
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Dan Šuster

Visual tracking and trajectory optimization for
dielectrophoretic manipulation

Department of Control Engineering

Thesis supervisor: Ing. Martin Gurtner

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických princip̊u
při př́ıpravě vysokoškolských závěrečných praćı.

V Praze dne
Podpis autora práce

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457158Personal ID number:Šuster DanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Visual tracking and trajectory optimization for dielectrophoretic manipulation

Master’s thesis title in Czech:

Vizuální sledování a optimalizace trajektorií pro dielektroforetickou manipulaci

Guidelines:
1) Develop a visual tracker based on convolutional neural networks for dielectrophoretic manipulation platform in the
twin-beam setup. The tracker must be capable of processing at least 20 frames per second and tracking at least two
arbitrary objects when running on NVIDIA Jetson AGX Xavier development kit.
2) Specifically for spherical objects, implement an algorithm making more accurate the coarse positions found by the
tracker.
3) Use the more accurate positions to estimate 3D positions of the objects.
4) Formulate and solve the optimization problem of getting an object from a point A to a point B in the manipulation area
as quickly as possible while taking into account the position-dependent maximum achievable dielectrophoretic force.

Bibliography / sources:
[1] M. Gurtner and J. Zemánek, “Twin-beam real-time position estimation of micro-objects in 3D,” Meas. Sci. Technol.,
vol. 27, no. 12, p. 127003, 2016.
[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr, “Fully-convolutional siamese networks for object
tracking,” in European conference on computer vision, 2016, pp. 850–865.
[3] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with deep regression networks,” in European Conference
on Computer Vision, 2016, pp. 749–765.
[4] M. Kelly, “An introduction to trajectory optimization: How to do your own direct collocation,” SIAM Review, vol. 59, no.
4, pp. 849–904, 2017.

Name and workplace of master’s thesis supervisor:

Ing. Martin Gurtner, Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 22.05.2020Date of master’s thesis assignment: 13.02.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Martin Gurtner
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank my supervisor Ing. Martin Gurtner for his help and guidance
throughout the thesis. I have very much enjoyed working together because he is a brilliant
and kind person. Furthermore, I would like to thank my family for their love and continuous
support throughout my studies.

Abstract

This thesis deals with two crucial problems in the task of feedback di-
electrophoretic (DEP) micromanipulation: real-time visual tracking and
trajectory optimization. Real-time visual tracking of manipulated objects
is of pivotal importance as the feedback control system must know the
positions of manipulated objects. Two basic image processing methods
with a simple tracking algorithm are proposed and tested. These turn
out to be insufficient, and thus a state-of-the-art tracker based on con-
volutional neural networks is employed and experimentally verified. The
tracker is modified so that it can track up to 4 objects in 30 frames per
second. Trajectory optimization for DEP manipulation is specific in hav-
ing position-dependent limits for the maximum achievable DEP forces,
which makes the trajectory optimization particularly tricky. Based on the
dynamic model of a spherical particle, a simplified solution consisting of
a pre-computed map of maximum achievable forces and an optimal path-
finding algorithm is proposed and verified by conducted experiments.

Keywords: visual tracking, convolutional neural networks, trajectory
optimization, dielectrophoresis, micromanipulation

Abstrakt

Tato práce se zabývá dvěma stěžejńımi tématy souvisej́ıćı s mikroma-
nipulaćı pomoćı dielektroforézy (DEP): vizuálńım sledováńı objekt̊u v
reálném čase a časovou optimalizaćı trajektoríı. Vizuálńı sledováńı ob-
jekt̊u je kritickou součást́ı systému manipulace, jelikož potřebujeme znát
polohu manipulovaného objektu pro zpětnovazebńı ř́ızeńı. Pro tuto úlohu
byly použity dvě známé metody z oboru zpracováńı obrazu v kombi-
naci s jednoduchým sledovaćım algoritmem. Tyto metody se ukázaly
jako nedostačuj́ıćı, a proto byl využit sledovaćı algoritmus založený na
konvolučńıch neuronových śıt́ıch. Původńı sledovaćı algoritmus byl up-
raven na základně zjednodušuj́ıćıch podmı́nek tak, aby dokázal sledovat
až čtyři objekty ve 30 sńımćıch za sekundu. Úloha optimalizace tra-
jektoŕı́ı je v našem př́ıpadě specifická t́ım, že maximálńı dosažitelná
DEP śıla pro manipulaci je závislá na poloze, což děla tuto úlohu
těžce řešitelnou. Na základě dynamického modelu pro kulové částice je
navrženo zjednodušené řešeńı, které spoč́ıvá v předpoč́ıtáńı maximálńıch
dosažitelných sil v manipulačńım poli. Na tomto poli lze poté vygen-
erovat optimálńı trajektorii pomoćı algoritmu pro hledáńı optimálńıch
cest v grafu. Všechny metody v této práci byly experimentálně ověřeny
na reálném zař́ızeńı pro mikromanipulaci.

Contents

I Introduction 1

1 Preliminaries 3

1.1 Hardware setup and coordinate system . 3

1.2 Phase-shift control . 4

1.3 Twin-beam setup . 5

1.4 NVIDIA Jetson AGX Xavier . 5

1.4.1 Camera . 6

1.5 Image backpropagation . 7

II Visual tracking 8

2 Basic methods 10

2.1 Image segmentation . 10

2.2 Regional minima . 12

2.3 Simple tracking algorithm . 13

2.4 Conclusion . 13

3 Tracking with Siamese networks 14

3.1 CNN Architecture . 14

3.1.1 Pre-trained model . 15

3.2 SiamFC tracking process . 16

3.3 Performance benchmark . 19

3.4 Improved position estimation for spherical objects 21

3.5 Tracking experiments . 22

3.6 Conclusion . 23

III Trajectory optimization and control 24

i

4 Trajectory optimization 25

4.1 Maximum force simulation . 26

4.1.1 Visualization in the electrode array 29

4.2 Trajectory generation . 29

4.3 Optimal trajectory experiment . 31

4.4 Conclusion . 32

5 Control algorithm 33

5.1 P-Regulator without trim . 33

5.2 P-Regulator with trim . 34

5.3 Control experiments . 35

6 Conclusion 37

Appendix A List of abbreviations 43

ii

List of Figures

1 Illustration of hardware setup . 1

2 Electrode array and 3D model . 3

3 Twin-beam method illustration . 5

4 NVIDIA Jetson AGX Xavier . 6

5 Camera model LI-IMX477 . 6

6 Backpropagation example . 7

7 Example images of a classical setup for tracking 9

8 Image segmentation . 11

9 Region minima . 12

10 CCN architecture . 15

11 Training data example . 16

12 Cross-correlation score map . 17

13 Tracking process example . 18

14 Per-part time portion benchmark of an average iteration 20

15 Improved position estimation for spherical objects 22

16 Height control experiment . 22

17 Visual tracking experiment . 23

18 Maximum forces simulation - resolution comparison 27

19 Maximum forces 8-direction simulation . 28

20 Visualization of the position-dependent maximum forces 29

21 Path generation example . 30

22 Optimal path examples . 31

23 Experiment - optimal vs direct . 32

24 P-Regulator without trim . 33

25 P-Regulator with trim . 34

26 Path following experiment . 35

27 Solver relative error comparison . 36

iii

iv

Introduction

Part I

Introduction

This thesis deals with visual tracking and trajectory optimization in the task of dielec-
trophoretic (DEP) micromanipulation. DEP phenomenon is described as the movement of a
dielectric particle when it is subjected to a non-uniform electric field. It is mostly exploited
for contact-less micromanipulation of particles, with applications in nanotechnology and
biology [1, 2, 3]. This work continues the long-term research in DEP contact-less microma-
nipulation conducted by the group Advanced Algorithms for Control and Communications
(AA4CC), Department of Control Engineering, Faculty of Electrical Engineering at Czech
Technical University in Prague.

