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Abstract

This diploma thesis deals with the problem of estimating parameters of a tram model
to estimate the braking distance. The thesis introduces the model of a tram and all its
parameters. These parameters are split into three groups based on their properties. Each
parameter is described in detail, as well as its effect on the model and behavior of the tram.
For the purpose of this diploma thesis, an experiment on a standard tram line was performed.
During this experiment, the acceleration and the velocity of the tram were measured. The
algorithms developed for estimating the values of the parameters were evaluated on data
gained from this experiment. In addition to algorithms for estimating parameter values, the
thesis also presents an algorithm for estimating the input from measured data. The results
of this thesis can contribute to the accuracy of the estimation of tram braking distance and
improve the anti-collision system.

Keywords: tram, modeling of dynamic systems, parameter estimation

Abstrakt

Diplomová práce se zabývá problémem odhadování parameterů matematického modelu
tramvaje za účelem odhadování brzdné dráhy. V práci je přestaven model tramvaje včetně
všech jeho parameterů. Jednotlivé parametery jsou podle jejich vlastností rozděleny do
tří skupin. Každý parametr je detailně popsán, stejně tak i jeho vliv na model a chování
tramvaje. Pro účely této diplomové práci byl proveden experiment, během kterého probíhalo
měření zrychlení a rychlost tramvaje při běžém provozu. Algoritmy vytvořené pro účely
odhadování parametrů byly použity a otestovány na naměřených datech. Kromě alogritmů
pro odhadování hodnot parmeterů modelu je představen i algoritmus pro zpětné odhadování
vstupu sytému z naměřených dat. Výsledky této práce mohou přispět k zpřesnění odhadu
brzdné dráhy tramvaje a vylepšení antikolizního systému.

Klíčová slova: tramvaj, modelování systému, odhadování parametrů
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1 | Introduction

In this thesis, I will follow up on my colleague’s work in which he estimated the braking
distance of a tram. In his thesis, he was mainly focused on methods for estimating the
braking distance. Problems with the parameters of the model and their estimation were
left open. In my thesis, I will introduce the model of the tram dynamics and describe its
parameters. Further on, I will try to introduce methods for estimating some parameters of
this model. The evaluation of developed methods will be done on the measured data from
experiments done in Ostrava.

1.1 Motivation

Over the last few years, larger cities have begun to reduce the car traffic in city centers,
either to lower the emissions or to improve the overall traffic situation. These restrictions go
hand in hand with the support of public transportation, including trams. Unlike the car
traffic, the contact between trams and pedestrians can be much closer. People are watching
the passing cars when crossing the road. However, trams, in many cases, can go through
places where people are not so careful (e.q. squares). Trams are also usually much quieter
than cars. This and many other aspects put high demands on the attention of tram drivers.
Tram accidents, either with pedestrians, cars, or other trams, are not unique events. The
number of accidents for trams in Prague between 2008 and 2017 is in table 1.1.

These days, new cars are equipped with systems that are able to alert the driver to an
obstacle and even start braking, in critical situations. The logical question arises as to
whether such a system could be developed for trams as well. A system that would be able
to evaluate the distance between the tram and the obstacle could significantly reduce the
number of accidents. For any system that estimates the braking distance, it is necessary to
know the motion model and its parameters with the highest possible accuracy. In my thesis,
I will describe the model of a tram, describe its parameters, and develop several methods for
estimating these parameters.

1



2 Chapter 1. Introduction

Year Total number
of accidents

Accidents caused by
tram driver

Accidents caused by
other drivers

Accidents with
pedestrians

2008 1441 219 1055 76
2009 1421 225 1021 91
2010 1432 242 1040 76
2011 1279 177 959 69
2012 1282 204 943 62
2013 1302 204 938 82
2014 1394 226 999 90
2015 1359 194 984 99
2016 1353 183 1026 75
2017 1572 231 1164 111

Table 1.1: Tram accidents in Prague between years 2008 and 2017.



2 | Model and Parameters

In this chapter, I will introduce a mathematical model for simulating tram dynamics, discuss
its properties, and inaccuracies. Further on, I will introduce the main parameters of this
model, describe their importance for estimating braking distance and main ideas for their
estimation or identification.

2.1 Model of Tram Dynamics

The roughest model of a tram can be described by Newton’s second law, but in real life, we
are facing other aspects that are influencing train dynamics, such as friction between wheels
and rails, the resistance of the air, slip of the wheels, etc. All these and many more aspects
have an impact on the tram behaviour. For the acceptably accurate model, it is required to
describe these aspects and include them in the model.

Many scientific articles are aiming at describing the dynamic of railway vehicles, such as
[1]. These models are mainly describing the dynamic of trains, but it shows up that the
dynamics of trains and tram is sufficiently similar.

One of the main goals of my thesis is to estimate parameters of a tram, for estimating the
braking distance [3]. Therefore, the model used in this thesis is based on the model used in
the related paper [2].

2.1.1 Model Equations

At first, let me introduce all the parameters used in the model. The detailed description is
in the section 2.2.

3



4 Chapter 2. Model and Parameters

Parameter Description Unit

M Tram weight kg
g Gravitational acceleration ms−2

Ntr_wh Number of traction wheels -
Nwh Total number of wheels -
θ Inclination of rails rad

A,B,C Resistance parameters -
aa, ba, ca, da Adhesion parameters -

mwh Weight of the wheel kg
r Wheel radius m

Pmax Maximum power W
p Notch position -
k+ Traction parameter for positive notch position -
k− Traction parameter for negative notch position -

Table 2.1: All parameters used in the tram model.

For creating a mathematical model of a tram, it is necessary to consider the dynamics of two
main masses, that is the body of the tram and wheels. When creating the model, following
simplifications were considered:

1. The body of a tram is considered as a point of a mass.

2. All wheels are considered to be the same, homogeneous disks.

3. Only the longitudinal dynamics is considered.

4. In the formula 2.3 for the resistance force, the parameter C is considered to
be 0 due to lower tram speeds in comparison to trains (more in Chap 6).

5. Dynamics in curves is not considered.

The motion equation for the tram body can be described by Newton’s second law.

The dynamics of the tram body can be expressed as

dv

dt
=

1

M
(Fad(v)− Fres(v)− FG(θ)), (2.1)

The gravitational force FG(θ) [N] acting on the tram is

FG(θ) =Mgsin(θ). (2.2)

For the resistance force Fres(v) [N] I consider the following formula

Fres(v) = A+Bv(t) + Cv2(t). (2.3)
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Later in this thesis in Chap 6 I came up with arguments for neglecting quadratic term. The
final form of the resistance formula is

Fres(v) = A+Bv(t). (2.4)

The next formula describes adhesion force Fad(v) [N]. In the equation 2.1 this force has
positive sign. It represents the force which is pushing the body of a tram forward. If wheels
would be only slipping, value of this force would be zero and therefore the tram would not
be accelerating.

