max);
5 while is not finished do
6 iterate_step(solution);
7 if solution reward increased then
8 placed_nodes = placed_node + 1;
9 if placed_nodes ∈ ∆s then

10 snapshots = snapshots
⋃

solution;
Output: {solution, snapshots}

Initial solution is special type of partial solution where we specify already known state
of the wall that is physically built. It can contain state of all robots and state of the
bricks that are already placed or are carried by robots. Randomized construction returns
a feasible solution and state of the solution together with associated snapshots. Iteration
step described by Algorithm 6 is used.

24

3.8 Local Search

If the total number of bricks is Bmax, the naive method would be to choose snapshots
at each brick placement, but that can lead to memory problems when graph is huge. We
propose an adaptive procedure using a previously known solution to restrict number of
snapshots created. Each GRASP iteration produces feasible solution from which we can
estimate number of bricks Best, such that Best ≤ Bmax, where Best is computed as number
of bricks that were placed in the found solution.

Snapshots

During construction of the feasible solution, we propose an adaptive procedure that
generates a set of placement points where a snapshot of the partially built plan is performed.
Algorithm 16 is expanded with global state B?

max, the maximum number of bricks that
were placed in the best solution obtained by GRASP. This value is updated after the full
iteration of the GRASP procedure. Before iteration starts we prepare a set of placing points
by generating set ∆s of uniformly chosen non-repeating integer numbers on the interval
{1, B?

max} as:

∆s = {δs | non-repeating δs ∈ {1, B?
max}} . (3.2)

Size of the set is set to be computed using snapshot coefficient Υ ∈ 〈0, 1〉 as |∆s| = ΥB?
max.

3.8 Local Search

We propose local search described in Alg. 17 as direct re-optimization of each snapshot
saved during greedy construction, see Alg. 16.

Algorithm 17: GRASP - local search. (function local_search)
Input: found solution with set of snapshots

1 final_solutions = {};
2 foreach snapshot do
3 solution = plan_construct(snapshot);
4 final_solutions = final_solutions ∪ {solution};
5 best_found_solution = pick solution with best reward from final_solutions;
Output: best_found_solution

Re-optimization is achieved by applying snapshot as starting plan configuration in
Algorithm 5. Solution obtained from the construction is then saved. After all snapshots
are re-optimized we find and return solution with the best reward.

25

3.9 Solution update

3.9 Solution update

Simple update procedure is proposed in Algorithm 18. When randomized construction
is refined with the local search (see Alg. 15), we compare the actual known best solution
with the found solution. In our implementation, we used direct reward comparison, but we
are able to include other measures when rewards are the same.

Algorithm 18: GRASP - update solution based on reward. (function up-
date_solution)
Result:
Input: found solution Pfound, best solution Pbest

1 if found solution reward > best solution reward then
2 best solution = found solution

Solutions with the same reward but different state variables such as the utilization of
each robot or end time of the plan T ′ can be easily added to update procedure.

26

4 Heterogenous robot fleet

In this section, we consider modifications of our proposed method to include the use
of a heterogeneous group of robots. Cooperation situation requires us to model each robot
separately with different parameters and behavior. Our proposed method in earlier section
can be easily extended to account for such changes. We describe simple structural changes
to variables used in our method to account for additional information needed in each
iteration.

Nodes

Nodes no longer contain information about the time it takes to process them ti. We also
discard information about reservoir time εi. The number of robots ρi required to process
node now becomes a set of types of the resources needed to be present at given node in
order to process it. New variable node type ni is introduced. In the case of previously
shown examples, this variable would be used to represent different brick colors. Modified
node must have these attributes

• ρi set of types of the resources in order to process node,

• pi node reward,

• ni node type.

In our test, we define node type as being RED, GREEN, BLUE or ORANGE. Resource
mapping ρi contains information about all combinations in which node can be processed.
For example, let us consider a group of 2 UVAs and one terrestrial robot. Assume that
brick is heavy and must be carried by 2 UAV’s simultaneously or can be carried by the
terrestrial robot. Corresponding ρi would contain :

ρi =
{
{νuav, νuav} ,

{
νterrestrial .

