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Abstract

This thesis describes the design and development of an acoustophoretic manipulation platform
AcouMan. The platform uses a matrix of ultrasonic transducers to steer millimeter-scale
objects floating on a water surface. The transducers driven by phase-shifted square-wave
signals allow shaping the acoustic field. The phase-shifts are periodically determined through
real-time numerical optimization so that a desired shape of the acoustic field is achieved.
An implementation of a tailored solver was necessary to meet the real-time requirements.
The thesis explores the manipulation of spherical and planar floating objects. For both, a
mathematical model is designed that describes the motion of the object due to the force
effect of the acoustic field. The control system for spheres is based on a linear-quadratic
regulator (LQR); the control system for planar objects is based on model predictive control
(MPC) and particle swarm optimization (PSO). Besides positioning single and multiple
objects, the performance of the control methods is also demonstrated through assembling
several planar objects into predefined tight formations.

Keywords: ultrasound, non-contact manipulation, LQR, MPC, real-time optimization

Abstrakt

Tato práce popisuje návrh a vývoj akustoforetické manipulační platformy AcouMan. Tato
platforma využívá pole ultrazvukových měničů pro řízení milimetrových objektů plovoucích
na vodní hladině. Ultrazvukové měniče jsou řízeny obdélníkovými signály s různými fázovými
posuvy, což umožňuje tvarovat akustické pole. Tyto fázové posuvy se nastavují periodicky
podle výsledků numerické optimalizace tak, aby vzniklo akustické pole s požadovaným
tvarem. Pro funkčnost v reálném čase bylo nutné implementovat solver šitý na míru. Tato
práce zkoumá bezkontaktní manipulaci s kulovými a planárními objekty. Pro oba případy je
navržen matematický model objektu, který popisuje jeho pohyb v důsledku silového působení
akustického pole. Systém pro řízení kulových objektů je založen na lineárně-kvadratickém
regulátoru (LQR), zatímco systém pro planární objekty je založen na prediktivním řízení
(MPC) a tzv. particle swarm optimalizaci (PSO). Výkon těchto řídicích metod je kromě
pozicování jednoho či více objektů demonstrován také skládáním planárních objektů do
předepsaných těsných formací.

Klíčová slova: ultrazvuk, bezkontaktní manipulace, LQR, MPC, optimalizace v reálném
čase
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1 | Introduction

In this thesis, I present AcouMan, a novel platform for contactless acoustophoretic manipula-
tion of multiple objects. The platform can manipulate spherical objects (balls) and planar
objects (thin, 3D-printed shapes) that float in a container filled with water. The objects are
affected by forces that arise from the shape of the surrounding acoustic field. The field is
shaped by a 16-by-16 array of ultrasonic transducers. The position of the objects is measured,
allowing for precise feedback manipulation.

1.1 Motivation

AcouMan is the second iteration of an acoustophoretic platform. In 2018, I wrote and
successfully defended a Bachelor’s thesis about the first version of the platform [1]. A year
later, I have co-authored and presented a paper about this version at the 8th IFAC Symposium
on Mechatronic Systems [2]. Albeit functional, the first version had some drawbacks. The
biggest issue was its small manipulation area and the fact that it was able to control only
one object at a time. Also, the developed control system could only manipulate spherical
objects. Thus, the first version served as a proof of concept.

This thesis aims to fully explore the possibilities of this method of ultrasonic manipulation.
The newly built platform should have a larger manipulation area, should be able to steer
multiple objects at once, and it should be able to manipulate floating planar objects, not
just spheres.

1.2 State of the art

There are numerous applications that use an array of ultrasonic transducers. The most
prominent example is the acoustic levitation. A comprehensive overview of progress in the
development of acoustic levitation is provided in a paper by Andrade et al. [3]. In short,
there are several methods that utilize both standing [4, 5, 6], and traveling [7] waves and can
manipulate objects of various sizes, ranging from microscopic [5, 6] to millimeter-scale [4, 7].
The platforms mentioned above, as well as the majority of others, use open-loop control —
they do not need to measure the position of manipulated objects, because they are naturally
stable. An example of closed-loop control is the so-called Ultra-Tangibles platform developed
by Marshall et al. [8]. This platform allows for interactive manipulation of multiple objects.
However, compared to AcouMan, it is far more complicated — each ultrasonic transducer
has its own microcontroller.

1



2 Chapter 1. Introduction

Another example of a platform that uses an array of ultrasonic transducers is the so-called
Ghost Touch developed by Marzo et al. [9]. This platform is very similar to AcouMan in the
way it shapes the acoustic field. The transducers are driven by square-wave voltage signals
with appropriate phase shifts to generate acoustic pressure focal points in desired positions.
Controlled positioning of these focal points enables drawing in the sand, inducing flow in a
fluid, and to create, move with, or pop bubbles in a soap solution. It is precisely this effect
of focal points on various substances that the AcouMan platform attempts to harness for
the purpose of contactless manipulation.

1.3 Thesis outline

The thesis is structured in accordance with the assignment. Each bullet point from the
assignment corresponds to one chapter. In Chapter 2, I present the mechanical and electronic
components of the platform. In Chapter 3, I define the optimization problem for shaping the
acoustic field and describe an algorithm for solving it. In Chapter 4, I design a method for
independent manipulation of multiple spherical objects. This procedure involves modeling
the spherical object, designing a control system, identifying the parameters of the model,
and tuning the control system parameters. In Chapter 5, I repeat this design procedure for
planar objects. In Chapter 6, I present an algorithm for assembling these planar objects into
predefined formations. Finally, I conclude this thesis in Chapter 7.



2 | Hardware

In this chapter, I briefly describe the mechanical and electronic components of the platform.
As mentioned in the introduction, AcouMan is the second iteration of an acoustophoretic
platform; the original version was built as a part of my Bachelor’s thesis. A photograph of
both platforms is shown in Figure 2.1a.

2.1 Mechanical design

Similarly to its predecessor, the new platform is composed of three laser-engraved plexiglass
panels. The bottom panel serves as a mount for the Raspberry Pi camera module and the
LED lights. The bottom panel of the new version is spray-painted with matte black paint to
reduce reflections, and the LED strips illuminating the manipulation area are covered with
translucent plastic, which acts as a diffuser.

The middle panel is the manipulation area. In the previous version, I used a Petri dish as a
container for the floating object, as shown in Figure 2.1c. Because the effective manipulation
area of the new version is larger, I can no longer use the Petri dish. To solve this problem, I
have built a pool with 3D-printed walls. Detail of the pool is shown in Figure 2.1b.

The top panel holds the array of ultrasonic transducers. The previous version utilized a
laser-cut box as housing, while the new version has the printed circuit board (PCB) with
transducers attached directly to the plexiglass panel. The array of transducers is also larger,
increasing from 64 to 256 actuators.

2.2 Electronics

The electronic components of the platform consist of 256 Murata MA40S4S ultrasonic
transducers, four signal generators to drive them, and a Raspberry Pi computer. A diagram
with connections between these components is shown in Figure 2.2.

The Raspberry Pi is the central ‘brain’ of the platform. It processes the images from the
camera module1, runs the control algorithm, and communicates with the signal generators.
The control algorithm is implemented in Simulink, allowing for rapid prototyping. The
Simulink models are available on the AcouMan GitLab repository (see Appendix A.1).

The signal generator is based on the Terasic DE0-Nano field-programmable gate array

1The computer vision system is available at https://github.com/aa4cc/raspi-ballpos.
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4 Chapter 2. Hardware

Transducers 

Manipulation area

Camera

(a) A side-by-side comparison between the old (right) and new (left)
platform

(b) Manipulation area of the new platform (c) Manipulation area of the old plat-
form

Figure 2.1: Photographs of the old and the new acoustophoretic platform

(FPGA) board, and a custom-made ‘shield’ add-on. The FPGA board generates 64 phase-
shifted square-wave signals having 3.3 volts peak-to-peak (Vpp), which are then amplified to
16 Vpp by the shield. The phase-shifts and duty cycles of individual signals are set via USB
from the Raspberry Pi. The duty cycles are only used to turn individual channels on (50 %
duty) or off (0 % duty), not to regulate the power of the transducers. The resolution of the
phase-shifts is one degree (π/180 radians).

Since the signals that drive the transducers are generated on four separate FPGA boards, the
boards need to be synchronized. The synchronization method as well as the FPGA program
was designed by an undergraduate student Petr Brož2. His solution employs a master-slave
architecture. One FPGA board, configured as the master, transmits high-frequency pulses,
which mark the rising edge of a zero phase-shift signal. Other boards receive these pulses

2The code is available at https://github.com/aa4cc/fpga-generator.

https://github.com/aa4cc/fpga-generator


2.2. Electronics 5

Raspberry
Pi Computer

Generator 1

Generator 2

Generator 3

Generator 4

Camera module

Ultrasonic
transducers

Figure 2.2: Principal signal diagram of the platform

and adjust accordingly. When the FPGA boards receive the new set of phase-shifts and
duty cycles, they do not reconfigure their outputs immediatelly. Instead, they wait for a
trigger pulse transmitted from one of the general purpose input-output (GPIO) ports of
the Raspberry Pi. Therefore, the driving signals change simultaneously. In addition, the
FPGA generators also transmit an acknowledgement whether they received the new set of
phase-shifts or duty cycles correctly.

My contribution consists mainly of the communication script that runs on the Raspberry Pi.
The script has a defined number of communication attempts. It transmits the given set of
phase-shifts and duty cycles to every generator until it receives an acknowledgement or runs
out of attempts. Upon transmitting the last message, the script sends the trigger pulse to
the generators.





