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Anotace 

Jednou z možností jak ulevit přetížené mobilní síti je nasazení dronu jako létající 
základnové stanice, která poskytuje dočasnou konektivitu uživatelům. Tato práce 
představuje algoritmus pro umístění dronu a úpravu jeho pozice v reálném čase spolu 
s návrhem implementace algoritmu do platformy OpenAirInterface. 

Samotný algoritmus se skládá ze tří částí – predikce vzdálenosti uživatele od 
základnové stanice, určení polohy uživatele a klustrování uživatelů. Algoritmus na 
základě  přijetí nových dat upravuje pozici dronu podle aktuálního rozmístění 
uživatelů. 

Algoritmus pro určení pozice dronu využívá pouze základních měření přijímané 
úrovně signálu a je tudíž nezávislý na konkrétní generaci mobilní sítě. Vyhodnocení 
a simulace je provedeno na sítích čtvrté generace. 

 

 

Klíčová slova: mobilní sítě, UAV, určení pozice 

 

 

 

 

Summary 

One of the ways to alleviate mobile networks is to exploit a drone as a flying base 
station, which provides temporal connectivity to mobile users. In this thesis, an 
algorithm for the drone placement and its real-time repositioning is proposed, 
together with possible implementation into the OpenAirInterface platform. 

The algorithm itself works in three stages – prediction of users’ distance to base 
stations, estimation of users’ positions, and clustering of the users. The algorithm 
runs continuously as new data are received, reacting to the changes in the 
distribution of users. 

The proposed algorithm is designed independently on mobile network technology, 
utilizing only the basic measurements of the signal strength present in all generations 
of mobile networks. The evaluation is done for 4G networks. 
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1 Introduction 
The field of telecommunications technology is undergoing incredibly rapid development. 
Over the course of several decades, it has moved from analog to digital systems. The 
development continues by going into 5th generation networks (5G) with radio access 
technology known as New Radio (NR), while research about future generations is already 
in progress.  

Several factors lie behind the increasing demands on the telecommunications infrastructure. 
The first aspect is an increasing number of connected users, due to the population’s desire 
to be online and use all the advantages that are brought to them via telecommunications 
technologies. Another aspect is the change of the transported content, which has seen a 
significant transformation. Nowadays, the traditional voice calls are on the decline, as the 
users switch to the exploitation of Internet services, such as music and video streaming or 
augmented and virtual reality applications. This change in the content of the transmitted 
data is one of the driving forces behind the increased amount of transferred data.   

The telecommunication industry continuously seeks new ways of development to meet all 
communication requirements. We can see different situations in fixed access networks and 
radio access networks. In the fixed networks, the progress is limited by the cost of 
infrastructure – laying optic fibers is expensive and sometimes not possible. Conversely, 
radio access networks can react faster to the growing capacity and mobility demands due 
to their larger coverage areas. Improvements are often carried out by replacing the legacy 
equipment on the site by a more advanced one.  

Several organizations are involved in setting the direction of mobile networks evolution. 
One of the most important ones is the International Telecommunication Union (ITU), 
which assists in the development of requirements, standards, and frameworks for mobile 
networks. Another one is the European Telecommunications Standards Institute (ETSI), 
which publishes regulations and methodologies to guarantee interoperability between all 
the vendors. The Institute of Electrical and Electronics Engineers (IEEE) is a technical 
professional organization, which, for example, is responsible for standardization of Wi-Fi 
(IEEE 802.11) or WiMAX (IEEE 802.16). There are also many alliances focusing on the 
development of standards for mobile networks. Probably the most important and well-
known is the 3rd Generation Partnership Project (3GPP), which has been releasing 
standards for mobile networks beginning with 3rd generation of mobile networks. 

Each standard describes specific aspects of the given technology. The aim is to allow multi-
vendor interoperability and to determine the direction of development. However, these 
standards do not provide specific technical solutions of how to implement standardized 
technologies. The exact technical solution, together with all proprietary functionalities, is 
in the hands of the manufacturer. 
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A great example of the emergence of new approaches in mobile networks without strictly 
defining them is the use of Unmanned Aerial Vehicle (UAV). UAVs can temporarily extend 
the system of base stations (BS) by creating additional flying base station (FlyBS) [1]. 
This area is currently being examined and is not yet fully standardized. However, for 
further vendor cooperation, the standards are necessary.   

The development in this field can be divided according to the type of used UAVs and the 
altitudes at which they operate. Heavy, hundreds of kilograms weighing aircraft operate 
mostly at the heights of hundreds to thousands of meters. As a result, they can cover a 
vast area. An example of this category is the Facebook Aquila project [2] or the Project 
Loon [3]. On the other side, some UAVs move at the altitudes of tens to hundreds of 
meters. These UAVs, commonly drones, are small and carry light equipment. Their most 
significant advantage is the possibility of deployment in a very short time to react to the 
needs of the mobile network operator. This work targets the second category of UAVs. 

There are different ways of FlyBS deployment in mobile networks. The objectives focus on 
minimization of the outage probability [4], maximization of backhaul network connectivity 
[5], or maximization of spectral efficiency [6]. The FlyBSs can be deployed to extend the 
coverage of a selected area, for example, in the event of a BS failure [7]. The FlyBS network 
can also be used in areas without a functional mobile technology infrastructure – areas 
affected by natural disasters or at war zones [8]. Another use case is offloading of congested 
cells during mass gatherings such as sporting events, marches, or demonstrations. In this 
case, the FlyBS serves a group of devices, commonly known as User Equipment (UE), to 
provide them with the desired throughput [9].  

This work focuses on the last use case, i.e., finding a conglomeration of UEs in the area 
and increasing the network system throughput by deploying a FlyBS. Therefore, the goal 
of this thesis is to propose an algorithm, which will find the appropriate position where to 
place the FlyBS. The FlyBS should be able to independently adjust its positions in order 
to serve the desired amount of the UEs and simultaneously increase the network 
throughput. 

 

1.1 Structure of the thesis 

The thesis is structured as follows: the mobile network parameters, which are accessible 
from the mobile network, are summarized in Chapter 2. Based on these parameters, the 
algorithm for positioning is proposed. 

The whole process of FlyBS positioning is formally defined in Chapter 3. In this chapter, 
we describe the proposed system model, performance metrics, assumptions, and the 
objective function.  
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The overview of the proposed algorithm is introduced in Chapter 4. In this chapter, we 
present the algorithm consisting of three parts: 

1. prediction of the signal power for all UEs on a short-term time basis, 
2. estimation of the position of the UEs based on the predicted signal power, 
3. finding a suitable UE cluster to be served by FlyBS, based on the estimated 

positions of the UEs. 

Various simulations are necessary to evaluate the proposed positioning algorithm and its 
parts. The common simulation parameters are also defined in this chapter. 

Prediction estimates the signal strength from the received measurements. Another 
important role of the prediction is to provide enough time to collect all measurements and 
process them. The problem of prediction is outlined in Chapter 5. 

In the estimation phase, the UE is localized based on the signal quality from the BSs. The 
process of UE localization is described in Chapter 6. 

Once the UE positions are known, it is necessary to evaluate possible clusters of UEs which 
may be served by the FlyBS. The clustering presents the core of the thesis, and its details 
are described in Chapter 7. 

All of the algorithms, as described in the previous chapters, are designed to work together. 
The details of the cooperation of the algorithms and selection of suitable cluster to be 
served by the FlyBS are presented in Chapter 8. 

The possible implementation of the proposed algorithm into the real hardware, with respect 
to the current state of the art FlyBS at the Faculty of Electrical engineering, is described 
in Chapter 9. The conclusion of the thesis and a possible future work is presented in 
Chapter 10. 
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2 Available parameters of the mobile network 

The mobile networks provide various information about the network and UE status for its 
operation. These parameters range from BS load to UE signal quality and its traffic. In 
this chapter, parameters that are needed for the proposed algorithm are defined. 

FlyBS itself has limited knowledge about the mobile network and needs additional inputs 
on which it can make a decision. The most important parameters for the deployment of 
the FlyBS are the reports from UEs connected to their serving BSs and reports from 
neighbor BSs, i.e., BSs that are close to the UE but provide worse signal quality than the 
serving BS. Each generation of mobile networks has standardized parameters that are 
provided. Therefore, we focus on parameters that are common for all generations of mobile 
networks. In addition to the reports gained from the mobile network, the FlyBS may 
perform custom measurements which are not standardized in order to gain more precise 
information about the situation near its location.  

We focus on a 4G mobile network, also denoted as Long Term Evolution (LTE), where 
the target parameter is the Reference Signal Received Power (RSRP). However, 
measurements of received signal power are present in all generations of mobile networks. 
The RSRP counterpart in 3G is Received Signal Code Power (RSCP) [10], [11], while in 
5G it is Synchronization Signal Reference Signal Received Power (SS-RSRP) [12].  

 

2.1 User equipment reports 

In 4G, the UE reports to the serving BS two main indicators: Received Signal Strength 
Indicator (RSSI) and RSRP [13]. These two indicators are the key elements for the proper 
decision-making on cell selection and reselection or handover. LTE uses Orthodontal 
Frequency Division Multiplexing (OFDM) for downlink. The smallest unit is a physical 
resource block, which consists of 6 or 7 ODFM symbols in the time domain and 12 
subcarriers in the frequency domain. 

RSSI represents average power for specific OFDM symbols in the whole considered 
bandwidth. The resulting RSSI value includes not only the serving BS signal but also any 
interference (power of other BSs, etc.) and noise. This parameter provides complex 
information about the UE’s signal quality condition. 

3GPP states that “E-UTRA Carrier Received Signal Strength Indicator (RSSI), comprises 
the linear average of the total received power (in [W]) observed only in OFDM symbols 
containing reference symbols for antenna port 0, in the measurement bandwidth, over N 
number of resource blocks by the UE from all sources, including co-channel serving and 
non-serving cells, adjacent channel interference, thermal noise etc.” [13]. 
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On the contrary to RSSI, RSRP is better for measurements tied to one source of the signal, 
for example, measurements in one sector of network. RSRP represents the signal strength 
of a specific BS.  

3GPP defines RSRP as “the linear average over the power contributions (in [W]) of the 
resource elements that carry cell-specific reference signals within the considered 
measurement frequency bandwidth” [13]. 

Relative RSRP accuracy, which means RSRP measured from one BS compared to the 
RSRP measured from the different BS on the same frequency, should not be worse than 
±3dB in normal conditions for intra-frequency measurements and ±6dB for inter-frequency 
measurements as stated in Table 9.1.2.2-1 and Table 9.1.3.2-1 in [14]. 

3GPP also defines Reference Signal Received Quality (RSRQ), a ratio of RSRP and RSSI 
multiplied by the number of physical resource blocks over which the RSSI measured. RSRQ 
is used to indicate the quality of the reference signal received at the UE. 

 

2.2 Reported metrics 

For the purposes of this thesis, the most important parameter is RSRP. The RSRP value 
is usually between ca. -75 dBm at the cell center and -120 dBm at the edge of the cell. The 
signal strength is mapped on a scale introduced in Table 9.1.4-1 from [14]. In this work, 
RSRP value means Reported value, i.e., RSRP_30. 

 

Table 2.1 RSRP measurement report mapping (adopted from [14]). 