Fad(v) =
Mgµ(vs)

Nwh
(2.5)

The term µ(vs) for the friction coefficient was taken from [4] and has following form

µ(vs) = cae
−aavs − dae−bavs , (2.6)

where vs [m/s] is the slip velocity

vs(v, ω) = ωr − v. (2.7)

The dynamics of each wheel can be also described by Newton’s second law

dω

dt
=

1

J
(T − rFad(vs)Ntr_wh), (2.8)

where J is the moment of inertia of the wheel

J =
1

2
mwhr

2. (2.9)

From equation 2.8 we can see that input to the model is requested torque. In reality
this torque corresponds with current going through the tram. Unfortunately, sensors for
measuring the current were not available. Because of this the model uses the position of
the control lever as an input. The position is an integer from −7 to 7. Lever position is
transformed to torque using traction parameters k+ and k−.

T (p) =

min(k+p, Pmax), if p ≥ 0

k−p, if p < 0
(2.10)
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The transformation of lever position to requested torque in described in Chap 5.

2.2 Parameters of Motion Model

In this section, I will describe the main parameters used in the motion model and divide
them into three groups, based on their properties.

2.2.1 Known Time-invariant Parameters

This group contains parameters whose values can be measured, can be found in data sheets
or are well-known constants. These parameters are easiest for identification.

The following parameters belong to this group:

g Gravitational acceleration
Ntr_wh Number of traction wheels
Nwh Total number of wheels
mwh Weight of the wheel
r Wheel radius
Pmax Maximum power

Changes of these parameters are rather small and caused mainly by some mechanical failures
(e.q. loss of a wheel mass). I consider that their value is constant, and their properties are
not changing.

2.2.2 Unknown Time-invariant Parameters

This group includes parameters which are somehow determined by a tram or its motors, but
their values cannot be determined by simple measurements.

Resistance parameters A and B (2.4) belong to this group. They represent all resistive
forces acting on a tram, such as friction or air-drag. Some studies [5] focused on trams
estimate these parameters from some form of the Davis formula. However, this formula was
originally developed for trains and contained values estimated empirically, so I have decided
to identified resistance parameters experimentally from measured data (Chap 6).

Traction parameters k+ and k− (2.10) are describing transformation between the position
of control lever and the requested torque. In the ideal scenario, they would not be necessary,
but since measurements of a current through the motor are not available, they have to be
identified from the measured data.



2.2. Parameters of Motion Model 7

2.2.3 Time-varying Parameters

The main attribute of parameters in this group is that they change value during the ride.
They can significantly affect the braking distance of the tram, as can be seen in Figs 2.1, 2.2,
2.3, and they must be either estimated from measured data or obtained by other methods.
The velocities and braking distances in the figures were estimated from the model. However,
the values of the parameters were estimated manually, and they serve only as an illustration.

Tram weight (M) is the first of the time-varying parameters. Its value can differ in tens
of percents (e.q. empty Tram Tatra T3 weights 16 000kg, and 27 500kg when fully loaded).
When estimating its value, we can take into account that it can change only in stations, and
while driving, this value is fixed.

The second time-varying parameter is the inclination of rails (θ). Like in the previous
case, this parameter also has some restrictions that can be used for easier estimation. Cities
are putting limits on rails inclinations (e.q. in Brno, the maximum rail inclination is 70%�1).
The second important restriction is the unchanging character of the rails. This allows me to
find the inclination profile in advance and create the look-up table for each tram line.

The last time-varying parameter in the motion model, and arguably the hardest one to
estimate, is adhesion. Adhesion in the model is expressed by the set of four parameters
(aa,ba,ca,da). These parameters have fixed values for different adhesion conditions. Adhesion
condition can be graded from 0 (ideal conditions) to 3 (very weak conditions such as icing).

Parameter
Adhesion 0 1 2 3

aa 0.54 0.54 0.54 0.05
bb 1.2 1.2 1.2 0.5
cc 1.0 0.2 0.1 0.08
dd 1.0 0.2 0.1 0.08

Table 2.2: Values of adhesion parameters.

Following figures are showing how much can the braking distance and the braking time differ
for empty and fully loaded tram, while braking downhill or during weak adhesion conditions.
Values of braking distances are not accurate and serves only for demonstration.

1Směrnice T-08, Provozně technické podmínky tramvajových sítí na území města Brna a jeho okolí
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Figure 2.1: Comparison of braking distances for different weights.
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Figure 2.2: Comparison of braking distances for different inclination.
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3 | Estimation of Inclination

In this chapter, I will introduce my solution for estimating the inclination of rails. The
inclination is a time-varying parameter. The fact that the tram line along which the tram
rides is known allows me to estimate the inclination profile in advance. Assuming that the
tram has some localization device, the inclination can be obtained from this profile. Having
fewer parameters to estimate during the actual ride can provide better accuracy.

The biggest problem I faced when estimating the inclination was the fact that maps contain
either information about the altitude or the position of rails, not both. For this reason, I
created an algorithm which can merge information from two different types of maps. The
algorithm has two inputs. The first input is a list of GPS coordinates forming the rails. This
type of data can be obtained from multiple sources. I used data from OpenStreetMap 1.
The second input for the algorithm is an altitude map.

3.1 Data from OpenStreetMap

OpenStreetMap (OSM) is a project which allows users to create and edit maps and also
create so-called relations. Relations are objects containing other objects such as nodes
(points in the map) or ways (a group of multiple points). One of the public relations is PID
(Pražská Integrovaná Doprava) 2. In this relation, multiple users created all lines of public
transport in Prague, including trams, buses, and metro.

Data from relations can be extracted and converted to more suitable forms. Map of all tram
lines in Prague is shown in Fig 3.1. The tram line 20 from Sídliště Barrandov to Divoká
Šárka is shown in Fig 3.2. This tram line is used further in this chapter.

3.2 Altitude Map

The second input to developed algorithm is an altitude map. The format of this map is
either a list of coordinates and their altitudes or a grid. In both cases, coordinates have to
be in WGS84 format (the format used by GPS). For demonstration I used the altitude map

1https://www.openstreetmap.org/

2https://www.openstreetmap.org/relation/1596861

9
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Figure 3.1: Map of all tram lines in Prague.

of Prague 3. The resolution of this map is 1× 1m. This map, as well as many others for the
Czech Republic, is using the Křovák projection. In Fig 3.3 is shown a small portion of this
map - the Old Town.

Figure 3.3: Part of the altitude map of Prague - the Old Town.