The members of AA4CC group have already developed a working hardware setup
for DEP manipulation, which is illustrated in Fig. 1. We give a detailed description of the
setup later, but for now, let us briefly describe the very principle of the manipulation. The
manipulated particles are manipulated by the application of varying potentials on the elec-
trodes, which are computed by a phase-shifting feedback controller [4, 5]. Since there is no
physical way of measuring the exact position of the particles, a position estimation method
based on processing images from a camera was proposed in [5]. One of the aims of this
thesis is to propose a method for visual object tracking in a video, which could provide—in
combination with the mentioned position estimation method—a position estimate for the
feedback controller, and thus enable precise manipulation of the particles. Such tracker
should be able to track objects of general shape, and it should run in real-time.

Figure 1: Illustration of the hardware setup (reprinted from [6]).

1/44

Introduction

Another aim of the thesis is to generate time-optimal trajectories when moving the
objects from a point A to a point B while taking into account the position-dependent
maximum achievable DEP force, for which we do not have an analytical solution.

This thesis is divided into three parts. First, we describe our context for DEP ma-
nipulation and the hardware setup in Section 1. The second part deals with visual object
tracking. We describe two basic methods in image processing and combine them with a
simple tracker in Section 2, and later, we explore a state-of-the-art tracker based on convo-
lutional neural networks (CNNs) in Section 3. Finally, we deal with trajectory optimization
for DEP manipulation (Section 4), while taking into account the position-dependent max-
imum achievable forces. In addition, based on our results, we propose improvements to the
control algorithm in Section 5.

2/44

Introduction

1 Preliminaries

In this section, the hardware setup used throughout the thesis is described, along with
definitions of the coordinate system and the current state of the DEP controller, which is
employed for manipulation. Furthermore, we summarize twin-beam method for 3D position
estimation in Section 1.3. Finally, backpropagation method for image reconstruction is
briefly presented in Section 1.5. All of the topics discussed within this section are based on
previous works of the members of AA4CC group, and we give a very simplified description
to get a basic idea of the topics relevant to this thesis.

1.1 Hardware setup and coordinate system

The hardware setup for DEP manipulation is illustrated in Fig. 1 and a 3D rendered
model is displayed in Fig. 2a. The device for manipulation consists of 5 main parts. The first
one is an electrode array formed by 56 electrodes with a manipulation area approximately
1.5× 1.5 mm. The electrodes are 50 µm wide, with the inner gap between them also 50 µm.
Above the array, there is a 2 mm high reservoir filled with de-ionized water, in which
the particles are being manipulated. Beneath the array, there is a lens-less image sensor.
Above the reservoir, there are 2 light-emitting diodes (LEDs), which are used for 2D or 3D
position estimation based on processing images captured by the camera chip. Finally, the
whole device is closed in a box, shielding it from the surrounding light.

(a) 3D model of the manipulation de-
vice.

(b) Electrode array layout (reprinted from [4]).

Figure 2: The hardware setup used throughout this thesis.

3/44

Introduction

A novel electrode layout for DEP manipulation was proposed in [4] and it is visualized
in Fig. 2b. Throughout this thesis, we use the identical coordinate system orientation, but
with the origin of the system located in the center of the array. Therefore, our manipulation
area lies in the range of [−750, 750] µm in both x and y axes. Likewise, images from
the camera are oriented such that the top and right directions are positive in y and x,
respectively. The transformation between the image coordinates (pixels) and 2D system
coordinates is given by a simple augmented transformation matrix Hr/g ∈ R3×3, which is
obtained by the calibration process, described in [5].

1.2 Phase-shift control

In DEP manipulation, movement of a dielectric particle is caused by a non-uniform
electric field. The electric field is shaped by the application of varying potentials on the
electrodes in the array. The method proposed in [4] uses constant amplitude and frequency,
while shifting the phases of the signals which are applied to the electrodes. The issue is
that only the forward model is known, meaning that it is possible to compute the resulting
force when the phases are known, but not the other way around. As a result of the previous
works [4, 5, 7], we are able to specify the desired force as an input to the system and solve
the inverse problem numerically in real-time. The optimization problem is non-convex, and
it is stated as

minimize
θ1,θ2,...,θn

||Fdep(θ)− Fdes|| , (1)

where Fdes is desired force and θi are the phases of the voltage signals, which are applied
to the electrodes. The DEP model is given as

Fdep(θ) =

cTΨxc + sTΨxs + cTΩxc
cTΨyc + sTΨys + cTΩyc
cTΨzc + sTΨzs + cTΩzc

 , (2)

where s and c represent sines and cosines of the phases, and Ψ and Ω are matrices that
depend on the position of the object. Mentioned model is derived especially for spherical
particles, and here it is stated only in a simple form for illustration. The desired force is
currently given by a simple proportional regulator as

Fdes = k (pdes − p), (3)

where pdes is the desired position, p is the actual position, and k is the proportional
constant.

4/44

Introduction

1.3 Twin-beam setup

A novel method for 3D position estimation was proposed in [5], which is based on
triangulation. An intuitive sketch is shown in Fig. 3. The particles are illuminated by two
light sources under two different angles. When a particle is illuminated by two sources, it
also casts two shadows on the image sensor. As it is stated in the mentioned work, the
height (axial distance) of the particle corresponds to the lateral shifts between the two
shadows. The height is derived as

h = l tan β, (4)

where l is the lateral shift distance in electrode coordinate system, and β is the angle of
the oblique light source in the water stated as

β = sin−1
(

sin
nair

nwater

α

)
, (5)

where α is the angle under which the oblique source emits (in our case 30◦), and nair and
nwater are the refractive indices of air and water, respectively.

Image sensor board

Figure 3: An illustration of the basic principle of the twin-
beams method. (reprinted from [5]).

1.4 NVIDIA Jetson AGX Xavier

The whole manipulation device is connected to NVIDIA Jetson AGX Xavier embed-
ded computer. Xavier is a small – yet powerful – device designed for deep learning and
image processing. An illustrative photo is shown in Fig. 4. Hardware specification is as fol-
lows: octal-core NVIDIA ARM CPU, 16GB RAM shared with GPU, 512-core Volta GPU
with 64 Tensor Cores, and camera serial interface for connecting up to 6 4K cameras. The
system runs on modified Ubuntu by NVIDIA with packages for video processing and deep

5/44

Introduction

learning – such as CUDA Toolkit, CUDNN, and PyTorch – provided by NVIDIA JetPack.
All of the experiments in this thesis run on Xavier.

Figure 4: Illustration photo of the NVIDIA Jetson AGX Xavier1.

1.4.1 Camera

The camera used within the DEP manipulation setup is LI-IMX477-MIPI-M12. It
is a 4K camera with 1.55 µm pixel size. The camera is used without lenses, and since our
manipulation area is 1.5× 1.5 mm, we work with images of size 1024× 1024 pixels, which
approximately correspond to the size of manipulation area. Fig. 5 shows an illustrative
photo of the camera and the sensitivity profiles. LEDs employed in the twin-beam method
were selected based on these profiles, and their wavelengths are 525nm and 625nm for the
green and the red channel, respectively. More details about the setup and reading of the
images from the camera are described in [8].

(a) Illustrative photo of the
IMX477 4k camera module.
Our setup does not use the
lenses. (b) Color sensitivity profiles of the camera.

Figure 5: Camera model LI-IMX477.2.

1Source: https://elinux.org/Jetson_AGX_Xavier

6/44

https://elinux.org/Jetson_AGX_Xavier

Introduction

1.5 Image backpropagation

Images from the camera do not capture the objects per se, but rather interference
patters, formed by illumination from a coherent light source. A selected part of the image
with interference patterns is shown in Fig. 6a. Backpropagation is a technique for image
reconstruction from the interference patterns, and it comes from the field called digital
holographic microscopy.

In principle, the method simulates backpropagation of the captured light field. And
in practice, this method is computed as a convolution between the image and the Rayleigh-
Sommerfeld propagator. The convolution is implemented by taking the Fourier transform
of the image, multiplying it with the Fourier image of the propagator, and finally taking the
inverse Fourier transform to obtain the reconstructed image. Computation of the Fourier
transform is possible in real-time since efficient GPU implementations are available. You
can see that Fig. 6b—in contrast to Fig. 6a—shows clearly a spherical microparticle with
a piece of dust. This method is very useful since it enables us to see microparticles clearly
without the need of a microscope.

We have given – again – a very simplified description to get the basic idea of the
backpropagation technique, which we exploit in the visual tracking part of this thesis. For
further details, this method is thoroughly described in [5, 8].

