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Abstract

Many malicious files are spread via password-protected documents or archives that can
be, for example, sent via e-mail by attackers. Password protection prevents these files
from being analyzed for the presence of malicious code. To enable the detection of ma-
licious code, the password, which is protecting the file or archive must be recovered.
The password recovery for the stream of incoming files must be completed in a timely
fashion. To achieve the best performance, an appropriate scheduling method has to be
deployed. Thanks to the rise of the computational power of graphics cards and the pass-
word cracking programs supporting them, password cracking became once again faster,
thus enabling us to crack passwords in a reasonable time and for a broad spectrum of
encrypting formats.

Keywords: Password cracking, hashing, Hashcat, John the Ripper, software, scheduling
algorithms, Docker.





Abstrakt

Mnoho infikovaných souborů je šířeno pomocí heslem chráněných dokumentů nebo ar-
chívů, které mohou být poslány útočníkem přes e-mail. Tím, že jsou tyto soubory chrá-
něny heslem, není možné, aby byl jejich obsah analyzován, zda obsahuje škodlivý kód.
Abychom byli schopní tento škodlivý kód detekovat, musíme získat heslo chránící daný
soubor. Obnovování hesel musí být provedeno v rozumném čase pro proud příchozích
souborů, a tak musí být zvolen patřičný rozhodovací algoritmus pro dosažení nejlepšího
výkonu. Vzhledem ke zvýšení výpočetního výkonu grafických karet a existenci programů
obnovující hesla, které podporují grafické karty, se obnova hesel opět stala jednodušší.
Díky tomu máme možnost obnovovat hesla v rozumném čase a pro více typů šifrovacích
algoritmů.

Klíčová slova: Obnovování hesel, hašování, Hashcat, John the Ripper, software, pláno-
vací algoritmy, Docker.
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Chapter 1

Introduction

1.1 Introduction

The primary objective of password cracking is to retrieve a password in a plain text from
an encrypted form as fast as possible. The passwords are used to hide sensitive data by
and from governments, armies, normal users, but unfortunately, even hackers.

Hackers and attackers are nowadays more clever and send malicious software not as
a standard file but as an encrypted file instead. It is meant to be decrypted later by the
victim or by the attacker itself. The encrypted file might be sent to the victim, for exam-
ple, via e-mail, and the password might be provided in the e-mail message body. This
makes it impossible for antivirus companies to detect an infected file and for malware
analysts to examine the virus. To solve this issue we implement the Password cracking
service.

The form of user’s passwords changed over time. First recommendations from (Mor-
ris and Thompson, 1979) suggested either a more than six-letter password comprising
lower-case ASCII symbols or a five-letter password with both lower and upper case sym-
bols. (NIST, 2017) suggested the use of at least eight-letters long passwords with no
repetitive letters or common patterns and also encouraged users to use the state-of-the-
art among password creation - passphrases. Besides being easy to remember, passphrases
are also sufficiently long since they consist of at least four words, and are hard to guess
by dictionary attack since recommendations mandate that the words are not connected
to each other in any way. The article from (Microsoft, 2017) advises users to set up a pass-
word of the length of eight characters which meets the complexity requirements such as
password must contain three out of five of the following different symbols: an uppercase,
or a lowercase letter, a number, a non-alphanumeric case or any Unicode character not
mentioned earlier.

These are examples that are still presented to users to make their password strong
enough. However, users were taught by these guidelines to compose passwords that are
hard to memorize yet easy to crack, with the exception of passphrases. Six-letter pass-
words are crackable for the majority of formats, and eight-letter passwords are nowadays
considered to be easy to break as well if the encryption is weak or if only numbers are
used. The authors of the article from (Hart et al., 2019) use eight NVIDIA GTX 2080Ti
graphics cards to prove that it is possible to crack an eight-character Microsoft Windows
NT LAN Manager password, which is still used as an authentication method in Active
Directory environments, under 2.5 hours.

Today, the progress in computational power enables us to crack files even on com-
modity hardware. Lately, password cracking is done using not CPUs but GPUs instead
(Hranickỳ et al., 2016), which brings speed-ups by up to two orders of magnitude. If the
computational power of GPUs in one server is not enough, one can use botnets (infected
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CHAPTER 1. INTRODUCTION

devices, lately IoT based, mostly acquired by hackers) or Berkeley Open Infrastructure for
Network Computing (BOINC) (Anderson, 2004). They benefit from the fact that users
share their commodity hardware for cracking passwords, performing medical research
or other scientific research such as the search for extraterrestrial intelligence performed
by (Anderson et al., 2002).

Another factor making our task easier is that users and hackers frequently use easy-
to-guess, short passwords, usually already cracked and stored in the database from (Hunt,
2019), creator of https://haveibeenpwned.com/ and well-known web security expert.
Cloudflare offers an API to check whether a hash was found in (Hunt, 2019) database.
According to (Avast, 2019) 83 % of the citizens of the United States use weak passwords,
and only 47 % of the users use different passwords for different services. They also often
use numbers from their birthday or their pet’s name as passwords.

The main goal of our thesis is to incrementally crack a stream of incoming encrypted
files. To process the files in a reasonable timespan, we need to select an appropriate
scheduling algorithm to maximize resources utilization. We examine the possibilities of
such algorithms and evaluate their performance. Our research focuses on an automatic
processing of encrypted files, efficient cracking of their passwords, and uncovering their
contents.

We divided our thesis into chapters according to our focus areas. In Chapter 2, we de-
scribe the background for the thesis, reviewing in particular the related works in schedul-
ing algorithms. Chapter 3 introduces the most important cracking engines emphasising
their benefits and disadvantages. In Chapter 4, we present the terminology, the history
behind ciphers, some relevant encryption and cryptographic hashing algorithms used in
file formats we want to crack. In Chapter 5, we formally define the problem. In Chap-
ter 6, we describe each library and framework which is essential for our implementation
and we describe the creation of our 3 microservices. Our implementations are tested in
Chapter 7. The cracking and scheduling efficiency is evaluated through the use of both
artificial and real-world data. Then we explore the ability of our selected algorithm in
the production setting. Finally, Chapter 8, summarizes our thesis and suggests potential
future work to continue exploring password cracking, potential use of different attack
types, and algorithms to generate better dictionaries.

14
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Chapter 2

Related work

In our case, the problem differs from traditional scheduling problems since in offline
scheduling, the number of jobs, processing times (times to complete the process), re-
lease dates (times when jobs become available), due dates (times when jobs should be
completed), deadlines (times when jobs must be completed), etc. are known in advance.
First, we describe the First Come First Served (FCFS), Shortest Job First (SJF) and Round-
Robin (RR) algorithms and their improvements. FCFS and RR algorithms are well-suited
for load balancing since they do not need prior knowledge about the job. Afterwards,
we review the List Scheduling (LIST) algorithm that creates an ordered list of tasks and
assigns them to a free worker, Min-Min and Max-Min algorithms to see heuristic used in
these algorithms. At the end of this chapter, we review work based on stochastic schedul-
ing and robust optimization that is later used to formalize our problem.

2.1 First Come First Served (FCFS)

FCFS (Salot, 2013), also known as First In First Out is a simple algorithm that takes a
job on the top of the queue and serves it to a free worker so it schedules the work in
exact order from the queue. It is a non-preemptive algorithm (meaning that a job cannot
be stopped and subsequently resumed) and Altmeyer et al. (2016) states, that it is cate-
gorized as a soft real-time algorithm (meaning that the jobs can exceed the deadlines).
Since we are not pressured by deadlines, we use this algorithm as a baseline.

2.2 Shortest Job First (SJF)

Shortest Job First is an algorithm that takes the process with the shortest execution time
and schedules it for execution.

2.3 Round-Robin (RR)

Round-Robin is often used in cloud computing. According to Wang and Casale (2014),
modifications of RR are used by Heroku and Azure. RR is also used for handling requests
to DNS servers (Hong et al., 2006). RR emits jobs in a First Come First Served manner but
it is limited by a fixed time window. It is a preemptive algorithm fair in load distribution.
The efficiency of RR lies solely in the choice of time given to each job (time quantum).
RR executes each job for a fixed time quantum, then pauses the job and starts another
job giving all jobs the same time quantum. The algorithm is widely used even outside
the field of cloud computing. Dash et al. (2016) improved Round-Robin and called it
Dynamic Average Burst Round Robin (DABRR). DABRR, in contrast with RR, dynamically
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changes the time quantum. The quantum is computed from burst times (time required
by a job for executing on a machine) of remaining times in the queue. Yadav et al. (2010)
modified RR to use the SJF algorithm. Mohanty et al. (2011) propose a priority-based
dynamic RR which changes time quantum for every round of execution. They prioritize
tasks based on user’s preference. We implement Round-Robin algorithm in Chapter 6
and later use dynamic improvement to decide the priority order of tasks.

2.4 The List Scheduling (LIST) algorithm

Another example of a simple scheduling algorithm is List Scheduling. We have a list of
jobs, and every time a worker is free, we assign it a job from the head of the list (Michael,
2018). The list can be ordered using several heuristics, such as Heterogeneous Earliest
Finish time presented by Topcuoglu et al. (1999). This heuristic focuses on heterogeneous
systems and utilizes the fact that communication takes some time. Another commonly
used heuristic is the Longest Processing Time (LPT). Li et al. (2010) present an adaptive
resource allocation mechanism for preemptable jobs in cloud systems with two adaptive
scheduling algorithms. One mechanism presented by Li et al. (2010) is called Adaptive
List Scheduling (ALS), and the other is called Adaptive Min-Min Scheduling (AMMS).

2.5 Min-Min and Max-Min

Etminani and Naghibzadeh (2007) review the Min-Min and Max-Min algorithms. Min-
Min takes the minimum completion time for each job found for all machines. The job
with the minimum completion time from all jobs is assigned to the corresponding ma-
chine, then it is deleted from the set of tasks and the algorithm is running again until
there are no unassigned tasks. Max-Min algorithm is almost identical to Min-Min, ex-
cept in the second phase, the Max-Min selects the job where the completion time is the
maximum. Chen et al. (2013) for load balancing in cloud computing. They improve upon
the Min-Min algorithm by introducing two new algorithms: Load Balance Improved Min-
Min (LBIMM) and User-priority Awared Load improved Min-Min (PA-LBIMM). LBIMM
takes into consideration the workload of each resource and ensures no resource is being
still. Since neither Min-Min nor LBIMM considers user-priority, PA-LBIMM is needed.
The tasks are divided into VIP and non-VIP groups where VIP group is first distributed
to resources (using Min-Min) and then the rest of the tasks are distributed by Min-Min
again.