3https://www.geoportalpraha.cz/cs/data/otevrena-data/FAEDA90C-F5CB-4B1E-BA41-419B982DBA3A

https://www.geoportalpraha.cz/cs/data/otevrena-data/FAEDA90C-F5CB-4B1E-BA41-419B982DBA3A
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Figure 3.2: Tram line 20 from Sídliště Barrandov to Divoká Šárka.
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3.2.1 Křovák Projection

In 1922, ing. Josef Křovák developed a projection, which minimizes inaccuracies caused
by the spherical shape of the Earth, in order to maximize the accuracy of maps for the
Czech Republic and Slovakia. This projection is also known as S-JTSK (Systém jednotné
trigonometrické sítě katastrální).

The main principles are well described by [6].

"The Conformal Oblique Conic Projection of Czechoslovakia was prepared by Josef Krovak
in the year 1922 for construction of cadastral maps and topographical maps of medium scales
for the civil geodetic service of Czechoslovakia. The Bessel ellipsoid of 1841 (a = 6 377
397.155 m, 1/f = 299.152812853) which is widely adopted in Central Europe, is used.

Longitude λ refers to the Ferro meridian (an island of the Canaries), not the Greenwich
meridian. The projection is conformal, so that in the projection plane meridians and parallels
intersect at right angles. Round value 17◦40′ is used for cadastral and topographic mapping in
the Czech Republic/Slovakia and Austria. The rectangular plane grid S-JTSK has an origin
in Finnish Basin, near Tallinn. The X-axis normally coincides with the meridian 42◦30′

from Ferro increasings south. The Y-axis is perpendicular to the X-axis and increasings to
west."

Figure 3.4: Localization of the Czech Republic on the Bessel Ellipsoid[7].
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3.3 Estimation of Inclination

With data about the position of the rails and altitudes, I could finally develop the algorithm
for estimating the altitude along the tram line. At first, I converted data to format WGS84
(World Geodetic System 1984). This standard is used all around the world. Since GPS
coordinates from OSM relation are already in WGS84 format, it was necessary to convert
only the altitude map. For transforming coordinates from S-JTSK (Krovak) to WGS84, I
used the algorithm described in [8]

When I had both datasets in one format, I matched points forming the rails to the altitude
map. For each point from the list forming the rails the algorithm proceeds as follows. At
first, it picks 9 closest points (neighbours) by the Euclidean norm in the altitude map. Then
it removes all points with the altitude significantly different from others (e.q. point is on the
building or in the river). For the final altitude, I designed this formula

a =

n∑
i=1

nai ·
1

ndi

µ
, (3.1)

µ =
n∑

i=1

1

ndi
. (3.2)

Used variables:

a final altitude of the point
n number of neighbours (default 9)
na altitude of the neighbour
nd distance of the neighbour from the point
µ normalization factor

In Fig 3.5 is shown the result of this algorithm for tram 20 from Sídliště Barrandov to Divoká
Šárka. The result corresponds to my expectations. However, it is still noisy.
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Figure 3.5: Altitudes of points for tram line 20.

3.3.1 Smoothing and Filtering

After assigning the altitude value to each point on the rail, I calculated the altitude and the
inclination profile of the tram line. For computing the inclination between two points, I used
the standard formula

i12 = arctan

(
a2 − a1
d12

)
. (3.3)

Used variables:

i12 Inclination between points 1 and 2 [rad]

a1 Altitude of the first point [m]

a2 Altitude of the second point [m]

d12 Distance between points 1 and 2 [m]

The altitude profile along the whole route (distance zero is at the Sídliště Barrandov station)
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is shown in Fig 3.6a and the inclination profile along the same route is shown in Fig 3.6b.
The profiles, especially the inclination profile, are noisy. This would lead to significant errors
in the simulation.
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Figure 3.6: The tram line 20 from Sídliště Barrandov to Divoká Šárka.

For filtering the inclination profile, I tried three different approaches. In the first approach, I
applied a low-pass filter on altitude data. In the second one, I applied it on inclination data,
and in the third one, I designed procedure based on the knowledge about the usual profile of
the rails.

Before applying the low-pass filter, I had to resample data, since distances between points
were not uniform. The rails are usually not shorter than 1m. Therefore, I have decided
to use this value as a new fixed distance. As a low-pass filter, I used the IIR (Infinite
Impulse Response) filter of the third order, with the sample rate 1000 samples/second and
the passband frequency 1Hz.

The results of a first approach (filtering inclination) can be seen in Fig 3.7. To verify the
result, I calculated the altitude profile back from the filtered inclination. The comparison
can be seen in Fig 3.7b.

In the second approach, I did the same thing as in the first one, but the filter was applied to
the altitude. The result is shown in Fig 3.8 and is very similar to the result of first approach.

From physical restrictions, it is known that changes in the altitude and, therefore, in the
inclination are rather slow. With this knowledge, I designed the algorithm based on fitting
points close to each other with the lines.

Each n-th point and k following points are approximated by a line. If multiple lines
approximate the point, its final altitude value is the mean of all values. I used this algorithm
with n = 5 and k = 20 on the altitude profile. After that, I calculated the inclination profile
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Figure 3.7: The result of the first filtering method.
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Figure 3.8: The result of the second filtering method.
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Figure 3.9: The result of the third filtering method.

and used the filter again. The inclination profile was then used for recreating the altitude
profile for the comparison, which can be seen in Fig 3.9.





4 | Experiments

The methods for estimating individual parameters can be designed and tested on simulated
data. However, models contain only known dynamics. They can reflect only phenomena
that were already observed and described. This and many other problems are the reason
for performing experiments on real devices and with real hardware. In this chapter, I will
describe experiments I did in Ostrava. Further on, I will show measured data and introduce
methods for their evaluation.

Due to a stable collaboration of our department with the company Herman systems 1, I
could perform measurements in the real tram during the regular ride.

Herman systems cooperates with the transport company in Ostrava (Dopravní podnik
Ostrava). Some trams in Ostrava have on their board installed Universal Communication
Unit UCU 5.0X. This unit can, besides other things, measure acceleration and velocity
of the tram. My colleagues did some experiments with these units before, and based on
their experience, I have also decided to bring the additional external sensors of velocity and
acceleration. The comparison of data measured by the UCU unit and external sensors are
shown further on in this chapter.

4.1 Measurement Setup

Experiments were done 3.3.2020, in Ostrava on the tram line 3 from Poruba vozovna to
Dubina. The tram from these experiments can been seen in Fig 4.1. It is a standard tram
VarioLF.

1http://www.herman.cz

19
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Figure 4.1: VarioLF tram used for experiments in Ostrava.

For measuring acceleration I used Precision MEMS IMU Module - ADIS16465 from
Analog Devices 2. This sensor was attached to armrest by double-sided tape, as can been
seen in Fig 4.2a. Before that, I checked that armrest is not tilted in any direction. The
accelerometer provides data with sampling frequency 2kHz. The output from this sensor
for two-hour measurement would be big, and it would make post-processing much more
complicated. Because of that, my colleague was stopping measurement in each tram stop.
Unfortunately, some stops were unexpectedly short, which led to a delay in measurement.
For the next experiments, I would recommend asking the driver to make stops a bit longer
or ask him which in which stops he expects only a short break.

