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ABSTRACT

Developments in computer hardware are currently bringing new opportu-
nities for numerical modelling. The current trend in technology is parallel
processing and making use of multiple processing units simultaneously to
solve a given problem. Many engineering problems lead to extensive and
time consuming computational problems. Solutions to these problems using
parallel computing can significantly reduce computational time by using the
available hardware more efficiently. Parallel techniques using modern comput-
ers with a distributed memory model also enable large and complex problems
to be solved. This thesis evaluates different parallelization strategies in finite
element software. The first part of the thesis examines assembly evaluation
of different parallelization strategies in assembly operations for right-hand
side vectors and left-hand side system matrices, which are one of the critical
operations in any finite element software. The finite element method leads
to a set of algebraic equations whose components are assembled from indi-
vidual element contributions. Different strategies for assembling right-hand
side vectors and left-hand side matrices using systems with shared memory
models are proposed and evaluated. The principal issue in parallel assembly
is to prevent the race conditions where the same memory location is updated
by multiple threads. The aim of the next section of the thesis is to evaluate the
performance of existing serial and parallel linear equation solvers in solving
a large-scale, sparse, non-symmetric system of linear equations as a part of
the solution in finite element software. In this section, the differences between
a sequential and parallel solution using different equation solver types are
studied. The parallel method uses different memory model types that are
represented as shared or distributed memory models. The final section of the
thesis deals with tuning a parallel load balancing framework as a part of the
parallel solving process in finite element software. The parallel framework
was based on a domain decomposition paradigm. The capabilities, efficiency,
and performance of all implemented parallel methods are tested on problems
in solid mechanics, and the obtained results are discussed. The results showed
that the performance of implemented parallel algorithms is comparable to
or better than serial computations previously designed by other researchers
using algorithms with the non-optimally performing hardware available at
the time.
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ABSTRAKT

Soucasny vyvoj v oblasti pocitacového hardwaru pfindsi nové moznosti
v numerickém modelovani. Sou¢asnym technologickym trendem v paral-
lelnim processingu, které je zaloZeno na soucasném vyuZivani paralelnich
vice-procesorovych jednotek k feSeni daného problému. Mnoho inZenyrs-
kych problémt vede k vypocetné velkym a ¢asové ndro¢nym vypocetnym
problémtm. Regeni téchto problémti s vyuZitim paralelniho pogitani miZe
vyrazné znizit ¢as feSeni tlohy s efektivnéjsim vyuzitim dostupného hadwaru.
Prace se zabyva hodnocenim r@iznych paralelnich strategii v kone¢né prvko-
vém softwaru. Prvni ¢ast prace se zabyva hodnocenim reSeni a implementace
riznych paralelnich strategii pro sestavovaci operace pro vektory pravych
stran a matic, které jsou jednou z kritickych operaci v jakym koliv konecné
prvkovém programu. Metoda konesnych prvki vede k souboru algebraickych
rovnic, které jsou sloZeny z jednotlivych elementarnich pfispévki. Jsou na-
vrZeny a vyhodnoceny rizné strategie pro sestavovani vektorti pravych stran
a matic a jsou zaloZené na systémech s modelem sdilené paméti. Hlavnim
problémem v paralelnim feSeni je zabrénit jevu "race-conditions", kde stejné
misto paméti méa byt aktualizovdno vice podprocesy. Cilem néasledujici ¢asti
doktorské prace je zhodnotit vykonnost existujicich sériovych a parallelnich
reSicti soustav linedrnich rovnic, jako dalsi ¢ast feSeni v kone¢né prvkovém
programu. V této ¢asti studujeme rozdily mezi sériovym a paralelnim feSenim
s vyuzitim rtznych typh feSeni rovnic. Paralelni pfistup vyuZivajici rtizné
typy pamét'ovych modeld, které jsou reprezentovany jako sdileny nebo distri-
buovany pamét'ovy model. Posledni ¢ast prace se zabyva ladénim paralelniho
frameworku pro vyvaZovani zatéZe jako soucdst procesu paralelniho feSeni
v softwaru konecnych prvkt. Paralelni rdmec je zaloZen na paradigmatu
rozkladu domén. Schopnost, efektivita a vykonnost vSech implementovanych
paralelnich pfistupti je testovdna na problémech z mechaniky tuhych teles a
ziskané vysledky jsou diskutovany v dizerta¢ni praci. Uk4zalo se, Ze vykon
implementovanych paralelnich algoritmt je srovnatelny nebo lepsi neZ sériové
vypocty, které diive navrhli jini vyzkumnici s vyuZitim algoritmt se zietelem
na optimalnim vykonem dostupného hardwaru. Paralelni techniky vyuZivajici
moderni pocitace s distribuovanym pamét'ovym modelem navic umozZniuji
feSeni velkych a slozitych problémf.
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MOTIVATION

Computational advancements driven by developments and improvements in
the power and pervasiveness of computers and communications have led to a
new trend in computational science and engineering. Capitalizing on those
advances by developing techniques for modern hardware has enabled large
and complex problems to be solved. Traditional code runs sequentially and is
limited by the available resources of a single computing unit or single machine.
Serial computers only let us run simulation code sequentially and often have
limited resources, represented by the single processing unit and available
system memory. Only one instruction may be processed at a time, and only
when this instruction is complete the next can be executed. The notion of
parallel computing suggests dividing a large problem into smaller tasks that
are solved simultaneously using available computing resources. Parallelization
can significantly reduce the time required to solve a problem by using modern
hardware more efficiently. Parallel programs are more difficult to design,
because parallelism introduces new sources of complexity. Communication
and synchronization between tasks are one of the most important problems
in obtaining effective parallel performance. Several parallel programming
models are available for parallel programs. An overview of existing platforms
and programming models will be given in this work. The work examines the
development of strategies and algorithms for optimal solutions to numerical
problems in structural engineering based on finite element software. Other
contributions focus on tuning the load balancing process, which is based on a
domain decomposition paradigm. Load balancing strategies will be designed
for problems with evolving complexity and heterogeneous, non-dedicated
environments.

1.1 PROBLEM STATEMENT

Finite Element Method (FEM) is one of the most popular method for solving
numerous problems in engineering. It actually consists of broad spectrum of
methods for finding an approximate solution to boundary value problems
in partial differential equations. Numerical solutions for many engineering
problems lead to the solution of nonlinear models consisting of very complex
geometries and many degrees of freedom, which are large and time consuming
computational problems. Large scale problems also exist that cannot be solved
on a sequential machine because of the lack of accessible hardware on a
serial computer. In situations where large scale problems cannot be solved on
available hardware resources, parallel computing based on the decomposition
of a computational task using more available parallel hardware resources
allows such large scale problems to be solved. This thesis aims to propose and



1.2 OVERVIEW OF THE THESIS

evaluate parallel algorithms for different parts of the overall Finite Element
Method solution process.

Different parts of the FEM solution process were selected as the most
interesting and time-consuming numerical operations that could be solved
in parallel. The assembling processes of vectors and matrices, solution of a
linear system of equations and optimization of load balancing framework were
selected as processes that could be optimized and parallelized. The different
techniques of parallel assembly of vectors and matrices in the FEM were
proposed, implemented and evaluated. The interface to direct parallel linear
solver is developed and performance evaluated. New load balancing strategy
has been proposed and its performance compared to the existing one.

The proposed parallelization methods were validated against serial versions
and their efficiency was evaluated by comparing the performance of the
parallel algorithm against serial version or previous parallel implementation.
The performance has been evaluated on various benchmark problems from
structural mechanics.

1.2 OVERVIEW OF THE THESIS

The thesis has eight chapters. The first chapter named “"Motivation” is describ-
ing the motivation for the presented thesis. In the second chapter, the key
contributions of the thesis are summarized. The next chapter named ”State
of the art introduces parallel computing, gives the overview of the design of
available parallel computers, introduces the scalability of parallel algorithms.
Moore’s law and new trends in high-performance computing are also intro-
duced and described. The currently available parallel platforms and libraries
used in this work are discussed.

Following chapter entitled “Introduction to the Finite element method presents
a brief review of Finite element method. A sparse matrix and vector assembly
operations on serial computers are presented. The methods for solving systems
of linear equations are discussed in this chapter as well. Also, the solution
of large scale engineering problems using parallel computation based on a
parallel load-balancing framework is discussed.

The chapter “Parallelization of left and right hand side assembly” presents de-
sign and implementation parallel assembly algorithms in finite element soft-
ware. In this chapter, various strategies are presented and their performance
is evaluated.

The parallel algorithms solving systems of large sparse linear equations are
discussed in the next chapter. The chapter focuses on comparing the efficiency
of different existing libraries for the solutions of large, sparse, non-symmetric
systems of linear equations, based on direct or iterative algorithms.

The improved algorithm for determining the processor weights for dynamic
load balancing is proposed and evaluated in the next chapter. The performance
of static and dynamic load balancing approaches are assessed, and the results
are presented and discussed.

Finally, the last chapter contains final conclusions of the thesis.



KEY THESIS CONTRIBUTIONS

Several novel ideas and implementations are proposed in the thesis. The first
evaluates different parallelization strategies of assembly operations for right-
hand side vectors and left-hand system matrices, which are one of the critical
operations in any finite element software. Parallelization strategies based on a
shared memory model using different shared memory libraries are presented.
The assembly process itself is based on localization of individual element
contributions into the global stiffness matrix and global force vector according
to their connectivity. The principal issue in parallel assembly is to prevent race
conditions, when the same memory location is updated by multiple threads.
The considered strategies were based on simple synchronization directives,
various block locking algorithms, and finally on smart locking free processing
based on a colouring algorithm. These parallel methods were implemented
in finite element code and compared to a previously implemented sequential
method. Some of the results have already been published in papers [5], [6],
[71, 8], and [9].

Optimization of the solution process focuses on solving the system of linear
equations as a chronological process after the stiffness matrix and force vector
assembly. This solution process involves a parallel approach for numerically
solving large, sparse, non-symmetric systems of linear equations that can
be a part of any finite element software. In general the FEM may results in
linear or nonlinear system of equations. In nonlinear mechanics, the problems
cannot be solved directly, and an iterative solution algorithm must be used,
typically based on different variants of Newton’s method. The problems
are solved in a series of controlled steps in which the equilibrium state is
obtained iteratively. In order to obtain a scalable algorithm, all the steps
have to be parallelized, including solving a linear system of equations stage,
which can be time-consuming. In this contribution, the differences between
the sequential and parallel solutions and the differences between the direct
parallel and iterative parallel solvers are presented. The existing libraries of
direct linear equation solvers for solving large systems of linear equations
in linear or nonlinear problems were connected and compared to existing
implementations of iterative linear equation solvers in finite element software
(some of the results have already been published in papers [10], [11], [12]
and [13].

Finally, the tuning up methods for parallel static and dynamic load balancing
frameworks of finite element software were implemented. These methods
managed the parallel load balancing framework as a part of the solving
process in the finite element method. The idea of a parallel framework is based
on a domain decomposition paradigm. The partitioning based on the load
balancing process can be affected by many factors. Primarily, the solution
process on each sub-domain should be balanced. The upgrade method was



KEY THESIS CONTRIBUTIONS

based on new method of determining a set of processor weights parameters
leading to better load rebalancing. The innovation consists in determining
the processor weight automatically using specifically designed benchmarks.
This allowed to obtain more appropriate domain decomposition matching
actual performance of individual nodes. The capabilities and performance of
these methods based on the improved load balancing framework depend on
hardware performance and were compared to existing load balance methods.
The results are demonstrated in the published paper [14].



STATE OF THE ART

The engineering community is facing growing demands for state of the art
modelling and realistic predictions in many fields. These demands bring new
challenges for computational science as well. The idea of parallel computing
is mainly about dividing the large problem into smaller tasks, which can be
solved simultaneously using available computing resources. In cases, where
large scale problems could not be solved on available hardware resources,
parallel computing based on the decomposition of computations task to more
available parallel hardware resources can enable the solution of this large scale
problems. The parallel algorithms bring new requirements for designing the
program, which is for example represented by creating and joining compu-
tational threads including the communication and synchronization between
computational threads, in comparison with the design process of a sequential
program. Parallel programs can be classified, for example, by type of memory
architecture.

3.1 MOORE’S LAW

Moore’s Law is a computing term which predicts computer development over
the decade and it originated around 1970. The simplified version of this law
states that processor speed or overall processing power for computers will be
doubled every two years. In the figure 3.1 is presented microprocessor clock
speed measures the number of pulses per seconds illustrated the frequency
of the processor. A quick check among technicians in different computer
companies shows that the term is not very popular but the rule is still accepted.
The law prediction is based on the number of transistors on an affordable
CPU would double every two years, which is essentially the same trend that
was mentioned above. The processor speeds from 1970 to 2020 show that the
law has reached its limit or is nearing the limit. The processor speeds ranged
from 740 kHz to 8 MHz in the 1970s. In the time from 2000 to 2009 there has
not really been much of a speed difference. The range is from 1.3 GHz to 2.8
GHz, which present the fact, the speeds have just doubled within the 10-year
span. On the other hand, the number of transistors its more accurate to apply
the law to transistors than to speed. In 2000 the number of transistors in the
CPU numbered 37.5 million, while in 2009 the number went up to 9go4 million
transistors, see Figure 3.2. In the Figure 3.3 is illustrated the transistor count
per square millimetre as a different view to the quantity of transistor in the
processor.

The limitation of processor speed is based on fact, that the given number
of transistors must fit into the processor. The trend illustrated on Figure 3.3



3.1 MOORE’'S LAW 6

1x10%1 T T T

T T T
Microprocessor clock speed —e—

1x10%0 |

1x10°

1x108

hertz (pulses per second)

1x107 +

1x106 L L L L L s s s
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

year

Figure 3.1: Microprocessor clock speed measured in hertz (pulses per second) by the
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Figure 3.2: Transistor count per processor by the year 1971 - 2018
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show the transistor density has been increasing at a fairly even exponential
rate, even into year 2018.
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Figure 3.3: Transistor count per square millimeter by the year 1971 - 2018

The limitation which exists is that once transistors will be created with the
size of atomic particles, then there will be no more room for growth in the
CPU manufacture where speed is concerned.

3.2 HIGH - PERFORMANCE COMPUTING TRENDS

In this section, the trends in supercomputing are discussed. The powerful
parallel vector computers can deliver a high computational performance only
if the application software is adapted to computers architectures. The super-
computer is a designation given about 300 computers installed worldwide
with the peak computing power of over 100 megaflops, which represents
100 million of floating point operations per second. These computers have
mainly been used for numerical experimentation in various scientific domains
such as structural mechanics, fluid mechanics, seismic explorations, quantum
mechanics, materials science. The supercomputers are specific with high peak
computing power achieved by very rapid clock periods, parallel processors,
pipeline architectures leading to two operations (1 added + 1 multiple) per
clock period, large system memories with fast and strong network connections
to the outside network. In addition, to benefit most from the high computing
power, it is necessary to formulate an application in such a way that the
maximum of all the computations is executed in parallel.

The scientific and engineering trend is about solving numerically the most
realistic physical model available, described for example, by a set of partial
differential equations. The numerical solution of (nonlinear) system of PDEs
is based on various discretization methods (finite elements, finite volumes,
finite differences, etc). To reduce the number of time steps, implicit methods
should be used. The very efficient iterative solvers based on the methods of
multigrid or conjugate-gradient with preconditioning may be used. To make
the best use of the parallel architectures of future supercomputers, algorithms
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and programming techniques leading to the definition of codes with coarse
parallel granularity should be adopted.

For example, the TOP500 project provides a reliable basis for tracking and
detecting trends in high-performance computing [17]. This project started
in 1993 and twice a year, a list of the sites operating the 500 most powerful
computer systems is assembled and released. The performance measure is
based on Linpack benchmark for ranking the computer systems. The Limpack
benchmark was introduced by Jack Dongarra and the benchmark used in
Linpack is to solve a dense system of linear equations. For the TOP5o00, the
version of the benchmark that allows the user to scale the size of the problem
and to optimize the software in order to achieve the best performance for
given supercomputer is used. This performance does not reflect the overall
performance of a given system. It reflects the performance of a dedicated
system for solving a dense system of linear equations. The actual performance
measuring is based on the different problem sizes 1, and the user can get not
only maximal achieved performance Rmax for the problem size Nmax but
also the problem size N1/2 where half of the performance Rmax is achieved.
These numbers together with the theoretical peak performance Rpeak are the
number given in TOP500. The TOP500 list contains a variety of information
including the system specifications and its major application areas.

The improving computational power of supercomputers brings new oppor-
tunities in computational science.

3.3 PARALLEL COMPUTING

Parallel computing is introduced in this section. The solutions to many en-
gineering problems are extremely demanding, both in terms of time and
computational resources. Traditional serial computers only permit simulation
codes to be run sequentially on a single processing unit, where only one
instruction can be processed at any moment in time. The solution process is
translated into a sequence of instructions, which are solved by a sequential
processing unit. By contrast, parallel computing is based on the notion of
partitioning the work into sets of smaller tasks that can be solved concurrently
using multiple computing resources. Parallel processing allows tasks on a
single computer to be performed concurrently with multiple processing units
or even multiple computers with multiple processing units. Parallelization can
significantly reduce computational time by using available hardware more
efficiently. It can also enable the solution of large problems that often cannot
be processed by a single machine.

3.3.1  Computer architectures

Existing computer architectures can be classified using Flynn’s Taxonomy [18].
Flynn introduced the concept of instruction and data streams in order to
categorize computers. The instruction cycle consists of a sequence of steps
needed to execute an instruction in a program. Instructions in a program
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consist of two parts: the Opcode and Operand. The Operand has two parts:
an addressing mode and the operand. The addressing mode specifies the
method for determining the addresses of the data on which the operation
is to be performed, and the operand is used as an argument by the method
determining the address. The control unit of the computer’s CPU fetches
instructions from a program one at a time. Each fetched instruction is then
decoded by the decoder, which is a part of the control unit, and the processor
executes the decoder’s instructions. The results of execution are temporarily
stored in a Memory Buffer Register, also called the Memory Data Register.
The normal execution steps are shown in Figure 3.4.

i

A4
CALCULATE THE ADDRESS OF
INSTRUCTION TO BE EXECUTED

| FETCH THE INSTRUCTION |

‘ DECODE THE INSTRUCTION ‘

>

CALCULATE THE OPERAND
ADDRESS

o

| FETCH THE OPERANDS |

‘ EXECUTE THE INSTRUCTIONS ‘

<

| STORE THE RESULTS \

MORE INSTRUCTIONS?

