
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Václav Pritzl

UAV Guidance for Fire Challenge of MBZIRC Contest

Department of Control Engineering

Thesis supervisor: RNDr. Petr Štěpán, Ph.D.

i

Declaration of Authorship

I hereby declare that I wrote the presented thesis on my own and that I cited all the
used information sources in compliance with the Methodical instructions about the ethical
principles for writing an academic thesis.

Prague, date............................. ...

signature

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

456894Personal ID number:Pritzl VáclavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

UAV guidance for fire challenge of MBZIRC contest

Master’s thesis title in Czech:

Navigace UAV pro úlohu hašení v soutěži MBZIRC

Guidelines:
The goal of the thesis is to design, implement and experimentally verify algorithms for window detection and trajectory
planning for flying through a window and flying inside a building as subtasks of the fire challenge of the MBZIRC competition.
The following tasks will be solved:
1) To get familiar with sensors used for the fire challenge and with UAV control mechanisms.
2) To design and to implement algorithm for window detection from lidar fused with detections from Realsense depth
camera (detection algorithm for Realsense is not developed by the student).
3) To design and to implement algorithm for planning trajectories for flying through window and flying inside the building
to locate the fire.
4) To test and to analyze developed algorithms in a simulated environment.
5) To verify the solution in real experiments and to evaluate its performance under normal conditions as well as in a smoke
environment.

Bibliography / sources:
[1] Wang, R., Bach, J., & Ferrie, F. P. (2011, January). Window detection from mobile LiDAR data. In 2011 IEEEWorkshop
on Applications of Computer Vision (WACV) (pp. 58-65). IEEE.
[2] Jutzi, B., Weinmann, M., & Meidow, J. (2014). Weighted data fusion for UAV-borne 3D mapping with camera and line
laser scanner. International Journal of Image and Data Fusion, 5(3), 226-243.
[3] Tulldahl, H. M., & Larsson, H. (2014, October). Lidar on small UAV for 3D mapping. In Electro-Optical Remote Sensing,
Photonic Technologies, and Applications VIII; and Military Applications in Hyperspectral Imaging and High Spatial Resolution
Sensing II (Vol. 9250, p. 925009). International Society for Optics and Photonics.

Name and workplace of master’s thesis supervisor:

RNDr. Petr Štěpán, Ph.D., Multi-robot Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 22.05.2020Date of master’s thesis assignment: 31.01.2020

Assignment valid until:
by the end of summer semester 2020/2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
RNDr. Petr Štěpán, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

v

vi

Acknowledgements

I would like to thank my thesis advisor RNDr. Petr Štěpán, Ph.D. for his guidance
during the work on my thesis. Furthermore, I would like to thank all the members of the
Multi-robot Systems group of which there are too many to mention individually and I would
surely forgot about somebody. This work would not have been possible without such an
amazing team.

Next, I would like to thank my family for their endless support over the course of my
life and my studies. Without their support, I would not have managed this.

Finally, I would like to thank all my friends who kept me from going crazy during my
studies and my work on this thesis. Without them, I would never finish this. Especially, I
wish to thank my friend Adam, because he feels that he deserves a special mention and after
careful consideration I must say that he is right.

viii

ix

Abstract

This thesis deals with the guidance of an unmanned multirotor aircraft for
autonomous flight into buildings and autonomous indoor exploration. This
research was motivated by the firefighting challenge of the Mohamed Bin
Zayed International Robotic Challenge 2020. The main focus of this work
is placed on window detection from 2D LiDAR data, fusion of the obtained
detections with 3D depth camera data, and path planning for safe flight
through the detected window and inside the building. A combination of line
extraction algorithms is used for window detection from the LiDAR data. A
Kalman filter-based estimator is used for filtering and fusion of the individ-
ual detections. A state machine generating line trajectories with constant
velocity is used for guiding the UAV through the detected window. A wall
following algorithm producing local trajectories based on a single laser scan
is used for guiding the UAV inside the building. The proposed algorithms
were extensively verified in simulations and real-world experiments under
normal visibility conditions and in a smoke-filled environment.

Keywords: unmanned aerial vehicle, window detection, firefighting,
indoor-outdoor transition, indoor exploration, Kalman filtering, LiDAR,
depth

Abstrakt

Tato práce se zabývá navigaćı bezpilotńı helikoptéry pro účel autonomńıho
vletu do budovy a jej́ıho autonomńıho pr̊uzkumu. Tento výzkum byl mo-
tivován účast́ı na robotické soutěži Mohamed Bin Zayed International
Robotic Challenge 2020, respektive jej́ı části zabývaj́ıćı se hašeńım požár̊u
ve výškových budovách. Práce se soustřed́ı zejména na detekci oken z dat
naměřených pomoćı 2D LiDARu, fúzi těchto detekćı s detekcemi z 3D
hloubkové kamery a plánováńı bezpečného letu skrz detekované okno a
vnitřek budovy. Okna jsou z LiDARových dat detekována pomoćı kom-
binace algoritmů na extrakci př́ımek. Na filtrováńı a fúzi jednotlivých
detekćı je použit lineárńı Kalman̊uv filtr. Stavový automat generuj́ıćı
referenčńı trajektorie v podobě př́ımek s konstantńı rychlost́ı je poté
použit pro plánováńı pr̊uletu ćılovým oknem. Algoritmus na sledováńı zd́ı,
generuj́ıćı trajektorie na základě dat z LiDARových měřeńı, je použit pro
plánováńı letu uvnitř budovy. Všechny navržené algoritmy byly podrobně
otestovány v simulaćıch a reálných experimentech za normálńıch podmı́nek
i v prostřed́ı s kouřem.

Kĺıčová slova: bezpilotńı helikoptéry, detekce oken, hašeńı požár̊u, pr̊ulet
do budovy, pr̊uzkum budov, Kalman̊uv filtr, LiDAR, hloubka

x

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 State of the art . 2

1.2 Problem Statement . 4

1.3 Outline . 6

2 Description of Used System 7

2.1 Hardware Description . 7

2.1.1 RPLIDAR-A3 . 7

2.1.2 RealSense D435 . 9

2.2 Software Description . 10

2.2.1 Control pipeline . 10

2.2.2 State estimation and localization . 11

3 Window Detection and Position Estimation 13

3.1 Detection from RealSense Data . 13

3.2 Detection from LiDAR Data . 15

3.2.1 Detection of Potential Window Edges 15

3.2.2 Linking Edges to Existing Window Estimates 20

3.2.3 Standalone Detection based on Window Width 22

3.3 Sensor Fusion . 24

3.3.1 Kalman Filter Description . 25

3.3.2 System Model and Estimation Details 26

xii Contents

4 Path Planning 33

4.1 Flying through a Window . 33

4.1.1 State Machine . 33

4.1.2 Trajectory Sampling . 35

4.1.3 Goal Point Calculation . 36

4.2 Path Planning inside the Building . 37

4.2.1 Approaching the Wall . 37

4.2.2 Wall Following . 38

4.3 Altitude Filter . 40

4.3.1 Median Filter Description . 40

4.3.2 Outside Filtering . 41

4.3.3 Inside Filtering . 42

5 Simulations 45

5.1 Window Detection and Flythrough . 45

5.2 Indoor Wall Following . 47

5.3 Altitude Filter . 47

6 Real-World Experiments 49

6.1 First Floor Flight with RealSense and LiDAR 49

6.1.1 Window Position Estimation . 50

6.1.2 Altitude Filter . 52

6.2 Ground Floor Flight with LiDAR in Smoke 53

6.3 Smoke Influence on RealSense Depth Camera 55

6.4 Smoke Influence on RPLIDAR-A3 . 56

6.5 Testing in the Desert . 57

6.6 Deployment at the MBZIRC Competition . 58

6.7 Summary of Experimental Results . 60

7 Conclusion 61

7.1 Future Work . 62

Bibliography 63

CD Content 67

List of Abbreviations 69

List of Figures

1.1 UAV at the MBZIRC contest and building specifications 5

2.1 UAV platform used for the competition . 8

2.2 Diagram of the control pipeline . 10

3.1 Example of window detection from RealSense depth data 14

3.2 LiDAR coordinate system . 16

3.3 Modified Successive Edge Following . 17

3.4 Iterative End Point Fit . 19

3.5 Visualization of window edge candidate detection 24

3.6 Kalman filter state description . 27

3.7 Possible combinations of valid window edges 28

4.1 State machine for flying through a window . 34

4.2 Wall following process . 39

4.3 Altitude filter . 41

5.1 Screenshots of the simulation . 46

5.2 Wall following trajectory inside the building 47

5.3 Rangefinder measurements - input and output of altitude filter 48

6.1 Flying through a window on the first floor . 50

6.2 Estimation of window coordinates and orientation from depth and LiDAR data 51

6.3 Valid edges from depth data and estimation of window width and height . . . 52

6.4 Inputs and output of altitude filter from flights in the first floor 53

6.5 Flying through a ground floor window under normal conditions 54

6.6 Flying through a ground floor window in a smoke-filled environment 54

6.7 Trajectory traversed by the UAV during the ground floor experiment 55

6.8 Evaluation of smoke influence on the RealSense D435 depth camera 56

xiv List of Figures

6.9 Evaluation of smoke influence on RPLIDAR-A3 laser scanner 57

6.10 UAV flying through an improvised building entrance in the desert 57

6.11 3D model of the competition building from Leica laser scanner 58

6.12 Window detection at the MBZIRC competition building 59

List of Tables

2.1 RPLIDAR-A3 specifications . 9

2.2 Intel RealSense D435 specifications . 9

1 CD Content . 67

2 List of abbreviations . 69

List of Algorithms

1 Modified Successive Edge Following . 18
2 Iterative End-Point Fit and Corner Detection 20
3 Find Corresponding Edges to Existing Estimate 21
4 Standalone Detection of Windows from 2D LiDAR Data 23
5 Filtering of Lower Rangefinder Data . 42

xvi List of Algorithms

Chapter 1

Introduction

A fire breaking out inside buildings poses an ever-present threat for everybody, and
therefore it is crucial to research new ways of detecting and extinguishing it as quickly as
possible. The fire in high-rise buildings is especially dangerous because it can very quickly
spread throughout the building and endanger the life of an enormous amount of people who
can be deprived of their only way to escape.

Autonomous Unmanned Aerial Vehicles (UAVs) or drones have recently undergone
rapid development, and an excellent possibility to employ them in early detection and extin-
guishing of fires has arisen. After a fire appears, the UAV can very quickly reach the fire’s
location even if it is located very high on the building or inside a hard-to-reach space and can
start extinguishing it much earlier than it could be reached by human firefighters.

The possibility to employ UAVs in firefighting has already attracted the attention of
many researchers. An obvious example of a situation where UAVs can prove beneficial is out-
door fire detection and monitoring. As reported in [1], a system of multiple UAVs could be
used for automatic forest fire monitoring using visual and infrared cameras. Real experiments
with forest fire monitoring in a national park have already been conducted by the Hungarian
fire department[2]. The authors of [3] describe a task allocation strategy for distributed co-
operation of ground and aerial robot teams in fire detection and extinguishing. In [4], a UAV
system is designed for the delivery of fire-extinguishing bombs to a target area.

UAVs fighting fires have already been a topic of robotic competitions as well. Paper [5]
describes the design and implementation of a firefighting UAV for outdoor applications de-
signed specifically for the IMAV 2015 competition.

Moreover, the employment of UAVs could prove to be beneficial and life-saving in urban
environments. Studies have already been done on fire detection in urban areas using a thermal
camera carried by a UAV[6]. UAVs capable of entering buildings through doors and windows
will be especially helpful because of their ability to reach the target location much earlier
than human firefighters.

Work [7] contains the design of a semi-autonomous indoor firefighting UAV. The au-
thors designed a fireproof, thermoelectrically cooled UAV equipped with visual and thermal
cameras, collision avoidance module, and first-person view system. However, to fully exploit
the potential of UAVs in firefighting and achieve reliable operation, the drones need to be
autonomous. In the case of indoor firefighting, that means the UAV needs the capability of

2 Chapter 1. Introduction

autonomous detection of free entrances to the building, the capability of flying inside, explor-
ing the building, detecting the fire, extinguishing the fire, and returning back to the starting
location.

A similar very complex task was the topic of the fire challenge of the Mohamed Bin
Zayed International Robotics Challenge (MBZIRC) 2020.1 The MBZIRC contest aims to
demonstrate the current state of the art in robotics, to extend what is possible, and to bring
the scientific theories closer to real-world applications. The contest provides an ambitious set
of challenges motivated by contemporary world needs. The fire challenge was meant to utilize
autonomous drones in extinguishing simulated fires outside and inside high-rise buildings.

This thesis focuses mainly on the following subtasks of the fire challenge:

• Detection of windows usable as building entrances

• Safe guidance of the UAV through the window into the building

• Indoor path planning in order to look for the simulated fire

1.1 State of the art

The guidance of autonomous UAVs for the task of flying through a window to en-
ter a building has already been partially explored in literature several times using different
approaches and with varying levels of experimental verification.

The specific case of a UAV flying through a window has been researched in [8] and [9].
The authors used RBG camera images and 2D LiDAR data for navigation, visual servoing
while approaching the window, and potential field-based planning for the flythrough itself.
They performed real experiments with flying through a wooden frame representing a window.
Article [10] deals with the detection and estimation of a window that can be used for entering
a building by a Micro Aerial Vehicle (MAV). The authors use a stereo camera rig for obtaining
the data. Then, they use a haar-like cascade classifier for window recognition. They extract
various features on the edges of the window and estimate the 3D center of the window from
the left and right images. Frame to frame motion is then estimated for the navigation of
the MAV. The authors evaluate the performance of the algorithm on prerecorded images of
real windows. Work [11] deals with window detection from an RGB-D camera along with
the generation of an optimal trajectory to a point in front of the window. The developed
approach was verified in simulations. Paper [12] focuses on the control of an ornithopter
MAV using visual servoing for narrow passage traversal. They demonstrate their approach
in a real experiment with a small MAV flying through a narrow wooden frame. Article [13]
describes visual servoing of an autonomous helicopter in urban areas, while using windows as
features. The windows are detected from an RGB camera onboard the helicopter.

The research of window detection has also focused on detection from ground-based
LiDAR or camera data for the purpose of urban planning, cadastral mapping, or navigation.
Work [14] focuses on building facade separation and window detection from ground-based 3D
LiDAR point clouds. The window detection is done by fitting planes to segments of point

1http://mbzirc.com (Accessed: 21 May 2020)

http://mbzirc.com

1.1. State of the art 3

cloud data and searching for holes in the fitted planes. These holes are then filtered based on
their location and their rectangular bounding boxes.

Similarly, paper [15] deals with facade and window detection from 3D LiDAR data
collected from a moving vehicle in an urban environment. Their approach consists of ground
point separation, fitting a plane to the facade using Random Sample Consensus (RANSAC),
and detecting potential window edge points based on searching for neighboring points. The
windows are then localized by projecting the potential window points in horizontal and vertical
directions to two projection profiles, calculating histograms of the profiles, and localizing
windows as peaks in the histograms.

In [16], window detection from RGB camera data is described. First, semantic segmen-
tation is used to identify the facade of the building. An iterative algorithm then separates the
data into blocks labeled as either facade or window based on vertical and horizontal gradients
in the image.

Article [17] focuses on window detection and classification from visual data using a graph
of contours. This approach consists of extracting edges from an image and representing sets
of edges by an Attributed Relational Graph. Graph matching is used for window detection.