}}
(4.1)

Resources

Resources must now provide variables that were removed from node in form of map-
ping from visiting node type ni. Resource must have these attributes

• ηi current node assigned to the resource ηi ∈ V ,

• σsi start time when node processing began,

27

• σei end time when node processing is done,

• σai time in which resources is available to process new node,

• λi resource state,

• νi resource type,

• ti(ni) time mapping corresponding to time it takes resource φi to process node vi.

Time mapping in our example would have to specify the time for each type as

ti =


tred
i
, for ni = RED

tgreen
i

, for ni = GREEN

tblue
i
, for ni = BLUE

torange
i

, for ni = ORANGE

. (4.2)

Algorithm 19 is modification of Algorithm 11 to cover all possible combinations in
ρi set. Instead of choosing an arbitrary resource that is in the IDLE state, we find some
combination that would be required to process the node.

Algorithm 19: Find all assignable combination of node given available resources.
(function get_available_resources)
Input: Assignment node vi
Result: Set of all valid combinations of the resources that can be assigned to the

node vi at current iteration.
1 Φa = {};
2 foreach %k in ρi do
3 Φ%k = {};
4 forall resources φj in Φ do
5 if λj = IDLE and φj ∈ %k then
6 Φ%k = Φ%k ∪ {φj};
7 if |Φ%k | = |%k| then
8 Φa = Φa ∪ {Φ%k};
9 break;

10 return Φa;

Algorithm 10 previously returned first available resources with state λi = IDLE until
requested number was met, now returns subset of all possible combination Φa in which
node must be assigned. Algorithm 20 is changed to account for different return value from
assignment algorithm. There are two changes from the original algorithm. After we find
all possible combinations that can be assigned given the actual state we need to choose

28

only one combination. We assume that reward is the same for all combinations %k, so we
implement procedure pick_possible_resources as a random choice of given possibili-
ties, but there is no obstacle in implementing this procedure to account for other empirical
conditions if needed.

In case of multiple nodes having the same reward, we now store information both about
node vi and its assigned resources that we picked earlier. The previous implementation does
not require to store picked resource information since algorithm get_available_resources
always return the same result when called later.

Algorithm 20: Greedy assignment procedure. (function assign_available_nodes)
Result:

1 max_reward = 0;
2 max_reward_nodes = {};
3 minimum_resources_required = ∞;
4 foreach vi ∈ Zn

v do
5 if min{|%k| | %k ∈ ρi} < minimum resources required then
6 minimum_resources_required = ρi;
7 Ψa = get_available_resources(vi);
8 rp = pick_possible_resources(ra);
9 if |rp| ≥ ρi then

10 if pi > max_reward then
11 max_reward = pi;
12 reward_nodes = {};
13 if pi = max reward then
14 max_reward_nodes = max_reward_nodes ∪{{vi, rp}} ;
15 if max_reward_nodes is not empty then
16 vp = pick random node from max_reward_nodes;
17 assign node vp to available resources;
18 return 0;
19 return minimum_resources_required;

Node assignment Algorithm 12 is extended using time mapping as shown in Algo-
rithm 21.

Algorithm 21: Assign given node to resources
Input: Assignment node vi to selected resources Φa

1 forall φk in Φa do
2 σsk = t;
3 σek = t+ ti(ni);
4 σak = t+ ti(ni) + εi;
5 ηk = vi;
6 foreach outgoing ecik do
7 ξcij = true;

29

Modifications presented in this section shows how easy it is to extend original method
to incorporate different types of constraints. Such flexibility is required when implement-
ing these types of algorithms in competition environment where modification using linear
programming formulation might require to be entirely different.

30

5 Performance evaluation

In this section we provide set of tests designed to compare performance in multi-
threaded environment, Section 5.3, or different wall sizes, sections 5.4 and 5.5. In section 5.7
we discuss existence of the upper limit on how many robots can be utilized for given wall
size and constraints. Generated solutions are visually compared in section 5.6.

We choose C++ as main language for direct compatibility with robotic system used
in the robots. All tests are run on machine described in Table 2 together with compiler
information.

Table 2: System information used to run all tests.