(a) Original image. (b) Backpropagated image.

Figure 6: Reconstruction of the image by applying backpropagation (reprinted from [5]).

2Source: https://www.leopardimaging.com/uploads/LI-IMX477-MIPI-M12_datasheet.pdf

7/44

https://www.leopardimaging.com/uploads/LI-IMX477-MIPI-M12_datasheet.pdf

Visual Tracking

Part II

Visual tracking

Visual object tracking is a very active research area with a lot of attention over
the last decades. Especially with the rise of convolutional neural networks (CNNs) in the
image recognition and object detection fields [9, 10, 11], a lot of researchers have been
focusing on exploiting CNNs for visual tracking. In image recognition, the primary focus
is on learning the visual representation of given classes, but in the general object tracking,
we are interested in learning the similarity between objects within consecutive frames. It
is usually a very challenging task to apply a general tracker for multiple domains, because
of varying light conditions and backgrounds.

Online tracking algorithms based on CNNs usually tackle this issue by utilizing well-
known networks such as Alexnet [11] or VGG-16 [9] for feature extraction and training
additional layers to adapt to a specific target object [12, 13]. For example, MDNet [14]
is pre-trained on a domain-independent training set and trains the last 3 fully connected
(FC) layers during the tracking, with 2 of the 3 FC layers starting pre-trained and the last
one being replaced with random initialization on every start.

Offline tracking algorithms work by learning general similarities between features
extracted by the CNNs, and even though they still have an accuracy gap compared to
the online ones, they are gaining attention because of their efficiency in terms of speed
[15]. They do not - compared to the online trackers - require stochastic gradient descent
updates, which are computationally demanding.

Lately, there has been done a lot of interesting research in object detection visual
tracking exploiting Siamese networks. Siamese networks are neural networks that share
the same weights while processing different input vectors and output a comparable result.
With CNNs utilized as feature extractors, deep similarity learning methods with Siamese
networks were on the rise. A well-known example of such networks is Deepface [16], which
is used for face recognition. Siamese CNNs in visual tracking are usually used to generate
feature volumes of a target template and a search region, and then apply cross-correlation
to obtain a similarity map [17, 15].

Visual tracking has a vast area of applications, such as surrounding object detection
for cars [18], target tracking and relative localization in autonomous robotics [19, 20],
simultaneous localization and mapping for augmented reality [21], or in sports for ball
tracking in soccer [22].

One of the aims of this thesis is to develop a tracking algorithm that is able to track
two objects simultaneously in at least 20 frames per second (FPS) and thus provide position
feedback for DEP force controller. We are given a video stream of green and red channels

8/44

Visual Tracking

from the camera, and we should ideally be able to track objects of general shapes, but with
main focus on spherical objects. We can choose between the raw or the backpropagated (Sec
1.5) images. An example of our typical setup for both green and red channels is shown in
Fig. 7.

We chose to approach our problem by firstly utilizing two very well known image
processing methods in combination with custom, yet simple, tracking algorithm (Section
2). And later, in Section 3, we explore a more robust solution based on Siamese networks.
Bertinetto et al. [15] proposed SiamFC tracker that achieves competitive results in video
object tracking benchmarks even with offline-trained networks. Furthermore, SiamFC is
fast and well-suited for real-time applications. These are exactly the reasons why we decided
to use this particular tracker.

(a) Green channel. (b) Red channel.

Figure 7: Examples of green and red channel images of our environment for tacking.
Both of the raw images from the camera were filtered using backpropagation, mentioned in
Section 1.5. The dark spherical objects represent our targets.

9/44

Visual Tracking

2 Basic methods

In this section, we divide the general visual tracking task into two separate parts -
object detection and object tracking. In the first part, we present two of the basic methods
from image processing with which we use for object detection. The first method consists of
image segmentation using thresholding and morphology operations (Section 2.1) and the
second method lies in finding regional minima (Section 2.2). In the second part, we present
a simple tracking algorithm to work with object detections in Section 2.3.

2.1 Image segmentation

In the case of image segmentation, our goal is to divide the objects (low intensity)
from the background (higher intensity), but there are also the electrodes which have a
similar intensity as the objects. Fortunately, we approximately know the shape and size of
target objects; therefore, we can assume that the objects are bigger than the low-intensity
parts of the electrodes.

The segmentation process example is shown in Fig. 8. First, we threshold the image
using Otsu’s method, which minimizes the variance between classes (in our case binary).
In the binary image, there are the target objects and the thin electrode lines merged into
one class (8b). Since we assume that the objects are bigger than the electrode lines, we
apply morphology opening, which consists of morphology erosion and then dilatation. Note
that the white color represents the background and black the foreground. This operation
closes the inner holes of the objects and then removes some of the electrodes left. After
that, another dilatation is applied to clear the rest of the electrodes (8c). Finally, we find
the contours and filter the objects based on their area. If we know the number of objects
being detected, we can process that and select only the ones with the largest area. Finally,
the detected objects are shown in Fig. 8d.

We use raw images since it is then possible to use automatic thresholding like Otsu.
If the image is backpropagated, the variance between classes is too low, and we obtain
very different segmented binary image within consecutive frames, which could cause the
following operations to fail. Red channel images also suffer from this low contrast/variance
problem, and therefore, this method is reliable only for green channel images, which can
still be used if 2D position estimation suffices.

Tunable parameters are the kernel sizes for morphology operations and the number
of iterations for final dilatation. Even though the objects were successfully detected in the
example, this method is prone to errors caused by changes in light conditions and must be
calibrated every time for the actual setup.

10/44

Visual Tracking

0 200 400 600 800 1000
x [px]

0

200

400

600

800

1000

y
[p
x]

Original image

(a) Input image with 3 visible objects.

0 200 400 600 800 1000
x [px]

0

200

400

600

800

1000

y
[p
x]

Otsu thresholding

(b) Image after Otsu thresholding applied.

0 200 400 600 800 1000
x [px]

0

200

400

600

800

1000

y
[p
x]

After morphology

(c) Image after morphology opening and di-
latation.

0 200 400 600 800 1000
x [px]

0

200

400

600

800

1000

y
[p
x]

Found objects

(d) Final image with found objects drawn into
it.

Figure 8: Example of image segmentation. This method consists of 4 main steps. First,
Otsu thresholding is applied to an input image. It is followed by 2 morphology operations,
opening and dilatation. Next, we find contours of the segmented objects. Finally, the can-
didate objects are filtered by their area, and center coordinates are computed. This method
relies heavily on parameter tuning. During testing on a video, consecutive frames often had
different results (some objects were missing, or an error detection occurred). Therefore it
is not suited for deployment in the final application.

11/44

Visual Tracking

2.2 Regional minima

This method assumes that the target objects have the lowest intensity in the image.
It is, therefore, possible to find the objects as the darkest pixels in the image. Since the
input image is very noisy - which would result in many false-positive detections - we
apply a Gaussian filter to smooth the image. Afterwards, a minimum filter (also known
as regional minima in Matlab) is applied to find the centers of the dark spots (target
objects). Furthermore, we filter out those centers that have higher intensity values than
selected threshold so that we separate possible target objects from the dark spots in the
background.

Similarly to the previous method, some parameters have to be tuned for actual con-
ditions. We primarily adjust the kernel size of the Gaussian blur, which has to be changed
for different shapes and sizes of the objects, and the intensity threshold for selecting desired
minima. An example is shown in Fig. 9, where the objects were detected as expected, but
there was a double detection on the middle object. During the tracking, we have to assume
that this can happen.

0 200 400 600 800 1000
x [px]

0

200

400

600

800

1000

y
[p
x]

Gaussian blur

(a) Gaussian blur applied to the original image.

0 200 400 600 800 1000
x [px]

0

200

400

600

800

1000

y
[p
x]

Region minima

(b) Found objects with one double-detection.

Figure 9: An example of the regional minima method, with the kernel size of the Gaussian
blur set as 29 x 29. The input image is the same as in Fig. 8. Even though this method found
desired objects, the middle object has 2 minima very close to each other. This could be
resolved by increasing the kernel size of Gaussian blur or by increasing the region size when
detecting minima. Nevertheless, this method is less prone to errors due to environmental
changes than previous image segmentation, but results are still not consistent enough, and
the parameters require tuning for a specific setup.