This thesis focuses more on the issue of detecting a single window, which will be used
as a safe entrance to the building. This task is very similar to the task of door detection for
ground robots. In [18], a door detection algorithm, which utilizes 3D depth data from the
Microsoft Kinect sensor, is described. The algorithm searches for the largest hole (a place
where data are missing) in the depth image. Then, it detects the door corners by iterating
along the edges of the detected hole and calculates the width to length ratio, which is then used
for confirming the detection and gaining information about the state of the door. Work [19]
focuses on detection of closed door from 3D point cloud produced by PrimeSense depth sensor.
It combines a region growing algorithm to detect the plane of the door and detection of the
door handle as a hole in the plane. Article [20] approaches door detection by using a mobile
robot equipped with a 2D LiDAR and a panoramic camera. An expectation-maximization
algorithm is used for segmentation of the environment into door and wall objects based on
their shape, color, and motion properties. In [21], a method for corridor and door detection
from RGB video images is proposed. The doors are found by detecting their left, right,
and top edges from the change of color in the image and verifying their required geometric
properties. The approach proposed in [22] aims at the detection of doors from an RGB camera
and 2D LiDAR mounted on a moving robot. The detection uses several weak classifiers that
detect features such as door frame, width, color, and knob, and combines them using the
AdaBoost algorithm. Paper [23] presents an image-based door detection algorithm based on
the geometric model of doors combining edge and corner features obtained using the Canny
edge detector. In [24], a door detection algorithm processing 2D LiDAR data from a moving
ground robot is proposed. The algorithm detects the door by searching for space between 2
short segments and comparing it with a predefined door width. Article [25] proposes a door
detection and tracking technique that uses a single RGB camera. It consists of extracting
lines from the image, detecting the 3D wall planes in the image, and finding a rectangular
shape with correct width to height ratio corresponding to the door. The door is then tracked
using a 2D edge tracker applied to doorposts only.

Once the entrance into the building is detected, it is necessary to generate a safe trajec-
tory through this entrance and execute it. Article [26] deals with state estimation, control, and

4 Chapter 1. Introduction

planning for an aggressive flight of a Micro Aerial Vehicle (MAV) through a narrow window
tilted at various angles. The position of the window is known beforehand, and an aggressive
trajectory through the window gap is generated. State estimation is done based on visual
camera images and an Inertial Measurement Unit (IMU). Similarly, work [27] focuses on an
aggressive flight of MAVs through narrow gaps tilted at various angles. The gap is detected
from a forward-facing fisheye camera using a combination of Canny edge detection and search
for quadrangular shapes. Then, a trajectory through the gaps is generated and executed.

Furthermore, flying into a building poses an interesting challenge because the transfer
between indoor and outdoor environment leads to the possibility to combine different localiza-
tion methods (e.g., Global Positioning System (GPS) outside the building and Simultaneous
Localization and Mapping (SLAM) inside). Article [28] describes a system combining visual
and laser odometry with IMU using an Extended Kalman Filter (EKF) for flight in both
indoor and outdoor environments. Paper [29] describes an approach that used depth image
processing for visual odometry capable of navigating MAVs during both indoor and outdoor
flight and transfers from one to the other.

After entering the building, there are many different options for path planning inside
the indoor space. To ensure that the space inside the building will be completely explored,
it is beneficial to use a frontier exploration-based approach, e.g., [30] or [31]. However, this
approach would require either having a map of the environment available or building a map of
the environment online during flight. An example of algorithms usable for building such a map
and planning on it can be found in [32]. While this approach ensures complete exploration
of the target space, it is too computationally demanding, and depending on the nature of
obstacles in the environment, a much simpler planning algorithm is sufficient. Another option,
the one explored in this thesis, is to plan trajectories only based on current sensor data
available to the UAV. An example of this approach is written in [33].

In order to reliably extinguish indoor fires, the guidance system must be able to work
correctly under low visibility conditions in the presence of smoke. A comprehensive survey of
the effects of smoke on sensor performance can be found in [34].

This thesis combines the subtasks of window detection, window position estimation,
guidance for autonomous flight through the window, and for the autonomous flight along
the walls inside the building. The proposed algorithms run completely online onboard the
UAV hardware, and their performance has been extensively verified in both simulations and
real-world deployments under conditions very close to a real firefighting scenario.

1.2 Problem Statement

The fire challenge of the MBZIRC competition consists of multiple tasks. These are
extinguishing simulated fires inside a building, extinguishing outdoor fires on the facade of
the building, and extinguishing outdoor fires on the ground next to the building.

The building, built specifically for the purpose of the fire challenge, contains three floors,
with a single 2 by 2 meters large window opened on each floor with the rest of the windows
closed. The model of the building provided by the organizers can be seen in Figure 1.1. The
figure also contains a picture of the windows from the competition itself. This thesis focuses

1.2. Problem Statement 5

(a) UAV searching for an open window (b) Building model

(c) UAV extinguishing an outdoor fire on the facade of the building

Figure 1.1: UAV at the entrance to the building, building specifications provided by organizers
and UAV extinguishing outside fires

on solving several subtasks necessary for the successful extinguishing of the inside fires. These
subtasks include:

1. Window detection and position estimation: Detection of window edges from 2D LiDAR,
fusing them with detections from RealSense 3D camera (the algorithm for detection
from depth data is not a part of this thesis) and continuous estimation of the window’s
position during flying through it.

6 Chapter 1. Introduction

2. Motion planning for flying through the detected window : Planning and executing a safe
maneuver for entering the building through the detected window.

3. Path planning inside the building : Continuous planning of a collision-free path inside
the building. The rooms inside the building were assumed to contain obstacles on the
ground and next to the walls of the room.

It was assumed that one room inside the building can contain smoke generated by the simu-
lated fires.

1.3 Outline

This thesis is organized as follows. Chapter 1 describes the motivation behind the re-
search performed in this thesis, an overview of related work, and a description of the problems
to be solved.

Chapter 2 describes the system used to test the algorithms developed in this thesis.
Section 2.1 contains information about the UAV platform and the specific sensors aimed
to be used at the competition. Section 2.2 describes the software used for simulations and
the interface with the hardware. The basic framework employed for controlling the drones is
described.

Chapter 3 contains a description of the algorithms used for the detection of windows
from the depth and LiDAR data, algorithms for fusion of these detections together, and for
continuous estimation of the window position, orientation, and size for navigation while flying
into the target building.

Chapter 4 contains path planning algorithms used for generating the desired UAV
trajectory to be passed to the lower levels of the UAV control pipeline. Section 4.1 describes
control algorithms for flying into the building through a window detected by the algorithms
described in the previous chapter. Section 4.2 describes a path planning algorithm used for
flying inside the target building in order to locate the fire. Section 4.3 describes an algorithm
for filtering of data used for estimation of UAV altitude while flying through the window and
inside the building.

Chapter 5 contains verification and tests of the algorithm performance in simulations
before deployment to real UAV hardware.

Chapter 6 describes the performance of the proposed solutions in real-world experi-
ments. The experimental evaluation includes tests at a small-scale testing building at the
university, further tests at the desert, and information about the deployment of the solution
at the competition itself. The performance of the solutions is evaluated both under normal
conditions and decreased visibility conditions.

Finally, Chapter 7 contains a summary of the work performed in this thesis and the
achieved results.

Chapter 2

Description of Used System

This chapter contains a short description of the hardware and software used for the
UAVs. In the hardware description, special emphasis is put on the RPLIDAR laser scanner
and RealSense depth camera, as they are the primary sources of data for algorithms used in
this thesis.

2.1 Hardware Description

The UAV platform designed for the competition can be seen in Figure 2.1. It is a
quadrotor based on Tarot 650 frame. The UAV dimensions are approximately 80×80×45 cm
including propellers. The weight of the UAV is approximately 3.6 kilograms without water.

Low-level control is performed by Pixhawk 4 Flight Controller, which includes a built-
in IMU with accelerometers, a magnetometer, and a barometer. The flight controller and
sensors are all connected to the Intel NUC Kit NUC8i7BEH computer, which runs all the
UAV software.

Localization in outdoor environment is performed based on data from Pixhawk GPS and
compass module. Two Garmin LIDAR-Lite v3 rangefinders, one of them pointing upwards
and the other pointing downwards, are mounted on the UAV. They provide measurements
of the distance from the ground below and the ceiling above the UAV. The RPLIDAR-A3
laser scanner is mounted on top of the UAV. The RealSense D435 depth camera is placed
at the front of the UAV. Next to the RealSense camera, there are 3 TeraRanger Thermal 33
cameras for fire detection. Finally, a downward-looking BlueFox camera is mounted on the
UAV, which enables localization using optic flow.

The fire extinguishing device consists of a water bag connected to a water pump con-
trollable by the computer. The water is sprayed through a nozzle at the target location.

2.1.1 RPLIDAR-A3

The RPLIDAR-A3 laser scanner is a Light Detection and Ranging (LiDAR) device.
It is capable of measuring distance to obstacles in a 2D plane in 360-degree field of view
by illuminating the target with infrared light and measuring the reflected light by a sensor.

8 Chapter 2. Description of Used System

Figure 2.1: UAV platform used for the competition

Datasheet of the laser scanner can be found at 1 and some of its specifications can be found
at 2. Table 2.1 displays an extract of some of its basic parameters.

RPLIDAR offers the option to switch between different scan modes. The scan modes
used in this thesis are called ”sensitivity” and ”stability”3 and are dedicated for indoor and
outdoor usage, respectively. These scan modes differ in the measurement frequency, maximal
measurement distance, sensitivity of detection, and environment light elimination.

The sensitivity mode is optimized for longer range and better sensitivity but suffers
from weak environment light elimination. As the experiment in Section 6.4 shows, the mode
is able to function even in thick smoke and is capable of detecting black objects. However, it
is unable to see objects illuminated by direct sunlight and therefore cannot be used outdoors.

The stability mode is optimized for environment light elimination performance at the
cost of shorter range and lower sample rate. Furthermore, its performance drastically decreases
in an environment containing smoke, and it is practically unable to detect black objects.

In this thesis, RPLIDAR data are utilized for indoor localization, window detection, and
path planning while following walls inside the building. The RPLIDAR is used in its indoor
mode while flying inside and in its outdoor mode while flying outside in direct sunlight.

1http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMTEC_

rplidar_datasheet_A3M1_v1.0_en.pdf (Accessed: 18 May 2020)
2https://www.slamtec.com/en/Lidar/A3Spec (Accessed: 18 May 2020)
3http://bucket.download.slamtec.com/ccb3c2fc1e66bb00bd4370e208b670217c8b55fa/LR001_SLAMTEC_

rplidar_protocol_v2.1_en.pdf (Accessed: 18 May 2020)

http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMTEC_rplidar_datasheet_A3M1_v1.0_en.pdf
http://bucket.download.slamtec.com/aaf96dddba2f6a9baa03261628c01af9fc2f866c/LD310_SLAMTEC_rplidar_datasheet_A3M1_v1.0_en.pdf
https://www.slamtec.com/en/Lidar/A3Spec
http://bucket.download.slamtec.com/ccb3c2fc1e66bb00bd4370e208b670217c8b55fa/LR001_SLAMTEC_rplidar_protocol_v2.1_en.pdf
http://bucket.download.slamtec.com/ccb3c2fc1e66bb00bd4370e208b670217c8b55fa/LR001_SLAMTEC_rplidar_protocol_v2.1_en.pdf

2.1. Hardware Description 9

Parameter Indoor Mode (Sensitivity) Outdoor Mode (Stability)

Maximal Distance
White object: 25 m White object: 20 m
Dark object: 10 m Dark object: ≈ 0 m

Sample Rate 16000 Hz 10000 Hz

Scan Rate 10-20 Hz (≈ 13 Hz used during experiments)

Laser Wavelength 785 nm

Angular Resolution 0.3375◦ 0.54◦

Table 2.1: RPLIDAR-A3 specifications

Parameter Depth RGB

Maximal Depth Range 10 m -

Maximal Depth Range 0.105 m -

Field of View (H × V × D) 87◦ × 58◦ × 95◦ 69.4◦ × 42.5◦ × 77◦

Maximal Resolution 1280× 720 (at max 30 Hz) 1920× 1080

Maximal Frame Rate 90 Hz 30 Hz

Table 2.2: Intel RealSense D435 specifications

2.1.2 RealSense D435

The Intel RealSense D435 is a stereo vision depth camera system. It consists of a pair of
infrared (IR) cameras, an infrared projector, and an RGB camera. The IR projector optionally
projects an invisible infrared pattern on the scene, improving the depth accuracy. The left
and right IR cameras capture the scene, and the captured data are combined to obtain a
depth image. The depth data can be passed on for further processing either in the form of a
point cloud or in the form of a depth image where each pixel in the image has a value that
corresponds to the depth of the object in the scene.

The RealSense depth camera is capable of working both in indoor and outdoor envi-
ronments. However, as was found out during the real experiments, the quality of depth data
is significantly influenced by smoke. Additionally, the accuracy of the data is decreased by
direct sunlight. Furthermore, RealSense can act as a source of electromagnetic interference
for other sensors, e.g., the GPS module. For usage in real-world applications, it needs to be
properly shielded.

Basic specification of the camera can be found at 4 and its datasheet can be found at 5.
Table 2.2 contains its basic properties extracted from the official specifications. The field of
view is specified as horizontal × vertical × diagonal values. In this thesis, RealSense depth
camera provides data for one of the algorithms for window detection.

4https://www.intelrealsense.com/depth-camera-d435/ (Accessed: 18 May 2020)
5https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/

intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf (Accessed: 18 May 2020)

https://www.intelrealsense.com/depth-camera-d435/
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf

10 Chapter 2. Description of Used System

2.2 Software Description

All the software runs on the Intel NUC Mini PC with the Ubuntu 18.04 operating sys-
tem. Robot Operating System6 (ROS) is used as a middleware for the development of the
robotic software. It provides services such as hardware abstraction, low-level device control,
implementation of commonly-used functionality, and package management. ROS contains
packages to intuitively handle transformations between different coordinate frames. It is pos-
sible to define specific transformations for each sensor or localization algorithm and transform
coordinates from one frame of reference to another. Furthermore, it enables to use the same
implementation of robotic algorithms for simulations and for reality, which is crucial for safe
development of control software.

The Gazebo robotics simulator was used for simulations and testing of the software
before deploying it to real UAV hardware. It is an open-source 3D robotics simulator with a
robust physics engine enabling to simulate the real-time robot behavior in various complex
environments.

2.2.1 Control pipeline

Figure 2.2 displays a diagram of the control pipeline running on the UAVs. It provides
features such as precise trajectory tracking, localization, and collision avoidance and therefore
enables the completion of various complex tasks by the UAVs. The control pipeline has been
developed in the Multi-robot Systems group and is described in [35] and [36] in detail. A short
description of the individual components follows.

Mission

planner

MPC

tracker
Bumper

SO(3)

controller

Attitude

controller

UAV

hardware

State estimation

+

Localization

desired trajectory

rD, φD

xD, ẋD, ẍD
φD, φ̇D, φ̈D

xD, ẋD, ẍD
φD, φ̇D, φ̈D

R (φD, θD, ψD)

TD

motor

control

UAV state

estimate

onboard sensor data

Figure 2.2: Diagram of the control pipeline

The UAV hardware represents the interface to the hardware part of the UAV, which
provides sensor data and accepts motor commands.

The Attitude controller is the controller embedded in the Pixhawk 4 flight control unit. It
accepts desired orientation of the UAV R and desired total thrust TD and outputs commands
to electronic speed controllers controlling the motors to achieve the desired attitude.

6https://www.ros.org/ (Accessed: 18 May 2020)

https://www.ros.org/

2.2. Software Description 11

The SO(3) controller is a nonlinear state feedback controller, described in [37]. Its
input is a trajectory defined by particular positions xD, yaw angles φD, linear velocities ẋD,
angle velocities φ̇D, linear accelerations ẍD, and angle accelerations φ̈D and the current UAV
state. Its output is the desired UAV attitude and total thrust, which is passed to the attitude
controller.

The Bumper provides reactive obstacle avoidance. It accepts sensor data from the Li-
DAR, RealSense 3D camera, and rangefinders and the predicted UAV trajectory in order
to detect potential collisions. All points included in the predicted trajectory are checked for
possible collisions, and the trajectory is modified to avoid dangerous obstacles.