2.6 Online scheduling

In online scheduling, jobs arrive at unknown times. Processing times are not known
in advance until the jobs are finished. Wen and Du (1998) present a problem with
two uniform processors, each having different speed. The objective is to minimize the
makespan (the time between the start of the first job and end time of the last job) as an
objective. Vestjens (1998) focuses on scheduling n jobs on m machines while minimiz-
ing the makespan. However, the processing time p is known upon arrival, unlike our
case. Megow and Vredeveld (2006) use the so-called Gitting indices, which are values
that represent rewards for a given stochastic process, to determine the lower bound for
each job in preemptive stochastic scheduling to minimize the sum of weighted comple-
tion times. Chen and Shen (2007) state that, for weighted jobs with unknown processing
time, generic non-delay algorithms, such as First Come First Served, perform very well
for a large number of jobs.
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2.7 Stochastic scheduling

In stochastic scheduling, the processing times are usually not known in advance. How-
ever, a probability distribution over time is used to give an estimate of a processing time.
The actual processing time remains unknown until the task ends. Stochastic schedul-
ing is widely used in an online environment to describe the nature of the problem. Lee
et al. (2012) schedule workers to machines and minimize makespan on uniform parallel-
machine (m machines, where each machine can have different speed). They introduce
two heuristic algorithms, one based on a genetic algorithm, and the other using the Par-
ticle swarm optimization method, which is inspired by the collective behavior of animals,
such as a flock of birds. The paper by Liu et al. (2019) assume that only the probability
distribution is known (or can be at least estimated). They present two approaches, one
based on an average approximation of a sample and the other a hierarchical approach
based on mixed-integer second-order cone programming.

2.8 Robust optimization

Robust optimization does involve use stochastic techniques, but makes the processing
times robust instead. Xu et al. (2013) solve a robust identical (each machine has the same
speed) parallel-machine scheduling problem and minimize the maximum makespan in a
manufacturing setting. They avoid the estimation of a probability distribution by using a
robust Min-Max regret model with minimal maximum deviation from all possible scenarios.
Seo and Do Chung (2014) apply robust optimization to the identical parallel-machine
with unknown processing time. They define a robust schedule and study the trade-off
between robustness and conservativeness.
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Chapter 3

Related password cracking engines

First, we present two primary password cracking engines to the reader to get familiar
with the problematique; Hashcat (Steube, 2009) and John the Ripper (Openwall, 1996).
Then, we discuss distributed solutions and projects built on Hashcat and John the Rip-
per. At the time of writing, only two actively maintained open-source solutions for dis-
tributed computation exists for Hashcat – Hashtopolis (s3inlc, 2020) and Fitcrack (Hran-
ickỳ et al., 2019). There are currently two outdated purely parallel implementations for
John the Ripper supported by the community (Openwall, 2014).

3.1 Hashcat

Hashcat is released as open-source software under the MIT license. Hashcat claims to
be the "World’s fastest and most advanced password recovery utility". This version is
a merge of two products, previous CPU-based Hashcat (now called hashcat-legacy) and
GPU-based oclHashcat. It is capable of cracking passwords using CPUs, GPUs, custom
FPGA, and many other hardware capable of Open Computing Language (OpenCL) run-
time. It has currently 6,900 stars on GitHub and an active and healthy community. Hash-
cat supports over 300 different hash formats.

3.1.1 Hashtopus

Hashtopus by (Curlyboi, 2020) was an open-source project distributed as a GPU wrapper
around Hashcat but the project was abandoned. It was written in C] and PHP.

3.1.2 Hashtopolis

Hashtopolis is a multi-platform client-server tool for distributing Hashcat tasks to multi-
ple computers and one of the two actively maintained open-source projects of this kind.
Its main disadvantage is that we need to set the Hashcat parameters (a hash or a list
of hashes, password dictionaries, and an attack type) by ourselves, and thus it is not
completely standalone. Hashtopolis handles communication with nodes and divides the
work (keyspace distribution) automatically.

3.1.3 Fitcrack

Fitcrack is a distributed password cracking system. It has the capability of cracking
different documents, files, and raw hashes. It leverages Hashcat as its core component
that is capable of using OpenCL and thanks to this fact, Fitcrack is capable of running
on CPUs, GPUs, and many other types of processing units.
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Fitcrack uses an adaptive scheduling algorithm implementation since it is based on
the Berkeley Open Infrastructure for Network Computing (BOINC) computational frame-
work (Anderson, 2004). This algorithm works in two modes – non-targeted and targeted.
In the former, a job goes to any free worker. In the latter, a job goes to a specific worker
selected by the user. Fitcrack uses the latter mode.

This application uses Python script XtoHashcat.py from (Zobal and Hranický, 2018)
that we will later use for extracting the hashes from files for further cracking using Hash-
cat.

3.1.4 Terahash

(Terahash, 2020) is the self-proclaimed leader in distributed password cracking. In April
2020, Terahash acquired a company called L0phtCrack that provides auditing software
for users and teams. Terahash provides both software and hardware needed for cracking
and can be an easy to use solution for auditing companies.

3.2 John the Ripper

John the Ripper is a free password cracking software. Its disadvantage is its limited
support for the GPU. This causes a major slowdown, and for this reason, we have selected
Hashcat to be our main cracking tool. However, John the Ripper supports certain formats
that Hashcat does not (e.g., RAR3, ZIP2 with long hash size). John the Ripper also comes
with a few useful tools, such as zip-to-hash or rar-to-hash utilities. These utilities later
presented in Subsection 6.2.1 enable us to obtain the hash of a file that we use in both
Hashcat and John the Ripper.

3.2.1 John the Ripper MPI and OpenMPI

John the Ripper has implementations depending either on MPI or OpenMP, however,
both are outdated. There are 15 implementations of the parallel approach mentioned by
(Openwall, 2014). However, all of them are outdated as well and are only processor-based
relying mostly on OpenMP and MPI. (Lim, 2004) implemented the first parallel version
of John the Ripper using MPI, where the keyspace is equally divided to processors that
come back for more when they exceed the keyspace. (Pippin et al., 2006) expanded this
solution using a dictionary attack and giving each node different hashes, while each node
contains the same dictionary.

20



Chapter 4

Introduction to password cracking

In this chapter, we make the reader familiar with the basic terminology of password
cracking, encryption, and hashing. These terms are later used in the description of for-
mats of our interest and give us an intuition of the speed and security of each format.

4.1 Terminology

At the very beginning, we need to explain the difference between encryption and hashing
in order to be consistent with the terminology. The operation that encodes the message
using a chosen key is called encryption and is said to be a two-way function. The encoded
message can be later decoded using the proper key. The operation where we use a one-
way mathematical function to transform the message into a fixed-size so-called hash.
This algorithm is called a cryptographic hash function, and in contrast with encryption,
a cryptographic hash function is meant to be irreversible and has unique mapping.

Since this master thesis is focused on the recovery of passwords from files, our main
interest is cryptographic hashing.

4.2 Historical context

Humans have had secrets since ancient times. In order to store them, the written form
of the secret has to be illegible for the unauthorized reader. One of the first attempts to
hide people’s secrets was simply writing it as a text since a lot of people could not read. A
slightly advanced version of this approach was the use of hieroglyphs since only readers
belonging to kings could read.

Another famous way of encryption was introduced by the Greeks. The method is
called Caesar Shift Cipher. To encrypt the message, the letters are simply shifted by an
agreed number (usually 3, so the ’a’ becomes ’c’, b becomes ’d’, etc.), and the mapping
from original is made to the shifted alphabet. To decrypt the alphabet, we simply shift
the alphabet in reverse order.

Later in the 16th century, the first cipher with encryption key was made. This cipher
is called Vigenère cipher. First, we need to pick the key, then the key has to be duplicated,
until the length reaches the same size as the text, which is meant to be encoded. Then we
create a 2D table with the size of 26 x 26, where the rows are letters corresponding to the
key and the columns are plain text characters. The table is filled with alphabet, where
each row is shifted by one to the left. The intersections of rows and columns give us the
encrypted character. One of the most famous ways of encrypting messages was Enigma
during World War II (Damico, 2009).
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4.3 Encryption

In this section, we describe stream cipher Rivest Cipher 4 (RC4) (Rivest, 1992) and Ad-
vanced Encryption Standard (AES) (Rijmen and Daemen, 2001). These encryption func-
tions are later used in file formats of our interest.

4.3.1 Rivest Cipher (RC4)

RC4 was invented by Ron Rivest in 1987. An interesting fact is that the implementation
was a trade secret until it was leaked (Fluhrer et al., 2001). It is one of the most used
stream ciphers since it is used in TCP, WEP, WPA, BitTorrent, PDF, and Kerberos, and its
modifications are used in other ciphers. RC4 initializes an array of 256 bytes and runs
the Key-Scheduling Algorithm (KSA) to create a permutation of that array. Now we need
to run a pseudorandom generation algorithm to KSA output. The last step is to XOR the
data with the keystream.

4.3.2 Advanced Encryption Standard (AES)

AES is a block cipher. AES was an answer to old Data Encryption Standard (DES), which
is broken. AES has the length of the block of 128 bits and 3 options of the size of the
encryption key (128, 192, and 256 bits), which interfere with the number of rounds (10,
12, 14). The input key is expanded, and from the result, the round keys are computed.
Almost every round consists of operations SubBytes, ShiftRows, MixColumns, and Ad-
dRoundKey. Only in the last round, the operation MixColumns is not performed since it
does not improve the safety of the cipher.

4.4 Cryptographic hash function

As we mentioned above in the Section 4.1, cryptographic hashing is a mathematical func-
tion that maps message of any size to a message of a fixed size, usually called a hash.
Hashing, in contrast with encryption, is a one-way function (Al-Kuwari et al., 2011). A
one-way function should not be possible to revert. However, that depends on the selected
hashing algorithm, and computational power.