System macOS 15.4.1
CPU Intel Core i7-8850H@2.6GHz, 6 core
RAM 16GB DDR4@2400 MHz
Compiler clang-1100.0.33.17
Compilation flags -std=c++17 -03

5.1 CPLEX

Proposed method is compared with the CPLEX solver that uses exact algorithms
to obtain the optimal solution. IBM ILOG CPLEX2, short CPLEX, offers C++ library
that solve linear programming (LP) and related problems. Specifically, it solves linearly
constrained optimization problems where the objective to be optimized can be expressed as
a linear function or a convex quadratic function. The variables in the model may be declared
as continuous or further constrained to take only integer values (ILP) or mixed-integer
linear programming (MILP). It implements multiple exact algorithms such as branch-and-
cut, branch-and-bound or simplex search. Solver is available for free with academic license.
We use version 12.10 to perform all benchmarks.

Throughout all tests we limit runtime of CPLEX solver to 10 minutes. Solver provides
optimality gap information to quantify feasibility of a solution. GAP parameter is computed
inside solver as

GAP = 100
best bound solution− best integer solution

best integer solution
[%] , (5.1)

where best bound solution is upper estimate of the best achievable reward best integer
solution is best solution reward found during computation.

5.2 Datasets

We created a set of testing walls where we aim to test how well our algorithm runs
compared to the exact method provided by CPLEX. Testing walls are created in different

2Official site https://www.ibm.com/analytics/cplex-optimizer

31

https://www.ibm.com/analytics/cplex-optimizer

5.3 Multithreaded performance

sizes of power 2, from 22 - 210. See partial datasets used in Fig. 5.1.

Figure 5.1: Visualization of benchmark datasets for wall with 4 up to 64 bricks. Datasets
for more bricks are created in similar way.

Throughout benchmarks we use fixed placement duration of a bricks in Table 3, where
ρi is number of robots required to place a brick, pi is its reward, and ti is the time it takes
to place a brick to its position.

Table 3: Overview of used bricks throughout the benchmarks.

Bricks
parameter red green blue orange
ρi (required robots) 1 1 1 2
pi (brick reward) 2 4 8 16
ti (placement duration) 40 s 40 s 40 s 40 s

Together with group of 3 homogeneous robots, R = 3. Only parameter that needs to
be specified is time it takes to go from wall to reservoir. Benchmarks use fixed value of
reservoir time εi = 5 s. Walls are built from initial configuration where no bricks are placed,
and robots are on their starting positions without holding any bricks.

5.3 Multithreaded performance

Our algorithm can be successfully parallelised since each iteration of GRASP is almost
independent of the others, as shown in Fig. 5.2. By almost we are referring to the snapshot
factor Υ, which is used with B?

max generated at the end of GRASP iteration. In our imple-
mentation, we decided to have different factor Υ for each thread. Since there are hundreds
or thousands iteration we let each thread to handle adaptive procedure independently.

32

5.3 Multithreaded performance

Job
queueGRASP

iter. 1

GRASP
iter. 2

Worker 1 Worker 2 Worker N

GRASP
iter. N

Solution
queue

Figure 5.2: Multithreaded model used in our method.

Results from multithreaded benchmark are shown in Table 4. Data shows that our
method scales well with number of available cores.

Table 4: Multithreading scaling comparison. Tables shows different runtimes of
the algorithm with respect to number of thread used.

number of threads
Dataset 1 2 4 8 12 16 20
wall_4 291ms 129ms 68ms 44ms 43ms 44ms 38ms
wall_8 376ms 191ms 100ms 56ms 55ms 59ms 49ms
wall_16 572ms 311ms 173ms 99ms 88ms 80ms 113ms
wall_32 1062ms 507ms 279ms 178ms 176ms 173ms 181ms
wall_64 1.6 s 909ms 512ms 303ms 309ms 279ms 251ms
wall_128 12 s 7 s 4.7 s 2.8 s 2.5 s 2.5 s 2.3 s
wall_256 16.4 s 11.2 s 6.9 s 5.6 s 4.2 s 6.3 s 6.2 s
wall_512 37.6 s 23.2 s 14.4 s 12.1 s 9 s 9.3 s 9.9 s
wall_1024 103.6 s 56.3 s 36.2 s 22.8 s 18.4 s 19.3 s 19.6 s
We compare how our algorithm scales with additional cores. Benchmark was performed

on machine with 6 physical cores with Intel’s hyper-threading3. Each test was performed
with dmin = 80 cm, Lp = true, Tmax = 200 s, R = 20. This configuration allows to test
all wall sizes within a reasonable time frame quickly. For small walls, we are able to find

3https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/
hyper-threading-technology.html

33

https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html

5.4 Weakly constraint performance

solutions that build whole wall within time Tmax. For huge walls all available robots are
used, as discussed in Section 5.7. Results show that algorithm scales well with number of
available cores. Best performance is as expected around number of 12 threads since that is
number of physically available thread CPU can handle.