Reported value Measured quantity value Unit 

RSRP_-17 RSRP< -156 dBm 

RSRP_-16 -156 ≤ RSRP< -155 dBm 

… … … 

RSRP_-01 -141 ≤ RSRP< -140 dBm 

RSRP_00 RSRP < -140 dBm 

RSRP_01 -140 ≤ RSRP < -139 dBm 

… … … 

RSRP_95 -46 ≤ RSRP < -45 dBm 

RSRP_96 -45 ≤ RSRP < -44 dBm 

RSRP_97 -44 ≤ RSRP dBm 
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The report structure of RSRQ is similar to RSRP. The RSRQ reports cover the values 
between -19.5 dB and -3 dB with 0.5 dB step. 

The results of the UE measurements of RSRP and RSRQ are provided to BS through a 
Dedicated Control Channel. Reports can be sent periodically, after the triggering caused 
by an event or both. The limitation is the time-period how often the reports can be 
transmitted – according to [15] the ReportInterval parameter may be set to 120 ms, 240 ms, 
480 ms, 640 ms, 1 024 ms, 2 048 ms, 5 120 ms, 10 240 ms, 1 minute, 6 minutes, 12 minutes, 
30 minutes, 1 hour.  
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3 Problem formulation 
Deploying a new BS or FlyBS to the existing mobile network changes the overall signal 
distribution in an area. The changes are caused by adding a transmitter which provides 
mobile services to the UEs of the newly deployed BS or FlyBS. However, the FlyBS also 
causes interference to the UEs served by the BSs. In the ideal case, deployment of the new 
FlyBS presents an advantage – higher signal to noise ratio (SNR) and signal to noise and 
interference ratio (SINR) to the UEs served by the FlyBS. However, for the UEs connected 
to other BSs, the FlyBS causes interference and, thus, leads to decreased SNR and SINR 
of the UEs served by the other BSs. 

Usually, deployment of a new BS is carefully planned ahead, and the final location is chosen 
from a set of predefined possible locations. The placement is influenced by positioning 
restrictions (such as property owner willingness or suitability of building for the antenna 
placement). However, in the case of the FlyBS, the situation is different. First of all, the 
location conditions are different, due to its ability to operate in a 3D space, i.e., significantly 
increased search space. Also, deployment of the FlyBS must follow national regulations for 
UAVs. Furthermore, specifics to the FlyBS deployment are considered, such as safety 
measures, backhaul connectivity, drone endurance and so on. To make the problem even 
harder, the position of the FlyBS is not fixed and can be adapted in time. Therefore, 
interference is constantly changing, not only of the UE served by the FlyBS but even of 
the UE not served by the FlyBS. Factoring all mentioned above, finding a proper position 
is a challenging task.  

 

3.1 System model 

System model for this thesis is based on [16]. The whole area is permanently served by 𝑆 
SBSs forming a set 𝑲ௌ = ൛𝑘ଵ

ௌ, 𝑘ଶ
ௌ, … , 𝑘ௌ

ௌൟ, while the 𝐹 FlyBSs form a set denoted as 𝑲ி =

{𝑘ଵ
ி, 𝑘ଶ

ி , … , 𝑘ி
ி}. Thus, the set of all 𝑲 base stations in the area is 𝑲 = 𝑲ௌ ∪ 𝑲ி.  There is 

also a set 𝑼 = {𝑢ଵ, 𝑢ଶ, … , 𝑢௎} of 𝑈 UEs in the area. 

The positions of the SBSs are defined by a set 𝑳ௌ = ቄ𝑙
௞భ

ೄ
ௌ , 𝑙

௞మ
ೄ

ௌ , … 𝑙
௄ೄ

ೄ
ௌ ቅ  of 3D vector 

coordinates of the SBSs. The positions of SBSs are known in advance, as their location 
does not change over time.  The positions of the FlyBSs form a set 𝑳ி = ቄ𝑙

௞భ
ಷ

ி , 𝑙
௞మ

ಷ
ி , … 𝑙

௄ಷ
ಷ

ி ቅ , 

where 𝑙
௞ಷ
ி ∈ ℝଷ. It is assumed that the flight altitude may be varying in time. The maximal 

speed of the FlyBS, respective of the drone carrying the FlyBS is 𝑣௠௔௫. We further define 
a set of location for all BSs, 𝑳௄ = 𝑳ௌ ∪ 𝑳ி 

The UE u position is given by a 3D vector 𝑙௨
௎ ∈ ℝଷ and for all UEs in the area form a set 

𝑳௎ = ൛𝑙௨భ
௎ , 𝑙௨మ

௎ , … , 𝑙௨ೆ
௎ ൟ. The UEs may move around the area during the time. 

Each UE u is allocated a portion of bandwidth from BS 𝑘 (which may be an SBS or a 
FlyBS). It is defined as 𝛽௞,௨. The absolute amount of assigned bandwidth to the u-th UE 
connected to the k-th BS is then 𝐵௞ ∙ 𝛽௞,௨ hertz. The transmission capacity 𝑐௞,௨ of k-th BS 
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to u-th UE is in bits per second and can be calculated using Equation 3.4. Each UE is 
connected to just one BS at the moment, either one of the SBSs or FlyBSs. The serving 
SBS or FlyBS is indicated by 𝛽௞,௨ > 0. For the purposes of the thesis, we define a set of 
numbers of UEs served by the BSs as 𝑵 = {𝑛௞భ

, 𝑛௞మ
, … , 𝑛௄}, where 𝑛௞ represents number 

of UEs served by the k-th BS, i.e., number of UEs that satisfy 𝛽௞,௨ > 0.  

The transmission power level 𝑃௞
௧௫ of BS 𝑘 is related to the maximal distance between the 

BS and UE by the reverse path model, as shown later. This distance in meters is denoted 
as a radius 𝑟௞ for BS 𝑘. 

The overview of notations used in this chapter presents Table 3.1. 

 

Table 3.1 Summary of notations. 

Notation Description 
𝑲, 𝑲ௌ, 𝑲ி Set of all BSs, set of all SBSs, set of all FlyBSs 

𝑼 Set of all UEs 
𝑵 Set of numbers of UEs served by the BSs 

𝐾, 𝐹, 𝑆, 𝑈 Number of BSs, FlyBSs, SBSs, and UEs 
𝑳௄ , 𝑳ி , 𝑳ௌ𝑳௎ Set of BSs, FlyBSs, SBSs, and UEs positions 

𝑙௞
௄ , 𝑙௨

௎ Location of k-th BS, location of u-th UE 
𝑣௠௔௫  Maximal drone speed 

𝐵௞ Bandwidth of k-th BS 
𝛽௞,௨ Ratio of assigned bandwidth of k-th BS to u-th UE 
𝑃௞

௧௫ Transmission power of k-th BS 
𝑃௠௜௡

ோ௫  Minimal received signal power 
𝑟௞ Coverage radius of k-th BS 
𝑛௞ Number of UEs served by the k-th BS 

𝑆௞,௨ Received signal strength of u-th UE from k-th BS 
𝑁௞,௨, 𝐼௞,௨ Noise and Interference between k-th BS and u-th UE 

𝑐௨,௞ Transmission capacity between k-th BS and u-th UE 
𝑐௙

ி FlyBS 𝑓 backhaul capacity 
𝑑௞,௨ Distance between u-th UE and k-th BS 

 

3.2 Performance metrics  

We use several metrics as part of the proposed algorithms. These metrics, namely received 
signal strength (RSS), signal to noise ratio (SNR), Signal to noise and interference ratio 
(SINR), Transmission capacity, and the path loss (PL) model, presents fundamental 
elements of the whole solution. 

 

3.2.1 Received signal strength 

Received signal strength (RSS) of the signal of interest can be expressed for downlink as 
presented in Equation 3.1. 
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 𝑆௞,௨ = 𝑃௞
௧௫หℎ௞,௨൫𝑙௞

௄ , 𝑙௨
௎൯ห

ଶ
 3.1 

𝑃௞
௧௫ is the transmit power of the k-th BS, หℎ௞,௨൫𝑙௞

௄ , 𝑙௨
௎൯ห

ଶ represents the transfer function 
between u-th UE and k-th BS. This value is a key parameter for the simulations in this 
thesis, as it is reported through RSRP reports introduced in Chapter 2. 

 

3.2.2 Signal to noise ratio 

One of the most common metrics used to measure signal quality is the signal to noise ratio 
(SNR). The SNR value can be calculated for each radio channel from the k-th BS to the 
u-th UE using Equation 3.2. SNR represents the ratio between the level of the desired 
signal and the level of background noise. 

 
𝑆𝑁𝑅௞,௨ =

𝑆௞,௨

𝑁௞,௨
=

𝑃௞
௧௫หℎ௞,௨൫𝑙௞

௄, 𝑙௨
௎൯ห

ଶ

𝑁௞,௨
 3.2 

𝑁௞,௨ is the noise in Watts influencing the channel between the endpoints. 

 

3.2.3 Signal to noise and interference ratio 

Similarly to SNR, the signal to noise and interference ratio (SINR) can be calculated as 
seen in Equation 3.3. SINR does take into consideration the presence of the interference.  

 
𝑆𝐼𝑁𝑅௞,௨ =

𝑆௞,௨

𝑁௞,௨+𝐼௞,௨
=

𝑃௞
௧௫หℎ௞,௨൫𝑙௞

௄ , 𝑙௨
௎൯ห

ଶ

𝑁௞,௨+𝐼௞,௨
 3.3 

𝐼௜,௝ is interference in Watts caused by other channels to this channel between k-th BS and 
u-th UE.  

 

3.2.4 Transmission capacity 

The transmission capacity of the radio channel for u-th UE served by k-th BS in bits per 
second is calculated using the Shannon-Hartley theorem in Equation 3.4. 

 𝑐௞,௨ = 𝛽௞,௨𝐵௞ 𝑙𝑜𝑔ଶ( 1 + 𝑆𝐼𝑁𝑅௞,௨) 3.4 

where 𝐵௞ is the bandwidth available for k-th BS and 𝛽௞,௨ represents a scaling factor, as 
described above. 

 

3.2.5 Path loss 

The signal between a UE and a BS is attenuated by the environment between the two 
endpoints: the signal received at the UE is decreased by path loss. Estimation of the path 
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loss in the real environment is a non-trivial problem, and often it is even not possible to 
calculate the exact value, as it depends on free-space loss, diffraction, refraction, 
absorption, reflection, and so on. Because of that, path loss models for different scenarios 
were developed. In this work, we use the Path loss model from [17], which is expressed in 
Equation 3.5. This model takes into consideration only the Free Space Losses (FSL). It is 
important that in the used model, as with many other models (for example, the Hata model 
[18]), the received power depends on the distance logarithmically. 

 
𝑃𝐿௞,௨ =  128.1 + 37.6 ∙ log ൬

𝑑௞,௨

1 000
൰ 3.5 

𝑑௞,௨ is the distance between the i-th BS and j-th UE. In this work, the path loss is the only 
parameter of the transfer function หℎ௞,௨൫𝑙௞

௄ , 𝑙௨
௎൯ห

ଶ depending on the distance. 

The reverse path loss is introduced in Equation 3.6. to estimate the distance from the know 
path loss. 

 
𝑑௞,௨  =  10

௉௅ೖ,ೠ ି ଵଶ଼.ଵ
ଷ଻.଺  ∙ 1 000 3.6 

 

3.3 Assumptions 

Due to the complexity of the problem, the proposed algorithm does not take into account 
the backhaul link - the connection between the FlyBS or the SBS to the core. However, 
the fact of limited backhaul capacity is represented by the maximal FlyBS 𝑓 capacity 𝑐௙

ி, 
which also covers all other factors constraining the backhaul link capacity. More 
information about the constraints caused by backhaul is introduced in [19]. 