Figure 3.4: Steps for executing an instruction.

Stream refers to the flow of either instructions or data operated on by the
computer. The instruction stream is a flow of instructions from the main
memory to the CPU. Similarly, there is a bi-directional flow of operands
between the processor and memory. This flow of operands is called a data
stream. This means that the sequence of instructions executed by the CPU
forms the instruction streams and data sequence (Operands) required for
executing instructions for the data streams. Flynn’s classification is based on
the multiplicity of instruction and data streams observed by the CPU during
program execution. The minimum number of streams flowing at any point
during execution are I (instruction streams) and D (data streams).

Computers can be organized as follows:

e Single Instruction and Single Data stream (SISD)

SISD is an architecture found in a serial (non-parallel) computer with a
single processing unit. One instruction stream is acted on by the CPU during
any one cycle. Only one data stream is used as input during any one cycle
(Fig. 3.5). This architecture represents the traditional type of serial computer.
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Figure 3.5: Single Instruction and Single Data Stream scheme.

e Single Instruction and Multiple Data stream (SIMD)

In this architecture, multiple processing elements work under the control of
a single control unit. It has one instruction and multiple data streams. This
represents a type of parallel computing, where all processing units execute the
same instruction at any given cycle (Fig. 3.6). Each processing unit operates
on a different data element, which creates a multiple data stream.

I=1 N PROCESSING ELEMENT 1 |4 DL n MAIN MEMORY 1
D>1
CONTROL UNIT N PROCESSING ELEMENT 2 4 D2 N MAIN MEMORY 2

N PROCESSING ELEMENT n 4 Dn N MAIN MEMORY n

1

D

Figure 3.6: Single Instruction and Multiple Data Stream scheme.

e Multiple Instruction and Single Data stream (MISD)

In this architecture, multiple processing elements are organized by mul-
tiple control units. Each control unit handles one instruction stream and is
processed through its corresponding processing element. Each processing
element, however, only processes one data stream at a time (Fig. 3.7). All
processing units operate on the same data.

e Multiple Instruction and Multiple Data stream (MIMD)

In this architecture, multiple processing elements and multiple control
units are organized, as in MISD, its main difference though being multiple
instruction streams operating on multiple data streams (Fig. 3.8). MIMD
organization is the most popular choice for a parallel computer.

Parallel computers can also be classified, for example, by the type of memory
architecture, such as shared, distributed and hybrid memory systems.

10
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Figure 3.7: Multiple Instruction and Single Data Stream scheme.
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Figure 3.8: Multiple Instruction and Multiple Data Stream scheme.

e Shared memory parallel computers

In a shared memory system, the main memory and global address space
are shared between all processing units, which can directly address and access
the same logical memory. Global memory significantly eases the design of a
parallel program, however, memory bus performance is a limiting factor in
scalability as the number of processing units increases. In a shared memory
system, multiple processing units can access a single address space that is
shared between all processing units. Changes in the logical memory location
affected by one processing unit are visible to all the other processing units.
Shared memory systems are classified as Uniform Memory Access (UMA),
as shown in Figure 3.9 and Non-Uniform Memory Access (NUMA), shown
in Figure 3.10, according to memory access times. Uniform Memory Access
(UMA) is found today in Symmetric Multiprocessor (SMP) machines. In UMA
systems, the processing unit has equal access and access times to memory.

Non-Uniform Memory Access (NUMA) is achieved by physically linking
two or more SMPs. One SMP can directly access the memory of another SMP.
Memory access across a link between SMPs is slower. Its main advantage
is a globally accessible memory, which provides a user-friendly perspective
to programming in terms of memory. Its primary disadvantage is a lack
of scalability between the memory and processing units. The link between
processing units is not scalable as the number of processing units increases.

11
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Figure 3.10: Non-Uniform Memory Access.

e Distributed memory parallel computers

In distributed memory systems, memory is physically distributed between
individual processing units and has no global address space. When a processor
needs to access data on another processor, it is generally the programmer’s
task to explicitly define how and when data is communicated. Processing
units have their own local memory. Distributed memory systems require a
communication network to connect the local memories of processing units
(Fig. 3.11. Memory addresses in one processing unit do not map to another
processing unit, so there is no concept of global address space across all the
processing units. Because each processing unit has its own local memory,
it operates independently, and the changes made to its memory have no
effect on the memory of another processing unit. The cost of communication
compared to local memory access can be very high, however, its advantage
is that the overall memory is scalable as the number of processors increases.
Its disadvantage is a difficult mapping of existing data structures based on
global memory into this memory configuration.

e Hybrid distributed-shared memory systems

Hybrid systems combine the features of shared and distributed memory
systems, providing global, shared memory for a reasonably small number of
processing units that are combined into a distributed memory system. This
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Figure 3.11: Distributed memory parallel computers.

type of system is the largest and fastest parallel computer known at this time.

The shared memory component can be the processing unit (CPU) or graphics
processing unit (GPU). In this system, communications are required to move
data from one machine to another (Fig 3.12). An important advantage in
hybrid systems is greater scalability. The disadvantage of the hybrid system is
greater programming complexity.
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Figure 3.12: Hybrid distributed-shared memory parallel computers.

An equally important fact about memory architecture concerns an aspect of
SMP systems. In SMP systems, each processor has a local cache. The processing
unit (CPU) has several layers of cache memory between the CPU and main
memory (RAM). The cache layers are designed as two or three layers, which
are designated L1 cache, L2 cache and L3 cache. The L1 cache is small and
very fast and situated right next to the core that uses it. The L2 cache is
larger and slower and is also only used by a single core. The L3 cache is more
common in modern multi-core machines and is larger and slower than the
L2 cache and shared across all cores on a single socket. Finally, the CPU can
also access the main memory (RAM), which is shared across all cores and
all sockets. Individual items are not stored in the cache as single variables or
single pointers. Cache memory stores data in cache lines, typically 64 bytes,
and effectively references a location in the main memory (Fig. 3.13). A C++
double integer is 8 bytes, and in a single cache line, eight C++ double integer
variables can be stored. A cache line model is a robust tool for iterating over
any data structure that is allocated to contiguous blocks in memory. If items
in the data structure are not placed next to each other in memory, then the
advantage of free cache loading remains unused.

13
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Figure 3.13: Cache layer schema—threads on different processors modify variables
residing on the same cache line.

For multiprocessors, the replicated unit is a processor (shared memory
systems), while in a multicomputer, the replicated unit is the whole computer
(distributed memory systems). Multiprocessors are tightly coupled to a high
degree of sharing resources through a high-speed backplane or motherboard.
On the other hand, the multicomputer consists of multiple computers, of-
ten called nodes, interconnected by a message-passing network. It is loosely
coupled since it only has a low degree of resource sharing through a com-
modity network. Multicomputers are more scalable than multiprocessors. A
multicomputer’s scalability is multitude scalability. SMPs as a typical example
of multiprocessors systems are processor scalable systems, while multipro-
cessors scale in many components, including the processor, system memory
and even I/0O devices. In an SMP, the shared memory (and the memory bus)
is a bottleneck, while in a multicomputer, there is no memory bottleneck.
Multicomputers can provide a much higher aggregate memory bandwidth
and reduced memory latency.

3.3.2  Scalability

The idea behind parallel algorithms is partitioning the problem into a set
of smaller tasks that can be solved simultaneously. One of the important
characteristics of the parallel algorithm is its computational scalability, which is
the most important goal in parallel computing. The scalable parallel algorithm
achieves a reduction in execution time by using more processing units, ideally
in a linear trend. Ideal scalability is difficult to obtain because of the overhead
costs of the parallel algorithm (synchronization and communication). Almost
every parallel algorithm has an overhead cost compared to a sequential version.
Individual tasks cannot be executed concurrently without synchronizing
and communicating with other tasks. Some parts of the algorithm are also
essentially serial and can only be executed by a single thread. In addition to
speedup, parallel computing allows large and complex problems to be solved
that could not be solved on a single, well-equipped machine.

14
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e Amdahl’s law

Amdahl’s law is named after Gene Amdahl. This formula is used in parallel
computing to predict the theoretical maximum speedup time using multiple
processing units. Amdahl’s law is a model for the relationship between the
excepted speedup of a parallel algorithm relative to the serial algorithm. The
law describes the excepted speedup of the parallel code over the serial code
when using n processing units is dictated by the proportion of the process
that can be made parallel, p, and the portion of that cannot be parallelized,
(1-p). This relationship is shown in figure 3.14.
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Figure 3.14: Amdahl’s law.

e Gustafson’s law

Gustafson’s law addresses the shortcomings of Amdahl’s law, which does
not fully exploit the computing power that becomes available as the number
of machines increases. Gustafson’s Law instead proposes that programmers
tend to set the size of problems in order to use the available equipment and
solve problems within a practical fixed time. Therefore, if faster (more parallel)
equipment is available, larger problems can be solved at the same time.
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Figure 3.15: Gustafson’s law.
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3.4 AVAILABLE PARALLEL PLATFORMS AND LIBRARIES

Parallel programming frameworks provide basic infrastructure for developing
and executing parallel algorithms. Typically, they are tightly connected to
particular parallel computer architecture. One can distinguish between shared
memory, distributed memory and hybrid systems.

3.4.1 Shared memory libraries

In this section, the general description of parallel libraries which are based
on shared memory model with using different frameworks represented by
Open Multi-Processing (OpenMP), Portable Operating System Interface (POSIX)
Threads, and C++ 11 Threads programming interface, is presented.

OpenMP is a shared memory programming model that supports multi-
platform shared memory multiprocessing programming in C, C++ language
and Fortran, on most processor architectures and operating systems. It consists
of a set of compiler directives, library routines, and environment variables
that influence run-time behaviour.

The POSIX Threads (Pthreads) libraries are standardized thread program-
ming interfaces for C/C++ language. Pthreads allows one to spawn a new
concurrent process. Pthreads consists of a set of C/C++ language types and
procedure calls. The original POSIX Threads application programming in-
terface (API) synchronization subroutines allow protecting parallel program
when multiple threads solve the problem.

Specifically for C++ programming language, the introducing the support for
concurrent programming in C++ application that requires concurrent program-
ming. Before C++11 standard the multi-threaded programming was based
on platform-specific extensions like OpenMP, POSIX Threads, etc. The C++11
Thread libraries include utilities for creating, managing threads which are
standardized for C/C++ language. A thread in C++11 Thread libraries share
an address space with other threads which can lead to a basic problem with
thread data races, two threads solving a single address space independently
and that cause undefined results. The C++11 standard library contains classes
for thread manipulation and synchronization, commonly protected data, and
low-level atomic operations.

3.4.2 Distributed memory libraries

Despite the variety of available platforms, there is a common programming
model based on message passing paradigm which is available on most parallel
hardware configurations. The most commonly used method of programming
distributed-memory systems is message passing or some variant of message
passing. In basic message passing, the processes coordinate their activities
by explicitly sending and receiving messages. For example, at its most basic,
the Message-Passing Interface (MPI) provides functions for sending or receiving
a message. MPI libraries are highly portable and available on virtually all
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parallel computing platforms, from shared memory systems to distributed
memory systems. The parallel MPI programs are independent of machine
architecture and type of network employed to transfer data from one processor
to another. The current version of MPI assumes that processes are statically
allocated, the number of processes is set at the beginning of program execution,
and no additional processes are created during execution.

3.4.3 Solvers for linear system of equations

A system of linear equations is called sparse if an only a relatively small
number of its matrix elements are non-zero. An efficient algorithm for solving
a linear system must exploit this property. There are different schemes for
efficient storage of sparse matrices and the solution of the related linear
problem. The problem is about solved equation K * 7 = F where r and F are
just vectors, K is a sparse matrix, and even storing a dense matrix of K’s size
would be prohibitively expensive. There are a number of different libraries out
there that solve a sparse linear system of equations, however, in this thesis the
performance of only selected solvers is evaluated. This includes serial direct,
skyline based solver, serial iterative solver based on IML library, parallel direct
solver from SuperLU library and parallel, iterative, Krylov/based solver from
PETSc library:.

The SuperLU contains a set of sparse direct solvers for solving large sets
of linear equations. In our case the matrix K is a square, non-singular n x n
sparse matrix and r and F are dense matrices (vectors). The kernel algorithm in
SupeLU is sparse Gaussian elimination. In addition, to complete factorization,
SuperLU platform also has limited support for incomplete factorization (ILU)
preconditioner which approximately solves K * r = F.

The Portable, Extensible Toolkit for Scientific Computation (PETSc) has success-
fully demonstrated that the use of modern programming paradigms can ease
the development of large-scale scientific application codes in C++ [34]. The
software has evolved into a powerful set of tools for the numerical solution
of partial differential equations and related problems on high-performance
computers. PETSc consists of a variety of libraries (similar to classes in C++).
Each library manipulates a particular family of objects (for instance, vectors)
and the operations one would like to perform on the objects. The objects and
operations in PETSc are derived from our long experiences with scientific
computation. Some of the PETSc modules deal with index sets, including per-
mutations, for indexing into vectors, renumbering, vectors, matrices, managing
interactions between mesh data structures and vectors and matrices, nonlin-
ear solvers and time steppers for solving time-dependent (nonlinear) partial
differential equations including support for differential algebraic equations.
Each consists of an abstract interface and one or more implementations using
particular data structures. Thus, PETSc provides clean and effective codes for
the various phases of solving partial differential equations, with a uniform
approach for each class of problems. This design enables easy comparison
and use of different algorithms. Hence, PETSc provides a rich environment
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for modelling scientific applications as well as for rapid algorithm design
and prototyping. The libraries enable easy customization and extension of
both algorithms and implementations. This approach promotes code reuse
and flexibility and separates the issues of parallelism from the choice of algo-
rithms. The PETSc infrastructure creates a foundation for building large-scale
applications.

3.4.4 Mesh partitioning library

The methods providing effective partitioning are discussed in this paragraph.
The mesh partitioning is itself a complex problem. Graph partitioning is
effective with using traditional [1], [27] finite element simulations, due, in
part, to high-quality serial and parallel graph partitioners. The available serial
partitioners include Chaco [24], Jostle [35], METIS [20], Party [33] and Scotch
[32]. The parallel graph partitioners include ParMETIS [19] and PJostle [35].
In this thesis, the ParMETIS library is used. The ParMETIS library is an MPI-
based parallel library that implements a variety of algorithms for partitioning
graphs, meshes, and for computing fill-orderings of sparse matrices. ParMETIS
extends the functionality provided by METIS and includes routines that
are especially suited for parallel computations and large scale numerical
simulations. The library provides parallel load balancing and rebalancing
algorithms for general unstructured graphs and meshes, based on the parallel
multilevel k-way graph partitioning.
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INTRODUCTION TO THE FINITE ELEMENT METHOD
(FEM)

4.1 FEM EQUATIONS

The Finite Element Method (FEM) has become a widely used tool for solving
problems described by partial differential equations and been widely adopted
by engineering and scientific communities as a reliable numerical tool. In
mathematics, the FEM is a numerical method for finding a solution to bound-
ary value problems for an ordinary differential equation (ODE) or a partial
differential equation (PDE). In the FEM, differential equations are converted
into an algebraic system of equations by using variational methods aided by
decomposition of the problem domain into sub-domains called elements and
an appropriate choice of interpolation functions.

To illustrate, consider the one-dimensional elastic problem shown in Fig-
ure 4.1, where a one-dimensional bar occupying body Q = (0, L) with bound-
ary I' = 0, L. The bar is subject to a distributed volume force b,) with pre-
scribed displacement at I'*(x = 0). The bar is characterized by length L, elastic
module E and its cross-sectional area A.
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Figure 4.1: One-dimensional elastic problem member.

Displacement is denoted by u(x) and deformation as ¢(x), where (x € Q).
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Figure 4.2: Deformation of bar.

From the kinematic considerations, the deformation is given as (see Fig-
ure 4.2):

AX—Ax . Ax+u(x+Ax) —u(x) —A(x)  du(x)
A0 Ax AS0 A(x) = o @Y

In the given problem, essential or kinematic boundary conditions are u(x) =
i(x) for (x € Ty).

B(x+Ax)

Figure 4.3: Equilibrium condition for infinitesimal element.

The equilibrium condition inside body () (for x € ()) shown in Figure 4.3 is

—: —0(x)A(x) + b(x + %)Ax +o(x+Ax)A(x+ Ax) =0

lim o(x+Ax)A(x + Ax) — o(x)A(x) Fb(x + Ax
dx—0 Ax 2

2 (o) A@) +b(x) = 0

) =0

(4.2)

Hooke’s law is assumed relating the stress and strain inside the body (for
x € Q) has the form o(x) = E(x)e(x). After substituting are e(x) and o(x)
from equations 4.1 and 4.2, we obtain the following differential equation.
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e(x) = 20 () o) =
du(x) d du(x)

E(x) Ix (X)%E(E(X) 10 (x)A(x)) +b(x) =0
(4-3)

The boundary conditions for differential equation 4.3 are either kinematic
boundary conditions (u(x) = i(x) for (x € T)) or static boundary conditions
(cn =t for (x € I')). The weak form can be obtained using the weighted
residual method.

d du
20 G (B AR) T () + b(x) dx =0 44

where Ju is test function satisfying homogeneous kinematic boundary
conditions and du(x) is sufficiently integrable, where is du(x) = 0 for (x € T*)
and its called weight function. Such displacement u(x) is called a weak
solution.