Other benchmarks are performed in the multithreaded version with 12 working threads.
Multithreaded model is implemented using thread pool workers. GRASP iteration is fur-
ther split into worker jobs. This model provides better core utilization instead from using
one GRASP instance per thread. CPLEX solver is set to use same number of threads as
our method.

5.4 Weakly constraint performance

We define weakly constrained as one where concurrence rules are excluded making
feasible set of solution larger. Same effect can be achieved with choosing minimal con-
currence distance as dmin = 0. To remove even more constraints, layer parameter Lfirst,
discussed in Section 2.2, is set to Lfirst = false.

First test shown in Table 5 compares CPLEX method with our method where final
time T ′ is determined by objective function minimizing end time. Due to hardware mem-
ory limitations we were not able to use snapshots local search for problems wall_512,
wall_1024. Using Υ = 0 leads to solution obtained only from randomized construction
evaluated over multiple iterations.

Table 5: Benchmark results of our method with optimal solution obtained from CPLEX
solver. Concurrence rules are excluded, Tmax =∞.

CPLEX Our method

Dataset
max

reward
collected
reward T ′ runtime GAP

collected
reward T ′ runtime Υ

wall_4 30 30 85 s 45ms 0.00% 30 85 s 104ms 0.1
wall_8 60 60 175 s 388ms 0.00% 60 175 s 226ms 0.1
wall_16 120 120 310 s 10min 0.13% 120 310 s 240ms 0.1
wall_32 240 240 665 s 10min 0.15% 240 625 s 155ms 0.1
wall_64 480 100 440 s 10min 381.07% 480 1295 s 320ms 0.1
wall_128 672 0 0 10min ∞ 672 2065 s 2.71 s 0.1
wall_256 1378 - - - - 1378 4180 s 12.14 s 0.1
wall_512 2778 - - - - 2778 8365 s 7.92 s 0.0
wall_1024 5556 - - - - 5556 16735 s 5.22 s 0.0

Second test shown in (Tab. 8) compares optimal solution with our method in which
Tmax is fixed in interval 〈0, T ′〉 obtained from previous benchmark (Tab. 5).

Our method used maximum iteration set to 1000 and did not improve factor set to
100. Due to available hardware memory limitations we were not able to use snapshots local
search for problems wall_1024. Using snapshot coefficient Υ = 0 effectively disables snap-

34

5.5 Highly constrained performance

shot creation. This leads to solution obtained only from randomized construction evaluated
over multiple iterations.

Table 6: Benchmark results of our method with optimal solution obtained from CPLEX
solver. Tmax is chosen to be less then time in which wall is built.

CPLEX Our method

Dataset
max

reward Tmax
collected
reward runtime GAP

collected
reward runtime Υ

wall_4 30 45 s 24 12ms 0.00% 24 116ms 0.1
wall_8 60 130 s 40 216ms 0.00% 40 114ms 0.1
wall_16 120 220 s 96 12.37 s 0.00% 90 175ms 0.1
wall_32 240 350 s 130 10min 61.54% 112 237ms 0.1
wall_64 480 800 s 74 10min 548.65% 342 284ms 0.1
wall_128 672 1600 s 92 10min 630.43% 582 1.91 s 0.1
wall_256 1378 3000 s 0 10min ∞ 1110 8.33 s 0.1
wall_512 2778 5000 s - - - 1888 37.63 s 0.1
wall_1024 5556 10000 s - - - 3460 16.48 s 0.0

5.5 Highly constrained performance

When the problem is highly constrained, generic LP solvers like CPLEX can perform
better than in weakly constrained problems. Table 7 shows how end time T ′ in which full
wall can be built with concurrence placement rules applied with dmin = 80 cm. To add
more constrains, we enforce that full layers of bricks must be built before next one can
start Lfirst is set to Lfirst = true. Optimization with end time was used so T ′ in case of
CPLEX is optimal.

