
ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457120Osobní číslo:JanJméno:VidašičPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Problém obchodního cestujícího se sousedstvími

Název diplomové práce anglicky:

Travelling Salesman Problem with Neighborhoods

Pokyny pro vypracování:
1. Seznamte se s problémem obchodního cestujícího se sousedstvími
(TSPN - Travelling Salesman Problem with Neighborhoods).
2. Seznamte se s metaheuristikami pro řešení směrovacích problémů.
3. Navrhněte a implementuje metaheuristický algoritmus pro řešení TSPN.
Inspirujte se zejména [2].
4. Navrhněte/diskutujte rozšíření realizovaného algoritmu pro aplikace v
mobilní robotice, např. pro úlohu inspekce prostředí, případně uvažujte
prostředí s překážkami
5. Experimentálně vyhodnoťte vlastnosti implementovaného algoritmu.
Popište a diskutujte dosažené výsledky.

Seznam doporučené literatury:
[1] Gendreau M., Potvin JY. (eds) Handbook of Metaheuristics.
International Series in Operations Research & Management Science, vol
272. Springer, Cham, 2019
[2] Stephen L. Smith, Frank Imeson, GLNS: An effective large
neighborhood search heuristic for the Generalized Traveling Salesman
Problem, Computers & Operations Research, Volume 87, 2017
[3] David Woller, Hledání zdrojů gama záření, Search for sources of
gamma radiation, Diplomová práce, České vysoké učení technické v
Praze, 2019
[4] Pan, Xiuxia, Fajie Li, and Reinhard Klette. Approximate shortest path
algorithms for sequences of pairwise disjoint simple polygons. Department
of Computer Science, University of Auckland, 2010.

Jméno a pracoviště vedoucí(ho) diplomové práce:

RNDr. Miroslav Kulich, Ph.D., inteligentní a mobilní robotika CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 22.05.2020Datum zadání diplomové práce: 11.02.2020

Platnost zadání diplomové práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryRNDr. Miroslav Kulich, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computers

Travelling Salesman Problem with
Neighborhoods

Bc. Jan Vidašič

Supervisor: RNDr. Miroslav Kulich, Ph.D.
May 2020

ii

Acknowledgements
I would like to thank my supervisor,
RNDr. Miroslav Kulich Ph.D., for his
willingnes and support.

Declaration
I declare that the presented work was writ-
ten independently and that I have listed
all used sources of information as per the
methodical instructions about following
of the ethical principles in preparation of
university thesis.

Prague, 21. May 2020

iii

Abstract
This thesis explores the possibility of
transforming the metaheuristic algorithm
GLNS, used for General Travelling Sales-
man Problem (GTSP), to instead solve
the version of Travelling Salesman Prob-
lem with Neighborhoods (TSPN) where
the neighborhoods are simple, possibly in-
tersecting, polygons. Two algorithms are
proposed and implemented, each utiliz-
ing GLNS in a different way. Both also
make use of an algorithm solving the un-
constrained version of Touring Polygons
Problem (TPP). The second proposed al-
gorithm is additionally equipped to han-
dle a case, when there are simple polygo-
nal obstacles between the neighborhoods.
This is made possible using a visibility
graph.

Keywords: TSPN, GLNS, TPP,
Travelling Salesman Problem with
Neighborhoods, Touring Polygons
Problem

Supervisor: RNDr. Miroslav Kulich,
Ph.D.
Czech Technical University in Prague
Czech Institute of Informatics, Robotics,
and Cybernetics
Jugoslávských partyzánů 1580/3
16000 Prague 6

Abstrakt
Práce se zabývá využitím metaheuristic-
kého algoritmu GLNS, používaného k ře-
šení problému obecného obchodního ces-
tujícího, k řešení upraveného problému
obchodního cestujícího se sousedstvími.
Tato úprava spočívá v tom, že soused-
stvími jsou pouze nedegenerované mno-
hoúhelníky, jež se mohou i překrývat. V
rámci práce jsou navrhnuty a implemen-
továny dva algorithmy, které využívají
původní nebo modifikovaný algoritmus
GLNS. Dále je v obou také využit algo-
ritmus pro řešení úlohy průchodu mno-
hoúhelníky. Druhý navrhnutý algoritmus
je schopný řešit i instance, kde jsou mezi
sousedstvími překážky ve tvaru nedegene-
rovaných mnohoúhelníků. Využívá k tomu
datové struktury, která se nazývá graf vi-
ditelnosti.

Klíčová slova: Obchodní cestující se
sousedstvími

Překlad názvu: Problém obchodního
cestujícího se sousedstvími

iv

Contents
1 Introduction 1
2 Definitions 3
2.1 Generalized travelling salesman
problem . 3

2.2 Travelling salesman problem with
neighborhoods 3

2.3 Touring polygons problem 3
2.4 Thesis problem formulation 4
2.4.1 TSPNdisjoint problem
formulation . 5

2.4.2 TSPNintersect problem
formulation . 5

2.4.3 TSPNobstacles problem
formulation . 5

2.4.4 Thesis problems overview 6
3 Methods 7
3.1 Floating TPP algorithm 7
3.2 GLNS algorithm 11
3.2.1 Solver framework 12
3.2.2 Insertion heuristics 13
3.2.3 Bounding insertions before
evaluation . 14

3.2.4 Removal heuristics 14
3.2.5 Local optimizations 15
3.2.6 Modes of operation 15
3.2.7 Implementation details 16

3.3 GLNSC . 16
3.3.1 Floating TPP modifications . 16
3.3.2 GLNS modifications 19
3.3.3 Implementation change of
insertions . 21

3.3.4 Parameters 21
3.4 GLNS-TPP 22
3.4.1 GLNS modification 23
3.4.2 TPP modifications 24
3.4.3 Optimization of TPP on
TSPNobstacles 25

3.4.4 Possible future improvements 26
3.4.5 Parameters 26

4 Experimental results 29
4.1 Methodology 29
4.1.1 Instances 29
4.1.2 Measurements 31

4.2 GLNSC . 32
4.2.1 Insertion change 32

4.3 GLNS-TPP 32
4.3.1 TPP change 33
4.3.2 TSPNobstacles 34

4.4 GLNSC and GLNS-TPP
comparison . 38
4.4.1 Influence of the amount of
edges . 38

4.4.2 TSPNdisjoint and TSPNintersect
instances . 39

5 Conclusion 43
Bibliography 45
A Contents of the attached CD 47

v

Figures
2.1 Example instances of the thesis
problems . 4

3.1 Illustration of the floating TPP for
convex polygons (Algorithm 1). 8

3.2 Finding the closest point on a line
segment in regards to the points x
and y (Algorithm 3). 11

3.3 Comparison of choosing the
boundary point and the point in the
middle in Algorithm 5. 18

3.4 x ∈ P and y ∈ P , therefore
Algorithm 5 selects the point in the
middle of (x, y). But P is not convex
and such point is outside of its
bounds. The optimal point p is on
the frontier of P and therefore can be
found by Algorithm 3. 19

3.5 General steps of GLNS-TPP. . . . 23
3.6 Process of finding the optimal
point in the TSPNobstacles instances
(Algorithm 6). 26
3.7 Example of a solution that is not
optimal found by Algorithm 6. . . . 27

4.1 Examples of the solved
TSPNdisjoint instances. 30

4.2 Examples of the solved
TSPNintersect instances. 30

4.3 Examples of the solved
TSPNobstacles instances (red polygons
represent the obstacles). 31

4.4 Influence of the GLNS mode
setting on the runtime. 33

4.5 Solved instance of potholes_12 by
the original and modified TPP. . . . 34

4.6 Average duration of a single TPP
iteration on the potholes_ instances. 36

4.7 Average number of TPP iterations
on the potholes_ instances. 36

4.8 Weight reduction by TPP
iteration. 37

4.9 Amount of obstacles influence . . 38
4.10 Time dependence on the amount
of edges of the polygons 39

4.11 Time dependence on the amount
of polygons of GLNSC and
GLNS-TPP 41

vi

Tables
2.1 Problems overview 6

3.1 GLNSC parameters 22
3.2 GLNS-TPP parameters 27

4.1 GLNSC insertion change time and
solution cost comparison. 32

4.2 Influence of the GLNS mode
setting on the solution cost. 33

4.3 GLNS-TPP TPP change time and
solution cost comparison. 34

4.4 GLNS-TPP time performance on
TSPNobstacles instances. 35

4.5 GLNS-TPP solution costs on
TSPNobstacles instances. 35

4.6 GLNS-TPP time dependency on
the amount of obstacles. 37

4.7 GLNS-TPP solution costs
dependency on the amount of
obstacles. 38

4.8 Influence of the number of edges
(per polygon) on the runtime of
GLNSC and GLNS-TPP 39

4.9 Comparison of GLNSC and
GLNS-TPP times on TSPNdisjoint
(density_) and TSPNintersect
(ngons_, potholes_) 40
4.10 Comparison of GLNSC and
GLNS-TPP solution costs on
TSPNdisjoint (density_) and
TSPNintersect (ngons_, potholes_) 40

vii

Chapter 1
Introduction

The thesis aims to design and develop an algorithm that finds the shortest tour
visiting all given polygons and that starts and ends in the same polygon. This
is a variant of the so called Traveling Salesman Problem with Neighborhoods
(TSPN) and is an extension of the well known NP-hard Traveling Salesman
Problem (TSP) with the difference that each vertex of the tour can be moved
within a given neighborhood. It is a problem with vast applications in the
motion planning tasks in robotics and logistics.

This thesis presents two different algorithms for the solution of TSPN,
where neighborhoods are simple, not necessarily disjoint, polygons. One
of the algorithms is also modified to handle a case, where there are simple
polygonal disjoint obstacles between the neighborhoods that the tour has
to avoid passing through. The core of both algorithms is a very effective
heuristic solver for the Generalized Traveling Salesman Problem (GTSP)
called GLNS, tailored for the addressed problem.

The first algorithm, we call GLNSC, is a modification of GLNS which
works with polygons, instead of sets of points.

The second one - GLNS-TPP, works in two phases. In the first phase the
TSPN problem is transformed into a GTSP problem by splitting the input
polygons into triangular meshes and using the points in the center of the
generated triangles as the input for GLNS. The order of the polygons found
by GLNS is then used in the second phase which utilizes an algorithm for the
so called Touring Polygons Problem (TPP). The algorithm finds a tour with
the shortest length between the polygons with a fixed order. This algorithm
is also capable of working with obstacles between the neighborhoods utilizing
a data structure called visibility graph.

The purpose of Chapter 1 is to provide a general overview of what this thesis
is about. Chapter 2 defines the existing problems that are connected to this
work such as TSPN and TPP, and most importantly specifies the formulation
of the problem this thesis is trying to solve. Chapter 3 first describes the
GLNS solver of GTSP and then discusses both proposed algorithms. Chapter
4 presents experimental results with a comparison of both algorithms on
maps without obstacles and the performance of the second algorithm on the
maps with obstacles. Chapter 5 serves as an overview of the work done and
describes possible future direction and improvements of the algorithms.

