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Abstract 

Distinguishing between brain tumors and the healthy tissue in brain and differentiation 

of individual brain tumor types is mainstay of the magnetic resonance exam. This thesis deals 

with a special diffusion magnetic resonance method intravoxel incoherent motion (IVIM). It 

incorporates an overview of basic magnetic resonance sequences used in brain imaging. The 

emphasis is on diffusion imaging. The study is focused on the image analysis using various 

methods and software tools. Part of this analysis is to minimize distortions in diffusion images. 

The main aim of this work is to measure IVIM parameters 𝑓, 𝐷 a 𝐷 ∗ in tumor brain tissue 

and surrounding tissues and to subject them to statistical analysis. The work aims to verify the 

suitability of this method in distinguishing individual types of brain tumors and individual brain 

tissues. Parameters for twenty patients with three types of brain tumors (gliomas, metastasis 

and meningiomas) are evaluated. Image analysis is performed in several programs using several 

procedures whose influence on the final IVIM parameters is analyzed. A statistically significant 

difference is confirmed for some brain tissue pairs in different brain tumors. This work verifies 

that the concept of intravoxel incoherent motion may be a suitable method for accurate 

differentiation of brain tumor types. 

Key words 

diffusion magnetic resonance, diffusion weighted imaging (DWI), intravoxel incoherent motion 

(IVIM), distortion correction in DWI, MR neuroimaging 

 

 

 

 

 

 

 

 



 

 

Abstrakt 

Odlišení nádorové hmoty v mozku od zdravé nervové tkáně a odlišení jednotlivých typů 

mozkových nádorů patří mezi stěžejní výzvy při vyšetření pomocí magnetické rezonance. Tato 

diplomová práce se zabývá speciální metodou difúzní magnetické rezonance intravoxel 

incoherent motion (IVIM). Obsahuje přehled základních sekvencí magnetické rezonance sloužící 

pro zobrazení mozku. Důraz je kladen na zobrazení difúze. Práce je zaměřena na provedení 

jednotlivých kroků analýzy obrazu pomocí odlišných metod a pomocí jednotlivých programových 

nástrojů. Součástí této analýzy je minimalizace distorzí v difúzních obrazech. Hlavním cílem práce 

je proměření IVIM parametrů 𝑓, 𝐷 a 𝐷 ∗ v nádorové mozkové tkáni a okolních tkáních a jejich 

podrobení statistické analýze. Práce si klade za cíl ověřit vhodnotst této metody při odlišení 

jednotlivých typů mozkových tumorů a jednotlivých mozkových tkání. Jsou vyhodoceny 

parametry pro dvacet pacientů se třemi typy mozkových nádorů (gliomy, metastázy 

a meningiomy). Analýza obrazu je provedena v několika programech pomocí několika postupů, 

jejichž vliv na výsledné IVIM parametry je rozebrán. Statisticky významný rozdíl je potvrzen 

pro některé dvojice mozkových tkání v různých mozkových nádorech. Tato práce ověřuje, 

že koncept intravoxel incoherent motion může být vhodnou metodou pro přesné odlišení 

jednotlivých typů mozkových nádorů. 

Klíčová slova 

difúzní magnetická rezonance, difúzí vážené zobrazení (DWI), intravoxel incoherent motion 

(IVIM), korekce distorzí v difúzi váženém zobrazení, zobrazení mozku pomocí magnetické 

rezonance 
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1. Introduction 

Nervous system cancer is worldwide one of the common causes of death. Brain tumors can occur 

in both children and adults. There are many types of brain tumors that are assigned to four 

grades representing the rate of the tumor´s growth. Brain tumors are typically treated with 

radiation therapy, chemotherapy and surgery. The early brain tumor detection enables to choose 

between several treatment options. Moreover, when tumors in brain are identified early, the 

disease is more likely to be effective to the treatment and the probability of surviving is 

increased. In addition, it means less expensive treatment. For early tumors detection diagnostic 

imaging methods are irreplaceable. In the case of brain tumors detection magnetic resonance 

plays a vital role. A challenging task in magnetic resonance is to distinguish the tumor from its 

surrounding area and moreover, to effectively distinguish individual brain tumor types. 

Magnetic resonance diffusion imaging has been proven to be one of major methods to 

characterize brain tumors. At present, a new concept of diffusion magnetic resonance imaging, 

intravoxel incoherent motion, is under investigation to determine its clinical significance. 

In this thesis, I aim to analyze the magnetic resonance diffusion method in neuroimaging and to 

shed some light on the concept of intravoxel incoherent motion. I will conduct image analysis 

that is a necessary step before measuring the intravoxel incoherent motion parameters. The 

parameters will be measured in patients suffering from different brain tumor types. I will 

perform statistical analysis of acquired data.
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2. Introduction to Magnetic Resonance 

The magnetic resonance (MR) phenomenon is based on the interaction between an external 

magnetic field and nuclei in the human body1. The main static magnetic field 𝐵0 is produced by 

a powerful magnet. 

In order to provide an exact spatial MR signals location in three dimensions, three sets of spatial 

encoding coils to produce the magnetic field in x, y and z direction are implemented. These 

gradient fields are not constant but are intended to produce a magnetic gradient. In comparison 

with the main magnetic field 𝐵0, gradient fields are much weaker and ideally vary linearly in all 

three axes. „Gradient coils for MRI must have high current efficiency, short switching time, 

gradient linearity over a large volume, low power consumption, and minimal interaction with any 

other equipment, which would otherwise result in eddy currents.” [1] A first applied gradient is 

the slice selective gradient 𝐺𝑍 (in this work a direction of the slice selective gradient refers to the 

z-axis) during the radiofrequency (RF) excitation pulse2. All slices have afterwards different 

precession frequency3 throughout the z-axis. To visualize the slice, the RF pulse with the 

particular Larmor frequency of this slice is applied. The range of frequencies Δf that can excite 

a slice can be calculated according to the formula 2.1; thus, it is directly proportional to the slice 

thickness Δz, the gradient strength 𝐺𝑍 and the gyromagnetic ratio γ4. The stronger gradients 

applied, the thinner slice selected. The change of the RF pulse frequency makes possible to select 

an upper or a lower slice. 

Δf = γ ·  𝐺𝑍 ·  Δz          (2.1) 

After the slice selection in 2D imaging, it is important to encode the spatial position within a slice. 

Therefore, frequency and phase encoding gradients are applied. The phase encoding gradient 

𝐺𝑌, which generates spins dephasing along one axis of the x-y plane (in this work a direction 

of the phase encoding gradient refers to the y-axis), is applied immediately after the excitation 

 
1 In this work MR refers to an investigation of ¹H Hydrogen nuclei so terms nuclei, spins and protons are equivalent. 

2 A radiofrequency excitation pulse is intended to excite the protons ensemble from a lower energy state to a higher energy state. 

3 The precession frequency, the so-called Larmor frequency, represents a rate of the precession movement (rotation around the 

z- axis) of the spinning ensemble under the influence of the external magnetic field. 

4 The gyromagnetic ratio is a constant that is nuclei dependent. It includes particles´ size, a mass and nuclear spin values. The unit is 

𝑀𝐻𝑧

𝑇
. 
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pulse. Thereby, each pixel along the y-axis has a different phase shift. At the time the 𝐺𝑌 gradient 

is active, there is a change in a frequency and a phase causing that some protons move faster 

than the adjacent protons. When the gradient is off, all the protons start to move with the 

original frequency, but they have accumulated a phase shift. According to the phase shift varying 

in the y-axis, the position in y-axis can be specified. The phase shift 𝑑Φ is proportional to the 

time 𝑡, the gyromagnetic coefficient γ and the strength of the gradient 𝐺𝑌. Finally, all pixels in the 

Field of View (FOV)5 have their unique phase and frequency within a slice. 