3 | Shaping the acoustic field

In this chapter, I present the mathematical model of the acoustic field, explain why it is
necessary to use numerical optimization, formulate the optimization problems and algorithms
for solving them.

3.1 Model of the acoustic field

In the previous chapter, I stated that the ultrasonic transducers are driven by phase-shifted
signals. In this section, I explain how the different phase-shifts affect the shape of the
acoustic field.

The mathematical model, which describes the field, uses acoustic pressure in complex phasor
notation. When calculating the total acoustic pressure, P , at a given point, (x, y, z), with a
given vector of phase-shifts, Φ = [ϕ1, . . . , ϕN ], I assume the principle of superposition:

P (x, y, z,Φ) =
N∑
i=1

P (i)(x, y, z, ϕi) , (3.1)

where P (i)(x, y, z, ϕi) is the contribution from the ith transducer. This contribution is
expressed as a product of position- and phase-shift-dependent parts:

P (i)(x, y, z, ϕi) = M (i)(x, y, z) ejϕi . (3.2)

Model of the position-dependent part used in this thesis was proposed in [9], and is defined
as:

M (i)(x, y, z) = P0 fdir(x, y, z)
1
d

ejkd , (3.3)

where P0 is the nominal pressure at the distance of 1 m, fdir is the so-called directivity
function, d is the distance between the point and the transducer, and k is the wavenumber.

For the directivity function, I employ a far-field model of a vibrating piston source [10, p.
179-182] 1:

fdir = 2 J1(k r sin θ)
k r sin θ , (3.4)

where r is the radius of the transducer, J1 is the first-order Bessel function of the first kind,
and θ is the angle between the vertical axis of the transducer and the transducer-point

1Due to the high computational cost of evaluating the Bessel function, the directivity in the actual
algorithm is pre-computed at several given points and then approximated by linear interpolation.

7



8 Chapter 3. Shaping the acoustic field

connector. Assuming that the coordinate system is centered at the transducer, the sine of θ
is equal to

sin θ =
√
x2 + y2

d
=
√

x2 + y2

x2 + y2 + z2 . (3.5)

3.2 Formulating the optimization problem

While it is relatively straightforward to calculate the shape of the acoustic field generated
by a given set of phase-shifts, the inverse problem (i.e., finding phase-shifts that generate a
prescribed acoustic field) is far from being trivial, and to my best knowledge, it does not
have a closed-form solution.

Objects exposed to the acoustic field tend to move from high-pressure to low-pressure areas.
For the purpose of manipulation, it is desirable to create areas with different pressure, which
push the objects. To shape the acoustic field, it is necessary to use numerical optimization
with a carefully selected criterion. I have explored three possible criteria for this optimization
problem.

3.2.1 Amplitude fitting

The phase of the acoustic pressure has no observable effect on objects placed in the field. It
is, therefore, sufficient to consider only the amplitude.

The simplest criterion, which I already used in my Bachelor’s thesis, is defined as follows:
Let there be n points, (x1, y1, z1), . . . , (xn, yn, zn), with desired amplitudes, A1, . . . , An. The
optimal phase-shifts are obtained by solving a nonlinear least squares problem:

Φ∗ = arg min
Φ∈RN

n∑
i=1

(
|P (xi, yi, zi,Φ)|2 −A2

i

)2
. (3.6)

The amplitude of the total acoustic pressure is squared, because it is actually easier to
calculate the square than the amplitude itself. An efficient formula for calculating the
amplitude is presented in Appendix B.1.

3.2.2 Local maximum constraint

Having a prescribed amplitude at a given point is often not sufficient. To have the desired
effect on the manipulated object, the specified point must also be a local maximum.

The correct way of ensuring that the specified point is a local maximum would be to
minimize eigenvalues of the spatial Hessian matrix (which is equivalent to minimizing the
sum of the second spatial derivatives of the acoustic pressure) and simultaneously have the
spatial gradient equal to zero. Unfortunately, calculating the second spatial derivatives is
computationally prohibitive.



3.3. Optimization algorithm 9

A computationally manageable criterion uses only the first-order condition for a local extreme:

Φ∗ = arg min
Φ∈RN

n∑
i=1

[
wp

(
|P (xi, yi, zi,Φ)|2 −A2

i

)2
+

(
∂ |P (xi, yi, zi,Φ)|2

∂x

)2

+
(
∂ |P (xi, yi, zi,Φ)|2

∂y

)2 ]
,

(3.7)

where wp is a weight that allows to adjust the trade-off between having the required
amplitude and having zero gradient. Since the movement of objects is restricted to the
xy plane, minimizing the spatial derivative with respect to z is not necessary. An efficient
formula for calculating the spatial derivatives is presented in Appendix B.2.

Compared to criterion in (3.6), this criterion attempts to achieve a local maximum by
minimizing the square of the spatial derivatives. This approach does not guarantee a local
maximum (in fact, it can also result in a local minimum or a saddle point). However, thanks
to the nature of the underlying mathematical model, minimizing this criterion results in a
local maximum if the specified amplitude is high enough.

3.2.3 Gradient fitting

A different approach to creating high- and low-pressure areas is based on the assumption
that the pressure difference between these zones is proportional to the steepness of the
acoustic pressure gradient. The criterion is defined as follows: Let there be n points,
(x1, y1, z1), . . . , (xn, yn, zn), with desired value of spatial derivatives, (Px1 , Py1), . . . , (Pxn , Pyn).
The optimal phase-shifts are obtained by solving a nonlinear least squares problem:

Φ∗ = arg min
Φ∈RN

n∑
i=1

(∂ |P (xi, yi, zi,Φ)|2

∂x
− Pxi

)2

+
(
∂ |P (xi, yi, zi,Φ)|2

∂y
− Pyi

)2
 .
(3.8)

Unlike the two previous criteria, the amplitude of the acoustic pressure is not considered here.
This can lead to potential issues if the resulting amplitude is too high, as high-amplitude
acoustic pressure can break the surface tension of water and create bubbles.

3.3 Optimization algorithm

All three criteria listed above lead to nonlinear least squares problems. There are various
methods for solving this class of problems[11]; one of them is the Levenberg-Marquardt (LM)
algorithm.

The LM algorithm is used to solve a nonlinear least squares problem, which is generally
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defined as:
p∗ = arg min

p
‖f(p)− y‖22 , (3.9)

where p is the vector of free variables (in the acoustic field shaping problem, p would be the
vector of phase-shifts), f is the nonlinear function, y is the vector of fitted values, and ‖.‖2
represents the Euclidian norm of a vector.

The LM algorithm is iterative; in every iteration, the estimate p is updated by adding a
vector δp. The value of δp is determined by solving a set of linear equations:(

JT J + µ IN
)

δp = −JT (f(p)− y) , (3.10)

where J is the Jacobian matrix of f , IN is an N ×N identity matrix, and µ is a damping
coefficient. The value of µ changes depending on the performance of the algorithm — it
increases when the algorithm fails to converge and decreases otherwise.

The set of equations in (3.10) is in a form that can be efficiently solved using a ‘kernel
trick,’ described in [12, p. 332]. The kernel trick lowers the complexity of solving (3.10) by
transforming the original system of N equations and N unknowns to a smaller system of n
equations with n unknowns. Formally, the solution can be expressed as:

δp = −
(
JT J + µ IN

)−1
JT (f(p)− y) . (3.11)

The following identity (
JT J + µ IN

)−1
JT = JT

(
J JT + µ In

)−1
, (3.12)

holds true for any matrix J ∈ Rn×N and scalar µ > 0 (proof in [12, p. 333]). This identity
can be substituted to (3.11) to obtain

δp = −JT
(
J JT + µ In

)−1
(f(p)− y) , (3.13)

where we need to invert a smaller n-by-n matrix instead of the original N -by-N matrix in
(3.11). Furthmore, we can make use of the special structure of the underlying linear system
of equations in (3.13) and solve the system efficiently by QR factorizaion. First, let us define
a stacked matrix

J̄ =
[

JT
√
µ In

]
. (3.14)

The following identity holds true for the stacked matrix

J̄T J̄ = J JT + µ In . (3.15)

Now, let us decompose the matrix J̄ into QR factors. The matrix J̄ has dimensions (N+n)×n.
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Therefore, its R factor is composed of an n× n upper triangular matrix R1, and an N × n
matrix of zeros. Thus, the term J̄T J̄ can be expressed as

J̄T J̄ =
(

Q
[
R1

0

])T

Q
[
R1

0

]
= RT

1 R1 . (3.16)

Combining (3.15) and (3.16) yields the following identity

J JT + µ In = RT
1 R1 . (3.17)

Substituting this identity into (3.13) yields

δp = −JT R−1
1 R−T

1 (f(p)− y) . (3.18)

Solving for δp using the ‘kernel trick’ has an algorhitmic complexity of Nn2 [12, p. 333],
while solving the set of N equations defined in (3.10) directly has a complexity of N3. Since
N (the number of transducers) is 256 and n (the number of fitted values) is at most 4, the
kernel trick brings a major improvement over direct calculation.

3.4 The resulting shape of the acoustic field

A comparison between acoustic fields generated by amplitude fitting (i.e., by minimizing
criterion (3.6)), and by amplitude fitting with local maximum constraints (i.e., by minimizing
criterion (3.7) with wp = 1) is shown in Figures 3.1 and 3.2. The blue arrows show the
direction and magnitude of the spatial derivatives of the acoustic pressure, the green cross
marks the desired position of the high-pressure point, and the red circle marks the actual
position of the local maximum of acoustic pressure.