Next, we integrate by parts.

du déu du
/réu(s)EA(s)an(s)ds— L (EA() T (x dx+/(5u (x)dx = 0

(4.5)

The approach to solving this problem is based on finding u(x) that is
sufficiently integrable and satisfies u(x) = i (x) for (x € Q").

d(Su( JEA dx— (Su
u

+/ ou(x )Zx( Yn(x)dx Ft(Su(X)F(X)A(X)E(x)n(dex

LS

(4.6)

Sufficiently integrable with u(x) = du(x) satisfying for Véu(x); éu(x) =0 €
ru.

For a solution, we need to decompose structure () into n elements ().

Local approximation of displacement is u|q, () ~ u®(x) = N°(x)r’, where
r° is the column matrix of nodal displacements, satisfying u‘(x) = ii(x)
for (x € I'*) < r}, = #(x). Similarly, approximation of weight functions is
ouq,(x) = ou’(x) = N°(x)w’, whereis wj, = 0 for (x € I'y). From equation 4.6,
the left-hand side term can be evaluated.

déu chu du
QE( X)EA d — 2/ )dxdx (47)
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4.1 FEM EQUATIONS

The derivatives can be expressed as

u(x) = N°(x)r* = du;(cx) dl\;}g )r = B°(x)r° (4-8)

déu® dN°®
out(x) = N¢(x)w® = (Szx(x) = I\Zng)we = B°(x)w’ (4-9)

The left-hand side of 4.6 can be written as

[ S B S = [ (B () TEA () B (x)rd

= /QeweTBET(x)EA(x)Be(x)redx

= T (/QL)BET(x)EA(x)Be(x)dx> re

J/

KE
(4.10)
The right-hand side of 4.6 can be written as
/ Su(x)b(x)dx + [ 6u(x)kdx
Tt
~/ (N®(x)w)Th(x dx+/ (N®(x)w®) TEdx =
w”( NeT (x)b(x)dx + N”(x)fdx)
N Q(:’ 7 \rt >
fa It
(4.11)

By substituting equations 4.10 and 4.11 into equation 4.6, we finally obtain

n n n
ZweTKe e _ ZweTf(e) — ZweTfe (4'12)
e=1 e=1 e=1

Alternatively, the same discrete system can be obtained by means of a defor-
mation method. The solution consists in expressing nodal forces vector F¢(x)
as dependent on nodal displacements u°(x). The equilibrium conditions relat-
ing internal and nodal (end) forces read: conditions of equilibrium between
internal forces and nodal forces (F{, F;) : Ff = —c A, Fj = 0 A; By substituting
the material relation (Hooke law) and expressing the deformation as relative
elongation of the bar we can end up with 0 = Ee = EAZI =E ué_uﬁ. The end
forces (F¢,F5) are Ff = —cA = EA(uéus), B = v A = EA (usu$).
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4.2 LEFT AND RIGHT HAND SIDE ASSEMBLY IN FEM

The normal form of equilibrium equations is:
Fi| _ |k —k . u§ K — EA
F ~k K u§ !

F¢ = K x 1

In matrix notation:

Provided u§ = uj, there will be no internal forces and Ff = F; = 0. The
stiffness matrix is symmetric and singular. The global stiffness matrix and load
vector is obtained by assembling the contributions from individual elements.

4.2 LEFT AND RIGHT HAND SIDE ASSEMBLY IN FEM

As demonstrated in previous section, the application of FEM leads to a discrete

set of algebraic equations, corresponding to equilibrium equations in nodes.

The global stiffness matrix and load vectors are obtained from a local element
contributions by means of assembly process. The assembly process relies on
the global numbering of discrete equilibrium equations and yields so-called
code-numbers assigned to nodes (identifying equilibrium equations assembled
in the given node) and elements (identifying equilibrium equation into which
the element end-forces contribute). Typical serial implementation of sparse
matrix assembly and the force vector involves loop over elements. Inside this
loop, individual element matrices and vectors are evaluated and assembled
into a global matrix and global vector. Mapping between an element’s local
degrees of freedom and corresponding global degrees of freedom is described
with code numbers. The individual values in element matrices are added to
the corresponding global matrix entry, whose row and column indices are
determined using element code numbers. Assembling the global vector is
similar to assembling the global matrix, the only difference being global vector
entry, where only the row indices are determined using the element code
numbers.

The typical serial algorithm for vector assembly is as follows in Algorithm 1

Algorithm 1 : Prototype code — Assembly of the element part of the load

vector
001 for elem = 1,nelem
002 F¢ = computeElementVecto(elem)

003 Loc® = giveElementCodeNubmer(elem)
004 for i =1, Size(Loc®)
005 F(Loc(i))+ = Fe(i)

The typical serial algorithm for matrix assembly is similar to the algorithm
for vector assembly (Algorithm 2).

The assembling process of discrete equilibrium equations as a parallel
algorithm for matrix assembly is shown in Figure 4.4.
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4.2 LEFT AND RIGHT HAND SIDE ASSEMBLY IN FEM

Algorithm 2 : Prototype code — Assembly of stiffness matrix
001 for elem = 1,nelem
002 K¢ = computeElement Matrix(elem)
003 Loc® = giveElementCodeNubmer (elem)
004 for i =1, Size(Loc®)
005 for j = 1, Size(Loc®))
006 K(Loc® (i), Loc®(j))+ = K°(i, f)
f1 A
Thread 1 |
0 0fO
Q 1 110
2 2|0
3 310
4 4o
5 5 O

NOoO A WON 2O

Figure 4.4: Parallel algorithm for Stiffness Matrix assembly.

As already mentioned, assembly operations are one of the typical steps in
finite element analysis. In order to obtain a scalable algorithm, all the steps
have to be parallelized, including the assembly stage, which can be costly.
Especially when solving nonlinear problems, evaluating individual element
contributions (tangent stiffness matrix, internal force vector) can be compu-
tationally demanding and must be performed for each load increment step
and iteration (updating the stiffness matrix depends on a solution algorithm).
The parallelization of assembly operations consists generally in splitting the
assembly loop over elements into disjoint subsets, which are processed by
individual processing threads. Within each thread and for each element in the
corresponding subset, the contribution of individual elements is evaluated
(this part can be evaluated concurrently), followed by an update of the global
matrix/vector value. The key problem is that this step cannot be performed
concurrently, as multiple threads may update the same global entry at the
same time. It is therefore necessary to make sure the same global entry is
not updated at the same time by multiple threads. This is known as a race
condition. To prevent a race condition on the update, various techniques can
be used. They typically involve using different locking primitives to make
sure that either (i) the code performing the update can only be executed by
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4.3 SOLUTION OF LARGE SPARSE SYSTEMS OF EQUATIONS IN THE FEM

a single thread, (ii) the specific memory location can only be updated by a
single thread, or (iii) to order the evaluation of element contributions in such
a manner that the conflict does not occur.

4.3 SOLUTION OF LARGE SPARSE SYSTEMS OF EQUATIONS IN THE FEM

The section introduces the numerical solution of large, sparse, non-symmetric
systems of linear equations that can be a part of any finite element software.
Also, the differences between linear and nonlinear model solutions are high-
lighted and an introduction to the solution process is given. In the FEM,
differential equations are converted into an algebraic system of equations by
using variational methods aided by the decomposition of the problem domain
into sub-domains called elements and an appropriate choice of interpolation
functions.

4.3.1 Linear models

In a case of linear problem, the discretization leads directly into the set of
linear equations

Kxr=F (413)

One of the key features of the FEM is that the stiffness matrix is typically a
positive definite symmetric matrix with a sparse structure. A system of linear
equations is called sparse only if a relatively small number of stiffness matrix
values are non-zero. An efficient algorithm for solving a linear system must
exploit the symmetry and sparse structure by saving considerable memory
and CPU resources. Several different storage schemes exist for sparse matrices.
The problem concerns solving equation 4.13, where r and F are vectors, K is a
sparse matrix, and storage of a dense matrix of K’s size would be prohibitively
expensive. Several different libraries are available that solve a sparse linear
system of equations.

4.3.2  Nonlinear models

Numerical solutions of many engineering problems lead to the solution of
nonlinear models consisting of very complex geometries and many degrees of
freedom. Nonlinear problems add complexity. In the nonlinear static case, the
error depends on time discretization in history dependent problems, and a
part of the error is accumulated in solutions based on an incremental, iterative
approach. In structural mechanics, non-linearity can originate from nonlinear
geometrical relationships (large deformations), non-linearity of constitutive
relationships and from non-linear boundary condition (e.g. follower type of
loading). Nonlinear problems are solved incrementally, typically using the
Newton-Raphson algorithm. This makes the nonlinear problem solution more
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demanding than linear problems. A schema of common processes for iteration
processes is shown in Figure 4.5.

begin
increment

4)

R=foq - fi (r+41)
r=r+Ar

tolerance = || R ||

problem is solved
with required
tolerance?

yes

end
increment

Figure 4.5: Iteration process.

The equilibrium path concept explains the solution process of nonlinear
structural analysis. This concept can be graphically represented as response
diagrams. The form that is used in this thesis is a load-deflection response
diagram. The mechanical behaviour of structures can be characterized by
load-deflection or force-displacement response. This response is represented
in two dimensions as a representative force quantity f against a representative
displacement quantity d, as illustrated in Figure 4.6.

The term path is a continuous curve in a load deflection diagram, and
typically the path is smooth. A smooth path has a continuous tangent, except
at exceptional points. The state or configuration of the structure represents
each point along the path. The equilibrium path represents configurations in
a static equilibrium. Commencement of the response diagram (load is equal
to zero, displacement is equal to zero) is characterized by the reference state,
this state representing the configuration from which loads and displacements
are measured.

In this thesis, material non-linearity is considered as the only source of
nonlinear behaviour. Material behaviour depends on the current deformation
state and possibly the past history of deformation. Other constitutive variables
such as pre-stress, temperature, time, etc. may be involved. The problem
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representing discrete equilibrium equations at nodes is described by a system
of nonlinear algebraic equations

i1 (1) = feyt, (4.14)

where f;,; is the internal forces vector depending on unknown displacements
r, and f.,; is the external load. The problem can be linearized using a Taylor
series expansion of f;;,;(r). The internal force vector represents nodal equivalent
of internal stresses and is defined as

£,,() = Blo(e())dV, (4.15)

where B is the strain-displacement matrix, ¢ is stress vector, and ¢ is strain
vector. The Taylor Series expansion of f;,;(r) around the point (¥) is given by

afint(r)
or

fint (7) + Ar = foyt, (4.16)

afim.‘ (1‘)

where =4~ represents the tangential stiffness matrix K of the structure.
After substitution, equation 4.14 has the form

KAr = £, — fint(f)r (4-17)

Newton’s method is commonly used to iteratively solve nonlinear systems.
Typically, load increment is applied, and the incremental displacement is
solved from a linearized, discrete problem. The residual loading is evalu-
ated from the difference of external and internal forces corresponding to
achieved displacement, the structure is loaded by residual loading and cor-
responding incremental change of displacement is evaluated. This iterative
process is repeated until the required tolerance is achieved. In this contri-
bution, different variants of the Newton-Raphson method, the modified
Newton-Raphson method and the initial stiffness method were considered.
The full Newton-Raphson method is based on using the tangent stiffness
matrix in each iteration that is formed and only when the direct solver is used
in each iteration. The advantage of this method is fast convergence, but it can
be computationally expensive for some types of problems.

The modified Newton—-Raphson method has the same algorithm, but the
stiffness matrix is only updated after a certain number of iterations or at the
beginning of each loading step. This approach can be computationally less
expensive, as the stiffness matrix should be factorized only when changed. This
solution process has a slower convergence rate than the full Newton-Raphson
method, however.

The initial stiffness method uses an initial, elastic stiffness matrix constructed
only once and is kept constant throughout the solution process. This method
is robust but requires a large number of iterations to converge. The optimal

27



4.3 SOLUTION OF LARGE SPARSE SYSTEMS OF EQUATIONS IN THE FEM

W)

ext

prescribed load
increment )/ AT — -7 ———————

RN s T

|

|

|

|

|

|

}

| I unknown
| | displacement
|

|

)

|

|

|

|

|

|

|

L

Ar Ars | increment

|
1

|
o —r,
asi > oo !

o r r, r{ r, r

Figure 4.6: Newton-Raphson method.
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Figure 4.7: Modified Newton-Raphson method.

choice is problem dependent. The iterative solver essentially has the same
solution cost for each problem, while a direct solver can profit from existing
factorization of the system matrix if there is no change (an iterative solver
can also profit, as no pre-conditioner setup is needed), but the effect is not in
common with profit from the existing factorization of the system matrix.
The solution process in many cases leads to nonlinear models of complicated
geometries and many degrees of freedom. Correctly obtained results directly
depend on many attributes, such as discretization, material parameters, equa-
tion system solvers, etc. Finite element analysis is based on calculating in
the most economical way the solution of the governing partial differential
equations with a uniformly distributed error that does not exceed a prescribed
threshold. This is achieved by improving discretization in areas where the
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Figure 4.8: Initial stiffness method.

finite element solution is not adequate. It is therefore essential to assess the
quality of the approximate solution and be able to enrich discretization.

4.4 INTRODUCTION TO FINITE ELEMENT LOAD BALANCING.

The section examines the solutions of large scale engineering problems by
using parallel computation based on a parallel load-balancing framework.
This framework can significantly reduce computational time by using avail-
able hardware more efficiently. This section presents tune up processes for a
parallel load-balancing framework as a part of the solution process in finite
element software. Performance of parallel FEM solver depends on domain
decomposition. Adapting the decomposition can help to improve the perfor-
mance significantly, particularly for problems where load is changing. The
algorithmic and implementation aspects are discussed. The upgrade approach
consists in proposing new technique to evaluate processor weights, which are
the input parameters for domain decomposition.

The load-balancing process is driven not only by emerging applications but
also by emerging parallel architectures. These parallel architectures span many
scales. For example, clusters have become viable alternatives to tightly coupled
parallel computers in small scale systems. On the medium scale, supercom-
puters are constructed as networks of shared memory multiprocessors (SMPs)
and have complex and non-homogeneous interconnection topologies. Finally,
on the largest scale, grid technologies have enabled computations on widely
distributed systems, combining distributed clusters and supercomputers into
a single computational resource. These grids are a source of extreme computa-
tional power and high network heterogeneity. In order to effectively distribute
data from any program on such systems, partitioning must account for het-
erogeneity in the solution environment. Load balancing requires grouping
of computing environment information (e.g. computing speed, memory and
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network availability) and determining how to apply this information in the
load-balancing process (e.g. adjusting computational domain sizes, selecting
partitioning algorithms).

The capabilities and performance of the load-balancing framework’s depend
on its parameters, hardware performance and are illustrated on the solution of
selected engineering problems. The advantages of implementing this approach
are discussed in this section.

4.4.1 Introduction and overall design of FEM code

The main goal of parallel algorithms is partitioning the problem into a set
of smaller tasks that can be solved simultaneously. The problem can be par-
titioned before the solution process, which represents static load balancing.
When the problem is partitioned during the solution, it represents dynamic
load balancing [26]. Scalability of the solution process is the most important
aim in parallel computation.

Ideal scalability is difficult to obtain because of the overhead cost of the
parallel algorithm (synchronization and communication) and because some
parts of the problem are essentially sequential. A more effective load balanc-
ing process that redistributes the work to individual computing units and
contributes to optimal scalability is needed nonetheless.

The models are often solved on complex domains leading to many degrees
of freedom and often nonlinear effects have to be taken into account. Parallel
algorithms should account for load imbalance between particular sub-domains.
The imbalance can occur due to several reasons: (i) first load imbalance factor
is part of the character of the solution process, as if switching from a linear
to nonlinear response in some regions, (ii) second load imbalance factor is
an external factor concerning resource relocation, typical in cases when a
solution process is run in cluster environments where the available individual
computing units are shared by other processes owned by the system or users
and lead to changes in allocating processing power. The imbalance is detected
in the solution process by monitoring processes during the run time of the
process. The decision depends on the amount of load imbalance and the cost
of load redistribution. Redistributing the work leads to serializing the problem
data (elements, nodes, boundary conditions) into messages sent over the
network and a receiving process based on unpacking, followed by a topology
update reflecting the new work distribution.

The idea of parallelization strategy is based on the domain decomposition
paradigm. In general, two dual partitioning techniques for the parallel distri-
bution of finite element codes exist, node-cut and element-cut strategy [28].
In this thesis, the node-cut strategy, dividing cut dividing the problem mesh
into partitions is given in the node-cut technique. The node-cut strategy is
presented in chapter 6.1.

Partitioning based on the load balancing process can be affected by many
factors. Ideally, no processor during the parallel solving process should be
waiting for another processor to complete the solution. The elements as a
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Figure 4.9: General structure of OOFEM.

member of the computational mesh are directly connected to the computa-
tional work. The total computational work is determined as the sum of the
contribution of individual elements. The computational work of individual
element is expressed relatively to computational work of reference element.
The load balancing process is based on distributing the overall computational
work to an individual processor group with respect to its relative performance.
Another significant factor concerns minimizing and reducing communication
between computational partitions. The assembly of equilibrium equations
for shared nodes requires to sum up contributions from local as well as re-
mote partitions. The cost of accessing remote memory is much higher than
the cost of accessing the local memory. It is therefore important to reduce
communication between computational partitions.

The present contribution examines the design of an object-oriented frame-
work for static and dynamic load balancing implemented in OOFEM code.
The general structure of the OOFEM using the Unified Modeling Language
(UML) is presented in Figure 4.9. In the UML diagram, classes are represented
by rectangles. Lines with triangles represent the generalization relationship
(inheritance) and point to the parent class. Lines with diamonds represent a
whole or partial relationship and point to the "whole" class processing the
"partial” class. Association is represented by a solid line drawn between classes
in the UML.

The ongoing problem is represented by a class illative from the EngngmModel
class. Assembling the governing equation and using the numerical method
(represented by a class derived from the "NumericalMethod" class) to solve the
system of equations is the main task of the EngngmModel class. The Domain
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class represents the discretization of the problem domain, which maintains
the set of objects representing nodes (Do f Manager class and Node class), ele-
ments (Element class), material models (Material class), boundary conditions,
etc. The Domain class is an attribute of the EngngModel class. In general,
the Domain class provides services for accessing particular components. In
nonlinear structural analysis, the EngngModel class assembles the governing
equations for each step of the solution by summing up the contributions from
the domain components. For convenience, the implementation of vectors and
sparse matrices is provided by corresponding classes. The modular design
allows the problem formulation and the numerical solution and sparse storage
to be disconnected; they are thus independent of each other.