12/44

Visual Tracking

2.3 Simple tracking algorithm

With object detection algorithms ready to use, we need to design an algorithm to
keep track of the positions of the objects. We chose the approach of manual initialization;
otherwise we could start with false detections. We start by selecting the number of objects
for tracking and manually finding their position in the first image. Then every time an input
image is changed, object detection is called, and new positions candidates are obtained.
For every tracked object, we find the closest position from the candidate list, and if it is
within distance threshold, we update the position. By this, we assume that the positions
do not vary much within consecutive frames. The algorithm is summarized in Alg. 1.

Algorithm 1: Tracking algorithm built on top of object detection

Input: numObjects, distThreshold
Data: image, positions[numObjects], keepRunning
image = readImage();
positions = initializePositionsManual(image, numObjects);
while keepRunning do

image = readImage();
detections = objectDetection(image);
for i=0; i<numObjects; i++ do

newPos = findClosestDetection(positions[i], detections);
if norm(positions[i] - newPos) < distThreshold then

positions[i] = newPos;

2.4 Conclusion

Even though the proposed tracking algorithm based on object detection works most
of the time, it is not robust since we have to adjust all the parameters every time we run
it. Furthermore, the image segmentation method has problems thresholding red channel
images, since they have low between-class variance, and thus it is reliably applicable only
on the green channel images. We need a stable solution that works without manual in-
terventions. Therefore, a more robust tracking algorithm based on convolutional neural
networks is discussed within the next section.

13/44

Visual Tracking

3 Tracking with Siamese networks

In the previous section, we have concluded that the presented basic methods are not
sufficient for our application, and therefore we employ SiamFC [15] tracker, which belongs
to the group of the state-of-the-art offline trackers. Furthermore, it is a well-suited solution
for real-time applications. In this section, we start by describing the CNN architecture,
which is used within the tracker (Section 3.1). Afterwards, we dive into to the tracking
process of the SiamFC tracker in Section 3.2. Since computational time is one of our main
concerns, we present a performance benchmark for various setups in Section 3.3. We follow
by proposing an improved method for position estimation in Section 3.4, and finally, the
experiments with the results are presented in Section 3.5.

3.1 CNN Architecture

The architecture of the convolutional neural network used within SiamFC tracker is
similar to the one proposed by Alex Krizhevsky et al. [11], also known as AlexNet, which
won the ImageNet 2012 challenge in image classification [23]. Original AlexNet follows the
convolutional layers with two fully-connected and one softmax layers. Those layers are not
used for tracking since they are present only to learn how to connect the features from con-
volution and output confidence scores for classes. We are interested solely in the feature
embedding process; therefore, only the convolutional part of the network is exploited.

The convolutional part consists of 5 layers. The first one is a 2D-conv layer with ker-
nel size 11× 11, stride 2, and 96 filters. It is followed by a max-pooling layer with window
size 3×3 and stride 2. The second 2D-conv layer has a kernel size of 5×5 with stride 1 and
256 filters. It is followed by max-pooling with the same parameters as before. The third
and the fourth 2D-conv layers have the same parameters with kernel size 3 × 3, stride 1,
and 384 filters, but they are not followed by max-pooling layers. The parameters of the last
2D-conv layer differ only in the number of filters, which is 32. Every convolutional layer,
apart from the last one, is followed by RELU activation layer. The network is visualized
in Fig. 10 with example input image of size 255× 255.

This architecture yields many advantages. It is fully-convolutional with respect to
search image x [15]. This property enables us to use any size of the input image without
re-training of the network. Furthermore, the network does not consist of many or large
layers, which is convenient for real-time applications when exploiting the parallel power of
GPUs.

14/44

Visual Tracking

255x255@3

123x123@96

61x61@96 57x57@256

28x28@256 26x26@384 24x24@38422x22@32

conv1
k=(11, 11)
s=(2, 2)
c=96

maxpool1
k=(3, 3)
s=(2, 2)

conv2
k=(5, 5)
s=(1, 1)
c=256

maxpool2
k=(3, 3)
s=(2, 2)

conv3
k=(3, 3)
s=(1, 1)
c=384

conv4
k=(3, 3)
s=(1, 1)
c=384

conv5
k=(3, 3)
s=(1, 1)
c=32

Figure 10: Architecture of the CNN used within SiamFC tracker with example input
image size of 255 × 255. The network consists of 5 convolutional and 2 max-pooling lay-
ers. Every convolution layer is followed by RELU layer, except for the last one. Symbols
represent: k stands for kernel size, s for stride size, c represents number of channels (filters).

3.1.1 Pre-trained model

Authors of the SiamFC tracker [15] publicly released pre-trained networks on the
ILSVRC 2015 (ImageNet) dataset [23]. The dataset consists of almost 5000 videos with
over than 1 million labelled images in total. Dataset as vast as ImageNet is convenient for
tracking since the videos were shot in many varying domains. This enables safer training
without over-fitting the deep net model and thus learning better the general similarities.
Fig. 11 shows examples of 3 videos from this dataset. Images on the top represent exemplar
images, and the bottom images represent instance images. If the cropped image overex-
tends the bounds of the original image, it is padded with the average color of the whole
image.

It is not worth noting that the pre-trained models are trained on 3 channel (color)
input images, but we have one channel output for tracking. Therefore, we use stacked
grayscale images as the input to match the network structure.

15/44

Visual Tracking

Figure 11: Training data example. The network was trained on almost 5000 videos from
the ILSCVRC 2015 dataset[23], which consists of videos from various domains with different
objects, which helped the network to learn how to extract general similarities and thus it
is not required to perform online training for any part of the network for specific domain
(reprinted from [15]).

3.2 SiamFC tracking process

The original SiamFC tracker is designed to track arbitrary objects with shapes chang-
ing in time without updating the target or online adapting to a specific domain. We are
able to simplify some parts of the original process since our environment does not change
much during the experiment, our camera is static, and tracked objects do not change in
size.

We describe the simplified algorithm and then specify the modifications we made with
respect to the original method proposed in [15]. See Figures 12 and 13 for visual examples.
The tracking process starts by selecting a bounding box around the target object. The
exemplar image z is formed by cropping and padding from the frame image (13b). Since
we track offline and without updating the target, we can save the 6×6×32 feature volume
of z, which is obtained from the CNN forward pass, and reuse it during the tracking, and
thus save computational time. Every iteration starts by cropping and padding instance
image x. It is of size 255× 255, which is approximately 4 times the area of exemplar image
(13d). From the CNN forward pass, we obtain a 22× 22× 32 volume. In the next step, a
cross-correlation between the exemplar and instance volumes is computed. This results in
a 17×17 score map. The score map is now resized to 272×272 using bicubic interpolation
(13f) since the authors of the SiamFC tracker stated that the position estimate was more
precise when interpolating the score map [15], and afterwards, the score map is multiplied

16/44

Visual Tracking

with cosine window to penalize for larger displacements. Finally, we find the highest score
in the map and compute the position displacement. Target position is updated, and the
process is repeated when a new image is available. This process is also described using
pseudocode in Alg. 2.

The original method processes instance images in 3 or 5 different scales and processes
them as a mini-batch. First, the best scale is found and only after that the displacement
is computed. But since we assumed that the objects do not change in scale and we have a
static camera, we omit the scaling part and process only one instance image. This has the
benefit of cutting the computation time approximately in half.

255x255@3

127x127@3 CNN

CNN

22x22@32

6x6@32

* 17x17@1

Figure 12: Instance and exemplar images are forwarded through the CNN to obtain
feature volumes and then a score map is formed from cross-correlation between these
volumes.

The exemplar and instance images are cropped and scaled so that that the bounding
box with some additional context margin has a fixed area. We use the context margin size
as half of the mean dimension of the bounding box. The scale ratio s is given as

s(w + 2p) + s(h+ 2p) = A, (6)

where w and h are width and height of the bounding box, p is context margin, and A is
area. Exemplar image has area 127× 127, and instance image has area 255× 255. The im-
ages are not deformed and keep the aspect ratio. Cropped images are resized using bilinear
interpolation to match the structure. The displacement found from the score map is scaled
accordingly.