1

2

Chapter 2
Definitions

First, this chapter defines the problems this thesis builds upon - GTSP, TPP
and TSPN. Then, the thesis problems themselves are defined. Both the GTSP
and TPP problems are introduced here, because the algorithms used to solve
them are utilized in some form in both algorithms presented in this thesis.
TSPN is then the basis for the thesis problems formulation.

2.1 Generalized travelling salesman problem

The exactly-one-in-set GTSP is a well known NP-hard problem that can be
described as follows [4].

Given a complete weighted graph G = (V,E,w) on n vertices and a
partition of V into m sets Pv = {V1, . . . , Vm}, where Vi ∩ Vj = ∅ for all i 6= j
and ∪mi=1Vi = V , find a cycle in G that contains exactly one vertex from each
set Vi, i ∈ {1, . . . ,m} and has a minimum length.

2.2 Travelling salesman problem with
neighborhoods

TSPN was first defined in [1]. We assume a salesman that wants to meet
some buyers. Each buyer specifies a compact set in a plane, his neighborhood,
where he is willing to meet. These sets can be of arbitrary shape, for example
a disk or a polygon. The sets are also allowed to intersect. The salesman
aims to find a tour of the shortest length that intersects the neighborhoods
of all the buyers and returns to the initial point of departure.

TSPN is very similar to GTSP, the only difference being that the neigbor-
hoods of the GTSP instance consist of points instead of continuous regions.

2.3 Touring polygons problem

TPP first appeared in paper [2]. The basic idea is that we assume a starting
point s, endpoint q and an ordered set of simple polygons. We want to find
the shortest path that starts at point s, visits all polygons from the set in

3

2. Definitions......................................
the specified order, and finishes at point q. The unconstrained version of this
problem, where the points s and q are not specified, is called floating TPP.
Both the TPP and the floating TPP problems also belong to the category of
NP-hard problems.

2.4 Thesis problem formulation

This thesis aims to solve three different problems. They are in essence just
restricted or updated versions of TSPN defined in Section 2.2. They build on
top of each other and are progressively harder to solve as each of them adds
some constraint on top of its predecessor. Their example instances can be
found in Figure 2.1.

(a) : Solved TSPNdisjoint instance (b) : Solved TSPNintersect instance

(c) : Solved TSPNobstacles instance (red polygons are obstacles)

Figure 2.1: Example instances of the thesis problems

4

.............................. 2.4. Thesis problem formulation

2.4.1 TSPNdisjoint problem formulation

The first problem of this thesis, lets call it TSPNdisjoint, is the base problem
of this thesis upon which the remaining problems are built. In an instance
of TSPNdisjoint the neighborhoods are allowed to be only simple polygons,
whose convex hulls do not intersect with any other polygon (or its convex
hull) of the instance. A more formal definition of TSPNdisjoint follows.

Assume an instance I = {P}, where. P = {Pi | i ∈< 1,m >}. Pi is a simple polygon for all i. C(Pi) ∩ C(Pj) = ∅,∀i, j, where C(·) is a convex hull

The solution to a TSPNdisjoint instance is a tour T = (p1, p2, . . . , pm) vis-
iting each polygon Pi exactly once with a minimum tour length wT =∑m
i=1 de(pi, pi+1), where de is the length of a straight line segment between

the two consecutive points of the tour T . For a point pi to visit polygon Pi
the point must be inside Pi, that is pi ∈ Pi.

2.4.2 TSPNintersect problem formulation

The second problem addressed in this thesis, lets call it TSPNintersect, is similar
to TSPNdisjoint problem, with the exception that the polygons are allowed
to intersect. It should be noted that an algorithm solving a TSPNintersect

instance is also capable of solving a TSPNdisjoint instance. A more formal
definition of TSPNintersect follows.

Assume an instance I = {P}, where. P = {Pi | i ∈< 1,m >}. Pi is a simple polygon for all i

The solution to a TSPNintersect instance is a tour T = (p1, p2, . . . , pm) vis-
iting each polygon Pi at least once with a minimum tour length wT =∑m
i=1 de(pi, pi+1).

2.4.3 TSPNobstacles problem formulation

The third addressed problem, lets call it TSPNobstacles, is identical to the
TSPNintersect problem, but introduces obstacles as an additional constraint.
The tour of the salesman must not intersect any obstacle on the way around the
neighborhoods. The obstacles must be simple polygons and have to be disjoint.
Additionally the obstacles are not allowed to intersect with the neighborhoods
that are to be visited. It should be noted that an algorithm solving a
TSPNobstacles instance is also capable of solving TSPNintersect instance, as a
TSPNintersect instance is a TSPNobstacles instance without obstacles. A more
formal definition of TSPNobstacles follows.

Assume an instance I = {P,O}, where

5

2. Definitions......................................
. P = {Pi | i ∈< 1,m >}. O = {Oj | j ∈< 1, n >}. Pi is a simple polygon for all i. Oj is a simple polygon for all j. Ok ∩Ol = ∅, ∀ k 6= l. Ov ∩ Pw = ∅, ∀ v, w

The solution to a TSPNobstacles instance is a tour T = (p1, p2, . . . , pm) vis-
iting each polygon Pi at least once with a minimum tour length wT =∑m
i=1 de(pi, pi+1), where de is the length of a shortest polyline li between the

two consecutive points of the tour T , that does not intersect any obstacle Oj .

2.4.4 Thesis problems overview

Table 2.1 overviews the differences between the problems and shows which
of the proposed algorithms (GLNSC and GLNS-TPP) is able to solve which
problem.

Problem Regions
intersect Obstacles GLNSC

solves
GLNS-TPP
solves

TSPNdisjoint No No Yes Yes
TSPNintersect Yes No Yes Yes
TSPNobstacles Yes Yes No Yes

Table 2.1: Problems overview

6

Chapter 3
Methods

3.1 Floating TPP algorithm

Both GLNSC and GLNS-TPP incorporate a TPP solver in some form. This
section thus describes the used algorithm for the floating version of TPP.

The algorithms solving TPP generally fall to the category of rubberband
algorithms introduced in [3]. The reason for this name is that they work by
’tightening’ the solution. While there exists a variety of algorithms solving
different versions of TPP, the algorithm chosen for this thesis, due to its rather
simple implementation, comes from the paper [10]. First, the pseudocode of
the algorithm for disjoint convex polygons is presented (Algorithm 1) along
with its visualization in Figure 3.1. Then the general version working with
simple polygons whose convex hulls do not intersect is described (Algorithm 2).

Algorithm 1: Floating TPP algorithm for convex polygons
Data: A sequence of k pairwise disjoint simple polygons

P0, P1, . . . , Pk−1 in a plane π; an accuracy constant ε > 0
Result: A sequence < p0, p1, . . . , pk > (where pk = p0) which visits

polygon Pi at pi in the given order i = 0, 1, . . . , k − 1, and
finally i = 0 again

1 For each i ∈ {0, 1, . . . , k − 1}, let initial pi be a vertex of Pi;
2 L0 =∞;
3 L1 =

∑k−1
i=0 de(pi, pi+1);

4 while L0 − L1 >= ε do
5 for i = 0, 1, . . . , k − 1 do
6 Let pi−1, pi+1 and Pi be the input of Algorithm 3, the output

is a point qi ∈ ϑPi;
7 Replace pi by qi;
8 end
9 L0 = L1;

10 L1 =
∑k−1
i=0 de(pi, pi+1);

11 end
12 Return < p0, p1, . . . , pk−1, pk >;

7

3. Methods.......................................

(a) : The tour is initialized by choos-
ing a random vertex of each polygon and
the length of the current tour L0 is com-
puted.

(b) : The first point is optimized by Algo-
rithm 3 in the first iteration of the inner
loop on the line 5.

(c) : The second point is optimized.

(d) : The final point was optimized. The
algorithm now checks, whether the length
of the new tour L1 is smaller than L0 by
at least ε.

(e) : The second iteration of the main loop improves only one more point. The third
iteration will be the last one, as it won’t be able to shorten the tour anymore.

Figure 3.1: Illustration of the floating TPP for convex polygons (Algorithm 1).

8

................................ 3.1. Floating TPP algorithm

The Algorithm 1 takes a sequence of pairwise disjoint simple polygons P
and an accuracy constant ε as an input and returns an approximate shortest
path consisting of a sequence of points that tour the polygons in the given
order. At the beginning of the algorithm, a random vertex of each polygon
is selected to form the initial solution (1) and the lengths L0 and L1 are set
(lines 2 and 3). L0 represents the path length of the points from the previous
iteration, while L1 is the path length of the current iteration. The main cycle
of the algorithm (line 4) terminates when L1 was shortened by less than ε
with respect to L0. The inner cycle (line 5) goes through the current tour
from the beginning and for each point pi finds a point qi ∈ ϑPi on the frontier
of the polygon Pi that minimizes the distance de(pi−1, qi) + de(qi, pi+1). In
other words, the inner cycle replaces each point pi of the tour with a point
on the frontier of its parent polygon Pi that minimizes the distance to the
preceding pi−1 and succeeding pi+1 point in the tour. This is accomplished
by Algorithm 3.

Algorithm 2: Floating TPP algorithm for not necessarily convex
polygons

Data: A sequence of k simple polygons P0, P1, . . . , Pk−1 such that
convex hulls C(P0), C(P1), ..., C(Pk−1) are pairwise disjoint
and an accuracy constant ε > 0

Result: A sequence < p0, p1, . . . , pk > (where pk = p0) which visits
polygon Pi at pi in the given order i = 0, 1, . . . , k − 1, and
finally i = 0 again

1 For i ∈ {0, 1, . . . , k − 1}, apply the Melkman algorithm for computing
C(Pi);

2 Let C(P0), C(P1), ..., C(Pk−1) be the input of Algorithm 1 for
computing an approximate shortest route < p0, p1, . . . , pk−1, pk >;

3 For i = 0, 1, . . . , k − 1 use Algorithm 3 with points pi−1, pi+1 and
polygon Pi as arguments to find a point qi ∈ ϑPi. Update pi by
letting pi be qi;

4 Let P0, P1, . . . , Pk−1 be the input of Algorithm 1, and points pi as
obtained from line 3 be the initial points in line 1 of Algorithm 1 for
computing an approximate shortest route < p0, p1, . . . , pk−1, pk >;

5 Return < p0, p1, . . . , pk−1, pk >;

Algorithm 2 starts by computing a convex hull C(P) of each input polygon
(line 1). These convex hulls are then used as the input for Algorithm 1 to
calculate an approximate shortest route consisting of the points p (line 2).
Because the points p are on the frontier of the convex hulls C(P) and therefore
some point pi could be outside of Pi, the inner cycle of Algorithm 1 is used
once (line 3) to get the points p back within the frontier of P . Algorithm 1 is
then called again using the points p instead of the initial points to get the
final approximate shortest route.

Algorithm 2 provides an (1 + (L2 − L1)/L) - approximate solution for the
floating TPP problem, where the input polygons P are not necessarily convex.

9

3. Methods.......................................
Here L means the length of the optimal path, L1 is the length of the path
obtained in line 2 and L2 is the length of the final path in line 4. Time
complexity in practice, as shown in the original paper [10], has an upper
bound of O(n2).