Φ = γ · 𝐺𝑌 · 𝑡          (2.2) 

The last step is the use of the frequency encoding gradient 𝐺𝑋 determining one axis of the x-y 

plane of the selected slice (in this work a direction of the frequency encoding gradient refers 

to the x-axis) by producing the gradient of the Larmor frequencies along this direction. Individual 

spins will move with a slightly different Larmor frequency value in the linear scale along this axis. 

A frequency encoding gradient is applied when the signal is received. 

 

Figure 2.1: Timing of three gradients application. The slice selective gradient in the z-axis 𝐺𝑍 (in this figure 

𝐺𝑆) is applied during the RF pulse application, the phase encoding gradient in the y-axis 𝐺𝑌 (in this figure 

𝐺Φ) is applied right after the end of the RF pulse, the frequency encoding gradient in the x-axis 𝐺𝑋 (in this 

figure 𝐺𝑓) is active during the signal is being read out.

 
5 FOV is the image area containing the examined part of the body. 
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3. Basic sequences in Magnetic Resonance 

An essential step to perform optimal MR exams is to choose a MR sequence which optimally 

displays pathologic lesions. It means to display a region with requested image contrast6 

(a different type of image weighting), with desired image quality and in as short time as possible. 

The sequence choice is highly influenced by the system technical specifications and the 

anatomical structures to be visualized or which structures to be suppressed. Nowadays, in a time 

of fast technical development, MR protocols with appropriate parameters values are already 

preset and can be eventually adjusted by an operator. 

In this chapter the description of fundamental non-diffusion MR sequences 𝑇1 and 𝑇2 is given. 

Moreover, the suppression technique FLAIR, which is crucial in MR neuroimaging, is mentioned. 

Last but not least, fast MR Echo-planar imaging (EPI) sequences, which are key sequences 

for diffusion MR imaging (MRI), are covered. The MR data I am processing in my practical task 

were acquired with these techniques. 

3.1. MR signal weighting 

MR images depend on magnetic properties and a number of hydrogen nuclei in the area being 

examined. Basic MR sequences 𝑇1 and 𝑇2 weighted sequences7 are part of almost all MR 

protocols. By running a different weighting sequence, different contrast of the image will be 

acquired. „In 𝑇2 weighted images, tissues with long 𝑇2 give the highest signal intensities, 

producing a bright appearance. 𝑇1 weighted images are completely different; long 𝑇1 tissues give 

the weakest signal, i.e. bright pixels on 𝑇1 are associated with short 𝑇1.“ [2, p. 32] The particular 

sequence might be acquired by specifying primary parameters; the repetition time 𝑇𝑅
8 and the 

echo time 𝑇𝐸
9. By setting different values of 𝑇𝑅 and 𝑇𝐸, MR is able to acquire images that are 

 
6 The image contrast represents an ability to distinguish surrounding tissues 𝐴 from 𝐵 with similar signal intensities 𝑆𝐴 and 𝑆𝐵. 

7 𝑇1 and 𝑇2 sequences refer to the 𝑇1 and 𝑇2 relaxation time. After the RF pulse application, the spins tend to return to their 

equilibrium. 𝑇1 relaxation time interval corresponds to the return of the longitudinal magnetization (in the z-axis), whereas 𝑇2 

relaxation time interval corresponds to the decay of the transverse magnetization (in the x-y plane). 

8 The repetition time 𝑇𝑅 represents the time interval from the application of the RF pulse to the application of the next pulse. 

9 The echo time 𝑇𝐸 represents the time interval from the application of the RF pulse and the peak of the induced signal in a coil. 
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weighted with parameters according to the 𝑇1 relaxation time or with the 𝑇2 relaxation time. 

In praxis, though, a mixed contribution of both parameters is always present. 

𝑇1 weighted images are acquired with short 𝑇𝐸 and 𝑇𝑅 times, whereas the setting of longer 𝑇𝐸 

an 𝑇𝑅 times determines 𝑇2 weighted images. If the 𝑇𝑅 time is proportional to the 𝑇1 relaxation 

time and 𝑇𝐸 much lower than 𝑇2, it is an example of 𝑇1 weighting. In 𝑇1 weighting the 

contribution of 𝑇2 relaxation rate is suppressed. Whereas in the case of 𝑇2 weighting, 𝑇𝑅 is much 

longer than 𝑇1 and 𝑇𝐸  proportional to 𝑇2. In 𝑇2 weighting the 𝑇1 relaxation rate is suppressed. 

When the repetition time is very short, the relaxation time of tissues cannot be optimally 

measured. By setting greatly long 𝑇𝑅, the whole examination time is prolonged, thus it is more 

susceptible to image distortions. 

MR image 𝑻𝑹 [ms] 𝑻𝑬 [ms] 

𝑻𝟏 weighting 400 - 700 10 - 20  

𝑻𝟐 weighting at least 2000  80 - 120 

Table 3.1: A choice of the repetition time 𝑇𝑅 and the echo time 𝑇𝐸  determines a degree of MR weighting. 

𝑇2 images are acquired with longer 𝑇𝑅 and 𝑇𝐸  times than 𝑇1 images. [3, p. 7] 

Tissue 𝑻𝟏 weighting 𝑻𝟐 weighting 

Water, CSF10 dark bright 

White brain matter (WM)11 bright dark gray 

Gray brain matter (GM)12 gray gray 

Muscle  gray dark gray 

Fat bright less bright 

Inflammation dark Bright 

Table 3.2: 𝑇1 weighting sequences use short 𝑇𝑅 so the signal from water is low, thus appearing dark. 𝑇2 

weighting sequences implement long 𝑇𝐸  time, thus water signal is high appearing with a bright color. Even 

if in 𝑇1 sequence 𝑇𝑅 is short, the signal coming from fat is intensive, thus appears bright. 𝑇2 for fat is also 

short and with long 𝑇𝐸 the signal from fat is less bright (darker than water). The color representation 

of other structures with different weighting sequences are seen in this table. 

 

 
10 CSF refers to Cerebrospinal fluid. The explanation is given in the section 5.1. 

11 A description of WM is given in the section 5.1. 

12 A description of GM is given in the section 5.1. 
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Figure 3.1: A brain MR image sample in the axial plane, on the left: 𝑇1 weighting, on the right: 𝑇2 

weighting. [4] 

3.2. Suppression methods in MR imaging 

One of a major achievement in MR imaging is a possibility to suppress tissue with concrete 𝑇1 

relaxation time. Hence, the signal level and the contrast in a region of interest (ROI) may be 

enhanced. Besides aforesaid parameters 𝑇𝑅 and 𝑇𝐸, the inversion time 𝑇𝐼
13 can be specified 

to null out the tissue signal. In suppression Inversion Recovery (IR) sequences an additional 180° 

pulse at the beginning of the sequence preceding a 90° excitation pulse is applied. By setting the 

𝑇𝐼 time, which depends on the 𝑇1 tissue relaxation time, the signal coming from the tissue with 𝑇1 

is suppressed. The signal coming from fat tissue and hydrophilic tissue composing of water 

(eventually Cerebrospinal fluid) can be separated due to their significantly different 𝑇1 relaxation 

time. The fat and water suppression are the most often suppression methods. 