The DOF class represents a single degree of freedom (DOF). It maintains its
physical meaning, the associated equation number, and keeps a reference to
the applied boundary and initial conditions. The Do f Manager class represents
an origin class for entries processing some DOFs. The list of applied loading,
and optionally its local coordinate system, is stored in a DOF collection. The
Do f Manager class services include methods for gathering localization num-
bers from the main DOFs, the solution of the applied load vector, and the
solution of the transformation into a local coordinate system. The representa-
tion of a finite element node or an element side owning some DOFs is typical
examples of derived classes. Initial and boundary conditions are represented
by the corresponding classes. The particular boundary conditions that can be
applied to DOFs (primary boundary conditions), DOF managers (typically
nodal load) or elements (Newton or Neumann boundary conditions, surface
loads, etc.) are the derived classes from the BoundaryCondition class.

Declaring a general interface defined by a set of services is the primary
role of these core classes. Some services from the interface can already be
implemented by core classes, or implementation can be left to derived classes
(so-called virtual methods). Any derived class therefore has to implement
interfaces defined by its parent classes (polymorphism). An important con-
sequence of the abstract interface concept is that all derived classes can be
handled in the same manner without distinguishing a particular type of object.
Some general services can also already be implemented at the parent level by
using virtual interface services implemented by derived classes. A detailed
description of OOFEM code design can be found in [30].
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PARALLELIZATION OF LEFT AND RIGHT HAND SIDE
ASSEMBLY OPERATIONS

This chapter deals with evaluation of different parallelization strategies of
assembly operations for right-hand side vectors and left-hand system matrices,
which are one of the critical operations in any finite element software. The
global stiffness matrix K and global load vector F are assembled from the
individual element and nodal contributions. This process relies on the global
numbering of equations. In the case of global vector/matrix assembly, the con-
tributions of individual elements are assembled (added) to the positions in the
global load vector according to the global equation numbers of element nodal
unknowns. Different assembly strategies for systems with shared memory
model are proposed and evaluated, using Open Multi-Processing (OpenMP),
Portable Operating System Interface (POSIX), and C++11 Threads. The different
frameworks and synchronization techniques are evaluated, involving simple
synchronization directives, various block locking algorithms, and finally, in-
telligent lock-free processing based on colouring algorithms. The different
strategies were implemented in a free finite element code with object-oriented
architecture (OOFEM).

The existing approaches of assembling have been presented, for example in
papers [25], [4], [21]. In [25] the approach is based on OpenMP critical sections
and OpenMP atomic directives. The methods reduction on shared memory
model represented as OpenMP private clause, OpenMP reduction clause and
OpenMP atomic directives are used in paper [4]. In [21], authors illustrated
the case where the operation assembles an element contribution into a local
matrix which eater assembles into the global matrix using graph colouring
as a synchronization multithreaded data operations which is OpenMP non-
blocking parallel algorithm (without OpenMP explicit synchronization).

5.1 OPENMP

OpenMP is a shared memory programming model that supports multi-
platform shared memory multiprocessing programming in C, C++ and Fortran
programming languages. It is available for a wide variety of processor architec-
tures and operating systems. It consists of a set of compiler directives, library
routines and environment variables that influence run-time behaviour (see [3]
for details).

The programming in OpenMP consists in using so called parallel constructs
(compiler directives), which are inserted in the source code, instructing the
compiler to generate specific code. The OpenMP defines various constructs
allowing to parallelize serial code and synchronize the individual threads [29].
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The OpenMP parallel construct allows to create a team of threads each
executing the same code. This construct is often combined with for construct
to split underling loop into non-overlapping portions executed by individual
members of thread team. The programmer can adjust certain parameters that
affect the work assignment (static or dynamic), and the scope of variables
inside the loop (local or shared). That thread synchronization is still necessary
to prevent race condition on global vector/matrix value update.

To reduce granularity of the problem and reduce overhead connected to
thread creation and termination, it is usual to parallelize the outermost loops
in the algorithm, which in our particular case corresponds to parallelization
of the loop over individual elements in the assembly operation.

5.1.1 Synchronization using Critical Section, Atomic Update, Simple Lock, Nested
Lock

In this subsection, we start with simple solution preventing occurrence of race
conditions during data update based on the critical section, atomic update, simple
lock, and nested lock constructs. They are quire similar, the critical construct
restricts the execution of the associated statement/block to a single thread
at time. Lock can be acquired by a thread. While thread owns the lock, no
other thread can get it. This essentially allows to execute specific part of the
code by the thread possessing the lock. Once this part of the code is finished,
the thread has to release the lock to allow an other thread to acquire the lock.
Nested locks are similar to locks, but they can be locked multiple times by the
same thread before being unlocked.

The synchronization with using critical section is implemented in two vari-
ants. In the first variant (marked as A1) the inner loop over element code
numbers is enclosed using critical section, the second variant considers only
enclosing the actual update operation (A2). The next variant considers only
enclosing the actual update operation using atomic update (A3), see Algo-
rithm 3).

The similar approach is followed to synchronize threads using locks. The
lock is used to ensure that either single thread can process loop over element
code numbers (A1.1 or A1.2 using nested lock) or process update operation
(A2.1), see Algorithm 4.

Algorithmus 3 : Prototype code - matrix assembly with explicit synchro-

nization

001 # pragma omp parallel for private(K®, Loc®)
002 for elem = 1,nelem

003 K¢ = computeElement Matrix(elem)
004 Loc® = giveElementCodeNumber(elem)
005 # pragma omp critical (A1)

006 for i = 1, Size(Loc®)

007 for j =1, Size(Loc®)

008 # pragma omp critical (A2)
009 # pragma omp atomic (A3)

010 K(Loc® (i), Loc®(j))+ = K°(i, f)
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Algorithm 4 : Prototype code — matrix assembly with explicit locks.

001 omp_init_lock(&my_lock) (Al.1) (A1.2)

002 omp_init_nest_lock(&my_lock) (A2.1) (A2.2)
003 # pragma omp parallel for private(K*, Loc®)
004 for elem = 1,nelem

005 K¢ = computeElement Matrix(elem)

006 Loc® = giveElementCodeNumber (elem)

007 omp_set_lock(&my_lock) (A1.1)

008 omp_set_nest_lock(&my_lock) (A2.1)

009 fori =1, Size(Loc®)

010 for j =1, Size(Loc®)

011 omp_set_lock(&my_lock) (A1.2)
012 K(Loc® (i), Loc®(j))+ = K°(i, f)
013 omp_unset_lock(&my_lock) (A1.2)

014 omp_unset_lock(&my_lock) (A1.1)

015 omp_unset_nest_lock(&my_lock) (A2.1)
016 omp_destroy_lock(&my_lock) (A1.1) (A1.2)
017 omp_destroy_nest_lock(&my_lock) (A2.1)

The approach followed in this section is rather conservative, ensuring that
only a single thread can perform any update operation. In reality, the race
condition on data update can happen only if two or more threads are attempt-
ing to update the same entry in global vector/matrix. This essentially means
that these threads are assembling contributions of elements sharing the same
node(s). The probability of this can be relatively low, so in next sections we
try to propose improved algorithms, that allow to perform update operation
in parallel provided that different entries of global vector/matrix are updated.

5.1.2  Synchronization using block locks

The algorithm presented in this section is based on idea of having an array of
locks, each corresponding to consecutive block of values of in global vector/-
matrix. Once a specific global value is to be updated by specific thread, the
corresponding lock is acquired, preventing other threads to update values in
the same block, but allowing other threads to update values in other blocks. It
may seem, that the ideal situation is to have unique lock for every global value,
but as the global vector/matrices are the dominant data structures (in terms
of memory requirements) in a typical FE code, this approach is not feasible. In
the presented approach, the individual groups correspond to blocks of rows
of global vector/matrix values and the prototype implementation is presented
in Algorithm 5.

5.2 POSIX THREADS

The POSIX Threads (Pthreads) libraries are standardized thread programming
interfaces for C/C++ language. Pthreads allows one to spawn a new concurrent
processes. Pthreads consists of a set of C/C++ language types and procedure
calls, see [2] for further details).

The original POSIX Threads application programming interface (API) sub-
routines can be informally divided into four main groups: Thread manage-
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Algorithm 5 : Prototype code — matrix assembly with explicit block locks.

001 # define NBLOCKS

002 omp_init_t &my_lock [NBLOCKS]

003 forn =1, NBLOCKS

004 omp_init_lock(&my_lock [n])

005 blocksize = Size(K.rows)/NBLOCKS

006 # pragma omp parallel for private(K®, Loc®)
007 for elem = 1,nelem

008 K¢ = computeElement Matrix(elem)

009 Loc® = giveElementCodeNumber (elem)

010 fori =1, Size(Loc®)

011 bl = Loc®(i)/blocsize / /integer division
012 for j =1, Size(Loc®)

013 omp_set_lock(&my_lock [bI])

014 K(Loc®(i), Loc®(j))+ = K°(i, f)
015 omp_unset_lock(&my_lock [bI])

016 omp_destroy_lock(&my_lock [bI])

ment, Mutexes, Condition variables, and Synchronization. Routines being part
of Thread management allow to create, detach, and joining threads. Constructs
allowing to protect code from race conditions are called mutexes ("mutual ex-
clusion"). The Mutex group consists of functions for creating, destroying,
locking, and unlocking mutexes. Routines allowing communications between
threads that share a mutex are part of Condition variables group, which
includes functions to create, destroy, wait, and signal based upon specified
values. Synchronization group provides routines that can manage read /write
lock and barriers.

5.2.1 Synchronization using Simple Mutex and Recursive Mutex

The POSIX Threads synchronization routines allow to protect shared data
when multiple threads update the data. The concept is very similar to locks in
OpenMP library. In POSIX Threads, only single thread can lock mutex variable
at any given time. In the case where several threads try to lock mutex only
one thread will be successful. No other thread can own that mutex until the
owning thread unlocks that mutex. The simple mutex can be used only once
by a single thread. Attempting to relock the mutex (trying to lock mutex after
previous lock) causes deadlock. If a thread attempts to unlock a simple mutex
that it has not locked leads to undefined behaviour. The recursive mutex shall
maintain the concept of a lock count. When a computing thread successfully
acquires recursive mutex for the first time, the lock count shall be set to
one. Each time the thread unlocks the recursive mutex, the lock count shall
be decremented by one. When the lock count reaches to zero, the recursive
mutex shall become available for other threads to acquire. In this section, the
prototype algorithms are presented using simple and recursive mutexes to
prevent race condition on data update. Three variants are considered, the
first marked as (B1.1) using simple mutex to protect localization loop over
code numbers, the second, marked as (Bz.1) using recursive mutex again
protecting the localization loop, and finally the one protecting just update
operation using simple mutex, marked as (B1.2). All variants are illustrated in
Algorithm 6.
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5.3 SYNCHRONIZATION USING A COLOURING ALGORITHM

Algorithm 6 : Prototype code — matrix assembly with explicit synchroniza-
tion using simple and recursive POSIX mutexes.

001 pthread_mutex_tmutex_SIM = PTHREAD_MUTEX_INITIALIZER (B1.1) (B1.2)

002 pthread_mutex_t mutex_REC (B2.1) (B2.2)

003 pthread_mutexattr_t REC (B2.1) (B2.2)

004 int pthread_mutex_tmutexattr_setrecursive (pthread_mutexattr_t REC, int recursive) (B2.1) (B2.2)
005 threads = new pthread _t{MAX_THREAD]

006 fori =0, MAX_ THREAD

007  pthread_create( &threads[i], NULL, Assembly Element Matrix, i)

008 fori =0, MAX_THREAD

009 pthread_join( &threads|i], NULL)

010 end

011 woid Assembly Element Matrix ( ...)

012  for elem = 1,nelem

013  K® = compute Element Matrix (elem)

014  Loc® = give Element Code Numbers (elem)
015  pthread_mutex_lock(&mutex_SIM) (B1.1)
016  pthread_mutex_lock(&mutex_REC) (B2.1)
017 pthread_mutex_lock(&mutex_SIM) (B1.2)

018 for i =1,Size(Loc®)
019 for j =1, Size(Loc®)
020 K(Loc® (i), Loc*(j))+ = K°(i, f)

021 pthread_mutex_unlock(&mutex_SIM) (B1.2)
022 pthread_mutex_unlock(&mutex_SIM) (B1.1)
023 pthread_mutex_unlock(&mutex_REC) (B2.1)
024 return

5.3 SYNCHRONIZATION USING A COLOURING ALGORITHM

As already discussed in previous sections, the conservative strategy on always
protecting the update operation may not lead to optimal results. It enforces the
serial execution of the update operation for selected values, regardless if there
is a real conflict or not. The fact that it prevents parallel execution can have
significant impact on scalability. Partially, this problem has been addressed
in the algorithm using array of locks preventing the update to block of row
values. In this section, we present an alternative approach which is based on
idea of assigning the individual elements into groups, where the elements in a
group should not share any node. This essentially means that the elements in
a group can be processed concurrently as during the assembly operation only
distinct values can be updated. The algorithm loops over the groups and each
group is processed in parallel. The objective is to keep the number of groups

minimal. This is known as so-called colouring algorithm in graph theory [37].
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5.3 SYNCHRONIZATION USING A COLOURING ALGORITHM

In this paragraph the introduction to the vertex colouring algorithm will
be given. Consider a graph of n mutually connected vertices (representing FE
elements). The edges (connections) represent the element connectivity, i.e, the
edge between two vertices represents a case, when two elements share the
same node. The task is to assign a "color" to each vertex under the condition

that no neighbor has the same color and keep the number of "colors" minimal.

The algorithm for greedy colouring of a graph is following:
1. - Loop over the verticesi =1, N

2. - Find the colors assigned to neighbors for i
C= Uneighboursofif(l)

3. - Find the lowest (available) color and assign it to node i:
- loop over available colors
- if color not in C than f(1) = color

The computational cost of the solution of Greedy colouring algorithm depends
heavily on the vertex ordering. In the worst case the behaviour is poor and
solution of algorithm can take a lot of computation time. On the other hand,
the graph construction and graph colouring has to be performed only once
during the FE code initialization and after that it should be reused in any
assembly operation. As already noted, the colouring algorithm splits the
elements into groups marked with different colours. The algorithm ensures
that a minimum number of colours is used. Once the colouring is available, the
assembly algorithm consists of the outer loop over individual colour groups
and inner loop over individual elements in a group. Inside inner loop, the
element contributions are evaluated and assembled into global vector/matrix.
Now the key is that the inner loop can be parallelized (individual members of a
group can be processed by different threads) without need of synchronization,
as the colouring ensures that the race condition on update could not occur.

Even though this is appealing, the algorithm has its overhead. This includes
already discussed need to establish the colouring, but as also pointed out
only the inner loop can be parallelized. All threads should finish processing
elements with specific colour before processing elements from the next one,
This requires synchronization. Finally, there is also an overhead connected to
creation and termination of threads for each colour.

The prototype code for colouring assembly is presented in Algorithm 7
using OpenMP directives. The additional arguments of parallel loop directive
are used to declare some variables as shared (i.e. each thread accesses the
same variable) or private (each thread has its own copy of that variable).
The for-loop clause allows accumulating a shared variable without explicit
synchronization.

The POSIX Threads variant of the colouring based assembly algorithm is
presented in Algorithm 8.



5.4 C++11 THREADS

Algorithm 7 : Prototype code — matrix assembly without explicit synchro-
nization using a Colouring Algorithm (OpenMP).

001 ConnectivityTable  ct = domain — giveConnTab()

002 std :: vector < std :: vector < int >> colourGroup

003 colourGroup = ct — AssembleCol Alg()

004 for colPointer = 0, Size(colourGroup.size())

005 # pragma omp parallel for private(K*, Loc®)

006 for colldElem = 1, Size(colourGroup|col Pointer|.size())
007 elem = colourGroup|col Pointer][col IdElem]

008 K¢ = computeElement Matrix(elem)

009 Loc® = giveElementCodeNumber (elem)

010 for i =1, Size(Loc®)
011 for j =1, Size(Loc®)
012 K(Loc®(i), Loc®(j))+ = K°(i, f)

Algorithm 8 : Prototype code — matrix assembly without explicit synchro-
nization using a Colouring Algorithm (POSIX Threads).

001 ConnectivityTable  ct = domain — giveConnTab()

002 std :: vector < std :: vector < int >> colourGroup

003 colourGroup = ct — AssembleCol Alg()

004 for colPointer = 0, Size(colourGroup.size())

005 threads = new pthread _t{MAX_THREAD)]

006 fori =0, MAX_THREAD

007 pthread_create( &threadsli], NULL, Assembly Element Matrix, i)
008 fori =0, MAX_THREAD

009 pthread_join( &threads[i], NULL)

010 end

011 woid Assembly Element Matrix ( ...)

012 for elem = 1,nelem

013  K°® = compute Element Matrix (elem)

014  Loc® = give Element Code Numbers (elem)

015 for i =1,Size(Loc®)

016 for j =1, Size(Loc®)

017 K(Loc®(i), Loct(j))+ = K°(i,§)

018 for colPointer = 0, Size(colourGroup.size())
019 return

5.4 C++11 THREADS

Alongside well established OpenMP and Posix Threads, the C++11 standart
has introduced native C++ thread support [38]. The C++11 Thread libraries
include utilities for creating, managing threads which are standardized for
C/C++ language. The C++11 standard library contains classes for thread
manipulation and synchronization, common protected data, and low-level
atomic operations.