The MPC tracker represents a reference generator for the underlying state feedback.
It consists of a linear Model Predictive Controller (MPC) and a linear time-invariant (LTI)
model of the UAV system connected by a simulated control loop. The MPC tracker interface
accepts a desired trajectory consisting of a list of set-points sampled with a constant time
step ∆t. Each set-point is defined by its Cartesian coordinates rD = [xD, yD, zD]T and desired
UAV yaw orientation φD. The coordinates can be specified in an arbitrary coordinate frame
with an existing and known transformation to the coordinate frame currently used by the
controller.

The MPC tracker then generates a smooth and feasible trajectory with a constant sam-
pling step, including velocities and accelerations at each point, while considering the transla-
tional dynamics of the UAV and the input and state constraints. The trajectory generation
assumes that the original set-points are sampled with a constant time step ∆t = 0.2 s by
default. Therefore, it is possible to change the velocity of the UAV while following the tra-
jectory by changing the Euclidean distance between the set-points, considering the constant
time step ∆t. The generation of set-points for flying through the window and inside the rooms
is described in Section 4.1.2.

The Mission planner provides navigation and higher-level planning of the UAV move-
ment. It accepts the sensor data and current UAV state and calculates desired trajectories
for the MPC tracker. The mission planner is a state machine which employs various navi-
gation algorithms. The algorithms for flying through windows and flying inside the building
described in this thesis represent parts of the mission planner.

2.2.2 State estimation and localization

The State estimation and localization manages estimation of the UAV state vector

x = (r, ṙ, r̈,R, Ṙ)T , (2.1)

where r = [x, y, z]T denotes the Cartesian coordinates of the UAV position. ṙ and r̈ are the lin-
ear velocity and acceleration vectors, respectively. Rotation matrix R(φ, θ, ψ) represents UAV
orientation in the world coordinate frame and Ṙ represents angular velocities, as described
in [36].

The state vector is estimated using a linear Kalman filter (LKF), which fuses informa-
tion from the UAV’s inertial measurement unit and data from the currently selected localiza-
tion method.

12 Chapter 2. Description of Used System

In the experiments performed in this thesis, localization in open outdoor environments
is done using Global Navigation Satellite Systems (GNSS). The precision of this localization
method depends on the number of satellites available, the presence of high obstacles in the
area, electromagnetic interference generated both by various sources in the area and the UAV
itself, atmospheric conditions, etc.

The localization in indoor environments is done based on LiDAR data passed to the
Hector SLAM algorithm [38]. The development of Hector SLAM was motivated specifically
by urban search and rescue (USAR) scenarios. The algorithm is designed to be used with 2D
laser scanner data. It operates by constructing a 2D grid-based occupancy map and estimating
the position of the robot in the map using a robust scan matching approach.

The localization in the vertical z-axis is performed by the fusion of barometer data from
the Pixhawk unit and range data from the Garmin rangefinders. For the purpose of an indoor-
outdoor transition, where the range data can change rapidly and can contain offset caused by
flying to a higher floor, the range data are filtered, and current distance from the floor and
the ceiling is combined to obtain a reliable height estimate as described in Section 4.3.

The state estimation framework also enables the option to employ other localization
methods, such as optic flow or visual odometry.

Chapter 3

Window Detection and Position
Estimation

This chapter describes the system that detects potential entrances into the target build-
ing and consequently estimates their positions and parameters, which are used for guidance
of the UAV flying through the window into the building.

The system consists of a depth detector, LiDAR detector, and window position estima-
tor. The depth detector, described in 3.1, receives raw depth data from the RealSense RGB-D
camera and detects rectangular holes in the data. The LiDAR detector, described in 3.2, de-
tects window candidates from 2D laser scanner data. The depth and LiDAR detections are
passed to an estimator based on a linear Kalman filter, described in 3.3. The estimator runs
at a fixed rate, fuses the individual detections, and filters out measurement noise.

3.1 Detection from RealSense Data

The algorithm for window detection from depth data was developed by Petr Štěpán
from the Multi-robot Systems Group at CTU in Prague, and its development was not a
subject of this thesis. Therefore, it is described only shortly, and the thesis focuses mainly on
its usage and its performance in real-world experiments.

The input of the algorithm is a 1280× 720 depth image produced by the RealSense 3D
camera. An example of such an image can be seen in Figure 3.1a. The observed window is
shown in Figure 3.1c. Each pixel in the depth image describes the measured depth along the
camera z-axis in meters.

The detection algorithm first downsamples the image by the factor of 8 to reduce
the computational demands on the CPU. Then, the algorithm searches for contours in the
image and tries to fit rectangles with certain parameters to the data. After identifying such
rectangles, a check is performed to ensure that the rectangular shape is a hole and not a
protrusion. Furthermore, the algorithm is capable of detecting incomplete windows, where
some of their edges are missing from the image (UAV flying close to the window can often
see only a part of it). The information about the missing edges is published as a part of the
detection data. An example of the detection can be seen in Figure 3.1b. There is a correct

14 Chapter 3. Window Detection and Position Estimation

(a) Original depth image (b) Detection in the depth image

(c) UAV in front of the window (d) 3D visualization of the detection in Rviz

Figure 3.1: Example of window detection from RealSense depth data

detection in the center of the image and a false-positive detection of an incomplete window
on the right side. The false-positive detection needs to be filtered out.

Finally, the position, orientation, and size of the detected window are calculated and
published. 3D visualization of the filtered detection in Rviz can be seen in Figure 3.1d. The
blue rectangle with an arrow in the middle represents the window detection and red squares
show walls of the building, as seen on LiDAR.

The detection output is defined by the following parameters:

• Window center, defined by coordinates C = [cx, cy, cz]
T either in the world coordinate

frame or in the local coordinate frame relative to the UAV position

• Window corners, each defined by their Cartesian coordinates γ1...4 = [γi,x, γi,y, γi,z]
T

• Normal vector v = [vx, vy, vz]
T pointing away from the UAV, describing the orientation

of the window plane

• Distance dwin of the window center from the UAV

• Width w and height h of the window

• Validity of edges - information whether the top, left, right, and bottom edge of the
window was seen in the depth image

In the real-world experiments, the RealSense camera is set to produce depth images at
the rate of 15 Hz, which produces a sufficient number of detections for navigation and does

3.2. Detection from LiDAR Data 15

not cause too high CPU load. The algorithm also offers the option to filter out false detections
based on apriori known window size.

3.2 Detection from LiDAR Data

The RPLIDAR-A3 laser scanner provides range data in a 2D horizontal plane in 360
degrees around the UAV. When compared to the depth camera, it is not constrained by
a limited field of view in the 2D plane and can see the window regardless of the current
UAV orientation. Furthermore, it is less influenced by the distance from the window as the
RPLIDAR-A3 can see objects up to 25 m away. The range measurements obtained from the
LiDAR are very precise. However, as it is a 2D laser scanner, the data only contains the left
and right edges of the window.

This section describes the algorithm capable of detecting left and right window edges
from 2D laser scanner data. The algorithm can either accept an existing window estimate and
search for corresponding edges, or identify window edge candidates based on apriori-known
window width without the need of an existing estimate.

Although the algorithm was designed to be used with the RPLIDAR-A3 scanner, it can
work with any sensor able to produce 2D laser scanner data. Each scan contains an array
of ranges obtained by measuring the time of IR signals reflected from obstacles around the
UAV. Each scan is processed and checked for window edge detections individually.

The algorithm works by first identifying points representing potential window edges in
the data and then by either linking them to an existing window estimate or linking two edges
together based on apriori-known information.

3.2.1 Detection of Potential Window Edges

The range data are published in the polar form, each point in the scan can be described
by a pair of values [di, θi], where di is the distance from the center of the laser scanner to the
detected obstacle and θi is the angle from the axis pointing towards the front of the UAV.
When converting the observed points to Cartesian coordinates, the origin is located in the
center of the LiDAR, the x axis points forward from the UAV, the y axis points to the left,
and the z axis points upwards. The chosen polar and Cartesian coordinate systems can be
seen in Figure 3.2.

The Cartesian coordinates [xi, yi] of each point obtained from the scan can be calculated
as

xi = di cos(θi) (3.1)

yi = di sin(θi). (3.2)

The RPLIDAR produces the range data in an array with start and end at the back of
the UAV. Therefore, the measurement angles from the source array need to be shifted by π.
If the sensor does not detect a sufficiently strong reflection of the transmitted IR signal, an
empty range is returned. For further processing, the empty range is replaced with an infinite
value in the ROS datatype used in the implementation.

16 Chapter 3. Window Detection and Position Estimation

x

y

θi
di

[xi, yi]

Figure 3.2: LiDAR coordinate system

This section describes the process of parsing the array of ranges into a list of features,
which could potentially represent edges of windows.

The detection of potential window edges is performed in several steps based on the Suc-
cessive Edge Following and Iterative End-Point Fit algorithms. These algorithms are simple
and widely used line extraction algorithms that are ideal for parsing the LiDAR data. First,
the array of ranges is parsed into a set of segments using a modified version of Successive
Edge Following. The endpoints of these segments are added to the list of potential window
edges. Then, a variation of the Iterative End-Point Fit algorithm is used to further divide the
obtained segments into smaller subsegments, and their endpoints are again added to the list
of potential window edges.

Modified Successive Edge Following Algorithm

The Successive Edge Following (SEF) is a line extraction algorithm, which works di-
rectly with the polar form of the laser scan and does not require any line fitting. It goes
through the measured ranges iteratively and therefore does not need the complete laser scan
to work. As such, it is very fast and has low computational requirements. Information about
the algorithm can be found in [39] and [40]. Its primary purpose is the extraction of line
segments from laser scanner data. Here, a modified version of SEF is used for both dividing
the laser scan into segments and extraction of features, which could potentially be window
edges.

The algorithm iteratively traverses the array of ranges in the laser scan. For each range
di, it calculates differences from the previous range di−1 and the following range di+1. The
calculated differences are then compared with the value of a threshold dthr. If the differences
are lower than the value of the threshold, the points are assumed to be a part of the same

3.2. Detection from LiDAR Data 17

dthr < di+1 − di

di

di−1

scan direction

|di−1 − di| < dthr

di+1

segmentj

segmentj+1

Figure 3.3: Modified Successive Edge Following - yellow color represents the detected window
edge.

continuous segment. If the condition

(di+1 − di) > dthr and |di−1 − di| < dthr (3.3)

is satisfied (the increase in distance of the following range is larger than dthr and the previous
range is still in the same segment), a window starting edge is detected. This situation is
depicted in Figure 3.3. If the condition

(di−1 − di) > dthr and |di+1 − di| < dthr (3.4)

is satisfied (the decrease of range from the previous range to the current one is larger than
dthr and both the current and following ranges are in the same segment), a window ending
edge is detected. Every time an edge is detected, the segment of points between the detected
edges is also saved for future processing.

Algorithm 1 describes these steps in detail. The difference of this version from the Suc-
cessive Edge Following algorithm, described in [39], is that three consecutive points, instead
of two, are used for the detection of line endpoints, and the algorithm can be used not only
for line extraction but specifically for detection of the line endpoints.

Iterative End-Point Fit Segmentation and Corner Detection

After detecting edge candidates based on sudden changes in distance and separating
the laser scan into segments using SEF, it is necessary to perform further processing of the

18 Chapter 3. Window Detection and Position Estimation

Algorithm 1 Modified Successive Edge Following

Input: Circular list P = 〈P1, . . . Pn〉, where Pi = (di, θi) are points obtained from a single
laser scan; threshold dthr representing maximal difference between two consecutive ranges
to consider them the same segment.

Output: List E = 〈P1, . . . Pm〉 of window edge candidates; List S = 〈s1, . . . so〉 of line seg-
ments parsed from the scan.

1: function MSEF(P, dthr)
2: seg start, seg first end← ∅
3: for all Pi ∈ P do
4: if (di+1 − di) > dthr and |di−1 − di| < dthr then
5: Add Pi to E as window starting edge
6: end segment at(i, seg start, seg first end, S, P)
7: if di+1 <∞ then
8: seg start← i+ 1
9: end if

10: else if (di−1 − di) > dthr and |di+1 − di| < dthr then
11: Add Pi to E as window ending edge
12: if di−1 <∞ then
13: end segment at(i− 1, seg start, seg first end, S, P)
14: end if
15: seg start← i
16: end if
17: end for
18: if seg start 6= ∅ and seg first end 6= ∅ then
19: Add line segment 〈Pseg start, . . . Pseg first end〉 to S
20: end if
21: return E ,S
22: end function

. End of one of the segments can precede its start as P is a circular list
23: procedure end segment at(index, seg start, seg first end, S, P)
24: if seg start 6= ∅ then
25: Add line segment 〈Pseg start, . . . Pindex〉 to S
26: seg start← ∅
27: else if seg first end = ∅ then
28: seg first end← index
29: end if
30: end procedure

obtained segments. The window edge does not necessarily need to have the form of a sudden
change in distance, but the change can be gradual, e.g., when the window is close to a wall
perpendicular to the window. Therefore, it is necessary to detect features in the form of corners
sticking out towards the UAV as window edge candidates. For that, Iterative End Point Fit
(IEPF) based segmentation further divides the segments of points into smaller subsegments
and detects these corner-like features.

The IEPF algorithm is a line extraction algorithm, working with a segment of laser

3.2. Detection from LiDAR Data 19

Pmax
P1

Pm

dmax

dl,uav dp,uav

l

lp

Figure 3.4: Iterative End Point Fit and corner detection - point pmax highlighted in yellow is
detected as a window edge candidate.

scan with points defined in Cartesian coordinates. The algorithm iteratively goes through
the segment and divides it into smaller and smaller segments by fitting a line through the
endpoints of each segment. The algorithm finds the most distant point from the line in the
segment and splits the segment at that point. The complete IEPF algorithm is described
in [39] and [40]. The implementation can optionally include a merging step, which merges
collinear line segments together. However, this step is not required for the purpose of this
thesis.

The process of finding a point, where a segment can be split, and classifying it as
a window edge candidate, is illustrated in Figure 3.4, and described in Algorithm 2. The
algorithm accepts the segments of scan points produced by the previously described SEF
algorithm. It iteratively traverses these segments and consequently their subsegments. For
each segment si = 〈P1, . . . Pm〉, it fits a line l to its endpoints P1 and Pm. Then, point Pmax
with the largest distance dmax from the fitted line is found. If the distance dmax is larger than
the value of a threshold dthr, the segment is split into two subsegments sa = 〈P1, . . . Pmax〉
and sb = 〈Pmax, . . . Pm〉. The original segment si is replaced with these two subsegments.

Furthermore, if the point Pmax has the form of a corner sticking out towards the UAV,
it is added to the list of window edge candidates. This is checked by defining a parallel line
lp to line l, which passes through the point Pmax. Then, the distances between the UAV and
the lines l and lp are compared. If the line belonging to the point Pmax is closer to the UAV
than the original fitted line, the point Pmax is added to the list of window edge candidates.

A proper value of the threshold dthr has to be determined experimentally. For the
configuration used in this thesis with laser scan data obtained from the RPLIDAR-A3, the
value of dthr was 0.1 m.

The IEPF algorithm again has low computational requirements, because it requires only

20 Chapter 3. Window Detection and Position Estimation

Algorithm 2 Iterative End-Point Fit and Corner Detection

Input: List S = 〈s1, . . . sn〉, where si = 〈P1, . . . Pm〉 are segments obtained from the modified
Successive Edge Following consisting of individual scanpoints in Cartesian coordinates;
threshold dthr representing minimal distance between point and the fitted line to divide
the segment / consider the point as a corner

Output: List E = 〈p1, . . . po〉 of additional window edge candidates (corners)
1: function Segmentize and Find Corners(S, dthr)
2: for all si ∈ S do
3: Line l is defined by endpoints of si
4: Find point pmax ∈ si with largest distance dmax from line l
5: if dmax > dthr then
6: Divide segment si into 2 subsegments 〈P1, . . . Pmax〉 and 〈Pmax, . . . Pm〉
7: Replace segment si in S with the obtained subsegments
8: lp ← line parallel to l going through point Pmax
9: dp,uav ← distance of line lp from the UAV

10: dl,uav ← distance of line l from the UAV
11: if dp,uav < dl,uav then . take only corners sticking out towards UAV
12: Add Pmax to E as corner point type
13: end if
14: end if
15: end for
16: return E
17: end function

the endpoints of each segment to fit the line. Other alternatives exist, such as the Split &
Merge algorithm, which uses all the points in each segment to fit the line.