FLAIR (Fluid Attenuated Inversion Recovery) is a key sequence whose aim is to scan brain tissue 

in which the CSF14 signal is suppressed. The FLAIR sequence generates 𝑇2 weighting images with 

the only difference of CSF signal nulling. The CSF is attenuated and visualized dark, whereas some 

abnormalities and fat are made bright. „The technique has proved to be an invaluable 

and sensitive technique for imaging disease processes characterized by abnormal 𝑇2 signal 

in close proximity to the cerebral ventricles and other cerebrospinal fluid spaces in the brain; it is 

now routinely used for brain imaging in many centers.“ [5] 

 
13 The inversion time 𝑇𝐼 represents the time interval between the inversion 180° pulse (a tilt of the magnetization into the longitudinal 

plane) and the excitation 90° pulse (a tilt of the magnetization into the transverse plane). 
14 Water content of CSF is roughly 99%, thus it is assumed the water and CSF suppression are the same. 
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Figure 3.2: A choice of the inversion time 𝑇𝐼
15 to suppress a concrete tissue type. 𝑇𝐼 = 180 𝑚𝑠: a sequence 

for fat nulling, 𝑇𝐼 = 400 𝑚𝑠: a sequence for white matter nulling, 𝑇𝐼 = 650 𝑚𝑠: a sequence for gray 

matter nulling, 𝑇𝐼 = 2500 𝑚𝑠: the FLAIR sequence for CSF nulling. The longest inversion time is required 

to remove the signal coming from CSF. [6] 

3.3. Fast MR imaging sequences 

Fast MR imaging has been rapidly maturing. An initial purpose of fast sequences was to shorten 

the total acquisition time and to display fast processes. Today its impact is growing since fast 

imaging techniques might reduce motion artefacts, enable 3D imaging, flow and cine imaging. 

[7] Not only do fast MRI methods reduce the total acquisition time but also improve the temporal 

resolution16. 

The fastest MR sequence is called the echo-planar imaging (EPI)17 that enables a single image 

acquisition in tens of ms. [8] A whole k-space18 is obtained within one repetition. EPI sequence is 

a basis of MR applications, such as perfusion, functional and diffusion imaging. All spatial 

encoding information is acquired with even only a single RF excitation pulse, whilst conventional 

MR techniques require to apply multiple RF pulses. „The major advantages of echo-planar 

imaging over conventional imaging are (a) reduced imaging time with the potential for improved 

patient throughout, (b) reduced motion artifact, and (c) the ability to image rapid physiologic 

and kinetic processes.” [9] On the other hand, limited spatial resolution, low signal and high 

sensitivity to magnetic susceptibility changes is followed. To perform EPI sequences, the 

 
15 The inversion time also depends on the main magnetic field strength 𝐵0. 

16 The temporal resolution; the shortest time for acquisition of single frames of a dynamic process, is related to the total acquisition 

time. 

17 It refers to the single-shot EPI; forming of a whole k-space within one excitation sequence. 

18 k-space is a grid representing spatial frequency (x-axis of k-space) and phase (y-axis of k-space) information in the MR image. 
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demands on MR hardware and software are placed. Large gradient amplitudes are necessary. 

The speed of the EPI sequence is limited by the gradient switching. 

Diffusion Weighted Imaging (DWI) EPI sequence is extremely prone to image artefacts. EPI 

sequences are very sensitive to non-zero resonance fields that are caused by magnetic 

susceptibility and eddy current effects. A more detailed explanation of distortions that are 

present in EPI sequences is given in the chapter 6.3.2. EPI images show a low bandwidth19 in the 

phase encoding direction; thus, image distortions are typical along the phase encoding direction.

 
19 The bandwidth means a range of frequencies of a signal reception. 
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4. Diffusion Magnetic Resonance methods 

Water molecules in living tissue are not fixed in place but still move in the tissue. Diffusion 

magnetic resonance is a unique technique measuring mobility of water molecules in tissue. 

Diffusion (Brownian movement); the microscopic spontaneous, incessant movement of particles 

in random directions, can influence the MR signal intensity. Whereas in the conventional MR 

method, the signal intensity attenuation depends on the tissue type and its relaxation time, the 

diffusion MR is sensitive to water diffusion processes in tissue by applying an additional gradient 

magnetic field. Water molecules driven by a thermal energy are still moving and are colliding. 

Because of their unordered movement and their initial location changes, the signal attenuation 

comes into effect. The longer diffusion distance, the greater signal attenuation. The diffusion 

direction can be arbitrary in all directions or can be enhanced only in concrete directions in the 

case the omnidirectional diffusion is hindered by some obstacles (membranes 

and macromolecules20). 

Diffusion MR has become a pillar in neuroimaging for an assessment of some brain pathologic 

disorders. Changes in the material construction will subsequently influence how fast the 

diffusion occurs. This method is therefore excellent for evaluation of the chemical molecules’ 

movement restriction. If so, it might represent some inflammatory processes. Moreover, 

diffusion MR might be a useful technique for distinguishing between chronic and acute 

ischemia21. In addition, this method is used in a field of oncology that is a primary part of my 

master´s thesis. „Tumor cells are known to have many more membranes that both restrict motion 

and displace structures like axons that tend to have higher anisotropy. For that reason, there is 

great interest in using diffusion imaging in brain tumors.” [10] „Diffusion MR approach is 

complementary to fluorodeoxyglucose (FDG) positron emission tomography (PET), which seems 

to be more sensitive in lungs and perhaps in lymph nodes, but diffusion MR imaging, which does 

not use ionizing radiation and any tracer and affords better spatial resolution, appears promising 

for the management of breast, prostate, liver, and thyroid cancers, as well as lymphomas. 

 
20 Fibrous structures of muscles and white brain matter. 

21 Brain ischemia means an insufficient blood flow to a brain. Acute brain ischemia happens abruptly and demands an immediate 

health care. While, chronic brain ischemia means progressive narrowing of arteriae caused by ageing and wrong lifestyle. 



4 Diffusion Magnetic Resonance methods  
 

24 
 

Furthermore, diffusion MR imaging gives access to tissue obscured by sites of physiologic FDG 

accumulation, such as in the pelvis around the bladder.“ [11] 

Diffusion is mostly isotropic, so does not depend on the direction, thus the diffusion probability 

is the same in all directions. The diffusion might be also anisotropic (highly influenced by the 

direction of the diffusion gradient) in some tissues, such as white brain matter and muscles. The 

result of the diffusion MR imaging is either a gray map representing the diffusion scale (DWI) 

or a color scale map (Diffusion Tensor Imaging (DTI)). Isotropic diffusion can be represented 

by the DWI method, whereas the DTI method is a great tool for visualization of anisotropic 

diffusion. In my thesis the emphasis is put on diffusion weighted imaging method. 

Gray brain matter shows isotropic diffusion, whereas white brain matter shows its direction 

dependency, thus DTI is the right method to investigate the white matter. In the structures 

of gray matter there is no coherence between internal structures, thus gray matter is isotropic. 

„Water diffusion is anisotropic in brain white matter, because axon membranes limit molecular 

movement perpendicular to the fibers.“ [15] „It was found that the diffusivity in white matter 

structures is much slower when the diffusion is measured perpendicular to the neuronal fiber 

orientation, than in parallel.” [17] While diffusion in the isotropic media can be described by 

a single number, the diffusion in the anisotropic media can be calculated via 3x3 matrix, so-called 

the diffusion tensor, representing diffusion along three axes. 

4.1. The mathematics of diffusion 

Diffusion processes in general can be described by two Fick´s laws. According to the Fick´s first 

law 4.1, flux of particles 𝐽 is directly proportional to the concentration gradient ∇C related by the 

diffusion coefficient 𝐷. The Fick´s first law determines the density and the direction of flux. The 

flux depends on the material microstructure as determined by the diffusion coefficient. The 

negative sign in the equation indicates the particles flow from higher to lower concentration. The 

fact that particles´ concentration gradient decreases with an increase in time is not considered 

while using the Fick´s first equation. 

𝐽 = −𝐷
𝑑𝐶

𝑑𝑥
          (4.1) 

o 𝐽: diffusion flux [
1

𝑚2·s
] 
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o 𝐷: the diffusion coefficient [
𝑚2

𝑠
] 

o 
𝑑𝐶

𝑑𝑥
: the concentration gradient at the position 𝑥 [

1

𝑚4] 

The Fick´s second law (4.2) indicates the concentration change over time 𝑡 is equal to the change 

in the diffusion flux. 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
          (4.2) 

Both Fick´s laws describe the macroscopic mutual diffusion in which particles drift to lower 

concentration. 