The ideal cryptographic hash function must fulfil the following requirements:

1. For the same input message, it produces same result; thus it is deterministic.

2. It calculates the cryptographic hash for every input message fast.

3. It is next to impossible to revert the hash and get the original message.

4. It is not possible to find two messages with the same hash that vary from each other.
Even a small change in the message causes a tremendous change in the hash value.
This is called the avalanche effect.

4.4.1 Message-Digest family

Message-Digest 2 (MD2)

The first Message-Digest algorithm was named MD2 and was invented in 1989 by Ronald
Rivest and described by Kaliski (1992). The plain text message is padded. Padding is
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an extension of a message in order to modify its length to make it divisible by 16 with-
out a remainder. This extended message of the length n is then appended by 16-byte
checksum.

To compute the hash itself, we need an S-table and auxiliary block. S-table has 256
bytes (table of size 16 x 16) generated from random permutation of π. The auxiliary
block is defined as a 48-byte buffer initialized to 0 and is permuted 16 times for every 16
bytes from the input bytes. After the iterations ends, the first block of the auxiliary block
becomes the hash value.

Message-Digest 5 (MD5)

MD5 is one of the most used hash functions. It is an improvement of MD2 and was
developed in 1992. MD5 can not be considered safe since Wang et al. (2004) found a
collision for MD5 and should be used solely as a fingerprint (e.g., software packages,
etc.). The MD5 hash is also fast to compute even for commodity hardware, which makes
it dangerous to use as shown in Table 7.1.

Figure 4.1: In this picture, the message divided into the block of 512-bits blocks. If the
message is shorter than 512 bits, it is padded the same way as for the MD2 algorithm.
Then the message is divided into 4 parts. For each part, similar operations such as left
addition or modulo are used. Picture by Crypto (2007), distributed under a CC-BY-SA
2.5 license.

4.4.2 Secure Hash Algorithms family

This family of algorithms was invented by the National Security Agency of the United
States of America. It is a Federal Information Processing Standard. It is one of the most
used hash algorithms.

Secure Hash Algorithm 1 (SHA1)

SHA1 was invented in 1993. This hashing algorithm is also not considered safe since
2005 because a possible attack was found. A successful collision attack was performed by
(Stevens et al., 2017). However, it is still required to be used in several U.S. government
applications. SHA1 makes a fingerprint of 160-bit length. In addition to collision attack,
it is easy to compute the SHA1 hash as can be seen in Table 7.1.
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Figure 4.2: SHA-1 algorithm. Picture by Crypto (2006), distributed under a CC BY-SA
2.5 license.

Secure Hash Algorithm 2 (SHA2)

The SHA2 is an improvement of SHA1. Here we have 6 hash functions instead of 4.
There is currently no known collision for a full round run of the algorithm. However,
the variant of SHA2 that is the most commonly used, SHA256 is advised not to use for
cryptographic purposes.

Secure Hash Algorithm 3 (SHA3)

SHA3 algorithm is completely new, introduced by (Dworkin, 2015) and different from
the previous SHA algorithms. The origin of the algorithm comes from Keccak algorithm
family. This is currently the hashing standard.

4.5 File formats of our interest

In the previous section, we described various encryption methods. These functions are
used heavily in file formats we are interested in. The goal of our thesis is to be able to
decrypt these formats; thus, it is beneficial to know their strength of encryption since the
speed of cracking them is based on it. We choose to cover these formats since they are
the most commonly seen sources of malicious content.

4.5.1 Office 95

The first encryption used in Office 95 was a simple XOR cipher algorithm (Wu, 2005). This
algorithm is more an obfuscation method rather than true encryption. Thus we consider
it unsecure since it is easy to crack it using frequency analysis or by known-plaintext
attack.

4.5.2 Office 97 / 2000

Since Office 97 / 2000, RC4 for encryption and MD5 hashing algorithm were used. These
two are also not considered to be safe as stated above since we can easily brute-force
billions of hashes per second.
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4.5.3 Office XP / 2003

Here the Office XP / 2003 encryption is the same as it is with Office 97 / 2000. But users
can choose to use a custom encryption algorithm.

4.5.4 Office 2007

Starting with the 2007 version, Office employs AES encryption. Password verification is
made using 50000 rounds of SHA1.

4.5.5 Office 2010

Office 2010 uses AES, and password verification is made using 100000 rounds of SHA1.

4.5.6 Office 2013, 2016

Office 2013 and 2016 use AES as well, but key length increased from 128-bit to 256-bit.
Password verification is made using 100000 rounds of SHA1.

4.5.7 ZIP

According to (WinZip, 2020), the ZIP is encrypted using 128-bit or 256-bit AES encryp-
tion in a new format zip 2.0, and legacy encryption in old ZIP 1.1 format.

4.5.8 Portable Document Format (PDF)

According to Adobe (2020), Acrobat 6.0 and later (PDF 1.5) uses 128-bit RC4 encryption,
Acrobat 7.0 and later (PDF 1.6) uses AES encryption algorithm with a 128-bit key size.
Acrobat X and later (PDF 1.7) uses 256-bit AES encryption.

4.5.9 Roshal Archive(RAR)

Roshal (2020) invented Roshal Archive (RAR). According to Roshal (2020) WinRAR uses
128/256 Bit AES for RAR3, RAR4, and RAR5.

4.5.10 7Z

The 7Z format created by Pavlov (2020) uses AES encryption with a 256-bit key. The key
for the archive is hashed to SHA-256, where it is executed 218 (262144) times; thus, both
encryption and decryption take considerable time.

4.6 Attack types

To crack the password, we have several techniques at our disposal. The first that comes
to the mind of every person is to try every possible combination of letters and numbers
for each position of given length - brute-force attack.

In order to decrease the number of password candidates for each hash, we can lever-
age lists of most used passwords (dictionaries, thus dictionary attack), usually obtained
from leaked databases of various service providers such as well-known database from
RockYou (security Skull, 2020), a software company creating third party software for so-
cial media services, MySpace (security Skull, 2020), social media networking site, Ashley
Madison, a dating site, LinkedIn, American business and employment-oriented service.
Hunt (2019), the creator of well-known site haveibeenpwned.com, shares the biggest
leaked password databases yet. It aggregates all the aforementioned and many more
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databases, allowing users to check their e-mail address or login credentials against the
ever-growing dataset. An interesting dictionary is provided by Hornby (2011), where
the dictionary was build in order to raise awareness between users with weak password
encryption. Brute-force is quicker than dictionary attack in terms of tried combinations
per second because modern cracking tools do not load the password candidates from a
hard-drive but store the candidate in the memory of the processor and change the ap-
pearance, thus password candidate by only one bit. However, the search space is much
larger thus carefully picked dictionary might suit the problem better.

The dictionary attack might be further improved by using rules and masks; thus,
combined attacks are carried out. The rule-based attack is a dictionary attack that ap-
plies rules on each word from the dictionary using specific language defined by a crack-
ing tool. The two most well-known cracking tools use one language expressiveness to
describe the word modification. The ability of rules is huge. The user can append, con-
catenate, multiply, replace any character in word he wishes to. Mask attack is the same
as the brute-force attack with the exception that it does not try all combinations from
the search space but only given domain specified by mask (e. g. mask ?l?l?l?l?l?l?d?d
represents all 6 lower-key letters with 2 numbers at the end).
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Formalization

Our goal is to solve the scheduling problem on identical machines with high utilization
of resources in an online environment. The release times and processing times of each
job are not known beforehand. First, we formalize the task as a non-preemptive (a job
cannot be stopped) mixed-integer linear programming (MILP) in an offline environment.
Later we propose preemptive (a job can be stopped and resumed) formalization to show
that it is possible to describe the problem using preemption and allows us to switch
between jobs to clear out the easiest cases where the solution of cracking is trivial, which
is later used in heuristic algorithms. Afterward, we present a heuristic approach to the
problem because the cost (regarding CPU and GPU time) is prohibitively high for larger
instances. Also, many ILP solvers are not available for free for business entities. We
formulate our task as parallel processing unit makespan minimization with the addition
of the instruments of robust optimization. Using these instruments, we are able to hold
certain guarantees regarding the makespan even in the worst-case scenario.

Employing robust optimization, we are able to find the best worst-case solution, which
is a solution that performs well even in a worst-case scenario and is later used in Chap-
ter 7 to give us the optimum makespan value, to compare our heuristics algorithms with.

5.1 Non-preemptive formalization

Our MILP formalization is based on the work of Seo and Do Chung (2014). The goal
is to distribute N jobs denoted as Jj : j ∈ {1, · · · ,N } on M parallel processors denoted as
Pi : i ∈ {1, · · · ,M}, where i stands for i-th processor. One job corresponds to the cracking of
one file and to ensuring that the criterion function is optimized and each job is scheduled
only once.

Firstly, we define non-preemptive formalization. We have binary variable xi,j : i ∈
{1, · · · ,N }, j ∈ {1, · · · ,M} for the following holds:

xi,j =
{

1, Jj is scheduled on processor Pi
0, otherwise

(5.1)

We use symbol pj : j ∈ {1, · · · ,N } for processing time corresponding to job Jj . Lengths
of these processing times are not known to us in advance, but only after the execution of
the job has ended. The completion time of processing unit i is characterized as:
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Ci =
N∑
j=1

xi,j · pj ,∀i ∈ {1, . . . ,M} (5.2)

We define the objective function we want to optimize as follows:
We want to minimize the maximum makespan (which is the time of the schedule

which elapses from the start of the first scheduled job till the end of the last one). This
allows us to distribute jobs to processors equally and maximally utilize them. This can
be formally described as:

Minimization of Cmax =max{Ci} =maxMi=1

N∑
j=1

xi,j · pj (5.3)

With (5.1), (5.3) and the presumption that each job is scheduled only once, we char-
acterize the MILP as:

minimize: Cmax (5.4)

subject to:
N∑
j=1

xi,j · pj ≤ Cmax,∀i ∈ {1, . . . ,M} (5.5)

M∑
i=1

xi,j = 1,∀j ∈ {1, . . . ,N } (5.6)

where: xi,j ∈ {0,1},∀i ∈ {1, . . . ,M},∀j ∈ {1, . . . ,N } (5.7)

Equation (5.5) tells us that makespan on each processing unit is at most Cmax, and
equation (5.6) tells us, together with the fact that xi,j are binary variables, that every job
is scheduled exactly once and on exactly one processing unit.