The coverage area of the FlyBS is one of the limiting factors. The coverage area defines 
which UEs can be served. Two components influence the size of the covered area, the 
FlyBS transmit power (the higher the transmit power level, the greater the range) and the 
FlyBS distance to the UEs. The area that can be served by the FlyBS is a circle on the 
ground surface, for which the channel’s transfer function between FlyBS and the UE still 
guarantees a sufficient quality of the received signal 𝑃௠௜௡

ோ௫  as expressed in Equation 3.7. 

 𝑃௙
௧௫หℎ௙,௨൫𝑙௙

ி , 𝑙௨
௎൯ห

ଶ
> 𝑃௠௜௡

ோ௫ , ∀𝑓 ∈ 𝑭 3.7 

The demand for the allocated bandwidth for each UE is tightly connected to the quality 
of the received signal. In this work, we assume that the bandwidth is shared between all 
UEs served by the same serving BS/FlyBS based on proportional fair scheduling. All UEs 
served by the same BS achieve the same capacity 𝑐௞,௨, but the assigned bandwidth will 
vary depending on the quality of the received signal.  

The proposed algorithm respects the constraint originating from the restriction and limits 
in the real world. We divide the limitations into sections concerning the following: 
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• physical attributes of drone - its maximal speed, its maximal fly altitude, 
maximal distance from the control station, power consumption, 

• communication – FlyBS’s maximal transmit power, backhaul connectivity, 
antennas, beamforming, and other advanced techniques, 

• legal regulations – restricted airspaces (airports, power plants, etc.), necessity to 
be supervised by a trained operator, 

• positioning algorithm – available inputs and periodicity of updates, 
computational demands, and precision of inputs. 

Some of the limitations may be neglected within the context of this work, e. g. restricted 
airspaces, as it is not difficult to solve them later. On the other hand, some limitations are 
strongly impacting the whole design, such as network-related topics or speed of the drone. 
These cannot be neglected. 

The thesis assumes that the transmit power of the SBS is constant and continuous and 
considers the situation with one FlyBS deployed in the search area. The model allows for 
further expansion to include the whole set of FlyBSs and implement cooperation between 
them. In this work, only downlink is taken into consideration. 

 

3.4 Objective function 

The objective is to find the best position of FlyBSs at the (future) moment. At this position, 
the FlyBS should serve as many UEs as possible while satisfying the constraints and 
increase the overall network system throughput. Thus, the objective is to find 𝑳ி∗, as 
follows: 

 𝑳ி∗
 = argmax

௟೑
ಷ∈ℝయ,∀௙∈௄ಷ

෍ 𝑛௙

௞∈𝑲ಷ

 3.8 

Subject to: ෍ 𝑐௙,௨

௨∈𝑼

≤ 𝑐௙
ி , ∀𝑓 ∈ 𝑭 3.8a 

 ฮ𝑙௙
ி∗

− 𝑙௙
ிฮ ≤ Δ𝑡 ∙ 𝑣௠௔௫, ∀𝑓 ∈ 𝑲ி   3.8b 

 ෍ 𝟙 ൛𝛽௞,௨ > 0ൟ  ≤ 1,

௞∈𝑲

 ∀𝑢 ∈ 𝑼 3.8c 

 ෍ 𝛽௞,௨  ≤ 1,

௨∈𝑼

 ∀𝑘 ∈ 𝑲 3.8d 

 𝜷 ∈< 0; 1 > 3.8e  

 ෍ 𝑐௞,௨

௞∈𝑲
௨∈𝑼

> ෍ 𝑐௞,௨
௣௔௦௧

௞∈𝑲
௨∈𝑼

 
3.8f 
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 𝑐௨,௞ > 𝑐௨
௥௘௤

, ∀𝑢 ∈ 𝑼 3.8g 

The Constraint 3.9a limits the sum of the UE capacities 𝑐௙,௨ not to exceed the FlyBS 𝑓 
capacity 𝑐௙

ி.  

The FlyBS carried by the drone is also limited by its maximal speed, which determinates 
how far it can move within a given time interval Δ𝑡. When repositioning, the target position 
𝑙௙

ி∗ must be reachable within a given time window. This condition is expressed as 
Constraint 3.8b. 

The UE can be connected to one BS only (one of SBSs or FlyBSs) at the moment, that is, 
to have resources allocated just from one FlyBS or SBS. The 𝛽௞,௨ is thus non-zero value 
just for one BS from the whole set 𝑲 for each UE. This limit is provided by the Constraint 
3.10c The Constraint 3.11d expresses that BS cannot allocate more spectral resources than 
it has assigned. The Constraint 3.12e expresses the range of the 𝛽௜,௝ to be between 0 and 
1. 

The deployed FlyBS has to have a positive impact on the system throughput of the 
network. The network system throughput (sum of all partial UEs’ capacity 𝑐௞,௨) after the 
FlyBS deployment has to be higher than the sum of partial capacity 𝑐௞,௨

௣௔௦௧ of the UEs 
before the FlyBS deployment. This is captured by the Constraint 3.13f. Finally, the 
Constraint 3.14g expresses that the UE capacity must be higher than the required one. 
However, since the traffic is not always predictable, the required traffic is maximized, 
following [20] 
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4 Proposed algorithm 
This work focuses on the design and implementation of an algorithm for optimizing the 
position of the FlyBS in real-time with respect to its limitations. The proposed algorithm 
selects the set of UEs to be served by the FlyBS and finds the FlyBS position in order to 
maximize the number of the UE served and increase the network throughput.  

The resulting algorithm proposed for independent FlyBS movement based on the behavior 
of UEs relies only on data that can be obtained from the real mobile network. The solution 
is based on the 4G networks as defined in the standards issued by the relevant 
standardization bodies, i.e., no change of standard air interface is assumed. Minor 
modifications to the network are necessary so that the FlyBS has enough information to 
make decisions, e.g., sharing of UEs’ reports between BSs. However, any modifications 
introduced in the thesis can be put into real operation without having a significant impact 
on the functioning and performance of the entire network. 

Even though the proposed solution targets low computational complexity, the calculations 
do not necessarily need to happen at the FlyBS. They can be offloaded to a computational 
node at the edge of the network or in the cloud.  

 

4.1 Algorithm structure 

As the positioning of the FlyBS presents a complex task, we divide it into three subtasks, 
prediction, position estimation, and clustering. Each subtask operates separately and 
together provide an algorithm to determine FlyBS positions in line with the objective of 
this thesis, defined in Equation 3.8. The subtask division is illustrated in Figure 4.1. The 
FlyBS position is being updated based on the received information about the UEs. 

 

 
Figure 4.1 Interconnection of the algorithms.  
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The first subtask, prediction, acquires the signal levels of the UEs and predicts its future 
evolution. The prediction of the UE signal quality is necessary to position the FlyBS 
proactively, not to only react to past events. It is also necessary even when no time 
prediction is desired, as it helps to “smoothen” the shape of the discrete RSRP levels to 
the continuous signal. The continuous signal is beneficial as it allows us to estimate the 
UE distance from BS better.  

The second subtask, position estimation, estimates the UE position based on the predicted 
RSRP reports. In this subtask, information from several BSs is evaluated to approximate 
the UE position. 

When the position estimation is done, the UEs are divided into clusters in the clustering 
subtask. This subtask is further divided into two parts. First, possible clusters within the 
focus area are created. Second, the best candidate cluster is selected. Once the proper 
cluster is determined, the FlyBS moves to the center of the proper cluster. 

The first two algorithms run in parallel for each UE, while the output of the second 
algorithm is jointly processed by the third algorithm. 

 

4.2  Simulation model 

In this thesis, multiple algorithms are proposed and have to be evaluated. Therefore, the 
simulation model with common parameters for all evaluated algorithms is presented. If we 
deviate in some parameters in a simulation, this information is given directly for the given 
simulation. 

 

4.2.1 Simulation area and Base stations 

The simulation area is divided into two parts – the focus area and the border area. The 
focus area is the main monitored and evaluated region, surrounded by the border area. The 
border area serves to minimalize the impact of the boundary conditions. For example, 
FlyBS can be placed only in the focus area. However, it may also cover some UEs from the 
border area, if the FlyBS is close to the edge. Without the border area, the results would 
be distorted. The FlyBS position would be shifted more to the center of the focus area, as 
it would cover more UEs than at the border. With the border area, all positions within the 
focus area have the same conditions. Note that not all simulation needs the border area, 
e.g., for position prediction only within the focus area. In that case, only the focus area is 
considered. 

The structure of the simulation area is illustrated in Figure 4.2. The focus area is a square 
of 1 000 meters edge. 4 SBS are positioned in this area, every 250 meters from the border. 
The inter-site distance is 500 meters. 

The border area is a band of 250 meters in width around the focus area. An additional 12 
SBSs are placed in this area to complete the grid. The distance of 500 meters between SBSs 
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is kept. Height of all BS (both in focus and border area) is 30 meters above the ground 
level. 

The transmit power of SBSs is 33 dBm, each SBS have 20 MHz bandwidth. The same 
bandwidth is available to the FlyBS; the transmit power of FlyBS is 25 dBm. Since the 
model is idealized, the absolute values are not so important when the proportion between 
SBS and FlyBS is preserved, and all SBSs have the same transmit power. Carrier frequency 
is 1 800 MHz and noise level -174 dBm/Hz. 

All the simulations were focused on the downlink. This thesis assumes fair scheduling for 
all UEs. 

     

 
Figure 4.2 Simulation area and UE distribution. 

 

4.2.2 Characteristics of User equipments 

UEs are homogeneously distributed across the whole area in the simulations. The number 
of UEs in the focus area is not kept the same due to the randomness of the UE distribution. 

For specific cases, clusters of UEs are deployed. The UE clusters are generated based on a 
multivariate normal distribution, defined by its center (often a random position within the 

focus area) and covariance defined by a symmetric matrix ቂ3 000 0
0 3 000

ቃ. The size of the 

cluster is 50 UEs. The UE cluster is visible in Figure 4.2 close to the upper right SBS in 
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the focus area (marked in a light blue color). In the simulations, it is assumed that all UEs 
are close to the ground level; thus, the z-coordinate is neglected (set to zero).  

The UEs are assigned to the serving BS based on the highest SNR. All UEs report the 
quality of the signal by RSRP every 240 ms. 

In some simulations, the UEs are moving. The speed is 1 m/s if not stated otherwise.  
Three possible movement models are used in the thesis: 

1. oscillation around a fixed position (for example, to examine the jitter), 
2. motion in one direction (for example, to validate the position estimation), 
3. following the path from the generator, as described below (for example, to 

validate the clustering in time). 

Many simulations in this thesis require heterogenous speeds of the UEs, with defined 
average speed. For this purpose, we present a trajectory generator, which works by 
connecting two random points in the simulation area. These points represent waypoints 
for the UE. If the cumulative distance between the points is less than it is needed to meet 
the required average speed, another point is added, and the process repeats. 

The resulting movement is then smoothed using interpolation based on Piecewise Cubic 
Hermite Interpolating Polynomial (Pchip) [21]. As a result, the total trajectory increases 
slightly, and it is therefore tested whether the resulting speed has not enlarged more than 
is tolerable. If the speed is acceptable, the algorithm returns an array of the UE motion 
path samples. The size of the arrray depends on the required length of the simulation. An 
example of how the algorithm works is shown in Figure 4.3. The circles represent the 
random points through which the UE passes, the blue dotted line their direct connection 
in order how the points were generated, and the red line the smoothed trajectory, which is 
the output of the algorithm. 
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Figure 4.3 UE trajectory with defined average speed. 
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5 Prediction of the signal power level 
The first subtask of the FlyBS positioning consists of the prediction algorithm, as 
illustrated in Figure 4.1. The prediction algorithm not only predicts a future signal value 
but converts the discrete RSRP levels into the continuous course. Therefore, a UE location 
can be estimated more precisely. The increased precision comes from the interpolation of 
the discrete RSRP values. This way, the impact of discretization is lowered. Distance 
recovery is also possible from a single RSRP value. However, the distances are then selected 
from a limited set of discrete values only.  