Algorithm 3: Optimal connecting point on the frontier of a polygon
Data: Point x, Point y, Polygon P
Result: Optimal point p in P , such that min{dist(p, x) + dist(p, y)}

1 Point p;
2 minDist = ∞;
3 k = number of vertices in P ;
4 for i = 0 to k do
5 Line L;
6 if i < k - 1 then
7 L is defined by the line segment LS = (P [i], P [i+ 1]);
8 end
9 else

10 L is defined by the line segment LS = (P [i], P [0]);
11 end
12 if Point x and y on the same side of line L then
13 Reflect either x or y over the line L;
14 end
15 Find the intersecting point j of the line segment (x, y) and line L;
16 if j 6∈ LS then
17 Shift j to the boundary point of LS that is closest to j;
18 end
19 tmpDist = dist(x,j) + dist(y,j);
20 if tmpDist < minDist then
21 minDist = tmpDist;
22 p = j;
23 end
24 end
25 return p;

Algorithm 3 finds the point p on the frontier of the input polygon P , that
minimizes the distance to the input points x and y. The main loop (line 4)
iterates over the line segments LS of P and for each one of them computes a
point ji closest to x and y, such that ji ∈ LS . The point ji with minimum
distance d = dist(x, ji) + dist(y, ji) is selected as p (line 22) and returned as
the output of the algorithm (line 25). The point ji is found by expanding LS
into a line L and locating the intersection of the line segment (x, y) and L
(line 15). If both x and y are on the same side of L, one of them has to be
first reflected over L (line 13). If the intersection is inside LS , it becomes ji.
Otherwise ji is one of the two boundary points of LS closest to the intersection
(line 17). An example of an iteration of the main loop, where the reflection is
needed, is displayed in Figure 3.2.

10

................................... 3.2. GLNS algorithm

(a) : The initial state of the algorithm
with points x and y and polygon P. The
cycle starts with the first line segment of
P.

(b) : Both points are on the same side
of the line L defined by the current line
segment, therefore one of the points has
to be reflected over it. Lets choose the
point x and call its reflection x1.

(c) : Because the intersection of the line segment (x1,y) and L is outside of the polygon,
it has to be shifted to the closest point of the current line segment. The shifted point
becomes the optimal point p, if its distance to x and y is currently the best one found.
The algorithm then continues with the next line segment of P and terminates after
going through all the edges of P.

Figure 3.2: Finding the closest point on a line segment in regards to the points
x and y (Algorithm 3).

3.2 GLNS algorithm

GLNS is a solver for the exactly one-in-a-set Generalized Travelling Salesman
Problem (GTSP) as defined in Section 2.1. It currently belongs to the state-
of-the-art heuristics for solving GTSP together with the GLKH [5] and GK
[6] solvers. GLNS was introduced in paper [4] together with experimental
results showing that it is competitive with the best known algorithms, often
finding better solutions given the same amount of time.

The general framework under which GLNS operates is called Adaptive
Large Neighborhood Search (ALNS). ALNS was first introduced in [8] and

11

3. Methods.......................................
subsequently defined more generally in [9]. The main idea of ALNS and
therefore GLNS is simple. First, an initial solution is found and then it
is iteratively destroyed and repaired. If a better solution than the current
best one is found, it is accepted. The search is finished when a terminating
condition is met. ALNS uses two different sets of heuristics for removals and
insertions of the solution. Each heuristic holds a weight representing how
successful the heuristic is in improving the solution and this weight is updated
as the algorithm runs, thus the word adaptive in ALNS. The more successful
heuristics are selected more often then the less successful ones. GLNS also
regularly locally optimizes the solution.

The following sections give a simplified description of the original GLNS
algorithm that is needed to understand the changes that were made in the
algorithms implemented in this thesis. More information can be found in the
original paper [4]. An emphasis is placed upon the description of the insertion
and removal heuristics and also local optimizations, as these methods were
modified in Algorithm 3.3.

3.2.1 Solver framework

This section offers a pseudocode and high-level description of the GLNS
algorithm.

The GLNS algorithm, shown in pseudocode in Algorithm 4 works in
iterations. Each iteration i starts by constructing a random initial tour T
(line 2) and making it a baseline best tour Tbest,i for this iteration (line 3).
After that, the following cycle follows (line 4). A single removal heuristic R
and insertion heuristic I are selected first, according to their current weight
(line 5). Next, a number Nr is uniformly randomly selected from between
1, . . . , Nmax (where Nmax is a parameter of the algorithm), marking a number
of vertices that are going to be removed (line 6). After creating a copy Tnew of
the current tour (line 7), we remove Nr vertices from Tnew using the selected
removal heuristic R (line 8). Then, using the selected insertion heuristic I, we
insert a vertex into Tnew for each removed vertex, so that the tour Tnew visits
all sets again (line 9). The tour Tnew is then locally optimized using methods
the paper called ReOpt and MoveOpt. These two methods try to re-optimize
the order of the sets and the vertex in each set (line 10). If the length of
the tour Tnew is smaller than the current best tour of the iteration Tbest,i,
then Tnew becomes Tbest,i (line 11). The tour Tnew is accepted or declined as
a new tour T for this iteration based on the standard simulated annealing
criterion (line 14). The stopping criteria of each iteration have two phases -
initial descent and several warm restarts (line 18). The first phase, the initial
descent, terminates after a fixed amount of non-improving iterations. In the
second phase, each warm restart starts with the best solution found, but
a lower simulated annealing temperature. Each warm restart ends after a
several non-improving iterations.

12

................................... 3.2. GLNS algorithm

Algorithm 4: GLNS(G,Pv)
Data: A GTSP instance (G, Pv)
Result: A GTSP tour on G

1 for i = 1 to num_trials do
2 T ← initial_tour(G,Pv);
3 Tbest,i ← T ;
4 repeat
5 Select a removal heuristic R and insertion heuristic I using the

selection weights;
6 Select the number of vertices to remove, Nr, uniformly

randomly from 1, . . . , Nmax;
7 Create a copy of T called Tnew;
8 Remove Nr vertices from Tnew using R;
9 For each of the Nr sets not visited by Tnew, insert a vertex

into Tnew using I;
10 Locally re-optimize Tnew;
11 if w(Tnew) < w(Tbest,i) then
12 Tbest,i ← Tnew;
13 end
14 if accept(Tnew, T) then
15 T ← Tnew;
16 Record improvement made by R and I;
17 end
18 until stop criterion is met;
19 Update selection weights based on improvements of each heuristic

over trial;
20 end

3.2.2 Insertion heuristics

The four insertion heuristics that GLNS uses are described in this section -
nearest, farthest, random and cheapest insertion.

Each of these heuristics takes as an input a GTSP instance (G,PV) and
a partial tour T = (VT , ET) of graph G = (V,E,w). PV = {V1, . . . , Vm} is
a partition of V. The partial tour T is a cycle in G such that each set in
the partition PV is visited at most once. The sets that are visited by the
partial tour T are denoted PT ⊆ PV . The insertion heuristic then takes this
partial tour T , inserts a vertex from an unvisited set into it (according to the
heuristic-specific rules) and returns a tour that visits one more set than the
input tour.

The heuristics use the set-vertex distance for their decision making about
which set to insert (Vi in PV \PT). The set-vertex distance is computed for
each set Vi, i ∈ {1, . . . ,m} and vertex u ∈ V \Vi at the beginning of the
algorithm and is defined as:

dist(Vi, u) = minv∈Vi{min{w(v, u), w(u, v)}}

13

3. Methods.......................................
Each heuristic has a specific way it selects the set to visit according to this

distance. They work as follows:..I. Nearest Insertion selects the set Vi, that contains a vertex v which is
at a minimum distance to any vertex on the partial tour T .

argmin min dist(Vi, v);Vi ∈ PV \PT , v ∈ VT...II. Farthest Insertion selects the set Vi, that contains a vertex v which is
at a maximum distance to any vertex on the partial tour T .

argmax min dist(Vi, v);Vi ∈ PV \PT , v ∈ VT....III. Random Insertion selects the set Vi uniformly randomly from PV \PTIV. Cheapest Insertion selects the set Vi that contains a vertex v that
minimizes the insertion cost.

argmin min{w(x, v)+w(v, y)−w(x, y)};Vi ∈ PV \PT , v ∈ Vi, (x, y) ∈ ET

3.2.3 Bounding insertions before evaluation

GLNS uses a bounding technique for speeding up insertions. It uses pre-
computed distances dist(Vi, u) between each Vi ∈ PV \PT and each vertex
u ∈ VT . Prior to checking the insertion cost for each vertex v ∈ Vi in each
edge (x, y) ∈ ET the lower bound is computed

lb = dist(Vi, x) + dist(Vi, y)− w(x, y).

If lb is greater or equal to the minimum insertion cost for a vertex v ∈ Vi so
far, then the insertion costs for edge (x, y) do not have to be computed as
they cannot be smaller then the lower bound lb.

3.2.4 Removal heuristics

GLNS uses three different removal heuristics - worst, distance and segment
removal. Each of these heuristics removesNr vertices from a tour T = (VT , ET)
using a heuristic-specific strategy.

Worst Removal

The goal of the worst removal heuristic is to remove the vertex, that results
in the biggest reduction in the length of the tour. Given a partial tour T we
remove the vertex vj that maximizes the removal cost

rj = w(vj−1, vj) + w(vj , vj+1)− w(vj−1, vj+1).

14

................................... 3.2. GLNS algorithm

Distance Removal

Distance removal aims to remove vertices that are close to each other. Given
a complete tour T a random vertex is removed from T and added to a set
Vremoved. Then an iteration follows, where a seed vertex vseed is uniformly
randomly selected from Vremoved and for each vj ∈ VT the removal cost rj is
computed as

rj = min{w(vseed, vj), w(vj , vseed)}.

The vertex with minimal rj is removed. This process is repeated until Nr

number of vertices is removed.

Segment Removal

Segment removal removes a continuous segment of the size Nr from the tour
T . Given a complete tour T with vertices VT = {v1, . . . , vm}, a vertex vj is
uniformly randomly selected and then the vertices vj , vj+1, . . . , vj+Nr−1 are
removed from the tour T .

3.2.5 Local optimizations

Prior to evaluating the acceptance condition in an iteration of GLNS, the
new tour is locally optimized. Two techniques are used for this optimization
and they are called ReOpt and MoveOpt.

ReOpt

The goal of ReOpt is to optimize the choice of a vertex in each set, keeping
the set ordering fixed. This is achieved by creating a directed acyclic graph
(DAG) containing all vertices of the GTSP graph. The shortest path between
each vertex of the first set of the tour and its copy is then computed in this
DAG and the minimal shortest path becomes the optimized tour.

MoveOpt

MoveOpt is a special case of GLNS where only one set is removed and then
reinserted again with a minimum insertion cost. Given a complete tour T =
(VT , ET) a random vertex vj is selected and removed from the tour. A vertex
from the same set Vj with a lowest insertion cost w(x, u)+w(u, y)−w(x, y) for
all u ∈ Vj and all (x, y) ∈ ET is reinserted afterwards. MoveOpt is repeated
Nmove (parameter of GLNS) times.