When the algorithm is finished, a complete list of window edge candidates is produced.
The list includes all detected candidates, one type detected based on a sudden change in range
value from the SEF, and the other type detected as corners by the IEPF.

3.2.2 Linking Edges to Existing Window Estimates

Given the list of window edge candidates, it is necessary to determine which candidates
can correspond to a window. The first option is to use existing window estimates, provided
by the Kalman filter-based estimator, which can be initially generated based on previous
detections from RealSense depth data. The second option is to detect the windows based on
a priori information about the window size and altitude, as described in Section 3.2.3.

The existing window estimates are given as sets of estimated window center position
C = [cx, cy, cz]

T , width ww, height wh, and four corners γ1...4 = [γi,x, γi,y, γi,z]
T . The

window estimates are assumed to be without tilt. Therefore, x- and y-coordinates of corners
both located on the left or right side of the window are equal. Let γ1 be a left window corner
and γ2 be a right window corner. The current UAV position is given as U = [ux, uy, uz]

T .

The algorithm for finding edges corresponding to existing window estimates is described
in Algorithm 3. It goes through all the available estimates. All window estimates that are
located at altitudes, where they cannot be seen by the UAV, are skipped. This is done by

3.2. Detection from LiDAR Data 21

Algorithm 3 Find Corresponding Edges to Existing Estimate

Input: List E = 〈E1, . . . En〉 of window edge candidates; listW of existing window estimates;
UAV altitude uz; thresholds htol; dcor,max;ww,min;ww,max

Output: List D of window edge pairs and window estimate id (w,E1, E2)
1: function Find Corresponding Edges(E ,W)
2: for all w ∈ W do
3: hw,uav ← |uz − cz|
4: if hw,uav <

wh
2 + htol then . Skip windows at wrong altitude

5: . dsum,i - weighted sum of difference from expected distance to center and
distances from corners

6: Find E1 with minimal dsum,1 and dcor,1 < dcor,max
7: Find E2 with minimal dsum,2 and dcor,2 < dcor,max
8: if E1 found and E2 found and ‖E1 − E2‖2 is between limits then
9: if space is empty(E1, E2) then

10: Add E1, E2 to D for estimate w
11: end if
12: end if
13: end if
14: end for
15: return D
16: end function

checking whether the absolute altitude difference between window center and the UAV does
not exceed a given threshold as

hw,uav <
wh
2

+ htol, (3.5)

where hw,uav is the absolute difference in altitude, wh is window height and htol is an altitude
error tolerance, depending on maximal expected UAV tilt and maximal detection distance.
Then, the algorithm traverses all the window edge candidates and tries the find a pair of
edges, which best fits the provided estimate. While going through the edge candidates, it
tries to find the edges E1 = [e1,x, e1,y]

T and E2 = [e2,x, e2,y]
T , which minimize the weighted

sum of distances defined as

dsum,i = dcor,i + αdcent for corner i ∈ {1, 2}, (3.6)

where dcor,i is the Euclidean 2D distance from the left or right window corner defined as

dcor,i =
√

(γi,x − ei,x)2 + (γi,y − ei,y)2. (3.7)

α is a weighting factor, and dcenter is the difference of the Euclidean 2D distance of the edge
candidate from the window center C from the estimated distance given known window width
calculated as

dcent =

∣∣∣∣√(ex − cx)2 + (ey − cy)2 −
ww
2

∣∣∣∣ . (3.8)

This way, a pair of edges corresponding to the left and right window corners is obtained.
Furthermore, the distance dcor,i needs to be lower than a predefined threshold dcor,max. If

22 Chapter 3. Window Detection and Position Estimation

both edges are found, their mutual distance dmutual is compared with minimal and maximal
values allowed for the window width:

ww,min < dmutual < ww,max. (3.9)

Finally, the function space is empty(E1, E2) is used to check whether the space be-
tween the edges is empty as follows. Let edge E1 correspond to laser scan range d1 and edge
E2 correspond to laser scan range d2. Then, the maximal range is found as

dmax = max(d1, d2). (3.10)

For all range measurements between E1, E2 decide if di > dmax. Then, nlarge means the
number of measurements larger then dmax and n means the number of measurements between
E1, E2. The fraction

f =
n− nlarge

n
(3.11)

then needs to be smaller than a predefined maximal fraction value fmax.

After passing through all the window estimates, the pairs of edges linked to the estimates
are passed to the window position estimator.

3.2.3 Standalone Detection based on Window Width

When an existing window estimate is not available, it is possible to perform the detection
based on apriori-known window width, height, and altitude. As the apriori information is
defined in a certain frame of reference, the UAV altitude needs to be precisely estimated
in the same frame of reference to use this approach. This approach allows the detection of
windows even when the depth data are unavailable, e.g., when the window is filled with smoke,
or a problem occurs with the depth camera detection algorithm.

In real-world deployments, the window parameters can be known from previous mea-
surements or can be estimated from observing other windows, for which the depth data are
available.

The detection process is described in Algorithm 4. It goes through all possible combi-
nations (Ei, Ej) of edge candidates and filters them based on multiple properties to obtain as
reliable detections as possible.

First, the algorithm checks the length, defined by the number of measurements, of the
line segments previously produced by the IEPF algorithm connected to the edges Ei and Ej .
At least one of the segments needs to be longer than threshold lmin. It is assumed that a
window will always be connected to a wall that can be seen in the LiDAR data. This filtering
step ensures that all the detections generated by noise will be filtered out.

Then, filtering based on the distance between edges is done. The distance between the
edges is compared with all the different window widths, which can be expected at the current
UAV altitude. The apriori information about windows is predefined as sets of window width,
height, and altitude values. First, the algorithm checks that the UAV is at an altitude where
it can see the particular window by fulfilling the condition

|uz − cz| <
wh
2

+ htol, (3.12)

3.2. Detection from LiDAR Data 23

Algorithm 4 Standalone Detection of Windows from 2D LiDAR Data

Input: List E = 〈E1, . . . En〉 of window edge candidates; list W of apriori-known window
widths; thresholds and tolerances

Output: List D of window edge pairs (E1, E2)
1: function Detect Windows(E , W,. . .)
2: for all Ei ∈ E do
3: for all Ej ∈ E do
4: if j > i then
5: Check that Ei or Ej is connected to long segment
6: Skip (Ei, Ej) if it does not correspond to any window width
7: if space is empty(Ei, Ej) then
8: Check minimal FOV of the window
9: if UAV is outside then

10: Skip (Ei, Ej) if fraction of finite ranges between the edges is too low
11: if Direction from the UAV to the building is known then
12: Skip (Ei, Ej) in the direction opposite to the building
13: end if
14: end if
15: Add (Ei, Ej) to D
16: end if
17: end if
18: end for
19: end for
20: return D
21: end function

where uz is the UAV altitude, cz is the window center altitude, wh is the height of the window,
and htol is a specified altitude estimation error tolerance, as described in Section 3.2.2. Then,
the distance between the edges is checked to fulfill the condition

|dEi,Ej − ww| < wtol, (3.13)

where dEi,Ej is the distance between points Ei and Ej , ww is the apriori-known window width,
and wtol is a tolerated error in the window width.

Furthermore, the space between the edges is checked to be sufficiently empty using the
function space is empty(Ei, Ej) defined in Section 3.2.2 with the exception that if the UAV
is inside, equation (3.10) is modified as

dk < max(di, dj) + dempty, (3.14)

where dempty is the distance outside the window, which should also be empty. It is assumed
that there are no obstacles in a small space outside the window, and this assumption is used
to filter out possible false detections.

Furthermore, a minimal field of view of the window is required. Given the specified field
of view in radians FOVmin, the number of measurements n between points E1, E2 needs to
fulfill the condition

n <
FOVmin

∆θ
, (3.15)

24 Chapter 3. Window Detection and Position Estimation

(a) RViz visualization (b) Image of the visualized room

Figure 3.5: Visualization of window edge candidate detection in Rviz with the UAV inside a
building. Red squares represent LiDAR data, sphere markers represent edges detected from
range changes by SEF, cube markers represent corners detected by IEPF, yellow lines repre-
sent windows detected based on width.

where ∆θ is the angle increment in radians between two consecutive LiDAR measurements.

When the UAV is outside the building, the algorithm can skip combinations of edges
with an insufficient amount of measured ranges between them (where the LiDAR ray did
not reflect). If the fraction of finite ranges obtained between the edges Ei and Ej is lower
than threshold fmin finite, the combination is skipped. The reason for this filtering is that
the RPLIDAR cannot see black objects in its outdoor setting and could therefore produce
false detections when seeing such objects. For example, at the competition there were black
shutters closing some of the windows, which the algorithm would otherwise detect as viable
entrances to the building. However, this filtering can produce problems with the detection of
smoke-filled windows.

Additionally, if the UAV is outside and the direction from the UAV to the building is
known, it is possible to filter out all the edge combinations in the half-plane with the center
in the opposite direction in order to focus on the observed building and reduce the amount
of false-positive detections. The direction to the building is known, e.g., when the UAV is
continuously oriented towards the building by another path planning algorithm.

After performing all these filtering steps, the remaining pairs of edges are passed over to
the window position estimator as the obtained 2D detections. Figure 3.5 shows a visualization
of window edge detection from LiDAR with the UAV inside a building in a simulation.

3.3 Sensor Fusion

In order to have a reliable estimation of the window position continuously available,
the individual depth and LiDAR detections are passed to the position estimator, which fuses
them together and filters out measurement noise. Combining different types of detections
is essential for achieving reliable estimation at every step of the flythrough maneuver. The
depth data from the RGB-D camera provide complete information about the 3D position,
orientation, and size of the window. However, these detections are quite noisy and are limited
by the field of view of the camera. After a certain point of the flythrough, the window can

3.3. Sensor Fusion 25

no longer be visible on the depth camera. Similarly, the camera loses track of the window
when the UAV rotates away from it. On the other hand, the LiDAR can detect the window at
every point of the trajectory when the LiDAR is located at the same altitude as the window.
Furthermore, the range data obtained from LiDAR are very precise, but they only provide
information about the window in the 2D horizontal plane. Therefore, combining different
sources of detections is very important for safe flight. The sensor fusion is very beneficial
under decreased visibility conditions, such as in smoke.

The estimator has the form of a Linear Kalman Filter (LKF) [41][42] for each window,
which contains a static model of the window position, orientation and size and updates its
state based on the received detections. The LKF is an optimal state estimator based on a
linear model of the underlying system, which models the state of the system using Gaussian
probability distribution. Although in reality, the system cannot be said to exactly follow the
Gaussian distribution, it proves itself to be a reliable approximation.

The estimator enables three different modes of operation:

• realsense + lidar: Uses a combination of RealSense depth and LiDAR data for esti-
mation. New estimates are initialized based only on incoming depth detections with
all valid edges, and window edges in LiDAR data are detected by linking the data to
existing estimates.

• realsense + lidar + apriori: Combines RealSense depth and LiDAR data with apriori
information about window size and altitude. New estimates can be initialized based on
depth detections containing invalid edges. Window edges from LiDAR data are detected
based on the apriori information.

• lidar + apriori: Uses only LiDAR data combined with apriori information to produce
the estimates. New estimates are initialized based on the LiDAR detections combined
with apriori information, and the window edges from LiDAR data are detected using
the apriori information as well.

3.3.1 Kalman Filter Description

Linear Kalman Filter is a state observer algorithm working with a Linear Time-Invariant
(LTI) model of the observed system. The discrete system model is given in the state-space
form as

xk+1 = Fxk + Guk + wk, wk ∼ N (0,Qk) (3.16)

zk = Hxk + vk, vk ∼ N (0,Rk) (3.17)

where xk is the state of the system at time step k, F is the state-transition matrix, G is the
input matrix, uk is the input to the system at time step k, zk is the measured output of the
system, H is the observation matrix, wk is the process noise given by Gaussian distribution
with zero mean and covariance matrix Qk, and vk is the measurement noise given by Gaussian
distribution with zero mean and covariance matrix Rk.

The Kalman Filter describes the system at every step by Gaussian distribution with
state vector x̂k and covariance matrix Pk. The state estimation can be divided into two basic

26 Chapter 3. Window Detection and Position Estimation

steps. First during the predict step, the state and covariance at time step k− 1 is propagated
to time step k using the system model as

x̂−
k = Fxk−1 + Guk−1 (3.18)

P−
k = FPk−1F

T + Q. (3.19)

Then, the measurements are incorporated into the estimation in the update step as

yk = zk −Hkx̂
−
k (3.20)

Sk = HkP
−
k HT

k + Rk (3.21)

Kk = P−
k HT

k S−1
k (3.22)

x̂k = x̂−
k + Kkyk (3.23)

Pk = (I−KkHk)P
−
k , (3.24)

where yk is the residual of the measurements, Sk is the innovation covariance, and Kk is the
Kalman gain.

3.3.2 System Model and Estimation Details

The state x of the Kalman filter describing a single window is defined as

x =
[
cx, cy, cz, φ, w, h

]T
, (3.25)

where cx, cy, cz are Cartesian coordinates of the window center, φ ∈ 〈−π, π〉 is the angle
between the projection of the normal vector of the window to the xy-plane and the x-axis
(rotation around the z-axis), w is the width, and h is the height of the window. It is assumed
that the window is not tilted and perpendicular to the ground plane. The respective compo-
nents of the state are visualized in Figure 3.6. The position and orientation of the window
are specified in a global coordinate frame with a static position of the window.

As the window parameters are modeled as static, the state-transition matrix F of the
system is an identity matrix and the input matrix G is a zero matrix:

F = I6×6 G = 06×1. (3.26)

The process noise covariance matrix Q is a constant diagonal matrix in the form of

Q =

qcx . . .

qh

 , (3.27)

where the diagonal elements correspond to the respective elements of state vector x and are
chosen experimentally based on real data to achieve reliable estimator performance.

The observation matrix H and noise covariance matrix R depend on what kind of
detections are available in each update step. These can be 3D depth detections with a variable
number of valid edges, 2D LiDAR detections, or both. The matrices are appropriately chosen
before each update step.

3.3. Sensor Fusion 27

[cx, cy, cz]

φ

w

h
x

y

z

Figure 3.6: Kalman filter state description

Update by Depth Detection

The incoming depth detections can contain a lot of false-positive and noisy data. There-
fore, the detections are first filtered by placing several limits on their values. These limits
include minimal and maximal values of the detection width w, height h and vertical tilt
specified by the z component of the detection normal vector v:

wmin < w < wmax, (3.28)

hmin < h < hmax, (3.29)

|vz| < vmax. (3.30)

The complete depth detection provides information about all states of the filter. How-
ever, the detector can also output incomplete detections when it cannot see the full window.
The state of the filter needs to be appropriately updated based on which window edges were
observed by the detector.

The observation matrix for updating all the filter states from a complete window de-
tection is an identity matrix with dimensions equal to the number of LKF states:

Hdepth = I6×6. (3.31)

If the detection does not contain information about some of the states, the corresponding
element on the diagonal representing the state in the observation matrix is replaced with
a zero. The values of the filter states are either taken directly from the received detection
or calculated from its values. Section 3.1 contains description of the depth detections. The
measurement vector has the same shape as the LKF state vector:

zdepth =
[
cx, cy, cz, φ, w, h

]T
. (3.32)

If all the edges in the window detection are valid, the center coordinates cx, cy, cz are taken
directly from the detection. The φ angle is calculated from the window plane normal vector

28 Chapter 3. Window Detection and Position Estimation

v = [vx, vy, vz]
T as

φ = atan2(vy, vx), (3.33)

with the function atan2 defined as

atan2(y, x) =

arctan(yx) if x > 0,

arctan(yx) + π if x < 0 and y ≥ 0,

arctan(yx)− π if x < 0 and y < 0,

+π
2 if x = 0 and y > 0,

−π
2 if x = 0 and y < 0,

undefined if x = 0 and y = 0.