The input data for prediction algorithm (in terms of dynamic information from the 
network) are RSRP measurements from the UEs. All other metrics, such as distance and 
absolute position, are derived from RSRP. The prediction time can be in the order of 
seconds into the future. The precision of prediction depends on the randomness of the UE 
mobility and the speed of UEs.  

 

5.1 Challenges 

It is necessary to find an algorithm that appropriately interpolates the obtained past values 
with a line or curve and read the received expected RSRP level at the desired point in 
time. The algorithm should take into account possible large differences in the frequency of 
RSRP changes and, at the same time, be able to eliminate jitter in the reported RSRP 
values when the UE is at the boundary of two levels. Both challenges, the jitter elimination 
and interpolation type are more elaborated in this section. 

 

5.1.1 Jitter elimination 

When the UE is slowly moving or is even still, the RSRP report value can change. This is 
caused by the propagation of the signal and changing environment and leads to jitter in 
the RSRP values [22], [23].  

A basic algorithm used to smooth the waveform and eliminate noise caused by jitter is 
filtering, specifically the moving-average filter. The moving-average filter output sample 
𝑦(𝑛) depends on several preceding input samples 𝑥(𝑛), … , 𝑥(𝑛 − 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 + 1), where 
window denotes the number of considered points in the past. It is a straightforward and 
common way to reduce the additional jitter defined as: 

 𝑦(𝑛) =
ଵ

௪௜௡ௗ௢௪
൫𝑥(𝑛) + 𝑥(𝑛 − 1) + ⋯ + 𝑥(𝑛 − 𝑤𝑖𝑛𝑑𝑜𝑤 + 1)൯. 5.1 

The application of moving-average filtering on RSRP values with jitter is illustrated in 
Figure 5.1. In the figure, the RSRP reports as received in time are marked by the blue line. 
When applied moving-average filter, we receive the course marked by the red line. Finally, 
when we round the filtered values to the nearest valid RSRP level, we receive the course 
without jitter, marked by the yellow line. The impact of a single short tremble after filtering 
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is negligible. However, the moving-average filter does not represent the right approach in 
this application. When the new RSRP value is received, it has a minimal effect (weight of 
1/window) to the result of the filtering. This means that the smoothening is paid by the 
additional delay. For prediction purposes, it is necessary to consider the new report as soon 
as it is received. The phenomenon of additional delay is also visible in Figure 5.1. 

The moving-average filter also smoothens the regular steps of received reports. Instead of 
step, it produces a ramp function. Once the ramp is rounded, the delay of the length of 
one half of the window size shifts the position of the change. This would negatively impact 
further prediction based on this data.  

 

 
Figure 5.1 Filtering of RSRP measurements using moving-average filter. 

  

It was experimentally determined via the simulation, that the window length needs to be 
in the order of tenths of samples to eliminate the jitter to an acceptable level. If we assume 
four reports per second, the minimum window creates delay which has the same or longer 
duration than the prediction outlook. 

 

5.1.2 Interpolation points 

Another challenge is the selection of points for further interpolation [24], [25].  
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The algorithm has to be working for both slow-moving and stationary UEs (for example, 
users staying in the same position for a long time, e.g., waiters in the restaurants) as well 
as for fast-moving UEs (runners, cyclist, etc.). Note that extremely fast-moving UEs 
(drivers, train passengers) are not in the scope for the FlyBS deployment. 

The number of the past RSRP records, which is taken into account for interpolation, 
directly depends on the frequency of RSRP changes and RSRP changes depend on the 
behavior of the UEs. 

The vast diversity of UEs’ average speeds makes it impossible to set the interval or number 
of records as the fixed value. For example, the interval suitable for an average pedestrian 
is unnecessarily long for a messenger on the bike and too short for city gardener. The 
biker’s UE will register several times more changes in the RSRP level compared to the 
pedestrian’s UE. 

 

5.2 Proposed algorithm for prediction 

With the findings from the previous section, the jitter must be eliminated on-the-go basis. 
The best interpolation method seems to be a spline interpolation, which interpolates the 
course by a set of different mathematical functions [24].  The functions connect to each 
other and, since they are valid only for a short segment, they can be of a lower order [26]. 
However, we need to restore only the necessarily long last part of the record to estimate 
the trend. Therefore, the proposed algorithm is based on a lower order polynomial 
interpolation. 

At the same time, the proposed algorithm treats jitter differently. It does not try to 
eliminate it in advance but evaluates backward whether the last change was regular, or it 
was a jitter. In the case of jitter, this change is ignored for future predictions. The result 
is shown in Figure 5.2. We see that the change in the RSRP stream is reflected immediately 
but ignored once it is evaluated as jitter, and the prediction continues with the same trend 
as it had before. Note that the impact on the FlyBS position will be smaller, as the precise 
UE position is calculated from more than one distance from BS. 

It may look that even here, the delay is presented. However, this graph compares the real 
observed values and the predicted value for this point 20 samples in the past, which was 
done without the knowledge of the last samples. The delay caused by averaging would be 
added to this prediction error. 
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Figure 5.2 Impact of jitter on prediction. 

 

5.3 Algorithm description 

Along with selecting the type of interpolation, it is crucial to choose the right points 
through which the curve will be interleaved. The proposed algorithm selects one point for 
each continuous segment of values. The algorithm stores individual points in two arrays, 
which together clearly define the position of the points (RSRP value and timestamp). The 
array works as a FIFO buffer; the dimension of the array is discussed in more detail below. 
The analysis of the RSRP values and its duration is the core of the algorithm. 

Besides the arrays with points and time stamps, the algorithm uses two counters and two 
auxiliary variables that maintain the current and previous RSRP values. In the algorithm 
description, three RSRP values are used: 

 current value, which is the RSRP value of currently ending segment, 
 past value, which is the RSRP value of the previous segment, 
 new value, which represents the first RSRP value that is not the same as for the 

current segment. 

If a new value is received, the duration of the current section ends, and it must be 
evaluated. In this case, it can be either an unwanted jitter or a valid change. If the new 
value is different from the past value, the current value is automatically considered valid. 
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This applies when there is a rapid decline or increase in signal quality. In this case, it is 
not jitter, and the current value will be taken into account in further estimates. 

The information about the current segment (RSRP value and length) is first stored in 
auxiliary variables, then the RSRP value is updated according to the received report, and 
the counter resets. Taking into consideration observations from Figure 6.1, simple saving 
a new report would cause a systematic error;  it is necessary to take into account whether 
it is an increase or a decrease in RSRP. If a decrease occurs, the RSRP value in the value 
array is set one greater than the actual received value. If there is an increase, the RSRP is 
stored as received. The auxiliary variable maintaining the current RSRP value is not 
affected by this modification. 

If the newly received value corresponds to the value of the previous section, there is a 
possibility that the currently completed section is only a jitter. At that moment, the 
counter for the current section is evaluated. If the section is longer than the set threshold 
value, it is considered a proper change similarly as in the previous case. The loop starts 
again; in the next evaluation, the newly started section will be analyzed again to see if it 
was a jitter or not. 

If the current segment was not long enough, the section would not be saved. In this case, 
the variables are modified as follows: the RSRP value is reset to the previous one (read 
from the auxiliary variable, not directly from the acquired measurement), the counter of 
the previous and current values are summed. In this way, the jitter section is added to the 
previous segment, and the process continues. However, it is necessary to adjust the points 
in the array for interpolation. Since the last section was evaluated as invalid, the arrays 
are shortened by removing the last element at each of them. 

Once there are enough points to obtain a prediction, the polynomial curve fitting algorithm 
acquires the coefficients of the polynomial, which is then evaluated at the desired point in 
the future. Until enough points for prediction are collected, the proposed algorithm returns 
the current value as a prediction. This is not optimal but can be easily eliminated by 
starting the collecting of RSRP reports ahead.  

During the testing of the algorithm, it was found that it achieves very good results for 
situations where there are frequent changes in the RSRP. Segments, where the RSRP does 
not change much, are a problem if a more significant increase or decrease precedes them. 
The algorithm still assumes a similar intensity of changes and therefore predicts change, 
even if there is none in real operation. For this reason, the limit of the predicted value was 
set to a maximum of ± one level from the current report. In the case of frequent reporting 
(several times per second), relatively fluent movement of users and a prediction horizon in 
the order of seconds, this limitation does not present a problem. 

The predicted signal level can be easily converted to the distance using a reverse path loss 
model described by 3.6.  
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Algorithm 5.1 Prediction of the signal power levels. 

input:   RSRP threshold value 𝑡ℎ𝑟𝑒𝑠, 

  stream of RSRP values from one BS 𝑟𝑠𝑟𝑝, 

  timestamps of received RSRP value time, 

  order of interpolation curve order, 

  distance from the current timestamp when the prediction should 
   be evaluated horizon, 

  number of points which should be used for prediction amount, 
   amount > order. 

 

output: Predicted RSRP value predict. 

 

variables: Last received RSRP report rsrpc, 

  RSRP level preceding the current one rsrpp, 

  counter of how many same RSRP values were received since the 
   last change counterc, 

  length of previous segment counterp, 

  array of timestamps used for interpolation (x-axis) pointst, 

  array of RSRP values used for interpolation (y-axis) pointsv, 

  array of coefficients of data fitting curve coef. 

 

Note: initialization is done when the first value is received 

rsrpc = rsrp 

counterc = 1 

rsrpp = 0 

counterp = 0 

pointsଵ
୲ = 0  

pointsଶ
୲ = 0  

pointsଵ
୴ = rsrp  

pointsଶ
୴ = rsrp  

 

While received rsrp do 

 if rsrp == rsrpc 

  counterc++  

 else if counterc > thres & rsrp != rsrpp 

  counterp = counterc 

  rsrpp = rsrpc 

  rsrpc = rsrp 

  counterc = 1 

  points୲ = points୲ ∪ time  

  if rsrp > rsrpp 

   points୴ = points୴ ∪ rsrp  

  else    

   points୴ = points୴ ∪ (rsrp + 1) 

   if ||points୲|| > amount 

    points୲ = points୲ \ pointsଵ
୲   

    points୴ = points୴ \ pointsଵ
୴  
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   end if 

  end if 

 else  

  counterc = counterc + counterp + 1 

  rsrpc = rsrp 

  points୲ = points୲ \ pointsୣ୬ୢ
୲   

  points୴ = points୴ \ pointsୣ୬ୢ
୴   

 end if 

 if ||points୲|| > order 

  coef = polynomialCurveFitting(𝑝𝑜𝑖𝑛𝑡𝑠௧ , 𝑝𝑜𝑖𝑛𝑡𝑠௩, 𝑜𝑟𝑑𝑒𝑟) 

  predict = polynomialEvaluation(coef, 𝑝𝑜𝑖𝑛𝑡𝑠௘௡ௗ
௧ + ℎ𝑜𝑟𝑖𝑧𝑜𝑛) 

  if predict – rsrp < -1 

   predict = rsrp – 1 

  else if predict – rsrp > 1 

   predict = rsrp + 1 

  end if   

 else 

  predict = rsrp 

 end if 

return predict 

end while 

 

Note: the algorithm returns the correct values only after the initial learning phase  

 

5.4 Evaluation 

It is necessary to have a moving UE to verify the operation of the algorithm. Depending 
on the movement direction, the speed of approaching the BS or moving away from it varies. 
This enables us to test the prediction algorithm in changing conditions. Its position was 
obtained using the trajectory generator introduced in Section 4.2.1. 