3.2.6 Modes of operation

GLNS has three general settings - fast, medium and slow. For detailed
information please see the original paper. Generally, each of these settings
dictates how many total iterations will happen through setting the stopping
and acceptance criteria and the maximum number of vertices that can be

15

3. Methods.......................................
removed from the tour using the removal heuristics. The only important note
in regards to this thesis is that the fast setting does not use the cheapest
insertion heuristic and the ReOpt optimization.

3.2.7 Implementation details

GLNS was originally written in the Julia language. This thesis uses a C++
implementation of the algorithm that was created as a part of the thesis by
David Woller [7].

3.3 GLNSC

GLNSC (GLNS for Continuous Neighborhoods) works by modifying the
GLNS algorithm itself, but preserving the main structure and purpose of
its operations. The modifications make use of the various calculations of
analytical geometry, where for example the set-vertex distance is replaced
by the point-to-polygon distance. The most notable changes were made in
the insertion and removal heuristics and also in the local re-optimization
methods. While GLNS works with sets consisting of discrete vertices whose
distances can be precomputed, no such thing can be easily done in GLNSC
as the points in the tour are constantly changing within their continuous
regions (simple polygons), whenever a removal and insertion is done on the
partial tour. This inability to precompute distances between the points
significantly slows the algorithm down, as the point-to-polygon distances need
to be constantly re-computed during the insertions and removals whenever a
point in the tour shifts. What can be precomputed, though, are the polygon-
to-polygon distances. These are then used for the lower bounding technique
during insertions. The local re-optimization methods (MoveOpt and ReOpt)
and cheapest insertion heuristic make use of Algorithm 2 for the floating
Touring Polygons Problem described in Section 3.1, slightly modifying it
to also work with intersecting polygons and thus allowing it to solve the
TSPNintersect problem instances on top of the TSPNdisjoint ones. While
ReOpt is replaced by the entire algorithm for the floating TPP problem,
the MoveOpt and cheapest insertion use just its subroutine. All modified
operations are equivalent to the original GLNS with the exception of ReOpt,
where it is only an approximation and not an exact solution. This is due to
it being the floating TPP problem, which is NP-hard. All the modifications
are explained in greater detail in the following sections.

3.3.1 Floating TPP modifications

The original implementation of the floating TPP algorithm is able to solve
instances, where the convex hulls of the simple polygons in the tour are
disjoint, thus it can be used for TSPNdisjoint. If the convex hulls are not
necessarily disjoint (as is the case of TSPNintersect), this algorithm has to
be modified. The only change GLNSC applies in the intersecting case is

16

....................................... 3.3. GLNSC

that Algorithm 2 now uses Algorithm 5 to find the optimal connecting point
instead of Algorithm 3.

Algorithm 5: Optimal connecting point inside the polygon
Data: Point x, Point y, Polygon P
Result: Optimal point p in P , such that min{dist(p, x) + dist(p, y)}

1 Point p;
2 if x ∈ P and y ∈ P then
3 p = point in the middle of the line segment (x, y);
4 if p ∈ P then
5 return p;
6 end
7 end
8 p is output of Algorithm 3 called with x,y and P as the arguments;
9 return p;

The ultimate reason why Algorithm 3 is used in the line 6 of the floating
TPP algorithm is to find the point p ∈ P that is closest to the points x
and y. For TSPNdisjoint the points x and y are guaranteed to be outside of
P , therefore the point p must be on the frontier of P . In TSPNintersect, in
contrast, both x and y could be inside of P and in such case the optimal point
p will lie on the line segment (x, y) connecting these two points and not on
the frontier of P . That is why Algorithm 5 first checks, whether x ∈ P and
y ∈ P (line 2). In case that both of them are inside of P , a point from the line
segment (x, y) is chosen as p. Although any point from (x, y) could be taken,
choosing the point in the middle returned noticeably better solutions than
the points closer to the boundary or the boundary points x and y themselves.
The reason for this is apparent, if for example the point x is selected as p, the
next iteration will possibly not be forced to improve this point as the points
p, x and the point preceding x lie on a single line segment. See Figure 3.3
for an example, where choosing the boundary point as p brings a worse final
solution than the point in the middle. Finally, as the point p is the point in
the middle of (x, y), it could be out of the bounds of its parent polygon, since
the polygons in the TSPNintersect instance are not guaranteed to be convex.
Therefore the line 4 checks if p ∈ P . If not, there has to be an intersection of
(x, y) with the frontier of the polygon P and therefore the original Algorithm
3 can be used to find the optimal point p. Figure 3.4 provides an example of
this situation.

17

3. Methods.......................................

(a) : Consider the situation displayed on
the picture above. Because x ∈ P and
y ∈ P , the optimal connecting point in
polygon P lies on the line segment (x, y).
Algorithm 5 selects the point x as p.

(b) : TPP is unable to improve neither x
nor p and has to terminate, returning the
tour <m,x,p,y,n> as the shortest one.

(c) : Now consider the situation where
the optimal point p was selected as the
point in the middle of the line segment
(x, y) by Algorithm 5.

(d) : In this case the next iteration of
TPP was forced to improve the tour fur-
ther.

Figure 3.3: Comparison of choosing the boundary point and the point in the
middle in Algorithm 5.

18

....................................... 3.3. GLNSC

Figure 3.4: x ∈ P and y ∈ P , therefore Algorithm 5 selects the point in the
middle of (x, y). But P is not convex and such point is outside of its bounds. The
optimal point p is on the frontier of P and therefore can be found by Algorithm
3.

3.3.2 GLNS modifications

Insertion heuristics

The insertion heuristics work as follows in GLNSC:..I. Nearest Insertion selects the polygon Vi, that contains a point v which
is at a minimum distance to any point on the partial tour T .

argmin min dist(Vi, u);Vi ∈ PV \PT , u ∈ VT...II. Farthest Insertion selects the polygon Vi, that contains a point v
which is at a maximum distance to any point on the partial tour T .

argmax min dist(Vi, u);Vi ∈ PV \PT , u ∈ VT....III. Random Insertion selects the polygon Vi uniformly randomly between
the polygons that are not visited by partial tour TIV. Cheapest Insertion selects the polygon Vi that contains a point v that
minimizes the insertion cost.

argmin min{w(x, v)+w(v, y)−w(x, y)};Vi ∈ PV \PT , v ∈ Vi, (x, y) ∈ ET

As can be seen, the difference between the insertion heuristics of GLNS and
GLNSC is only in semantics, the sets are polygons and vertices are points.
What is different in GLNSC is how these individual heuristics calculate the
distances and costs to find the minima and maxima to accomplish the same
goal as their GLNS counterparts.

The first modification is to the set-vertex distance that the original GLNS
precomputes for each vertex and set at the beginning of the algorithm and then

19

3. Methods.......................................
uses during insertions to choose a nearest, farthest and random set. No such
thing can be done in GLNSC as the pool of the possible points for the partial
tour T is infinite and not known at the beginning of the algorithm. This
set-vertex distance is therefore replaced by a method calculating the minimum
point-to-polygon distance. The point-to-polygon distance is determined by
going through the line segments of the polygon, computing the point-to-
segment distance and choosing the shortest one.

The second modification is to the cheapest insertion. The original algorithm
takes the sets S that are not visited by the partial tour T and tries to place
them between all the pairs of subsequent points x ∈ T , y ∈ T , calculating the
insertion cost {w(x, v)+w(v, y)−w(x, y)}, where v ∈ Si such that the sum of
distances of v to x and v to y is minimal. The set Si with minimum insertion
cost is selected. Choosing the optimal point v in GLNSC is more difficult
than in original GLNS, because now there is an infinite number of potential
points p in polygon Vi. The modification is that the cheapest insertion in
GLNSC chooses the optimal point p in polygon Vi using Algorithm 5.

Removal heuristics

The differences in removal heuristics in GLNSC are again only in semantics,
the sets are now polygons and the vertices are points. The only difference is in
distance removal where the removal cost is now calculated as rj = w(vseed, vj)
instead of rj = min{w(vseed, vj), w(vj , vseed)}, as the distance between the
two points is the same.

Bounding insertions

Originally, this method used precomputed minimal set-vertex distances. This
is equivalent to the minimal point-to-polygon distance, which, as was said
before, can’t be precomputed. Due to the point-to-polygon calculation
being very computationally expensive, the lower bounding would instead of
speeding up the insertions make them slower and the original point of lower
bounding would be lost. Instead, the point-to-polygon distance is replaced
by the polygon-to-polygon distance, which can be precomputed, because the
polygons are known at the beginning of the algorithm. It should be noted, that
this lower bound is generally larger than in the original GLNS and therefore
allows more iterations that are not perspective through. Nevertheless, it
is still beneficial as it trims the search space and avoids some unnecessary
calculations of the optimal point in polygon, which is also expensive.

Prior to calculating the optimal point v ∈ Vi (with respect to the points
x,y in edge (x, y) ∈ ET), Vi ∈ PV \PT , and checking the insertion cost for
each edge (x, y) ∈ ET the lower bound is computed

lb = dist(Vi, Vx) + dist(Vi, Vy)− w(x, y).

If lb is greater or equal to the minimum insertion cost for a point vi ∈ Vi so
far, then the optimal point v and the insertion cost for edge (x, y) does not
have to be computed as it cannot be smaller then the lower bound lb.

20

....................................... 3.3. GLNSC

ReOpt

GLNS uses shortest path algorithm for DAG to calculate the exact solution,
where the optimal point is chosen in each set to reduce the total length of
the tour. ReOpt in TSPNdisjoint and TSPNintersect problem instances and a
complete tour T visiting the polygons in a given order equals to the NP-hard
floating TPP problem defined in Section 2.3. Therefore, Algorithm 2 for
solving floating TPP can be used, but with minor changes described in Section
3.3.1. The floating TPP algorithm is only an approximation, therefore ReOpt
in GLNSC does not give the exact solution, unlike its GLNS counterpart.

As was said in Section 3.2.6, the fast setting does not use ReOpt in the
original GLNS. In contrast, GLNSC runs it on each setting at the end of the
algorithm to improve the best tour that was found.

MoveOpt

Given a complete tour T = (VT , ET) a random point vj ∈ Vj is selected,
removed from the tour, and then for each (x, y) ∈ ET an optimal connecting
point u is found using the procedure described in Algorithm 5. The polygon Vj
is then reinserted with the minimum insertion cost w(x, u)+w(u, y)−w(x, y).
MoveOpt is repeated Nmove times.

3.3.3 Implementation change of insertions

After analyzing the runtime of GLNSC in a profiler, it turned out that the
nearest and farthest insertions are a major bottleneck. It is due to the point-
to-polygon computation being expensive operation that can’t be precomputed.
The following reformulation of the mentioned insertions allows the algorithm
to use precomputed polygon-to-polygon distances and thus speeding the
algorithm up significantly without sacrificing the quality of the solution in
a meaningful way. Nevertheless, this change is a slight diversion from how
the original GLNS works. This change will be analyzed in terms of the time
improvement and solution quality in Section 4.2.1...I. Nearest Insertion selects the polygon Vi, that contains a point v which

is at a minimum distance to any polygon on the partial tour T .

argmin min dist(Vi, Vu);Vi ∈ PV \PT , Vu ∈ VT...II. Farthest Insertion selects the polygon Vi, that contains a point v
which is at a maximum distance to any polygon on the partial tour T .

argmax min dist(Vi, Vu);Vi ∈ PV \PT , Vu ∈ VT

3.3.4 Parameters

Table 3.1 contains the parameters (aside from the map instance) that need
to be set to run GLNSC.