The parallel program based on C++11 standard library is constructed by
defining a new procedure function which is executed by the thread and start
the new thread. The synchronization in the C++11 standard is achieved by
classical synchronization mechanisms like mutex object, condition variables,
and other mechanisms like locks or controlling features used when threads
are transferring computational data.
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5.5 PERFORMANCE EVALUATION

5.4.1 C++11 Threads - Simple Lock

In this paragraph, the multitasking synchronization using mutex class is
presented. The mutex can be used to protect shared data from being simul-
taneously accessed by multiple threads. The solving thread owns a mutex
from the moment that thread successfully calls either “lock” or “try lock” until
thread calls “unlock”. When a thread owns a mutex, no other threads in the
parallel block will be refused to gain the lock or receive a false return value for
“try lock” call if they attempt to claim ownership of the mutex. The behaviour
of a program is not defined when a mutex is destroyed while still owned by
any thread, or a thread terminates while owning a mutex.

The synchronization is enforced in the localization loop, as illustrated in
Algorithm 9.

Algorithm 9 : Prototype code — matrix assembly with explicit synchroniza-
tion using simple locks (C++11 Threads).

001 std :: mutexMTX

002 threads = new thread _t[Number_Of_Threads)
003 fori =0, Number_Of_Threads

004 std::thread [Assembly Element Matrix, &arg]i] |
005 for i = 0, Number_Of_Threads

006  std.[i],join()

007 end

008 woid Assembly Element Matrix ( ...)

009 for elem = 1,nelem

010  K*® = compute Element Matrix (elem)

011  Loc® = give Element Code Numbers (elem)
012 MTX.lock()

013 for i = 1,Size(Loc®)

014 for j =1, Size(Loc®)

015 K(Loc®(i), Loc®(j))+ = K°(i, })
016 MTX.unlock()

017 return

5.5 PERFORMANCE EVALUATION

In this section, the performances and efficiencies of the presented approaches
are compared both for matrix and vector assembly operations using two
benchmark problems.

The first benchmark problem is 3D model of nuclear containment, marked
as Jete and shown in Figure 5.1. The second benchmark problem is model of
3D porous micro-structure, marked Micro and shown in Figure 5.2.

For both benchmark problems the different discretizations are generated
with increasing number of elements, see Table 5.1. The tetrahedral elements
with linear approximation have been used in a case of nuclear containment
benchmark, while structured grid of brick elements with linear interpolation
were used for micro-structure benchmark. The porous micro-structure consists
of two phases with different set of elastic constants.

In both cases, the linear structural analysis has been performed and struc-
tures were loaded by self-weight, which implied nonzero contribution of
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5.5 PERFORMANCE EVALUATION

Figure 5.1: Benchmark problem of a 3D finite element model of a nuclear containment
dome (Jete).

Figure 5.2: Benchmark problem of a 3D finite element model of a cube of porous
micro-structure (Micro).

every element to the external load vector. The benchmark problems are char-
acterized by different sparsity of the system matrix. The model of porous
micro-structure has significantly more nonzeros members than the model of
nuclear containment. For example, a number of nonzeros members in the
stiffness matrix of the problem is 433M in case of Jete3M, while the model
of the porous micro-structure Micro3M has 1528 M nonzero entries, while
number of unknowns is very similar.

All the presented parallelization approaches have been implemented in
OOFEM finite element code. The object oriented C++ OOFEM code has been
compiled using g++ 4.5.3.1 compiler version with optimalization flags -Oz2.
The tests have been executed on Linux workstation (running Ubuntu 14.04
0S) with two CPUs Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz and 132GB
RAM. Each CPU consists of eight physical and sixteen logical cores, allowing
up to thirty-two threads to run simultaneously on the workstation. All the
tests fit into system memory.

For each benchmark problem, the individual strategies have been executed
on increasing number of processing cores and speedups (with respect to
serial single CPU execution) have been evaluated as an average from three
consecutive runs. The performance of individual strategies of vector assembly
(in terms of achieved speedup versus increasing number of processors) for
Jete250k test are presented in Figure 5.3 and for matrix assembly in Figure 5.4.
Similarly, for the Jete3M test the results are presented in Figures 5.5, 5.6,
for Microzs0k test in Figures 5.7, 5.8 and finally, for the Micro3M test in
Figures 5.9, 5.10. The following notation is used on above mentioned figures
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name nnodes | nelems | neqgs
Jete250k 87k 959k 260k
JetesM 899k 1M 3M
Micro250k | 85k 80k 256k
MicrosM | 1M 970k 3M

Table 5.1: Discretizations of the benchmark problems considered.

name Colouring [s] | matrix [s] | vector [s]
Jete250k 2.6 2.8 1.7
JetesM 436 36.8 20.6
Microz250k | 3.7 3.2 2.0
MicrosM | 509 39.3 221

Table 5.2: Coloring algorithm solution times compared with matrix and vector se-
quential assembly times of the benchmark problems considered.

to distinguish individual parallelization strategies implemented: OpenMP
with critical sections (OMP - CS), OpenMP with simple locks (OMP - L),
OpenMP with nested locks (OMP - NL), OpenMP with critical sections only
in update operation of global matrix/vector (OMP - LCS), OpenMP with
atomic update directive only in update operation of global matrix/vector
(OMP - LATO), OpenMP with simple locks only in update operation of global
matrix/vector (OMP - LL), OpenMP using blocks of simple locks (OMP - Bso,
OMP - Bsoo, OMP - B10s), OpenMP based on colouring (OMP - CP), POSIX
Threads based on colouring (PTH - CP), POSIX Threads with simple mutexes
(PTH - M), POSIX Threads with recursive mutexes (PTH - RM) and finally
C++11 Threads with simple mutexes (THR - M). The execution times for
colouring algorithm as well as times for matrix/vector assembly operations
are presented in Table 5.2. The individual parallel strategies are compared
to serial simple execution (matrix and vector assembly) which represents the
speedup 1 in all presented graphs.

The results for the vector assembly show very similar trend. All the strategies
yield approximately same results in terms of scalability and speedups. From
the results it is evident, that the speedups are far from ideal, for example in
the case of Jete3M test, the speedups for 16 CPUs are in range 2.5-4. There are
several possible reasons why only sub-optimal scalability has been obtained.
The first reason is that the individual tasks are not independent, in many
strategies the update of the global entry is a part that can be processed only by
one thread at a time. Second, there is an additional overhead connected with
the parallel algorithm (thread creation and management, synchronization)
that is not present in the serial version. Third, the individual threads share
the common resources (memory bus), which do not scale in performance
appropriately. Moreover, from the results, one can observe the performance
drop after reaching the limit on 16 threads. This can be attributed to the hyper-
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Figure 5.3: Speedups of the external force vector assembly for benchmark Jete250k.
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Figure 5.4: Speedups of the sparse matrix assembly for benchmark Jete250k.
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Figure 5.5: Speedups of the external force vector assembly for benchmark Jete3 M.
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Figure 5.6: Speedups of the sparse matrix assembly for benchmark Jete3 M.
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Figure 5.7: Speedups of the external force vector assembly for benchmark Microz250k.
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OMP-CS OMP-CP
I refs 1,249,522,199,636 | 1,277,519, 611,096
I1 misses | 71,451,623 110,421,787
LLi misses | 11,619 14,950

Table 5.3: Number of reCache misses of the benchmark problem Jete250k.

threading technology specific to Intel processors [16], which shares some
of CPU resources (execution engine, caches, and bus interface) between the
hyper-threaded cores. This trend is more pronounced on larger tests (Jete3M
and Micro3M). The POSIX threads and C++11 Threads implementations show
better performance than OpenMP versions, particularly for smaller number of
threads.

The results for the sparse matrix assembly show different trends. Some
strategies (OMP-LCS, OMP-LL, OMP-Bso, OMP-Bs00, OMP-B10°) were not
even able to reach the performance of the serial algorithm and speedups are
negative or less than 1. The Colouring based strategies (OMP-CP, PTH-CP)
have similar speedup trend on Jetez250k and Micro3M benchmark problem.
On the other hand, the Colouring based strategy PTH-CP shows clearly bet-
ter scalability than Colouring based strategy OMP-CP on benchmark Jete3 M.
The opposite trend can be observed in Colouring strategies on benchmark
Microz250k (OMP-CP show clearly better scalability than PTH-CP). The im-
plementations based on colouring algorithm do not perform well, which
is somehow surprising observation. This could be (partially) explained by
so-called false sharing. Typical SMP system has local data cache organized
hierarchically in several levels [22]. When the processor needs to read or write
a location in memory, it checks if a corresponding entry is in the cache. If the
memory location is in the cache, so called cache hit has occurred. When the
memory location is not in the cache, a cache miss has occurred and in this
case the data are read or written to the data in the cache. Data is transferred
between memory and cache in blocks of fixed size, called cache lines. The sys-
tem guarantees cache coherence. In case, when one core modifies the memory
location that also resides on the different core cache line then the false sharing
occurs. This is going to invalidate the cache lines on other cores and forcing
to re-read them every time when any other thread has updated the memory
in cache lines. The false sharing seems to have much bigger impact on sparse
matrix assembly performance than on the vector assembly performance. The
false sharing effect in our case is confirmed using valgrind tool with mem-
ory management and threading bugs monitoring. The benchmark problem
Jete250k with using OMP-CS or OMP-CP based on 32 computational threads
is used as a representative example for illustrating false sharing effect and the
outputs from valgrind are presented in Table 5.3. From the reported results,
one can clearly see the significantly increased number of cache misses in case
of colouring algorithm compared to approach using synchronization based on
OpenMP critical sections..
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In [21] the matrix assembly kernels, based on the OpenMP parallel algorithm
with graph colouring was used and achieved speedup 8 for 32 computational
threads is reported. However, the obtained results correspond to parallel
code based on mixed memory model (combination of distributed and shared
memory) and it is difficult to compare with results achieved in this chapter
with using only shared memory model.

POSIX thread and C++11 Threads implementations performed best for
lower number of threads, but overall the OpenMP implementation (OMP-L,
OMP-NL), and OMP-CS performed the best.

The better results have been reported in literature. In [25] authors reported
speedup 11 for 12 threads. However, these results are achieved on a slightly
different architecture, where the computational node consist from two pro-
cessors Intel Xeon X5650 2,66GHz with 6 cores and results for 12 threads.
Therefore the results are not affected hyperthreading. The paper [4] present
the achieved speedup 9 (atomic directives) for 32 threads on SGI Origin 2000
computer. This better result is obtained on different architecture and it is
difficult to compared with the results achieved in our work..

5.6 CONCLUSIONS

The chapter evaluates different parallelization strategies of right-hand side
vector and stiffness matrix assembly operations which are one of the crit-
ical operations in any finite element software. The performance strategies
use different techniques to ensure consistency and are implemented using
OpenMP, POSIX Threads and C++11 Threads libraries. The performance of
individual strategies and libraries is evaluated using two benchmark problems
(3D structural analysis of nuclear containment and of 3D micro-structure)
each with two different mesh sizes. For the particular benchmark cases con-
sidered, the performance of nearly all strategies has been much better than
the performance of serial algorithm with relatively good scalability, however,
in case of matrix assembly, considerable differences exist and the presented
work provides an insight on how to select optimal strategy.

The achieved results clearly show performance drop on systems with hyper-
threading technology when number of processes exceeds number of physical
cores. Somehow disappointing are the results of assembly based on Colouring
approach, that did not performed as excepted, with performance affected
most likely with false-sharing phenomena.

The main conclusion of this study is that the performances of individual
libraries are comparable, but performances of individual strategies differ, often
significantly.

In general, the presented chapter illustrates the potential of parallel assembly
operations and importance of benchmarking, allowing to identify an optimal
strategy.
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DIRECT SOLUTION OF LARGE SPARSE SYSTEMS OF
LINEAR EQUATIONS

The solution of large, sparse systems of linear equations as a critical operation
in finite element software is the subject of this chapter. A system of linear
equations is called sparse only if a relatively small number of its matrix ele-
ments are nonzero. Numerical modelling using high performance computers
provides new opportunities. Many engineering problems lead to the solution
of sparse linear systems of equations. This is also true of the FEM, which
is used here as a representative example. The global stiffness sparse matrix
stored as a dense matrix of size K would be prohibitively expensive. One of
the key features of the FEM is that the stiffness matrix is typically a positive,
definite, symmetric matrix with a sparse structure, which is a consequence
of using interpolation and test functions with limited nonzero support. An
efficient algorithm for solving a linear system must exploit the symmetry and
sparse structure by saving considerable memory and CPU resources. Several
different storage schemes exist for sparse matrices. The most widely used are
the skyline, compressed rows and compressed columns formats.

Several different libraries are available that solve sparse linear systems of
equations. The linear equation solvers can essentially be divided into methods
based on either direct or iterative algorithms. The aim of this chapter is to eval-
uate the efficiency of different methods that can be found in any finite element
software solving large, sparse, non-symmetric systems of linear equations
on high performance machines. The contribution focuses on comparing the
efficiency of different existing libraries in solving large, sparse, non-symmetric
systems of linear equations based on either direct or iterative algorithms.

6.1 THE DIRECT SUPERLU SOLVER

This section presents an introduction to direct SuperLU solver a general
description of the direct SuperLU solver. The SuperLU solver is a general
purpose library for directly solving large, sparse, non-symmetric systems of
linear equations. The SuperLU library is an open-source library with object-
oriented architecture, written in C++ programming language. In our case,
the matrix K is a square, non-singular n x n sparse matrix, and r and F
are dense matrices (vectors). The kernel algorithm in SuperLU uses sparse
Gaussian elimination. The first step of a high-level algorithm is triangular
factorization P,D,KD.P. = LU, where D, and D¢ are diagonal matrices to
equilibrate the system, and P, and P are permutation matrices. Premultiplying
K by P, reorders the rows of K, and post-multiplying K by P, reorders the
columns of K. Permutation matrices are selected in order to improve sparsity,
numerical stability and parallelism. L is a lower triangular matrix, and U is
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Figure 6.1: Compressed row format of matrix schema.

an upper triangular matrix. To solve K xr = F, we evaluate r = K"« F =
(D 'PAILUP DAY = D (P.(U-Y(L=Y(P,(D,F))))). The solution to this
equation is based on multiplying from right to left in the last expression, which
means scale rows of F by D,. Multiplying P,F means permuting the rows of
D, F. Multiplying L~ (P,D,F) means solving triangular systems of equations
with matrix L by substitution. Similarly multiplying (U~ (L~!(P,D,F)) means
solving triangular systems with U. In addition, to complete factorization, the
SuperLU platform also has limited support for the incomplete factorization
(ILU) preconditioner, which approximately solves K * r = F. The SuperLU
routines appear in three different variants: sequential, multi-threaded (shared
memory systems) and parallel (distributed memory systems). The libraries
use variations of Gaussian elimination (LU factorization) that are optimized
to take advantage of both sparsity and computer architecture, in particular,
memory hierarchy and parallelism.

The interface to the SuperLU library was implemented in OOFEM by the
author by developing new classes representing to include new classes repre-
senting the SuperLU solver and sparse matrix storage. In this contribution, the
compressed row format is used in a sequential and multi-threaded SuperLU
library. This choice comes from the SuperLU library, which requires a sparse
matrix in this format on input. In the compressed row format, only nonzero en-
tries of the sparse matrix are stored in a one-dimensional array. An additional
integer array is needed to store the column indices of the stored values. In
practical implementation, the one-dimensional arrays storing nonzero values
are merged into a single array containing all nonzero entries, row by row. The
same applies to arrays of column indices. An additional array with a size
equal to the number of rows is needed to point to the beginning of each row
record (Fig. 6.1).

The SuperLU library has a number of optional arguments that control the
behaviour of the SuperLU library. The user can instruct the solver how the
linear systems should be solved according to some known characteristics of
the system. The element in the diagonal of a matrix by which other elements
are divided into an algorithm, for example by Gaussian elimination, is called
the pivot element. Partial pivoting is the interchange of rows in order to
place a particularly good element in the diagonal position before executing a
particular operation. Two permutation matrices are involved in the solution
process. The actual factorization is PrAPCT = LU, where P, is determined from
partial pivoting (threshold pivoting), and P is a column permutation, usually
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to make the L and U factors as sparse as possible.

The SuperLU library provides two types of driver routines to solve a system
of linear equations. The driver routines can handle a compressed row format
of matrix schema. A simple driver solves the system A * X = B by factoring
A and overwriting B with solution X. This expert driver uses the symmetry
of the matrix in a linear system to its advantage. SuperLU drivers order the
columns of a matrix based on multiple minimum degrees applied to the
structure of AT + A.

As noted in the previous section, a distributed memory programming
model does not provide global address space or global memory accessible to
all processing nodes but distributes memory between the processing units.
The distributed memory model can enable large scale problems to be solved
by using distributed memory resources. For large problems, it is therefore
essential to establish a distributed representation of the sparse matrix. This
feature is also supported by the SuperLU library, allowing the user to split the
global sparse matrix stored in compressed row format into blocks, representing
compressed row storage for consequent, non-overlapping groups of rows,
which are distributed across computing nodes.

We assume that decomposition of the discretized problem domain has
been established and individual, non-overlapping sub domains (partitions)
have been assigned to and stored locally on individual computing nodes.
In general, two dual partitioning techniques for the parallel distribution of
finite element code exist [28]. In our case, the cut dividing of the problem
mesh into partitions can be done using the node-cut technique. The node-cut
strategy is assumed when cut dividing the problem domain runs through
the nodes. Nodes on mutual partition boundaries are called shared nodes,
and nodes inside individual partitions are called local nodes. The node-cut
partitioning scheme can be interpreted as mesh decomposition using cuts
passing through shared nodes of the mesh without crossing any element
(Fig. 6.2). The cut strategy ensures duplication of the shared nodes. Each
processing node is responsible for assembling its contribution to the global
system matrix by summing the contributions from individual elements. In
order to minimize communication, it is natural that each processing node
will assemble and maintain in its local memory the block of global stiffness
matrix rows corresponding to unknowns on its partition. This is uniquely
defined for local nodes, which are exclusively shared by local elements on
individual partitions. For shared nodes, which are shared by elements from
multiple partitions, ownership must be defined. In this work, the partition
with the lowest rank sharing the shared node is the owner of the shared node
and thus responsible for maintaining the corresponding row entry of the
global stiffness matrix. It is clear that for shared nodes, the contributions to
the corresponding row have to be received from partitions sharing a particular
node. The assembly process requires global, unique numbering of equations
to be established across the computing nodes in addition to local numbering
on individual partitions.
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o local node
shared node

Figure 6.2: Node cut partitioning.