17/44

Visual Tracking

0 200 400 600 800 1000
x [px]

0

200

400

600

800

1000

y
[p
x]

First frame

(a) First frame of size 1024× 1024.

0 20 40 60 80 100 120
x [px]

0

20

40

60

80

100

120

y
[p
x]

Exemplar

(b) Exemplar image of the object we track.

0 50 100 150 200 250
x [px]

0

50

100

150

200

250

y
[p
x]

First instance frame

(c) First frame - cropped instance image.

0 50 100 150 200 250
x [px]

0

50

100

150

200

250

y
[p
x]

Second instance frame

(d) Second frame - cropped instance image.

0 50 100 150 200 250
x [px]

0

50

100

150

200

250

y
[p
x]

Score map - NN interpolation

(e) Score map of original size 17× 17 resized
to 272× 272 using nearest-neighbour interpo-
lation.

0 50 100 150 200 250
x [px]

0

50

100

150

200

250

y
[p
x]

Score map - Bicubic interpolation

(f) Score map of original size 17 × 17 resized
to 272 × 272 using bicubic interpolation. Dis-
placement is computed from this map.

Figure 13: An example of the tracking process is shown on two consecutive frames. First,
we initialize the tracker by selecting a bounding box in the first frame. This gives us the
exemplar image (13b). Second instance frame (13d) is then used to update the tracker. The
result is interpolated (bicubic) score map (13f), from which the displacement is computed.
Note that the displacement from the score map has to be scaled accordingly by our given
setup (bounding box size, image sizes, upscaling ratios).

18/44

Visual Tracking

Algorithm 2: SiamFC tracking algorithm

Input: exemplarSize, instanceSize, upscaleSize
Data: image, bbox, exemplar, instance, keepRunning
image = readImage();
bbox = initializeBoundingBox(image);
exemplar = CNN(cropAndPad(image, exemplarSize, bbox));
while keepRunning do

image = readImage();
instance = CNN(cropAndPad(image, instanceSize, bbox));
score = crossCorrelation(instance, exemplar);
scoreUp = resizeBicubic(score, upscaleSize) * cosineWindow(upscaleSize);
displacement = computeDisplacement(scoreUp, exemplarSize, instanceSize);
bbox += displacement;

3.3 Performance benchmark

The performance benchmark is divided into two parts. In the first part, the focus is
on measuring individual parts of one tracking iteration, and in the second part, we compare
performance when multiple trackers are running simultaneously (our goal is to track at least
two objects in 20 FPS). This benchmark was performed on Jetson AGX Xavier computer
(Section 1.4) with maximum performance setting, running on approx. 6000 frames long
video with frame size 1024× 1024 and moving target objects. The tracker is implemented
in PyTorch3, which is a well-known framework for deep learning with neural networks.

The tracking iteration is divided into six parts. Crop and pad part consists of crop-
ping the instance image from the current frame based on last known position and padding
with mean of the image if the frame bounds are exceeded. Transfer to GPU part is the
time it takes to transfer instance image to the GPU. It is followed by CNN part, where we
measure forward pass of the network (with cross-correlation at the end). The next part is
the time it takes to transfer the score map back to CPU. The fifth part consists of resiz-
ing the score map using bicubic interpolation. And the final part, Position displacement,
consists of normalizing the score map, multiplication with cosine window, finding indices
of the maximum score, and updating the position.

3https://pytorch.org

19/44

https://pytorch.org

Visual Tracking

Crop and pad3.43%

Transfer to GPU
9.03%

CNN 73.83%

Transfer to CPU
3.13% Bicubic interpolation
1.30%

Position displacement
9.28%

Figure 14: This chart shows the per-part time portions of an average iteration. The
average iteration time was approx. 20ms during this benchmark. The most computationally
demanding part is the forward pass of the CNN.

Fig. 14 shows per-part percentage of the average iteration time when one object
was tracked, taken from Table 1. It is clear that the CNN forward pass takes most of
the computational time. The average iteration time is approx. 20ms, which corresponds
to 50 FPS. If speed requirements were higher than ours, the primary focus would be on
simplifying the network architecture.

Value in [ms] C&P GPU CNN CPU INTERP POS TOTAL

t̄ 1 object 0.67 1.76 14.39 0.61 0.25 1.81 19.49
std 1 object 0.09 0.37 3.58 0.13 0.06 0.4 4.02

t̄ 2 objects 0.65 2.1 11.71 0.6 0.22 1.37 16.66
std 2 objects 0.06 1.4 3.58 0.28 0.03 0.12 3.78

t̄ 4 objects 0.72 3.83 19.79 1.34 0.24 1.57 27.5
std 4 objects 0.27 2.41 4.88 1.15 0.15 0.4 5.92

Table 1: This table compares the average iteration times (t̄) and the standard deviations
(std) for 6 parts of the tracking process for various setups. The average iteration time of 2
tracker instances was 60 FPS and 4 trackers were able to run at approx. 35 FPS.

20/44

Visual Tracking

The interesting part is the multi-object tracking, since that is our use-case. As it
was mentioned before, we run multiple instances of the tracker in parallel for multi-object
tracking (our objects are of the same time). Table 1 presents measured data of per-part
averages and the average total iteration times for different setups of 1, 2, and 4 simultane-
ous trackers. There is an irregularity that 2 running instances are faster than just a single
one (60 vs 50 FPS). It was measured multiple times, but the results were always similar.
Even though this behaviour seems strange, we did not examine this further, since it was
not causing any problem. When 4 instances were running, we measured approx. 35 FPS
on average with higher deviation, which is significantly slower, but nonetheless, it is still a
good result that satisfies our requirements.

3.4 Improved position estimation for spherical objects

During the testing of the tracker, we noticed that the estimated position of the
target object was occasionally behind the real position, especially when there was a fast
movement between consecutive frames. Note that we have no way of measuring the precise
position. Therefore our assumptions are based only on observations from the video stream.
Even though the estimated position from the tracker is sufficient for the position feedback
controller to move the object, we propose an improved method for position estimation of
spherical objects, which reduces small oscillations in position estimates during movement.

Similarly to the method of finding regional minima discussed in Section 2.2, we assume
that the target objects have the lowest intensity in the image. This method consists of
adding some context around the bounding box computed by the tracker, then applying
Gaussian blur with kernel size selected based on the approximate size of our target object,
and finally, finding the minimum intensity value, which corresponds to the center position
of our spherical object.

An example with fast movement between the frames is shown in Fig. 15. In the first
frame, the estimated positions from the tracker and our method are almost identical, but
when there was a large translation between the first and the second frame, our method
produces a visually better estimate. The estimated position from the tracker would also
converge to the same position, but it would take at least 2 frames, which could result in
small oscillations produced by the feedback controller.

We could also improve the original method for larger displacements by increasing the
search region of the tracker or enlarging the context area. This would work well if only one
spherical object were on the electrode array. If two spherical objects were closer together,
and we had a broader search region, the tracker could detect the other object and change
its focus.

21/44

Visual Tracking

0 50 100 150 200 250
x [px]

0

50

100

150

200

250

y
[p
x]

First frame
Orig BBox
Improved method

0 50 100 150 200 250
x [px]

0

50

100

150

200

250

y
[p
x]

Second frame
Orig BBox
Improved method

Figure 15: Example of our proposed method for position estimation demonstrated on two
consecutive frames with large object displacement between them. Our method improves
the estimation of the center of the tracked spherical object.

3.5 Tracking experiments

0 10 20 30 40 50 60 70 80 90

80

100

120

140

160

180

200

220

240

260
Height control

Measured

Reference

Figure 16: In this experiment, a PI controller was employed to follow a height reference
signal. Tracking in both green and red channels was necessary for height estimation.

Two experiments were conducted to verify the described tracking algorithm. In the
first experiment, the object was following a circular trajectory. Our aim was to test if the
tracker can keep focus on the target and thus provide feedback to the controller. Recorded

22/44

Visual Tracking

trajectories are shown in Fig. 17. The tracker was able to follow the target object (in both
channels) despite the fact that there were dust particles placed along the trajectory.