21

3. Methods.......................................
Parameter Values Description
GLNS mode Fast|Medium|Slow Mode of operation of GLNS
ε >0 Parameter of TPP (ReOpt).

Table 3.1: GLNSC parameters

3.4 GLNS-TPP

GLNS-TPP solves all three problems defined in Section 2.4. While GLNSC
modifies the GLNS methods with geometric operations such as the point-to-
polygon distance, GLNS-TPP preserves the GLNS algorithm almost entirely.
This is made possible by making the instance discrete by transforming each
polygon into a triangular mesh and using a center point of each generated
triangle as the input for GLNS. Each polygon is then represented by a set
of points. It should be noted that the problem (aside from the obstacles in
TSPNobstacles) is thus converted into a GTSP instance instead of TSPN.

Lets first describe the inner working of the algorithm for an instance
without obstacles. GLNS-TPP works in two phases. The first phase starts
by creating a triangular mesh of each polygon, pre-computing the all-to-all
distances between the center points of the triangles and running GLNS on
these points. The solution that GLNS returns is a sequence of individual
points, each representing a polygon of the instance, but this solution is of
course not optimal for TSPN. Though it gives a good approximation of what
the optimal order of the polygons in the tour should be. The second phase
makes use of this order and employs the modified floating TPP algorithm
described in Section 3.3.1, giving the output points and the order of polygons
from the first phase as the input. The TPP algorithm’s output in the second
phase is then the final solution. A general overview of GLNS-TPP can be
seen in Figure 3.5. These changes allow GLNS-TPP to solve the TSPNdisjoint
and TSPNintersect problem instances.

The general structure is the same for the case with polygonal obstacles
as for an instance without obstacles. The algorithm still runs in two phases,
but slight modifications have to be made to account for obstacles. These
modifications utilize a data structure called visibility graph [12], that is filled
with the environment obstacles and bounds and after that it is capable of
calculating the shortest path distance between any points within the bounds of
this environment. GLNS algorithm stays again intact thanks to the discrete
space GLNS-TPP creates by splitting the points into a mesh. The pre-
computation in the first phase calculates, instead of simple point-to-point
distances, the all-to-all shortest paths using the Floyd-Warshall algorithm [13].
The second phase, the algorithm for the floating TPP, needs two additional
changes from those described in Section 3.3.1. The first modification is rather
straightforward. The calculation of the point-to-point distance is replaced
by the shortest path utilizing the visibility graph in the same way as in the
first phase. The second modification updates Algorithm 5 to account for the
obstacles. More details will be presented in Section 3.4.2. Thanks to these

22

..................................... 3.4. GLNS-TPP

changes is GLNS-TPP then able to solve the TSPNobstacles problem instances.

(a) : First, the triangular mesh is created
from the input polygons, the points in
their center selected and the distances
between them precomputed.

(b) : Then GLNS finds the approximate
shortest GTSP tour among the sets (poly-
gons) and their points.

(c) : Finally, TPP takes the tour found by GLNS and tries to optimize its points.

Figure 3.5: General steps of GLNS-TPP.

3.4.1 GLNS modification

This section describes the changes made to the GLNS algorithm. The
changes will be divided by the problem type - TSPNdisjoint, TSPNintersect

and TSPNobstacles. All three problem types share the same modifications,
only TSPNobstacles has additional changes on top.

TSPNdisjoint and TSPNintersect

GLNS-TPP transforms the polygons into a triangular mesh before the GLNS
algorithm starts. The density of the mesh is controlled by a parameter φ.
More triangles means more input points for GLNS, thus making it run slower,
but with more accurate final solution. The point in the center of each triangle

23

3. Methods.......................................
is then taken and used as the input for GLNS.

TSPNobstacles

After the polygons are split, the point-to-point distances need to be pre-
computed for each pair of the points. In TSPNobstacles the simple Euclidean
distance between two points, which is used in the other two problem types,
can’t be used here due to the potential obstacle that might be between them.
The solution for this is a data structure called visibility graph, that allows
computation of the shortest path between any two points with respect to
the environment obstacles. The precomputation therefore, instead of the
Euclidean point-to-point distances, calculates the shortest paths between all
pairs of points. GLNS-TPP uses the all-pairs shortest path Floyd-Warshall
algorithm to accomplish this. GLNS is then able to run its course. The
obstacles are accounted for in the precomputed point-to-point distances and
GLNS does not need to take them into consideration anymore.

3.4.2 TPP modifications

After GLNS finishes, GLNS-TPP runs the floating TPP solver using the order
of the polygons in the tour found by GLNS. Although Algorithm 2 takes
only the order of the polygons as an input, it proved to provide the same or
better results when the points of the tour were used as the input points on
line 4 of Algorithm 2, skipping the first 3 lines of the algorithm entirely. The
reasoning behind this change is simple. The output from GLNS is already a
rough estimate of what the tour should be like, it just needs to be tightened.
There is no need to go back to square one by trying to find the initial points
on the convex hulls. The experimental results of this change will be shown in
Section 4.3.1. The description of the TPP modifications by the problem type
follows.

If the problem type is TSPNdisjoint, GLNS-TPP can just use Algorithm 2
for the floating TPP computation (without the first 3 lines as per the previous
paragraph), as the convex hulls of the input polygons do not intersect.

If the problem type is TSPNintersect, it also uses Algorithm 2 without the
first 3 lines, but with a slight modification described in Section 3.3.1.

If the problem type is TSPNobstacles, the situation becomes more complex.
It is no longer correct to use Algorithm 5 in Algorithm 1 in the way it was used
before. When looking for the optimal point p ∈ P in regards to the points x
and y, it is necessary to take obstacles into consideration. The polygon P
might be possibly entirely hidden from the view of the points x and y. The
idea behind the modification in such case is to find the vicarious points j and
k on the obstacle(s) for both x and y and then calculating the optimal point
p in regards to j and k instead. The pseudocode of the modified algorithm
is shown in Algorithm 6, while Figure 3.6 illustrates its idea. It works by
going through the vertices vi ∈ P and looking for the shortest polyline l in
the visibility graph, that connects the point x to vi and vi to y. The points
on such polyline directly before and after the point vi are then used as the

24

..................................... 3.4. GLNS-TPP

vicarious points instead of x and y. If it is true for the polyline l, that its
section from x to vi or y to vi is a straight line segment (no obstacle is in the
way), than x or y are not replaced. After finding the vicarious points, the
algorithm calls Algorithm 5 to find the optimal point on P between them. It
should be noted, that while Algorithm 5 finds an exact solution, Algorithm 6
is just an approximation. See Figure 3.7 for an example of a solution that is
not optimal. The exact algorithm would have an exponential time complexity,
because it would need to try all the combinations of vertices on the obstacles
(that are blocking the view for x or y) that have the view of the polygon P .

Algorithm 6: Optimal point in polygon through obstacles
Data: Point x, Point y, Polygon P
Result: Point o

1 minLength = infinite;
2 point j, k, o;
3 for vertex v ∈ P do
4 polyline Lx = shortest path from x to v in the visibility graph;
5 polyline Ly = shortest path from y to v in the visibility graph;
6 currentLength = length(Lx) + length(Ly);
7 if currentLength < minLength then
8 j = last point before v on the polyline Lx;
9 k = last point before v on the polyline Ly;

10 minLength = currentLength;
11 end
12 end
13 Let j, k be the input points of Algorithm 5 and o be the output

optimal point;
14 Return o;

3.4.3 Optimization of TPP on TSPNobstacles

The main bottleneck of TPP in TSPNobstacles is Algorithm 5 that is being
called by Algorithm 6, as it tries to find the optimal point on all edges of the
input polygon. The distances have to be calculated using the shortest path
in the visibility graph and that is an expensive operation.

The idea of the optimization is to work with the assumption, that the
chosen best vertex of the polygon in Algorithm 6 is most likely around the
area of the optimal point that is then supposed to be found by Algorithm 5.
By passing this vertex to Algorithm 5 it is then possible to try only the edge
preceding and succeeding this vertex in the input polygon for the selection of
the optimal point. As can be seen in Figure 3.6, the optimized Algorithm 5
would look for the optimal point p on the neighboring edges of the vertex vi
and ignored the others. This change will be analyzed in Section 4.3.2.

25

3. Methods.......................................

(a) : First, the shortest polyline connect-
ing a vertex vi and the points x and y is
found. The grey polygons are the obsta-
cles.

(b) : Then the vicarious points j and k
are used to find the optimal point p.

Figure 3.6: Process of finding the optimal point in the TSPNobstacles instances
(Algorithm 6).

3.4.4 Possible future improvements

The creation of the triangular mesh and the subsequent selection of the points
in their centers serve the purpose of an even discrete representation of the
polygon. Given a polygon with a large number of edges this mesh consists of
a large number of triangles. One of the speedup improvements would be an
even pruning of the triangles to reduce the total number of generated points
per polygon.

The library implementing the visibility graph this thesis uses does not
employ the fastest possible algorithms. This has an impact on the initial
precomputation phase and the TPP algorithm. More efficient alternatives are
described in [12]. For the precomputation the Mitchell’s algorithm [14] could
be used, as the points for the shortest path queries are fixed (as opposed to
TPP). The Mitchell’s algorithm uses a data structure called the shortest path
map (SPM). The construction of SPM has O(n5/3+ε) time complexity, whereas
an efficient construction of the visibility graph has O(n2) time complexity.
The subsequent shortest path queries over SPM then need O(logn) time,
compared to O(n2) of the visibility graph.

3.4.5 Parameters

Table 3.2 contains the parameters (aside from the map instance) that need
to be set to run GLNS-TPP.

26

..................................... 3.4. GLNS-TPP

(a) : The shortest polyline connecting
a vertex vi and the points x and y is
found.

(b) : Then the vicarious points j and k
are used to find the point p. This solution
is not optimal.

(c) : The optimal solution looks like this.

Figure 3.7: Example of a solution that is not optimal found by Algorithm 6.

Parameter Values Description
GLNS mode Fast|Medium|Slow Mode of operation of GLNS
ε >0 Parameter of TPP.
φ >0 Parameter of the algorithm generating the triangular mesh.

Higher number means less triangles.

Table 3.2: GLNS-TPP parameters

27

28

Chapter 4
Experimental results

This chapter documents the performance of both GLNSC and GLNS-TPP on
the problem instances of various sizes and types. It begins with an explanation
of the statistical methods used to analyze the experimental results and the
description of the created library of instances. Afterwards, each algorithm is
examined individually. The final section comprises of the comparison of both
algorithms on the problem instances that they are both able to solve.

4.1 Methodology

This section describes the instances and the methodology used to compare
and analyze the results from the experiments.