Number in dataset name corresponds to number of bricks in the wall. Benchmark
shows that CPLEX solver wasn’t able to compute the optimal solution (GAP = 0.00%)
in reasonable amount of time for wall with more than 16 bricks. Final times T ′ are used
in next benchmark to determine some reasonable time Tmax for which we perform the test
under a time constraint.

35

5.5 Highly constrained performance

Table 7: Benchmark results of our method with optimal solution obtained from CPLEX
solver. Concurrence rules are excluded, Tmax =∞.

CPLEX Our method

Dataset
max

reward
collected
reward T ′ runtime GAP

collected
reward T ′ runtime Υ

wall_4 30 30 85 s 63ms 0.00% 30 85 s 110ms 0.1
wall_8 60 60 175 s 301ms 0.00% 60 175 s 105ms 0.1
wall_16 120 120 350 s 63.69 s 0.00% 120 350 s 196ms 0.1
wall_32 240 240 700 s 10min 0.05% 240 735 s 625ms 0.1
wall_64 480 480 1445 s 10min 0.09% 480 1465 s 2.01 s 0.1
wall_128 672 8 40 s 10min 8311.81% 672 2295 s 7.34 s 0.1
wall_256 1378 0 0 s 10min ∞ 1378 4630 s 56.15 s 0.1
wall_512 2778 - - - - 2778 9365 s 6.77 s 0.0
wall_1024 5556 - - - - 5556 18740 s 11.82 s 0.0

Due to hardware memory limitations we were not able to use snapshots local search
for problems wall_512, wall_1024. Using Υ = 0 leads to solution obtained only from ran-
domized construction evaluated over multiple iterations.

Second test shown in Table 8 compares optimal solution with our method in which Tmax
is fixed in interval 〈0, T ′〉 obtained from previous benchmark in Table 7. Our method used
maximum iteration set toKmax = 10000 and did not improve factor set toKmaxnot improved =
100. Due to hardware memory limitations we were not able to use snapshots local search
for datasets wall_512 and wall_1024. Using Υ = 0 leads to solution obtained only from
randomized construction evaluated over multiple iterations.

Table 8: Benchmark results of our method with optimal solution obtained from CPLEX
solver. Tmax is chosen to be less then time in which wall is built, Tmax ≈ T ′/2, completely
to test collected reward criterion.

CPLEX Our method

Dataset
max

reward Tmax
collected
reward runtime GAP

collected
reward runtime Υ

wall_4 30 45 s 24 126ms 0.00% 24 79ms 0.1
wall_8 60 130 s 54 2.05 s 0.00% 54 100ms 0.1
wall_16 120 220 s 84 14.86 s 0.00% 84 206ms 0.1
wall_32 240 350 s 120 10min 0.00% 120 305ms 0.1
wall_64 480 800 s 180 10min 166.67% 240 408ms 0.1
wall_128 672 1600 s 40 10min 1580.00% 488 3.41 s 0.1
wall_256 1378 3000 s 0 10min ∞ 916 21.24 s 0.1
wall_512 2778 5000 s - - - 1486 5.61 s 0.0
wall_1024 5556 10000 s - - - 3022 22.22 s 0.0

36

5.6 Plan comparison

5.6 Plan comparison

Now we look into how plans actually compares between each solver. We will demon-
strate found solution on dataset wall_8. Brick configuration is the same as in previous
tests, see Tab. 3. From benchmark results in Table 7 we know that optimal time to build
chosen dataset is T ′ = 175 s. Optimal plan corresponding to this solution is visualized in
Figure 5.3, and plan generated using our method in Figure 5.4. Highly constrained settings,
dmin = 80 cm, Lfirst = true were used in comparison.

t[s]

R0

R1

R2

Tmax = 1800 40 80 120 160

4 1 5 6

4 3 7

2 5 8

Figure 5.3: Optimal solution obtained using CPLEX solver, smallest time needed to build
8 brick wall with 3 robots is 175 seconds.

t[s]

R0

R1

R2

Tmax = 1800 40 80 120 160

4 3 5 8

4 1 5

2 7 6

Figure 5.4: GRASP solution, all bricks were built. Final time is the same as optimal solution
seen in Figure 5.3.

We can clearly see greedy decision made at time 85s where we start to built second
layer immediately after first layer was built.