For the velocity measurement, I used ZED-F9P module from U-Blox company 3. The GPS
module is magnetic, and it is recommended to place it outside. Through the window, I
managed to put it on top of the tram (Fig 4.2b). The U-Blox unit has sampling frequency
only 10Hz, so I could measure velocity during the whole ride without the necessity to separate
individual measurements.

One of the estimated parameters in the model is the weight. The measurement of the weight
is not possible, but the information about it is necessary. Because of that, I was manually
counting people in the tram and then estimated the total weight of the tram. The average
weight of people in the Czech Republic is roughly 75kg, but the experiment was done in the

2https://www.analog.com/media/en/technical-documentation/data-sheets/adis16465.pdf

3https://www.u-blox.com/sites/default/files/ZED-F9P_DataSheet_%28UBX-17051259%29.pdf

https://www.analog.com/media/en/technical-documentation/data-sheets/adis16465.pdf
https://www.u-blox.com/sites/default/files/ZED-F9P_DataSheet_%28UBX-17051259%29.pdf
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(a) IMU module (b) GPS module

Figure 4.2

early afternoon, and most of the passengers were children going home from school, so I have
decided to lower this value to 65kg. The weight of the empty tram was 21200kg. The total
estimated weight of the tram during the experiment is in Fig 4.3.
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Figure 4.3: The estimated weight of the tram.

In the tram model is the adhesion force discretized to four levels. It is very hard to make a
threshold between them, so for this variable, I will use the opinion of the tram driver. Even
though rails were slightly wet, he described adhesion as ideal. During the ride, he did not
register any slips or other problems.

Measurements have been taken from two rides in the opposite direction. The setup was
unchanged during both rides.
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Figure 4.4: Acceleration data from experiments in Ostrava.

4.2 Measured Data

As I have already mentioned in the previous section, data were measured by two external
sensors (IMU and GPS module). In addition to these sensors measuring unit from Herman
systems was collecting the data about acceleration and velocity. The measurement started
in the tram depot, but by that time, we were still making some adjustments. I will consider
the first tram stop as the starting point. Unfortunately, the sensors from Herman systems
are limited in size, and due to miscommunication, I got data only from the last 20 minutes.
However, as it is discussed later on, the external sensors had a higher sampling rate, and I
would use them for the estimation anyway.

4.2.1 Acceleration Measurements

Raw data of acceleration measured from both sensors as well as filtered data are shown in
Fig 4.4. For filtering, I used the low-pass filter. For the data from the IMU, I used passband
frequency 3Hz. Results were satisfying, as can be seen in the figure. Filter the data from the
UCU was more complicated due to the small sampling period (10Hz, the IMU has 2kHz).
The figure shows the result for the same passband frequency. This result is not good. I tried
filters with smaller passband frequency. Results and comparison with the data from the
IMU can be seen in Fig 4.5. From this figure, it is clear that the data from the IMU are
more suitable for my problem.
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Figure 4.5: Comparison between acceleration measured by IMU and UCU

4.2.2 Velocity Measurements

Similarly to the acceleration measurements, the velocity was measured by the external GPS
and the UCU. The changes in velocities are slower, and the lower sampling period in the
UCU is not that problematic. This can be seen in Fig 4.6.

The data from the external GPS have higher sampling frequency, and by closer inspection,
some inaccuracies can be found in the data from the UCU (e.g. around 16:09). This was the
reason for working mainly with data from the external GPS unit.

4.2.3 Input

Unfortunately, there was no possible way how to measure the input of the system, which
is current. In the later experiments, Herman systems may be able to provide this type of
measurement.

4.3 Synchronization

The acceleration measurement had to be, due to the high sampling frequency (2kHz),
separated into multiple files. Each file contained information about acceleration from the
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Figure 4.6: Comparison between velocity measured by external the GPS module and the
UCU.

one tram stop to the other. The velocity measurement could be stored in two files. Each file
contained information about one ride (from Poruba,vozovna to Dubina and back).

The first step in the synchronization was to match a section in the velocity measurement and
the corresponding acceleration file. In total, I had 53 files with acceleration measurements,
so I did this part manually. By that time, I also removed all damaged or corrupted data.

The second step was precise synchronization. Synchronizing data sets while using their
original values (velocity and acceleration) would be rather hard. Because of this, I converted
the measured velocity to acceleration and synchronized these profiles. In each profile, I found
the first noticeable change and marked it as a starting time. Then I moved the profile with
the smaller value of starting time in a way that it corresponds with the other profile.

The results of this algorithm can be seen in Fig 4.7. Original accelerations are shown in Fig
4.7a. Vertical lines are showing detected starting times. Acceleration measurements from the
IMU were effected by the offset caused by inclination. This offset was constant at the start
(the tram was not moving). For easier comparison, I shifted the acceleration to have a start
at zero. The Fig 4.7c shows the comparison of velocities obtained from synchronized profiles.
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Figure 4.7: Demonstration of the data synchronizing algorithm.

4.4 Inclination

In chapter 3, I described how important the information about the inclination is and
introduced the algorithm for estimating the inclination for a tram line. The algorithm
requires data with coordinates of the rails and the altitude map. For the coordinates of rails,
I could use the same data source as for the example, OpenStreetMap. The OSM contains
the relation about the tram line, on which I was doing the experiment 4. The coordinates
obtained from this relation are shown in Fig 4.8.

4https://www.openstreetmap.org/relation/917553

https://www.openstreetmap.org/relation/917553
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Figure 4.9: The altitude profile of the tram line 3.

As the altitude data, I used the map from https://geoportal.cuzk.cz/. This data set
contains points in the Křovák projection and the corresponding altitude value. The points
form a rough grid (distance between points is not uniform, usually is around 1 meter).

The estimated altitude profile is shown in Fig 4.9. The profile looks believably, except for
the parts in red circles. After taking a closer look at the map, I noticed that these parts are
either bridges (first two parts) or a tunnel (third part). With this information, I have decided
to repair these parts before applying any filter manually. In section 3.3.1 I introduced three
methods for filtering the inclination and the altitude profile. For this data set, I chose the
first method, which is filtering inclination. The result, as well as, the recalculated altitude
profile is in Fig 4.10.

https://geoportal.cuzk.cz/
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Figure 4.10: Profiles of the tram line 3.



5 | Input Estimation

In this chapter, I will introduce the basic principles of the motors, the brakes of the tram,
and show how they are related to the model. Further on, I will describe and discuss some
properties of measured data and introduce a procedure for estimating the input from them.

5.1 Motors of Tram

The first trams in the 19th century were drawn by horses. Later on, horses were replaced
by the steam engine. At the end of the 19th and beginning of the 20th century, some cities
used gas trams. Finally, in 1880 the first electric tram line has been build in Sestroretsk
near Saint Petersburg. After the oil crisis in 1973, trams became a considerable part of the
public transport, especially in Europe. Nowadays, almost all trams are powered exclusively
by the electric traction motors.