4.1.1 Instances

To test the performance of the implemented algorithms, a library of polygonal
maps was created. For each problem type (TSPNdisjoint, TSPNintersect and
TSPNobstacles), a set of instances scaling in size is available. The instances
always indicate the number of polygons they have at the end of their name,
such as density_400 with 400 polygons.

The instances whose name starts with density_ and ngons_ were all created
from a base building block - their smallest instance (see Figure 4.1 and Figure
4.2). For example the base instance of density_ is density_40 and all the
other instances are just increments of 40.

The instances starting with potholes_ were created by having a map
with 23 polygonal obstacles and generating the instance polygons around
them to cover the map entirely. These instances are then used for both the
TSPNintersect and TSPNobstacles problems, the obstacles are just not taken
into consideration in the former. See potholes_59 in Figure 4.2 (c) and
potholes_59 in Figure 4.3 (a).

The obstacles_ instances (Figure 4.2) have a fixed number of polygons (32
to be specific) and a scaling number of obstacles. The number concluding the
name now indicates the number of obstacles instead of polygons. They serve
the purpose of testing the effect the number of obstacles has on the runtime
in TSPNobstacles.

29

4. Experimental results..................................

(a) : density_40 (b) : density_360

Figure 4.1: Examples of the solved TSPNdisjoint instances.

(a) : ngons_50 (b) : ngons_400

(c) : potholes_59 (d) : potholes_224

Figure 4.2: Examples of the solved TSPNintersect instances.

30

.................................... 4.1. Methodology

(a) : potholes_59 (b) : potholes_224

(c) : obstacles_46 (d) : obstacles_92

Figure 4.3: Examples of the solved TSPNobstacles instances (red polygons
represent the obstacles).

4.1.2 Measurements

Each algorithm was executed 50 times over each instance. The only exception
are the instances consisting of 400 polygons as the time requirements would
be too large, these instances are therefore solved only 5 times.

The data from the experiments were examined using the ministat tool [15].
The column with average in the tables means mean average and the data in
this column are accompanied by the ± sign followed by the standard deviation
σ. Whenever a speedup or solution cost comparison is made between the
algorithms or the changes made to them, the 95% confidence interval is used
to prove that there is a statistically significant difference. If there is a dash
sign displayed in the comparison column, no statistically significant difference
could be proved at 95% confidence. The numbers in the tables are always
rounded to two decimal places, but the calculations use the original, not
rounded, numbers.

31

4. Experimental results..................................
For the experiments a machine with i7-3840QM CPU, 8GB RAM and

Linux Ubuntu 18.04 OS was used.

4.2 GLNSC

The only feasible mode of GLNS is the fast mode. When trying to run the
algorithm on the potholes_12 instance with 12 polygons, the medium mode
did not return a result even after 30 minutes. In contrast, the fast mode
is able to solve this instance under a second. The medium and slow mode
of GLNSC are therefore not considered in this chapter. Even though they
would most likely return slightly better solutions, the time requirements are
not worth it. For this reason the algorithm was executed in all the following
sections in the fast GLNS setting. The ε for the ReOpt (TPP) method was
always set to 0.01.

4.2.1 Insertion change

This section documents the results of the implementation changes proposed
in Section 3.3.3. Table 4.1 contain comparison of the original and modified
version of insertions in terms of the time performance and best tour solution
cost found. Most of the instances that were used for this comparison are
highly intersecting, as that is the type of the instance that should matter the
most due to the nature of this change. The cost of the solution would need a
more thorough analysis as it can’t be concluded which version is better from
the collected data. But the speedup is apparent and grows together with the
size of the instance. Therefore this modification will be applied to GLNSC in
all following sections of this chapter.

Time (s) Solution cost
Problem
name

Original
insertions

Modified
insertions Speedup Original

insertions
Modified
insertions Improvement

potholes_12 0.58±0.09 0.39±0.05 32.47%±5.12% 19.97±6.29 20.14±6.12 −
potholes_24 2.86±0.38 1.31±0.17 54.23%±4.05% 63.29±0.88 63.42±1.13 −
potholes_33 7.35±1.04 2.55±0.30 65.32%±4.14% 75.84±1.56 74.76±1.01 1.44%±0.69%
potholes_59 54.77±7.85 11.32±1.41 79.34%±4.09% 104.56±0.66 104.67±0.78 −
ngons_50 10.65±1.40 3.71±0.59 65.16%±4.01% 4126.61±61.54 4140.96±106.11 −
ngons_100 154.48±23.66 34.56±5.15 77.63%±4.40% 8163.51±70.91 8188.57±81.38 −
density_80 55.67±6.88 13.59±1.43 75.58%±3.54% 13601.43±6.95 13601.07±7.05 −

Table 4.1: GLNSC insertion change time and solution cost comparison.

4.3 GLNS-TPP

Surprisingly, according to Table 4.2 the fast mode in GLNS-TPP returns
overall better solutions than the other two modes, but the difference is only
marginal. The difference would probably be most likely in favor of the slower
modes on the bigger instances, but verifying this would take a lot of time as
the slow mode’s time requirements scale very fast with the instance size (see
Figure 4.4). The other modes were therefore not considered in the rest of
this chapter and GLNS-TPP was always executed in the fast GLNS setting.

32

..................................... 4.3. GLNS-TPP

Same as GLNSC, the parameter ε was set to 0.01 for TPP and φ was set to
106 to create the minimum possible amount of triangles.

Solution cost by GLNS mode
Fast Medium Slow

Problem
name Average Average Improvement

(over Fast) Average Improvement
(over Fast)

potholes_12 9.16±0.22 9.22±0.01 −0.68%±0.66% 9.23±0.01 −0.70%±0.66%
potholes_24 62.81±0.08 62.79±0.05 − 62.89±0.13 −0.13%±0.07%
potholes_33 74.15±0.45 74.46±0.38 −0.41%±0.22% 74.41±0.38 −0.34%±0.22%
potholes_59 104.11±0.04 104.13±0.25 −0.02%±0.01% 104.13±0.05 −0.02%±0.02%
ngons_50 4356.10±79.37 4365.11±70.85 − 4319.94±36.69 0.84%±0.57%
density_40 7098.89±0.00 7098.89±0.00 − 7098.89±0.00 −

Table 4.2: Influence of the GLNS mode setting on the solution cost.

ng
on

s_
50

de
ns
ity

_
40

po
th
ol
es
_
12

po
th
ol
es
_
24

po
th
ol
es
_
33

po
th
ol
es
_
59

0

20

40

60

80

100

120

T
im

e
[s]

Fast
Medium
Slow

Figure 4.4: Influence of the GLNS mode setting on the runtime.

4.3.1 TPP change

This section analyzes the change from Section 3.4.2, where the first 3 lines
of Algorithm 2 are skipped and the points found by GLNS are used as the
initial points instead.

33

4. Experimental results..................................
Time (s) Solution cost

Problem
name

Generated
triangles Original TPP Modified TPP Original TPP Modified TPP Improvement

potholes_12 988 0.06±0.00 0.06±0.00 18.16±4.47 9.14±0.25 49.67%±6.91%
potholes_24 826 0.27±0.03 0.25±0.03 65.00±1.03 62.80±0.06 3.39%±0.45%
potholes_33 857 0.58±0.08 0.55±0.07 77.34±2.07 74.11±0.47 4.18%±0.77%
potholes_59 1204 3.28±0.38 3.02±0.38 104.70±0.53 104.11±0.04 0.57%±0.14%
potholes_99 1472 15.64±2.10 14.73±1.83 139.46±2.29 136.77±0.71 1.92%±0.48%
ngons_50 258 1.53±0.20 1.49±0.21 4487.30±153.98 4364.50±92.21 2.74%±1.12%
ngons_100 516 14.31±1.70 13.43±1.74 8887.37±92.78 8660.54±84.47 2.55%±0.40%
ngons_150 774 55.74±6.81 58.10±7.41 13539.07±165.76 13054.55±105.24 3.58%±0.41%
density_40 188 0.77±0.11 0.85±0.20 7096.99±13.04 7094.63±24.19 −
density_80 376 6.64±0.84 6.16±0.71 13946.59±57.05 13938.26±49.75 −
density_120 564 23.48±3.02 23.3±2.84 20254.77±88.34 20250.29±85.08 −

Table 4.3: GLNS-TPP TPP change time and solution cost comparison.

As can be seen in Table 4.3, the runtime of GLNS-TPP is not and should not
be affected. That is because even for the larger instances such as ngons_150
with 150 polygons, the original version of the floating TPP takes just around
0.01 seconds of the total time. The solution cost shows noticeable improve-
ments with 95% confidence on the TSPNintersect instances (potholes_ and
ngons_), while on the TSPNdisjoint instances (density_) shows no statisti-
cally significant difference. This was expected, as the original floating TPP
algorithm was made for the instances of the TSPNdisjoint type. The most
significant difference of nearly 50% was recorded on the potholes_12 instance,
where the polygons are of an unusual shape, spanning across the whole map
in splinters. See Figure 4.5, where is this instance solved by the original and
modified version of TPP.

(a) : Original TPP. (b) : Modified TPP.

Figure 4.5: Solved instance of potholes_12 by the original and modified TPP.

4.3.2 TSPNobstacles

Two variants of GLNS-TPP are compared in this section. The first one is
referred to as the optimized TPP or optimized GLNS-TPP and applies the
change proposed in Section 3.4.3. The other version is the original unchanged

34

..................................... 4.3. GLNS-TPP

version and will be referred to as the original TPP or original GLNS-TPP. On
top of the general performance on the instances with obstacles this section
delves more into the detail of TPP. The reason is that while in the instances
without obstacles does TPP take a negligible amount of the total time, in
TSPNobstacles it turns into a bottleneck.

Performance analysis

Table 4.4 shows, that running TPP with ε = 0.01 on the TSPNobstacles

instances causes it, in the worst case, to take most of the total runtime. The
optimized TPP is able to bring this time considerably down, but it comes
at a price of a generally worse solution cost (Table 4.5). On instances with
polygons that do not consist of very unusual shapes this solution cost is
almost comparable with the original TPP. The most significant difference was
on the potholes_12 instance already shown in Figure 4.5 (but with added
obstacles). The optimized TPP in this case was not able to improve the
solution cost at all and always ended after the first iteration.

Time (s)
Original TPP Optimized TPP

Problem
name Precompute TPP Total

(incl. GLNS) Precompute TPP Total
(incl. GLNS) TPP Speedup

potholes_12 15.85±0.14 52.89±14.85 69.04±14.87 18.33±1.10 3.95±0.16 22.62±1.21 92.53%±7.88%
potholes_24 10.43±0.15 32.31±6.87 43.25±6.87 11.22±0.17 19.86±5.37 31.63±5.34 38.52%±7.57%
potholes_33 11.33±0.29 50.42±9.43 62.57±9.44 11.97±0.32 8.78±5.00 21.66±4.98 82.58%±5.94%
potholes_59 23.20±0.21 49.41±8.65 75.89±8.70 24.37±1.31 27.05±6.40 55.29±7.05 45.26%±6.11%
potholes_99 37.03±0.33 83.28±23.35 135.76±23.83 40.13±1.87 37.09±18.59 95.89±19.52 55.47%±10.05%
potholes_224 88.00±1.34 136.34±61.13 463.55±64.10 90.61±2.28 31.82±26.80 388.80±40.52 76.67%±13.74%

Table 4.4: GLNS-TPP time performance on TSPNobstacles instances.