Up until now we tested performance when brick placement time ti = 40 s is same

37

5.6 Plan comparison

for all types of bricks. Next, we compare how our method holds when placement duration
are different for each brick type. Test is run on dataset wall_16 with brick configuration
Tab. 9.

Table 9: Overview of brick configuration in benchmark with wall_16. Times ti
were chosen such that there is no close integer multiple of their times. This tests
how solvers handlers non-aligned brick placement times σei .

Bricks
parameter red green blue orange
ρi 1 1 1 2
pi 2 4 8 16
ti 23 s 29 s 37 s 40 s

Using same method as before to obtain optimal time T ′ using CPLEX solver in Fig-
ure 5.5. That gives us T ′ = 289 s with maximum collected reward 120.

t[s]

R0

R1

R2

Tmax = 3000 40 80 120 160 200 240 280

4 1 6 7 10 11 14 15

4 8 5 12 16 13

2 3 5 12 9 15

Figure 5.5: Optimal solution obtained using CPLEX solver, smallest time needed to build
16 brick wall with 3 robots is 289 seconds with total collected reward of 120.

t[s]

R0

R1

R2

Tmax = 3000 40 80 120 160 200 240 280

4 3 5 12 9 14 16

4 8 5 12 15 13

2 1 6 7 10 11 15

Figure 5.6: Solution obtained using our method, we were able to find full solution with
T ′ = 296 s. Total collected reward is 120.

For our solution, seen in Figure 5.6, we performed extensive search with snapshot
parameter Υ = 1.0, maximum iteration 1000. Search took 52 s in which we were able to
find solution close to optimal one generated by exact method.

Visible blank spaces that occurs in all Figures 5.3, 5.4, 5.5 and 5.6 are caused by

38

5.7 Robot utilization limits

Lfirst = true parameter used in out tests. In our dataset wall_8 contained 2 layers,
each with 4 bricks. Dataset wall_16 contained 4 layers, also with 4 brick each. From
the generated plans we can clearly distinguish corresponding brick in each layer.

5.7 Robot utilization limits

When a feasible plan is created, we can compute utilization of each robot in plan
execution time frame. Given set of all constraints specified for WBP we would intuitively
expect that there exists the maximum number of robots Rmax, after which adding more
means that their utilization is equal to zero. We can demonstrate such effect on dataset
wall_16. Table 10 shows results of maximum robots utilized during plan execution.

Table 10: Benchmark results of maximum robots utilization.

constrained Tmax R Rused

weakly 200 s 10 7
highly 200 s 10 5
weakly 500 s 10 9
highly 500 s 10 6

From the results, we clearly see that even if we use a group of 10 robots, we would not
be able to utilize all of them. Interestingly, number Rmax also depends on Tmax. Such effect
occurs when having multiple layers with a different number of bricks, and Tmax effectively
blocks layers where more robots could be utilized.

39

6 Experiments

The planning algorithm has been tested in simulation environment. A common frame-
work used to develop robotic solutions in Robotic Operating System (ROS).

Robot operating system (ROS)

The Robot Operating System (ROS) is a flexible framework for writing
robot software. It is a collection of tools, libraries, and conventions that aim to
simplify the task of creating complex and robust robot behavior across a wide
variety of robotic platforms http://www.ros.org/about-ros/.

ROS can be described as general-purpose distributed system[25] in which modules are
defined and interconnected between each other using a common interface. ROS modules
can be implemented in various languages, from one of which is C++ that we used in our
implementation. Multiple modules can run on one or multiple machines. Communication
layers is provided by ROS. Distributed nature of whole system enables easy and fast de-
velopment process of a complex solution such as cooperation between multiple robots that
is required for wall building.

Simulation environment

To simulate a group of cooperating robots we used Gazebo simulator4 in which one can
implement all environmental aspects of given problem. Gazebo simulates multiple robots
in a 3D environment, with dynamic interaction between objects.

We run simulation for two cooperating UAVs. Wall is built in the center of simulation
space. Brick reservoirs are placed equidistantly from the center, as seen in Figure 6.1.

4http://gazebosim.org/

40

http://www.ros.org/about-ros/
http://gazebosim.org/

Figure 6.1: Brick reservoirs placement during the simulation. Wall is built
in the center of coordinate system.