Electric motors powering the trams and their regulators also evolved during the time. The
older trams such as Tatra T3 (Fig 5.1a) are using the synchronous motors with shunts. They
allow to control the total resistance of the tram and regulate current and thus acceleration
and velocity. Connecting and disconnecting resistors causes quantization in the acceleration
values. The other methods of regulation described further on are not using resistors. However,
the quantization effect is replicated even for them. I will use this phenomenon to identify
the input. The most significant disadvantage of this type of regulation is the fact that all
excess current is transformed into the heat. Some of the newer trams are using this excess
heat to warm up the interior of a tram. Nowadays, trams with this type of regulation are
not produced. However, some older tram models with this kind of control are still used.

In the early seventies, tram manufacturers started using the power regulators based on
the thyristors. For the current regulation pulse width modulation (PWM) is used. Trams
with thyristors are capable of recuperating the energy while braking. This is a significant
improvement over the previous method. Trams using this method (such as Tatra T6A5 in
Fig 5.1b) have much higher efficiency than trams with resistors, although their construction
is more complicated. Despite being significantly lower than the losses on resistors, the
main disadvantages of these regulators are the losses on thyristors. Another problem is the
necessity to filter the high-order harmonic frequencies, which are disturbing other electronic
devices. This effect is caused by the fast switching of thyristors.

The newest trams (e.q. Škoda T15 in Fig 5.1c) are using regulators with IGBT (Insulated-

29
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(a) Tatra T3 (b) Tatra T6A5 (c) Škoda T15

Figure 5.1

Gate Bipolar Transistor). This technology allows fast current switching with much higher
efficiency than the standard thyristors. It is also designed for switching high voltages (typical
voltage from tram network is 600V). Some cities are upgrading their tram fleet with this
technology due to high energy savings.

5.2 Types of Tram Brakes

While the methods for the power regulation systems can differ, braking concepts are similar
to all trams. Each tram has three types of brakes that can work independently and use
different physical principles.

5.2.1 Electrodynamic Brake

The electrodynamic brake, also known as the operational brake, is the most frequently used
brake. Electrodynamic brakes are transferring the kinetic energy to electric power. Based on
the type of mechanism for the power regulation, the electric power is then either transferred
to heat (for trams with resistors) or is recuperated back to the power network (regulators
with thyristors and IGBT). The operational brake is used for the standard braking. For the
small velocities, the efficiency of this brake decreases.

5.2.2 Parking Brakes

The parking brakes (or the disc brakes) are mechanical brakes used for low velocities (usually
bellow 5 km.h−1, depending on the tram). This brake is also active if the tram is at the tram
stop for disabling the spontaneous movement of the tram. These brakes are transferring the
kinetic energy of the tram into heat via friction. The braking pads are pressed against the
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rotor, and created friction is slowing down the tram. In case of bad adhesion conditions,
friction between wheels and pads can be significantly reduced which can lead to a wheel
slip. This brake is used automatically when the velocity of the tram is too low for the
electrodynamic brake or during the emergency braking.

5.2.3 Friction Rail Brake

The last type of brakes is the friction rail brake (in Czech "Kolejnicová brzda"). This brake
is used only in an emergency. It is a non-adhesion type of brake. The friction rail brake is
a beam with a huge electromagnet. In a normal state, this beam is above the rail. When
the brake is activated, this beam is released on the rail. The current flowing through the
electromagnet creates a magnetic field which attracts beam to the rail. Friction between the
beam and the rail then forces the tram to slow down. The current is generated from the
tram battery, so it can be activated even when the power line is damaged. The rail brakes
are also used in trains. However, the principle of braking is slightly different. The trains are
not using friction, but eddy currents to slow down. These brakes are called magnetic rail
brakes.

Additionally, trams usually have sandboxes. If the tram driver concludes that the adhesion
conditions are too bad, he can release some sand from these boxes to avoid the slip of the
wheel.

5.3 Tram Control

During a standard ride, the tram is controlled by the control lever. The position of the
control lever is transferred to the torque and, therefore, the acceleration. The majority of
trams in the Czech Republic have control lever with seven positions for acceleration, seven
positions for deceleration, the position for the coasting (analogy to the neutral in a car),
and two positions for the emergency braking. In Fig 5.2 can be seen the control lever from
the VarioLF tram, which was used during the experiments in Ostrava. The control lever
in the figure is in the position for coasting, moving the control lever up, towards the label
JÍZDA causes acceleration, moving it down causes deceleration. The positions for emergency
braking are labeled K1 and K2.

Note that the mentioned positions for acceleration and deceleration are not visible. Unlike
the shift lever in a car, the control lever in a tram can be moved fluently without noticing
any changes. Even the driver was not aware of these positions. Although when we tried
slowly moving the lever up and down, we heard silent clicks when the control lever changed
a position.
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Figure 5.2: The control lever from the VarioLF tram used in Ostrava experiments.

During the ride the tram is using the electrodynamic brakes. For the low velocity, the parking
brakes are used instead, since the electrodynamic brakes are not that efficient. During the
emergency braking, the driver pulls the control lever to the lowest position and activates the
friction rail brakes. All types of brakes are also activated when any passenger pulls down
the emergency levers inside a tram.

For the input identification, I will consider braking with the electrodynamic brakes. The
parking brakes are used only for low velocities. They are not used for a long portion of time
(when the velocity is low, it usually means that the tram is going to stop), I will consider
their dynamics to be similar to the electrodynamic brakes. The friction rail brakes are used
only during the emergency braking. My goal is to estimate the parameters for the tram
operating in the normal mode. For this reason, I will not consider them at all.

5.4 Input of Model

The input of the model is the position of the control lever. In total, the control lever can be
in fifteen positions (seven for acceleration, seven for deceleration, one for coasting). In the
model, I assigned that the coasting position will have value 0, values for acceleration will be
from 1 to 7. Similarly, deceleration values will be from -1 to -7.

In Fig 5.3 are shown two records of acceleration from the experiments. On both of them,
the quantization levels are noticeable.
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Figure 5.3: Examples of acceleration measurements.

5.4.1 Offset Filtering

Before developing the estimation strategy, I had to deal with the problem caused by the
accelerometer. As the tram moves, the accelerometer is inclined. This inclination causes the
offset in the measured data. There are several possibilities for filtering this offset. One of
them is to use knowledge about the inclination to estimate the offset. Another one is to use
the GPS measurement, which is not affected by inclination.

At first, I tried to use the known inclination profile to filter the offset. For localizing the tram
during the experiments, I used the measurements from the GPS module. Along with the
measurement of velocity, it also saved the GPS position in each step. With this information,
I could create the time profile of inclination for each data set. The value of the offset can be
calculated as

a = g · sin(θ), (5.1)

where a is acceleration, g is the gravitational acceleration, and θ is inclination.