Solution cost
Original TPP Optimized TPP

Problem
name After GLNS After TPP After GLNS After TPP Improvement

(after TPP)
potholes_12 11.45±0.37 9.31±0.69 11.37±0.24 11.37±0.24 −22.13%±2.19%
potholes_24 68.40±0.00 64.76±0.71 68.40±0.00 64.97±0.66 −
potholes_33 80.88±0.00 74.77±0.07 80.88±0.00 76.86±1.46 −2.80%±0.55%
potholes_59 119.03±0.06 107.14±0.43 119.05±0.07 107.16±0.58 −
potholes_99 156.31±0.22 138.81±1.09 156.23±0.25 139.55±1.74 −0.53%±0.42%
potholes_224 235.34±0.78 199.64±1.70 235.81±1.08 205.94±4.42 −3.15%±0.67%

Table 4.5: GLNS-TPP solution costs on TSPNobstacles instances.

Figure 4.6 and Figure 4.7 show, that there are two reasons for the achieved
TPP time reduction. The first one is that the optimized TPP brings down the
time of each TPP iteration. The second one is the reduced average number
of the total TPP iterations. Both are related to the reduced number of edges
and solution paths the optimized TPP goes through.

35

4. Experimental results..................................

12 24 33 59 99 224
0

2

4

6

8

10

12

Polygons

S
in
gl
e
T
P
P

it
er
at
io
n
(s
)

TSPNobstacles original TPP
TSPNobstacles optimized TPP

Figure 4.6: Average duration of a single TPP iteration on the potholes_ in-
stances.

12 24 33 59 99 224
0

5

10

15

20

25

Polygons

It
er
at
io
n
s

TSPNobstacles original TPP
TSPNobstacles optimized TPP
TSPNintersect TPP

Figure 4.7: Average number of TPP iterations on the potholes_ instances.

36

..................................... 4.3. GLNS-TPP

TPP iterations efficiency

Figure 4.8 shows, that the improvements made by the TPP iterations diminish
very quickly. The biggest reductions in the tour length take place in the first
three or four iterations. In all tested instances around 90% of the total tour
length reduction by TPP took place in the first three iterations. Capping
them at those levels therefore seems to be very desirable when trying to find
a balance between the speed of the algorithm and the quality of the final
solution.

1 2 3 4 6 8 10 14 16 18 200

20

40

60

80

100

TPP iteration

%
of

th
e
to
ta
lT

PP
w
ei
gh

t
im

pr
ov
em

en
t

potholes_12
potholes_24
potholes_33
potholes_59
potholes_99
potholes_224

(a) : Original TPP.

1 2 3 4 6 8 10 14 16 18 200

20

40

60

80

100

TPP iteration

potholes_24
potholes_33
potholes_59
potholes_99
potholes_224

(b) : Optimized TPP.

Figure 4.8: Weight reduction by TPP iteration.

Influence of the amount of obstacles

To test the effect the growing number of obstacles has on the runtime of
GLNS-TPP, the number of input polygons was of fixed size of 32. The number
of possible TPP iterations was capped at 3 to utilize the knowledge gained
from the previous section.

Table 4.6 and Table 4.7 show a significant slowdown of both precomputation
time and TPP times when the amount of obstacles is doubled. Even the opti-
mized TPP reaches around 70 seconds per TPP iteration on an instance with
184 obstacles. Figure 4.9 shows, that this dependence of the precomputation
and TPP time on the amount of obstacles is polynomial.

Time (s)
Original TPP Optimized TPP

Problem
name Precompute TPP Total

(incl. GLNS) Precompute TPP Total
(incl. GLNS) TPP Speedup

obstacles_23 11.46±0.21 19.28±0.40 31.60±0.49 11.94±1.05 9.62±1.77 22.45±2.23 50.10%±2.64%
obstacles_46 17.84±0.09 46.19±0.85 66.03±0.84 17.80±0.16 26.89±0.39 46.72±0.45 41.79%±0.57%
obstacles_92 37.25±0.14 132.59±3.37 177.69±3.42 37.40±0.10 74.12±6.01 119.44±6.02 44.10%±1.46%
obstacles_184 95.88±2.93 362.66±5.52 493.74±9.30 99.60±4.13 213.89±4.38 349.51±9.02 41.02%±1.77%

Table 4.6: GLNS-TPP time dependency on the amount of obstacles.

37

4. Experimental results..................................
Solution cost

Original TPP Optimized TPP
Problem
name After GLNS After TPP After GLNS After TPP Improvement

(after TPP)
obstacles_23 80.27±0.02 75.25±0.39 80.27±0.02 75.48±0.55 −0.31%±0.25%
obstacles_46 133.27±0.01 127.25±0.21 133.27±0.02 127.27±0.27 −
obstacles_92 218.39±0.03 204.30±0.63 218.39±0.03 204.64±0.57 −0.16%±0.12%
obstacles_184 389.93±0.09 376.43±0.32 390.00±0.20 376.22±0.13 −

Table 4.7: GLNS-TPP solution costs dependency on the amount of obstacles.
ob

st
ac
le
s_

23

ob
st
ac
le
s_

46

ob
st
ac
le
s_

92

ob
st
ac
le
s_

18
40

20

40

60

80

100

120

O
ne

ite
ra
tio

n
(s
)

Original TPP
Optimized TPP

(a) : Influence on the TPP iteration length

ob
st
ac
le
s_

23

ob
st
ac
le
s_

46

ob
st
ac
le
s_

92

ob
st
ac
le
s_

18
40

20

40

60

80

100

Pr
ec
om

pu
ta
tio

n
tim

e
(s
)

GLNS-TPP

(b) : Influence on the precomputation time

Figure 4.9: Amount of obstacles influence

4.4 GLNSC and GLNS-TPP comparison

Both algorithms were compared on their common problem instances (TSPNdisjoint
and TSPNintersect). Additionally, the influence of the number of edges and
polygons was examined.

4.4.1 Influence of the amount of edges

This section analyzes how the amount of edges of the polygons in an instance
affects the runtime of the algorithms.

Table 4.8 shows, that the complexity of the input polygons plays a major
role in the total runtime and that its rate of growth stably increases with the
additions of further edges. The runtime almost doubles for both algorithms
when going from 80-gons to 160-gons. But looking at Figure 4.10 it is apparent,
that the time dependency on the amount of edges in polygons is linear. With
GLNSC being more sensitive to the increase of the edges than GLNS-TPP.
While in GLNSC this growth is caused by the increasing number of expensive
geometric calculations, in GLNS-TPP the cause is the algorithm creating the
triangular mesh, as it is forced to generate larger numbers of triangles to split
the input polygons.

38

.......................... 4.4. GLNSC and GLNS-TPP comparison

GLNSC GLNS-TPP
Problem
name Edges Time (s) Generated

triangles Time (s) Speedup

3gons_50 3 2.32±0.26 50 0.92±0.06 60.45%±3.23%
4gons_50 4 2.76±0.43 100 1.31±0.17 52.56%±4.66%
5gons_50 5 2.86±0.37 150 1.44±0.17 49.47%±3.88%
6gons_50 6 3.09±0.38 200 1.34±0.17 56.60%±3.74%
7gons_50 7 2.92±0.46 250 1.53±0.19 47.65%±4.79%
8gons_50 8 3.01±0.49 300 1.50±0.21 49.99%±4.97%
9gons_50 9 3.09±0.37 350 1.57±0.17 49.36%±3.68%
10gons_50 10 3.10±0.51 400 1.48±0.15 52.31%±4.79%
20gons_50 20 4.41±0.64 900 1.71±0.24 61.25%±4.38%
30gons_50 30 5.31±0.97 1400 1.97±0.28 63.00%±5.32%
40gons_50 40 6.87±0.93 1900 2.23±0.35 67.49%±4.07%
80gons_50 80 11.36±1.86 3900 3.67±0.56 67.70%±4.79%
160gons_50 160 21.48±3.59 7900 7.22±0.74 66.39%±4.79%

Table 4.8: Influence of the number of edges (per polygon) on the runtime of
GLNSC and GLNS-TPP

0 10203040 80 1600

5

10

15

20

Edges

T
im

e
[s]

GLNSC
GLNS-TPP

Figure 4.10: Time dependence on the amount of edges of the polygons

4.4.2 TSPNdisjoint and TSPNintersect instances

Table 4.9 compares the algorithms in terms of speed on the instances of
TSPNdisjoint and TSPNintersect type. Both GLNSC and GLNS-TPP were
set to their fastest possible settings. It is clear from the speedup column,
that GLNS-TPP is significantly faster than GLNSC on all instances. This
speed comes at a price of a slightly worse solution cost (Table 4.10), with the
exception of some of the potholes_ instances, especially potholes_12 with
around 54% improvement. This instance was previously shown in Figure 4.5
and this type of a map looks like a weak spot of GLNSC.

39

4. Experimental results..................................
GLNSC time (s) GLNS-TPP time (s)

Problem
name Min Max Average Min Max Average Speedup

density_40 1.02 1.96 1.50±0.20 0.54 1.34 0.85±0.20 43.43%±5.35%
density_80 10.49 17.00 13.59±1.43 4.85 7.87 6.16±0.71 54.71%±3.30%
density_120 35.53 53.00 42.59±3.98 18.41 32.53 23.30±2.84 45.29%±3.22%
density_160 93.74 151.61 116.68±13.65 46.87 77.49 59.94±8.22 48.63%±3.83%
density_200 167.80 298.34 240.30±26.63 104.09 185.03 132.18±15.03 44.99%±3.57%
density_240 423.24 463.17 448.31±15.50 259.58 322.13 291.73±26.99 34.93%±7.16%
density_280 574.84 810.54 721.86±89.18 457.90 607.19 508.77±58.44 29.52%±15.23%
density_320 1114.87 1327.53 1235.27±77.08 734.74 1043.56 853.81±144.68 30.88%±13.69%
density_360 1780.25 2125.37 1957.44±123.51 1224.95 1409.54 1342.79±69.57 31.40%±7.47%
density_400 2204.98 3229.25 2926.16±388.54 1474.39 2178.23 1856.53±255.34 36.55%±15.73%
ngons_50 2.85 5.92 3.71±0.59 1.14 2.15 1.49±0.21 59.80%±4.74%
ngons_100 23.45 47.26 34.56±5.15 9.76 17.25 13.43±1.74 61.13%±4.41%
ngons_150 80.54 152.20 117.33±14.00 43.66 77.52 58.10±7.41 50.48%±3.79%
ngons_200 222.64 356.12 273.37±29.10 119.51 196.97 147.18±16.63 46.16%±3.44%
ngons_250 516.48 627.05 582.03±45.60 384.10 468.06 420.02±28.45 27.84%±7.04%
ngons_300 757.54 1218.47 989.64±203.86 649.02 839.96 745.97±76.46 24.62%±22.69%
ngons_350 1545.81 1755.46 1665.82±90.11 1174.11 1341.22 1242.44±74.54 25.42%±7.24%
ngons_400 2642.20 3075.21 2824.64±211.18 2011.46 2708.17 2291.66±260.03 18.87%±12.23%
potholes_12 0.28 0.52 0.39±0.05 0.05 0.07 0.06±0.00 84.56%±3.66%
potholes_24 0.97 1.68 1.31±0.17 0.20 0.31 0.25±0.03 80.59%±3.66%
potholes_33 1.96 3.22 2.55±0.30 0.44 0.71 0.55±0.07 78.27%±3.37%
potholes_59 8.75 14.17 11.32±1.41 2.14 4.12 3.02±0.38 73.32%±3.63%
potholes_99 30.87 55.57 39.17±5.00 11.50 20.20 14.73±1.83 62.40%±3.82%
potholes_224 334.32 581.55 432.11±55.16 167.34 282.66 223.59±27.76 48.26%±4.01%