Since the processing time p is not known until the cracking is finished, we introduce
p̃ that is bounded by the minimum processing time p and maximum processing time p,
thus p ≤ p̃ ≤ p. We can set these boundaries since we know the minimum processor time
devoted to a job as well as we know the maximum time we want to allocate to the job. To
obtain the feasible solution as the best worst-case scenario, we change (5.5) to:

N∑
j=1

xi,j · pj ≤ Cmax,∀i ∈ {1, . . . ,M} (5.8)

A less conservative approach towards the robust schedule inspired by Seo and Do Chung
(2014) could be done by using the sum of p as the minimum required processing time
and p - p multiplied by variable r, where rj : j ∈ {1, . . . ,N } belonging to Jj denotes the
probability that the job will take a longer time.

Rewriting (5.8) to:

N∑
j=1

xi,j · (pj + (pj − pj ) · rj ) ≤ Cmax,∀i ∈ {1, . . . ,M} (5.9)

N∑
j=1

rj ≥ R (5.10)

where rj ∈ {0,1},R ∈ [0,N ],∀j ∈ {1, . . . ,N } (5.11)
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where R in (5.10), which is the rate of robustness, gives us a bound for jobs and allows
us to control additional processing time for each job. If R = 0, then we achieve the best-
case scenario for each job, if R = N, we obtain the worst-case scenario.

5.2 Preemptive relaxation

Further, we allow preemption thus rewriting the problem to:

minimize: Cmax (5.12)

subject to:
T∑
t=1

ct = Cmax (5.13)

M∑
i=1

T∑
t=1

xi,j,t ≥ pj ,∀j ∈ {1, . . . ,N } (5.14)

M∑
i=1

N∑
j=1

T∑
t1=t

xi,j,t1 ≤ K · ct ,∀t ∈ {1, . . . ,T } (5.15)

M∑
i=1

xi,j,t ≤ 1,∀j ∈ {1, . . . ,N },∀t ∈ {1, . . . ,T } (5.16)

N∑
J=1

xi,j,t ≤ 1,∀i ∈ {1, . . . ,M},∀t ∈ {1, . . . ,T } (5.17)

where: K ∈ N, xi,j ∈ {0,1},∀i ∈ {1, . . . ,M},∀j ∈ {1, . . . ,N },∀t ∈ {1, . . . ,T } (5.18)

ct is a working variable for which holds:

ct =
{

1 job J that is scheduled in time t1 ≥ t exists
0 otherwise

(5.19)

Now the variable xi,j,t has new meaning. We say that job Jj is allocated on processor
Pi in time t where the sum of xi,j,t adds into pj . By adding equation (5.14) we say we use
at least pj processing time for given job Jj .

Equation (5.15) says that if exists a time from t to T where in this time a job Jj is
scheduled, the ct has to be 1, otherwise 0. Variables ct create a sequence of 0 and 1 where,
the last 1 is the last used time slot on any processing unit. This is what we minimize. At
the same time, their sum corresponds to the index where the last job was scheduled,
which is our Cmax. K is a constant corresponding to maximum time multiplied by the
number of processing units.

Using equation (5.16) we say that one job Jj can not run on multiple processing units
at once. By (5.17) we ensure that each processing unit has only one job Jj .

5.3 Heuristic approaches

Since our main goal is to process a stream of incoming files in real-time, we decided to use
a heuristic approach to job scheduling. We implemented three techniques that we later
compare in Chapter 7 as well as with the non-preemptive MILP model implementation.
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5.3.1 First Come First Served (FCFS) algorithm

At first we implemented a First Come First Served policy, where the jobs are scheduled
based on their order in the queue. This algorithm is suitable where we have no prior
knowledge about incoming jobs as shown by Chen and Shen (2007).

5.3.2 Round-Robin (RR) algorithm

As a second algorithm, we implement an algorithm that allows preemption, thus runs
each job for fixed time windows unless the current cracking job has not ended or suc-
ceeded. In that case, job is enqueued at the end of the queue with the next cracking
scenario if there is any scenario left. This enables us to schedule the jobs as soon as they
ordered in the queue and not to block the resources with one cracking scenario job for a
long period of time if it exceeds the fixed time.

5.3.3 Dynamic Rebalancing algorithm

Since a file cracking is a time-consuming effort, we employ two queues to contain the
newly incoming jobs called New Files queue, and In Progress queue containing jobs moved
from New Files queue after fixed time. If a new job is received, it is enqueued to the
New Files queue. Jobs that take a long time to compute without success are moved to In
Progress queue to be resolved for their remaining time. We propose a heuristic approach
to choose the jobs based on the ratio between the sizes of the respective queues while
giving a higher priority to the New Files queue. We utilize the processing units equally
and using the preemption, we give a chance to any cracking attempt to be cracked sooner
than without the preemption since it has a higher chance of success in the early stages of
the cracking attempt. This is because first, we try dictionary attack, and later we switch
to a brute-force attack. This is depicted in Subsection 7.2.4. After a fixed time the job is
moved from New Files queue to In Progress queue and given a lower priority.

Algorithm 1 Dynamic Rebalancing algorithm.

Input: New Files queue Q1, In Progress queue Q2, Weight W, Workers {x1, . . . ,xN } .
1: Size1← len(Q1) ·W,Size2← len(Q2) . Apply weight W
2: amountP erResource = total_size/len(W )
3: newFilesWorkersRatio = Size1/amountP erResource
4: inP rogressWorkersRatio = Size2/amountP erResource
5: if newFilesWorkersRatio ≥ inP rogressWorkersRatio then
6: doNewFilesJob() . Allocates one job from New Files queue to resource
7: else
8: doInP rogressJob() . Allocates one job from In Progress queue to resource
9: end if

30



Chapter 6

Implementation

We need two main parts: a password recovery software and an implementation of the
appropriate scheduling algorithm. We are going to use Hashcat for cracking the files since
it utilizes graphics cards for most of the formats, complemented by John the Ripper for
the rest of the formats unsupported by Hashcat. We isolate each cracking tool instance
in a separate container using Docker (Merkel, 2014). Isolating the instances enables us to
run several cracking instances at one graphics card.

The Password cracking service comprises three microservices. The first microservice
is Shovel, responsible for determining whether the file is encrypted, detecting the appro-
priate cracking tool, and extracting the words from e-mails, and expanding the wordlist
used for cracking. Next, there is Scheduler, responsible for scheduling jobs on workers.
The Scheduler executes the selected cracking tool. The last service is Unpacker which
takes the file and its password and produces an encryption-free file.

This chapter also describes the technology stack we have used. Later, we describe
each microservice and its implementation. Finally, we present the scheduling algorithms
we implemented.

Figure 6.1: Microservices layout.
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6.1 Technological stack

We have chosen state-of-the-art technologies which together make it easy to deploy, scale,
and maintain the processing pipeline.

6.1.1 Python

As the core language, we have chosen Python (Rossum, 1995). It is an easy-to-understand
yet sufficiently powerful programming language. All applications are written in an asyn-
chronous way, which enables us to create and hold a connection with message broker and
database without thread management.

6.1.2 Docker

Docker is open-source solution for isolation of applications in all well-known operating
systems (Windows, Linux, macOS). Docker allows us to build lightweight microservices
for all of our code because it does not use the whole OS since it shares the machine’s OS
system kernel. On top of that, it enables us to isolate each application from others, which
became crucial for our use of Hashcat and John the Ripper since only one instance can be
running in one OS.

Docker dramatically aids deployment and debugging. It provides a deterministic
setup of the program. Once the Docker image is built on one computer it is no problem
to transfer it to another computer and build it just the same. We use Docker to install all
dependencies, such as Python, Python libraries, binaries corresponding to Hashcat and
John the Ripper, CUDA - an API from NVIDIA company used as a parallel computing
platform and NVIDIA drivers for GPU.

We also need NVIDIA Container Runtime from NVIDIA (2018), which enables utiliz-
ing GPUs within Docker containers.

6.1.3 Docker Compose

Docker Compose is a tool that enables us to run multi-container applications. The struc-
ture of the containers is defined in YAML file. Docker Compose provides commands to
start, stop and restart our services as well as view and log the status of services.

6.1.4 S3

Amazon Simple Storage Service (S3) is object storage from Amazon (2015). It is used as our
main storage for files.

6.1.5 PostgreSQL

To store the results of password cracking and temporary data, we use PostgreSQL devel-
oped by PostgreSQL Global Development (1996). It is an open-source relational database.

6.1.6 RabbitMQ

RabbitMQ (Pivotal, 2020) is an open-source message broker implementing Advanced Mes-
sage Queuing Protocol (AMQP) and many other protocols. Our microservices are using
RabbitMQ to communicate with each other. It is also utilized by the Celery (Celery, 2020)
framework as its backing broker (The work is distributed using RabbitMQ messages) be-
tween the Scheduler and workers.
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6.1.7 Redis

Redis (Sanfilippo, 2020) is an open-source in-memory key-value store.

6.1.8 Celery

We use Celery in our Scheduler to orchestrate the cracking jobs. Celery is an asyn-
chronous task queue, which we configured with RabbitMQ as the backing broker, and
Redis.

6.1.9 Grafana

Grafana (Grafana, 2020) is open-source for monitoring, analyzing, and visualizing the
metrics from our microservices. Grafana is also capable of using alerts, that can be set
for various situations based on metrics values. In our case, we monitor if the number of
incoming messages is steady, and if the Scheduler is not idle. In that case, Grafana sends
a message via e-mail or other communication channels. The graphs from Grafana can be
seen in Subsection 7.3.3.

6.1.10 Kibana

We use the so-called ELK Stack (Banon, 2020). ELK is the acronym for Elasticsearch,
Logstash, and Kibana. Elasticsearch is a search engine that relies on Apache Lucene query
syntax language, which allows us to search the logs. It uses the Logstash as a processing
pipeline and that sends the logs in Elasticsearch. Kibana is a frontend dashboard for
visualization and search in our logs aggregated from all the microservices and a standard
solution for log management.