4.1.1. Diffusion parameters 

The diffusion coefficient 𝐷 (the diffusivity) gets increased proportionally to the absolute 

temperature 𝑇 and is inversely proportional to the viscosity of the medium η and the size 

of diffusing particles, as highlighted in the Stokes-Einstein equation22 4.3. The diffusivity 

expresses how fast one material can go through another material. The higher diffusivity, the 

faster diffusion process. The 𝐷 of pure water at room temperature is 2.2 · 10−3 𝑚𝑚2 · 𝑠−1. 

𝐷 =
𝑘 · 𝑇

6π · η · R
          (4.3) 

o 𝑘: the Boltzmann constant23, 𝑘 = 1.38 · 10−23 [𝑚2 · 𝑘𝑔 · 𝑠−2 · 𝐾−1] 

o 𝑇: the thermodynamic temperature [𝑇] 

o η: solvent viscosity of a medium η [𝑘𝑔 · 𝑚−1 · 𝑠−1] 

o R: a particle radius R [𝑚] 

The susceptibility to diffusion, thus a range of diffusion weighting, is described with the b value 

including the strength and time duration of diffusion gradients (so the area under the gradient 

pulse amplitude vs. time curve). The higher b value, the stronger diffusion effect. The 

consequence of using higher b values is the contrast improvement, but it means low Signal 

 
22 The Stokes-Einstein equation can be applied for particles in a viscous fluid. 
23 The Boltzmann constant expresses the relation between the energy and the temperature of the gas in thermodynamics. 
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to Noise Ratio (SNR)24. While applying higher b values longer acquisition time usually follows25, 

thus some motion artefacts can be present. A number of b values and their numerical values are 

selected prior the examination. The MR signal attenuation is high for large b values and in the 

case of fast diffusion. The unit of b value is [
𝑠

𝑚𝑚2]. Greater diffusion weighting, thus a larger 

b value, is accomplished by increasing the gradient amplitude G, duration δ and by making wider 

the interval between gradient pulses Δ. Thus, b value is calculated according to the formula 4.4. 

𝑏 = 𝛾2 · 𝐺2 · δ2 · (Δ −
δ

3
)         (4.4) 

 

Figure 4.2: The pulsed MR gradient diffusion method within the EPI sequence, two diffusion gradient lobes 

are inserted along both sides of the 180° RF pulse. [12] 

 

Figure 4.3: DWI axial brain images for 5 b values from left to right, 𝑏 = 0, 𝑏 = 200, 𝑏 = 500, 𝑏 =

1000, 𝑏 = 2000 [
𝑠

𝑚𝑚2]. 

The ADC (Apparent Diffusion Coefficient) represents a degree of diffusion within tissue. Its unit 

is [
𝑚𝑚2

𝑠
]. The importance of this parameter is its reproducibility in the clinical practice. The study 

[13] revealed the reproducibility of the ADC measurement of malignant hepatic tumors. Today´s 

MR scanners enable to automatically obtain the ADC parametric map (a graphical representation 

 
24 SNR measure is intended to compare the level of signal to the background noise level. 

25 The higher b value, the longer duration of diffusion gradient pulse application. The echo 𝑇𝐸 and repetition 𝑇𝑅 time get increased; 

thus, the acquisition time is longer. Moreover, at higher b values, lower signal level is reached. The compensation technique lies in 

several repetitions of excitation sequences; determined with the Number of Excitations (NEX). 
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of ADC values) by acquiring of the DWI set of images at two b values, 𝑏 = 0 and a non-zero b 

value. The ADC parameter might be calculated according to the formula 4.5. The structures with 

low ADC values are displayed with a dark color, whilst a bright color represents high ADC values. 

„ADC maps can provide additional information for tumor grading and assessing the effects 

of therapy in cases where 𝑇1- and 𝑇2-weighted images alone provide insufficient diagnostic 

information.” [10] 

𝐴𝐷𝐶 = −
ln (

𝑆
𝑆0

)

𝑏
          (4.5) 

o 𝑆0: a signal intensity of no diffusion gradients [-] 

o 𝑆: a signal intensity for b value [-] 

o 𝑏: a non-zero b value used for ADC calculation [
𝑠

𝑚𝑚2] 

Brain tissue ADC [x 10-3 mm2·s-1] 

Relative signal (at 𝒃 =

𝟏𝟎𝟎𝟎) [
𝒔

𝒎𝒎𝟐] 

CSF 2.94 0.05 

Gray matter 0.76 0.47 

White matter 
perpendicular to fibers 

0.45 0.63 

White matter 
parallel to fibers 

0.95 0.39 

Table 4.1: Typical ADC values for human brain tissue. [2, p. 331] The diffusion in a fluidic CSF is not hindered, 

thus ADC value of CSF is the highest and it means the lowest measured signal level. Water diffusion is less 

restricted in the CSF than in gray and white brain matter. The difference of calculated ADC values and 

measured signal in gray and white matter is due to their composition. White matter is composed 

of myelinated26 axons, while gray matter mostly of unmyelinated axons. The water composition of GM 

(80%) is higher than in WM (70%) [14], thus the diffusion in gray matter is faster. The rate of diffusion is 

lower for white matter measured perpendicular to the neuronal fibers than in parallel to fibers, thereby the 

ADC in the perpendicular direction is lower than in the parallel direction. 

4.1.2. Diffusion in human tissue 

The utterly homogenous material shows isotropic diffusion. Water molecules in a human body, 

which is not homogenous material, are located in intracellular and extracellular environments. 

 
26 Myelin is a lipid-rich insulating layer that forms around nerve cell axons.  
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„Water molecules in extracellular environments experience relatively free diffusion while 

intracellular molecules show relatively “restricted diffusion”. Different tissue of the human body 

has a characteristic cellular architecture and proportions of intra and extracellular 

compartments; and hence have characteristic diffusion properties. The relative proportion of the 

water distribution between these compartments is affected by the pathologic processes.“ [15] 

Water molecules are located between the intracellular and extracellular space approximately 

in a ratio 3:1 depending on the exact tissue and the organ. Water molecules diffusion is more 

hindered in the intracellular space, due to the presence of macromolecules and membranes with 

higher viscosity, than in the extracellular space. Water diffusion in tissue with high cellular 

density is more restricted than in tissue with low cellularity. „Also the cellularity (ratio of volume 

occupied by the cells to the volume of the extracellular space) has a large impact on the diffusion 

in biological tissues. When the number of cells increases, as in cancer, there is less extracellular 

space to allow diffusion, thus the diffusion drops.” [16] 

In living tissue, the diffusion is not free, the diffuse water molecules are hindered by cell 

membranes and fibers. It follows, the diffusion in tissue deviates from the Gaussian law, unlike 

pure liquids, for instance. In the diffusion coefficient 𝐷 calculation, there is a deviation due to the 

interaction of water molecules with some obstacles, thus 𝐷 is not the free diffusion coefficient, 

hence, ADC coefficient was released. No single 𝐷 value fully describes the diffusion process 

in living tissue. The stronger diffusion effect, the more significant non-Gaussian behavior. 

According to the Gaussian model, the graphical representation of the signal attenuation against 

the b values is a straight line with its slope ADC value. The signal intensity 𝑆 from the tissue 

with the Gaussian model can be calculated according to the formula 4.6 with the traditional 

mono-exponential model. The assumption of this model is that all water molecules follow the 

Gaussian law. It is a simple model widely implemented in most MR scanners. 