This method successfully removed the offset from some of the datasets, but in some of them,
the inclination was probably not accurate enough. The result of unsuccessful filtration is
shown in Fig 5.4. The expected result would have zero acceleration at the start.

In my second approach, I used the data measured by the GPS. The GPS module is not
affected by the inclination and therefore is without the offset. In Fig 5.5a is the comparison
between acceleration measured by the IMU and the acceleration computed from the velocity
measured by the GPS module. The Fig 5.5b shows the measured velocity used for calculating
the acceleration. The typical example of the offset is between seconds 15 and 20. The
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Figure 5.4: Removing the offset with informations about the inclination.

acceleration from the IMU is negative, which would imply that the tram is slowing down,
but the velocity measurement shows that the tram is slightly accelerating.

I have decided to remove this offset by calculating the difference between acceleration
measured by the IMU and the acceleration calculated from the velocity. At first, I resampled
the accelerations (their sampling period was different) and calculated the difference. Because
the offset is caused by the inclination, and thus it cannot change fast, I applied the low-pass
filter with the passband frequency 0,1Hz. The result can be seen in Fig 5.6. The first figure
shows the calculated difference. The second one shows the comparison between the original
and the shifted acceleration.

The significant improvement can also be seen when comparing the velocity obtained from
the shifted acceleration. The velocity calculated from the original acceleration is affected by
the offset. The velocity from the shifted acceleration is much closer to the velocity measured
by the GPS module.
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(b) Original velocity measured by the GPS

Figure 5.5: Comparison of the acceleration measured by the IMU and the acceleration
calculated from the GPS velocity measurement.
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Figure 5.6: Removing the offset from acceleration measurements.
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Figure 5.7: The comparison of velocities.

5.4.2 Acceleration Related to the Gravity

The during a ride the tram is affected by the gravitational force. This effect could cause a
problem in the input estimation. I will illustrate that problem with an example.

In the first case, the tram rides on rails with zero inclination and constant acceleration.
Because the inclination is zero, the acceleration is generated by the tram’s motors, and,
therefore, the input is non-zero. In the second case, the tram rides on the rails with negative
inclination (tram is going downhill). The gravitational force causes the tram to accelerate,
even if the input is zero.

To suppress this effect, I have decided to calculate the acceleration caused by the gravitational
force. After that, I can separate the acceleration (or deceleration) generated by the tram’s
motors. For calculating the acceleration caused by the gravitational force, I used the formula
5.1. The result is shown in Fig 5.8. In the first 40 seconds, the tram went downhill. The
acceleration without the effect of gravity is lower. On the other hand, between seconds 40
and 50, the tram went uphill, and the new acceleration is higher.

5.4.3 Estimating Strategy

The first step in the estimating strategy is assigning the positions of control lower to
acceleration values. The second step is to make the input more realistic.

Knowing that the control lever can have only 15 positions, I have decided to assign one
acceleration value to each position. This allows me to immediately assign all measured
acceleration values to the positions of the control lever.
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Figure 5.8: Removing the effect of gravity from acceleration measurements.

The first approach to finding these acceleration values was the histogram. The main idea
was that these values should appear more frequently than the others. In Fig 5.9 can be
seen the histogram of the acceleration values from all measurements. The majority of values
were in the range from -0.1 to 0.1, so to make the histogram more illustrative, I removed
all these values. Some peaks can be observed, especially for negative values. However, the
identification of all 15 values just from this histogram would not be very precise, so I have
decided to use another method. Dividing values into the known number of groups seemed
like a problem that could be solved by the K-means algorithm.

Figure 5.9: The histogram of measured accelerations without values from -0.1 to 0.1.

The K-means clustering algorithm was firstly described in 1967 by James MacQueen [9],
although the original concept comes from Hugo Steinhaus [10]. The concept of the K-means
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clustering is simple. Each cluster is represented by a centroid. The initial positions of the
centroids are random. The algorithm assigns each measured value to the closest centroid. In
the next step, the values of centroids are recalculated to be the mean value of the points
assigned to the centroid. This loop repeats until the centroid positions are changing. This
problem can be expressed as the minimization of the following objective function:

J =
k∑

j=1

n∑
i=1

‖x(j)i − ci‖
2, (5.2)

where k is the number of clusters, n is the number of points assigned to the cluster (can differ
for each cluster), and ‖x(j)i − ci‖2 is a distance between the measured point and the centroid.

In this case, measured values are accelerations, and the centroids represent the acceleration
(or deceleration) values for each control lever position.

The most straightforward approach now would be to merge all datasets and use the K-means
algorithm with 15 clusters. This approach would not guarantee that the resulted values
of centroids will have 7 positive values, 7 negative values, and 1 value around zero. The
more sophisticated approach could use two data sets, one with positive values and one
with negative values. For each run would use 8 centroids, and then the centroids for values
around zero would be merged together. This would remove the problem mentioned before.
However, even this approach does not take into account the fact that the tram reached the
full acceleration and deceleration only in a few measurements. In fact, the full deceleration
has been achieved only once.

To avoid the problems mentioned above, I used the K-means two times for each data set
(for negative and positive values separately). The highest acceleration value determined the
number of clusters for each data set. From the histogram, I estimated that the distance
between centroids should be around 0.3. For each data set, I saved the values of found
centroids and assigned them to the appropriate position control lever. At the end, I merged
values for centroids, which represented the position for acceleration around zero. As a result,
each position had several centroid values. The final value is their mean. The acceleration
values for each position are shown in table 5.1.

Position -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Acceleration [m/s2] -1.98 -1.59 -1.29 -1.04 -0.78 -0.52 -0.24 -0.01 0.30 0.59 0.84 1.09 1.36 1.65 1.95

Table 5.1: The estimated average acceleration value for each position of the control lever.

With the acceleration values representing each position, I could estimate the input. Each
measured acceleration value is assigned to the closest position.

In some situations, the value of input oscillates between two positions. This effect does
not correspond with reality. To remove this effect, I found all changes in the input, which
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Figure 5.10: Results of the input estimation algorithm.

lasted less than 0.5s and removed them. After that, I used a slow low-pass filter (passband
frequency 1Hz) and then re-assigned the positions. The estimated input and the filtered
input can be seen in Fig 5.10a.

5.4.4 Simulations with Estimated Input

To validate the results, I simulated the tram ride with the estimated input and compared it
with measured data. The model still has some unknown parameters, so this serves only as a
validation that the simulated output is close to the expected values. Unknown parameters
were for simulation purposes estimated manually. The results of the simulation and the
comparison with the measured values can be seen in Fig 5.11.
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Figure 5.11: The comparison between the measured values and the simulated values for
the estimated input.



6 | Estimation of Resistance
Parameters

In this chapter, I will describe the formula for the resistance force and its parameters.
Moreover, I will provide some values estimated by other researchers and introduce their
methods. At last, I will show my solution for estimating parameters in the resistance formula.