In the second experiment, which is shown in Fig. 16, we employed two trackers (for
tracking in greed and red channels) to estimate height (4) of the target object. Afterwards,
we tried to manipulate the height of the object, and a PI controller was used to follow the
reference signal. Note that our aim is not to follow the reference perfectly, but to prove that
the tracker with improved position estimation can be used for height estimation in the twin-
beam setup (Sec. 1.3). Furthermore, the PI controller for height is hard to tune. Therefore,
the oscillations were expected. Nevertheless, the height levels were approximately kept.
Videos from the experiments are at https://github.com/aa4cc/twinbeam-tracker.

Measured
Reference

Measured
Reference

Figure 17: Tracking experiment with the modified SiamFC tracker. The yellow rectangle
marks the bounding box around the target object. The tracker was able to track the object
during the whole experiment in both green and red channels.

3.6 Conclusion

In this section, we described the architecture and the tracking process of SiamFC
tracker. The tracking process was simplified since we assumed that the shape of the object
do not change over time. Furthermore, we compared time benchmarks for several instances
of the tracker and verified that it meets our real-time requirements. Finally, we tested the
tracker on a circular trajectory a it performed well. Therefore, this particular tracker is
used for further experiments in this thesis.

23/44

https://github.com/aa4cc/twinbeam-tracker

Trajectory Optimization and Control

Part III

Trajectory optimization and control

One of the aims of this thesis is enabling us to move a microparticle from point A
to point B in the shortest possible time. We have a dynamic system, where the input is a
position-dependent force, for which we do not have an analytical solution. This problem
belongs to the field of time-optimal trajectory optimization.

Trajectory optimization is a broad and developed field, with many applications, such
as minimum-lap-time trajectory optimization for Formula One cars [24]. Especially in the
field of time-optimal trajectory optimization, the task usually consists of moving something
along a path as fast as possible, while taking into account dynamical and geometry con-
straints. The optimization problem quickly becomes very complicated and hard to solve.
The problem is usually simplified or reformulated to deal with these issues. For example, in
robotic manipulation, a system reformulation method in terms of an independent path pa-
rameter instead of time was proposed in [25]. A similar reformulation method was utilized
to obtain optimal speed trajectory for a train in [26]. Nevertheless, all these methods share
one major drawback: in the end, the optimal trajectory is obtained by solving a non-convex
optimization problem. As a result, one never has a guarantee that the obtained trajectory
is the globally optimal one. We show that our particular instance of a time-optimal tra-
jectory optimization problem can be solved very quickly by a graph search algorithm to
global optimality.

In this part, we deal with time-optimal trajectory optimization for a microparticle
in the task of DEP manipulation in Section 4. We simplify the problem by restricting the
motion to 8 directions and pre-computing a map of maximum achievable forces based on
position. That enables us to employ an optimal path-finding algorithm to obtain a time-
optimal trajectory directly. We present simulation results and optimal trajectory examples
in Section 4.2. Afterwards, we compare an optimal trajectory to a naive one in Section 4.3.
Finally, we propose changes to the current control algorithm in Section 5.

24/44

Trajectory Optimization and Control

4 Trajectory optimization

The dynamic model of a spherical particle in a liquid can be written as

ẋ = kFF
dep
x ,

ẏ = kFF
dep
y ,

ż = kF
(
F dep
z − F sed

)
,

(7)

where F dep is the dielectrophoretic (DEP) force, F sed is the sedimentation force caused by
gravity, and the force coefficient is defined as kF = 1

6πµr
, where r is radius of the particle,

and µ is dynamic viscosity of the fluid [5]. Furthermore, this model assumes that the inertia
of a microparticle particle is negligible [27]. Note that the model is valid only for a spherical
microparticle, therefore it is not extendable to other objects. Throughout this theses, we
use polystyrene particles with 50 µm diameter.

Based on the dynamic model of the particle, it is possible to formulate the task of
getting the particle from the initial state xi to the final state xf in the shortest time as
follows:

minimize
θk∈R56

∆T

∆T

subject to xk+1 = xk + ∆T (A xk + B f(θk,xk)),

x0 = xi, k = 1, ..., N,

xN = xf ,

(8)

where ∆T is the time step, x represents 3D position, A and B are the system matrices,
f is the force input (vector notation of the forces in (7)), θ ∈ RN×56 are the phases of
the signals applied to the electrodes, and N is the number of discretization steps. Note
that the Euler forward integration method in (8) is applied only for illustration. This
formulation minimizes the time between steps, which results in minimization of the total
time. Unfortunately, we are not able to solve such an optimization problem since the
expression for the input force based on the phases (2) is too complex. Even a simpler
problem (1) that finds phases resulting in a desired force is non-convex and channeling to
solve.

Therefore, we propose a simpler solution. From the dynamics model, we exploit that
the velocity is proportional the applied DEP force, and since we seek a time-optimal tra-
jectory, we want to maximize the velocity directly, and thus minimize the total trajectory
time. To maximize the velocity, a maximum achievable force based on position and di-
rection have to be known. For that, we can exploit the previously solved problem (1) of
finding phases for a desired force. To find a maximum achievable force, we iterate over a
set of candidates for Fdes from (1), and try to solve the non-convex optimization problem
numerically. After it is solved for a candidate, the error between the actual DEP force and
the candidate for Fdes is computed. If the error lies within defined bounds, the force is

25/44

Trajectory Optimization and Control

enlarged, and the process is repeated until the solver fails to provide us with a feasible
solution.

This process would still be computationally demanding and intractable in real time.
Therefore, we have decided to restrict the motion of the particle to 8 directions and pre-
compute a grid of maximum achievable forces. The fact that the force is proportional to
the velocity enables us to employ an optimal path-finding algorithm, such as A*, to find
a time-optimal trajectory. We further restrict this problem only to 2D space, since we are
mostly interested in moving the particle from point A to B in a plane fixed at a given
height above the electrode array. Nonetheless, this method could be easily extended to 3D
space, with the only cost being a larger grid.

4.1 Maximum force simulation

Let us briefly recapitulate. The goal is to pre-compute a map of maximum achievable
forces in 8 directions (the angle resolution is, therefore, 45◦) for every position in the grid,
which is formed by a uniform discretization of the manipulation area. It is not possible to
find maximum force directly; therefore, a set of forces have to be tested for feasibility by
numerically solving the problem in (1).

To create such a map, three parameters have to be considered. First, what is the
optimal size and resolution of the map, balancing between sufficient granularity and feasible
path/trajectory computation time. Second, what is the valid range of forces that should be
considered during simulation. Finally, since the force optimization problem stated in (1)
is non-convex, how many times should the solver be restarted with new initial conditions
before the candidate force is considered unachievable.

As we have mentioned before, our manipulation area is in range of [−750, 750] µm.
Therefore, the bounds of the simulation grid are identical. After testing and manual tuning
of the parameters, we ended up with the following settings. The solver can be restarted
100 times with new conditions before considering the force unachievable, and the set of
force candidates ranges from 10 pN to 1 nN with an incremental step of 1 pN. During
the simulation, we keep the height of the particle constant at 130 µm, which is a typical
height for manipulation. The force in the z axis is set to 33.4 pN, which correspond to the
sedimentation force caused by gravity.

Figure 18 compares 4 grid resolutions for left direction. In our coordinates system,
left means negative in the x axis. We can see that the highest values are located above the
electrodes perpendicular to the force direction for all of the resolutions. The simulation
seems to be sufficiently detailed for both 25 µm and 50 µm step sizes, while having reason-
able map sizes. We have decided to continue and perform a full simulation with a grid step
size of 25 µm to make the following experiments based on more detailed data.

26/44

Trajectory Optimization and Control

Figure 18: Multiple resolutions of the maximum forces simulation. A balance between the
granularity and the path computation time has to be considered. Throughout this theses,
a resolution of 25 µm is used.

Figure 19 visualizes results from a full— 8 direction—simulation for a 50 µm polystyrene
particle with a 25 µm grid step. In the case of vertical and horizontal forces, the maximum
forces are located on the electrodes that are perpendicular to the direction of the force.
And in the case of diagonal forces, the maximum values are located at the boundaries
of the electrode array segments. The data from this simulation are used in the following
experiments.