𝑆 = 𝑆0 · 𝑒−𝑏·𝐴𝐷𝐶           (4.6) 

To model the non-Gaussian behavior, several models can be implemented. For instance, it is the 

Kurtosis model, the Stretched Exponential model and the Statistical model. Moreover, Intravoxel 

incoherent motion (IVM) (a biexponential model) can be present as well, in detail explained in the 

chapter 4.3. The non-Gaussian behavior is considerably visible at high b values. The behavior 

departing from the mono-exponential function can be recognized by applying a large b value. 
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• Diffusion Kurtosis Imaging 

An example of non-Gaussian diffusion effect is the Diffusion Kurtosis Imaging (DKI). The Kurtosis 

effect is likely to be observable at higher b values (roughly higher than 1500 
𝑠

𝑚𝑚2). The diffusion 

effect is stronger when gradient pulses are applied along the axons of cells. The signal 

attenuation level at these larger b values is lower than expected (see the figure 4.6) At lower b 

values the signal attenuation is almost straight just as with the Gaussian diffusion. „Whole-body 

diffusion kurtosis imaging has the potential to extract more microstructural information than the 

ADC, as a high-degree diffusion weighting (high b values) increases the effect on the signal 

of obstacles to free diffusion present in tissue, notably cell membranes.“ [11] 

The non-Gaussian diffusion in the Kurtosis model includes an additional term to calculate the 

measured signal level. 𝐾 parameter represents a degree of a deviation from the mono-

exponential model, it means when Gaussian diffusion is taken into account. DKI tool requires 

to use at least three b values (𝑏 = 0 and two non-zero b values) to acquire model parameters D 

and K. The Kurtosis fitting model can be unstable when reaching high b values. 

𝑆 = 𝑆0 · 𝑒−𝑏·D+
𝑏2·D·K

6           (4.7) 

o K: the Kurtosis parameter [
𝑚𝑚2

𝑠
]27 

 

• Stretched Exponential model (SEM) 

The Stretched Exponential model is modification of the mono-exponential model. Unlike the 

mono-exponential model, this model does not consider any shape of distribution of diffuse 

molecules. The parameters DDC and α were acquired by fitting the SEM to the DWI data 

according to the equation 4.8. It is necessary to utilize at least three b values (𝑏 = 0 and two 

non-zero b values) to optimally fit the model and obtain the parameters DDC and α. The DDC 

parameter has the same properties as the ADC coefficient. α values range between 0 and 1 and 

represent the heterogeneity of the diffusion signal. If α = 1 all water molecules diffuse in tissue 

follow the Gaussian distribution. 

 
27 The Kurtosis parameter for the Gaussian diffusion is zero, for non-Gaussian diffusion K is usually positive. 
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𝑆 = 𝑆0 · 𝑒[−(𝑏·DDC)α]          (4.8) 

o DDC: a distributed diffusion coefficient [
𝑚𝑚2

𝑠
] 

o α: a heterogeneity index [-] 

• Statistical Diffusion model (SDM) 

The signal attenuation rate of the SDM is influenced by parameters of the Gaussian distribution; 

a center of the Gaussian distribution 𝐷𝑔 and the width of the Gaussian distribution σ. In the case 

of unrestricted diffusion, the width of the Gaussian distribution tends to zero. The SDM for small 

b values reduces to the mono-exponential model. 

𝑆 = 𝑆0 ·

1 + Φ · (
𝐷

σ · √2
−

𝑏 · σ

√2
)

1 + Φ · (
𝐷

σ · √2
)

· 𝑒−(𝑏·D+
1
2
·𝑏2·σ2)          (4.9) 

where Φ is the error function. 

Φ(x) =
2

√π
∫ 𝑒−𝑡2

𝑥

0

𝑑𝑡          (4.10) 

4.2. Diffusion weighted imaging 

Diffusion weighted imaging is characterized by measuring the random diffusion movement 

of water molecules within tissue voxels in various directions. DWI is an indispensable tool 

for examining the central nervous system (CNS). DWI MR method is a key technique for stroke 

patients and can detect early brain injuries during an infarct, too. It is a right method to pinpoint 

brain tumors. „ADC values have been shown to be decreased in highly cellular tumors such as CNS 

lymphoma, medulloblastoma, and high-grade glioma. Lower ADC values have been reported 

to be associated with higher-grades and poorer prognosis.“ [15] 

When spatial encoding gradients are on, stationary spins along the gradient magnetic field 

direction will feature with a lower phase shift, whereas phases of moving diffusing spins will be 

more affected, thus it follows a greater loss of signal. The amount of loss signal is proportional 

to the diffusion rate. 

In order to obtain absolutely DWI weighted image, the repetition time is long to minimize 𝑇1 

effects. In order to avoid 𝑇2 effects, the 𝑇𝐸 echo time should be as low as possible, however, to 
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apply both diffusion gradients, longer 𝑇𝐸 is required. Hence, each DWI image is also 𝑇2 weighted 

image. The idea of DWI stems from the 𝑇2 signal attenuation that determines a degree 

of diffusion. If molecules can diffuse through the material more easily, the higher signal 

attenuation is followed. In the structures with the free diffusion the low signal level is measured, 

thus this structure is highlighted with a dark color. In contrast, structures that hinder the diffusion 

are highlighted with a light color, because there is not significant signal attenuation. DWI images 

might be misinterpreted due to the 𝑇2 shine through effect. If 𝑇2 relaxation time of some 

pathologic tissue is long, it might cause the signal increase in the isotropic DWI image that can 

be subsequently wrongly assessed as diffusion restrictions. In contrast, ADC maps eliminate this 

effect and can objectively asses the diffusion rate. Higher b values eliminate this effect, too. 

 

Figure 4.4: MR axial brain scans showing the presence of a subacute to chronic infarct in the left putamen, 

a: FLAIR image, b: 𝑇1 weighted image, c: DWI image, d: ADC map. [18] 

4.2.1. DWI Pulse sequence 

DWI images, which are commonly acquired with EPI sequences, are significantly prone to image 

distortions. Moreover, the DWI protocol is often quite long28, thus the DWI sequence is sensitive 

 
28 The DWI exam itself does not take too long time, but the whole DWI protocol usually includes applying several b values, thus the 

exam prolongs.  
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to motion distortions29. The origin of the distortions and the following correction algorithms are 

explained in the section 6.3.2. 

A degree of diffusion is determined by the b value. DWI pulse sequences often begin with the 

acquisition of 𝑇2 image with no diffusion weighting, which means a baseline 𝑏 = 0 image. During 

the DWI MR scan additional diffusion encoding gradients are applied in all three directions 

simultaneously with imaging gradients. The diffusion gradients are active right before and right 

after the 180-degree pulse. The diffusion gradients make the sequence susceptible to diffusion. 

Both gradients cause a residual phase shift in diffusion spins, thus subsequent further signal 

attenuation. The readout process starts immediately after the second gradient ceases. Unlike 

conventional MR imaging methods, DWI requires a higher performance of gradient coils, since 

the diffusion gradients must be rapidly switched on and off. 

 

Figure 4.5: DWI sequence, 𝐺𝑅 is a read-out (a frequency encoding gradient in x-axis), 𝐺𝑃 is a phase 

encoding gradient in y-axis, 𝐺𝑆 is a slice selective gradient in z-axis. Diffusion gradients (gray rectangles) 

are applied in all axes on both sides of the 180° pulse. [19] 

4.3. Intravoxel incoherent motion 

As discussed in the section 4.1.2., diffusion in biologic tissue does not follow the Gaussian 

distribution. The induced signal loss is due to the water molecules random movement. IVIM 

concept provides an extra view on MR diffusion methods. The perfusion imaging technique IVIM, 

the powerful addition to the diffusion MRI, incorporates two effects causing non-exponential 

signal loss whose decay velocity depends on b values. Not only is the microscopic water 

molecules movement caused by diffusion (true diffusion) but also by the blood flow in capillaries, 

 
29 Head motion is not very susceptible to the origin of this kind of artefacts. Motion distortions are commonly distinct in abdominal 

examination, for instance. 
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the so-called capillary perfusion. Both effects play an important role on a subvoxel scale. 