6.2 Implementation

First, we create a microservice called Shovel. We begin with the creation of Shovel because
we needed to analyze the stream of incoming files to know what we deal with. We needed
a tool capable of distinguishing whether the file is encrypted or not. For this task, we
used XtoHashcat incorporated in Shovel to learn what proportion of such files there is in
the incoming file stream.

The second task was to get familiar with Hashcat and its commands and create an
easy to use Docker image that wraps around Hashcat and its runtime dependencies. This
image is called Cracker. Later we discovered that Hashcat does not support all formats
we set out to support and would not be able to crack those. We decided to utilize John
the Ripper to crack those few formats that Hashcat does not.

To be able to test Hashcat and John the Ripper, we created a tool that generates en-
crypted files.

After finishing Cracker for password cracking, we started to develop simple proof-of-
concept Scheduler using the First Come First Served algorithm. Later we implemented the
Round-Robin algorithm and improved the RR into the Dynamic Rebalancing scheduling
algorithm.

To finalize the result, we created the Unpacker which, using different tools, strips the
encryption, and produces its unencrypted form.

6.2.1 XtoHashcat

XtoHashcat.py is a script created by Zobal and Hranický (2018). It wraps the func-
tionality of separated utilities responsible for extracting the password hash. Most of the
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utilities come from John the Ripper. The password hash is later used in both Hashcat
and John the Ripper. The password hash is a string that describes the encrypted file by
properties such as: compression type, the checksum of the file, length of the file, the
password hash, and other attributes.

The script uses the following source files and binaries:

1. pdf2hashcat.py

2. zip2john

3. office2hashcat.py

4. rar2john

5. 7z2john.pl

For instance, using pdf2hashcat.py to obtain a password hash from a file looks like
this:

Figure 6.2: Pdf2john.pl call, used in XtoHashcat.
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6.2.2 Shovel

Figure 6.3: Shovel workflow.

The Shovel was constructed to read the stream of incoming files from a RabbitMQ ex-
change. The expected message looks like:

{

"sha256": "5d5b09f6dcb2d53a5fffc6.....",

"source": "...",

"type": "pdf",

"suggested_passwords": [

"123",

"password"

]

}

where:

1. Sha256 - unique file identifier, SHA256 computed from the file content.

2. Type - file type.

3. Source - file source name, name of RabbitMQ message emitter.

4. Suggested_passwords - optionally, the user can specify passwords worth trying to
crack.

First, we download the file from S3 storage, and then we use XtoHashcat. If XtoHash-
cat is able to acquire the password hash of the file, we check if we have prior knowledge
about the particular file, such as an e-mail. The Shovel is able to parse corresponding
EML source files and turn them into a dictionary using simple heuristics - dividing the
words by space. This prior knowledge serves as a wordlist of potential passwords. Based
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on the file’s password hash, we also determine whether Hashcat or John the Ripper is
used to crack the file. Finally, we forward the file for processing by the Scheduler, with a
corresponding message:

{

"sha256": "5d5b09f6dcb2d53a5fffc6.....",

"type": "pdf",

"cracking_tool":"hashcat",

"start":True,

"suggested_passwords": [

"123",

"password",

"password_from_email"

]

}

1. Sha256 - unique file identifier, SHA256 computed from the file content.

2. Type - file type.

3. Start - flag if the cracking starts for the first time.

4. Suggested_passwords - top passwords + words extracted from e-mails etc.

The decision whether the Scheduler uses Hashcat or John the Ripper is based on the
file type and its password hash. We use John the Ripper to process RAR files of type 1
(password hashes starting with $RAR3$*1) since it is not implemented in Hashcat dur-
ing the writing of our thesis and it is one of the most commonly used RAR encryption.
ZIP version 2 is the second format that is handled only by John the Ripper. Unfortu-
nately, Hashcat supports only cracking of short password hashes for ZIP (hashes starting
with $zip2$) in terms of string length), so strings longer than 120 characters are sent to
John the Ripper as well. The last format that is sent to John the Ripper is PKZIP2 since
XtoHashcat does not correctly distinguish the format number for Hashcat, but John the
Ripper detects the file type automatically and does not need this information.

Summary of files sent to John the Ripper:

File format type Start of the file password hash (signature)
RAR3 $RAR3$*1
ZIP2 (length >120 chars) $zip2$
PKZIP2 $pkzip2$

The rest of the files are sent to Hashcat.

6.3 Files generator

To be able to test the data, we created a Python script that creates encrypted files in PDF,
7Z, and ZIP. We skipped the Office documents since there is not a proper command-
line tool to encrypt Office documents and RAR formats since there is only proprietary
software for creating RAR, however, to extract the RAR file an unrar command-line tool
exists. We used Linux tools qpdf (Berkenbilt, 2013) for PDF files, zip (Gordon, 2020) for
ZIP files, and p7zip (Trojette, 2016) for 7Z files to create the instances.
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6.4 Cracker

Figure 6.4: Cracker workflow.

At first, we learn how to use Hashcat and John the Ripper. Afterward, we needed Xto-
Hashcat to even obtain password hashes to test the functionality of both cracking tools.
Finally, we connect all of these scripts with Python and make it as Docker image that can
be given arguments to call different strategies we will later use from the Scheduler. The
strategies are the same for both Hashcat and John the Ripper, however, the command is
slightly different as shown below. Then we connect the parts into one microservice using
Python.

6.4.1 Hashcat in detail

Firstly, we learned how to use Hashcat’s command-line interface to be able to interact
with it. One important feature of Hashcat is a flag --machine-readable which makes
the output that can be parsed by computers. As a result of this convenient output, we
track the progress of Hashcat and check whether the password was obtained.

Another feature that Hashcat offers is --workload flag - the user can specify how
many of the available resources are to be allocated and utilized. The default value is 2
(economy), and we have chosen 3 to get the maximum output from each GPU, without
rendering the machine overloaded and effectively unusable, which is a risk when choos-
ing higher values

Hashcat is also capable of pausing the cracking job. The option to pause the cracking
job becomes available after a Restore.Point is created, which is approximately 2 min-
utes from the start time after a certain keyspace of password candidates is searched. To
make the restore file, we must give a name to session during a call of Hashcat command
by using hashcat --session cracking -m 0 -a 3 md5.hash . We use the restore op-
tion later in Subsection 6.5.3 and Subsection 6.5.4, where we need to run the job for
certain time window.

We use hashcat --session --restore to resume cracking. If no name for the ses-
sion is provided, Hashcat uses standard name hashcat.restore otherwise the restore
file is named after the session name.
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Figure 6.5: Hashcat workload options from official Hashcat help.

Hashcat has two main parameters, parameter a for attack type selection, where 0
corresponds to dictionary attack, and 3 that corresponds to a brute-force attack. The
second parameter is m. Parameter m is the password hash type. Each password hash type
is represented by the number mapped to the name of the hash type.

Currently, we are interested in a dictionary attack and brute-force attack. These at-
tacks are called using these commands:

1. Dictionary attack - hashcat -m 0 -a 0 md5.hash /path/to/dictionary .

2. Brute-force attack - hashcat -m 0 -a 3 1a1dc91c907325c69271ddf0c944bc72 .

6.4.2 John the Ripper in detail

John the Ripper has a fairly similar feature set and commands as Hashcat. However John
the Ripper still comes with few differences. It does not provide machine-readable output
thus we must parse the standard output. The restore file for John the Ripper is stored
in john.rec file by default, but we can specify the exact name and location of the file.
John the Ripper does not allow to change the workload profile and utilize all CPUs to the
maximum. However as well as Hashcat, John the Ripper offer us to restore the cracking,
which is crucial in the implementation of our scheduling algorithms.

We use two different attacks types for John the Ripper:

1. Dictionary attack - john md5.hash --wordlist=/path/to/wordlist .

2. Brute-force attack - john md5.hash .

Notice, that unlike Hashcat, we do not need to specify (but we can) the file hash type
that should be cracked since John the Ripper is able to detect the format by itself.

6.4.3 Cracker

After we got familiar with all of the components we integrated all the essential pieces
into a single Python script. The program starts by running __main__.py . The user has
an option to specify several arguments

1. Method_to_call - the method we are interested in running.

2. Sha256 - SHA256 of file.

3. File_type - the type of file.

4. Timeout - time after the container stops running.
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5. Session_name - the name of the session, usually the same as SHA256.

6. Task_in_progress or dictionary - last parameter specifies either job in progress if
we restore the cracking or custom words to try as dictionary.

The Python script operates as follows. First it downloads file based on its SHA256
from S3. Then we use XtoHashcat to identify the file password hash and persist the hash
to file. In the case of WinZip and other archive formats the hash can take up to 1 MB size
and immense string length, thus it is not feasible to pass it as an argument to shell call
which is why we pass the file path with stored file hash in it as argument instead. Next,
Hashcat or John the Ripper is called. Both Hashcat and John the Ripper calls spawn a
shell subprocess and read the standard output and standard input of invoked script and
act according to script output. For both cracking tools there are four possible cracking
attempt outcomes:

1. Cracked - File is cracked.

2. Timeout - Cracking was ended due to a timeout.

3. Fail - Cracking failed due to hardware overheat, bad hash etc.

4. Exhausted - Unsuccessful cracking, we explored the whole keyspace.

The result is reported via standard output.

6.4.4 All wrapped to Docker

Finally we can wrap the final product into a Docker base image. As mentioned before
in Subsection 6.1.2, our two cracking tools can run only in one instance in the OS. How-
ever we built a Docker image with both cracking tools, effectively allowing us to iso-
late their processes into standalone containers, which can be run in multiple instances
concurrently on a single machine. The Dockerfile consists of our Python script, newest
Hashcat, and John the Ripper binaries which are built inside the Dockerfile and sup-
porting libraries for all the programs mentioned above. There are also two dictionaries
included in the image, RockYou and CrackStation-human-only. Our base image is based
on nvidia/opencl:runtime-ubuntu18.04 parent image. It is an image based on the
Linux operating system Ubuntu.