The resistance of railway vehicles has been studied over one hundred years. The formula for
describing the resistance force was described in 1926 by W.J.Davis [11]. The most general
form of the Davis formula is

Fres = A+Bv + Cv2, (6.1)

where Fres is the resistance force, v is velocity, and A, B, C are coefficients greater than zero.
These coefficients have their physical representation.

The coefficient A represents the mechanical resistance, and thus it is mass dependant.

The coefficient C represents the aero-dynamic drag. It is usually dependent on things such
as the coefficient of air penetration, the frontal surface of the vehicle, and the air density.
This coefficient is more important at high speeds.

The physical representation of the B coefficient is not that unambiguous. Some sources
such as [14] claim, that it describes air-drag forces not covered in coefficient C and excludes
mass dependency. Another source [15], describes this coefficient as a velocity-dependent
non-aerodynamic drag. Some of them are splitting it into two parts, where one is dependent
on mass, and the other is not.

Over the years, several methods for estimating values of parameters A,B,C were developed.
Davis himself came up with following formula:

Fres =

(
1.3 +

29

m

)
+ 0.045v +

0.0005a

mn
v2, (6.2)

where Fres is the resistance force in lb
ton , m is the weight per axle in US tons (1US ton ∼

907kg), v is the vehicle velocity in mph, a is the train cross-sectional area in square feet and
n is the number of axles per train.

Despite the differences in procedures, the main structure remained unchanged. The resistance
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formula had constant part (parameter A) linearly dependant on weight, part linearly depen-
dant on velocity (parameter B) and the part which was dependant on velocity quadratically.
More information about this formula and its development over the years, as well as a more
sophisticated background, which exceeds this thesis, can be found in [12].

More current approaches for estimating parameters of the Davis formula are described in
[13]. As can be already seen, research in this area is mainly focused on trains. Trams and
trains are similar in many ways. Therefore, resistance formulas should be similar. The most
significant difference is the average and maximal speed. The maximum permitted tram
speed depends on the city. Usually it is around 50km/h. The average velocity of regular
trains can easily exceed 100km/h. Several studies agree that the aero-dynamics resistance
has a considerable part in the total resistance. However, they usually consider speeds over
100km/h. For this reason, I have decided to neglect the parameter C and work with the
simplified version of equation 6.1.

Fres = A+Bv (6.3)

6.1 Estimation

By simplifying the resistance formula, the estimation problem has been reduced to finding
two values. During my research, I came up with two approaches. I could use a tram’s
physical parameters such as weight, frontal surface, coefficient of resistance, etc., and use
some formula developed in other studies. This approach would lead to some resistance
formula, however since the majority of these formulas were derived for trains, therefore for
higher speed and slightly different vehicles, accuracy would be debatable. I used a different
approach, which does not consider the tram’s physical properties at all and is based only on
measured data.

At first, let me remind the formula for the acceleration of a tram used in my model.

dv

dt
=

1

M
(Fad(v)− Fres(v)− FG(θ)) (6.4)

The main idea of my approach was to find sections, on which the only force affecting the tram
would be the resistance force. With these sections, I could estimate resistance parameters by
estimating the parameters of the differential equation.

The first term in equation 6.4 is related to the input. In the model, the input is the position
of the control lever, which is then transformed into the torque. Simulations proved that for
good adhesion conditions and the zero input, the value of term Fad(v) is sufficiently close to
zero. The error caused by this simplification is bellow 0.1%.
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In addition to the zero input restriction, it was necessary to add a few more restrictions.
The acceleration and the input are naturally zero when the tram is not moving, so the other
restriction was non-zero velocity. The next restriction was related to time. For estimation it
is always better to observe the effect for longer time period. I decided that the section has to
be at least 10s long. Finally, measurements were more noisy when the tram was approaching
the tram stop. Because of that, the sections found at the end were not considered.

From all measurements, only 28 sections fulfilled all restrictions (zero input, non-zero velocity,
more than 10s long and not from the end of the measurement). Velocity profiles of these
sections are shown in Fig 6.1. The velocities are from the GPS measurements and are affected
by the gravitational force.
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Figure 6.1: Velocity profiles affected by gravity.

For removing the influence of this force and therefore neglect the FG(θ) term, I used the result
from section 5.4.2. In that section, I removed the acceleration caused by the gravitational
force from the measured acceleration. I used this acceleration to estimate how the tram
would slow down without the influence of gravity. The integration of this acceleration,
together with the initial value, gave a velocity profile, which should not be affected by gravity.
The resulting velocity profiles are shown in Fig 6.2. It is possible to observe a much greater
similarity of individual profiles than in the previous figure.
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Figure 6.2: Velocity profiles not affected by gravity.

The equation 6.4 after removing terms Fad(v) and FG(θ) can be expressed as

dv

dt
=

1

M
(−Fres(v)) (6.5)

Substituting 6.1 into 6.5 gives following expression

dv

dt
=

1

M
(−A−Bv). (6.6)

This differential equation has an explicit solution

v(t) =M

(
ce−Bt − A

B

)
. (6.7)

With the velocity profiles and weights, I could estimate parameters A and B. For the
estimation I used the Levenberg–Marquardt algorithm for least square curve fitting. I
estimated parameters A and B for each profile. The final value of each parameter is the
mean of all estimated values. The estimated resistance formula is

Fres = 0.005797M + 90.20v (6.8)



7 | Estimation of Weight
and Motor Parameters

The last unidentified parameters in my model are the traction parameters k+, ki, and the
weight of the tram. I identified these parameters using a similar approach, with methods
implemented in the System identification toolbox for Matlab[17]. In this chapter, I will
describe that approach, used methods, and show the results.

7.1 Used Functions and Data Preparation

The System identification toolbox (SIT) provides, among other things, new functions to
Matlab for modeling and identification of dynamic systems. All information about functions,
the data structures and the methods provided by this toolbox are available online 1. For the
identification I used function nlgreyest (p.786). This function estimates parameters of the
non-linear grey-box model. The input to the function is a system model (idnlgrey object
with the information about the system equations, the initial states, the initial parameter
values etc. - p.530), the measured data (object iddata - p.411) and the input.

Data for identification are formed by four parts (acceleration, speed, inclination, and input).
For creating the iddata object, I had to make sure that they all have the same size, therefore
the same sampling period. I decided to resample all parts so that the new sampling period
is 1ms.

The model used for the identification is described in chapter 2 with outputs velocity and
acceleration.

As a solving method, I chose the lsqnonlin option. This option is implementing a Trust-
region-reflective algorithm.