(a) The acoustic field shaped by minimizing crite-
rion (3.6)

(b) The acoustic field shaped by minimizing cri-
terion (3.7)

Figure 3.1: Slices of the acoustic pressure field at z = 75 mm. The required amplitude is
2500 Pa at (x, y, z) = (0, 0, 75).
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(a) The acoustic field shaped by minimizing crite-
rion (3.6)

(b) The acoustic field shaped by minimizing cri-
terion (3.7)

Figure 3.2: Slices of the acoustic pressure field at z = 75 mm. The required amplitude is
2500 Pa at (x, y, z) = (45, 45, 75).

If the specified high-pressure point has its x- and y-coordinates equal to zero, the resulting
field has an identical shape, and the specified point is the local maximum in both cases,
as shown in Figure 3.1. However, if the specified point is not at the center, the amplitude
fitting method does not generate a field, where the specified point is the local maximum.
This can be seen in Figure 3.2a, where the distance between the specified point and the
local maximum is approximately 2 millimeters. Figure 3.2b shows that this issue is solved
by adding the spatial derivatives of the amplitude of the acoustic field to the cost function
(see (3.7)).

The acoustic field generated by gradient fitting is shown in Figure 3.3. While this method
generates a low- and high-pressure area near the specified point, it can also create a second
local maximum. This second maximum may have an unpredictable effect on the manipulated
object.

Figure 3.3: The acoustic field shaped by minimizing criterion (3.8). The required spatial
derivatives with respect to x and y are both −7× 108 Pa2 m−1 at (x, y, z) = (0, 0, 75).



3.5. Algorithm benchmarking 13

Another important aspect that needs to be addressed is the physical limitations of the acoustic
field. Minimizing the ‘amplitude fitting’ criteria (3.6) and (3.7) can generate amplitudes of
acoustic pressure as high as 3500 pascals. As mentioned above, such high amplitudes tend to
break the surface tension of water and create bubbles, which cause random disturbances to
the manipulated objects. To prevent this, the generated amplitudes must be limited to 2500
pascals. We can enforce this limit by limiting the required amplitude since the amplitude of
the resulting local maximum is close to the required value, as shown in Figures 3.1 and 3.2.

The spatial gradients of the acoustic pressure modulus are limited as well. Through trial
and error, I have concluded that the resulting spatial gradient is limited to approximately
1× 109 Pa2 m−1 in all directions, i.e., the following inequality holds for the spatial derivatives:

(
∂ |P (xi, yi, zi,Φ)|2

∂x

)2

+
(
∂ |P (xi, yi, zi,Φ)|2

∂y

)2

≤
(
109
)2

. (3.19)

3.5 Algorithm benchmarking

To assess the performance of the proposed algorithms, I have created a benchmark program.
The program measures the execution time of individual algorithms on problems with one
up to four fitted points, 256 transducers, and various values for the required amplitudes or
spatial gradients.

I have tested the LM algorithm with the three proposed criteria, as well as the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm used in my Bachelor’s thesis [1]. The
results are shown in Figure 3.4. As you can see, the LM algorithm brings a significant
improvement in execution time over BFGS. In the following chapters, I will, therefore, use
the LM algorithm with both amplitude and gradient fitting.

Figure 3.4: Results of algorithm benchmarking. The dashed lines go through medians, the
error bars span from minima to maxima.





4 | Manipulation of floating
spherical objects

In this chapter, I describe the mathematical models and control systems involved in manipu-
lating multiple floating spherical objects. All of the described experiments were done with
polypropylene balls having 10 mm in diameter.

4.1 Modeling a floating object

Due to its symmetry, a floating sphere can be modeled as a point mass with coordinates x
and y. According to Newton’s second law, the dynamics of the object are:

mẍ = −cd ẋ+ Fx , m ÿ = −cd ẏ + Fy , (4.1)

where m is the mass of the object, cd is the coefficient of drag, and Fx and Fy are the x-
and y-components of the acoustophoretic force, respectively.

When modeling the acoustophoretic force, I used a control-oriented empirical approach. This
means that the created model is simple enough to be computed in real-time and made to
reflect the behavior of the system rather than the underlying physics. Depending on the
method of acoustic field shaping, I propose two mathematical models: an amplitude fitting
model and a gradient fitting model. These will be discussed next.

4.1.1 ‘Amplitude fitting’ model

In the case of amplitude fitting, the control strategy is to create a high-pressure point at a
fixed distance from the center of the sphere. The coordinates of this point, (xp, yp), can be
expressed as:

xp = x+R cosα , yp = y +R sinα , (4.2)

where R is a fixed distance, and α is a given angle.

Let P be the amplitude of the high-pressure point. Then, the components of the acoustophoretic
force are equal to:

Fx = −cp max (P − 800, 0) cosα , Fy = −cp max (P − 800, 0) sinα , (4.3)

15
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(a) Acoustophoretic force created by a high-
pressure point (represented by orange color).

(b) Acoustophoretic force created by a gradi-
ent of acoustic pressure (represented by color
gradient in the upper right corner).

Figure 4.1: Acoustophoretic forces depending on the shape of the acoustic field

where cp is a conversion coefficient. The max function in the formulas implements a dead
zone — the acoustophoretic force is zero until the high-pressure point exceeds 800 pascals.
This dead zone is caused by the fact that the force depends on the difference of pressures
rather than the absolute value, and the amplitude outside the high-pressure point is usually
800 Pa, as can be seen in Figures 3.1 and 3.2. The relation between acoustic pressure and
force is illustrated in Figure 4.1a.

Let vx and vy be velocities of the sphere in x- and y-coordinate, respectively. Let us further
define inputs ux and uy as

ux = −max (P − 800, 0) cosα , uy = −max (P − 800, 0) sinα . (4.4)

Let us define two sets of states, xx = [vx, x]T and xy = [vy, y]T. Combining the equations
above yields the following state-space description of the system:

ẋx =
[
− cd
m 0

1 0

]
︸ ︷︷ ︸

Ap

xx +
[
cp
m

0

]
︸ ︷︷ ︸
Bp

ux , ẋy = Ap xy + Bp uy , (4.5a)

x =
[
0 1

]
︸ ︷︷ ︸

Cp

xx , y = Cp xy . (4.5b)

4.1.2 ‘Gradient fitting’ model

If the acoustic field is shaped by gradient fitting, the point with the specified gradient is
equivalent to the center of the sphere. Let Px and Py be the spatial derivatives of acoustic
pressure modulus with respect to x and y. Then, the components of the acoustophoretic
force are equal to

Fx = −cg Px , Fy = −cg Py , (4.6)



4.2. Control system 17

where cg is a conversion coefficient. The relation between acoustic pressure gradient and
force is illustrated in Figure 4.1b.

Let us use the same sets of states as in the previous section. Combining (4.1) and (4.6)
yields the following state space description:

ẋx =
[
− cd
m 0

1 0

]
︸ ︷︷ ︸

Ag

xx +
[
− cg
m

0

]
︸ ︷︷ ︸

Bg

Px , ẋy = Ag xy + Bg Py , (4.7a)

x =
[
0 1

]
︸ ︷︷ ︸

Cg

xx , y = Cg xy . (4.7b)

4.2 Control system

The control system is created in Simulink. It runs on the Raspberry Pi with a sampling
frequency of 25 Hz. The system comprises five distinct function blocks: a computer vision
block, a bank of predictors (one for each manipulated object), a controller, an optimization
algorithm, and a block for communication with the signal generators. A diagram with signals
exchanged between these blocks is shown in Figure 4.2.

The computer vision block measures the position of the spheres based on images from the
camera. I use the raspi-ballpos script, available at AA4CC research group’s github1, for this
task. The optimization algorithm is described in Chapter 3, and the communication script
is described in Chapter 2. In the following subsections, I will describe the predictor and the
controller.

Computer 
vision

Predictor 1

Controller
Optimization 

algorithm
Communication 

script

Amplitude
fitting

Gradient
fitting

Predictor n

Figure 4.2: Signal diagram of the control system.

1https://github.com/aa4cc/raspi-ballpos

https://github.com/aa4cc/raspi-ballpos
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4.2.1 Predictor

Due to the time it takes to process the camera image and the lag in the camera interface, the
measured position is delayed by approximately 80 milliseconds, which is equivalent to two
control periods. To compensate for this delay, I have designed a Kalman predictor. First,
the measurement is brought into a Kalman filter, together with the delayed inputs. The
filter outputs delayed estimates of states, x̂x(t− 2) and x̂y(t− 2). Undelayed estimates are
obtained by applying the discretized state equation:

x̂x(t) = Ā2 x̂x(t− 2) + B̄ux(t− 1) + Ā B̄ux(t− 2) (4.8a)

x̂y(t) = Ā2 x̂y(t− 2) + B̄uy(t− 1) + Ā B̄uy(t− 2) , (4.8b)

where Ā and B̄ are matrices obtained by ZOH discretization of the system described in
(4.5a), or (4.7a), depending on the control mode.

4.2.2 Controller

The controller is a relatively complex block and can be further decomposed into function
blocks. The schematic of the controller is shown in Figure 4.3

First, the estimated states are subtracted from reference setpoints and then multiplied
by a state feedback gain K. The controlled system has a pole in origin. Therefore, it
is possible to achieve zero steady-state error when tracking a constant position reference
without augmenting the system with integral control.

Then, the output of the collision avoidance system is added to the result. The collision
avoidance system uses a variant of the commonly used virtual repulsive potential field (first
introduced in [13]). The system outputs control action increments for the ith object, ∆uxi
and ∆uyi, based on the following formulas:

∆uxi = cr

∑
j∈{1,...,n}\{i}

x̂i − x̂j
d3
ij

, ∆uyi = cr

∑
j∈{1,...,n}\{i}

ŷi − ŷj
d3
ij

, (4.9)

where cr is the repulsive force coefficient and dij is the mutual distance between ith and jth

object.