The assembly process of the global, distributed system matrix requires two
steps: setup of the data structures required to store the block of compressed
row records on individual partitions, and the assembly process itself based on
localizing individual element contributions into global equilibrium equations
according to their connectivity.

The first stage should determine the required size of arrays for storing
all nonzero entries of the global matrix. The nonzero contributions of each
element can be identified from element code numbers. The code numbers
simultaneously represent the numbering of equilibrium equations and the
numbering of corresponding unknowns. The individual values in the stiffness
matrix represent nodal forces caused by corresponding unit displacement. The
entry in the element stiffness matrix representing the nodal force contributing
to the k-th equilibrium equation and multiplied by the displacement located
in the global displacement vector at the I-th position should be added to the
position (k, 1) in the global matrix. By assuming that element contributions
are full matrices, we can initialize the nonzero structure of the global stiffness
matrix using element code numbers. In a distributed case, each partition is
responsible for initializing and preallocating its block structure of compressed
row records. In the case of compressed row storage, the number of nonzero
entries in each row has to be determined together with the corresponding
nonzero column positions of the individual entries.

Each processing node is responsible for initialization and assembly of the
assigned block of rows. This block is composed of local contributions as well
as shared node contributions from neighbouring partitions. Therefore, the
overall initialization can be divided into

e a local stage, where local contributions to the nonzero pattern are identi-
fied (from the partition elements).

e a communication stage, where contributions from neighbouring parti-
tions are received for locally maintained rows, corresponding to equilib-
rium equations for shared nodes.
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Any partition, therefore, has to keep its locally maintained block of compressed
rows and block compressed rows that correspond to shared nodes as not
locally maintained. These two blocks can be stored separately. In the initial
stage, the block structure is initialized on every partition using only the
contributions from local elements. The row entries that correspond to the
shared nodes and are not locally maintained are then communicated (sent)
to the corresponding partition maintaining the corresponding row. After
the data is sent, the contributions from neighbouring partitions containing
the contributions to the locally maintained shared equations are received.
Non-blocking communication is used to send and receive contributions. Non-
blocking communication allows the potential overlap of communication and
computation to be benefited from and is in fact used in actual implementation.
After finishing the communication stage, each partition has a fully initialized
data structure for a locally maintained block of rows.

After finishing the initialization step in which memory was allocated for
every nonzero entry of the globally distributed stiffness matrix, we can proceed
with the assembly of the matrix from the element contributions. This is done
in a similar fashion to the previous step. The contributions from local elements
are assembled on each partition. The rows corresponding to shared nodes
not being locally maintained are then sent to the partition maintaining the
corresponding row. Finally, each partition receives a remote contribution to
the locally maintained rows of shared nodes. This process is illustrated in
Figure 6.1. In this example, the problem has three elements (also corresponding
to sub-domains) and eight nodes, from which five are local on individual
partitions and three nodes are shared.

The process of assembling the global right hand side vector is very similar
to the process of assembling the stiffness matrix, but in many aspects is
simpler because of the assembly of local vector contributions. The global
vector is again distributed between partitions, the distribution corresponding
to the distribution of matrix rows. The contributions from local elements
are assembled first, then those corresponding to rows maintained on remote
partitions are communicated, and the contributions from neighbours are
received and entries are updated.

By completing the steps described above, the distributed sparse matrix, rep-
resented by locally maintained blocks of row entries on individual partitions,
can be directly passed into SuperLU routines.

6.2 SEQUENTIAL SOLVERS

The different methods based on direct or iterative algorithms for solving
linear equations are compared in this section. A linear elasticity problem is
considered. In particular, a direct solver using Skyline sparse storage, a direct
solver from the sequential SuperLU library, and an iterative solver from the
Iterative Method Library (IML) are compared in this section.

The Skyline sparse storage format is useful for direct sparse solvers and an
ideal format for Cholesky or LU decomposition when no pivoting is required.
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Figure 6.3: Example of a simple problem consisting of three elements distributed into
different computing nodes, illustrating the global sparse matrix structure
and its distribution.

This sparse matrix storage format can only store the blocks of members of
a matrix, and storage format is specified by two arrays represented by the
values and positions of these values (Fig. 6.4).

The values of the matrix are stored as a scalar array. or the lower triangular
matrix, this array contains the sets of elements from each row the elements
from the first nonzero column till the diagonal element. For the upper triangu-
lar matrix, it contains the sets of elements from each column starting with the
diagonal element ending up with the first nonzero element in a row. Symmet-
ric variant required to store only lower triangular or upper triangular part. An
additional one-dimensional array is needed that represents the positions (row
or column indices) of the values on the diagonal and has the dimension(e+1),
where e is the number of rows.

The Iterative Methods Library (IML) is a collection of algorithms imple-
mented in object-oriented C++ language for solving symmetric and non-
symmetric linear systems of equations using iterative techniques. The IML
library provides a set of iterative methods: Richardson Iteration, Chebyshev
Iteration, Conjugate Gradient, Conjugate Gradient Squared, BiConjugate Gra-
dient, BiConjugate Gradient Stabilized, Generalized Minimum Residual, and
Quasi-Minimal Residual Without Lookahead. All IML iterative solver methods
are designed to be used in conjunction with a preconditioner. The precon-
ditioners, namely Diagonal, Incomplete LU and Incomplete Cholesky, are
implemented in the IML solver library. In our case, the Conjugate Gradient
iterative method with Diagonal preconditioner has been used.
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Figure 6.4: The skyline format of matrix schema.

Table 6.1: Sequential linear system solution times for direct (Skyline and SuperLU
solvers) and iterative (IML solver) solvers.

Solver type Library | execution time [s]

Direct Solver Skyline 2118.09
SuperLU 372.61

Iterative Solver IML 180.47

Table 6.2: Sequential linear system solution times for direct (Skyline and SuperLU
solvers) and iterative (IML solver) solvers.

In this section, the performance and efficiency of the presented sequential
linear equation solver are compared using the benchmark problem of a 3D
nuclear containment dome model, already presented as Jete in Chapter 5 in
section 5.5. The benchmark problem indicated as Jete250k consisted of 87 k
nodes and 959 k tetrahedral elements with linear interpolation, and the total
number of equations was 260 k. The structure was loaded with self-weight.
Sequential methods for solving a system of linear equations with a direct
solver using Skyline matrix storage, direct SuperLU solver and IML iterative
solver are compared in Table 6.1.

The iterative IML solver was two times faster than the direct SuperLU solver
in this problem, profiting from the high sparsity of the 3D problem. Neverthe-
less, applying the direct SuperLU solver to solve a system of linear equations
significantly reduced the computational time. The presented conclusions relate
to the selected benchmark problem, however. It is therefore important to have
different options available in general purpose finite element code.

63 SUPERLU SOLVER BASED ON A SHARED MEMORY MODEL

In this section, the multi-threaded SuperLU solver is presented and a linear
elasticity problem is considered. The SuperLU solver is used with parallel li-
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braries based on shared memory, represented by OpenMP and POSIX Threads.

SuperLU contains a set of sparse direct solvers for solving large sets of linear
equations. The kernel algorithm in SuperLU uses sparse Gaussian elimination.
The first step of the solution algorithm is triangular factorization. In addition
to complete factorization, the SuperLU library also has limited support for an
incomplete factorization (ILU) preconditioner, which approximately solves the
equation. Permutation matrices can be set up to improve sparsity, numerical
stability and parallelism.

Comparing the different method of the direct SuperLU solver used to solve

a sparse linear system is the subject of this section. The SuperLU library
interface was developed, which consists of an interface class to SuperLU solver
and the class representing compress row storage format of SuperLU. The first
comparison was was based on using simple and expert SuperLU drivers. The
SuperLU expert driver advantageously uses the symmetry of the matrix in a
linear system of equations. SuperLU simple is the default option that does not
take into account the effect of matrix symmetry. The ordering the equations
were determined multiple minimum degrees for both cases.
The SuperLU implementation is based either on OpenMP or POSIX Threads.
The performance of shared memorySuperLU solver has been also compared to
the performance of iterative PETSc solver using distributed memory paradigm.
A parallel PETSc solver based on distributed memory was configured to use a
conjugated gradient solver with incomplete Cholesky preconditioner.

Figure 6.5 shows the execution times and speedups for solving a linear
system of equations using a direct solver based on a shared memory model
(SuperLU simple or expert driver using OpenMP and POSIX threads) and
an iterative solver based on distributed memory (PETSc with using MPI)
on the benchmark problem of the 3D nuclear containment dome model Jete
250k. The results representing the solution of the system of linear equations
are presented as solution times and corresponding speedups (relative to two
CPUs). These results were obtained as an average of five consecutive runs.

The results show that the time needed for execution is reduced as the
number of threads increased. In general, the direct SuperLU solver variants
needed considerably more time to solve the benchmark problem than the
PETSc iterative solver. The results from the direct SuperLU solver using the
expert driver were better than the results of the direct SuperLU solver using
the simple driver. The expert driver can take advantage of the symmetry of
the matrix in a linear system, which was reflected in the results. Ordering the
columns of the matrix was optimized in the simple and expert drivers using
the multiple minimum degrees ordering AT + A. The results of the SuperLU
methods using the direct SuperLU solver based on OpenMP or POSIX Threads
and shared memory frameworks had a similar speedup effect. Although far
from ideal scalability, the results show reasonable linear scalability up to
16 cores. The significant decrease in performance for 16 and more threads,
observed in all cases, can be attributed to the hyper-threading technology of
Intel processors, which assembles and shares some CPU resources between
hyper-threaded cores during the solving process and only takes place when a
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Figure 6.5: Execution times and speedups of a system of linear equations using a
direct SuperLU simple driver and direct SuperLU expert driver based
on OpenMP or POSIX Threads (shared memory model) and an iterative
solver PETSc based on MPI (distributed memory model) on the Jete 250k
benchmark problem.

number of threads is higher than the number of physical cores. In general, the
results illustrate that regardless of the solver used, the better performance can
be achieved that with serial code.

The execution times and speedups to solve a linear system of equations
using a direct solver based on shared memory model (SuperLU expert driver
using OpenMP and POSIX Threads) on the 3D model benchmark problems of
a nuclear containment dome Jete 250k and porous micro structure Micro 250k
are presented in Figure 6.6. The reported execution times and speedups were
obtained as an average of five consecutive runs.

In general, the direct SuperLU methods on the Micro 250k benchmark
problem needed considerably more time for a solution than the Jete 250k
benchmark problem. The benchmark problems were characterized by different
system matrix sparsity. The porous microstructure model had significantly
more nonzero members than the nuclear containment dome model, which is a
very sparse problem, and it was clear that the Micro 250k benchmark needed
significantly more time to solve the problem. The results of SuperLU methods
using the direct SuperLU solver based on OpenMP or POSIX Threads in a
shared memory framework had a similar speedup effect. Although far from
ideal scalability, the results show reasonable linear scalability up to 16 cores.
The significant decrease of performance for 32 threads, observed in all cases,
can be attributed to the hyper-threading technology of Intel processors, which
is mentioned in the paragraph above. However, by using direct or iterative
parallel solvers, we can achieve better performance than serial code.

The similar comparison has been done for other benchmark problems as
well. The results show significant differences between the performance of
direct and iterative solvers in each of the benchmarks. The PETSc iterative
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Figure 6.6: Execution times and speedups of the system of linear equations using
direct SuperLU expert driver based on OpenMP or POSIX Threads (shared
memory model) on the Jete 250k and Micro 250k benchmark problems.

solver based on distributed memory performed better than the SuperLU direct
solver based on shared memory. The direct SuperLU solver’s main disadvan-
tage was high demands on system memory. The memory requirements are
higher during the solution of the Jete 3M, Micro 500k, Micro 1M and Micro 3M
benchmarks. For example, the direct SuperLU solver based on shared memory
with expert driver settings (symmetric mode) on the Jete 250k benchmark
needed 8 GB of system memory, while the Micro 250k benchmark needed
18 GB. By contrast, the PETSc iterative solver based on distributed memory
needed only 1.2 GB of the system memory for Jete 250k (3800 iterations) and
1.3 GB for Micro 250k (14700 iterations). The presented conclusions are related
to the selected benchmark problems, however. In general, the option to have
both iterative and direct parallel solvers can be an advantage. It is therefore
important to have different options available in general purpose finite element
code.

64 SUPERLU SOLVER BASED ON A DISTRIBUTED MEMORY MODEL

The performance of the distributed memory variant of SuperLU solver is
illustrated in this section, for which the interface has been also designed and
implemented. The performance evaluation is done on linear and nonlinear
structural analysis benchmarks.

6.4.1 Linear analysis using the SuperLU solver

The SuperLU library provides a parallel implementation of the direct solver
based on a shared memory model (multithreaded SuperLU) or distributed
memory. The main differences between these two versions of SuperLU solver
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are about storing the computational data. In distributed SuperLU interface
distributed data structure is required to store the sparse matrix. The de-
composition of the sparse matrix into blocks of rows assigned to individual
processing nodes is performed. The individual nodes are responsible for as-
sembling the assigned block of rows of the sparse matrix. While in a shared
memory model the whole sparse matrix data structures are stored in a global
memory accessible to all computing units.

A comparison of direct SuperLU solver based on distributed memory with a
distributed sparse matrix stored in compressed row format and the previously
mentioned multi-threaded SuperLU solver based on shared memory with
a compressed row format is presented in this section. For reference, the
performance of PETSc solver is also included.

The efficiency of these solvers is demonstrated on benchmark problems
Jete and Micro. The results are presented as solution times and corresponding
speedups (relative to two CPUs). The presented results were obtained as
an average of five consecutive runs. The results for the Jete 250k benchmark
problem are presented in Figure 6.7.
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Figure 6.7: Execution times and speedups of the system of linear equations using the
direct SuperLU expert driver based on OpenMP or POSIX Threads (shared
memory model), direct SuperLU based on MPI (distributed memory
model) and iterative PETSc solver based on MPI (distributed memory
model) on the Jete 250k benchmark problem.

These results show that the SuperLU method based on a shared memory
model (OpenMP and POSIX Threads) and SuperLU method based on a
distributed memory model (MPI) are slightly similar. The direct SuperLU
strategies need considerably more time to solve the Jete 250k problem than the
PETSc iterative solver based on distributed memory (MPI). Speedups show
the same trend of scalability as the presented execution times.

The results of the Micro 250k benchmark problem are shown in Figure 6.6.

The results of the solution process using the SuperLU method based on a
shared memory model (OpenMP and POSIX Threads) and SuperLU method
based on a distributed memory model (MPI) demonstrate that the distributed
memory SuperLU is clearly better than the shared memory SuperLU on the
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Figure 6.8: Execution times and speedups of a system of linear equations using the
direct SuperLU expert driver based on OpenMP or POSIX Threads (shared
memory model), direct SuperLU based on MPI (distributed memory
model) and iterative PETSc solver based on MPI (distributed memory
model) on the Micro 250k benchmark problem.

Micro 250k benchmark problem. This is because the Micro benchmark has
less sparsity than the Jete benchmark. The results show that the distributed
SuperLU solver is more effective in solving a linear system of equations with
less sparsity than the multi-threaded SuperLU solver. However, the PETSc
iterative solver based on distributed memory is clearly more effective in
the Micro 250k benchmark problem than direct solver SuperLU based on
distributed memory.

6.4.2 Nonlinear analysis using the SuperLU solver

The mentioned nonlinear solution strategies in subsection 4.3.2 were evaluated
on the nonlinear 3D crack propagation finite element model of an anchor
pullout test using two different sparse linear solvers: the direct SuperLU solver

and the iterative PETSc solver, with a distributed memory programming model.

The model used non-local anisotropic damage constitutive model and consists
of 22441 nodes and 125400 linear tetrahedra elements. The evaluated nonlinear
solution strategies included the Newton-Raphson method with a stiffness
matrix update after each iteration, Modified Newton-Raphson method with a
stiffness matrix updated after every second and tenth iteration, and the initial
stiffness method. The total number of iterations in the testing benchmark
problem for all of these strategies is presented in Table 6.3. It is clear that the
number of iterations needed to successfully solve the benchmark problem
is higher for the initial stiffness matrix method than the Newton-Raphson
method. The number of iterations in order to successfully solve one loading
step ranges from 2 (Newton-Raphson method) to 30 (initial stiffness method)
iterations as a part of the solution process.

The execution times and speedups illustrate the performance of the direct
SuperLU solver (based on shared or distributed memory version) and PETSc
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Solution method | Num. of iterations | Matrix update
N-R 204 241
mod. N-R's. 2 251 131
mod. N-R s. 10 297 37
initial stiffness 6049 1

Table 6.3: Number of iterations for different methods on the 3D finite element model
of an anchor pullout test (number of steps 15).

iterative solver. In the case of the PETSc iterative conjugated gradient solver,
convergence criteria based on a relative solution error of 107° was used.
Performance was evaluated for cases without preconditioning and for cases
with block Jacobi parallel preconditioning. The solution times (averaged over
tive consecutive runs) and corresponding speedups (relative to two CPUs) are
shown in Figures 6.9, 6.10 and 6.11.
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Figure 6.9: Execution times and speedups using the Newton-Raphson method with
secant stiffness updated after every iteration.

The achieved results show that the effect of parallelization using both
solvers is substantial. In the full Newton-Raphson method, where stiffness is
updated after each iteration, performance of the direct solver was less than
the performance of the iterative solvers. This is because of the dense character
of the stiffness matrix the iterative solver can profit from. The direct solver
could not profit from existing factorization, as the system matrix was updated
after each iteration. The performance of the preconditioned iterative solver
was better than the performance of the non-preconditioned solver (Fig. 6.9).

A similar trend can be seen using the Modified Newton-Raphson method.
Again, the performance of the iterative solver was superior to the performance
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Figure 6.10: Execution times and speedups using the Modified Newton-Raphson
method with secant stiffness updated after every second and tenth itera-
tion.

of the direct solver (see Fig. 6.10, for a comparison of solution times for both
solvers with stiffness updated every second and tenth iteration).
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Figure 6.11: Execution times and speedups using the Initial Stiffness Matrix method.