27/44

Trajectory Optimization and Control

Figure 19: Simulation of maximum achievable forces across the electrode array in 8 di-
rections for a 50 µm polystyrene particle with a 25 µm grid step.

28/44

Trajectory Optimization and Control

4.1.1 Visualization in the electrode array

For an intuitive visualization in the following experiments, we draw the maximum
achievable forces based on position linearly interpolated between the force vectors. This
forms a polygon around the position, as shown in Fig. 20. Note that the force is scaled
such that it is visible in the electrode array. Therefore, it is not drawn to present absolute
values, but rather ratios between the forces in 8 directions. The scaling factor is identical
for all of the figures in this thesis. Fig. 20b shows that the particle can move easily in the
top and bottom direction, but it is hard to move it to the left and right.

(a) Position [0, 0] µm. (b) Position [-400, 0] µm.

Figure 20: Visualization of the position-dependent maximum forces.

4.2 Trajectory generation

Now that we have a pre-computed map of maximum achievable forces in 8 directions,
it is possible to employ an optimal path-finding algorithm (A* in our case) to find a time-
optimal trajectory. This is possible since the velocity is proportional to the applied force
(7). Our cost function for expanding a node is the time it takes to move by one grid step
in a given direction. The heuristic function is the Euclidean norm between the position
of an expanded node and the position of the goal node. Since the size of the grid and
the maximum achievable force are known, we checked for the admissibility of the heuristic
function.

29/44

Trajectory Optimization and Control

In the real-world experiments following this section, we use paths with a path-
following algorithm instead of time-varying reference position based on trajectory. This
is a common practice in navigation since the behaviour in a real environment is usually
different than in simulation. Our case is not an exception. During the experiments, the
position feedback based on visual tracking brings delay to the system. Therefore, it is
not possible to reasonably follow the time-varying reference position along the optimal
trajectory.

A simple path-following algorithm is employed. Every time our particle reaches the
current target position (with a radius threshold), the target position is updated to the
next reference point of the path. The radius threshold is set to 50 µm in the experiments.
Furthermore, we use the P regulator mentioned in (3) to move the particle along the path.

The path consists of many points since it is computed on the grid. To simplify the
path, we use the Douglas–Peucker curve decimation algorithm [28]. An example is shown
in Fig. 21. We can see that the path consists of many line segments, which are simplified
by the algorithm. We use this method further to simplify all the paths. Finally, examples
of the optimal paths/trajectories are shown in Fig. 22.

Figure 21: The original path is simplified using Douglas–Peucker algorithm. The key
points are highlighted by the red circle.

30/44

Trajectory Optimization and Control

(a) Path 1. (b) Path 2.

(c) Path 3. (d) Path 4

Figure 22: Optimal path examples, found by the A∗ algorithm.

4.3 Optimal trajectory experiment

In this experiment, the time required to move the particle from point A to B is
compared for the time-optimal and direct (shortest) paths. The path for the experiment
is taken from Fig. 22a. This path gives a clear visual understanding that the optimal path

31/44

Trajectory Optimization and Control

is much longer than the direct one. This may come as a surprise, but the path longer in
distance is truly shorter in time need to follow it. The travel times of particle following
the direct and optimal paths was 11.16 s and 8.87 s, respectively. This translates to a 20 %
decrease in travel time for the optimal path. For both of the paths, the P constant of the
regulator was identical. From this result, we conclude that our simplified formulation of the
optimization task—with the motion restricted to 8 directions—is a valid approximation of
the optimization problem stated in (8).

Optimal
Direct

Figure 23: In this experiment, the time-optimal path was compared to the shortest path
(in distance). The path is shown in Fig. 22a. The particle moved from the left to the right.
The optimal path (blue) was indeed faster than the shortest one (red).

4.4 Conclusion

We dealt with the problem of getting a polystyrene microparticle from point A to B
while taking into account that the input force in the dynamic model is position-dependent
and complex to evaluate. We restricted the motion to 8 directions and pre-computed a grid
of maximum achievable force. We exploited the fact that the velocity is proportional to the
force applied to the particle, and employed an optimal path-finding algorithm to obtain a
time-optimal path. The time-optimal path was compared to the shortest path and proved
our approach to be a valid approximation to the optimization problem stated in (8).

32/44

Trajectory Optimization and Control

5 Control algorithm

In this section, we propose a minor modification to the current control algorithm,
based on experimental observations. As was mentioned in the previous section, the path-
following algorithm uses P-regulator (3) to move the particle between individual path
nodes. The regulator outputs the desired force Fdes. For this specific force, the optimization
problem (1) is solved numerically, and the phases of the voltage signals, which generate a
very similar force when applied to the electrodes, are obtained. However, the solver may
fail to find such phases, and a force with a different direction and magnitude is applied to
the particle. A relative error of the solution from (1) is computed as

er =
||Fdes − Fdep||
||Fdes||

, (9)

where Fdes is the desired force and Fdep is the actual applicable force. In the real-time
application, we apply the force even when the error exceeds reasonable bounds. A large
error causes the manipulated object to move in a different direction than it was required by
the position controller. Surprisingly, this does not affect the control performance as much
as one might think. This is due to the fact that large errors occur rather rarely and the
frequency of the control loop is relatively high. Nonetheless, ignoring the error is not ideal.

5.1 P-Regulator without trim

(a) Slight error in the direction. (b) Applied force is in the opposite direction.

Figure 24: P-Regulator in the current form. The solutions for desired force are often
obtained with a high error.

33/44

Trajectory Optimization and Control

The P-regulator without trim is the one described at the beginning of this section.
It computes the desired force directly from the difference between the target and actual
positions and tries to find the corresponding phases of the voltage signals.

Figure 24 presents two typical frames from a path-following process. In Fig. 24a, we
see that the desired force is way out of the pre-computed maximum force bounds. As we ex-
pected, the solver failed at finding a solution within reasonable error bounds. Nevertheless,
the actual force has only a small error in the direction. An interesting observation is that
the actual force is larger than our pre-computed maximum force bounds. This may happen
since the pre-computed grid is based on the restriction of the movement in 8 directions.

In the second case (Fig. 24b), the solver also fails to provide a feasible solution for the
desired force. But this time, the actual force aims in the opposite direction of the desired
force. This error is usually suppressed since the procedure is repeated in the next step with
a new position estimate, for which the solver finds a different solution.

5.2 P-Regulator with trim

To stabilize the solutions of the solver, we propose to trim the desired force at the
bounding polygon. The bounding polygon is formed by linear interpolation between the
pre-computed maximum forces in 8 directions. This method is based on an idea, that if
the solver was able to find a solution during the grid simulation process, it should be able
to find a similar solution even during the real-time experiment.

(a) The desired force is trimmed to the bound-
ing polygon.

(b) The desired force is not modified since it
is within the bounding polygon.

Figure 25: Modified P-Regulator with trimming of the desired force.

34/44

Trajectory Optimization and Control

Figure 25 shows two examples. In the first case, the desired force is trimmed to
the bounding box, as we proposed. And the second example presents the case when no
trimming is necessary since the desired force is within the polygon. In the next section, we
compare these methods in an experiment.

5.3 Control experiments

In this experiment, we compare the two mentioned control methods in a path-
following scenario. The path selected for the experiment corresponds to the time-optimal
path shown in Fig. 22b.

Figure 26: Comparison of the two control methods in a path-following scenario.

35/44

Trajectory Optimization and Control

The trajectories of the particle for both of the methods are visualized in Fig. 26. We
expected that the trajectory with trimmed regulator would be better at following the path
since the desired forces should be within reasonable bounds, and thus the solver should
find more stable solutions. However, we can see that both of the methods have similar
trajectories. Furthermore, the total time of trajectory was longer for trimming the method
since the desired forces are restricted.

0 50 100 150 200 250

Step [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 e

rr
o
r

[-
]

Solver error

P-Reg, no trim

P-Reg, trim

Figure 27: Comparison of the relative error between the desired force and the actual
solution found by the solver.

However, when we look at the relative error of the solutions from the experiment
in Fig. 27, we see that the solver found more stable solutions for the method with the
trimmed desired force. Furthermore, the solver was able to find the solutions in fewer
iterations. Therefore, if a more precise bounding polygon of the maximum achievable force
were available, it would be possible to move the particle faster, while helping the solver to
find fast and stable solutions.