Let us denote the resulting control actions ũx and ũy. These control actions need to be
limited, so they do not exceed the physical capabilities of the acoustic field. In the case of
amplitude fitting, the acoustic pressure must be lower than 2500 Pa. From (4.4), the relation
between the control actions and the required amplitude, P , is:

u2
x + u2

y = (P − 800)2 , if P ≥ 800 . (4.10)
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Collision
avoidance

2D
saturation

High-pressure/
gradient
calculation

2D
saturation

High-pressure/
gradient
calculation

Figure 4.3: A signal diagram of the controller block.

Therefore, the control actions need to be limited, so that

u2
x + u2

y ≤ 17002 . (4.11)

In the case of gradient fitting, the optimization problem cannot yield a gradient of amplitude
modulus greater than 1× 109 Pa2 m−1 in any direction. Therefore, the required gradients
need to be limited, so that

P 2
x + P 2

y ≤
(
109
)2

. (4.12)

In both cases, the constraint has the identical form, which can be generally expressed as
u2
x+u2

y ≤ u2
max . To satisfy this constraint, I propose a ‘two-dimensional saturation’ function.

Let us define an auxiliary variable ū =
√
ū2
x + ū2

y. If ū is less or equal than umax, the
saturated outputs are equal to the inputs. However, if ū is greater than umax, the outputs
are:

ux = umax
ū

ūx , uy = umax
ū

ūy . (4.13)

In the case of gradient fitting control, the saturated control actions are equal to the required
spatial derivatives and the coordinates of the fitted point are equal to the estimated coordi-
nates of the object. However, when using the amplitude fitting control mode, the saturated
control actions need to be converted into position and amplitude of a high-pressure point.
Recalling (4.2), the relations between the control actions and the coordinates of the point
are:

xp = x̂+R cosα , yp = ŷ +R sinα , (4.14)
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where the cosine and sine of the angle α are:

cosα = − ux√
u2
x + u2

y

, sinα = − uy√
u2
x + u2

y

. (4.15)

Recalling (4.10), the relation between the control actions and the amplitude is:

P =
√
u2
x + u2

y + 800 . (4.16)

4.3 Identification and parameter tuning

In this section, I explain how are the tasks of model identification and parameter tuning
related, what issues does this relation create, and how did I solve them. To prevent working
with too large or too small numbers, I have decided to use SI-prefixed units for some of the
quantities and parameters. Namely, I am using mm for coordinates, mm s−1 for velocities,
kPa for pressure, and kPa2 m−1 (equivalent to 106 Pa2 m−1) for the gradient of amplitude
modulus.

4.3.1 Model identification

Recalling (4.5a) and (4.7a), the matrices A and B of the state-space description are in a
form

A =
[
−d 0
1 0

]
, B =

[
g

0

]
, (4.17)

where d and g are unknown parameters, which need to be identified.

Due to the unstable dynamics of the system, I have decided to use closed-loop identification.
However, this is a kind of chicken-and-egg problem. We want to identify the model of the
system in a closed loop, but to close the loop, we plan to use a model-based controller
(LQR+Kalman filter), which we cannot design without the identified model. While a simple
P controller can replace the LQR for the purpose of identification, the Kalman predictor
is essential in estimating the object’s current position, which is then used to calculate the
desired position of the high-pressure point or the gradient.

To solve this problem, I employ an iterative approach. I start with an initial guess of
parameters d and g. Then, I perform an experiment with the closed-loop system and measure
the inputs and outputs. Then, I refine the estimated parameters using the measured data,
and the greybox identification tool provided in the Matlab System Identification Toolbox.
This process of measurement and parameter update is repeated until the estimates converge.

Results of the iterative identification are shown in Figure 4.4. I am using the mean of all
experiments as the final value of the parameters. The values of d slightly differ in amplitude
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(a) Identified parameters of amplitude fitting
model.

(b) Identified parameters of gradient fitting
model.

Figure 4.4: Results of iterative parameter identification.

fitting and gradient fitting, with dp = 2.48 and dg = 2.20. The value of gp is 134 and the
value of gg is −0.122.

4.3.2 Parameter tuning

The value of the LQ-optimal state feedback gain K is determined by the weight matrices Q
and R. I am using a diagonal matrix for Q, and since the model of the object is composed
of two identical SISO systems, R is a scalar. Therefore, there are three parameters that
need to be tuned.

I begin by setting both R and the first diagonal element of Q to one. Then, I set the second
diagonal element of Q so that the simulated response of the system to a step in position
reference settles as fast as possible without overshooting. The resulting matrix Q is identical
for amplitude fitting and gradient fitting model:

Q =
[
1 0
0 10

]
. (4.18)

The value of R is then set so that the control action is not saturated if the position error is
less than 10 mm. The resulting value of R is 1× 10−8 for amplitude fitting, and 1× 10−5

for gradient fitting.

Another set of iteratively tuned parameters are the noise characteristics for the Kalman filter.
To avoid confusion with the LQR weights, let us denote the process noise covariance matrix
as W and the measurement noise covariance as V. Let us assume that in the continuos-time
system, the disturbances only affect the derivative of velocity. Therefore, the continuos-time
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stochastic state-space equations of the system are:

ẋ = A x + Bu+ Γw , (4.19a)

y = C x + v , (4.19b)

where Γ =
[
1 0

]T
, and w and v are white, zero-mean uncorrelated Gaussian stochastic

processes with covariances E
[
w2] = q and E

[
v2] = V. While the covariance of the measure-

ment noise, V, is identical in the continuous- and discrete-time systems, the covariance of
the discrete-time process noise needs to be calculated using the following formula[14, p. 397]:

W =
∫ Ts

0
eAτ Γ qΓT eATτ dτ , (4.20)

where Ts is the sampling period.

By default, the Matlab implementation of the Kalman filter uses the steady-state Kalman
gain, obtained by solving the dual LQR problem [15]. Therefore, the performance of the
filter is determined by the ratio of the process and measurement noise covariances rather
than by their actual values. If the Kalman filter is optimal, its innovation sequence (i.e.,
the difference between measured and predicted outputs) is uncorrelated [16]. Therefore,
the matrices W and V can be iteratively tuned until the normalized autocovariance of the
resulting innovation sequence is minimal. The value of V can be obtained by calculating
the autocovariance of the measured position when the object remains at rest. The resulting
value of V is 1.17. The matrices Wp and Wg for amplitude fitting and gradient fitting
model, respectively, are:

Wp =
[

12.0 0.12
0.12 0.00162

]
, Wg =

[
24.7 0.247
0.247 0.00333

]
. (4.21)

The resulting autocovariance sequences are shown in Figure 4.5.

4.4 Results

To test the ability of the control system to track a moving reference, I have designed two
types of reference trajectories. Let xri and yri be the position reference of the ith object.
Then, the first trajectory type can be described by the following equations:

xri(t) = rx cos (ϑi(t)) , yri(t) = ry sin (2ϑi(t)) , ϑi(t) = 2π
T

(
t+ i

n
T

)
, (4.22)

where rx and ry are the radii in x- and y-coordinates, T is the period of the trajectory, and
n is the total number of objects. The shape of this trajectory for rx = ry = 40 and n = 3 is
shown in Figure 4.6a. Note that the objects follow identically shaped trajectories and only
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(a) Amplitude fitting model (b) Gradient fitting model

Figure 4.5: Normalized autocovariance of innovation sequences

differ in starting positions (i.e., xri(0) and yri(0)). Due to its shape, I am referring to this
type as the ‘Infinity’ trajectory.

The second type is inspired by the movement of the end effector of a robotic arm with two
links and two free joints. It is defined by the following equations:

xri(t) = r1 cos (ϑ1i(t)) + r2 cos (ϑ2i(t)) , ϑ1i(t) = 2π
T1

t , (4.23a)

yri(t) = r1 sin (ϑ1i(t)) + r2 sin (ϑ2i(t)) , ϑ2i(t) = 2π
T2

(
t+ i

n
T2

)
, (4.23b)

where r1 and r2 are the radii of the links, and T1 and T2 are the periods of the links. The

(a) ‘Infinity’ trajectory for rx = ry = 40 (b) ‘Double link’ trajectory for r1 = 30, r2 = 20,
and T1 = 3T2

Figure 4.6: The tested trajectories
shape of the trajectories for r1 = 30, r2 = 20, T1 = 3T2, and n = 3 is shown in Figure 4.6b.
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Note that the objects follow identically shaped but differently rotated trajectories. Also, note
that at all times, the reference positions form a regular polygon (in this case, an equilateral
triangle). For brevity, I am referring to this type of trajectory as the ‘Double link’ trajectory.

Results of trajectory tracking are shown in Figure 4.7. Figures 4.7a and 4.7b show the com-
parison between amplitude fitting and gradient fitting control when tracking the trajectories.
In both cases, amplitude fitting control is better than gradient fitting control in terms of
distance from the reference trajectory. As shown in Figure 4.7c, amplitude fitting control
can track the ‘Infinity’ trajectory with a period of 20 seconds, reaching speeds of up to
20 mm s−1 and accelerations of up to 14 mm s−2, whereas gradient fitting control fails when
tracking such a fast-moving reference. Figure 4.7d shows how the control system responds
to changing the tracked trajectory. Supplementary video (see Appendix A.2) then shows
how the collision avoidance system prevents the objects from getting too close to each other
during the change.