Microcirculation in the bloodstream, the so-called pseudo-diffusion, represents water molecules 

movement from one capillary to the next one. The blood stream in capillaries mimic diffusion 

processes. This effect influences the DWI signal primarily at low b values. Above this low b value 

threshold in the case there are no perfusion effects, the ADC is equal to the diffusion coefficient 

in tissue. If the perfusion is given in voxels, the ADC is higher than the diffusivity 𝐷. „IVIM‐DWI 

thereby provides the opportunity not only to compute an ADC value but rather to measure the 

respective influence of true molecular diffusion and microcirculation within a voxel.“ [20] The 

signal attenuation highly depends on a blood velocity and a structure of the bloodstream. Due to 

the fact the pseudo-diffusion effect vanishes 10 times faster than diffusion, both effects can be 

separated. [21] To separate both effects, the high SNR must be present. However, there is not 

an exact value of the b parameter to determine a threshold where both effects can be separated. 

This threshold is chosen according to the SNR parameter values and the expected perfusion rate 

depending on an examined part of the body. Both effects themselves contribute to the mono-

exponential MR signal decay. IVIM allows to simultaneously make use of both diffusion 

and perfusion imaging concepts. The importance of IVIM method is the ADC calculation 

and especially determining of diffusion and perfusion contributions within voxels. 

The final DWI IVIM signal is acquired by scanning with several b values. At low b values (lower 

than 300 – 500 
𝑠

𝑚𝑚2) there is larger MR signal attenuation due to capillary perfusion. In the case 

strong diffusion gradients are applied, the diffusion effect prevails over the perfusion effect, 

whilst with weaker diffusion gradients the IVIM capillary perfusion effect contributes significantly 

to signal attenuation. The choice of b values depends on the examined organ. 

IVIM effect is very different in other vessel types due to their different structure. Large vessels 

might experience the IVIM flow since the laminar or turbulent flow cause the spatial distribution 

of blood velocities in vessels resulting in the IVIM effect. A signal from large vessels with the rapid 

flow acquired with low b values decay very fast, whereas a signal from small vessels with a slower 

flow might contribute to the IVIM effect. 
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4.3.1. The use of IVIM 

Diffusion and perfusion MRI are becoming more relevant in the clinical use since both methods 

can provide information about the tissue properties, such as cellularity and vascularity. The IVIM 

effect is not only related to the blood flow, it is also susceptible to any flow if there is the IVIM 

distribution. The CSF flow, which might be a right example, can be altered in several pathological 

conditions, such as hydrocephalus30 and syringomyelia31. The flow from a pancreas, salivary 

glands and breast ducts can be right examples as well. In addition, the tubular flow and the 

vascular perfusion in kidneys can be described by the IVIM technique, too. 

MR diffusion sequences are part of today´s MR scanners protocols, thus IVIM images can be 

easily obtained simultaneously with DWI images. Furthermore, IVIM exams do not require the 

contrast agents32 administration. Hence, this technique is relevant in patients with renal failure33 

and in patients with adverse reactions to contrast agents.34 IVIM techniques might be 

implemented due to substantial technical MR hardware progress, especially due to large MR 

gradients and MR sequences development. 

According to my information, IVIM methods have never been put into practice yet. Its practical 

significance is still being investigated. „IVIM is a niche in clinical practice because it is not 

implemented in commercially available software, and depends on off-line analysis in custom 

software.” [16] On the other hand, IVIM has successfully showed its significance in various 

organs, often related to oncological applications. IVIM method could be used in a field 

of oncology for differentiation of brain tumors as my master´s thesis is focused on. „Brain 

imaging with IVIM is particularly challenging due to the low blood volume fractions of cerebral 

tissue and CSF partial volume contamination.“ [22] The study [22] investigated patients 

 
30 Hydrocephalus is a condition featuring with an abnormal build-up of the CSF. It causes the increased pressure inside the skull. 

31 Syringomyelia is a genetic condition in which a cyst or a cavity form within the spinal cord. 

32 Contrast agents have become a vital part of MR imaging used to better visualize inner organs since they improve the tissue 

contrast. In general, contrast media adjusts the relaxation rates in tissues where they accumulate. 
33 Gadolinium based contrast agents might increase risks of disease nephrogenic systemic fibrosis in people with severe kidney failure. 

34 There are other MR techniques measuring perfusion. Arterial Spin Labeling (ASL) does not demand the administration of 

gadolinium contrast medium but its drawback is limited spatial resolution. The study [108] revealed the correlation between some 

IVIM and ASL parameters in brain tumors. Other perfusion methods, Dynamic Susceptibility Contrast (DSC) and Dynamic Contrast 

Enhancement (DCE), require the contrast agents administration. 
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with brain tumors and acute strokes: „Recent work in neuro-oncology has shown the potential 

for IVIM in differentiating tumor recurrence from posttreatment effects in the preoperative 

evaluation of tumor grade and in differentiating primary CNS lymphoma from glioblastoma. IVIM 

has also been applied in the setting of acute stroke.“ The studies [23] [24] showed the potential 

of IVIM to assess the liver cirrhosis and to characterize liver lesions. Moreover, renal dysfunction 

might be detected by this technique, too. [25] The potential of IVIM concept is rapidly extending. 

IVIM concept might be also an optimal approach for non-perfusion aspects. IVIM could be also 

used in the future in MR IVIM virtual elastography for assessing mechanical properties of soft 

tissue, which means for detecting liver fibrosis, for example. The correlation between IVIM and 

MR elastography was confirmed. „Mechanical vibrations used for MR elastography also induce 

phase distributions in each tissue voxel and an IVIM effect when considering the amplitude of the 

signal. This IVIM effect will be larger in normal tissue than in lesions, presenting higher elasticity 

values, and IVIM MRI could be used, potentially, to estimate those elasticity values.” [26] 

In addition, supposing the flow in large vessels leads to the velocity distribution within the vessels 

lumen and subsequent IVIM signal attenuation, IVIM can be used for 3D angiography, too. [21] 

Therefore, it brings advantage for evaluating the blood vessels and identifying their 

abnormalities without the need of a contrast medium administration. 

4.3.2. IVIM limitations 

To correctly estimate IVIM parameters, handling with the noise must be taken 

into consideration. A high level of noise might highly impact the calculated IVIM parameters. 

A high SNR value is essential to overcome noise distortions. This value is limited, beside other 

indicators, by artefacts caused by other flow sources. Hence, it is difficult to separate the flow 

in the area of kidneys, salivary glands, pancreases and mammary glands. „At high b values, when 

SNR becomes low, the signal reaches a “noise floor” and does not get to 0. The signal attenuation 

appears curved, even for mono-exponential diffusion, and fitting signals with any diffusion model 

will give erroneous values.“ [21] Especially the perfusion fraction parameter 𝑓 is susceptible 

to noise distortions leading to underestimation of this parameter that can even become 

negative. [21] The noise can be minimized by using phase-array coils35. Although the higher noise 

 
35 Phased array coils are RF receiving coils consisting of multiple surface coils aligned into an array. 
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level is more common at high b values, images acquired with low b values can be disrupted by the 

noise, too. 

In the case of the non-Gaussian behavior at large b values, the noise is more evident. The signal 

does not reach the zero level but is still above a threshold, the so-called the Rician noise floor. 

The noise can cause the discrepancy between DWI acquired data and calculated IVIM 

parameters. „However, the fitting process is known to be sensitive to noise and may lead 

to erroneous or inaccurate parameter estimates if the number of acquired signals is not very large 

compared to the number of parameters to estimate.“ [21] The distortions due to noise 

in diffusion (IVIM) images are in detail described in the section 6.3.2.1. 