Figure 5.3 shows the outputs of the prediction algorithm. The figure compares the predicted 
value (2 seconds ahead) of the distance from the nearest BS for a given point in time 
obtained by the algorithm described above (red line) together with the actual value that 
occurred at that point (blue line). The graph is also supplemented by the direct conversion 
of RSRP to distance. This value is given here to make it clear how each new RSRP change 
improves the prediction. 
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Figure 5.3 Comparison of real, predicted, and directly restored distances. 

 

The accuracy of the prediction depends on three factors: 

• the number of past points taken into account, 
• the level of the interlaced polynomial, 
• time horizon, how many samples ahead we make the prediction – higher value 

leads to decreased prediction accuracy. 

The simulation to obtain the most suitable degree of the polynomial and the number of 
samples consists of analyzing 345 600 samples of a continually moving UE. This 
corresponds to approximately 4 reports per second for 24 hours. The speed of the device is 
1 m/s all the time, which is a speed of slow walk. During the simulation, polynomials of 
the order 2, 3, 4, 6, and 8 are tested; the exanimated length of the points array is 3, 5, 7, 
9, 13, and 17 samples. Note that not all the lengths are applicable to all orders of 
polynomials. For the interpolation by a polynomial of order n to be unambiguous, it is 
necessary to have at least n + 1 points available. Therefore, the number of considered 
points is always greater than the level of the polynomial. The position of the UE is 
predicted 20 samples ahead. 

The measurement results in Table 5.1 present that for the given dataset and distribution, 
the lowest tested order of the polynomial curve, i.e. the quadratic curve, is the most suitable 
one. At the same time, the lower the number of interpolation points, the closer the result 
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is to the real value. This finding is in line with the fact that the interpolation algorithm 
tries to minimize the overall error. Therefore, for a large number of points and low order 
of the polynomial, the interpolation through the last known points will not be so precise, 
as the curve needs to fit also the previous points.  

 

Table 5.1 Prediction error distances – polynomial interpolation. 

Order of polynomial 2 3 4 6 8 

3 input points 2.41 m - - - - 

5 input points 3.32 m 4.47 m 4.61 m - - 

7 input points 4.66 m 5.82 m 4.39 m 7.27 m - 

9 input points 5.34 m 7.10 m 5.47 m 6.35 m 8.94 m 

13 input points 7.23 m 9.14 m 6.83 m 5.57 m 7.26 m 

17 input points 8.82 m 11.35 m 6.87 m 6.52 m 7.65 m 

 

On the same setup, we also test the prediction using the linear interpolation (first order 
polynomial). The results are significantly worse than for polynomial interpolation: when 
using 2 input points, the average error distance was 7.42 meters and worsen up to 22.31 
meters when 17 input points are used.  

 

Table 5.2 Prediction error distances – linear interpolation. 

Linear interpolation 

2 input points 7.42 m 

3 input points 9.86 m 

5 input points 15.15 m 

7 input points 19.05 m 

9 input points 21.41 m 

13 input points 23.08 m 

17 input points 22.31 m 

 

Along with the examination of the ideal setting of the interpolation curve for prediction, 
the accuracy of the prediction is investigated at different speeds and horizons. For this 
simulation, the best combination of polynomial order and number of points from the 
previous simulation was used – quadratic curve with 3 points to interleave. The metric is 
the distance error (an absolute difference between the actual and estimated position). We 
evaluate the relation between distance error and the prediction horizon for five different 
speeds of UE: 0.5, 1, 2, 4, and 8 m/s.  
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The dependency of a median of distance error on the prediction horizon is displayed in 
Figure 5.4. It is clear from the figure that for prediction close to the present time, the error 
is relatively small but increases rapidly. For more distant estimates, the error rate change 
is less significant, as the error rate is already relatively large. We also see that the prediction 
precision is better for lower UE speeds. 

The algorithm encountered the limitations caused by a condition on one level 
differentiation when predicting more than a minute in ahead. Therefore, the results for 
such a long estimate are not meaningful. 

 
Figure 5.4 Distance estimation error for different UE speeds – median. 

 

Looking at the average value of the error in Figure 5.5, it is possible to observe that the 
slope of the average error rate depends on the speed. If the UE moves slower, the inaccuracy 
of the estimate increases more slowly over time than for higher speeds. Interestingly, the 
average error first decreases with increasing speed and then increases from a certain limit. 
This fact may be due to the type of interpolated curve. 
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Figure 5.5 Distance estimation error for different UE speeds – average. 
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6 Position estimation  
In order for the FlyBS to correctly evaluate its movement, it is necessary to know the 
location of the UEs. This knowledge is also crucial for the correct selection of the initial 
deployment position and operation of the FlyBS.  

The inputs for the position estimation algorithm are distances obtained from the prediction 
algorithm. For an unequivocal estimation of the position, it is necessary to have distances 
at least from three BSs in order to calculate the position that corresponds to the reported 
values. 

Assuming the logarithmic dependence of RSRP level on distance as defined in Equation 3.5, 
the best resolution is in the proximity of the BS and worsens with increasing distance. The 
difference in recovered distance precision is significant – for situations when the UE is close 
to the BS and thus has a high RSRP level, the precision is in order of meters. For low 
reported values, one RSRP level difference means distance difference in the order of 
hundreds of meters. 

Figure 6.1 shows the movement of a UE around the simulation area during the time. This 
movement is represented in terms of distance to the nearest BS (blue line). The directly 
recovered distance from the RSRP values using Equation 3.6 and Table 2.1 (red line) 
represents the non-linear mapping of distance RSRP levels. When the UE is around 450 
meters away from the BS, the difference of 1 RSRP level represents ca. 22 meters. For the 
distance around 750 meters, the 1 RSRP level difference equals to more than 30 meters. 

 

 
Figure 6.1 Comparison of real and calculated distance. 
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6.1  Proposed algorithm for position estimation 

Using the distance as a radius, we can draw a series of circles with SBSs in the centers. 
The circle represents an infinite number of possible positions of the UE from the perspective 
of the SBS to which the circle belongs.  

In the ideal case, all the circles belonging to different SBSs would cross in one exact point. 
However, this situation is unlikely due to the distance restoration from degraded 
information caused by reporting discrete RSRP values. When the distance obtained from 
RSRP is plotted, the circle represents the upper bound of real position due to RSRP 
mapping scheme. In the real environment, the situation will also be influenced by signal 
propagation inhomogeneity. This is seen in Figure 6.2., where the estimated UE position 
is the point with a minimal sum of the squares of the errors from all circles. 

 
Figure 6.2 Estimation of the UE location. 

 

The estimated UE position is the point defined by the vector of coordinates, which has the 
lowest sum of the squares of the errors, as expressed in Equation 6.1. 
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The function above can be minimalized using gradient so that Equation 6.1 is met. 
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The mentioned system of Equations for finding the position of UEs is possible to solve 
using mathematical solvers. 

 

6.2 Evaluation 

We can enhance the algorithm by selecting the proper inputs. We may set how many BSs 
and which one should be taken into consideration and how they should be included 
(whether some form of weighting will improve the results). We carry out a set of 
simulations, focusing on these open questions. 

The simulation was done for three, four, five, and seven SBS. In each scenario, the SBS 
were deployed evenly, so they created a shape of triangle, square, pentagon, and hexagon 
with one SBS in the center. The distance between the two closest SBS remained the same 
during all the scenarios, as well as the area served by one SBS. This setup results in a 
larger overall area while deploying more SBS while preserving the SBS density the same. 
This is essential to get comparable results for each scenario. 

The simulation is performed on a sample of 1 000 randomly generated UE positions. The 
direct distance conversion from RSRP value is used, without prediction. 

The first simulation focuses on the number of considered SBSs and weighting based on the 
distance between SBS and UE. The positions of UEs are calculated without weighting, 
using linear weighting, and exponential weighting. The information from nearby base 
stations is in case of weighting stressed the most. The same set of input data (UEs 
positions) was used for each approach. 

In this simulation, the focus area was changing depending on the number of SBS. This 
ensures a similar distance for UE to the nearest SBS in all scenarios, as well as the same 
average served area by one SBS. 

The results in terms of average error distance for all four described scenarios are presented 
in Table 6.1. The table shows that the best results were obtained with as few BS as possible. 
This may be striking at first sight; more measurements do not mean better results. In the 
case of three BS, the whole area was the smallest. This means that also the distance to the 
most distant BS was the smallest, ensuring a high RSRP level and better resolution.  
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Table 6.1 Error distance dependencies on weighting and number of SBSs. 

Number of SBSs 3 4 5 7 

Without weighting 20.69 m 22.92 m 25.65 m 24.16 m 

Linear weighting 20.68 m 22.89 m 24.42 m 23.61 m 

Exponential weighting 20.78 m 21.54 m 23.13 m 22.04 m 

 

Table 6.1 also shows that weighting does not have a significant effect if the number of BSs 
taken into account is small. Its importance increases with an increasing number of BS. 
Overall, the best results are achieved by exponential weighting, which is, however, 
computationally demanding. 

The position is estimated in the 5 BS scenario based on different sets of selected BS to 
verify the hypothesis that the accuracy depends on the selected SBSs. The results are 
presented in Table 6.2. This allows us to compare the impact of which BS serves as the 
input for the algorithm. If the position is calculated from a set of three closest BS reports, 
the average distance error is 37.13 meters. On the other hand, when calculating using the 
data from the three most distinct ones, the error is significantly larger, 60.34 meters. The 
simulation confirms the observation that it does not matter how many reports the UE can 
collect, what is important is to use just the essential minimum of reports from the closest 
SBS. 

 

Table 6.2 Error distance dependencies on SBSs selection. 

Considered SBSs 3 closest All 5 
3 most 
remote 

Error distance [m] 37.12 47.77 60.34 

 

6.3 Enhancement for a single RSRP report 

Figure 6.3 shows real and estimated positions for a set of users in the 3 SBS scenario. From 
the figure is visible that the estimated positions are further from the center of the area 
compared to the real positions. This phenomenon is caused by the way distance is contained 
in the RSRP.  

If we simply restore the distance from received RSRP values, the real distance will always 
be smaller, as illustrated on Figure 6.1. With this knowledge, we can adjust the RSRP 
(respective radius, which depends on RSRP) before entering the algorithm to estimate the 
position.  

Simple increasing the RSRP by 0.5 minimizes the error distance. In the original proposal, 
the error distance was between 0 and a positive value m. In the case of modified RSRP, 
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the error distance is between -m/2 and +m/2. The absolute maximal error distance is thus 
halved. 

Simulation proved that the error distance decreased by 47.09 % to 11.10 meters for the 
same test set randomly placed UEs.  

 
Figure 6.3 Comparison of estimated and real UE positions. 

 

The improvement mentioned above by statically shifting RSRP is applicable when one 
measurement report of RSRP values is available. The positioning based on the prediction 
presents a better way how to adjust RSRP value. Prediction can be fully used only when 
a sufficient number of reports for is available. 