(a) Performance of amplitude fitting and gradient fitting control when tracking the ‘Infinity’
trajectory

(b) Performance of amplitude fitting and gradient fitting control when trracking the ‘Double
link’ trajectory
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(c) Performance of amplitude fitting control when tracking the ‘Infinity’ trajectory with a
20 second period

(d) Performance of amplitude fitting control when switching between the tracked trajectories

Figure 4.7: Results of trajectory tracking with floating spherical objects





5 | Manipulation of planar
objects

In this chapter, I describe the modifications to the model and the control system needed to
manipulate planar objects. As a test subject, I am using an isosceles triangle, 3D-printed
from thermoplastic polyurethane (TPU 95A) with a 2 mm thickness. For modeling and
control design, I am using only the ‘amplitude fitting’ method, since it has proven to be
more precise than the ‘gradient fitting’ method.

5.1 Mathematical model

First, let us establish some conventions regarding the triangular object. Let us denote its
vertices as E, F , and G, with the side EF being the base and the vertex G being the apex.
The size of the triangle is given by the length of its base, l, and its height, h. Let H be
the centroid of the triangle. The position of the triangle is defined by the coordinates of
the centroid, x and y, and its orientation, θ, defined as the angle of the vector −−→HG. The
conventions are illustrated in Figure 5.1a.

Let us, once more, use Newton’s second law to obtain the dynamical equations of the object.
Furthermore, let us assume that the drag force and torque are proportional to the velocity
and the angular speed, respectively. Therefore, the resulting dynamical equations are:

mẍ = −cdt ẋ+ Fx , m ÿ = −cdt ẏ + Fy , J θ̈ = −cdr θ̇ + T , (5.1)

where m is the mass of the object, J is the moment of inertia, cdt and cdr are the translational
and rotational coefficients of drag, respectively, Fx and Fy are the components of the
acoustophoretic force, and T is the torque induced by the acoustophoretic force.

Having the dynamical equations (5.1), it remains to figure out how the pressure field relates
to the net forces Fx, Fy, and net torque T acting on the manipulated object. For this
purpose, we can view the acoustophoretic force as analogous to the Coulomb force. Let
(xp, yp) be the coordinates of a high-pressure point with an amplitude P . Let ∆P be the
amplitude of pressure after applying the dead zone introduced in (4.3), i.e.,

∆P = max (P − 800, 0) . (5.2)

Let us consider an infinitesimally small element of the mass of the triangular object, dm,

27
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(a) Definition of position and orientation (b) Vectors used in the calculation of forces

Figure 5.1: Geometry of the triangle

with coordinates (xm, ym). Then, the acoustophoretic force dF = [dFx, dFy]T and torque
dT acting on this element are proportional to:

dF ∝ ∆P
‖rp‖3

rp dm, dT ∝ det
[
rm ∆P

‖rp‖3 rp
]

dm, (5.3)

where rm = [xm − x, ym − y]T and rp = [xp − x, yp − y]T. An illustration of this model of
forces is shown in Figure 5.1b.

According to (5.3), the acoustophoretic force and torque are proportional to ∆P . Thus,
let us define a normalized ‘pseudo-force’, f = [fx, fy]T, and ‘pseudo-torque’, τ , that are
independent on ∆P . The net acoustophoretic force and torque are then given by:

Fx ∝ fx ∆P , Fy ∝ fy ∆P , T ∝ τ ∆P , (5.4)

To determine f and τ , we need to integrate (5.3) with ∆P = 1. For that, I propose three
models.

The first model assumes that the acoustophoretic force affects the full volume of the triangular
object. Therefore, f and τ can be expressed using the following integrals:

f =
∫∫
4EFG

1
‖rp‖3

rp dym dxm , τ =
∫∫
4EFG

det
[
rm 1

‖rp‖3 rp
]

dym dxm , (5.5)

where the double integral denotes integration over the surface of the triangle EFG.

The second model assumes that the acoustophoretic force affects only edges, which are
exposed to the high-pressure point. For instance, in the situation shown in Figure 5.1b, the
only exposed edge is EF . In that situation, f and τ can be expressed using the following
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Figure 5.2: Models of pseudo-forces and pseudo-torques

integrals:

f =
∫ 1

0

1
‖rp‖3

rp dρ , xm = (1− ρ)xE + ρ xF , (5.6a)

τ =
∫ 1

0
det

[
rm 1

‖rp‖3 rp
]

dρ , ym = (1− ρ) yE + ρ yF , (5.6b)

where (xE , yE) are the coordinates of the vertex E, and (xF , yF ) are the coordinates of the
vertex F .

The third model assumes that the acoustophoretic force affects only the nearest point on the
perimeter of the triangle. Therefore, f and τ can be expressed as:

f = 1
‖rp‖3

rp , τ = det
[
rm 1

‖rp‖3 rp
]
,

[
xm

ym

]
= arg min

[xm, ym]T∈4EFG

∥∥∥∥∥
[
xp − xm
yp − ym

]∥∥∥∥∥
2

. (5.7)

These three models are shown in Figure 5.2. The blue arrows represent the direction and
magnitude of the ‘pseudo-force’ for different high-pressure points around the triangle. The
red markers represent the coordinates of the high-pressure points, as well as the direction and
magnitude of the ‘pseudo-torque’ — a circle means positive torque, a cross means negative
torque, and the size of the marker increases with the magnitude.

Let us define three sets of states, xx = [vx, x]T, xy = [vy, y]T, and xθ = [ω, θ]T, where
vx = ẋ, vy = ẏ, and ω = θ̇. Combining the models of the ‘pseudo-force’ and ‘pseudo-torque’
with the dynamical equations from (5.1) yields the following state-space description:

ẋx = At xx + Bt fx ∆P , x = C xx , (5.8a)

ẋy = At xy + Bt fy ∆P , y = C xy , (5.8b)

ẋθ = Ar xθ + Br τ ∆P , θ = C xx , (5.8c)

where C = [0 1], and the matrices At, Ar, Bt, and Br are in the same form as in (4.17),
i.e.,
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A =
[
−d 0
1 0

]
, B =

[
g

0

]
. (5.9)

5.2 Control system

The control system for triangular objects has the same structure as the control system for
spherical objects presented in Section 4.2. The major difference between the systems is in
the controller. I propose two controllers, an LQR-based, and an MPC-based controller.

5.2.1 LQR

Let xxr, xyr and xθr be the reference setpoints. Furthermore, let us define errors x̃x, x̃y and
x̃θ as:

x̃x = xx − xxr , x̃y = xy − xyr , x̃θ = xθ − xθr . (5.10)

Now, let us define the LQR control actions as:

ux = −Kt x̃x , uy = −Kt x̃y , uθ = −Kr x̃θ , (5.11)

where Kt and Kr are state feedback gain for the translational and rotational systems,
respectively. From (5.8), it follows that the control inputs should be equal to:

ux = fx ∆P , uy = fy ∆P , uθ = τ ∆P . (5.12)

The ‘pseudo-force’ and ‘pseudo-torque’ depend on the position of the high-pressure point.
Therefore, we need to find xp, yp and ∆P that satisfy (5.12). Since the formulas for the
‘pseudo-force’ and ‘pseudo-torque’ in (5.5), (5.6) and (5.7) are too complex to be optimized in
real-time, I use a lookup table. I take m evenly spaced points around the triangle (similarly
as in Figure 5.2) and calculate the values of f and τ for each point. Therefore, each entry of
the lookup table is a five-tuple

(xp,i, yp,i , fx,i , fy,i , τi) , i = 1, 2, . . . , m . (5.13)

The values of the ‘pseudo-forces’ and ‘pseudo-torques’ are pre-computed for a triangle
situated at the origin with its orientation equal to zero. Therefore, the LQR control inputs
need to be transformed into ūx and ūy so that

[
ūx

ūy

]
=
[

cos θ sin θ
− sin θ cos θ

] [
ux

uy

]
. (5.14)
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Finding the optimal position and amplitude of the high-pressure point involves solving the
following mixed-integer program:

i∗, ∆P ∗ = arg min
i∈N,∆P∈R

[
(ūx − fxi ∆P )2 + (ūy − fyi ∆P )2 + wτ (uθ − τi ∆P )2

]
, (5.15a)

subject to i ∈ {1, 2, . . . , m} , (5.15b)

0 ≤ ∆P ≤ 1700 , (5.15c)

where wτ is a torque weight. The ‘pseudo-forces’ and ‘pseudo-torques’ are sampled at
m = 300 points. The relatively small size of the problem allows the use of a brute force
approach: we enumerate all i. For each i, we compute the optimal amplitude ∆P ∗i , which is
given by the saturated weighted average

∆P ∗i = max

min

 ūx
fx,i

+ ūy
fy,i

+√wτ ūθτi
2 +√wτ

, 1700

 , 0

 , (5.16)

and store the corresponding value of the cost function. The solution of (5.15) is then readily
given by i and ∆P ∗i resulting in the smallest value of the cost function.

The final coordinates of the high-pressure point are obtained form the following transforma-
tion: [

xp

yp

]
=
[
x

y

]
+
[
cos θ − sin θ
sin θ cos θ

] [
xp,i∗

yp,i∗

]
, (5.17)

and the amplitude of the high-pressure point is:

P = ∆P ∗ + 800 . (5.18)

5.2.2 MPC

Let us define a complete state of the triangular object x =
[
xT
x xT

y xT
θ

]T
. The discrete-time

state-space description of the system is then given by

x(t+ 1) =


Āt 0 0
0 Āt 0
0 0 Ār


︸ ︷︷ ︸

Ā

x(t) +


B̄t 0 0
0 B̄t 0
0 0 B̄r


︸ ︷︷ ︸

B̄


fx(t)
fy(t)
τ(t)


︸ ︷︷ ︸

ν(t)

∆P (t) , (5.19)

where Āt, Ār, B̄t, and B̄r are ZOH-discretized state matrices from (5.8).