(3.34)

The width w and height h are included directly in the detection parameters.

The situation is different if some of the window edges are invalid. Figure 3.7 depicts all
the possible combinations of the valid and invalid edges, which the detection can theoretically
contain. A solid line represents a valid edge, while a dashed line represents an invalid edge.
An invalid edge is produced if the edge cannot be seen in the camera picture because of the
limited field of view of the camera. For every edge combination, a list of the states which will
be updated, is shown. Not updated states are replaced with an underscore.

cx, cy, cz, φ, w, h cx, cy, cz, φ, w, cx, cy, cz, φ, , h cx, cy, cz, φ, w, h

cx, cy, cz, φ, , h , , cz, φ, , h cx, cy, , φ, w, cx, cy, cz, φ, ,

cx, cy, cz, φ, , cx, cy, cz, φ, , cx, cy, cz, φ, , , , cz, φ, ,

cx, cy, , , , , , cz, φ, , cx, cy, , , , , , , , ,

Figure 3.7: Possible combinations of valid window edges and updated filter states tied to
the particular combination - dashed line represents invalid edge, underscore represents not
updated state.

The measurements vector z from an incomplete detection is generated in a series of steps
based on which edges are valid by combining the received detection and existing estimate.

3.3. Sensor Fusion 29

Similar process is used for initialization of a new estimate from incomplete depth detection
and apriori data, as described in Section 3.3.2

1. If top or bottom edge is valid, the angle φ is calculated from the detection normal vector
as it is assumed that the detection includes correct information about the orientation
of the window.

2. If both top and bottom edges are valid, the center altitude cz and height h are updated.

3. Similarly, if both left and right edges are valid, the center coordinates cx, cy, angle φ
and width w are updated.

4. If cz was not updated yet and top or bottom is valid, cz is calculated from the mean
z-coordinate of the upper or lower window corners and the estimate’s height h.

5. If cx, cy were not updated yet and left or right is valid, cx, cy are calculated from mean
coordinates of left or right corners, angle φ and width w. (assuming that the orientation
of the window is static in the used coordinate frame)

The measurement covariance matrix for depth detections is a 6× 6 constant diagonal matrix
in the shape of

Rdepth =

rdepth . . .

rdepth

 , (3.35)

where rdepth is a constant value chosen experimentally to achieve reliable estimator perfor-
mance.

Update by LiDAR Detection

LiDAR detection always provides only partial information about the window. The out-
put of the detector consists of two points E1 = [e1x, e1y] and E2 = [e2x, e2y] , one on the
left and the other on the right edge of the window. From this information, the measurement
vector

zlidar = [cx, cy, φ, w]T (3.36)

can be calculated. The 2D position of the center of the window can be calculated as

cx =
e1x + e2x

2
(3.37)

cy =
e1y + e2y

2
. (3.38)

The orientation angle can be calculated as

φ = atan2(e1y − e2y, e1x − e2x) +
π

2
(3.39)

and finally the window width can be obtained as

w =
√

(e1x − e2x)2 + (e1y − e2y)2. (3.40)

30 Chapter 3. Window Detection and Position Estimation

The observation matrix used for updating the appropriate LKF states is then

Hlidar =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (3.41)

The measurement covariance matrix corresponding to the LiDAR detections is then chosen
as a 4× 4 constant diagonal matrix

Rlidar =

rlidar . . .

rlidar

 , (3.42)

where rlidar is a again a constant value chosen experimentally based on LKF performance on
real-world data.

If multiple LiDAR detections are available at a single estimator step, the update step
of the Kalman Filter is performed several times sequentially to incorporate all the available
detections.

Update by Both Detection Types

If both detection types are available at the same time, both are used to update the esti-
mate at the same step. In such case, the measurement vector is constructed as a concatenation
of zdepth from equation (3.32) and zlidar from equation (3.36) as

zboth = [zdepth, zlidar]
T . (3.43)

Similarly, the observation matrix is a 10× 6 matrix constructed as

Hboth =

[
Hdepth

Hlidar

]
(3.44)

and the measurement covariance matrix is a 10× 10 diagonal matrix

Rboth =

[
Rdepth 0

0 Rlidar

]
. (3.45)

Linking Detections to Existing Estimates

The received RealSense depth detections are always linked to the existing estimates
based on the 3D Euclidean distance between the center of the estimate and the center of
the received detection. If this distance is lower than a threshold ddepth thr, the detection is
linked to the estimate. Otherwise, a new estimate is initialized based on the detection if the
detection fulfills criteria for new estimate initialization.

Linking of received LiDAR detections depends on the chosen estimation mode. If the
realsense+lidar mode is chosen, LiDAR detections are made directly for an existing estimate
(Section 3.2.2) and as such, can be straightforwardly linked back to it.

3.3. Sensor Fusion 31

If the realsense + lidar + apriori or lidar + apriori mode is chosen, the estimate is
linked based on the 2D Euclidean distance between the center of the existing estimate and
the center of the received detection and based on the condition that the absolute difference
in altitude of the estimate and the detection should not exceed a specified threshold.

If the estimate was initialized before entering the building, the detections from inside
the building can have opposite orientation to the estimate. In such case, the yaw orientation
of the detection is flipped by 180 degrees.

New Estimate Initialization

If a received detection cannot be linked to an existing estimate, a new estimate linked to
a new LKF instance is initialized. The initialization of new estimates depends on the currently
chosen mode of estimation.

If the realsense + lidar mode is chosen, a new estimate can only be initialized based
on received RealSense depth detection with all valid edges. The initial state estimate vector
x0 is then filled with values obtained exclusively from the received detection, and the initial
state covariance matrix P0 is initialized as an identity matrix.

If the realsense + lidar + apriori mode is chosen, a new estimate can be initialized
based on a RealSense depth detection containing both valid and invalid edges. The initial
state estimate vector x0 is generated from the received detection and apriori information
about window altitude and size using the same sequence of steps that is used in Section 3.3.2
for generation of measurement vector from incomplete window detection. The only difference
from the measurement vector generation is that step 5 (calculating center coordinates cx, cy
from left or right valid edge) additionally requires the angle φ to be calculated in one of the
previous steps because there is no apriori information about the window orientation. If all
the state vector values are successfully generated, a new estimate is initialized.

If the lidar + apriori mode is chosen, a new estimate can be initialized based only on
a received LiDAR detection, which cannot be linked to an existing estimate. The initial state
estimate vector x0 is then generated with states cx, cy, φ and w calculated from the detection
and with states cz and h taken from the apriori information. The apriori-known window width
is used for window detection, but the detected width, which can be slightly different, is used
for new estimate initialization.

Filtering of Estimates

Some of the window estimates can be initialized based on false detections, especially
when the lidar + apriori mode is used. Therefore, it is necessary to filter the estimates to
minimize the threat of trying to fly through a false detection. After an estimate is initialized,
it is marked as unsafe.

When the number of LKF iterations exceeds a specified threshold ksafe, the estimate is
marked as safe if the variances of states cx, cy are lower than the value of a threshold σ2max,safe
and at least one LiDAR detection was received (if realsense + lidar or realsense + lidar +
apriori mode is used; LiDAR detections are necessary for keeping the estimate during the
whole flythrough maneuver). If the estimate does not fulfill these conditions, it is discarded.

32 Chapter 3. Window Detection and Position Estimation

Additionally, an estimate is discarded if the number of consecutive LKF steps without
detections available (when only the prediction step is performed) exceeds the value of a
threshold.

All current estimates are then published for the purpose of navigation during entering
or leaving the building. Furthermore, a single estimate is selected as the best one available
as a suggestion for the high-level planner deciding which window to use. This selection is
performed based on several conditions. The estimate must be marked as safe, the variances
of states cx, cy must be lower than a threshold σ2max,best, and the overall number of received
detections for the estimate must be larger than a threshold nmin. The estimate with the lowest
3D Euclidean distance from the UAV is selected from the estimates fulfilling these conditions,
and this estimate is published as the best estimate available.

The threshold values are tuned experimentally to achieve reliable estimator performance
on real-world data.

Chapter 4

Path Planning

This chapter contains a description of algorithms for planning and executing a safe
flight through a window into or out of the target building and along the walls inside the
building. Section 4.1 contains a path planning algorithm generating reference trajectories for
flying through a detected window. Section 4.2 describes a wall following algorithm designed
for flying in the target building to search for the indoor fire. Section 4.3 describes an algorithm
employed for filtering of sensor altitude data to enable a safe transfer through the window into
the building and safe flight above obstacles. The algorithms are processing window estimates
generated by algorithms described in the previous chapter, onboard sensor data, and UAV
position estimate obtained from the currently available localization method.

The planners implement basic functionalities for a higher-level planner or for the human
user. The interface enables to request flying through a specific window, start wall following
action with certain parameters or cancel the ongoing maneuver.

4.1 Flying through a Window

The planner responsible for flying through the window contains a state machine gen-
erating appropriate trajectories based on the UAV position relative to the window position.
The planner accepts the list of window estimates from Section 3.3, current UAV position, and
requests to fly through a specific window or to cancel the current flythrough maneuver. At
a rate of 50 Hz, the planner publishes a list of set-points representing the desired trajectory.
The list of set-points is used by the MPC tracker, described in Section 2.2.1.

4.1.1 State Machine

Figure 4.1 depicts a diagram of the state machine used for flying through the selected
window. Solid lines connecting the states represent normal behavior loop when no preemption
is toggled, and no error occurs. Dashed lines represent various kinds of emergency state
transitions.

The state machine contains six different states:

• idle: Default state represents that the planner is inactive. The planner waits for a request
from high-level planning to fly through a certain window.

34 Chapter 4. Path Planning

idle

approaching

window

hover in

front

fly through

flythrough

in

progress

escaping

Figure 4.1: State machine for flying through a window

• approaching window: The UAV is flying to a position in front of the window while
continuously facing the center of the window. Once the 3D Euclidean distance from the
goal position and the difference from target orientation drop under predefined thresh-
olds, the state machine switches to the hover in front state. If the window estimate is
lost, the state machine returns to the idle state.

• hover in front: The UAV is hovering in front of the center of the window. Once the 3D
Euclidean distance from the target hovering position and the orientation difference drop
under predefined thresholds and minimal hovering time is reached, the state machine
transfers to the fly through state. If the window estimate is lost, the state machine
returns to the idle state.

• fly through: The state machine waits for an up-to-date window estimate corrected by
new detections and starts the flythrough maneuver by transferring to the flythrough in
progress state. If the window estimate is lost, the state machine returns to the idle state.

• flythrough in progress: The UAV flies through the center of the window to a goal
position at a predefined distance behind the window while maintaining a constant alti-
tude. When the 2D Euclidean distance from the goal position and the difference from
the target orientation drop below thresholds, the flythrough is finished, and the state
machine switches to the idle state.

Additionally, a timeout limit is placed on the duration of the flythrough in case the
goal position cannot be reached because low-level obstacle avoidance control algorithm
prohibits the UAV from reaching the goal. In case of timeout, the state machine switches
to idle if the UAV passed through the window. The state machine switches to the
escaping state and returns to the hovering position if the UAV is still in front of the
window.

4.1. Flying through a Window 35

• escaping: The flythrough maneuver was canceled, the UAV is returning to its original
hovering position in front of the window at maximal allowed velocity.

The flythrough maneuver can be canceled in any of the states because the window
estimate has been lost or because of a request from a higher level planner. If the flythrough
is canceled during the approaching window, hover in front, or fly through states, the UAV
stops following the current trajectory, and the state machine switches to idle. If it is canceled
during the flythrough in progress state, and the UAV has already entered the window, the
UAV finishes the maneuver. Otherwise, the state machine switches to the escaping state, and
the UAV returns to the original hovering position in front of the window.

If a new goal is received while the planner is in the idle, hover in front, or fly through
states, it switches to the approaching window state and initiates the flythrough maneuver
for the newly selected window.

4.1.2 Trajectory Sampling

All the produced trajectories are generated as line trajectories with constant speed
and passed to the MPC tracker, described in Section 2.2.1. The MPC tracker then generates
feasible trajectories obeying the dynamics of the UAV according to the provided reference.

Let U = [ux, uy, uz]
T be the current UAV position provided by the linear UAV model in

the MPC tracker and Pg = [pgx, pgy, pgz, pgφ]T be the goal position of the trajectory defined by
its Cartesian coordinates in the world coordinate frame and the goal yaw orientation. As the
trajectory needs to be sampled with a constant time step ∆t, a sampling factor is calculated
as

α =
vdes∆t

s
, (4.1)

where vdes is the desired flight velocity, ∆t is the time step and s is the Euclidean distance
between the UAV and the goal position Pg. Trajectory sampling steps are then computed as

∆x = (pgx − ux)α, (4.2)

∆y = (pgy − uy)α, (4.3)

∆z = (pgz − uz)α. (4.4)

The whole trajectory is generated iteratively. Coordinates of the i-th point Pi and the desired
UAV orientation can be calculated as

pi,x = ux + i ·∆x, (4.5)

pi,y = uy + i ·∆y, (4.6)

pi,z = uz + i ·∆z, (4.7)

pi,φ = pgφ. (4.8)

In this case, the final UAV orientation is set to all trajectory points.

36 Chapter 4. Path Planning

4.1.3 Goal Point Calculation

Approaching Window

The goal position of the trajectory is calculated as

Pg = C − s · dfrontv, (4.9)

where Pg = [pgx, pgy, pgz]
T is the goal position, C = [cx, cy, cz]

T is the center of the window,
dfront is the desired distance of the goal position from the center of the window, v is the unit
normal vector of the window plane and s is a constant determined based on the orientation
of the vector v relative to the UAV. Let w = [ux− cx, uy− cy, uz− cz]T be the vector pointing
from the window center to the drone. Then, s is determined based on the value of the scalar
product of v and w as

s = 1 ⇐⇒ v ·w ≤ 0 (4.10)

s = −1 ⇐⇒ v ·w > 0 (4.11)

Desired velocity vappr is used for generating the trajectory. When approaching the win-
dow, the UAV should face the center of the window at every point of the trajectory to maxi-
mize the visibility of the window by the depth camera. Therefore, the UAV yaw orientation
at each trajectory point is calculated as

pi,φ = atan2(cy − pi,y, cx − pi,x). (4.12)

Hovering in Front of the Window

The trajectory is generated in the same way as for approaching the window. A hovering
point is calculated in front of the center of the window, and a trajectory is generated towards
it. A lower velocity vhover is used while generating the trajectory.

Flying through the Window

A goal position behind the window is generated in a similar fashion as in the previous
sections - goal coordinates and orientation in the horizontal plane are calculated as

pgx = cx + s · dbehvx, (4.13)

pgy = cy + s · dbehvy, (4.14)

pgφ = atan2(s · vy, s · vx). (4.15)

where dbeh is the target distance behind the window. The relative orientation of the window
normal vector to the UAV, described by s, flips at the moment of the flythrough because the
orientation of the window estimate stays the same in the global coordinate frame.

Afterwards, the desired trajectory to the goal position is generated in the same way
as previously with velocity vthrough. The altitude of all the trajectory points is set to be the
same as the original UAV altitude at the trajectory start to prevent any sudden changes in
UAV altitude during the flythrough maneuver

pi,z = u0,z. (4.16)

4.2. Path Planning inside the Building 37

4.2 Path Planning inside the Building

The indoor path planner uses data from a single 2D laser scan to plan local wall-
following trajectories to guide the UAV around the room while searching for the fire. It is
assumed that the room contains obstacles next to the walls, but no obstacles are present at
the center of the room. The approach enables the UAV to quickly scan the entered room and
is very computationally efficient as only the raw sensor data are used without the construction
of any kind of map.