Finally, the results from the Initial Stiffness Matrix method using direct and
iterative solvers are presented. In this case, the best performance was obtained
using a direct solver, which profited highly from the existing factorization.

It is difficult to generalize the results, as the relative performance of direct
and iterative solvers depends highly on the particular problem. However, the
scalability of both solvers can be evaluated. The results for different settings are
presented in Figs. 9, 10 and 11. Although far from ideal scalability, the results
show reasonable linear scalability up to 16 cores. The significant decrease
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of performance with 32 threads, which was observed in all cases, can be
attributed to the hyper-threading technology of Intel processors.

6.5 CONCLUSIONS

The performance of sequential SuperLU solver is compared to Skyline solver
and iterative IML solver in an object-oriented FEM framework was in sec-
tion 6.2. Further, the performance of a direct SuperLUand PETSc iterative
solver based on a shared and distributed system memory model applied
to linear static analysis was evaluated in section 6.3, 6.4 and performance
of SuperLU solver based on distributed memory model for nonlinear static
analysis was evaluated in section6. 6.4.2. The parallelization strategies were
based on shared memory libraries (OpenMP and POSIX Threads) and on
message passing for distributed memory architecture. The performance of
direct and iterative solvers was compared on linear benchmark problems with
different sparsity (Jete-3D model of nuclear containment and micro-3D model
of porous microstructure) and on complex nonlinear benchmark problem
of 3D simulation of an anchor pullout test. In the sequential solution case,
the performance of iterative IML solver is the best. On the other hand, the
direct SuperLU solver is significantly better than direct skyline solver. The
performance of parallel solvers based on shared memory model showed that
the iterative solver PETSc has better performance than direct SuperLU solver.
SuperLU solver based on OpenMP or POSIX Threads achieved very similar
scalability, In the nonlinear static for solvers based on distributing memory
model the performance of iterative solver was superior, except when the Initial
Stiffness method was used, where the direct solver showed better performance.
In general, both parallel solvers based on different memory models showed
relatively good scalability. In terms of the relative performance of individual
solvers for different use cases and problems, it is definitely an advantage to
implement both solver types in any Finite Element code.



TUNING FINITE ELEMENT LOAD BALANCING
FRAMEWORKS

The chapter deals with tuning the parallel load balancing framework of the
finite element software, which is based on a domain decomposition paradigm
for a distributed memory model. This chapter introduces the domain decom-
position paradigm and describes the technique for determining actual weights
by comparing the computational performance of individual processing units.
These weights are fundamental inputs for mesh (re)partitioning that has to be
performed at the beginning of or during a simulation and whenever the load
imbalance is significant. The capabilities and performance of the proposed
technique are evaluated on a benchmark problem and discussed.

7.1 LOAD BALANCING ALGORITHM

Load balancing is a process of (re) redistributing work between the involved
computational units. In this section, the distributed memory programming
model is assumed. It requires the decomposition of the FE problem into sub-
domains assigned to individual processing units. The domain decomposition
is based on node-cut technique leading to unique assignment of elements
and duplication of shared nodes. The decomposition is in general complex
optimization problem aiming to balance the work while satisfying a number of
conditions, including the requirement for minimum communication between
partitions, for example. In this work, the ParMETIS library is used for decom-
position [36]. The library allows to input performance measure of individual
nodes to reflect different CPU speeds, for example. On the other hand, other
requirements, such as mentioned minimum communication cost, could not be
controlled and are implicitly encoded in the library. The load balancing can
be either static during the solution process or dynamically adapted.

Determining the processor’s weight parameters is, therefore, an interesting
subject. The contribution of this work consists in proposing a better algorithm
to evaluate individual processor weights that the existing one in OOFEM
solver.

Partitioning models must more accurately represent a broader range of
operations. Partitioning algorithms also need to be sensitive to heterogeneous
computer architectures and adjust work assignments relative to processing,
memory and communication resources. However, the multi-criteria partition-
ing is the subject of ongoing research and the existing partitioning libraries
have only limited capabilities. Therefore, in this thesis, the optimization of dy-
namic load partitioning algorithm is based on variables that are related only to
the performance of the individual nodes. The parallel computer may be com-
posed of different nodes that possess processors with different performance
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characteristics and be connected to a network for communication between
these processors. The performance of the individual processor, therefore, has
to be detected and this can be done using several simple tests. The individual
tests are executed each time the load balancing occurs to determine actual
performance. The individual tests should represent typical FEM operations
and at the same time, they should have a small impact, consuming only a
small fraction of the total solution time of the problem. The performance is
measured as a wall clock time needed to complete individual tests. Overall
performance is evaluated as a weighted average from individual tests. Pro-
cessor performance depends on many factors, for example, cache memory. In
symmetric multiprocessor (SMP) systems, each processor has a local cache.
The processing unit has several layers of cache memory between the processors
and main memory (RAM). The cache layers are obviously designed in two or
three layers but are smaller and faster than RAM. Therefore, the weight of the
processor parameter not only includes processor performance with regard to
the inseparable part of the processor (cache memory) but also the influence of
the other system component (RAM). However, in our case, the performance of
the processor based on measuring wall clock time is sufficient.

7.2 DESIGN AND ASPECTS OF MICRO BENCHMARKS TESTS

Overall processor performance depends on many factors, notably on its fre-
quency, the performance of memory subsystem, and code executed. The
performance of two CPUs can be different for integer and floating point oper-
ations, on some SMPs, some resources are shared between processing cores,
etc. The adopted approach to evaluate the processor performance is based on
a set of so-called micro benchmark tests, that evaluate processor performance
for different typical tasks and computing overall performance as the weighted
average of performances of individual micro-benchmarks.

The first micro benchmark test proposed is a function to compute a nu-
merical integral. In the test, the integral of cos function is evaluated using
numerical integration using Newton-Cortes formula. The parameter n; defines
the number of integration points used to divide the area. Therefore, with
increasing parameter n; (increasing number of integration point), we have a
solution process closely approximating the integral value. This tests measures
performance in floating point operations.

This micro benchmark test was conducted using different sets of the parameter
n (number of integration points used to divide the area). The performance
of individual processor is defined as relative execution time of the processor
to complete the test pli—?, where {; is execution test time on i-th processor.
The subject of the investigation was the dependence of the number of integra-
tion points on the estimated performance. The results of processor weights
with different sets of parameter n; using different numbers of computational
threads are presented in Table 77.1. The individual variants were tested on a
workstation (running Ubuntu 16.04 OS) with an Intel® Core' " i7-4790 CPU
@ 3.60 GHz (PC#2) with four cores consisting of two logical processors per
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n; 2 thr. 4 threads 6 threads 8 threads
0.2175 | 0.1324 | 0.1316 | 0.0797 | 0.0950 | 0.0812 | 0.0653 | 0.0573 | 0.0704 | 0.0644 | PC#l

1074

0.7825 | 0.3679 | 0.3681 | 0.2507 | 0.2459 | 0.2471 | 0.1839 | 0.1843 | 0.1876 | 0.1871 | PC#2

1076 | 02330 | 01725 | 0.1354 | 0.0934 | 0.0903 | 0.0757 0.0672 | 0.0660 | 0.0658 | 0.0628 | PC#l

0.7670 | 0.3642 | 0.3646 | 0.2394 | 0.2393 | 0.2392 | 0.1863 | 0.1863 | 0.1829 | 0.1828 | PC#2

1078 0.3653 | 0.1831 | 0.1835 | 0.1088 | 0.1081 | 0.1085 | 0.0751 | 0.0762 | 0.0758 | 0.0752 | PC#1
0.6347 | 0.3189 | 0.3139 | 0.2249 | 0.2249 | 0.2249 | 0.1745 | 0.1745 | 0.1744 | 0.1744 | PC#2

Table 7.1: Processors weights for the micro benchmark problem represented as a
computed numerical integral using the cos(x) function, different numbers
of rectangles to divide the area (parameter n;) and different numbers of
computational threads.

core connected to a workstation with an Intel® Core' i3-2370M CPU @ 2.40
GHz (PC#1) with two cores consisting of two logical cores. A maximum of
eight threads on machine PC#2 and four threads on machine PC#1 could run
simultaneously. The testing machines had 15 GB and 8 GB of system memory,
respectively. The reported results were obtained as an average of five consecu-
tive runs. The run time to compute the numerical integral was based on two
computational threads. The run times on threads on PC#1, which were the
longest (greater influence on computational time by the benchmark problem),
for n; set to 10* was 0.44s, for n; set to 10° was 0.51s and for n; set to 108
was 3.85s. These run times were substantially quicker than the computation
time of our benchmark problem using structural analysis based on nonlinear
static analysis. In the case when the solution of the micro benchmark problem
is not expensive, it is ideal, because the micro benchmark can be run more
times during nonlinear analysis of the benchmark problem, and the micro
benchmark computational process does not rapidly increase the solution time
of the analysis.

The next type of micro benchmark problem was based on solving a linear
system of equations. A FEM model of the cantilever beam, divided into 7,4
elements is used to define a linear system. The right hand side of the force
vector in our case is a simple vector with its first member set to 1, while all
the other elements of the vector are set to zero. The number of equations of
the linear system directly depends on parameter 7.;, which also represents
the dimension of the stiffness matrix and right hand side of the force vector.
The results of processor weights (solving a linear system of equation micro
benchmark) in individual cases for parameter 7., using different numbers of
computational threads are presented in Table 7.2. The individual methods
were tested on the same workstations mentioned above. The reported results
were obtained as an average of five consecutive runs. The run time to compute
the solution of the linear system of equations using a direct solver based on
two computational threads for 7, set to 10> was 4.92 * 10~%s on PC#1 and
2.56 %« 10~%s on PC#2. For parameter 7., set to 103, the run times were 5.58s on
PC#1 and 2.33s on PC#2. For parameter 1eq set to 2.5 % 103, the run times were
126.3s on PC#1 and 78.85s on PC#2. For parameter Neq set to 5.0 * 103, the
run times were 1261.75s on PC#1 and 748.11s on PC#2. In the case when the
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Teg 2 thr. 4 threads 6 threads 8 threads

1ohs | 03422 0.1610 | 0.1375 | 0.0774 | 0.0813 | 0.0893 | 0.0575 | 0.0533 | 0.0580 | 0.0576 | PC#l

0.6578 | 0.3437 | 0.3577 | 0.2509 | 0.2505 | 0.2506 | 0.1983 | 0.1894 | 0.1965 | 0.1895 | PC#2

0.2955 | 0.1501 | 0.1489 | 0.0683 | 0.0695 | 0.1098 | 0.0473 | 0.0456 | 0.0459 | 0.0462 | PC#l

AN
3 0.7045 | 0.3506 | 0.3506 | 0.2514 | 0.2491 | 0.2519 | 0.2037 | 0.2039 | 0.2038 | 0.2038 | PC#2
2500 0.3752 | 0.1783 | 0.1787 | 0.0862 | 0.0912 | 0.0850 | 0.0541 | 0.0535 | 0.0537 | 0.0541 | PC#1
0.6248 | 0.3211 | 0.3220 | 0.2457 | 0.2456 | 0.2463 | 0.1959 | 0.1964 | 0.1962 | 0.1961 | PC#2
5000 0.3723 | 0.1735 | 0.1751 | 0.0762 | 0.0771 | 0.0763 | 0.0335 | 0.0336 | 0.0343 | 0.0349 | PC#1

0.6277 | 0.3249 | 0.3266 | 0.2558 | 0.2573 | 0.2574 | 0.2164 | 0.2152 | 0.2168 | 0.2154 | PC#2

Table 7.2: Processors weights for the micro benchmark problem represented as a
solution of a linear system of equations using different numbers of equations
(parameter 7,;) and computational threads.

number of equations (parameter 7,,) increased, the solution time of the linear
system of equations using a direct solver with dense matrix was characterized
by an 12 increase in time requirements. The rules for computational costs
caused the solution of this micro benchmark problem to have the same trend
as the function to compute the numerical integral mentioned above.

Another micro benchmark problem called Whetstones is a test that attempts
to measure the speed and efficiency of a computer performing floating-point
operations. The Whetstone benchmark was the first designed for benchmark-
ing [15]. This benchmark is very simple, comprising several sub-tests with
active loops executed via procedure calls. This module represents a mix of
operations typically performed in scientific applications. The test involves
integer arithmetic, floating point arithmetic, "if" statements, calls and so on.
At the end of this benchmark, a statement with the results is printed. Weights
were attached to the different modules (realized as loop bounds for loops
around the individual modules statements). The weight distribution of Whet-
stone instructions for the benchmark matched the distribution seen in the
program sample. The weights were selected so that the program executed a
multiple of one million Whetstone instructions. The tests are not expensive to
hardware and only reference a small amount of data that fits into the L1 cache
of any processor. Hence, L2 cache and memory speed should have no effect on
performance ratings. Speed is invariably proportional to the processor unit’s
MHZz on any given type of processor.

In general, the Whetstone benchmarks are represented by elementary math-
ematical operations. The modules provide a set of transformation statements,
trigonometric function evaluation, evaluations single transformations of the
standard square root function, conditional jumps with sets of conditional
statements, integer arithmetic and array addressing, array addressing and
references. The benchmark has high floating point data and floating point
operations performance. A high percentage of execution time is spent in math-
ematical library functions. Instead of local variables, Whetstone uses a handful
of global data (several scalar variables and four element arrays of constant
size) repeatedly. A compiler in which the most heavily used global variables
are allocated to registers (an optimization usually considered of secondary
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n; 2 thr. 4 threads 6 threads 8 threads

61074 0.3197 | 0.1572 | 0.1548 | 0.0834 | 0.0953 | 0.0970 | 0.0539 | 0.0573 | 0.0626 | 0.0645 | PC#1
0.6803 | 0.3440 | 0.3440 | 0.2414 | 0.2414 | 0.2414 | 0.1905 | 0.1904 | 0.1904 | 0.1904 | PC#2

1075 0.3196 | 0.1586 | 0.1588 | 0.1081 | 0.0827 | 0.0840 | 0.0614 | 0.0568 | 0.0583 | 0.0671 | PC#l
0.6804 | 0.3470 | 0.3357 | 0.2418 | 0.2417 | 0.2417 | 0.1893 | 0.1893 | 0.1886 | 0.1893 | PC#2

21075 0.3135 | 0.1606 | 0.1593 | 0.0895 | 0.0934 | 0.0999 | 0.0641 | 0.0629 | 0.0638 | 0.0664 | PC#1

0.6865 | 0.3401 | 0.3400 | 0.2391 | 0.2391 | 0.2390 | 0.1857 | 0.1856 | 0.1857 | 0.1857 | PC#2

106 0.3354 | 0.1649 | 0.1637 | 0.0970 | 0.0969 | 0.1094 | 0.0631 | 0.0654 | 0.0653 | 0.0644 | PC#l

0.6646 | 0.3358 | 0.3357 | 0.2332 | 0.2332 | 0.2303 | 0.1858 | 0.1859 | 0.1846 | 0.1855 | PC#2

Table 7.3: Processors weights for the micro benchmark problem represented as a solu-
tion of mathematical floating-point operations in a Whetstone benchmark
test using different numbers of instructions (parameter n;) and computa-
tional threads.

importance) would, therefore, boost benchmark performance. Each module
was represented as a Whetstone instruction, including the coding containing
the for a loop. The execution frequency of each module was proportional to
the input value of such that the scaling factors for n; = 10 gave the modules a
total weight corresponding to one million Whetstone instructions for more
details see [23].

The final processor weights for individual cases dependent on the n; pa-
rameter and using different numbers of computational threads are presented
in Table 7.3. The individual methods were tested on the same workstations
mentioned above. The reported results were obtained as an average of five
consecutive runs. The run time to compute the solution of a linear system of
equations using a direct solver based on two computational threads for n; set
to 6 * 10* was 1.07s on PC#1 and 0.50s on PC#2. For n; set to 10°, run times
were 1.78s on PC#1 and 0.84s on PC#2. For n; set to 2 % 10°, run times were
3.57s on PC#1 and 1.62s on PC#2. Finally, for n; set to 10°, run times were
39.10s on PC#1 and 19.67s on PC#2.

This section evaluated the performance of three micro benchmark problems
to determine processor weights with an illustration of their impact on the per-
formance of the load balancing. The final load balancing processor weighs are
obtained as a weighted average of individual weights from micro benchmark
tests. The final weights are assembled in the ratio of 15% micro benchmark
problem based on a function to compute numerical integral, 80% benchmark
problem based on the solution of a linear system of equations and 5% bench-
mark problem based on measuring the speed and efficiency of a computer
performing floating point operations. The time requirements of individual
micro benchmark problems were controlled using parameter n as follows:
benchmark to compute numerical integral with parameter n; = 10°, solu-
tion of a linear system of equations with parameter 1., = 10° and computer
performing floating-point operations with parameter n; = 6 * 10%,
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7.3 STATIC LOAD BALANCING FRAMEWORK

This section presents the design process using processor weights parameters
and results of a case with a static load balancing framework based on parti-
tioning the benchmark problem before it is solved. Static load balancing can be
effectively used in a linear static case, which is solved in one step. However, in
the nonlinear static case, the static load balancing framework is not effective.

7.3.1 Example using a Static load balancing framework

The individual methods were evaluated using the benchmark problem of a 3D
finite element of a nuclear containment dome model. The Jete250k benchmark
problem consisted of 87 k nodes and 959 k tetrahedral elements with linear
interpolation, and the total number of equations was 260 k. The structure was
loaded with self-weight.

The individual methods were tested on a workstation (running Ubuntu
16.04 OS) with an Intel® Core'™ i7-4790 CPU @ 3.60 GHz with four cores
consisting of two logical processors per core connected to a workstation with
an Intel® Core i3-2370M CPU @ 2.40 GHz with two cores consisting of two
logical cores. Each workstation could simultaneously run a maximum of eight
threads and four threads on their CPUs and had 15 GB and 8 GB of system
memory, respectively.