Let hp be the length of the prediction horizon and let hc be the length of the control horizon
of the MPC (hp ≥ hc). Furthermore, let us define a complete error of the triangular object
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x̃ =
[
x̃T
x x̃T

y x̃T
θ

]T
. The goal of model predictive control is to minimize the following criterion:

J = 1
2

hp∑
i=1

x̃T(t+ i) Q x̃(t+ i) + 1
2

hc−1∑
i=0

R (∆P (t+ i))2 , (5.20)

where Q is a 6-by-6 positive definite matrix and R is a positive scalar.

Now, let us express the criterion in a compact matrix form. To do so, let us define a stacked
vector of states, X, a stacked vector of references, Xr, and a stacked vector of amplitudes, P:

X =


x(t+ 1)

...
x(t+ hp)

 , Xr =


xr(t+ 1)

...
xr(t+ hp)

 , P =


∆P (t)

...
∆P (t+ hc − 1)

 , (5.21)

where xr(t+ i) = xr(t) if the future references are not known. Let us also define two matrices

Q̄ =


Q

. . .
Q


︸ ︷︷ ︸

hp times

, R̄ =


R

. . .
R


︸ ︷︷ ︸

hc times

. (5.22)

Now, the criterion J can be expressed in a compact matrix form:

J = (X−Xr)T Q̄ (X−Xr) + PT R̄ P . (5.23)

The system presented in (5.19) is nonlinear due to the multiplication of inputs ν and ∆P .
However, if the sequence of inputs ν(t) is fixed, the system becomes linear time-varying. For
the moment, let us postpone the discssuion on how to choose the sequence ν(t) and assume
that we have already fixed it. Then, the goal of the MPC is to find an optimal sequence of
amplitudes, P∗, so that:

P∗ = arg min
P∈Rhc

J , (5.24a)

subject to x(k + 1) =

Ā x(k) + B̄ ν(k) ∆P (k) , k = t, . . . , t+ hc − 1 ,

Ā x(k) , k = t+ hc, . . . , t+ hp − 1 ,
(5.24b)

x(t) = x0 ,


0
...
0

 ≤ P ≤


1700
...

1700

 . (5.24c)

The optimization problem presented in (5.24) is the so-called sparse MPC formulation, which
contains equality constraints. We can eliminate these constraints by deriving the condensed
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MPC formulation [17]. First, we need to express the stacked states. From the state-space
equations, we obtain

X = Â x0 + CP , (5.25)

where

Â =


Ā
Ā2

...
Āhp

 , C =



B̄ ν(t)
Ā B̄ ν(t) B̄ ν(t+ 1)

...
... . . .

Āhc−1 B̄ ν(t) Āhc−2 B̄ ν(t+ 1) · · · B̄ ν(t+ hc − 1)
Āhc B̄ ν(t) Āhc−1 B̄ ν(t+ 1) · · · Ā B̄ ν(t+ hc − 1)

...
...

...
Āhp−1 B̄ ν(t) Āhp−2 B̄ ν(t+ 1) · · · Āhp−hc B̄ ν(t+ hc − 1)


.

(5.26)

Substituting (5.25) to (5.23) yields:

J = 1
2PT C T Q̄ CP +

(
Â x0 −Xr

)T
Q̄ CP +

(
Âx0 −Xr

)T
Q̄
(
Âx0 −Xr

)
+ 1

2PT R̄ P .

(5.27)
The underlined term is constant with respect to the optimized variable and can be therefore
omitted in the criterion. Thus, the optimal sequence of amplitudes is obtained by solving
the following quadratic program:

P∗ = arg min
P∈Rhc

1
2PT H P + FT P , (5.28a)

subject to


0
...
0

 ≤ P ≤


1700
...

1700

 , (5.28b)

where

H = C T Q̄ C + R̄ , FT =
(
Â x0 −Xr

)T
Q̄ C . (5.29)

Note that the matrices of the state-space representation in (5.19) are block diagonal. This
property means that Â and C are sparse — they are, effectively, blocks of block diagonal
matrices. Consequently, calculating H and F is too lengthy due to the multiplication of
many zero elements.
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However, if the matrix Q is in a block diagonal form

Q =


Qt 0 0
0 Qt 0
0 0 Qr

 , (5.30)

we can express H and F using smaller, dense matrices:

H = C T
x Q̄t Cx + C T

y Q̄t Cy + C T
τ Q̄r Cτ , (5.31a)

FT =
(
Ât xx0 −Xxr

)T
Q̄t Cx +

(
Ât xy0 −Xyr

)T
Q̄t Cy +

(
Âr xθ0 −Xθr

)T
Q̄r Cτ , (5.31b)

where Ât, Âr, Cx, Cy, Cτ , Q̄t, and Q̄r have the same structure as Â, C, and Q̄, but use the
smaller matrices of the translational and rotational subsystems (proof in Appendix B.3).

Having defined a quadratic program as well as a method for efficient calculation of its matrices,
we now need a tool for solving it. To solve the quadratic program, I have implemented
the accelerated gradient projection method, described in [18]. This method has proven to
converge to the optimal solution fast, and is easily implemented for quadratic programs with
box constraints. The method iteratively searches for the optimal value of P. Let Pk be the
guess at kth iteration. The method then defines a ‘momentum’ for the next iteration as:

sk+1 = Pk + βk (Pk −Pk−1) , (5.32)

where βk is a coefficient that should be equal to zero for k = 0 and gradually increase to one,
e.g.,

βk =

0 , k = 0 ,
k−1
k+2 , k > 0 .

(5.33)

Then, the next value of P is given by:

Pk+1 = max (min (sk+1 − λ (H sk+1 + F) , 1700) , 0) , (5.34)

where λ is the step size.

So far, we tried to find an optimal sequence of amplitudes for a given sequence of ν(t),
i.e., the ‘pseudo-forces’ and ‘pseudo-torques.’ Now, we aim to find the optimal sequence of
ν(t). Similarly to the LQR, we use a lookup table, which reduces the problem to finding
an optimal array of lookup table indices. Unlike the LQR, a brute force approach is not
viable since the number of all possible combinations grows exponentially with the length of
the control horizon. To solve this problem, I employ a particle swarm optimization (PSO)
algorithm, described in [19]. The algorithm is iterative, and works as follows: we have a
population of particles z1, z2, . . . , zn. Each particle represents a solution (in our case, a
sequence of indices, which will define our ν(t)). In addition, the particles have velocities
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Figure 5.3: Steady-state behavior of the LQR controller after four iterations

v1, v2, . . . , vn — vectors of the same dimension as the particles. Both the solutions and
the velocities are initialized randomly. In every iteration, the particles are updated using the
following formula:

v(k+1)
i = wk v(k)

i + U(0, 2)
(
bi − z(k)

i

)
+ U(0, 2)

(
bg − z(k)

i

)
, (5.35a)

z(k+1)
i = z(k)

i + v(k)
i , (5.35b)

where wk is the ‘inertia weight,’ U(0, 2) is a random uniformly distributed number between
0 and 2, bi is the best recorded solution (solution that results in the smallest value of the
criterion J) for the ith particle, and bg is the globally best solution. The value of wk should
initially be relatively high (e.g., 0.9) and gradually decrease (e.g., to 0.4). Note that since
the solution should be positive integers, the values of zi are rounded. Also, we need to use
modulo arithmetics so that the values of zi remain between 1 and m (the number of entries
in the lookup table).

After a fixed number of iterations, we take bg as the optimal sequence of high-pressure
points, together with the corresponding sequence of amplitudes. However, we only use the
first point of this sequence, since the whole MPC algorithm is repeated every control period.
Consequently, solving for ν(t) using PSO requires solving n quadratic programs (one for
each particle) every iteration. In the current setting, PSO performs seven iterations with
five particles, which results in solving 35 quadratic programs every control period.

5.3 Identification and parameter tuning
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Figure 5.4: Results of iterative model identification

5.3.1 Model identification

This process is similar to the one described in Section 4.3. We begin with an initial guess of
model parameters and iteratively refine them.

In addition, we also need to determine, which model of forces and torques is most suitable.
To do so, we compare the performance of the control systems when stabilizing the triangular
object. This comparison is shown in Figure 5.3. The control system based on the ‘Only
edges’ model defined in (5.6) fails to stabilize the object. The other two control systems
manage to stabilize the object, but the control system based on the ‘Closest point’ model
defined in (5.7) has a slower settling time as well as greater oscillations, especially in the
orientation θ. Therefore, it is reasonable to further consider only the ‘Full volume’ model
defined in (5.5).

The results of iterative model identification are shown in Figure 5.4. The final values of the
model parameters are:

dt = 0.814 , dr = 1.16 , gt = 5.99 , gr = 0.0243 . (5.36)

5.3.2 Parameter tuning

The weight matrices Q and R are tuned similarly as in the previous chapter. The resulting
closed-loop system should be as fast as possible without overshooting, and the required
amplitude of pressure should not be saturated (i.e., should be less than 1700 pascals) if the
error in position is less than 10 mm. For orientation, the threshold is 5 degrees.
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Figure 5.5: Normalized autocovariance of innovation sequences

The resulting LQR weights are:

Qt =
[
1 0
0 10

]
, Rt = 40 , Qr =

[
1 0
0 10

]
, Rr = 8× 10−5 , (5.37)

and the resulting MPC weights are:

Qt =
[
1 0
0 10

]
, Qr = 100

[
1 0
0 10

]
, R = 1 . (5.38)

The control horizon length is five samples, and the prediction horizon length is ten samples.