Listing 6.1: Example command for dictionary attack that runs for 120 seconds on GPU 2
using argument --gpus-device .

docker run --rm --env-file=secrets.env --gpus device=2 --label

sha256=0337A97307D771C717075C595C3EB4DE3801FF127F2D193B042CE

857F1EA99EF password-cracking-service:latest hashcat_

dictionary_attack 0337A97307D771C717075C595C3EB4DE3801FF127F2

D193B042CE857F1EA99EF doc 120 0337A97307D771C717075C595C3EB4

DE3801FF127F2D193B042CE857F1EA99EF rock_you
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6.5 Scheduler

Start RabbitMQ 
message
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Figure 6.6: General workflow of Scheduler.

The Scheduler is responsible for distributing the job to the free resources, check the job
status by tracking output from a running Cracker container, receiving jobs from Shovel,
sending jobs to Unpacker, and storing the generated data. All this with different schedul-
ing algorithms. We use Docker Compose to run all necessary images. The images are:
RabbitMQ server, Redis database, Celery broker, Celery workers, and Flower - monitoring
system for Celery.

6.5.1 Scheduling implementations

For each scheduling algorithm we use 3 types of attack and the cracking job use all of
them if the given the limit is not exceeded. First we try a very low number of suggested
words, these might be taken from the e-mail body or suggested by the user. Then we
attempt a dictionary attack using the famous RockYou password list, and only if any
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of the former is unsuccessful, we resort to a brute-force attack for a fixed time limit as
described in Section 4.6. We believe that majority of passwords of our interest can be
cracked since the attackers are oftentimes neglectful and do not use strong passwords as
demonstrated by Hýža (2014).

6.5.2 First Come First Served algorithm

At the very beginning we created a Proof of Concept (PoC) to make a working solution
of Scheduler. As a scheduling algorithm, we choose FCFS - where jobs are run one after
another as soon as the machine is free.

When a job from RabbitMQ is acquired we send it to the available worker using Cel-
ery. The Scheduler starts the cracking attempt for a given cracking tool with the first
cracking scenario, suggested passwords, then we try the RockYou dictionary and if not
successful, we run a brute-force attack for the rest of the time.

Each job is run from Scheduler broker container in own separated Cracker container
called via command mentioned in Listing 6.1.

Unfortunately, this scheduling algorithm occupies the resource for a long period of
time with a single job only, thus we decided to preemptively run the jobs, since there is a
chance to clear out easy to process jobs.

6.5.3 Round-Robin algorithm

We decided to implement the Round-Robin algorithm, where we do not use all scenarios
at once for each file but we divide the cracking scenarios into separated cracking jobs.
Thus if we start cracking N jobs, all jobs come through suggested password cracking,
then switch to dictionary attack and finish with brute-force attack.

Given a brute-force attack (and rarely a dictionary attack) may take a long time we
do not make this algorithm preemptive only in terms of dividing the cracking of file to
its own each scenario but we employ a fixed time window duration for each job run.
The time window is determined to be 120 seconds - the minimum time for Hashcat to
save the existing cracking progress. Thus we need an option to pause and resume the
cracking. This is fortunately implemented in Hashcat and John the Ripper as described
in Subsection 6.4.1 and Subsection 6.4.2.

To run the container for a fixed time we start the container and when there is no
remaining time, we extract the restore (Hashcat) or rec (John the Ripper) file from con-
tainer and store it to the database for later use. When the job is ready to be executed
again, we download the restore file from database, create a new container with the re-
store file copied into its isolated filesystem.

We name the container after SHA256 of the file that is being cracked, allowing us to
correctly address the specific container when controlling it.

To get the file from the container we use:

Algorithm 2 Get the restore file from container.

Input: sha256 of file sha256,
1: docker cp container_id:/path/to/restore-file file . Copy the restore file from the

container to scheduler
2: save_to_db(sha256) . Save it to the Cracking Service DB

To inject the file to a container we use the following code:
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Algorithm 3 Get restore file to rhe container.

Input: sha256 of file sha256,
1: docker create –name sha_name_tmp password-cracking-service:latest . Create a

new image from original image
2: file = get_from_db(sha256) . Save from DB to file
3: docker cp file sha_name_tmp:/path/to/restore/file . Save the restore file to proper

position
4: docker commit sha_name_tmp sha_name . Commit changes to container
5: docker rm sha_name_tmp . Delete temporary container

Now, after we inject the restore file to the container, we can simply run the corre-
sponding container created from Cracker with argument restore_hashcat or
restore_john .

6.5.4 Dynamic Rebalancing algorithm

Figure 6.7: Dynamic Rebalancing algorithm workflow.
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Since we want to crack new files in a timely fashion we decided to have two RabbitMQ
queues to work with. This algorithm is based on Round-Robin implementation but the
switch was added to move the job to another queue after a constant time period elapsed.
One queue consists of new files called New Files and the second queue contains files that
are being cracked for more than fixed allotted time, called In Progress. We decided to pri-
oritize the new files since the cracking scenario starts from the most promising suggested
passwords attack, to dictionary attack ending with a last-effort brute-force attack, each
with increasing chance of success. By enforcing to get messages more from New Files
queue, we process new files that might have a password lying in the keyspace of sug-
gested passwords or our dictionary attack, while the processing of jobs from In Progress
queue, where brute-force attack attempt occurs, is postponed. The decision when to take
a job from New Files queue is based on the ratio of queues lengths, where the New Files
queue is weighted by fixed constant, the tuning of weight constant is shown in Subsec-
tion 7.2.1.
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6.6 Unpacker

RabbitMQ 
message

qpdf7z, rar, zip msoffcrypto-tool
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Figure 6.8: Unpacker service workflow.

Finally if the file is cracked, the message with the password is emitted to RabbitMQ, then
Unpacker takes it from the queue and starts its job. The Unpacker is capable of using the
password and extracting the files from 7Z, ZIP and RAR or retrieving a file without the
password in case of PDF and Office documents. For a RAR file an unrar command-line
tool exists. We used Linux tools qpdf (Berkenbilt, 2013) for PDF files, zip (Gordon, 2020)
for ZIP files and p7zip (Trojette, 2016) for 7Z files, and msoffcrypto-tool (Nolze, 2020)
for Office documents. These files are uploaded to S3 and processed by other systems.
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Evaluation

First, we show the speeds of cracking for file types of our interest in both Hashcat and
John the Ripper. Then, we review the data that we work with in terms of file types
and frequency. In Subsection 7.1.6 and Subsection 7.1.5, we show the worst-case and
the best-case scenarios of password cracking using Scheduler. Later we determine the
weight for the Dynamic Rebalancing algorithm which is later used in subsequent mea-
surements. The performance of our algorithms is then shown and discussed on two arti-
ficial datasets made out of a subset corresponding to a real-life setting. The performance
of our algorithms is compared with a Gurobi (Gurobi Optimization, 2015) model of non-
preemptive implementation for comparison. In Subsection 7.2.4, we show the weakness
of the FCFS algorithms non-preemptive approach in job distribution in comparison with
Round-Robin and Dynamic Rebalancing algorithm where preemption is used.

Later on, we provide results of applying our methods to real data under a stress en-
vironment. We also discuss the results of cracking jobs.

During the testing, we experienced a GPU overheat, if the 7Z format or similar ex-
pensive jobs run at once. That resulted in making our Scheduler more resilient towards
failures of hardware, as well as to connectivity issues. An interesting issue is also that
protected (which means we can view source code of the file, but can not edit the PDF in
any way) PDFs appear as encrypted, so the password hash is sent from Shovel to Sched-
uler that has to process it, but Hashcat returns empty password string.

7.1 Benchmark

The evaluation of our work is measured on 3x GeForce GTX Titan Z, where each GPU
corresponds to 2 workers. This is due to the fact that the GPU has enough memory to
run 2 jobs at once. The server is additionally equipped with an Intel(R) Core(TM) i7-3820
CPU @ 3.60GHz and 32GB DDR3 RAM and runs Centos 7.

The MILP model is solved using Gurobi Optimization (2015) solver computed on
Dell Precision 3530 laptop equipped with 32 GB DDR4 RAM and Intel Core i7-8750H @
2.20GHz.

7.1.1 Hashcat

We use the command hashcat -m 0 -b , where according to Hashcat (2020) parameter
-m corresponds to a selected hash number and hashcat -b means benchmark. The

computation is measured as if we tried to crack the file in brute-force fashion. The results
are using unit H/s (hashes per s) with unit prefix in the metric system (mega, kilo).
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Table 7.1: Speed of Hashcat.

Format type
number

Format name Speed

0
MD5 6388.0 MH/s

100
SHA1 2185.4 MH/s

1400
SHA256 1071.9 MH/s

10400
PDF 1.1 - 1.3 (Acrobat 2 - 4) 30371.6 kH/s

10500
PDF 1.4 - 1.6 (Acrobat 5 - 8) 1501.8 kH/s

10600
PDF 1.7 Level 3 (Acrobat 9) 1071.4 MH/s

10700
PDF 1.7 Level 8 (Acrobat 10 - 11) 11814 H/s

9400
MS Office 2007 40598 H/s

9500
MS Office 2010 20294 H/s

9600
MS Office 2013 3231 H/s

9700
MS Office <- 2003 MD5 + RC4, oldoffice0, oldoffice1 21406.8 kH/s

9800
MS Office <- 2003 SHA1 + RC4, oldoffice3, oldoffice4 28276.5 kH/s

11600
7-Zip 126.5 kH/s

13600
WinZip 888.9 kH/s

12500
RAR3-hp 10286 H/s

13000
RAR5 13208 H/s

7.1.2 John the Ripper

According to Openwall (1996) the metric c/s is called "crypts" (password hash or ci-
pher computations) per second with unit prefix in the metric system (mega, kilo). Using
argument john --format=raw-md5 --test , where we changed the format for each al-
gorithm, we obtained:

Table 7.2: Speed of John the Ripper.