Simulation environment in Figure 6.3 shows cooperation of two UAVs (third one is
waiting out of the camera frame). We are also able to simulate camera feedback as seen in
Figures 6.4 and 6.5.

Figure 6.2: Visualization of wall used in the
simulation.

Figure 6.3: Wall being built by 2 UAVs.

41

Figure 6.4: Simulated camera feedback of the
first UAV in Figure 6.3.

Figure 6.5: Simulated camera feedback of the
second UAV in Figure 6.3.

Wall used in the simulation is shown in Figure 6.2. Executed plan is shown in Fig-
ure 6.6. Layers constraint was set as Lfirst = true and no concurrence placement, dmin = 0,
was used. Time constraint Tmax was set to 180s with total collected reward of 28. In chosen
time constraint wall is only partially built up to the second layers.

t[s]

R0

R1

R2

Tmax = 1800 40 80 120 160

3 6 4

5

2 1 7

Figure 6.6: Plan used in simulation.

42

7 Conclusion

This thesis presented a self-contained method for wall building task. Works was mo-
tivated by MBZIRC 2020 competition where one of the challenges was to build wall using
group of robots while collecting maximum reward withing specified time budget. We started
by the description of various types of problems as variations of the Vehicle Routing Prob-
lem. A Wall building problem was formulated as a derivation of Cooperative Orienteering
Problem, where optimization problems were formulated in mixed-integer linear program-
ming. Wall was then transformed from geometric to a graph representation.

Graph representation was used as the main motivation of our heuristic approach. From
metaheuristic algorithms, we chose the GRASP approach, which was applied in our im-
plementation of the iterative solver. Proposed iterative algorithms searches problem graph
while randomly picking incremental steps that build up feasible solution set. Local search
further refines found solution. Refined solution is then compared to the best solution known
at the iteration step and updated if needed. We showed algorithms applied on homogeneous
group of robots. The method was further extended for handling a heterogeneous group of
robots.

Benchmarks were designed to test how our solution compares with generic CPLEX
solver in terms of collected reward and total runtime execution. In case of small problem
size, see Tables 8 and 6, where optimal solution could be found, obtained results shows
that our method is able to find solution with the same rewards as optimal one.

43

REFERENCES

References

[1] Denis Chamberlain. Automation and Robotics in Construction Xi. Elsevier, 1994.
ISBN: 978-0-444-82044-0.

[2] Dirk Briskorn, Andreas Drexl, and Sonke Hartmann. Inventory-based dispatching of
automated guided vehicles on container terminals. 2007. ISBN: 978-3-540-49550-5.

[3] T. Carwalo, J. Thankappan, and V. Patil. Capacitated vehicle routing problem. In
2017 2nd International Conference on Communication Systems, Computing and IT
Applications (CSCITA), pages 17–21, 2017.

[4] Nasser A. El-Sherbeny. Vehicle routing with time windows: An overview of exact,
heuristic and metaheuristic methods. Journal of King Saud University - Science,
22(3):123 – 131, 2010.

[5] Gilbert Laporte and Yves Nobert. Exact algorithms for the vehicle routing problem.
North-Holland Mathematics Studies, 132:147–184, 1987.

[6] Suresh Nanda Kumar and Ramasamy Panneerselvam. A survey on the vehicle routing
problem and its variants. Intelligent Information Management, 4, 2012.

[7] Anna Maria Sri Asih, Bertha Maya Sopha, and Gilang Kriptaniadewa. Comparison
study of metaheuristics: Empirical application of delivery problems. International
Journal of Engineering Business Management, 9(1847979017743603), 2017.

[8] Caroline Prodhon Nacima Labadie, Christian Prins. Metaheuristics for Vehicle Rout-
ing Problems. John Wiley & Sons, 2016. ISBN: 9781119136767.

[9] Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and
algorithms. Annals of Operations Research, 153(1):29–46, 2007.

[10] Guy Desaulniers, Jacques Desrosiers, Yvan Dumas, Marius Solomon, and François
Soumis. Daily aircraft routing and scheduling. Management Science, 43:841–855,
1997.

[11] Hongqi Li, Yue Lu, Jun Zhang, and Tianyi Wang. Solving the tractor and semi-
trailer routing problem based on a heuristic approach. Mathematical Problems in
Engineering, 2012(182584), 2012.