The path planning consists of two separate steps. First, the UAV moves to a goal position
at the desired distance and orientation relative to the wall. Then, the UAV moves along the
wall at the desired distance and with the desired orientation relative to the movement direction
until scanning of the room is completed or canceled. The planner enables to specify the flight
velocity, movement direction, desired distance from the wall, and desired orientation relative
to the UAV movement direction.

The trajectory is sampled in the same way as in Section 4.1.2, therefore only the goal
point calculation is described.

4.2.1 Approaching the Wall

The planner first finds the closest wall to the UAV and moves the UAV to a position
at the desired distance ddes and yaw orientation φdes relative to it.

Each point in the laser scan obtained from the LiDAR is described by its polar coordi-
nates [di, θi], where di is the distance from the center of the LiDAR and θi is the angle from
the x-axis pointing towards the front of the UAV. First, the closest point Pclosest with the
lowest range dmin is found. Then, the required length of the trajectory is calculated as

dtraj = dmin − ddes (4.17)

and the desired goal position Pg in the LiDAR coordinate frame is calculated as

pgx = dtraj cos(θclosest) (4.18)

pgy = dtraj sin(θclosest). (4.19)

The coordinates of the goal position are then transformed to the world coordinate frame. The
goal yaw orientation is calculated as

pgφ = uφ + θclosest +
π

2
+ φdes, (4.20)

where uφ is the current UAV yaw orientation in the world coordinate frame. The orientation is
normalized to 〈−π, π〉. Afterwards, the trajectory to the goal position Pg is generated equally
as in Section 4.1.3.

In order to prevent switching between two similarly distant wall segments, the last
calculated goal position is used if the current one is too far away or has a significantly different
orientation from the previous one.

When the 2D Euclidean distance between the UAV and the goal position and the
difference between the UAV orientation and the desired yaw angle drop below predefined
thresholds, the wall following is started.

38 Chapter 4. Path Planning

4.2.2 Wall Following

The UAV needs to move along the wall while maintaining the desired distance from it.
At the same time, it needs to avoid obstacles placed next to the wall and react quickly to
an oncoming wall perpendicular to the one currently being followed. Furthermore, the wall
contains windows seen as holes in the data, which the UAV needs to skip without trying to
fly through them.

The planner searches for two points on the wall next to the UAV and calculates a
wall vector from these two points. Then, it moves along this vector while simultaneously
maintaining the desired distance from the wall and checking for obstacles in front of the
UAV.

Figure 4.2a shows selection of the first wall point. The planner goes through measured
ranges in the circular sector denoted by angle α1. The sector spans from the starting angle
θs to the ending angle θe. The sector is specified so that it covers the side of the UAV facing
the wall and the desired direction of movement, as can be seen in the figure. The bounding
angles are calculated to be independent of the choice of the desired UAV orientation relative
to the wall φdes. The point P1 = [d1, θ1]

T = [p1x, p1y]
T is obtained as the point corresponding

to the shortest range in the sector.

Figure 4.2b depicts selection of the second point. The sector used for searching begins
at starting angle

θs = θ1 + αoff , (4.21)

where αoff is the angle offset from the range corresponding to the first point and ends at
angle

θe = θs + α2, (4.22)

where α2 is angle describing the size of the sector. The sector is searched iteratively from
the starting angle θs to the ending angle θe. The first range encountered, which is finite and
smaller than a predefined threshold, is used as the second point P2 = [d2, θ2]

T = [p2x, p2y]
T .

Afterwards, wall vector v is calculated from the points P1 and P2 as

v = [p2x − p1x, p2y − p1y]T . (4.23)

Figure 4.2c shows calculation of the trajectory goal point Pg. Distance from the wall
dwall is calculated as the distance of the UAV from the line l passing through points P1 and
P2. Error in wall distance is calculated as

ed = dwall − ddes, (4.24)

where ddes is the desired wall distance. Vector u is constructed as a vector perpendicular to
v aiming towards the wall. The desired movement vector w is then constructed by summing
the vectors as

w = v + edu (4.25)

and the goal point of the local wall following trajectory is calculated as

Pg = U + w, (4.26)

where U is the current UAV position.

4.2. Path Planning inside the Building 39

P1

α1 d1

θs

θe

(a) Finding first wall point

P1

P2

α2 αoff

d2 v

θs

θe

(b) Finding second wall point

P1

P2

dwall

l

v

u

ddes

w

Pg

(c) Goal point calculation

P1

dmin < ddes + doff

wseg

β

w

(d) Detection of wall in front of the UAV

Figure 4.2: Wall following process

Figure 4.2d displays the detection of a wall in front of the UAV. The planner needs to
react quickly to an oncoming wall or obstacle. The planner searches for potential obstacles
in a sector with its center defined by the desired UAV movement vector w. The size of the
sector scales with the expected distance from the obstacle. The half of the central angle of
the sector is calculated as

β = atan
wseg

dmin,prev
, (4.27)

where wseg is a parameter specifying the half-length of the wall segment, which should be
inspected, and dmin,prev is the minimal range found in the previous wall following iteration. If

40 Chapter 4. Path Planning

no range from the previous iteration is available, a default β angle value is used. The scaling
ensures that the planner will search for the wall in a large enough area without searching on
the wall along which the UAV is moving. The sector is searched for the shortest range dmin.
If the shortest range satisfies the condition

dmin < ddes + doff , (4.28)

where ddes is the desired wall distance and doff is offset for the oncoming wall detection, a
wall is detected. In such case, the point corresponding to the range dmin is used as the first
point P1 of the wall vector, the wall vector is consequently constructed using the oncoming
wall, and the UAV turns to move parallel to it.

The wall following can be stopped when the UAV returns to its original position after
going around the whole room. This is checked based on the distance of the UAV from its
starting position and on the condition that the UAV performed a full rotation around its
z-axis.

4.3 Altitude Filter

The altitude filter accepts data from rangefinders mounted on the UAV and filters them
to provide reliable information about current UAV altitude. The used UAV platform employs
a downward-looking rangefinder for height measurement. The data from the rangefinder are
passed to the state estimation system described in Section 2.2.2, which passes the data to a
Kalman filter and estimates the current UAV altitude based on the rangefinder measurement
and barometer data. Because very precise altitude control is required for indoor-outdoor
transition and indoor flight, the estimation is done mainly based on the precise rangefinder
data. However, this data contains sudden large changes when the UAV flies over obstacles or
flies through a window. Therefore, it is necessary to filter this data to ensure that the UAV
will always have a reliable altitude estimate without abrupt changes.

The used UAV platform carries two rangefinders, the upper rangefinder is directed
upwards and measures the distance from the ceiling while the lower rangefinder is directed
downwards and measures the current height above the ground. The rangefinder measurements
are also influenced by the tilting of the UAV during its movement. The altitude filter consists
of several one-dimensional median filters that filter out the sudden changes in rangefinder data
and calculate offset, which is added to the measured data and passed to the state estimation
system. The estimation of UAV altitude based on rangefinder data is depicted in Figure 4.3
with rlow representing the lower and rup representing the upper rangefinder measurement.
For example, during the flight from position a) to position b) in the figure, an offset value
(marked as alt off in the image) is calculated and added to the rlow value to be passed to
the state estimation system.

4.3.1 Median Filter Description

The median filter is a nonlinear filtering technique capable of detecting abrupt changes
(or sharp edges) in data. The input data are iteratively passed through the filter, and the

4.3. Altitude Filter 41

rlow rlow

rup

rup

rlow

a) b) c) d)

alt off

Figure 4.3: Altitude filter - a) no obstacles below UAV, b) UAV above obstacle, c) UAV flies
through a window, d) UAV inside a building

median value m of a floating window of k input values is calculated. For each input value v,
the absolute difference from the window median is calculated as

mdiff = |v −m|, (4.29)

where v is the new value and m is the current median. If the difference mdiff is larger than
maximal difference δmax, the value is marked as invalid, and an abrupt change in the data is
detected.

4.3.2 Outside Filtering

If the UAV is outside, only the lower rangefinder data are used. The data are passed
to a set of two median filters. The first one, with buffer size kedge and maximal difference
δedge, is used for the detection of sharp edges in data (when the UAV flies over the edge of an
obstacle). The second one, with buffer size kstable, and maximal difference δstable, is used for
the detection of a situation when the rangefinder data are approximately stable in value. The
median filter instances implement the methods for detection if a new value is valid (sufficiently
close to the window median) or not.

The process of modifying the lower rangefinder value by calculating offsets is described
in Algorithm 5. The algorithm calculates two separate offset values: altitude offset and
stable offset. Both are initialized to zero in the beginning. The altitude offset is recalculated
every time the edge median filter detects a sudden change in the range value as

altitude offset← altitude offset+ (rprev − r),

where r is the current rangefinder value and rprev is the previous rangefinder value. The
rangefinder value is modified as

rout ← r + altitude offset.

42 Chapter 4. Path Planning

Algorithm 5 Filtering of Lower Rangefinder Data

Input: Current range value r, previous range value rprev, last stable range value rstable, cur-
rent altitude offset altitude offset, current stable offset stable offset, threshold doff,max

Output: Modified lower rangefinder value rout
1: function Calculate Altitude Offset(r)
2: if not Edge filter is valid(r) then . Sharp edge detected
3: altitude offset← altitude offset+ (rprev − r)
4: end if
5: if Stable filter is valid(r) then . Measured values are stable
6: if |stable offset− altitude offset| > doff,max then
7: altitude offset← stable offset+ (rstable − r)
8: end if
9: stable offset← altitude offset

10: rstable ← r
11: end if
12: rprev ← r
13: rout ← r + altitude offset
14: return rout
15: end function

However, calculating the offset only based on one edge detection filter would be imprecise
because the obstacles do not always produce sufficiently sharp edges. For example, when
the UAV flies out of the building, it tilts forward, and the rangefinder picks up the wall
below the window in its measurements. Therefore, it is necessary to correct the value of the
altitude offset from trustworthy measurements when the data are sufficiently stable (i.e.,
when flying at a constant height above a flat surface). The correction is performed using the
second median filter and stable offset, which is calculated only from the stable values. When
the filter detects that the incoming data are sufficiently stable and the value of stable offset
significantly differs from altitude offset, the altitude offset is corrected as

altitude offset← stable offset+ (rstable − r),

where rstable is the last stable rangefinder value.

The parameters of the median filters need to be carefully tuned so that the filters do
not pick up the change of UAV altitude as a sudden change in data caused by flying over
obstacles.

4.3.3 Inside Filtering

When the UAV is inside, the altitude should be estimated mainly based on the distance
from the ceiling because it is assumed that there are many obstacles on the ground while
the ceiling is approximately flat. The stability of the upper rangefinder values is checked by
another median filter with buffer size kupper and maximal difference δupper. When the values
are stable and the UAV is inside, the difference between two consecutive upper measurements
is calculated as

dup = rup − rup,prev. (4.30)

4.3. Altitude Filter 43

The previously outputted lower rangefinder value is then modified by this difference without
using the lower rangefinder data as

rout = rout,prev − dup. (4.31)

If the upper rangefinder values are not stable, the data from the lower rangefinder are
used, as described in the previous section.

During the transition from the outside to inside, the altitude filter starts using the upper
rangefinder data when it receives information that the UAV has flown through the window,
the upper rangefinder data are stable, and that the sum of lower and upper rangefinder value
approximately corresponds to the expected height of the room.

After the transition from the inside to outside, the first values of altitude offset and
stable offset are calculated from the last output value rout, which was calculated inside.

44 Chapter 4. Path Planning

Chapter 5

Simulations

Before deployment to real UAV hardware, the correct performance of the algorithms
was extensively verified in the Gazebo robotic simulator. Gazebo offers a 3D simulation envi-
ronment of robots operating in various complex environments. A 3D model of the competition
environment was constructed and used in the simulator to test the solutions of all fire challenge
subtasks in an authentic environment.

This chapter describes a simulation of a single UAV entering the target building and
exploring its interior. In the simulated scenario, the UAV first approached the first floor of
the building and flew along its walls while simultaneously detecting multiple windows. Then,
one of the detected windows was selected to be used as an entrance to the building. The UAV
flew through the window and began moving along the walls of the room while facing away
from the followed wall and detecting multiple windows usable for exiting the building. After
exploring the entire room, the UAV flew back outside using the same window.

The whole simulation can be seen in the video at 1. Figure 5.1a shows the simulation
environment with the UAV outside the building preparing to enter the selected window. The
figure also contains RGB and depth images from the camera onboard the UAV. Figure 5.1b
depicts the simulation of flying inside the building. A visualization of the LiDAR data with
all existing window estimates and the current UAV position is shown on the left of the figure.
On the right, an RGB image from the onboard camera and a screenshot of the simulation
environment are shown.

5.1 Window Detection and Flythrough

The simulated building contains 2 by 2 meters large windows on its first and second
floor. During its flight, the UAV detected windows from both the inside and outside of the
building. The simulation was performed in the lidar + apriori mode of window estimation,
and afterwards, the estimation algorithm was rerun using the remaining estimation modes to
verify their correct performance.

The simulation video contains a visual comparison of the three estimation modes. All
three modes have been verified as viable approaches to window parameters estimation. The

1http://mrs.felk.cvut.cz/pritzvac-master-thesis

http://mrs.felk.cvut.cz/pritzvac-master-thesis

46 Chapter 5. Simulations

(a) Simulation environment with the UAV outside the building

(b) Indoor wall following simulation with the UAV detecting multiple windows

Figure 5.1: Screenshots of the simulation

selection of the mode to be used in real-world experiments depends on the available sensors,
flight conditions, and available a priori information about the target building.

5.2. Indoor Wall Following 47

5.2 Indoor Wall Following

After entering the building, the UAV started following the walls counter-clockwise at the
speed of 0.5 m/s while facing away from the wall (90◦ relative to the direction of movement).
The desired distance from the walls was set to ddes = 2 m and the additional offset for
detection of wall in front of the UAV was set to doff = 1 m.

Figure 5.2: Wall following trajectory inside the building

The UAV flew around the entire room and exited the building using the same window
as was used for entering. Figure 5.2 contains a visualization of the UAV trajectory inside the
building. A map obtained from the Hector SLAM algorithm is drawn in the background of
the figure.

5.3 Altitude Filter

Figure 5.3 shows the input and output of altitude filter during the simulation. At time
t = 52 s, the UAV entered the window to fly into the building and at time t = 125 s the UAV
left the building. At first, the filtered value (altitude filter output) was equal to the lower
rangefinder value. When the UAV entered the window, the lower rangefinder value dropped
while the filtered value stayed constant as the altitude filter algorithm added an offset to the

48 Chapter 5. Simulations

Figure 5.3: Rangefinder measurements - input and output of altitude filter

received measurements. The UAV flew over an obstacle at time t = 74 s. The lower rangefinder
value decreased, but the filtered value stayed the same as it is calculated from changes seen
by the upper rangefinder. When the UAV left the building, the lower rangefinder value was
used again, and the altitude offset was reset to zero.

Chapter 6

Real-World Experiments

This chapter describes multiple deployments of the designed algorithms in real-world
experiments. Experiments 6.1-6.4 were all performed at a small scale experimental wooden
building constructed at the university campus. The building consists of two floors, which are
4× 4 m wide and approximately 2.3 m high. The building contains 1.85 m wide and 1 m high
closable windows.

Experiments 6.2-6.4 were performed with a smoke-filled environment. The ADJ VF1300
Fog Machine was used for smoke generation.

Experiment 6.5 was performed in the desert in the United Arab Emirates during final
preparations for the MBZIRC 2020 competition. Section 6.6 describes the deployment of the
designed algorithms at the competition itself. Finally, Section 6.7 provides a summary of the
results obtained from the performed experiments.

All described experiments can be seen in the video at 1.