 

6.4 Connection to the prediction algorithm 

A more complex simulation is done to demonstrate the benefits of prediction prior to 
position estimation. 165 UEs are presented in the area, 30 of them joined into the cluster 
with significantly smaller mutual distances. The UEs within the group follow a predefined 
trajectory by the path generator with an average speed of 1 m/s. Remaining UEs move 
with speed equally distributed between 0 to 2 meters per second in one random direction. 
During the simulation, 2 400 samples per each UE is evaluated. The prediction horizon is 
set to 12 samples, i.e., 3 seconds.  
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The real trajectory of UEs is recorded by gradient color change in Figure 6.4. The first 
sample is represented by the light blue, while the last sample by the dark blue color. The 
exact location of UEs is not accessible directly to the evaluation backend, so the system 
recalculates the position from reported measurement, as introduced in Section 5.2.  

 
Figure 6.4 UE movement in time – real positions. 

Estimation of the positions using current RSRP values (without prediction or enhancement 
from Section 6.3) is shown in Figure 6.5. From this figure, it is clear that the estimated 
trajectory is heavily impacted by the distance to the closest SBS and does not follow the 
original straight line – it is also not continuous. The median of the error distance (absolute 
difference between real and estimated position) is in this case 15.55 meters and average 
16.06 meters.  
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Figure 6.5 UE movement in time – directly estimated positions. 

 

The situation is different in the case of estimation using predicted values, as depicted in 
Figure 6.6. The figure shows some discontinuities, but the overall movement record is clear 
and faithful. The error distance median decreased to 5.94 meters, the average is 11.88 
meters. This shows one important fact – the prediction, which creates “smoothening” of 
received signal levels, provides significantly better results. In addition, the gained time 
present a valuable resource.  
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Figure 6.6 UE movement in time – predicted and estimated positions. 

  



CLUSTERING 

37 

7 Clustering 
The FlyBS provides mobile connectivity to the UEs the same way as the SBS, i.e. serves 
a set of UEs within its coverage area. Therefore, to determine UEs that are to be served 
by a FlyBS or BS clustering algorithms can be exploited.  

Finding possible UE clusters is the goal for the third subtask of the positioning algorithm, 
as shown in Figure 4.1. It is the most challenging part of the work, as the solution space 
is very vast. There can be more possible UE clusters, so the result of the clustering 
algorithm is a set of several possible clusters. The UE positions are always the input to the 
clustering algorithm, as well as the physical capabilities of the drone carrying FlyBS and 
the FlyBS itself.  

 

7.1 Proposed algorithm for clustering 

The algorithm chooses the set of users to be served based on the FlyBS communication 
capacities, UE distribution, and the quality of the channel between UEs and SBS. The 
selection is made in a way that the FlyBS serves rather UEs with poor signal quality far 
from the SBS than the large UE group with sufficient signal strength form SBS. This leads 
to better resource utilization if proportional fair scheduling is applied in the network. The 
network chooses the serving cell by traditional procedures as defined for the given mobile 
network, based on the signal quality. Even though the set of UEs served by the FlyBS may 
be controlled by the network elements, the proposed approach prefers to avoid it and use 
only the FlyBS position as a way how to affect which UEs will be served. 

The proposed algorithm thus targets users with the worst SNR ratio given by the signal 
quality condition:  

 𝑆𝑁𝑅௞,௨ < 𝑆𝑁𝑅௦௘௧ , ∀𝑢 ∈ 𝑼, 7.1 

UE 𝑢 will be evaluated as a candidate for association with FlyBS and taken into account 
in the selection if the UE meets the requirements in Equation 7.1. The threshold value 
𝑆𝑁𝑅௦௘௧ can change depending on the situation and the covered area. 

The proposed clustering algorithm for the FlyBS placement needs for its proper 
functioning: 

1. the (estimated) position of all users in the focus area, 
2. the signal strength from serving SBS in terms of RSRP value for each UE, 
3. FlyBS radius rFlyBS which can be obtained by putting the maximal transmit 

power of FlyBS into Equation 3.6, 
4. RSRP threshold value from which the signal fulfills the signal quality condition. 

The algorithm itself works in 3 phases, each reducing the proportions of data to be 
evaluated. In the first phase, the UEs fulfilling the signal quality condition are selected. In 
the second phase, the clusters from UEs fulfilling the signal quality condition are created. 
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In the third phase, number of all UEs in most promising clusters is calculated. The scheme 
of operation is shown in Figure 7.1, a more detailed description follows. 

 

 
Figure 7.1 Clustering algorithm – overview. 

 

7.2 Algorithm description  

As a first step, the algorithm evaluates which users meet the signal quality condition, i.e. 
findsd candidates for FlyBS coverage. This step excludes users near the BSs that achieve 
high RSRP values. In the simulations, the decision RSRP value is fixed at 70 due to lower 
signal attenuation compared to the actual deployment. The condition with selected 
threshold fulfills around half of all UEs in the area. Note that as the RSRP value we 
understand the reported value directly as presented in 3GPP standard and introduced in 
Section 2.2. The value can also be determined dynamically (for example, as the median 
RSRP from all UEs). The set of users who meet the condition in the simulations can be 
seen in Figure 7.2. 
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Figure 7.2 Example of candidate UEs for the clustering algorithm. 

 

The positions of users who meet the condition for RSRP also represent the possible 
positions where to place the FlyBS. This reduction is beneficial in the way of reduced 
complexity while having a minor impact on the resulting cluster size. Simulation with 255 
UEs comparing the optimal position (which was found using the brute-force approach) and 
the best position after the reduction showed that the difference of biggest cluster size was 
maximum of 2 UEs in ten runs of simulation (on average 7.44 %). With respect to 
uncertainty proceed from the position estimation, this simplification is justifiable. 

One by one, we evaluate each possible cluster center, based on how many UEs with a signal 
worse than the threshold value are in a circle defined by the FlyBS radius. The number of 
tested positions can be reduced even more, which is further described in Chapter 10. 

Once all possible centers have been evaluated, the results are sorted in descending order 
based on the number of UEs in the cluster, meaning that in the first place is the position 
that has the most users around it, who are simultaneously fulfilling the signal quality 
condition. However, it would not be right to declare results obtained only based on users 
fulfilling the signal quality condition. Therefore, for a relatively small number of the first 
clusters in the list, it is evaluated how many of all users are in range. From this new list, 
the final cluster to be served is selected (as later discussed in Chapter 8). 
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Due to the sequential approach, the number of iterations of each loop (phase) is shortening. 
During the first loop, it is necessary to go through all users, but only a simple comparison 
is made. The second loop (evaluation of users in range) will have significantly fewer 
iterations – the second loop will have approximately half of the iterations compared to the 
first one in the case of the RSRP threshold set to the median of RSRP values from all UEs. 
In the last loop, when the total number of UEs in the range is evaluated, an even smaller 
number of points of interest (cluster centers) is evaluated (in the order of percentages to 
the total number of points). 

 

Algorithm 7.1 Clustering. 

input:   Position of UEs within the area defined by its location 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 

  maximal radius the transit power of FlyBS allows to serve 𝑟ி௟௬஻௦ , 

  RSRP threshold value 𝑟𝑠𝑟𝑝௧௛௥௘௦, 

  RSRP value of each UE 𝑟𝑠𝑟𝑝௜ , 

  number of clusters to return 𝑛. 

 

output: Possible cluster centers centers, ||center|| <= ||location||, 

  UEs in these clusters members. 

 

variables:  Matrix of cluster members for each centeri list. 

 

Phase 1: eliminating the UEs with high SNR 

centre =  {}  

for each j in location do 

 if rsrpi < rsrpthres 

  center =  center ∪ location୨ 

 end if 

end for each 

 

Phase 2: creating possible clusters 

list =  {}  

for each i in list 

 for each k in center 

  if | centeri, centerk| <  r୊୪୷୆ୱ 

   list୧  =  list୧  ∪ centre୩ 

  end if 

 end for each 

end for each 

sort center, such that center୧ < center୧ାଵ & |list୧| ≥ |list୧ାଵ| 

 

Phase 3: evaluating only the biggest clusters 

for first n in center 

 for each i in location 

  if ||centern - locationj|| <  r୊୪୷୆ୱ
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   members୬  =  members୬  ∪ location୨  

  end if 

 end for  

end for each 

sort members, such that members୬ < memebers୬ାଵ & |members୬| ≥ |members୬ାଵ| 

return center, members 

 
7.3 Comparison with other clustering algorithms 

To show the performance of the proposed clustering algorithm, we compare it with two 
existing ones. The first approach is the clustering based on the Gaussian Mixture Model 
(GMM) [27], commonly used in machine learning for clustering based on unsupervised 
learning. The second algorithm used for clustering is Mean Shift (MS) [28], which finds the 
location with the highest density of data points in a given area. Clustering based on the 
MS does not need to know the number of clusters in advance in comparison to GMM. 

 

7.3.1 Gaussian Mixture Model  

Mixture models are generally used for unsupervised learning. The GMM is commonly used 
for evaluating a set of points distributed in space, where it is assumed that the points 
follow Gaussian distribution. The Gaussian distribution is one of the most common 
distributions to model real-world situations. The GMM is often used for audio and video 
analysis, but it was proven in [29] that also the UEs could be divided into clusters based 
on this model. 

The GMM is a probabilistic heuristic approach to statistically analyze the set of data 𝒙:   

Equation 7.2 presents a one-dimensional model, which is parametrized by the weight of i-
th component (mixing probability) 𝜔௜, its mean 𝝁௜ and covariance 𝚺௜. The mean represents 
the center of the cluster, the covariance shapes the cluster. 𝜆 represents the latent (hidden) 
parameters of the GMM model, and M is the total number of components. 

An iterative method called Expectation - Maximization (E-M) algorithm is exploited to 
estimate the GMM parameters. E-M algorithm represents an iterative approach to 
minimize the error function. The algorithm alternates between two steps: 

1. expectation step, where the function for the log-likelihood that the i-th point is 
generated by the j-th Gaussianis is created, 

2. maximization step, where the log-likelihood is evaluated and the parameters 
updated. 

 
𝑝(𝒙|𝜆) =  ෍ 𝜔௜  𝑔(𝒙|𝝁௜ , 𝚺௜)

ெ

௜ୀଵ

 7.2 
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In other words, during the expectation step, we find the weights which denote the 
probability that the point belongs to the j-th cluster. In maximization step, we evaluate 
the clusters based on the weights of all points. 

Each iteration increases the accuracy of the log-likelihood function, and the algorithm will 
converge [27]. 

 

7.3.2 Mean Shift Clustering 

MS is an analysis technique [28] based on examining the density function. MS algorithm is 
sometimes referred also as a mode-seeking algorithm, as it shifts the points in the direction 
of the highest density of data points. It is used for Mean Shift Clustering (MSC) [30] and 
image processing. 

The algorithm is based on the Kernel Density Estimation (KDE) – a statistical method of 
estimating the probability density function. The algorithm assigns the weight (in a 
nonparametric statistic called kernel) to each point in the data set. By this, it creates the 
probability surface. A common kernel is Gaussian one:  

 
𝑘(𝑥) = 𝑒

ି
௫మ

ଶఙమ  7.3 

The Gaussian kernel is an exponential function, where the standard deviation 𝜎 is used as 
the bandwidth parameter for the MSC algorithm. The bandwidth affects the resulting 
shape of the density function, as it governs the number of peaks and overall smoothness of 
the KDE.  

MSC algorithm locates the maxima of a density function for a given set of data. Similarly 
to the GMM, MSC is an iterative method. On the contrary to other popular clustering 
algorithms, such as K-means [31], MSC does not require to have an anticipated number of 
clusters as an input; it only depends on the bandwidth 𝜎 of the kernel. 