Format name Speed
MD5 43514 Kc/s
SHA256 2660 Kc/s
PDF 10240 c/s
Office 2007/2010/2013 257 c/s
Zip, WinZip 56219 c/s
RAR3 325 c/s
RAR5 691 c/s
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7.1.3 Comparison of cracking tools

As we can see, the Hashcat is superior to John the Ripper in terms of speed. This is due
to the utilization of graphics cards. Hashcat, using graphics cards, is up to 100 times
faster than John the Ripper. Thus we try to delegate all jobs to Hashcat, if the format is
supported. The speed difference can be seen for example on the RAR3 and RAR5 formats,
where Hashcat cracks RAR files with speed of 10286 H/s whereas John the Ripper cracks
with the speed of 325 c/s. RAR5 is cracked by the speed of 13208 H/s by Hashcat and
691 c/s by John the Ripper. From the results of both benchmarks of cracking tools, we
can see that the cracking of the new Office documents encryption from 2013 is much
slower than the rest of the algorithms. Another example of a slow cracking are RAR files.
These files are encrypted with AES 256, which was designed to make the encryption of
one hash expensive, thus making cracking tools spend considerable resources to crack it.

7.1.4 Incoming data analysis

We receive approximately 30 encrypted files per hour. The Figure 7.1 shows that the
most frequent encrypted format is PDF followed by Office documents. This data might be
coming from phishing e-mails where viruses are often spread. Further, among the format
types we distinguish for DOC files, PDF files and RAR files, we can see in Figure 7.4 that
majority of our received files are legacy formats for both Microsoft Office documents and
PDFs, which are main contributors to the encrypted file count, thus we should be able to
crack them very fast. Based on the statistics of incoming files, we choose the maximum
processing time p = 720 s, since we receive 30 files per hour on average, to 6 workers.
Further in Subsection 7.1.5 we determine the value p = 15, since it is the mean of files
computed in the best-case scenario. The time window for preemptive algorithms, RR
and Dynamic Rebalancing is set to 120 s - the minimum time for Hashcat to save the
current progress to restore file. In the case of Dynamic Rebalancing, the job is sent to the
In Progress queue after p / 2 has elapsed. The values p, p, the constant for the job switch,
and the time window hold for all the examples unless stated otherwise.

Figure 7.1: Format types ratio.
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Figure 7.2: Office documents ratio in detail. Figure 7.3: RAR format ration in detail.

Figure 7.4: PDF format ration in detail.

7.1.5 The best-case benchmark

The best-case scenario occurs if we know the correct password for the file, so no other
word candidates have to be tried, thus the minimum possible time should be required
for password cracking.

Our implementation is capable of processing 1462 jobs in Cmax = 3596.97 s, whereas
the MILP model, given the corresponding exact times for each job, gives optimum of
Cmax = 3549.22 s and Cmax = 3660 s for robust model with p = 15. Since we provide
only one password candidate and all jobs end after the password is correctly found, all
algorithms behave in the same way and we compare the MILP-based solution with only
one implementation. The corresponding Gurobi models and measurements can be found
in /evaluation/the_best_case/ folder.
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Figure 7.5: Schedule of best-case jobs.

Figure 7.6: Unpacker work on cracked files visualized in Grafana.

7.1.6 The worst-case benchmark

The worst-case possibility is when all incoming data is encrypted with a strong password,
thus we cannot decrypt the file and the entire time budget (p) is spent on one file. The
corresponding Gurobi model and data can be found in /evaluation/the_worst_case/

folder. The colors and names represent the same job.
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(a) The worst-case Gurobi schedule (b) The worst-case FCFS algorithm

Figure 7.7: Graph (a) depicts the optimal solution from Gurobi where the Cmax = 3600 s
and picture (b) is our solution using First Come First Served algorithm. The graphs may
appear similar, but the FCFS optimum is worse due to errors in measurements and burst
time of each job making Cmax = 3626 s.

(a) The worst-case Round-Robin algorithm (b) The worst-case Dynamic Rebalancing algo-
rithm

Figure 7.8: Graph (a) depicts the solution presented by Round-Robin algorithm, where
Cmax = 3649 s and picture (b) is our solution scheduled by Dynamic Rebalancing algo-
rithm, where Cmax = 3703 s.

7.2 Artificial data

In this section, we evaluate our algorithms on artificial data created from the Files gen-
erator. We use mostly PDF and ZIP files since it is easy to generate them in any way
we need, and we encounter these file types in real-world setting. We experiment with
weight for the Dynamic Rebalancing algorithm as well as with the ratio of files which we
are able to crack and which we are not able to crack.
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7.2.1 Weight for the Dynamic Rebalancing algorithm

The Dynamic Rebalancing algorithm contains a constant weight. To show the behavior of
Dynamic Rebalancing algorithm, we present a schedule where we used 4 different values
for weight (0.1, 2.5, 5, 10). We simulated the behavior based on the value of constant
weight by first sending 6 jobs to Scheduler, then waiting 4 minutes (which is the time
when the jobs are moved from New Files queue to In Progress queue) and then sending
another 6 jobs. The jobs in the first wave have a blue color, and jobs sent after 4 minutes
have a purple color. The behavior is noticeable after the third column of jobs starts. If
the weight is low, we consume only a few new jobs from the New Files queue and then
we return to the In Progress queue, this holds for weight = 0.1 shown in Figure 7.9. The
other extreme is weight = 10 depicted in Figure 7.10, where we prioritize the New Files
queue heavily. We choose weight = 2.5 from Figure 7.10 as a compromise between these
two extremes, where we prioritize the New Files queue but still use some resources to In
Progress queue. The weight = 1 in Figure 7.9 shows the behavior in an unweighted case.

In further examples, we use weight = 2.5, as it is prioritizing the New Files queue but
does not heavily limit the consumption of In Progress queue.

(a) w = 0.1 (b) w = 1

Figure 7.9: Dynamic Rebalancing algorithm.

(a) w = 2.5 (b) w = 10

Figure 7.10: Dynamic Rebalancing algorithm.

7.2.2 15/15 scenario

This artificial dataset has 15 files that we are able to crack and 15 files that we are not
able to crack. Further, the dataset consists of 15 pdf files and 15 zip files. The dataset
is made of 7 pdf files that are encrypted using 4 letters that are not part of the RockYou
dictionary and 8 zip files encrypted using passwords from the RockYou dictionary. The
remaining 15 files are encrypted using a 10-letter password which is uncrackable in the
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allotted time frame, so the expected result is to successfully crack 15 out of the 30 files
total.

First, we start the Scheduler and then we send the jobs all at once. This way we are
able to compare the results with the schedule made by Gurobi and test the behavior
during peak hours. For the Round-Robin and Dynamic Rebalancing algorithm, we have
selected a time-window of 120 s.

We used the real processing time values computed from First Come First Served algo-
rithm to non-preemptive implementation for Gurobi solver to see if it can be scheduled
in a more simple way. We also computed the robust schedule for this given scenario. The
optimal value for a robust non-preemptive schedule is Cmax = 2160 s, where R = 15, this
value is the number of jobs that are expected to be not possible to crack, p = 15 s and p =
720 s. The schedule built from exact times from FCFS gives us the optimal value Cmax =
2171 s.

The best schedule was built by the RR algorithm, where the Cmax = 1982 s is shown
in picture Figure 7.12. Our Dynamic Rebalancing algorithm in Figure 7.13 took Cmax =
2228 s and FCFS took Cmax = 2303 s as can be seen in Figure 7.11. We can see that the
RR schedules the job equally and in a different order. The time window is set to 120 s
- the minimum time for Hashcat to save the current progress to restore file. The order
is determined by the order of messages in the queue, but not even the addition of more
runs helped us to build a different schedule with better Cmax. The colors and job names
correspond to the same job in each graph. There is a trade-off between using the Dynamic
Rebalancing algorithm, thus prioritizing the new files, and using RR where the load is
equally distributed, thus obtaining a better schedule. The measurements can be found
in /evaluation/weight_parameter/ folder.

Figure 7.11: Schedule of FCFS algorithm 15/15 jobs took 2303 s.
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Figure 7.12: Schedule of Round-Robin algorithm 15/15 jobs took 1982 s.

Figure 7.13: Schedule of Dynamic Rebalancing algorithm 15/15 jobs took 2228 s.

7.2.3 3/27 scenario

In this scenario, we created a dataset that has 3 files that we are able to crack. Each file is
from our group of our attack (suggested password, dictionary attack, brute-force attack)
which can be seen in Figure 7.14, where we have 3 distinct jobs with different completion
times, in contrast with other jobs. This is due to the fact that the job with the suggested
password was nearly instant, whereas the brute-force attack took the longest. As well
as in Subsection 7.2.2, the RR algorithm creates a better schedule with Cmax = 3315 s,
however without the prioritizing of new files. A slightly worse result of Cmax = 3460
s is achieved by the Dynamic Rebalancing algorithm and FCFS results in Cmax = 3644
s. The robust MILP optimum value Cmax = 3600 s and the exact solution constructed
from data provided by FCFS gives Cmax = 3619 s. The corresponding Gurobi models and
measurements can be found in /evaluation/artificial_data_3_27/ folder.
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Figure 7.14: Schedule of FCFS algorithm 3/27 jobs took 3644 s.

Figure 7.15: Schedule of Round-Robin algorithm 3/27 jobs took 3315 s.

Figure 7.16: Schedule of Dynamic Rebalancing algorithm 3/27 jobs took 3315 s.
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7.2.4 First Come First Served vs. Round-Robin like implementations

As mentioned in the last paragraph in Subsection 6.5.2, FCFS implementation blocks the
processing unit with only one job and does not give another job the space to be solved.
Beside our RR and Dynamic Rebalancing implementations are capable of making the
schedule more equally distributed thus minimizing the maximal makespan, it comes
with one more benefit. Given a scenario, where we have 7 files, 6 hard to crack and 1
easy to crack the FCFS will block the cracking through the stage where the 1 file could
be cracked. RR like implementations do not suffer from this because we do all scenarios
for each file at once. We want to show the comparison between FCFS and RR algorithms
between the first successfully cracked file by this example. The corresponding Gurobi
models and measurements can be found in /evaluation/fcfs_vs_rr/ folder.

Figure 7.17: FCFS algorithm 7 jobs.

Figure 7.18: Round-Robin algorithm 7 jobs.