6.1 First Floor Flight with RealSense and LiDAR

During this experiment, the UAV autonomously entered and left the testing building
through 2 different windows open on its first floor. The realsense + lidar estimation mode
was used for window position estimation. A small UAV based on the DJI F450 frame was used
for this experiment. During the whole flight, the LiDAR-based Hector SLAM was employed
for localization.

The UAV started on the ground outside the building and flew to a position in front of
the window on the first floor by flying to manually entered set-points. On its way, the UAV
detected both the ground-floor and the first-floor window. Then, the UAV autonomously
entered the building through the first-floor window, was turned by flying to a manually
entered set-point, and autonomously left the building through the other open window after
its detection.

The whole experiment can be seen in the provided video. Figure 6.1 displays a screenshot
of the video showing the UAV in front of the first window. The figure contains an image from

1http://mrs.felk.cvut.cz/pritzvac-master-thesis

http://mrs.felk.cvut.cz/pritzvac-master-thesis

50 Chapter 6. Real-World Experiments

Figure 6.1: Flying through a window on the first floor

an external camera, a depth image from the onboard UAV camera, and an RViz visualization.
The RViz visualization displays the LiDAR data as red squares, a depth cloud obtained from
the depth camera, and the detected window.

6.1.1 Window Position Estimation

Figures 6.2 and 6.3 display estimation of all states of the window, which was used to
enter the building during the experiment. Figure 6.2 shows estimation of the window center
coordinates cx, cy, cz and the orientation φ. Figure 6.3 shows estimation of the window width
w and height h, and contains a visualization of the valid edges seen in the depth detections
over time.

The figures displays the time period from the time when the window first appeared
on the depth camera up to the time when the UAV flew through the window. The depth
detections have already been preprocessed. The detections with widths and heights outside
the required limits or detections too far from the initialized estimate have been filtered out.
The time scale was adjusted, so that time t = 0 s corresponds to the window estimate
initialization.

It can be seen that the window was visible on the camera for some time before the
estimate initialization, but the detection was not complete (with all four window edges visi-
ble), and therefore the estimator waited for a complete detection. The x- and y-coordinates,
orientation φ, and window width were estimated from both depth and LiDAR data. The plots
show that the estimate was initially created with values corresponding to the depth detection
but then quickly converged to the values of the more precise LiDAR data. The z-coordinate
and window height were estimated only by filtering the depth detections. It can be seen that

6.1. First Floor Flight with RealSense and LiDAR 51

Figure 6.2: Estimation of window coordinates and orientation from depth and LiDAR data

after t = 21 s, the window was no longer visible on the depth camera because the UAV was too
close to it. After that time, the x- and y-coordinates, orientation, and width were estimated
from the LiDAR data only, and the estimated z-coordinate and height stayed constant.

Furthermore, the plots show that the window height was updated only until time

52 Chapter 6. Real-World Experiments

Figure 6.3: Valid edges from depth data and estimation of window width and height

t = 1.5 s and stayed constant afterwards. After that time, the top window edge was not
visible in the depth data, and therefore the estimator did not have sufficient information for
updating the window height.

6.1.2 Altitude Filter

Figure 6.4a contains a plot of rangefinder measurements and altitude filter output from
this flight. Only the lower rangefinder was available during this flight. It can be seen that the
lower rangefinder value and the filtered value were equal until time t = 90 s when the UAV
entered the window. There can be seen sudden drops in the lower value caused by flying over
the window edge. Inside, the lower value shows the height of approximately 1 m above the
ground. The filtered value stays unaffected by entering and leaving the building.

Figure 6.4b shows a plot from another flight through the first floor when both the
upper and lower rangefinders were available. During this flight, the UAV entered the first

6.2. Ground Floor Flight with LiDAR in Smoke 53

(a) First flight with only lower range available (b) Second flight with both ranges available

Figure 6.4: Inputs and output of altitude filter from flights in the first floor

floor through a window, turned around, and left the building through the same window. The
figure shows the time period of the flight starting before entering the building and ending
after leaving the building. As in the previous case, the filtered value was unaffected by the
sudden changes in input values during flight through the window. While inside the building,
the filtered value was calculated based on changes in the upper rangefinder value. After the
UAV left the building, the altitude offset was reset to zero, and the lower rangefinder value
became equal to the filtered value again.

6.2 Ground Floor Flight with LiDAR in Smoke

In this experiment, flying through windows and indoor wall following was combined in a
single flight. During the experiment, the UAV started in front of a ground floor window. After
the window was detected, the UAV entered the building and started exploring it by flying
along its walls while facing away from the currently followed wall. After the UAV completed
a full flight around the room, the wall following was finished, and the UAV left the room
using the same window as was used for entering. The experiment consisted of two separate
flights. The first flight was performed under good visibility conditions without smoke, and the
second flight was performed in a smoke-filled room. LiDAR-based Hector SLAM was used for
localization during this experiment.

During this experiment, the lidar + apriori estimation mode was used for window
detection because smoke causes significant problems to the depth camera image (as described
in detail in the following section). The estimation algorithm had a priori information about
the approximate window width, height, and altitude.

The wall following parameters were set as follows. The desired distance of the UAV
from the wall was set to ddes = 1.5 m. The additional offset for detection of wall in front of

54 Chapter 6. Real-World Experiments

the UAV was set to doff = 0.5 m. The desired yaw orientation relative to the direction of
movement was set to φdes = 90◦ in order to observe the center of the room.

Figure 6.5: Flying through a ground floor window under normal conditions

Figure 6.6: Flying through a ground floor window in a smoke-filled environment

The whole experiment can be seen in the provided video. Figures 6.5 and 6.6 contain
screenshots of the video with the UAV outside the building under normal conditions and

6.3. Smoke Influence on RealSense Depth Camera 55

Figure 6.7: Trajectory traversed by the UAV during the ground floor experiment

in a smoke-filled environment. The figures show pictures from the onboard RGB camera,
external views of the UAV, and RViz visualizations. The RViz visualizations contain LiDAR
data depicted by red squares, the UAV, the currently best window estimate drawn as a yellow
rectangle, and the Figure 6.6 also contains a false window detection drawn as a green rectangle
on the left.

Figure 6.7 shows the trajectory traversed by the UAV during the second flight in a
smoke-filled room. The map produced by the Hector SLAM algorithm is drawn in the back-
ground of the figure.

The UAV successfully performed both flights without any collisions and proved the
ability of the proposed algorithms to function under smoke conditions. However, as can be
seen both in the video and in the Figure 6.6, the lidar + apriori estimation mode can suffer
from a number of false detections because it utilizes only 2D LiDAR data and detects windows
only based on their a priori known width. The experiment was performed in a small space
with many obstacles close to the target building. The number of false detections is expected
to be much lower close to high-rise buildings with significantly more free space around them.

6.3 Smoke Influence on RealSense Depth Camera

An experiment has been performed to evaluate the influence of smoke conditions on the
RealSense D435 depth camera. During the experiment, the UAV was manually controlled and
hovered in front of the window outside the building. The window was gradually filled with
smoke. The experiment can again be seen in the provided video.

56 Chapter 6. Real-World Experiments

(a) Low amount of smoke (b) Large amount of smoke

Figure 6.8: Evaluation of smoke influence on the RealSense D435 depth camera

Figure 6.8 shows the effect of smoke on the depth cloud produced by the RealSense
depth camera. The figure shows depth clouds produced by the camera observing the window
from the outside and 2D LiDAR data represented by red squares. It can be seen that with
a low amount of smoke, only a small amount of noise is present in the data. However, if
thick smoke appears in the environment, the window can become completely filled and can
be completely unrecognizable in the data.

It is apparent that smoke causes significant problems to the depth camera and can
render it completely useless depending on the amount of smoke present. Furthermore, the
results of running the window detection algorithm described in Section 3.1 on the smoke-
filled data show that the current version of the detection algorithm cannot detect the window
filled with smoke.

6.4 Smoke Influence on RPLIDAR-A3

An experiment has been performed to assess the influence of smoke-filled environment
on LiDAR performance. The UAV has been placed inside a square 4 by 4 m room, which was
gradually filled with smoke. The effect of smoke on the data measured by the RPLIDAR-A3
laser scanner was observed. The performance of the LiDAR was evaluated in two modes of
operation - the stability mode meant for outdoor use and the sensitivity mode meant for
indoor use. The respective LiDAR performance in these two modes can be seen in the provided
video. Figure 6.9 shows a comparison of the two modes. The figure contains images from an
external camera observing the UAV and RViz visualizations of the LiDAR data representing
the walls of the room.

It can be seen that in the stability mode, the RPLIDAR performance is significantly
reduced by the smoke. In thick smoke, the RPLIDAR can completely lose sight of the sur-
rounding walls. On the other hand, the sensitivity mode proves to be sufficiently resistant
to the smoke conditions. Even in very thick smoke, the walls are still mostly visible, and the
RPLIDAR suffers from only occasional loss of data. Therefore, the RPLIDAR-A3 proves itself
to be usable for deployment in a smoke-filled environment.

However, the sensitivity mode is meant for indoor use because of its low environment

6.5. Testing in the Desert 57

(a) Stability (outdoor) mode (b) Sensitivity (indoor) mode

Figure 6.9: Evaluation of smoke influence on RPLIDAR-A3 laser scanner

light elimination. Sunlight present in outdoor environments can cause complete loss of Li-
DAR measurements in this mode. Therefore, reliable deployment of the system in real-world
conditions requires using the stability mode while outside and switching to the sensitivity
mode while entering the building.

6.5 Testing in the Desert

Figure 6.10: UAV flying through an improvised building entrance in the desert

Before the competition itself, additional experimental verification was performed in the
desert. This experiment focused mainly on testing correct switching of the UAV localization
method between GPS and LiDAR-based Hector SLAM and on partial verification of the state
machine used to integrate all the subtasks together.

58 Chapter 6. Real-World Experiments

For the experiment, an improvised wooden building was constructed. The building was
placed next to a long wall, was approximately 2.5 × 3 × 2 m large, and contained a single
2 × 2 m large entrance. During the experiment, the UAV started autonomously flying along
the wall until it detected the building entrance while using GPS for localization. Then, the
UAV flew in front of the window, and the localization method switched to Hector SLAM.
The UAV flew inside, turned around, and flew back outside. Then, the localization method
switched back to GPS, and the UAV returned to its starting position.

In this experiment, the lidar + apriori window estimation mode was used. The whole
experiment can be seen in the provided video. Figure 6.10 contains a screenshot of the video
showing the UAV in front of the building entrance. The figure contains an RViz visualization
of the LiDAR data and the detected window.

6.6 Deployment at the MBZIRC Competition

The competition environment itself consisted of a 50×60×20 m large arena containing
a 16 m high building. Figure 6.11 displays a 3D model of the building captured by the Leica
laser scanner. The building consisted of 3 floors. The ground floor contained one fire to be
extinguished by the ground robot, and the first and second floors each contained a simulated
indoor fire. There was a single 2× 2 m large window open on each floor while the rest of the
windows were closed with black covers. The second floor was filled with artificially generated
smoke.

Figure 6.11: 3D model of the competition building from Leica laser scanner

The lidar + apriori estimation mode was used for window detection during the com-
petition. From the recorded data, it was discovered that the RPLIDAR laser scanner in its
outdoor mode cannot detect the black window covers placed in the closed windows. Therefore,

6.6. Deployment at the MBZIRC Competition 59

the detection algorithm was modified to filter out window detections that do not contain any
LiDAR measurements of the inside of the room. However, this filtering would not work with a
smoke-filled environment because the LiDAR would not be able to obtain a sufficient number
of measurements through the smoke either.

Being able to reliably distinguish between closed windows and windows filled with smoke
would require either fusing another kind of data with the detections (e.g., detections from
RGB images) or switching the RPLIDAR to indoor mode outside the building. More testing
would be required to determine whether the UAV would be able to fly inside the building in
direct sunlight with RPLIDAR in indoor mode.

The performance of the window detection algorithm can be seen in the provided video.
The data were recorded during one of the trial runs at the competition. The UAV was manually
controlled and flew along a single wall of the building. The recorded data show detection of
multiple open windows while skipping the windows closed by black covers. Figure 6.12 contains
a screenshot of the video showing the LiDAR data and detected windows in RViz and a picture
from the onboard RGB camera.

Figure 6.12: Window detection at the MBZIRC competition building

Unfortunately, the integration of all subtasks needed for extinguishing the indoor fires
together proved to be too complex for the limited time period available. For this reason, the
designed path planning algorithms were never employed during the competition, the UAV
never flew inside the building, and only the window detection and estimation algorithms
along with the altitude filter (for filtering of height data when flying over the ground floor of
the building) were tested there.

60 Chapter 6. Real-World Experiments

6.7 Summary of Experimental Results

All the proposed algorithms have been verified in real-world experiments. The window
detection from depth data is able to obtain a complete set of information about the window
position, orientation, and size. The window detection from 2D LiDAR data is able to obtain
positions of the left and right edges of the window. Fusing the two types of detection benefits
from the ability of the depth detection to obtain complete information about each window
and from the precision of the LiDAR data, which is also not limited by the field of view of a
camera. The availability of a priori information about window size and altitude enables the
option to generate window estimates from incomplete depth detections or to detect windows
only from 2D LiDAR data. However, the window detection based on only LiDAR data and a
priori information can contain a number of false detections depending on the environment in
which the UAV operates.

The wall following algorithm for indoor flight has been tested in both normal and de-
creased visibility conditions and was able to navigate the UAV around the target room without
any collision with obstacles. The altitude filter algorithm for supplying correct altitude in-
formation to the UAV localization subsystem has been verified to correctly calculate altitude
offsets when entering or leaving a building or when flying above obstacles.

The performance of the sensors required for window detection and indoor flight in
a smoke-filled environment has been evaluated. The RealSense depth camera suffers from
decreased visibility caused by the smoke, which significantly limits its ability to be used for
window detection during real firefighting scenarios. The RPLIDAR-A3 laser scanner in its
indoor mode performs very well under the simulated smoke conditions. However, the indoor
mode suffers from weak environment light elimination, and a safe indoor-outdoor transition
in a firefighting scenario therefore requires switching between these two modes during the
transition process.

The functionality of the UAV state estimation subsystem has been verified to be able
to seamlessly switch between GPS-based localization and LiDAR-based Hector SLAM.

Unfortunately, the integration of all subsystems together has proved to be too complex
for the limited time period available at the competition, and the UAV did not fly inside the
building at the competition itself.

Chapter 7

Conclusion

In this thesis, multiple algorithms providing reliable guidance of a UAV performing
autonomous flight into a building through a window and autonomous exploration of the
indoor space were designed. The motivation behind this thesis was the firefighting challenge
of the MBZIRC 2020 contest. The navigation algorithms designed in this thesis were crucial
for the subtask of flying inside the building and extinguishing a simulated indoor fire.

An algorithm for window detection from 2D laser scanner data based on either existing
window estimate or a priori information was designed. A Kalman filter-based estimator was
used to fuse its output with the output of an existing algorithm for window detection from
data provided by a depth camera and for filtering out measurement noise and false detections.
A path planning algorithm was designed for realizing safe transfers through the detected
windows into or out of the target building. An algorithm for constructing local wall following
trajectories based on a single laser scan was developed to be used for the indoor exploration.
Furthermore, a range data filtering algorithm was designed for calculating altitude offsets
during the indoor-outdoor transitions and flight over obstacles so that data from upward and
downward-looking rangefinder could be used to obtain reliable UAV altitude estimates.

All proposed algorithms have been thoroughly tested in authentic computer simulations
before deployment to real UAV hardware. Finally, all proposed algorithms have been tested
in multiple real-world experiments both under normal conditions and in a smoke-filled envi-
ronment, and their performance has been evaluated. Videos of the performed simulations and
experiments are available on http://mrs.felk.cvut.cz/pritzvac-master-thesis.

The entire thesis assignment has been successfully fulfilled. According to the assignment,
the following tasks have been completed.

• A description of the UAV platform and the respective sensors used for the fire challenge
was provided in Section 2.1. A description of the control and estimation pipeline used
for controlling the UAV was provided in Section 2.2.