The iterative PETSc solver library for solving a system of equations (lin-
earized system solution) and ParMETIS as an MPI parallel library for parti-
tioning problems was used for the benchmark problem. The results of a linear
static problem based on static load balancing partitioning using processor
weights input parameters are presented in Figure 7.1 and were compared to
the results obtained with static load balancing using equal processing weights.
The performance of static load balancing with equal weights, as a default
setting of the static load balancing, is compared to the static load balancing
with estimated weights using micro-benchmark problems. The number of
threads represents a combination of two workstations. For example, two com-
putational threads are represented as one computational thread running on
each workstation. The results show that the effect of parallelization using
a static load balancing process with improved processor weight parameters
makes the solution process more efficient and takes less computational time.

7.4 DYNAMIC LOAD BALANCING FRAMEWORK

The software design process is an important part of dynamic load-balancing
research. The design process and results of a case with a dynamic load balanc-
ing framework based on a problem partitioned during the solution process
are discussed in this section. Dynamic load balancing is typically used for
problems involving multiple solution or time steps, where work redistribution
is performed to reflect potential work imbalance. Partitioning the problem
during solution is based on monitoring computation during the solution step.



7.4 DYNAMIC LOAD BALANCING FRAMEWORK

Intel i3 (4 computing units) + Intel i7 (4 computing units) - Jete250k
220

Static LB |
Static LB using proc. weights param. -

200

=
O
o

=
o]
o

execution time [s]

170

160

2 4 6 8
number of threads

Figure 7.1: Execution times for static load balancing using estimated processing
weights compared to uniform processing weights.

Once the solution step is finished, the load balance process is activated by
evaluating the imbalance. If the imbalance is larger than the user defined
tolerance, the re-partitioning is performed, taking into account the actual
performance of processing nodes and processing cost of individual elements.
The partitioning is performed in respect of the load balance monitoring results.
When solving a real problem on a parallel computer, the load balance can
change during the solution. The first source of imbalance originates from the
character of the problem. For example, in nonlinear problems, the transition
from an initial elastic material response to a nonlinear regime is often associ-
ated with increased computational cost, and this transition is often associated
only to certain regions of the overall domain. The second source of load imbal-
ance includes external factors that can change the performance of individual
processing nodes or communication networks. This typically happens in non-
dedicated cluster environments, where processing nodes and communication
infrastructure is shared between users. In both cases, the gradual growth of
imbalance can have a significant effect on performance and scalability.

The only way of reflecting the growing imbalance is to adaptively redis-
tribute work between processing units in order to restore load balance and
thereby ensure optimal use of resources. The monitoring and evaluation of
imbalance is the task of load balance monitor. This monitor can detect load
imbalance by monitoring the time required to perform allocated work on
individual processing units. The differences in processing time indicate an
imbalance. After imbalance is detected, the decision of whether to restore
the load balance or continue is made. This can be a complex task, as load
redistribution may in fact be a very complex problem with non-negligible time
requirements. The cost of load re-balancing may be higher than the cost of con-
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EngngModel Domain ParMETIS Library

ko>—

LoadBalancer

ParmetisLoadBalancer : public LoadBalancer

virtual void calculateLoadTransfer() = 0 :]

void labelNodes() void calculateLoadTransfer()

integer giveElementPartition(elem)
integer giveNodePartition(node)

NodeParallelMode giveNodeStatus(node)

WorkTransferPlugin NonlocalMatWTP : public WorkTransferPlugin
virtual void init() = 0 void init()
virtual void migrate() = 0 void migrate()

class WallClockLBM : pubic LoadBalancerMonitor

LoadBalancerMonitor <}—‘
void decide(SolutionStep)
void giveProcessorWeights()
— virtual void decide(SolutionStep) = 0
virtual void giveProcessorWeights() = 0 Q—‘ class WallClockLBMmicroBenchmarks : pubic LoadBalancerMonitor

void decide(SolutionStep)

void giveProcessorWeights()

Figure 7.2: Class hierarchy related to the load balancing framework.

tinuing with a slight load-imbalance. All these aspects have to be considered
and are, unfortunately, specific to the problem and implementation.

The design and structure of load balancing framework in OOFEM is il-
lustrated in Figure 7.2. The Load balance monitor class is responsible for
detecting potential load imbalance between participating processors. The main
role of the load balancing monitor is to determine the amount of work that
should be ideally transferred from one processing unit to another in order to
recover the detected imbalance. Load imbalance is monitored by measuring
the computational time required to process assigned work (process given
partition). In an ideal case, the individual times should be equal, indicating
that the work load is ideally balanced between processes that are solved on
different computational units with different performance parameters. When
the imbalance is detected, the work (expressed in terms of individual elements)
has to be redistributed to reflect the performance of individual processing
nodes. Individual elements have assigned weights that reflect the relative
computational costs. These depend on element type, material state (elastic,
plastic, etc.). These weights are typically obtained in advance from estimated
measurements. The processing power of individual processing units also has
to be determined. The load re-balancing process in this chapter is based on
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re-distributing the computational work proportionally to the performance of
individual processing units. In principle, additional factors, including available
communication bandwidth between individual processing units or available
memory, can be taken into account. Any load balancing should not only dis-
tribute the work according to processing powers but also attempt to minimize
the communication cost between individual processing units. In the FEM, this
means the cuts between partitions (number of shared nodes) should be mini-
mized. Failing to meet the secondary criteria can significantly impact overall
performance, as the cost of communication (in terms of the time required)
is much higher than the cost of computation. Load re-balancing should also
attempt to minimize the reallocation of elements as much as possible in order
to minimize communication costs.

The ParMETIS library was used in this work, however, the ParMETIS im-
plementation is not restricted to one specific partitioning library. A parallel
partitioner can take advantage of the increased memory capacity of parallel
machines (distributed memory model) and improve overall performance. A
general load balancing algorithm is responsible for dynamic repartitioning
using the processor weights provided by the load balance monitor during
the micro benchmark problem and should provide the new partitions with
numbers for all local elements on each partition. After the updated element
partition assignment is determined, the distribution and classification of nodes
also have to be determined. Each node is classified as either a local node
that remains local on an existing partition or a shared node that is assigned
to a remote partition. Node classification can be determined from element
partitioning. The dynamic load balancing framework implemented in OOFEM
is using the weights based on measuring of individual time involved in the
computation. These times represent how long each CPU work on the prede-
fined number of solution steps. The repartitioning is based on default weights
set as the ratio of total solution time to individual computational thread time.

7.4.1  Example using a dynamic load balancing framework

The above-mentioned nonlinear solution strategies for reducing imbalance
using dynamic load balancing methods were evaluated on a 3D finite element
model of an anchor pullout test. The FE model involved nonlinear nonlocal
anisotropic damage model to describe fracture process and consists of 1456
nodes and 16772 tetrahedral elements, which was subsequently refined in 20
steps into a final mesh with 125400 elements and 22441 nodes. The number of
solution steps was set to 20 and 80 steps. Due to the character of the solution,
the number of required equilibrium iterations was increasing with progressing
solution steps. The number of iterations in one loading step ranged from 9
(first solution step) to 263 (solution step number 80) iterations in order to
successfully solve the loading steps in the solution process.

The problem was solved in parallel on three workstations with different
performances. This setup was deliberately selected in order to demonstrate
the role of using appropriate processing weights. Two of the workstations
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were identical to those mentioned in section 7.3.1, and the third had an Intel®
Core " i9-9000K CPU @ 3.60 GHz with eight cores consisting of two logical
processors per core. On these workstations, a maximum of sixteen threads
(Intel ig), eight threads (Intel i7) and four threads (Intel i3) could be run
simultaneously with hyper-threading support. To disable the Intel hyper-
threading technology, our computations had to be set to a maximum of 14
computational threads, which represents the number of cores available on
these computers.

The iterative linear equation solver from the PETSc library was used with a
block Jacobi preconditioner. The dynamic load balancing framework parame-
ters were set up. Load re-balancing was activated after each fifth solution step.
The relative wall clock imbalance parameter represents the relative im-balance
between wall clock solution time of individual computational threads. When
greater than the provided threshold the rebalancing procedure is activated.
The additional parameter called absolute wall clock imbalance parameter al-
lows to triggered rebalancing procedure when an achieved absolute imbalance
between solution times of individual processing threads is greater than the
threshold. The absolute wall clock imbalance parameter was set to 10.0 [s]. The
minimum absolute wall clock imbalance parameter allows setting minimum
absolute wall clock imbalance threshold for performing rebalancing and was
set to 0.5 [s].

The first set of results is presented in Figures 7.3, 7.4 and 7.5, from a
workstation with an Intel® Core' " i7-4790 CPU @ 3.60 GHz connected to a
workstation with an Intel® Core" i3-2370M CPU @ 2.40 GHz. The results
obtained using the existing dynamic load balancing framework without the
micro benchmark tests to set up processor weights were compared to the
results of the computation process without load balancing. These load balanc-
ing strategies were finally compared to the method using a load balancing
framework in order to better illustrate load balancing frameworks in general.
Figures 7.3 and 7.4 show examples of computation done by processors with
hyper-threading technology disabled (Intel i3 max. 2 threads, Intel i7 max. 4
threads). The computational process with hyper-threading technology enabled
on the i3 processor is shown in Figure 7.5.

The results confirm that better performance is obtained when appropriate
weights are used. In the case with hyper-threading technology enabled, the
scalability trend is not ideal in the solution based on six and eight compu-
tational threads and is worse, for example, than the solution based on two
and four computational threads. The significant decrease in performance can
be attributed to the hyper-threading technology of Intel processors, which
assembles and shares some CPU resources between hyper-threaded cores
and only takes place with 4 threads (note that the workstation with Intel®
Core' i3 had two physical hyper-threaded cores). However, using dynamic
load balancing and appropriate weights (processor performance parameter),
we can achieve better performance than in the solving process without load
balancing or with the existing dynamic load balancing framework not using
micro benchmark tests.
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Figure 7.3: Graph of execution times comparing solutions with estimated process-
ing weights, uniform processing weights and without a load balancing
framework.
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Figure 7.4: Graph of execution times comparing solutions with estimated process-
ing weights, uniform processing weights and without a load balancing
framework.
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Figure 7.5: Graph of execution times with hyper-threading comparing solutions with
estimated processing weights, uniform processing weights and without a

load balancing framework.

The next set of results is shown in Figures 7.6 and 7.7, from the workstations
with a Core i7-4790 CPU @ 3.60 GHz, Core " i3-2370M CPU @ 2.40 GHz
and Core' i3-2370M CPU @ 2.40 GHz. The maximum number of threads
with Intel hyper-threading technology disabled was used for the parallel
computation.

First, the results confirm that better performance is obtained when appropri-
ate weights are used. The difference between these two figures is the number
of computational threads used in the Intel i3, which in the first graph was set
to one thread and in the second graph set to two. Scalability clearly did not
have a linear trend and was not ideal in both cases. Scalability in our case was
clearly affected by multiprocessors sharing of resources (memory, network
and system 1/0).

The effect of shared resources in multiprocessors on scalability is shown
in Figure 7.8 from an object-oriented, parallel finite element framework with
dynamic load balancing [31]. The problem was solved on an SGI Altix 4700
machine installed at the CTU computing centre (dual-core Intel Itanium2
CPUs at 1.6 GHz, NUMA LINK 4 with 6.4 GB/s bidirectional data transfer
rate). The SGI Altix 4700 machine with fifty-five dual processors is used as a
multicomputer, which means each core uses only one thread in computation.
This case is characterized by a zero degree of shared resources in one node
(memory, I/0). Our case used multiprocessors with shared resources. The
results from the multicomputer SGI Altix showed a clear linear trend and
represented good scalability of the parallel algorithm.
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Figure 7.6: Graph of execution times comparing soultions with estimated process-
ing weights, uniform processing weights and without a load balancing
framework.
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Figure 7.8: Execution times of an anchor pullout test (with load balancing performed
before (pre Ib) and after (post Ib) error assessment).

7.5 CONCLUSION

The contribution based on an improved methodology to determine processing
weights parameters as a part of the load balancing framework was presented
in this chapter. The parallelization strategy was based on the static and dy-
namic load balancing process using weights that represented the performance
of computational units. The performance of the upgraded static and dynamic
load balancing process (processor weights parameters) was compared to the
previously implemented static and dynamic load balancing process. In the
first case, the linear benchmark problem was solved with a static load bal-
ancing framework. The next case examined a nonlinear benchmark problem
solved with a dynamic load balancing framework. The results showed dif-
ferences in the performance of the upgraded and previously implemented
static and dynamic load balancing process for the considered benchmark. The
upgraded static and dynamic load balancing process had better performance
than the previously implemented static and dynamic load balancing process.
Future studies will investigate other testing examples (simple linear equation
system solutions) to more precisely assess variables as a representation of
computational unit performance. It is clearly a benefit to using the appropriate
measures of performance of individual computational units performance of
computational units in the load balancing process as a necessary part of any
Finite Element parallel code.
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8.1 SUMMARY

The thesis focused on different aspects of parallelization of finite element soft-
ware. The first part of the thesis described high-performance computing and
available parallel platforms and libraries Chapter 3 generally and then intro-
duced the notion of parallel computing by describing computer architectures
and scalability.

The Finite element method and its application to solving structural problems
are outlined in Chapter 4. The assembly operations for the right-hand side
vector and left-hand side stiffness matrix based on parallel algorithms, which
are a critical operation in any finite element software, were discussed in the
second part of the thesis (Chapter 5). Performance strategies using different
techniques to ensure consistency were developed using with OpenMP, POSIX
Threads and C++11 Threads libraries. The performance of individual strategies
was evaluated on benchmark problems based on structural mechanics analysis.
This study compared different strategies based on individual methods.

The parallel approach to solving large-scale, sparse, non-symmetric systems
of linear equations using a direct solver or direct parallel solver based on
a shared, distributed memory model was discussed in the next part of the
thesis (Chapter 6). The aim of this part was to apply, implement and compare
different solver types based on different memory models. The performance of
a sequential direct SuperLU solver was compared with an iterative solver and
a sequential direct solver with alternative matrix storage (skyline storage). An
interface to parallel direct SuperLU solver (based on either a shared memory
model or distributed memory model) was implemented and compared with
parallel iterative PETSc solver based on a distributed memory model. The per-
formances of individual solvers were evaluated and compared using selected
benchmark problems.

Chapter 7 focused on evaluation and tuning of load balancing framework in
OOFEM solver. The need for load balancing has been discussed and design of
existing load balancing framework has been described. An improved method
to determine actual processing weights has been proposed and compared to
existing approaches on the selected benchmark test.
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8.2 ORIGINAL CONTRIBUTIONS

e Evolutionary algorithms for right-hand side vector and stiffness matrix
assembly operations were presented. The different parallelization strate-
gies based on different shared memory libraries OpenMP, POSIX Threads
and C++11 Threads were implemented. This is a major difference from
previous sequential vector and matrix assembly strategies. However,
their focus is on optimizing the assembly process by reducing computa-
tional time and more efficiently using modern parallel hardware. The
different assembly parallelization strategies based on a shared memory
model were described in papers [5], [6], [7], [8] and [9].

e A new interface to the direct SuperLU solver for solving large sparse sys-
tems of linear equations were presented in the thesis. The SuperLU solver
is a general purpose library and has three libraries Sequential SuperLU,
Multithreaded SuperLU (shared memory model) and Distributed SuperLU
(distributed memory model). The implemented SuperLU interfaces were
compared with a previously implemented sequential direct solver (Sky-
line matrix), sequential iterative solver (IML) and parallel iterative solver
based on the distributed memory model (PETSc). The presentation of
different interfaces of the direct SuperLU solver and a comparison with
the above-mentioned solvers were discussed in papers [10], [11], [12]
and [13].

e The improvement of load balancing framework, based on a realistic
estimation of actual processing performances of individual nodes is
presented. The input parameters represent the performance of compu-
tational units. The original contribution is based on an upgraded static
and dynamic load balancing process (processor weight parameters). The
new implemented methods were compared with previously static and
dynamic load balancing frameworks and the solution process without
a load balancing process. The newly static load balancing framework
designing process and opportunities were presented in paper [14]. New
opportunities for a dynamic load balancing framework that had not
previously been published were presented in the thesis.

83 RECOMMENDATIONS FOR FUTURE WORK

The performance of the described load balancing framework could potentially
be significantly improved by considering communication speeds between
processing nodes by using parameters that represent communication speeds
through different, heterogeneous networks. The load balancing framework is
based on parallel computation using a distributed memory model. This model
uses a message passing interface. For example, many distributed systems are
now being constructed using a variety of different communication networks,
such as Ethernet and Asynchronous Transfer Mode (ATM). In addition to
this hardware heterogeneity, there is a heterogeneity in the types of messages
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produced by parallel programs. Short synchronization messages require low
latency. Conversely, large data messages require high-bandwidth, though they
can tolerate high start-up latency. The different types of networks have differ-
ent performance characteristics, while the different types of communication
messages may have different communication requirements. The performance
of parallel computations based on a distributed memory model is typically
limited by communication overhead. High-performance networks and the use
of multiple heterogeneous networks can help reduce this overhead. Further
research could focus on designing the load balancing framework’s input pa-
rameters, which represent different types of networks providing a data path
between the same pair of network nodes. These load balancing parameters
(network weight parameters) may allow a solution process to maximize effi-
cient use of different types of networks rather than passively accept the given
features of a single network.

The importance of parallel computing is increasing rapidly with multi-core
CPUs, GPUs (graphics processing unit) and cluster systems. Computationally
demanding and data-intensive scientific engineering computations are strongly
affected by this trend and require innovative efficient parallel solutions. Further
research could focus on improving the performance of parallel computations
using GPUs. The GPU accelerates solutions running on the CPU by offloading
some of the computationally intensive and time consuming portions of the
code. Applications can reduce computational time by using the massively
parallel processing power of the GPU to boost performance. This type of
parallel computing is known as heterogeneous or hybrid computing. A CPU
consists of tens of CPU cores, while a GPU consists of hundreds of smaller
cores. Indeed, some types of GPUs are designed as computational accelerators
or companion processors optimized for scientific and technical computing
applications.
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