Another deviation might originate from not perfectly calibrated RF pulses. This imprecision is 

inherent arising due to the 𝐵0 field inhomogeneity. An important drawback of IVIM is the lack 

of standardization of scanning parameters and the choice of b values. [16] 

4.3.3. IVIM model 

IVIM effect of the biexponential model, today´s most common model, is represented with the 

equation 4.11. The parameter 𝑓 (dimensionless), the flowing component, represents the 

perfusion fraction36 (the area of intravascular space), so the percentage expression of voxels 

volume occupied by capillaries. The 𝑓 parameter is high in greatly perfused tissue. While the 

static parameter (1 − 𝑓) represents the area of extravascular space where only diffusion is 

evident, so no perfusion processes at all. D ∗ pseudo-diffusion coefficient in the blood is a rate 

of spins dephasing due to the pseudo-diffusion effect. D ∗ is usually one order of magnitude 

greater than the diffusivity 𝐷 in the tissue. [27] Due to this fact, the D ∗ effects at b values higher 

than approximately 200 
𝑠

𝑚𝑚2 on signal attenuation level can be neglected. As a result, at these 

higher b values the equation 4.11 can be adjusted to the basic form 4.6. 

𝑆

𝑆0
= (1 − 𝑓) · 𝑒(−𝑏·D) + 𝑓 · 𝑒(−𝑏·D∗)          (4.11) 

 
36 Under the assumption of the IVIM concept, protons in the blood do not leave the bloodstream. Otherwise, this fact might be 

another source of a mistake when estimating 𝑓 parameter. 



4 Diffusion Magnetic Resonance methods  
 

37 
 

ADC parameter is calculated according to the formula 4.12. ADC coefficient gets increased at low 

b values, because perfusion contributes to ADC values more at low b values. 

𝐴𝐷𝐶 = 𝐷 +
𝑓

𝑏
          (4.12) 

The semilogarithmic relation of signal attenuation on the y-axis and b values on the x-axis 

without the pseudo-diffusion effect is a straight line with a slope of the 𝐷 parameter. When both 

effects are considered, both effects contribute to the MR signal separately leading to a bi-

exponential shape of the function. 

 

Figure 4.6: A semilogarithmic plot of signal attenuation ln (
𝑆

𝑆0
) vs b values. When only Gaussian diffusion 

is considered, this relation is represented by a straight line with the slope of 𝐷 coefficient. While, when both 

effects, so diffusion and pseudo-diffusion are taken into account, the curve is changed to its bi-exponential 

shape. The IVIM effect is observable at low b values. The signal attenuation is greater at low b values than 

expected. The non-Gaussian Kurtosis effect is observable at higher b values. The signal attenuation is lower 

at high b values than expected. [28] 

By acquiring DWI images with the EPI sequence at several b values and subsequent fitting of MR 

signals values, IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ can be extracted. Since the IVIM effect is observable 

at low b values, more low b values are considering. Due to the fact there are three IVIM 

parameters, a minimum of three b values must be used to describe the bi-exponential IIVM 

model. „The number of b values used for extracting perfusion-sensitive information at DW-MRI 

varies between studies and ranges from four to more than 10.” [29] If the images are acquired 

with more b values, the more accurate IVIM parameters calculation and the total inaccuracy 

estimation is given. On the other hand, longer acquisition is followed. It follows, a balance 

between the acquisition time and the image quality must be taken into consideration. [16] The 
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parameters estimation is influenced by physiologic processes in the tissue and by the noise. The 

number of implemented b values and their numerical values influence the final IVIM parameters 

calculation. IVIM fitting methods, the parameters extraction and their statistical analysis, which 

I implemented in my practical task, are described in the chapter 9. 

As mentioned above, the bi-exponential model is the most common model type. However, there 

are other models fitting the IVIM parameters. Two other important models are described. 

• Sinc model 

Signal attenuation can be modeled with the 𝑠𝑖𝑛𝑐 function37 since the blood flow is not too fast, 

capillary segments are long and long measurement time cannot be accomplished. [21] In this 

case, blood nuclear spins remain in capillary segments during the diffusion encoding. The 𝑐 

coefficient is the pulse gradient factor similar to the diffusion b value. The 𝐷 ∗ can be calculated 

according to the formula 4.14. 𝐷 ∗ does not depend on the capillary length since nuclear spins 

do not travel through capillary segments when the diffusion encoding is on. [21] 

𝑆

𝑆0
= 𝑓 · 𝑒(−𝑏·D) · 𝑠𝑖𝑛𝑐(𝑐 · 𝑣𝑏𝑙𝑜𝑜𝑑)         (4.13 

D ∗=
𝑣𝑏𝑙𝑜𝑜𝑑

2 · 𝑐2

6 · 𝑏
          (4.14) 

• Mono-exponential model 

In today´s clinical studies another IVIM model is present; the mono-exponential (pseudo-

diffusion) model. „The exponential pseudo-diffusion model assumes blood changes several times 

direction (capillary segment) during the encoding time. This condition is met when flow is fast 

enough, capillary segments are not too long and the encoding time is long enough to 

accommodate those direction changes.“ [21] 

𝑆

𝑆0
= 𝑓 · 𝑒[−𝑏·(D+D∗)]          (4.15) 

 
37 The sinc function is defined for x ≠ 0 as 𝑠𝑖𝑛𝑐(𝑥) =

sin (𝑥)

𝑥
 

 



4 Diffusion Magnetic Resonance methods  
 

39 
 

The pseudo-diffusion coefficient D ∗ is a sum of the IVIM effect and the diffusion coefficient 

of water molecules in blood 𝐷. 

𝐷 ∗=
𝐿 · 𝑣𝑏𝑙𝑜𝑜𝑑

6
+ 𝐷          (4.16) 

o 𝐿: mean capillary segment length [𝑚] 

o 𝑣𝑏𝑙𝑜𝑜𝑑: a blood velocity [
𝑚

𝑠
] 

Unlike these both models; sinc and mono-exponential model, the bi-exponential model can 

better describe a whole IVIM concept, because this model contains contributions to IVIM signal 

from both areas, so from intra and extravascular space. 

4.3.3.1. IVIM fitting algorithms 

A major challenge of IVIM is to estimate the parameters with high accuracy and to obtain the 

parametric maps (distribution of IVIM parameters) with a low noise level. Therefore, the IVIM 

fitting model plays a vital role. IVIM parameters numerical values may depend on a chosen fitting 

algorithm. Errors in IVIM parameters estimation might be overcome by increasing SNR of the 

acquisition technique, choosing a higher number of b values and by application of post-

processing denoising filters and other distortions correction techniques. „Generally, more b-

values will improve fitting stability, so at this stage we would recommend acquiring as many b-

values as practical.“ [30] 

It is possible to fit the data of both effects at the same time or to split the fitting process into two 

fitting steps; the first for diffusion from high b values and the second for perfusion at low b values 

after removing the diffusion signal part. This iterative fitting algorithm is more robust. 

Acquired diffusion MR signals are fitted to a specific IVIM model. The estimation of all IVIM 

parameters is performed voxel by voxel. The explanation of fitting algorithms below is given 

for the bi-exponential model. There are two main fitting types; the first based on the least 

squares algorithms and the second based on the probability theory. 
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4.3.3.1.1. Least squares algorithms 

MR IVIM parameters estimation based on least squares fitting algorithms are so far the most 

typical. However, it is speculated about its susceptibility to noise. The mathematical description 

of least squares fitting algorithms is given in the appendix in A.I. 

Since the IVIM model consists of three parameters, there might be three fitting approaches. 

• One step fitting method 

Within one step fitting method all IVIM parameters are fitted simultaneously in a single process 

over all b values using the equation 4.11. This method is simple, but the estimated parameters 

are not usually accurate due to the interaction between diffusion and pseudo-diffusion 

components of the signal. Its drawback is the limited robustness. Hence, the parameters 

estimation might be improved by implementation of step by step fitting algorithms that are more 

robust and moreover, show substantial lower computational cost. 

• Two steps fitting method 

The 𝐷 parameter is derived from the conventional mono-exponential model 4.6 since it is 

assumed perfusion effects are negligible at high b values; approximately higher than 200 
𝑠

𝑚𝑚2. 