7.2 Estimation of k+

The traction parameter k+ describes transformation between the control lever position and
the requested torque for the positive input. For the estimation of k+, I decided, similarly

1https://www.mathworks.com/help/pdf_doc/ident/ident_ref.pdf
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to the resistance parameters, separate it from other parameters as much as possible. This
parameter affects the tram movement when accelerating. Because of this, the estimation is
done on a section from the start of the measurement (measurements always started at the
tram stop), to the point where the tram stopped accelerating. On this section, the tram is
always accelerating, so the parameter k− never affects the estimation. The value of weight is
known from the measurements. Therefore, it is possible to estimate the k+ parameter alone.
The estimated values from each measurement can be seen in Fig 7.1. The final value of this
parameter is mean of all estimated values

k+ = 2292. (7.1)
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Figure 7.1: Estimated values of k+ parameter.

The comparison of measured values and simulated values on one section is shown in Fig 7.2.

7.3 Estimation of k−

The parameter k− describes the transformation between the position of the control lever
and the torque for the negative input. As in the previous section, I tried to isolate the
parameter k− from other parameters as much as possible. On each measurement, I looked
for the section with the longest continuous braking time. On these sections, I estimated the
parameter k−. The estimated values are shown in Fig 7.3. The final value is again the mean
of all estimated values.

k− = 1780 (7.2)
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Figure 7.2: The comparison of measured data and simulated data for the estimation of
parameter k+.

The comparison of measured values and simulated values on one section is shown in Fig 7.4.
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Figure 7.3: Estimated values of k− parameter.

7.4 Estimation of Weight

Unlike parameters k+ and k−, the weight of a tram is a time-varying parameter. It is not
possible to choose a specific section for its estimation. However, the weight could not change
during one measurement. The information about the weight is necessary for the estimation
of the braking distance, so the weight is estimated from the start of the ride. The time
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Figure 7.4: The comparison of measured data and simulated data for the estimation of
parameter k−.

window specified the length of the section for estimation. For the estimation, I also made the
assumption that the weight of the tram cannot change rapidly. It is very unlikely that in one
tram stop, more than 25 people get on or exit the tram at the same time. Therefore I limited
the change of the weight to 2000 kg from the last estimated value. The estimated values, as
well as real values, are shown in Fig 7.5. I did multiple simulations with different sizes of
the time window. In Fig 7.6 can be seen that the longer time window is not always better.
For the 9 s window the average error is almost 700 kg. From the model, this would lead to
error from 0.1m for the initial speed 10 kmh−1 up to 1.5m for the initial speed 40 kmh−1.
However, it must be noted that the values of braking distances are based only on the model
and consider braking only with the electrodynamic brake.
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Figure 7.5: The estimated weights for different window sizes.
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Figure 7.6: Average errors for each time window.

The fact that the longer time window and, therefore, more information does not improve
the estimate is, in my opinion, caused by the inaccuracies of other parameters. As can be
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seen in the previous sections, the optimal values of traction parameters differed in some
cases in tens of percent. Missing input measurements cause the necessity to estimate these
parameters. In the future, the information about the current should be available, and the
weight estimation should be more precise.



8 | Conclusion

The idea for estimation parameters of the tram model came up from the work of my colleague
Loi Do. He tried to estimate the braking distance of the tram. The braking distance is
highly dependant on parameters such as weight or inclination. In Chap 2, I introduced the
motion model of a tram, described all used parameters, and sorted them to three different
groups based on their properties.

In Chap 3, I examined the first parameter of the model, the inclination. I developed the
algorithm for estimating the inclination profile with the assumption that the position of
rails is fixed. The algorithm has two inputs. The first one is a list of GPS coordinates with
information about the position of the rails. The second one is an altitude map. The result of
this algorithm was demonstrated on the tram line from Sídliště Barrandov to Divoká Šárka
in Prague.

The Chap 4 describes the experiment from in Ostrava. Due to the collaboration with
company Herman systems, I could perform measurements during the standard tram ride. In
this chapter I described the measuring devices and their setup. Further on, I describe how
the data were processed and showed a comparison of multiple sensors. At the end of this
chapter, I used the algorithm developed in the previous chapter to estimate the inclination
profile of the tram line used for the experiment.

At the time I was doing the measurements in Ostrava, it was not possible to obtain the
information about the input. However, because this information was necessary for my work,
I had to estimate it. The whole procedure is described in Chap 5. From the basic principles
of tram motors, I concluded that the input could be quantized, and the quantization levels
are related to the acceleration. With this knowledge, I designed a procedure which uses the
K-means algorithm to estimate the input during the ride.

The parameters in the equation for the resistance of the tram were estimated in Chap 6. In
this chapter, I introduced the method for estimating parameters of the Davis equation based
on measured values.

At the end of my thesis, in Chap 7, I estimated the traction parameters k+ and k−, as well
as the weight of the tram. I used methods for the gray-box model parameter estimation
from the System identification toolbox in Matlab.

The results of this thesis proved that developed methods can be used to estimate the values of
parameters for the model of a tram. I also proved that it is not necessary to have information
about current. However, I assume that with that information, the estimation would be more
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precise.

In the model, as well as in my colleague’s model, the adhesion parameter can have four
values, based on the weather conditions. This model was developed for trains. To estimate
the adhesion parameter, I would have to validate this model first. Unfortunately, during
the experiments, and also during the experiments, my colleague did earlier, the adhesion
conditions were the same. Because of this, the problem with estimating adhesion was not
solved. For the time being, because the conditions do not change much during the ride, the
adhesion parameter can be set at the start and remain unchanged.

8.1 Future Work

My algorithms for parameter estimation were developed without any knowledge about input
values. This information would definitely improve the estimation of all parameters. Moreover,
it would be useful to do more measurements on the same tram line to increase the accuracy
and eventually detect some periodical phenomena. The problem with estimating the adhesion
coefficient and the validation of the adhesion model remained unsolved and requires further
research.
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A | Motion Model

The motion model of a tram used in this thesis:

dv

dt
=

1

M
(Fad(v)− Fres(v)− FG(θ)) ,

dω

dt
=

1

J
(T − rFad(vs)Ntr_wh) ,

FG(θ) =Mgsin(θ) ,

Fres(v) = A+Bv(t) ,

Fad(v) =
Mgµ(vs)

Nwh
,

µ(vs) = cae
−aavs − dae−bavs ,

vs(v, ω) = ωr − v ,

J =
1

2
mwhr

2 ,

T (p) =

min(k+p, Pmax), if p ≥ 0

k−p, if p < 0
,

(A.1)

Parameter Description Unit

M Tram weight kg
g Gravitational acceleration ms−2

Ntr_wh Number of traction wheels -
Nwh Total number of wheels -
θ Inclination of rails rad

A,B,C Resistance parameters -
aa, ba, ca, da Adhesion parameters -

mwh Weight of the wheel kg
r Wheel radius m

Pmax Maximum power W
p Notch position -
k+ Traction parameter for positive notch position -
k− Traction parameter for negative notch position -

Table A.1: All parameters used in the tram model.
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