Since 6 jobs in Figure 7.17 occupy all the processing units in FCFS implementation,
the job J1 is cracked after 754 s from the start. However using RR implementation we
crack the file after 78 s. Both these results are highlighted with the red line.
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7.3 Real data

With real data, we do not know the original password to the given file. However, during
our research, we processed over 25 thousand files and found the passwords to more than
two thousand of them. When working with real data, we discovered many corrupted
files. For example, PDF files can return a password hash even though it is not encrypted
by password. The PDF is only protected from editing, which is enough for pdf2john to
return some kind of password hash, that is later cracked resulting in an empty password.
Also misspecification of a file format from the provider can happen, or the files are sim-
ply corrupted. It is also possible to extract a hash from encrypted archive divided into
parts, however, we are not capable of extracting it without previous parts. We tried to
enhance the cracking tactics by using a rule-based attack combined with RockYou dic-
tionary, but we did not obtain any new passwords and outside of the scope of the normal
RockYou dictionary. The rule-based attack also caused an inability to crack the files in
time with the current hardware setup, since it overheats when the load is high. For this
reason, we were unable to perform the experiment correctly.

7.3.1 Hand-picked real data

We created a dataset of 29 real files. It consists of 7 files that we are able to crack, 6 files
which we are not able to crack, 3 files which has bad generated hash and 13 files with an
empty password.

The R for our robust MILP is determined as follows:

1. Calculate the 1st and 3rd quartiles q1 and

2. Calculate the interquartile range IQR = q3 - q1.

3. Select x = 1.5 IQR, as is common when detecting distant values using boxplots.

4. Now the R is the number of values bigger than x.

This results x = 376, which results R = 7 and the optimal value of this schedule
provided by a robust Gurobi solution is Cmax = 1440 s. The optimal value for this
dataset is Cmax = 936 s provided by Dynamic Rebalancing algorithm followed by RR
with Cmax = 959 s and FCFS, where Cmax = 1276 s. The results can be found in /evalu-

ation/real_data_29/ folder together with Jupyter notebook (Kluyver et al., 2016) where
the cut-off value is determined.

Figure 7.19: Cut-off, where the red-lines values is x = 376.
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Figure 7.20: Real data, FCFS algorithm.

Figure 7.21: Real data, Round-Robin algorithm.

Figure 7.22: Real data, Dynamic Rebalancing algorithm.
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7.3.2 Data in real-time

Here we recorded incoming files for approximately 30 minutes of incoming traffic and
replay 30 minutes for each algorithm to compare its performance. As well as in previous
real data measurement, the Dynamic Rebalancing algorithm has the shortestCmax = 2012
s followed by RR implementation with Cmax = 2046 s, and finally, the FCFS algorithm
ends after Cmax = 2174 s. The measurements can be found in
/evaluation/data_in_real_time folder.

Figure 7.23: Real-time schedule of 30 minutes of jobs, FCFS algorithm.

Figure 7.24: Real-time schedule of 30 minutes of jobs, Round-Robin algorithm.
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Figure 7.25: Real-time schedule of 30 minutes of jobs, Dynamic Rebalancing algorithm.

7.3.3 Peak measurement

Since it performed the best on real-life data, we use our Dynamic Rebalancing algorithm
in the production setting. Further, we show, how Dynamic Rebalancing algorithm han-
dles 3 hours of traffic with the weight = 2.5. The reason behind the selection of this
particular window is being able to demonstrate it in on paper. We used weight = 2.5, p
= 720 s and, job switch at p / 2 s, and 120 s time window. With these constants we can
guarantee to process the files in real-time.

Figure 7.26: Visualisation of incoming encrypted files to Shovel.
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Figure 7.27: This graph demonstrates the resource allocation during password cracking.
The bar chart on axis y shows the number of jobs per minute. It can be seen that 16:00
to 16:20 a lot of files came, thus a high number of suggested attacks were performed.
These attacks were followed by fixed-window attacks of the RockYou dictionary attack
and a brute-force attack. The frequency of allocated resources has decreased till 18:10.
At 18:10, another wave of new files arrived, namely PDFs containing empty passwords,
These files were cracked fast and as a result, the number of allocated resources raised.

Figure 7.28: During this 3-hour session, we first detected the empty passwords, usually
in PDF files. We also experienced a failed cracking, caused by XtoHashcat misclassifi-
cation of the format type, resulting in failed start of Hashcat. After iterating over the
suggested passwords attacks, we moved to cracking the files till 18:10 where we com-
pleted most of the cracking jobs and also cleared out the incoming empty hashes.

60



CHAPTER 7. EVALUATION

Figure 7.29: These are the results for successful password cracking attempts.

7.3.4 Analysis of cracked passwords from real data

We present the top 10 passwords obtained during our creation of our thesis. Interest-
ingly, password 4534 was used to encrypt PDF files that contains malware so it might
be most likely the favourite password among hackers. Next top malware passwords are
apr13, apr17 and apr20 probably referring to month and number, however, these files
were sent in different dates than April. Other favourite passwords are: 1qazzaq1, neo,
Corona, virus, windows, Password1, qwer1234.

The majority of our obtained passwords consist of numbers. The knowledge of pass-
words might be used to tag the virus according to its password.

From the total of 25812 files we were able to crack 5650 files from which 3932 are
empty string passwords and 1718 files are truly encrypted which yields 6 % of cracked
encrypted files. Most of the passwords that we cracked are easy to crack since they are
made using only numbers. From the 1718 passwords 1583 are purely digits, 100 are only
letters and 36 are a combination of both or use special characters.

Top 10 passwords
1 1234
2 4532
3 123
4 encrypted
5 infected
6 apr17
7 view
8 12345
9 1111
10 2222

7.3.5 Experiments conclusion

We tested our implementations on both artificial and real data. First, we tested the max-
imal throughput of our implementation as well as the behavior when the jobs used the
maximum allocated time. These experiments helped us to determine the parameters p
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and p. From the experiment in Subsection 7.2.1 we have chosen the constant weight later
used in Dynamic Rebalancing algorithm.

The majority of the data we receive (Figure 7.4) is encrypted using legacy formats.
Due to this fact we are able to search the passwords key space fast and even a brute-force
attacks succeeds up to 6-letter passwords.

From the results of the experiments presented above, we can see that the RR algo-
rithm exhibits the best on artificial data, since it equally distributes jobs to processing
units. When we used the real-life data, the Dynamic Rebalancing algorithm outperforms
Round-Robin and gives us a benefit of processing new incoming files in addition. Both
RR and Dynamic Rebalancing algorithm allows us to process easy jobs and reduce the
size of the queue as shown in Subsection 7.2.4 and Figure 7.28. The FCFS algorithm
blocks the processing units for a long period of time and does not allow us to distribute
the work more equally.

The top 10 passwords are not surprising as these passwords are similar to the top
10 worst passwords used by the users (Devillers, 2010), and hackers tend to use average
passwords (Hýža, 2014).
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Conclusion and future work

This thesis presents the problem of cracking an incoming stream of encrypted files. To
process the incoming files in a reasonable time, a proper scheduling algorithm had to be
chosen, and a processing pipeline of microservices had to be created. To enable encrypted
file detection and to read the stream of files, we created the microservice called Shovel.
Shovel, in addition to its previously mentioned functions, adds prior knowledge, if avail-
able, about the particular file. Such information is e.g., the e-mail attachment, which is
used to support the cracking process. The act of recovering the passwords is managed
by Cracker, which wraps the functionality of both Hashcat and John the Ripper cracking
tools in order to make it easier to call and control them. The Scheduler is responsible
for distributing jobs to free resources, checking the job status by tracking output from
a running Cracker container, receiving jobs from Shovel, sending jobs to Unpacker, and
storing the generated data. First, we created Scheduler that used First Come First Served
algorithm. Later we relaxed the task and allowed preemption, using Round-Robin algo-
rithm, thus we are not stuck on one file for long period of time. Finally, we improved the
Round-Robin algorithm to use two queues and called it Dynamic Rebalancing algorithm.
We prioritize the queue with new files thus having a flow where new files are processed
while we do not stuck on cracking that is not likely to succeed.

We tested these algorithms on both artificial and real data corresponding to real-
life setting to choose the best candidate for production environment. The outcome of
this thesis allows malware analysts to handle previously unseen files and make relations
between newly obtained files. During the implementation of the thesis, we managed to
process over 25 thousand files and find passwords to more than two thousand of them.

We have made an application that is currently run in production setting, which we
can now tune as suggested in future work. Our implementation does not need any MILP
solver and yet is still quite efficient. MILP solvers are expensive for business entities and
our solution performs just as well.

In future work, we plan to increase the server capacity, thus allowing the extension of
dedicated time for each job. Improving that capacity is a desirable step, as it enables the
use of more complex password recovery strategies such as using rules-attack or masks
attack. Detecting an empty string password of PDF files prior the cracking would also
be beneficial for future applications. A drift to the use of PRINCE (PRobability INfinite
Chained Elements) algorithm, created by the author of Hashcat (Steube, 2018), which
combines password candidates from a dictionary to generate new password candidates,
has the potential of adapting faster to changing conditions and to discover unseen pass-
words. The next logical step is to improve XtoHashcat to distinguish PKZIP2 format,
since new Hashcat in beta version supports it and will eliminate the need to use John the
Ripper for these files, allowing us to crack PKZIP2 faster.
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Appendix A

Attached files

These are the attached files that are presented in attachments. The attachment structure
is specified in Table A.1.

File Description
/evaluation/artificial_data_3_27/ Artificial data measurement for 3/27 scenario
/evaluation/artificial_data_15_15/ Artificial data measurement for 15/15 scenario
/evaluation/date_in_real_time/ Real-time measurement of traffic during 30 minutes
/evaluation/fcfs_vs_rr/ Comparison between FCFS and RR
/evaluation/real_data_29/ Comparison of work on real data
/evaluation/the_best_case/ Measurement of the best-case scenario
/evaluation/the_worst_case/ Measurement of the worst-case scenario
/evaluation/weight_parameter/ Tuning with the weight constant
/implementation/FCFS/ FCFS implementation
/implementation/RR_and_Dynamic/ RR and Dynamic Rebalancing implementation
/implementation/Shovel/ Shovel implementation
/implementation/files_generator/ Artificial data files generator
/implementation/Unpacker/ Unpacker implementation

Table A.1: List of attached files.
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