The MSC starts with an initial estimate x. The estimate is replaced by so-called mean shift 
m(x) in each iteration until it reaches the KDE surface peak:  

 
𝑚(𝑥) =  

∑ 𝐾(𝑥௜ − 𝑥)𝑥௜௫೔∈ே(௫)

∑ 𝐾(𝑥௜ − 𝑥)௫೔∈ே(௫)
 7.4 

The mean shift depends on the kernel function 𝐾, which denotes the weight of nearby 
points. 𝑁(𝑥) is the neighborhood of x. 

 

7.4 Evaluation 

In the case of GMM, we follow the scenario introduced in [29]. Several clusters in each SBS 
serving radius are first calculated using the E-M algorithm. As the radius of the FlyBS is 
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a circle, only used outputs from the E-M algorithm are the means representing the cluster 
centers. The radius is defined by the transmit power of the FlyBS. 

The necessary number of iterations of the E-M algorithm to converge to the optimum 
depends on the initial selection of points. In the simulations, the iteration counter limit is 
set to 100. Another limitation is that with the given set of data, a maximum of 4 clusters 
per BS can be created. 

Once the cluster centers are known, we calculate how many UEs belong to the given cluster. 
The clusters are then ordered based on the number of users. Note that this approach does 
not take into consideration different channel conditions and uses only the positions of users. 

In the case of MSC, we choose a slightly different approach. We introduce the same signal 
quality condition as for the proposed algorithm in Section 7.1: only users with poor signal 
quality are considered into the clusters. The bandwidth of the kernel function is set static. 
The ideal bandwidth depends on the distribution of the UEs and represents the key 
parameter denoting the number of clusters that will be created. Finding a proper 
bandwidth would require developing an additional algorithm, which would increase the 
overall complexity.  

For all GMM, MSC, and proposed algorithm, the cluster which is covering most users is 
chosen as the final one. 

The clustering algorithms are tested in two scenarios. In the first one, all 450 UEs are 
distributed uniformly over the whole area, around half of them in the focus area. In the 
second scenario, an additional group of users forming a close group is added to the 
uniformly distributed UEs.  

Especially in the second scenario, the first FlyBS is placed above the UE group 
independently on the clustering algorithm. Because of that, more FlyBS were successively 
added to the same focus area in order to see the behavior of the clustering algorithms. The 
previous FlyBS are for the estimation of the new one considered as static BS, which differs 
from the SBS only by the transmission power (the transmission power level remains on the 
level set for FlyBS). 

To evaluate the results, we use two parameters. First is the average throughput for UEs, 
calculated over all UEs. This ensures that the results are not distorted by the different 
number of UEs connected to each BS. If the average would be calculated only from the UE 
throughput for each BS (which is due to the proportional fair scheduling the same for all 
connected UEs), the lower number of UEs connected to the FlyBS would mean an increase 
in the average throughput. This would corrupt the results. 

The summary of the comparison based on scenario 1 is presented in Table 7.1. The 
graphical deployment of all three FlyBSs by three different algorithms shows Figure 7.3. 
Each algorithm is represented by one color; each round of FlyBS deployment is represented 
by one type of line.  
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The positions calculated by the proposed algorithm and MSC algorithm are often close to 
each other. However, the proposed algorithm covere more UEs in almost all simulations. 
Due to the close location of the clusters, also the differences in throughput are lower 
compared to the GMM algorithm. In some cases, the MSC performs better than the 
proposed algorithm, even though the results are never significantly distinct. 

The placement of the FlyBS based on the GMM algorithm clearly shows how important it 
is to take into account the position of SBS1. The FlyBS is quite often deployed close to the 
existing SBS, which results in strong interference and low utilization of the FlyBS.  

 

 
Figure 7.3 Locations of FlyBSs based on different clustering algorithms, scenario 1. 

  

 
1 Both proposed and MSC algorithm reflects the SBS positions though RSRP reports. 



CLUSTERING 

45 

Table 7.1 Comparison of clustering algorithms, scenario 1. 

  1 FlyBS utilised 2 FlyBSs utilised 3 FlyBSs utilised 

  

Overall 
average 

throughput 

Served 
UEs 

Overall 
average 

throughput 

Served 
UEs 

Overall 
average 

throughput 

Served 
UEs 

Proposed 
Algorithm 

highest 22 highest 18 highest 14 

GMM 
algorithm 

lowest 16 lowest 17 lowest 12 

MSC 
algorithm 

medium 21 medium 11 medium 11 

 

If a group of 50 UEs close to each other is added (scenario 2), we achieve different results, 
as shown in Table 7.2 and Figure 7.4.  

Again, the fact that the proposed and MSC algorithms consider the position of SBS 
sometimes prevents them from being close to the UEs conglomeration, as it was near the 
SBS. If at least part of the added group were fulfilling the signal quality condition, the 
FlyBS is deployed there no matter which algorithm was used. 

The first FlyBS is placed in the same location no matter what clustering algorithm is used. 
More significant differences between the recommended FlyBS position are visible starting 
by the deployment of the second FlyBS. The GMM algorithm selects the same location as 
for the first cluster because the UEs are gathered there. The proposed and MSC algorithm 
choose different locations, as the location with the highest UEs density is already served 
by the first FlyBS. Even though the location for second and third FlyBS varies depending 
on the used algorithm, the FlyBSs serve a similar number of UEs.  
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Figure 7.4 Locations of FlyBSs based on different clustering algorithms, scenario 2. 

  

Table 7.2 Comparison of clustering algorithms, scenario 2. 

  1 FlyBS utilised 2 FlyBSs utilised 3 FlyBSs utilised 

 
Overall 
average 

throughput 

Served 
UEs 

Overall 
average 

throughput 

Served 
UEs 

Overall 
average 

throughput 

Served 
UEs 

Proposed 
Algorithm 

similar 61 highest 16 highest 17 

GMM 
algorithm 

similar 61 lowest 42 lowest 38 

MSC 
algorithm 

similar 61 medium 14 medium 14 

 

The simulation proves that if more FlyBS are deployed, their mutual optimization is 
necessary and iterative approach is not the best approach to select a suitable location. 
Also, the current deployment of SBS has to be taken into account, and the area where the 
FlyBS can be deployed evaluated as a whole. 
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8 Final positioning 
Once the prediction, position estimation, and clustering algorithms are done, the final step 
is to select one suitable cluster, which will be served in the next moment. The optimal 
cluster has a center within reach of the FlyBS and the highest number of covered UEs. In 
the process of selecting the suitable cluster constraint given by the FlyBS speed is 
considered. The FlyBS speed defines maximal distance that the FlyBS is capable of 
overcoming between two clustering intervals. This condition is expressed in Equation 3.8b. 
For this purpose, we propose a simple selection algorithm, which evaluates the feasibility 
of the cluster center and the number of covered UEs. 

The sequence of selected cluster centers in time presents the path for the FlyBS. It is 
desired to find the cluster in the way that the path is uninterrupted by any hops longer 
than the drone can overcome within a given time period.  

 

8.1 Algorithm description 

The proposed algorithm works as follows: from the whole set of possible clusters, received 
from the clustering algorithm, the one with the highest number of UEs is selected. Then 
the condition whether this cluster is reachable is tested. If yes, this cluster is selected as 
suitable, and the algorithm ends. However, if the cluster is unreachable, the number of 
UEs in the largest cluster is decreased and stored for further comparison. Then, all clusters 
with at least the same number of UEs as in the largest one are tested. The process repeats 
until the solution is found, or none of the clusters is suitable. In the case that no solution 
is found, the distance constraint is relaxed, and the largest cluster returned. 

 

Algorithm 5.1 Suitable cluster selection. 

input:  Possible cluster centers Centers, 

  number of UEs within each cluster UEs, 

  maximal overcome distance Dist. 

 

output: Next position for the FlyBS Position. 

 

variables: Number of UEs in the cluster Maximum. 

 

Maximum = max(UEs) 

While true 

 for each i in Centres 

  if  ||Prev – Centres(i)|| < Dist & UEs(i) >= Maximum  

   Position = Centres(i) 

   return Position 

  end if 

 end for  
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 Maximum = Maximum - 1 

 if Maximum == 0 

  Maximum = max(UEs) 

  Position = Centres(Maximum) 

 end if 

end while 

 

8.2 Evaluation 

As introduced in Section 6.2, the best estimation of the position is achieved when three 
closest BSs are considered. In the simulation, we use the reports from the SBSs. No reports 
from FlyBSs are used, as it may reach the maximal RSRP value due to the proximity to 
the UE. With a given path loss model (expressed in Equation 3.5), distances between UE 
and BS below 44 meters are reported as the highest RSRP level, as the signal is very 
strong.  

The proposed selection algorithm (considering both maximal drone speed and the number 
of UEs in the cluster) is tested against two more straightforward ways of selection: first 
considering only maximal speed, and second considering only maximal number of UEs in 
the cluster. The overall simulation assesses 2 400 samples – the time thus equals circa to 
ten minutes, if we receive the four measurements every second. The simulation length 
corresponds roughly to the time today’s drones are capable of staying in the air. The UE 
distribution and other simulation parameters are similar as in the simulation in Section 
6.4. 

Each selection method evaluates two metrics: number of discontinuities in FlyBS’s path 
(indicating in how many cases the FlyBS is not able to find a suitable cluster), and the 
relative increase in the average throughput per UE compared to the situation without 
deployed FlyBS. We set the initial drone speed for this simulation ten times higher than 
the average speed of the UEs. However, the impact of maximal speed is discussed in detail 
later.  

To show the importance of the position estimation, outputs from the clustering algorithm 
using the precise UE positions are compared with the outputs from the clustering based on 
the predicted and estimated values, as introduced in Chapter 6. The results are shown in 
Table 8.1 for the situation when we select the reachable cluster with the maximal number 
of UEs, a cluster with a maximal number of UEs, and a cluster considering only its 
availability.  

The results confirm that the throughput increase is highest if the only reflected factor is 
the size of a cluster. However, this also brings a high number of discontinuities in the 
FlyBS’s path, especially in the case when the inputs are predicted and estimated positions.  
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Table 8.1 Comparison of different criteria for cluster selection on predicted values. 

    

Reachable 
and maximal 

Only 
maximal 

Only 
reachable 

Discontinuities [-] 
Predicted 44 381 44 

Real 9 48 8 

Throughput increase [%] 
Predicted 4.33 6.33 4.34 

Real 5.95 6.35 5.99 

 

When the drone speed is set to 10 times the speed of UE, the results are similar as if there 
was no speed limitation at all. A set of simulations with different maximal drone speeds 
are conducted to examine this deeper. The results are summarized in Table 8.2 both for 
predicted and estimated values and real values. We can observe the difference between 
results based on which set of UE position is used. When real positions are used, the drone 
speed can be lower to achieve a similar number of discontinuities in its path compared to 
the predicted and estimated positions. Also, if the drone is not capable of shifting quickly 
enough, it causes overall throughput degradation. In that situation, it is not favorable to 
deploy the FlyBS. 

 

Table 8.2 Impact of maximal drone speed. 

Drone speed/average UE speed  1 2 4 8 

Discontinuities [-] 
Predicted 760 760 760 53 

Real -27.95 -27.95 -27.95 3.94 

Throughput increase [%] 
Predicted 828 226 9 9 

Real -30.72 -3.77 5.95 5.95 

 

The snapshot of the FlyBS’s position is shown in Figure 8.1 and Figure 8.2. These figures 
show the determined cluster and the FlyBS path for two cases. In the first case (Figure 
8.1), we use known UE positions. In the second case (Figure 8.2), we use the predicted and 
estimated UE positions 12 samples ahead. Both figures show the same moment, it is thus 
possible to also compare the real and predicted UEs position, which does not vary 
significantly. We also see that the FlyBS path is more efficient when the exact positions 
are known. However, both paths are passing roughly the same positions in the focus area.  