[12] Michel Gendreau, Jean-Yves Potvin, Olli Braumlaysy, Geir Hasle, and Arne Lokketan-
gen. Metaheuristics for the Vehicle Routing Problem and Its Extensions: A Categorized
Bibliography. 2008. ISBN: 978-0-387-77778-8.

[13] Tantikorn Pichpibul and Ruengsak Kawtummachai. A heuristic approach based on
clarke-wright algorithm for open vehicle routing problem. The Scientific World Jour-
nal, 2013(874349):11, 2013.

44

REFERENCES

[14] Noraini Razali. An efficient genetic algorithm for large scale vehicle routing problem
subject to precedence constraints. Procedia - Social and Behavioral Sciences, 195:1922–
1931, 2015.

[15] R Jorgensen, Jesper Larsen, and K Bergvinsdottir. Solving the dial-a-ride problem
using genetic algorithms. Journal of the Operational Research Society, 58(10):1321–
1331, 2007.

[16] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. Orienteering problem:
A survey of recent variants, solution approaches and applications. European Journal
of Operational Research, 255(2):315–332, 2016.

[17] Martijn Merwe, James Minas, Melih Ozlen, and John Hearne. The cooperative orien-
teering problem with time windows. School of Science, RMIT University, Melbourne,
Australia, 2014.

[18] Aykut Bulut and Ted K. Ralphs. On the complexity of inverse mixed integer linear
optimization. Department of Industrial and Systems Engineering, Lehigh University,
USA, 2015.

[19] C.H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets
of complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

[20] Walter N. Polakov Clark, Wallace and FrankW. Trabold. The Gantt Chart, A Working
Tool of Management. 1922. ISBN: 978-0-2437-5548-6.

[21] Fred Glover. Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13(5):533–549, 1986.

[22] Thomas A Feo and Mauricio G.C Resende. A probabilistic heuristic for a computa-
tionally difficult set covering problem. Operations Research Letters, 8(2):67–71, 1989.

[23] Mauricio G. C. Resende and Celso C. Ribeiro. Greedy Randomized Adaptive Search
Procedures. 2003. ISBN: 978-0-306-48056-0.

[24] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model. Com-
put. Simul., 8(1):3–30, 1998.

[25] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. ICRA
workshop on open source software, 3:5, Jan 2009.

45

REFERENCES

46

APPENDIX B CD CONTENT

Appendix A List of abbreviations

In Table 11 are listed abbreviations used in this thesis.

Table 11: Lists of abbreviations

Abbreviation Meaning
WBP Wall Building Problem
OP Orienteering Problem
MBZIRC Mohamed Bin Zayed International Robotic Challenge
VRP Vehicle Routing Problem
CVRP Capacitated Vehicle Routing Problem
VRPTW Vehicle Routing Problem with Time Windows
COP Cooperative Orienteering Problem
COPTW Cooperative Orienteering Problem with Time Windows
DARP Dial-a-ride Problem
TSRP Tractor Semi-trailer Problem
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
CW Clarke-Wright algorithm
GRASP Greedy Randomized Adapttive Search Procedure
PRNG Pseudorandom Number Generator
RCL Restricted Candidate List
LP Linear Programming
ILP Integer Linear Programming
MILP Mixed-Integer Linear Programming
ROS Robotic Operating System

Appendix B CD content

In Table 12 are listed names of all root directories saved on the CD.

Table 12: Lists of root directories

Directory Description
code implementation source code
thesis thesis source files

47

	Introduction
	Wall Building Problem
	Orienteering problem
	Metaheuristic
	Greedy randomized adaptive search procedure (GRASP)

	Wall Building Optimization Problem
	Problem formulation
	Wall layers
	Virtual nodes
	Time constraint objective function
	Geometry representation
	Generating precedence rules
	Generating concurrence rules

	Heuristic approach
	Plan construction
	Process edges
	Process Nodes
	Assign available nodes
	Time update
	Node placement
	Optimization procedure
	Local Search
	Solution update

	Heterogenous robot fleet
	Performance evaluation
	CPLEX
	Datasets
	Multithreaded performance
	Weakly constraint performance
	Highly constrained performance
	Plan comparison
	Robot utilization limits

	Experiments
	Conclusion
	Appendix List of abbreviations
	Appendix CD content