• Algorithms for window detection from LiDAR data and fusion with detections from
the RealSense depth camera were designed and implemented. Their description can be
found in Chapter 3.

http://mrs.felk.cvut.cz/pritzvac-master-thesis

62 Chapter 7. Conclusion

• Algorithms for planning flight trajectories through the detected window and for safe
flight inside the building were designed and implemented. Their description can be
found in Chapter 4.

• All the proposed algorithms have been tested in a simulated environment. The descrip-
tion of the performed simulation can be found in Chapter 5.

• All the proposed algorithms have been verified in real experiments, and their perfor-
mance was evaluated. The algorithms have been tested both under normal conditions
and in a smoke-filled environment. The description of the experiments can be found in
Chapter 6.

7.1 Future Work

Future work on window detection and the indoor-outdoor transition could focus on the
use of different sensors. The 2D LiDAR employed in this thesis was very precise and was able
to function even in a smoke-filled environment. In future work, a 3D LiDAR sensor could be
employed for the window detection task. A 3D LiDAR could obtain complete information
about the position, orientation, and size of the window and would be less limited by its field
of view than the sensors employed in this thesis.

The window detection algorithm for depth camera data could be modified to work more
robustly in smoke-filled environments by filtering some of the noise caused by the smoke.
However, thick smoke significantly decreases the quality of data obtained from the depth
camera, and therefore the possible improvements are only limited.

The window detections could be further fused with, e.g., detections from an RGB camera
image, which could prove beneficial for recognizing closed windows.

The proposed indoor path planning algorithm is able to generate only local trajectories
based on currently available sensor data. Further work could consider constructing a map of
the environment and using, e.g., a frontier-based approach for building exploration. Further-
more, the trajectories could be planned based on 3D sensor data obtained from either a depth
camera or a 3D LiDAR.

Finally, the proposed algorithms could be evaluated in a larger-scale scenario closer to
a real firefighting situation.

Bibliography

[1] L. Merino, F. Caballero, J. R. Martinez-de Dios, I. Maza, and A. Ollero, “An Unmanned
Aircraft System for Automatic Forest Fire Monitoring and Measurement,” Journal of
Intelligent and Robotic Systems, vol. 65, pp. 533–548, Jan. 2012.

[2] A. Restas, “Forest Fire Management Supporting by UAV Based Air Reconnaissance
Results of Szendro Fire Department, Hungary,” in 2006 First International Symposium
on Environment Identities and Mediterranean Area, Jul. 2006, pp. 73–77.

[3] A. Viguria, I. Maza, and A. Ollero, “Distributed Service-Based Cooperation in
Aerial/Ground Robot Teams Applied to Fire Detection and Extinguishing Missions,”
Advanced Robotics, vol. 24, no. 1-2, pp. 1–23, Jan. 2010. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1163/016918609X12585524300339

[4] R. Chen, H. Cao, H. Cheng, and J. Xie, “Study on Urban Emergency Firefighting Flying
Robots Based on UAV,” in 2019 IEEE 4th Advanced Information Technology, Electronic
and Automation Control Conference (IAEAC), vol. 1, Dec. 2019, pp. 1890–1893, iSSN:
2381-0947.

[5] H. Qin, J. Q. Cui, J. Li, Y. Bi, M. Lan, M. Shan, W. Liu, K. Wang, F. Lin, Y. F.
Zhang, and B. M. Chen, “Design and implementation of an unmanned aerial vehicle
for autonomous firefighting missions,” in 2016 12th IEEE International Conference on
Control and Automation (ICCA), Jun. 2016, pp. 62–67.

[6] P. Pecho, P. Magdolenová, and M. Bugaj, “Unmanned aerial vehicle technology in
the process of early fire localization of buildings,” Transportation Research Procedia,
vol. 40, pp. 461–468, Jan. 2019. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S2352146519302303

[7] A. Imdoukh, A. Shaker, A. Al-Toukhy, D. Kablaoui, and M. El-Abd, “Semi-autonomous
indoor firefighting UAV,” in 2017 18th International Conference on Advanced Robotics
(ICAR), Jul. 2017, pp. 310–315.

[8] M. Popp, G. Scholz, S. Prophet, and G. F. Trommer, “A laser and image based navigation
and guidance system for autonomous outdoor-indoor transition flights of MAVs,” in 2015
DGON Inertial Sensors and Systems Symposium (ISS), Sep. 2015, pp. 1–18, iSSN: 2377-
3464.

[9] M. Popp, S. Prophet, G. Scholz, and G. F. Trommer, “A novel guidance and
navigation system for MAVs capable of autonomous collision-free entering of buildings,”

https://www.tandfonline.com/doi/full/10.1163/016918609X12585524300339
http://www.sciencedirect.com/science/article/pii/S2352146519302303
http://www.sciencedirect.com/science/article/pii/S2352146519302303

64 Bibliography

Gyroscopy and Navigation, vol. 6, no. 3, pp. 157–165, Jul. 2015. [Online]. Available:
https://doi.org/10.1134/S2075108715030128

[10] S. Zhou, G. Flores, E. Bazan, R. Lozano, and A. Rodriguez, “Real-Time Object Detection
and Pose Estimation using Stereo Vision. An application for a Quadrotor MAV,” Nov.
2015.

[11] G. Flores, S. Zhou, R. Lozano, and P. Castillo Garcia, “A Vision and GPS-Based Real-
Time Trajectory Planning for MAV in Unknown Urban Environments,” May 2013.

[12] R. C. Julian, C. J. Rose, and H. Hu, “Cooperative Control and Modeling for Narrow
Passage Traversal with an Ornithopter MAV and Lightweight Ground Station,” Inter-
national Conference on Autonomous Agents and Multiagent Systems, vol. 1, p. 8, Jan.
2013.

[13] L. Mej́ıas, S. Saripalli, P. Campoy, and G. S. Sukhatme, “Visual servoing of
an autonomous helicopter in urban areas using feature tracking,” Journal of
Field Robotics, vol. 23, no. 3-4, pp. 185–199, Mar. 2006. [Online]. Available:
http://doi.wiley.com/10.1002/rob.20115

[14] S. Xia and R. Wang, “Façade Separation in Ground-Based LiDAR Point Clouds Based
on Edges and Windows,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 12, no. 3, pp. 1041–1052, Mar. 2019, conference Name: IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15] R. Wang, J. Bach, and F. P. Ferrie, “Window detection from mobile LiDAR data,”
in 2011 IEEE Workshop on Applications of Computer Vision (WACV), Jan. 2011, pp.
58–65, iSSN: 1550-5790.

[16] M. Recky and F. Leberl, “Window detection in complex facades,” in 2010 2nd European
Workshop on Visual Information Processing (EUVIP), Jul. 2010, pp. 220–225.

[17] J.-E. Haugeard, S. Philipp-Foliguet, and F. Precioso, “Windows and facades retrieval
using similarity on graph of contours,” in 2009 16th IEEE International Conference on
Image Processing (ICIP), Nov. 2009, pp. 269–272, iSSN: 2381-8549.

[18] T. H. Yuan, F. H. Hashim, W. M. D. W. Zaki, and A. B. Huddin, “An automated
3D scanning algorithm using depth cameras for door detection,” in 2015 International
Electronics Symposium (IES), Sep. 2015, pp. 58–61.

[19] S. Meyer Zu Borgsen, M. Schöpfer, L. Ziegler, and S. Wachsmuth, “Automated Door
Detection with a 3D-Sensor,” in 2014 Canadian Conference on Computer and Robot
Vision, May 2014, pp. 276–282.

[20] D. Anguelov, D. Koller, E. Parker, and S. Thrun, “Detecting and modeling doors with
mobile robots,” in IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004, vol. 4, Apr. 2004, pp. 3777–3784 Vol.4, iSSN: 1050-4729.

[21] W. Shi and J. Samarabandu, “Investigating the Performance of Corridor and Door De-
tection Algorithms in Different Environments,” in 2006 International Conference on In-
formation and Automation, Dec. 2006, pp. 206–211, iSSN: 2151-1810.

https://doi.org/10.1134/S2075108715030128
http://doi.wiley.com/10.1002/rob.20115

Bibliography 65

[22] J. Hensler, M. Blaich, and O. Bittel, “Real-Time Door Detection Based on AdaBoost
Learning Algorithm,” vol. 82, Nov. 2010, pp. 61–73.

[23] X. Yang and Y. Tian, “Robust door detection in unfamiliar environments by combining
edge and corner features,” in 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Workshops, Jun. 2010, pp. 57–64, iSSN: 2160-7516.

[24] M. ElKaissi, M. Elgamel, M. Bayoumi, and B. Zavidovique, “SEDLRF: A New Door
Detection System for Topological Maps,” in 2006 International Workshop on Computer
Architecture for Machine Perception and Sensing, Aug. 2006, pp. 75–80.

[25] R. Sekkal, F. Pasteau, M. Babel, B. Brun, and I. Leplumey, “Simple monocular door
detection and tracking,” in 2013 IEEE International Conference on Image Processing,
Sep. 2013, pp. 3929–3933, iSSN: 2381-8549.

[26] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation, Control, and
Planning for Aggressive Flight With a Small Quadrotor With a Single Camera and
IMU,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 404–411, Apr. 2017.
[Online]. Available: http://ieeexplore.ieee.org/document/7762111/

[27] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive quadrotor
flight through narrow gaps with onboard sensing and computing using active
vision,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA). Singapore, Singapore: IEEE, May 2017, pp. 5774–5781. [Online]. Available:
http://ieeexplore.ieee.org/document/7989679/

[28] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa, F. Ruess,
M. Suppa, and D. Burschka, “Toward a Fully Autonomous UAV: Research Platform
for Indoor and Outdoor Urban Search and Rescue,” IEEE Robotics Automation Maga-
zine, vol. 19, no. 3, pp. 46–56, Sep. 2012, conference Name: IEEE Robotics Automation
Magazine.

[29] K. Schmid, P. Lutz, T. Tomić, E. Mair, and H. Hirschmüller, “Au-
tonomous Vision-based Micro Air Vehicle for Indoor and Outdoor Navi-
gation,” Journal of Field Robotics, vol. 31, no. 4, pp. 537–570, 2014,
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21506. [Online]. Available:

http://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21506

[30] Y. Sang, Z. Cai, and Y. Wang, “An exploration strategy based on Frontier and safe
corridor for indoor flight vehicle,” in 2013 Chinese Automation Congress, Nov. 2013, pp.
244–249.

[31] C. Pravitra, G. Chowdhary, and E. Johnson, “A compact exploration strategy for indoor
flight vehicles,” in 2011 50th IEEE Conference on Decision and Control and European
Control Conference, Dec. 2011, pp. 3572–3577, iSSN: 0743-1546.

[32] V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers, “Real-Time Trajectory
Replanning for MAVs using Uniform B-splines and a 3D Circular Buffer,” 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 215–
222, Sep. 2017, arXiv: 1703.01416. [Online]. Available: http://arxiv.org/abs/1703.01416

http://ieeexplore.ieee.org/document/7762111/
http://ieeexplore.ieee.org/document/7989679/
http://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21506
http://arxiv.org/abs/1703.01416

66 Bibliography

[33] C. Shang, L. Cheng, Q. Yu, X. Wang, R. Peng, Y. Chen, H. Wu, and Q. Zhu, “Micro
aerial vehicle autonomous flight control in tunnel environment,” in 2017 9th International
Conference on Modelling, Identification and Control (ICMIC), Jul. 2017, pp. 93–98.

[34] J. W. Starr, “Rangefinding in Fire Smoke Environments,” Ph.D. dissertation, Virginia
Polytechnic Institute and State University, 2015.

[35] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model Predictive Trajectory
Tracking and Collision Avoidance for Reliable Outdoor Deployment of Unmanned
Aerial Vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Madrid: IEEE, Oct. 2018, pp. 6753–6760. [Online]. Available:
https://ieeexplore.ieee.org/document/8594266/

[36] M. Petrlik, T. Baca, D. Hert, M. Vrba, T. Krajnik, and M. Saska, “A Robust
UAV System for Operations in a Constrained Environment,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2169–2176, Apr. 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/8979150/

[37] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a
quadrotor UAV on SE(3),” in 49th IEEE Conference on Decision and Control
(CDC). Atlanta, GA: IEEE, Dec. 2010, pp. 5420–5425. [Online]. Available:
http://ieeexplore.ieee.org/document/5717652/

[38] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable SLAM
system with full 3D motion estimation,” in 2011 IEEE International Symposium on
Safety, Security, and Rescue Robotics. Kyoto, Japan: IEEE, Nov. 2011, pp. 155–160.
[Online]. Available: http://ieeexplore.ieee.org/document/6106777/

[39] A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson, “An Optimized
Segmentation Method for a 2D Laser-Scanner Applied to Mobile Robot Navigation,”
IFAC Proceedings Volumes, vol. 30, no. 7, pp. 149–154, Jun. 1997. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1474667017432551

[40] E. Fernández Perdomo, “Test and Evaluation of the FastSLAM Algorithm in a Mobile
Robot,” Dec. 2013.

[41] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” p. 16, 2006.

[42] R. R. Labbe Jr., “Kalman and Bayesian Filters in Python,” p. 504, 2018. [Online].
Available: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

https://ieeexplore.ieee.org/document/8594266/
https://ieeexplore.ieee.org/document/8979150/
http://ieeexplore.ieee.org/document/5717652/
http://ieeexplore.ieee.org/document/6106777/
https://linkinghub.elsevier.com/retrieve/pii/S1474667017432551
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

CD Content

Table 1 contains names of the root directories on the attached CD.

Directory name Description

thesis the thesis in pdf format
source source code of the implemented algorithms
videos videos of simulations and experiments

Table 1: CD Content

68 Appendix . CD Content

List of Abbreviations

Abbreviations used in this thesis are listed in Table 2.

Abbreviation Meaning

FOV Field of View

GNSS Global Navigation Satellite System

GPS Global Positioning System

IEPF Iterative End-Point Fit

IMU Inertial Measurement Unit

IR infrared

LiDAR Light Detection and Ranging

KF Kalman Filter

LTI Linear Time-Invariant

LKF Linear Kalman Filter

MBZIRC Mohamed Bin Zayed International Robotic Challenge

MAV Micro Aerial Vehicle

MPC Model Predictive Control

RANSAC Random Sample Consensus

SLAM Simultaneous Localization and Mapping

SEF Successive Edge Following

UAV Unmanned Aerial Vehicle

USAR Urban Search and Rescue

Table 2: List of abbreviations

70 Appendix . List of Abbreviations

	List of Figures
	List of Tables
	Introduction
	State of the art
	Problem Statement
	Outline

	Description of Used System
	Hardware Description
	RPLIDAR-A3
	RealSense D435

	Software Description
	Control pipeline
	State estimation and localization

	Window Detection and Position Estimation
	Detection from RealSense Data
	Detection from LiDAR Data
	Detection of Potential Window Edges
	Linking Edges to Existing Window Estimates
	Standalone Detection based on Window Width

	Sensor Fusion
	Kalman Filter Description
	System Model and Estimation Details

	Path Planning
	Flying through a Window
	State Machine
	Trajectory Sampling
	Goal Point Calculation

	Path Planning inside the Building
	Approaching the Wall
	Wall Following

	Altitude Filter
	Median Filter Description
	Outside Filtering
	Inside Filtering

	Simulations
	Window Detection and Flythrough
	Indoor Wall Following
	Altitude Filter

	Real-World Experiments
	First Floor Flight with RealSense and LiDAR
	Window Position Estimation
	Altitude Filter

	Ground Floor Flight with LiDAR in Smoke
	Smoke Influence on RealSense Depth Camera
	Smoke Influence on RPLIDAR-A3
	Testing in the Desert
	Deployment at the MBZIRC Competition
	Summary of Experimental Results

	Conclusion
	Future Work

	Bibliography
	CD Content
	List of Abbreviations