 



FINAL POSITIONING 

50 

 
Figure 8.1 FlyBS trajectory for real UE positions. 

 

 
Figure 8.2 FlyBS trajectory for predicted and estimated UE positions. 
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9 Implementation 

The proposed solution for the determination of the FlyBS is designed to require information 
that can be found in the real mobile networks. Therefore, it allows implementation into 
the existing mobile networks. In this thesis, it is assumed that the 4G mobile network is 
used, i.e., LTE. Due to the constraints of the real mobile network, an emulated mobile 
network is used for implementation. The emulated mobile network provides the same 
functionalities as the real hardware, but with significantly lower price and ease of 
modifications. The implementation into the emulated system allows us to prepare a variety 
of test scenarios to evaluate whether the algorithm operates in the same manner as during 
the simulations in MATLAB. 

The project utilizing a UAV (more precisely a hexacopter) as a FlyBS has been under 
development in the 5gmobile research lab at the Department of Telecommunication 
Engineering of Faculty of Electrical Engineering for several years [32]. Currently, the start 
and landing of hexacopter is operated by a human operator. However, the FlyBS is capable 
to position itself to the selected GSP coordinates that are determined in this thesis. This 
project can be extended to include the proposed positioning algorithm. 

 

9.1 OpenAirInterface 

In the FlyBS setup at the Department of Telecommunication Engineering, 
OpenAirInterface (OAI) platform [33] is exploited for emulation of the 4G mobile network. 
The OAI platform implements 3GPP standards for radio access network (RAN) as well as 
core network (CN). This platform also enables emulation of the UE. The benefit of the 
OAI is its ability to run in both simulation and emulation mode. The simulation option 
significantly eases the process of development and debugging due to the ability to set the 
whole scenario exactly as it is needed and guarantee reproducibility. 

The OAI platform runs on general purpose processors and supports software-defined radio 
cards, such as Universal Software Radio Peripheral (USRP). The whole OAI platform 
consists of software written in a mix of C, C++, and Python. Due to being a completely 
software solution, it allows for Network Function Virtualization of all elements – the whole 
emulated 4G network is possible to run on a single Linux-based machine. Because of that, 
OAI software is ideal for proof-of-concepts, testing, or prototyping. 

Since the platform is open to the public and easily accessible, it has many users and 
contributors to the OAI repositories. This enables the platform to evolve continuously. 
Main features from LTE standard are already included, and nowadays, the developers 
implement NR [34]. 

The OAI is developed within OpenAirInterface Software Alliance (OSA). The OSA is a 
French non-profit organization, established by Eurecom in 2014. The purpose of the 
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alliance is to provide tools and open-source software for 4G and 5G wireless research. The 
global reach of the OAI platform is shown by its strategic members of the alliance consisting 
of companies such as Orange, Qualcomm, Fujitsu, or Nokia Bell labs. One of the 
community members is also the Czech Technical University in Prague.  

For purposes of positioning algorithm implementation, the main focus is on RAN part of 
the network. As the OAI implementation is in line with the 3GPP standards, we can 
identify separate layers of the LTE control plane stack [35] in the source code. The stack 
for the UE and the BS, in LTE called eNodeB, consists of Physical Layer (PHY), Medium 
Access Layer (MAC), Radio Link Control (RLC), Packet Data Convergence Control 
(PDCP) and Radio Resource Control (RRC). UE also uses Non-Access Stratum (NAS) 
protocols to exchange control plane messages with Mobility Management Entity (MME). 
The LTE control plane stack schema is drawn in Figure 9.1. 

 

 
Figure 9.1 LTE stack for UE. 

 

OAI uses an internal messaging client called ITTI to communicate between layers of the 
protocol stack (represented by the separate threads). ITTI also manages the live cycle of 
threads. 

In 2016, the OAI platform incorporated FlexRAN [36] – software-defined RAN platform. 
With the use of FlexRAN, it is possible to separate data and control planes of the eNodeB. 
The platform consists of Master Controller (representing Control Plane) and several 
FlexRAN Agents (one for each eNodeB). The Agent can interact with other Agents or act 
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as a simple local executor of Master Controller instructions. Configurable Real-time capable 
south-bound API created by FlexRAN presents an ideal approach to receive the necessary 
information for the positioning algorithm from the network. FlexRAN agent has access to 
information from all layers from Figure 9.1, where the PHY and MAC layers are further 
splitted into the lower and upper part.  

FlexRAN Agent collects the RSRP reports at the RRC layer by calling function 
flexran_get_rrc_pcell_rsrp and flexran_get_rrc_neigh_rsrp. FlexRAN is also 
able to use ITTI to interact with another task. This allows us to gain also parameters, 
which are not included in FleRAN platform code but are present in OAI. The messages 
transferred over the ITTI can be captured and examined using the ITTI Analyzer tool. 
The analyzer comes together with the source-code of OAI RAN. 

 

9.2 O-RAN 

The transformation of legacy RAN into open, virtualized, and intelligent RAN is the goal 
of O-RAN Alliance [37]. O-RAN introduces the concept of standardized interfaces within 
the RAN to allow easier network virtualization and interoperation. 

O-RAN alliance was founded in 2018 by five large telecommunication operators (AT&T, 
China Mobile, Deutsche Telekom, NTT DOCOMO, and Orange). Nowadays, O-RAN 
connects over 160 leading companies ranking from hardware vendors through network 
operators to academia institutions. 

O-RAN architecture [38] splits the functionalities of BS into the Radio Unit (RU), which 
includes Radio-frequency (RF) elements and lower PHY layer, Distributed Unit (DU), 
taking care of higher PHY, MAC, and RLC layers, and Central Unit (CU), covering RRC 
and PDCP layers. The architecture is further complemented by the Near real-time RAN 
Intelligent Controller (near-RT RIC) – an entity that manages, for example, radio 
connection, mobility, Quality of Service, or interference. Near-RT RIC can also host 3rd 
party applications. The last architecture block is the Orchestration and Automation 
platform, e.g., ONAP. The simplified O-RAN architecture is presented in Figure 9.2, where 
also some of the defined interfaces are shown. 
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Figure 9.2 O-RAN architecture. 

From the perspective of this thesis, the open E2 interface connecting the near-RT RIC and 
CU, DU, and eNodeB is interesting. E2 should be understood more like a platform rather 
than a simple interface, as its possibilities are vast. The proposed algorithm, together with 
other necessary UAV management components, can be then implemented as a xApp 
(microservice running at the Near-RT RIC).  

As the impact of O-RAN is growing, the proposed O-RAN architecture will likely be 
available on the market in the future. That would simplify the incorporation of FlyBSs 
into mobile networks and speed the process up. 
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10 Conclusion 
Deployment of a UAV, such as a drone, with communication hardware of BS (denoted as 
FlyBS) presents a possible way how to offload overloaded mobile cells, e.g., in case of mass 
events. The FlyBSs, in comparison to the SBSs, are inherently mobile and can change their 
location during operation. This thesis aims at proposing an algorithm to determine FlyBS 
placement based on the information from the mobile network and its possible 
implementation. 

The positioning algorithm for the FlyBS is split into three subtasks. The first subtask 
consists of the estimation of UE distances to the BSs based on the signal quality reports 
from the UEs. In this phase, the discrete signal quality reports are interpolated to obtain 
distance as a continuous function of the UE movement.  

The second subtask estimates the UE position based on the distances from the BSs. The 
algorithm searches for a location with a minimal sum of square errors of distances. 
Simulations show that the best accuracy is achieved with the necessary minimum of three 
closest BSs. This is due to the relation between the RSRP measurement levels and 
distances, which provide the best resolution for short distances. 

The last subtask creates several clusters of UEs, based on their estimated positions. The 
clusters’ positions determine possible areas to be served by the FlyBS. The proposed 
solution introduces a signal quality condition, which limits the set of possible clusters’ 
locations. The position which allows serving the highest number of UEs is then selected. 
The proposed clustering algorithm achieves similar or better results in means of throughput 
and number of served UEs than compared Gaussian Mixture Model and Mean Shift 
clustering algorithm. 

Determination of the possible clusters is not the final step, as the constraints of the FlyBS 
must be taken into account. Therefore, an algorithm to select a suitable cluster from the 
set of possible clusters is proposed. The proposed solution works by finding a cluster, which 
covers the highest number of UEs and is reachable at the same time. From the performance 
evaluation, it is shown that the overall network throughput is highest if the largest cluster 
is preferred. However, this leads to a high number of discontinuities2 in the FlyBS path.  

The overall efficiency of FlyBS repositioning strongly depends on the precision of UE 
position estimation, as shown in comparison to the case where the real UE positions are 
known. When tested on the set of real UE positions, the FlyBS experiences fewer 
discontinuities and increased the network throughput even with low maximal drone speed. 
On the contrary, when the estimated UE positions are used, the drone path is inconsistent, 
and the drone has to be able to move faster in order to increase the network throughput. 

 
2 Situation, when the UAV is not able to reach the desired cluster center in time due to its hardware 
limitations. 
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In the last part of the thesis, a possible implementation into mobile network is proposed. 
The implementation is based on the OAI platform, which enables us to run an emulated 
mobile network with USRP. FlexRAN platform within OAI is exploited to obtain the 
necessary mobile network information. FlexRAN provides access to BS to collect the 
required network measurements, mainly RSRP, for the positioning of the FlyBS. 

In this thesis, we have proposed a positioning algorithm for the FlyBS positioning based 
only on the real mobile network data and designed its implementation into the mobile 
network. The problem of FlyBS positioning is a highly researched topic and the proposed 
solution goes beyond the state of the art solution by avoiding the necessity of additional 
measurements in the mobile network. 

The proposed positioning algorithm can be in the future enhanced by several 
functionalities, which are described as the future work. The prediction of signal power level 
struggles when the distance between UE and BS is high due to insufficient accuracy of 
RSRP reports. Therefore, a Timing Advance [35] besides the RSRP reports can be exploited 
to improve the algorithm accuracy. The clustering algorithm evaluates all UEs fulfilling 
the signal quality condition. The Nearest neighboring (NN) search algorithm [39] or similar 
can be used to reduce the number of evaluated clusters when they are close to each other. 
The proposed positioning algorithm can be extended to reflect the number of UEs satisfying 
the signal quality condition in the cluster or evaluate the number of UEs negatively 
influenced by the FlyBS. Furthermore, the proposed algorithm for positioning of the FlyBS 
can be further extended via transmission power control of the FlyBS. Finally, to evaluate 
its functionality in the real world, it should be implemented to the existing experimental 
setup and tested. 
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OAI OpenAirInterface 

OFDM Orthogonal Frequency Division 
Multiplexing 

OSA OpenAirInterface Software 
Alliance  

PDCP Packet Data Convergence 
Control 

PHY Physical Layer 

Pchip Piecewise Cubic Hermite 
Interpolating Polynomial 

RAN Radio Access Network 

RF Radio-frequency 

RLC Radio Link Control 

RRC Radio Resource Control 

RSCP Received Signal Code Power 

RSRP Reference Signal Received 
Power 

RSRQ Reference Signal Received 
Quality 

RSS Received Signal Strength 

RSSI Received Signal Strength 
Indicator 

SBS Static BS 

SINR Signal to Noise and 
Interference Ratio 

SNR Signal to Noise Ratio 

SS-RSRP Synchronization Signal RSRP 

UAV Unmanned Aerial Vehicle 

UE User Equipment 

USRP Universal Software Radio 
Peripheral 