The noise characteristics for the Kalman filter are also obtained similarly as in the previous
chapter. The covariance of the measured position, Vt, and the measured orientation, Vr, is:

Vt = 0.873 , Vr = 0.001 , (5.39)

and the covariance matrices of the translational and rotational process noise are:

Qt =
[

0.933 0.0187
0.0187 0.965

]
, Qr =

[
5.09 0.102
0.102 5.25

]
× 10−3 . (5.40)

The normalized innovation autocovariance sequences are shown in Figure 5.5. These sequences
are considerably higher than the ones of spherical objects shown in Figure 4.5, which is
probably caused by some unmodeled coupling between the translational and rotational
dynamics.
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Figure 5.6: Comparison between LQR and MPC controllers

5.4 Results

To assess the performance of the control systems, I have designed a testing trajectory, where
the object rotates and orbits around a given center. The reference position, xri and yri, and
the reference orientation, θri, of the ith object are given by:

xri(t) = xci + ri cos (ϑi(t)) , yri(t) = yci + ri sin (ϑi(t)) , ϑi(t) = 2π
To

(
t+ i

n
To

)
,

(5.41a)

θri(t) = ω

(
t+ i

n
Tr

)
, ω = 2π

Tr
, (5.41b)

where (xci, yci) are the coordinates of the center of orbit, ri is the orbital radius, To is the
orbital period, and Tr is the period of rotation.

The comparison between the LQR and MPC controllers when tracking this ‘orbit’ trajectory
with xc = yc = 0, r = 25, and To = Tr = 30 is shown in Figure 5.6. Clearly, MPC is more
robust, allowing it to track the reference more precisely. Footage of the MPC with two
triangular objects is featured in the supplementary video (see Appendix A.2).



6 | Assembling planar objects

In the previous chapter, I have presented a method for manipulation of planar objects. In this
chapter, I describe an algorithm that can assemble these objects into a prescribed formation
and present the results.

6.1 Assembly algorithm

To assemble the objects into a formation, we need a higher-level algorithm that outputs
reference positions for individual objects based on their current and goal positions. The
proposed algorithm is sequential — it brings the objects into goal positions one by one based
on a predetermined priority.

The priority of the objects is determined by their goal position in the formation. If the
object is on the ‘outside’ of the formation, i.e., if it has at least one edge that does not touch
any other object, it has a low priority. If the object is on the ‘inside’ of the formation, i.e.,
if all of its edges touch other objects, it has a high priority. The actual order among the
low- and high-priority objects is arbitrary, as long as the high-priority objects precede the
low-priority objects when being assembled. In the example formation shown in Figure 6.1,
the red triangle with goal position G1 is on the inside, and so it has the highest priority over
the green triangles with goal positions G2, G3, and G4.

Objects with lower priority are initially guided to a ‘waiting’ position. The waiting position
is defined as the goal position offset by a given distance. The direction of this offset is given
by a vector, which is perpendicular to the edge that touches another object, or a sum of these
vectors if multiple edges touch other objects. In the example formation shown in Figure 6.1,
the waiting positions are denoted W2, W3, and W4, and the corresponding perpendicular
vectors are denoted r2, r3, and r4.

During the operation, the objects are guided to their waiting, or goal positions based on two
simple rules:

1. In the beginning, only the object with the highest priority is guided to its goal position.
All other objects are guided to their waiting positions.

2. Guidance of an object is switched from waiting to goal position only if the object has
reached its waiting position, and all higher-priority objects have reached their goal
positions.

These two rules ensure that the objects are assembled sequentially. In the example formation

39
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Figure 6.1: An example of a formation of triangular objects. The filled triangles represent
the goal positions, the dotted-lined triangles represent the waiting positions.

shown in Figure 6.1, these rules mean that the object with goal position G1 is brought to its
goal first, followed by G2, then G3, and finally G4.

Having defined the goal and waiting positions, we now need a planning algorithm that guides
the objects to these positions. In fact, we need two distinct algorithms for guidance to the
waiting and goal position, because these two actions have contradictory requirements. When
the object is being guided to its waiting position, it needs to avoid contact with other objects,
as the planar objects tend to adhere to each other due to surface tension. On the contrary,
objects guided to goal position need to come in contact with other objects in the formation.

To guide the objects to their waiting positions, I employ a potential field planning algorithm,
described in [20]. The guided object behaves as if it was exposed to an attractive force
towards its waiting position, and to repulsive forces from other objects. The reference
velocities of the ith object, vxri and vyri , are:

vxri(t) = cv vxri(t− 1) + ca (xwi − xi(t)) + cr

∑
j∈{1,...,n}\{i}

xi(t)− xj(t)
d3
ij(t)

, (6.1a)

vyri(t) = cv vyri(t− 1) + ca (ywi − yi(t)) + cr

∑
j∈{1,...,n}\{i}

yi(t)− yj(t)
d3
ij(t)

, (6.1b)

where (xwi, ywi) are the coordinates of the waiting position, cv is the coefficient of retained
velocity — it should be a positive number less than one, ca is the coefficient of attractive
force, cr is the coefficient of repulsive force, and dij is the mutual distance between the ith

and jth object. The reference position of the ith object, (xri, yri), is then given by:

xri(t) = xi(t) + vxri(t) , yri(t) = yi(t) + vyri(t) . (6.2)
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To guide the objects to their goal positions, I employ a simpler potential field planner without
the repulsive forces. The reference velocities are then given by:

vxri(t) = cv vxri(t− 1) + ca (xgi − xi(t)) , (6.3a)

vyri(t) = cv vyri(t− 1) + ca (ygi − yi(t)) , (6.3b)

where (xwi, ywi) are the coordinates of the goal position. The reference position is then
given by the same formula as in (6.2).

6.2 Results

The results of the assembly algorithm can be best seen in the supplementary video (see
Appendix A.2). Selected frames from the video demonstating the assembly of four objects
are shown in Figure 6.3. The measured positions are plotted in Figure 6.2. As you can see,
all four objects are brought to their goal positions within sixteen seconds.

Figure 6.2: Results of assembling four triangular objects. The full lines represent the goal
positions, the dashed lines represent the measured positions. The assigned priorities (from
highest to lowest) are: green, red, yellow, blue.
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(a) t = 0 s (b) t = 6.68 s (c) t = 9.76 s

(d) t = 14.44 s (e) t = 16.84 s

Figure 6.3: Selected frames from the supplementary video showing the process of sequential
assembly



7 | Conclusion

The goal of this thesis was to develop a platform for multi-object manipulation by focusing
the acoustic pressure field. The design of this platform is based on the previous version
developed as a part of my Bachelor’s thesis. The previous version could manipulate only
one spherical object at a time on a 40× 40 mm manipulation area, reaching speeds of up
to 10 mm s−1 [1]. The newly developed platform uses four times more transducers than the
previous version (a 16-by-16 array compared to an 8-by-8 array), allowing it to manipulate
multiple objects at once on a 100× 100 mm manipulation area (as can be seen when tracking
the ‘Double link’ trajectory), reaching speeds of up to 20 mm s−1 (see Section 4.4). Thus,
by increasing the number of transducers four times, I have increased the manipulation area
more than six times; and by implementing a better-tuned controller, I have increased the
maximum speed twice.

Apart from increasing the active manipulation area, the increased number of transducers also
makes solving the optimization problem of focusing the acoustic filed computationally more
demanding. As a result, the original BFGS solver could not solve the problem within the
control period. To deal with this problem, I have implemented the LM algorithm with the
kernel trick, which is five to nine times faster than the previously used BFGS (see Figure 3.4).

The larger manipulation area also allows for the manipulation of more generally shaped,
planar objects. I have developed a mathematical model of acoustophoretic forces and torques
acting on these objects. It turns out that manipulating the planar objects is more complicated
than spherical objects, and simple state feedback is insufficient. Therefore, I have decided to
use model predictive control with my own tailored implementation of an efficient solver. I
have also designed an algorithm for assembling the planar objects into predefined formations.
I have experimentally verified that the platform can assemble up to four objects at once (see
Section 6.2 or the supplementary video linked in Appendix A.2).

7.1 Future improvements

There are still some unexplored possibilities regarding the planar objects. Although I have
discarded the gradient control because it performed worse on the spherical objects, it may be
worthwhile to explore the gradient control of planar objects. Also, it would be interesting to
try if the developed methods for controlling triangular objects work for other shapes as well.
Unfortunately, I was unable to manufacture other shapes in the later stages of my master
thesis due to the COVID-19 situation.
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A | Online attachments

A.1 GitLab repository

The AcouMan project is located at https://gitlab.fel.cvut.cz/aa4cc/acouman. The
project contains the following relevant repositories:

• AcouMan main: Main repository. Contains a documentation and submodules with
other repositories.

• simulink-controller: Contains the control systems for spherical and triangular objects
implemented in Simulink.

• experiments: Contains the data as well as the code to replicate the results shown in
this thesis.

• Master Thesis: Contains source files for this thesis.

• matlab: Contains Matlab scripts for calibrating the platform, optimization, and
visualization of the acoustic field.

• manufacturing: Three repositories containing the drawings, printed circuit board
(PCB) designs, and 3D models needed for building the platform.

A.2 Supplementary video

The supplementary video is available at https://youtu.be/D5RClzG8gOU. The video is
split into parts showing manipulation of spherical and triangular objects (see the video
description on YouTube).
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B | Formulas and derivations

B.1 Deriving the formula for total acoustic pressure

This section and the following one present derivations of efficient formulas for calculating
the modulus of acoustic pressure and its spatial derivatives, mentioned in Chapter 3.