Videos from the experiments are at https://github.com/aa4cc/twinbeam-tracker.

36/44

https://github.com/aa4cc/twinbeam-tracker

Conclusion

6 Conclusion

This thesis dealt with two problems in the task of feedback dielectrophoretic (DEP)
micromanipulation: real-time visual tracking and time-optimal trajectory optimization.
Furthermore, we had four main goals. The first goal was to develop a visual tracker that
runs at least 20 frames per second (FPS) and can track at least two objects. The second
goal was to implement, especially for spherical objects, a more accurate position estimation
method. The third goal was to use the estimated positions from green and red channel
images and estimate the height of the object. The last goal was to solve a time-optimal
trajectory optimization problem for a microparticle, where the input to the system is
position-dependent. All of the goals were fully achieved.

We approached the visual tracking problem with two possible solutions. First, we
divided the tracking task into object detection and object tracking. For object detection,
we explored two basic methods from image processing. Afterwards, we proposed a simple
tracker that assumes that there is only a minimal movement between consecutive frames.
This solution worked, but it required heavy parameter tuning. Therefore, we employed
a more robust tracker (SiamFC) based on Siamese convolutional neural networks, which
achieves results comparable to the state-of-the-art trackers. The tracker was experimentally
verified. Furthermore, the time benchmark confirmed that we are able to run four trackers
at around 30 FPS.

In the time-optimal trajectory optimization part, we dealt with the problem of getting
a polystyrene microparticle from point A to B, with the input constraints in the dynamic
model being position-dependent and complex to evaluate. We chose to restrict the motion
to 8 directions and pre-compute a grid of maximum achievable force. We exploited the
fact that the velocity is proportional to the force applied to the particle, and employed
an optimal path-finding algorithm to obtain a time-optimal path. The time-optimal path
was compared to the shortest path in an experiment, and the travel time of the optimal
path was indeed shorter. As opposed to traditional time-optimal trajectory optimization
methods (which suffer from being non-convex), our method guarantees to yield a globally
optimal trajectory.

Finally, we proposed a modification to the current control algorithm, which lies in
trimming the desired force based on the pre-computed maximum achievable force. This
results in better stability of the numerical solutions but causes the motion of the particle
to be slower.

37/44

Conclusion

38/44

Conclusion Bibliography

References

[1] C Zhang, Khashayar Khoshmanesh, Arnan Mitchell, and Kourosh Kalantar-zadeh.
Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems.
Analytical and bioanalytical chemistry, 396, 10 2009.

[2] Michael Hughes. Ac electrokinetics: Applications for nanotechnology. volume 11, 06
2000.

[3] Sina Mahabadi, Fatima Labeed, and Michael Hughes. Effects of cell detachment
methods on the dielectric properties of adherent and suspension cells. Electrophoresis,
36, 04 2015.

[4] Jǐŕı Zemánek, Tomas Michalek, and Zdeněk Hurák. Phase-shift feedback control for
dielectrophoretic micromanipulation. Lab on a Chip, 18, 05 2018.

[5] Martin Gurtner. Real-time optimization-based control and estimation for dielec-
trophoretic micromanipulation. Master’s thesis at CTU in Prague, 2016.

[6] Martin Gurtner and Jǐŕı Zemánek. Twin-beam real-time position estimation of micro-
objects in 3d. Measurement Science and Technology, 27, 11 2016.

[7] Jǐŕı Zemánek. Distributed manipulation by controlling force fields through arrays of
actuators. Dissertation at CTU in Prague, 2018.

[8] Viktor-Adam Koropenský. Gpu-accelerated computer vision systemfor feedback
micro-manipulation. Bachelor’s thesis at CTU in Prague, 2019.

[9] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv 1409.1556, 09 2014.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 580–587, 2014.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

[12] Mengyao Zhai, Mehrsan Javan Roshtkhari, and Greg Mori. Deep learning of appear-
ance models for online object tracking. 07 2016.

[13] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional
networks. In 2015 IEEE International Conference on Computer Vision (ICCV), pages
3119–3127, 2015.

39/44

Bibliography

[14] Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural net-
works for visual tracking. Arxiv, pages 4293–4302, 10 2015.

[15] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea Vedaldi, and Philip HS
Torr. Fully-convolutional siamese networks for object tracking. arXiv preprint
arXiv:1606.09549, 2016.

[16] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-
level performance in face verification. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1701–1708, 2014.

[17] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan.
Siamrpn++: Evolution of siamese visual tracking with very deep networks. pages
4277–4286, 06 2019.

[18] Kuan-Hui Lee and Jeng-Neng Hwang. On-road pedestrian tracking across multiple
driving recorders. IEEE Transactions on Multimedia, 17:1–1, 09 2015.

[19] T. Báča, P. Štěpán, V. Spurný, D. Heŕt, R. Pěnička, M. Saska, J. Thomas, G. Loianno,
and V. Kumar. Autonomous landing on a moving vehicle with an unmanned aerial
vehicle. Journal of Field Robotics, 36(5):874–891, 2019.

[20] J. Chudoba, M. Saska, T. Baca, and L. Preucil. Localization and stabilization of micro
aerial vehicles based on visual features tracking. In 2014 IEEE International Con-
ference on Unmanned Aircraft Systems (ICUAS), volume 1, pages 611–616, Danvers,
2014. IEEE Computer society.

[21] Raul Mur-Artal and Juan Tardos. Orb-slam: Tracking and mapping recognizable
features. 07 2014.

[22] Paresh Kamble, Avinash Keskar, and K. Bhurchandi. A deep learning ball tracking
system in soccer videos. Opto-Electronics Review, 27:58–69, 03 2019.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[24] Giacomo Perantoni and David JN Limebeer. Optimal control for a formula one car
with variable parameters. Vehicle System Dynamics, 52(5):653–678, 2014.

[25] Robin Verschueren, Niels van Duijkeren, Jan Swevers, and Moritz Diehl. Time-optimal
motion planning for n-dof robot manipulators using a path-parametric system refor-
mulation. In 2016 American Control Conference (ACC), pages 2092–2097. IEEE,
2016.

40/44

Conclusion Bibliography

[26] Shaofeng Lu, Stuart Hillmansen, Tin Kin Ho, and Clive Roberts. Single-train tra-
jectory optimization. IEEE Transactions on Intelligent Transportation Systems,
14(2):743–750, 2013.

[27] Mohamed Kharboutly, Michael Gauthier, and Nicolas Chaillet. Modeling the tra-
jectory of a microparticle in a dielectrophoresis device. Journal of Applied Physics,
106:114312 – 114312, 05 2010.

[28] John Hershberger and Jack Snoeyink. Speeding up the douglas-peucker line-
simplification algorithm. 5th Intl Symp on Spatial Data Handling, 11 2000.

41/44

Bibliography

42/44

Conclusion APPENDIX REFERENCES

Appendix A List of abbreviations

In Table 2 are listed abbreviations used in this thesis.

Abbreviation Meaning
DEP dielectrophoresis
CNN convolutional neural network
FPS frames per second
LED light-emitting diode
GPU graphical processing unit
CPU central processing unit
RAM random access memory

Table 2: Lists of abbreviations

43/44

APPENDIX REFERENCES

44/44

	I Introduction
	Preliminaries
	Hardware setup and coordinate system
	Phase-shift control
	Twin-beam setup
	NVIDIA Jetson AGX Xavier
	Camera

	Image backpropagation

	II Visual tracking
	Basic methods
	Image segmentation
	Regional minima
	Simple tracking algorithm
	Conclusion

	Tracking with Siamese networks
	CNN Architecture
	Pre-trained model

	SiamFC tracking process
	Performance benchmark
	Improved position estimation for spherical objects
	Tracking experiments
	Conclusion

	III Trajectory optimization and control
	Trajectory optimization
	Maximum force simulation
	Visualization in the electrode array

	Trajectory generation
	Optimal trajectory experiment
	Conclusion

	Control algorithm
	P-Regulator without trim
	P-Regulator with trim
	Control experiments

	Conclusion
	Appendix List of abbreviations