Table 4.9: Comparison of GLNSC and GLNS-TPP times on TSPNdisjoint

(density_) and TSPNintersect (ngons_, potholes_)

GLNSC solution cost GLNS-TPP solution cost
Problem
name Min Max Average Min Max Average Improvement

density_40 6936.97 6937.99 6937.07±0.31 7006.68 7162.74 7094.63±24.19 −2.27%±0.10%
density_80 13595.90 13635.40 13601.07±7.05 13887.20 14047.50 13938.26±49.75 −2.48%±0.10%
density_120 20057.90 20174.70 20099.80±28.25 20159.80 20345.50 20250.29±85.08 −0.75%±0.13%
density_160 26629.40 26885.60 26768.01±64.82 26644.20 27715.20 27247.91±251.58 −1.79%±0.27%
density_200 35170.30 35648.80 35343.15±98.29 35254.80 36642.30 35902.81±349.61 −1.58%±0.29%
density_240 41953.20 42587.60 42218.14±231.55 42663.00 43270.50 42902.88±228.34 −1.62%±0.79%
density_280 48544.90 49127.10 48804.68±231.43 48972.90 49866.50 49470.66±354.93 −1.37%±0.90%
density_320 53128.10 53666.90 53424.02±214.06 53907.70 54591.60 35902.81±349.61 −1.30%±0.67%
density_360 59470.70 60491.40 60031.14±404.75 59868.20 61680.80 60895.70±678.06 −1.44%±1.36%
density_400 68401.00 68876.80 68630.93±170.41 69694.60 71304.40 70544.54±784.40 −2.79%±1.07%
ngons_50 4069.07 4609.69 4140.96±106.11 4152.37 4469.08 4364.50±92.21 −5.40%±0.95%
ngons_100 8082.05 8383.02 8188.57±81.38 8529.70 8891.75 8660.54±84.47 −5.76%±0.40%
ngons_150 12278.70 12897.00 12441.55±154.97 12817.10 13311.50 13054.55±105.24 −4.93%±0.42%
ngons_200 16170.00 16833.80 16407.12±172.16 16815.30 17996.00 17237.22±393.45 −5.06%±0.73%
ngons_250 22160.00 22565.50 22346.50±148.86 23392.40 24527.10 23847.25±467.98 −6.71%±2.11%
ngons_300 26362.10 26821.50 26571.92±205.69 27648.90 28365.10 28010.66±350.32 −5.42%±1.58%
ngons_350 30505.00 30653.80 30581.88±61.73 31695.00 32465.70 32093.58±351.28 −4.94%±1.20%
ngons_400 32768.10 34276.20 33306.02±588.62 33978.60 35884.90 34845.82±835.77 −4.62%±3.17%
potholes_12 8.65 38.16 20.14±6.12 8.36 9.24 9.14±0.25 54.61%±8.53%
potholes_24 62.75 67.22 63.42±1.13 62.75 63.05 62.80±0.06 0.98%±0.50%
potholes_33 73.36 76.55 74.76±1.01 73.55 75.12 74.11±0.47 0.86%±0.42%
potholes_59 104.03 107.91 104.67±0.78 104.06 104.16 104.11±0.04 0.54%±0.21%
potholes_99 132.93 149.11 135.39±2.74 135.31 138.14 136.77±0.71 −1.02%±0.59%
potholes_224 107.20 196.06 190.48±1.88 193.51 200.95 197.89±1.77 −3.68%±0.38%

Table 4.10: Comparison of GLNSC and GLNS-TPP solution costs on
TSPNdisjoint (density_) and TSPNintersect (ngons_, potholes_)

Figure 4.11 visualizes the dependency of GLNSC and GLNS-TPP on
the number of instance polygons. This dependency is polynomial for both
algorithms.

40

.......................... 4.4. GLNSC and GLNS-TPP comparison

40 80 120 160 200 240 280 320 360 4000

1,000

2,000

3,000

Polygons

T
im

e
[s]

GLNSC
GLNS-TPP

(a) : TSPNdisjoint

50 100 150 200 250 300 350 4000

1,000

2,000

3,000

Polygons

GLNSC
GLNS-TPP

(b) : TSPNintersect

Figure 4.11: Time dependence on the amount of polygons of GLNSC and
GLNS-TPP

Overall, the solution cost difference of GLNS-TPP is almost negligible
compared to the achieved speedup. Moreover, this speed difference buffer
provides GLNS-TPP with the opportunity to lower the φ parameter, generate
a larger number of triangles and thus possibly improve the solution cost. In
this way, GLNS-TPP is more flexible. GLNSC does not have much room
for a speedup apart from the further changes to the inner working of the
underlying GLNS algorithm.

41

42

Chapter 5
Conclusion

The thesis addresses the restricted version of TSPN, where the neighborhoods
are simple, possibly intersecting, polygons. Two algorithms, GLNSC and
GLNS-TPP, were proposed and implemented, each of them capable of solving
this problem. GLNS-TPP is also able to handle the case, where there are
simple polygonal obstacles between the neighborhoods that the tour has to
avoid passing through. The subset of this problem, where the polygons are
convex, can be used for a practical task of the robot motion planning, where
the robot has to explore the entire map. Because of the convexity of the
polygons the robot has the certainty that upon visiting the polygon it can see
its entire area. Therefore covering the map with such polygons and solving
this version of TSPN guarantees the map has been fully seen by the robot.

Both proposed algorithms make use of the state of the art metaheuristic
GTSP solver called GLNS and the algorithm for solving the floating TPP.
GLNSC transforms the internal heuristics and methods of GLNS to work with
simple polygons instead of discrete points. Some of these modifications use
the methods from TPP. GLNS-TPP works in two phases. At the beginning
of the first phase the polygons are split into a triangular mesh. The points
in the center of these triangles are then used as the input for the original
GLNS. The second phase uses the tour gained from the first phase, shortens
it using the algorithm for the floating TPP and returns the final tour. For
an instance with obstacles the TPP algorithm is slightly modified and the
visibility graph is used to calculate the distances between the points.

For the experimental part of this thesis a library of polygonal maps was
created to test the algorithms on. GLNSC and GLNS-TPP were evaluated
both individually and against each other. The only feasible GLNS mode for
both algorithms is the fast mode, as the others are too slow without bringing
a meaningful improvement of the final solution. When set to their fastest
settings, GLNS-TPP is significantly faster on all instances with the speedup
being as much as 85% on smaller instances, but this percentage comes down
with the growing number of polygons. The largest tested instance contained
400 polygons and it took GLNSC and GLNS-TPP around 2800 and 2200
seconds respectively to solve. GLNS-TPP found generally worse solutions by
a few percents with the exception of instances with polygons of unusual shapes
(such as long intersecting splinters) where it found better solutions by as

43

5. Conclusion......................................
much as 55%. GLNS-TPP is more flexible than GLNSC through its ability to
control how dense the triangular mesh is generated and thus further improve
the final solution. GLNS-TPP was also individually tested on the instances
with polygonal obstacles. TPP in this case takes usually the majority of the
total time. Though it can be reduced by capping the number of the total
iterations, as on all the tested instances the 90% of the total solution cost
improvement took place in the first few TPP iterations.

In conclusion, both algorithms are capable of successfully solving the
version of TSPN this thesis is motivated by, with GLNS-TPP being also
able to account for the obstacles between the neighborhoods and avoid them
throughout the tour. Overall, GLNS-TPP is faster, more flexible and has
more potential for improvement than GLNSC. The main areas of the possible
future improvements of GLNS-TPP lie in exploring different ways of splitting
the polygons and using faster alternatives to the visibility graph.

44

Bibliography

[1] E.M. Arkin and R. Hassin. Approximation Algorithms for the Geometric
Covering Salesman Problem. Discrete Applied Mathematics, 55(3), pages
197–218, 1994.

[2] M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. Touring a sequence of
polygons. In Proc. STOC, pages 473–482, 2003.

[3] Li F., Klette R. Rubberband Algorithms. In: Euclidean Shortest Paths.
Springer, London, pages 53-89, 2011.

[4] Stephen L. Smith and Frank Imeson, GLNS: An effective large neigh-
borhood search heuristic for the generalized traveling salesman problem,
Computers and Operations Research 8, pages 1–19, 2017.

[5] K. Helsgaun, Solving the equality generalized traveling salesman problem
using the Lin–Kernighan–Helsgaun algorithm, Mathematical Program-
ming Computation 7 (3), pages 269–287, 2015.

[6] G. Gutin, D. Karapetyan, A memetic algorithm for the generalized
traveling salesman problem, Natural Computing 9 (1), pages 47–60,
2010.

[7] David Woller, Hledání zdrojů gama záření, Search for sources of gamma
radiation, Diplomová práce, České vysoké učení technické v Praze, 2019.

[8] S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows, Transportation
science 40 (4), pages 455–472, 2006.

[9] D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems,
Computers & Operations Research 34 (8), pages 2403–2435, 2007.

[10] Pan, Xiuxia & Li, Fajie & Klette, Reinhard. Approximate Shortest
Path Algorithms for Sequences of Pairwise Disjoint Simple Polygons.
Proceedings of the 22nd Annual Canadian Conference on Computational
Geometry, CCCG, pages 175-178, 2010.

[11] Melkman. On-line construction of the convex hull of a simple polygon.
Information Processing Letters vol.25, pages 11-12, 1987.

45

5. Conclusion......................................
[12] Latombe, J.C., Robot Motion Planning, Springer. page 157, 1991.

[13] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. Introduc-
tion to Algorithms (1st ed.), pages 558–565, 1990.

[14] Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J.
Comput. Geom. Appl. 6, pages 309–332, 1996.

[15] Kamp, Poul-Henning. Ministat tool, Retrieved May 15, 2020, from
https://www.freebsd.org/cgi/man.cgi?query=ministat

46

Appendix A
Contents of the attached CD

Filename or directory Description
GLNSC Source code of the GLNSC algorithm.
GLNS-TPP Source code of the GLNS-TPP algorithm.
DataInstances Polygonal library of instances.
Experiments Data from the experiments.
DP.pdf Text of this thesis.
readme.txt Instructions for running the source code.

47