Let us begin with the modulus of acoustic pressure, which is denoted as |P (x, y, z,Φ)|2.
Combining (3.1) and (3.2), the squared amplitude of the total pressure can be expressed as:

|P (x, y, z,Φ)|2 =
(

N∑
i=1

M (i)(x, y, z) ejϕi

) (
N∑
i=1

M̄ (i)(x, y, z) e−jϕi

)
, (B.1)

where M̄ denotes the complex conjugate.

Let us define vectors u =
[
ejϕ1 , . . . , ejϕN

]T and m =
[
M (1)(x, y, z), . . . ,M (N)(x, y, z)

]T
.

Now, the bracketed terms in (B.1) can be expressed and rearranged into:

|P (x, y, z,Φ)|2 =
(
mT u

) (
u† m̄

)
= u† m̄ mT u , (B.2)

where u† is the conjugate transpose of u, and m̄ is the vector of complex conjugated elements
of m.

While the formula in (B.2) is mathematically correct, its numerical implementation involves
multiplication of complex vectors, where the imaginary parts cancel out. Therefore, this
formula is not computationally efficient.

Let us therefore further define a matrix p = [mr,mi] composed of vectors of real (mr) and
imaginary (mi) parts of m. Now, the product m̄ mT can be expressed as:

m̄ mT = p pT + j p
[
0 −1
1 0

]
pT , (B.3)

while the vector u can be expressed as:

u = cΦ + j sΦ , (B.4)

where cΦ and sΦ are vectors of cosines and sines of elements from Φ, respecitvely. Substituting
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(B.3) and (B.4) into (B.2), we obtain:

|P (x, y, z,Φ)|2 =
(
cT

Φ − j sT
Φ

) (
p pT + j p

[
0 −1
1 0

]
pT
)

(cΦ + j sΦ) =

= cT
Φ p pT cΦ + sT

Φ p pT sΦ + cT
Φ p

[
0 −2
2 0

]
pT sΦ .

(B.5)

The solver presented in Chapter 3 also requires the gradient of the absolute pressure.
Differentiating (B.5) with respect to Φ yields:

∇Φ|P (x, y, z,Φ)|2 = −2 diag (sΦ) p pT cΦ + 2 diag (cΦ) p pT sΦ

− diag (sΦ) p
[
0 −2
2 0

]
pT sΦ + diag (cΦ) p

[
0 −2
2 0

]
pT cΦ ,

(B.6)

where diag(.) is a diagonal matrix with elements from the given vector. Some terms can be
grouped, resulting in the following formula:

∇Φ|P (x, y, z,Φ)|2 =2
(

diag (cΦ) p
[
0 −1
1 0

]
− diag (sΦ) p

)
pT cΦ

+ 2
(

diag (cΦ) p− diag (sΦ) p
[
0 −1
1 0

])
pT sΦ .

(B.7)

B.2 Calculating spatial derivatives of acoustic pressure

Let us define a vector mx =
[
∂M(1)(x,y,z)

∂ x , . . . , ∂M
(N)(x,y,z)
∂ x

]T
. By differentiating (B.2) with

respect to x, we obtain:

∂ |P |2

∂ x
= u† m̄x mT u + u† m̄ mT

x u . (B.8)

Notice that the two terms on the right-hand side of the equation above are complex conjugates
of each other. Therefore, the spatial derivative is equal to:

∂ |P |2

∂ x
= 2Re

{
u† m̄x mT u

}
, (B.9)

where Re {.} is the real part of a complex number.

Similarly to the previous section, I will first derive all necessary formulas for calculating the
spatial derivative, and then provide a formula for efficient calculation. Let us start with mx.
By differentiating (3.3) with respect to x, we obtain:

∂M (i)(x, y, z)
∂ x

= P0

[1
d

∂ fdir(x, y, z)
∂ x

+ fdir(x, y, z)
(
− 1
d2 + j k

d

)
∂ d

∂ x

]
ejkd . (B.10)
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Since the distance d is defined as d =
√
x2 + y2 + z2, its spatial derivative is:

∂ d

∂ x
= x√

x2 + y2 + z2 = x

d
. (B.11)

By applying chain rule to (3.4), the spatial derivative of directivity function can be expressed
as:

∂ fdir(x, y, z)
∂ x

= ∂ fdir(sin θ)
∂ (sin θ)

∂ sin θ
∂ x

=
[J0(k r sin θ)

sin θ − 2J1(k r sin θ)
k r sin2 θ

− J2(k r sin θ)
sin θ

]
x z2

d3
√
x2 + y2 .

(B.12)

Now, I will do a similar “trick” as in the previous section and define a matrix px composed
of real and imaginary parts of mx. The term m̄x mT can be now expressed as:

m̄x mT = px pT + j px

[
0 −1
1 0

]
pT , (B.13)

and the spatial derivative from (B.9) can be expressed as:

∂ |P |2

∂ x
=2Re

{(
cT

Φ − j sT
Φ

) (
px pT + j px

[
0 −1
1 0

]
pT
)

(cΦ + j sΦ)
}

=

=2
(

cT
Φ px pT cΦ + sT

Φ px pT sΦ + cT
Φ px

[
0 −1
1 0

]
pT sΦ

−sT
Φ px

[
0 −1
1 0

]
pT cΦ

)
.

(B.14)

The gradient of the spatial derivative is:

∇Φ

(
∂ |P |2

∂ x

)
= 2

(
− diag (sΦ)

(
px pT + p pT

x

)
cΦ

+ diag (cΦ)
(
px pT + p pT

x

)
sΦ − diag (sΦ) px

[
0 −1
1 0

]
pT sΦ

+ diag (cΦ) p
[

0 1
−1 0

]
pT
x cΦ − diag (cΦ) px

[
0 −1
1 0

]
pT cΦ

+ diag (sΦ) p
[

0 1
−1 0

]
pT
x sΦ

)
(B.15)

Due to axial symmetry along the z-axis, the spatial derivative with respect to y is almost
identical to the spatial derivative with respect to x.
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B.3 Proving the MPC matrix identity

Recalling (5.29), we aim to simplify the calculation of matrices H and F, defined as

H = C T Q̄ C + R̄ , FT =
(
Â x0 −Xr

)T
Q̄ C . (B.16)

Due to the structure of Ā, B̄, and ν defined in (5.19), the following identities hold true:

Ān =


Ān
t

Ān
t

Ān
r

 , Ān B̄ ν =


Ān
t B̄t fx

Ān
t B̄t fy

Ān
r B̄r τ

 . (B.17)

By direct calculation, the element of H on ith row and jth column, Hij is:

Hij =

 hp∑
k=max(i,j)

νT(t+ i− 1) B̄T
(
Āk−i

)T
Q Āk−j B̄ ν(t+ j − 1)

+ δij R ,

i, j = 1, 2, . . . , hc ,

(B.18)

where δij is the Kronecker delta operator. Substituting the identities from (B.17), Hij can
be expressed using three sums:

Hij =

 hp∑
k=max(i,j)

fx(t+ i− 1) B̄T
t

(
Āk−i
t

)T
Qt Āk−j

t B̄t fx(t+ j − 1)


+

 hp∑
k=max(i,j)

fy(t+ i− 1) B̄T
t

(
Āk−i
t

)T
Qt Āk−j

t B̄t fy(t+ j − 1)


+

 hp∑
k=max(i,j)

τ(t+ i− 1) B̄T
r

(
Āk−i
r

)T
Qr Āk−j

r B̄r τ(t+ j − 1)

+ δij R .

(B.19)

Therefore, the matrix H can be expressed as:

H = C T
x Q̄t Cx + C T

y Q̄t Cy + C T
τ Q̄r Cτ , (B.20)

where

Cx =



B̄t fx(t)
Āt B̄t fx(t) B̄t fx(t+ 1)

...
... . . .

Āhc−1
t B̄t fx(t) Āhc−2

t B̄t fx(t+ 1) · · · B̄t fx(t+ hc − 1)
Āhc
t B̄t fx(t) Āhc−1

t B̄t fx(t+ 1) · · · Āt B̄t fx(t+ hc − 1)
...

...
...

Āhp−1
t B̄t fx(t) Āhp−2

t B̄t fx(t+ 1) · · · Āhp−hc
t B̄t fx(t+ hc − 1)


, (B.21)
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Q̄t =


Qt

. . .
Qt

 , Q̄r =


Qr

. . .
Qr

 , (B.22)

and the matrices Cy and Cτ are defined analogously using the corresponding state-space
matrices and inputs.

Similarly, the ith element of the vector F is defined as:

Fi =
hp∑
k=i

(
Āk x0 − xr(t+ k)

)T
Q Āk−j B̄ ν(t+ i− 1) , (B.23)

which can be expressed using three sums:

Fi =

 hp∑
k=i

(
Āk
t xx0 − xxr(t+ k)

)T
Qt Āk−j

t B̄t fx(t+ i− 1)


+

 hp∑
k=i

(
Āk
t xy0 − xyr(t+ k)

)T
Qt Āk−j

t B̄t fy(t+ i− 1)


+

 hp∑
k=i

(
Āk
r xθ0 − xθr(t+ k)

)T
Qr Āk−j

r B̄r τ(t+ i− 1)

 .
(B.24)

Therefore, the vector F can be expressed as:

FT =
(
Ât xx0 −Xxr

)T
Q̄t Cx +

(
Ât xy0 −Xyr

)T
Q̄t Cy +

(
Âr xθ0 −Xθr

)T
Q̄r Cτ , (B.25)

where

Ât =


Āt

Ā2
t
...

Āhp
t

 , xx0 = xx(t) , Xxr =


xxr(t+ 1)

...
xxr(t+ hp)

 , (B.26)

and Ât, xy0, xθ0, Xyr, and Xθr are defined analogously.
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