The 𝑓 and 𝐷 ∗ are after that derived from the bi-exponential fitting 4.11 over all b values. 

• Three steps fitting method 

Together with the two steps fitting method, the 𝐷 is derived from the mono-exponential model. 

Secondly, the parameter 𝑓 is calculated according to the formula 4.17. The last step is to derive 

the 𝐷 ∗ parameter from the bi-exponential equation 4.11 over all b values. 

𝑓 =
𝑆0 − 𝑆(𝑖𝑛𝑡)

𝑆0
          (4.17) 

o 𝑆(𝑖𝑛𝑡): an intercept of the signal curve with the y-axis 

At high b values the signal can be approximated with the mono-exponential decay and even 

simplified with a linear fit. Therefore, in two and three steps fitting methods, the 𝐷 parameter 

can be obtained with a linear regression (linear least squares) algorithm using b values higher 

than roughly 200 
𝑠

𝑚𝑚2. An initial value of the 𝑓 parameter is given as the y-axis intersection of the 
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linear regression based on the equation 4.17. 𝑓 and 𝐷 ∗ parameters are also derived from the bi-

exponential fitting 4.11 with implementing the non-linear least squares method. 

4.3.3.1.2. Algorithms based on probability theory 

There are two significant fitting algorithms based on probability theory, namely the Bayesian 

method and the maximum likelihood estimation. In a nutshell, the Bayesian theorem describes 

the process how to update probability of an event based on prior knowledge of all conditions 

related to the event. Maximum likelihood estimation (MLE) is a method to estimate the 

parameters of given data distribution using some observed data. The detailed mathematical 

description is shown in the appendix A.II.
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5. Magnetic resonance imaging of the central 

nervous system 

Magnetic resonance imaging plays a vital role in neuroimaging. „MRI of the brain is the most 

commonly performed examination at most institutions which reflects the enormous amount 

of information that MR provides about this complex organ.“ [2, p. 19] MR is able to differentiate 

between gray and white matter and is an indispensable tool for brain tumors and other brain 

abnormalities detection. There are two basic MR brain exams; with and without contrast agents 

administration. The contrast-free brain exam is used for general brain disorders evaluation. The 

exam with contrast medium administration is intended to be used in patients for inflammatory 

processes imaging, tumors detection, diffusion and other abnormalities detection. 

This chapter incorporates a basic description of brain anatomy. It gives a description of the brain 

segments that are utilized in the practical task, namely brain edema, a contrast enhanced part 

brain lesions (tumors) and a contrast non-enhanced part of tumors. An example of the brain 

image with highlighted these three brain segments is introduced in the section 8.4. Three types 

of brain tumors the patients from this study suffered from are briefly explained here. 

5.1. Brain anatomy on Magnetic Resonance Imaging 

The nervous system is divided into the central and peripheral nervous system. The central 

nervous system includes the brain, cranial nerves and the spinal cord, whereas the peripheral 

nervous system encompasses the nerves outside the CNS. The description in this section is 

focused on the brain. 

The brain is housed in a bony structure called the skull (cranium) that cushions the brain from 

injury. Between the brain and the skull there are three layers of the meninges protecting the 

brain and the spinal cord. Cerebrospinal fluid (liquor), which is clear and colorless, is found within 

the brain and the spinal cord. Its total volume is approximately 150 ml and its daily production is 

approximately 450 ml, which means it is replaced itself three times a day. [32] Liquor has 

mechanical and supportive functions and also protects the brain from sudden temperature and 

pressure changes. „Liquor helps to maintain the correct composition of the environment 

surrounding nervous tissue cells (homeostasis). It also partially provides the supply of nutrients 
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and disposal of the metabolic waste products and forms a medium through which a diffusion of 

a various signal molecules (like neurotransmitters) takes place.“ [33] 

The central nervous system incorporates two fundamental tissues; gray matter and white 

matter. Gray matter is typical for the tissue composition of neuron cell bodies, dendrites 

and unmyelinated axons, whilst white matter of myelinated axons. Gray matter is located in the 

areas with higher concentration of cell bodies. The white matter is situated in deeper subcortical 

brain areas where axon tracts prevail. Brain structures dominantly composing of gray matter are 

responsible for sensory perception and muscular activity. Since white matter is composed 

of myelin, it helps to insulate axons and enables to fasten the nerve signals transportation to the 

spinal cord. According to studies [34] [35], the gray-white matter ratio (GWR) might be in the 

future a significant tool in clinical practice. 

„By definition cerebral edema is the excess accumulation of water in the intra-

and/or extracellular spaces of the brain.“ [36] The magnetic resonance is an inevitable tool 

for an early brain edema detection. In 𝑇2 and FLAIR images brain edema produces increased 

signal (hyperintensity) while in 𝑇1 images a decreased signal level (hypointensity). 

 

Figure 5.2: The brain image with brain edema, contrast enhanced and non-enhanced part of a brain tumor, 

visualized in the axial plane, marked with arrows (red arrows: brain edema, yellow arrows: not contrast 

enhanced part of a tumor (an inner part of bordered area), blue arrows: contrast enhanced part of a tumor 

(a border of the inner part)). On the left: in the 𝑇1 image brain edema represents the signal hypointensity, 

thus it is visualized with a dark color. On the right: in the FLAIR image brain edema represents the signal 

hyperintensity, thus it is visualized with a light color. This kind of a brain tumor is more hyperintense on 

FLAIR image. 

A brain lesion refers to an abnormality in the MR image. Lesions might be caused by trauma, 

inflammation within brain tissue, disease and genetic defects. Different types of brain lesions 
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appear on brain MR images in a different way. A common type of a brain lesion is a brain tumor. 

Brain tumors represent a mass of abnormal cells in the brain. The study [37] gives a list of typical 

MR sequences used for brain tumor detection. „Conventional structural magnetic resonance 

imaging (MRI) remains the standard of care imaging method for neuro-oncologic practice. 

Current consensus recommendations for a standardized brain tumor MRI protocol are the 

following: 3-dimensional (3-D) 𝑇1, axial fluid-attenuated inversion recovery (FLAIR), axial 

diffusion-weighted imaging (DWI), axial gadolinium contrast-enhanced 𝑇2, and 3-D gadolinium 

contrast-enhanced 𝑇1, performed on a minimum 1.5 tesla MR system. If 3-D sequences cannot be 

performed due to time constraints or technical limitations, 2-D sequences can be substituted. The 

structural sequences (𝑇2-weighted, FLAIR, and pre- and postcontrast 𝑇1-weighted) provide the 

primary foundation of an MRI examination.“ [37] For accurate brain tumor localization contrast 

agents are often administered to the patient´s body. Contrast media administration causes the 

contrast enhancement38 in the tissue area where a contrast agent has leaked out of the blood-

brain-barrier (BBB)3940. [37] However, at some brain tumor types a whole area of tumor tissue 

cannot be visualized by the contrast enhancement. Tumor cells are also located beyond the 

enhancing margins of the brain tumor where BBB is still intact. [39] This represents the contrast 

non-enhanced tumor part as highlighted in the figure 5.2. 

Brain tumors can be divided into two main types; malignant tumors containing cancer cells 

and benign tumors containing non-cancer cells. Several brain tumor types exist. High-grade 

gliomas (HGG) are highly malignant tumors. „Among more than 100 different histological 

subgroups of brain tumors, high-grade gliomas (HGG) are the most frequent entities, accounting 

for over 50% of primary malignant brain tumors, depending on age and country. The incidence 

of HGG has increased in past decades and has become quite significant in the older population.” 

[40] These tumors are hyperintense on 𝑇2 images and hypointense on 𝑇1 images. [41] Typical 

properties of these tumors are contrast enhancement, necrosis41, hemorrhage42 and edema. [41] 

 
38 In several brain tumor types, e.g. low grade astrocytomas, the contrast enhancement is not visible. [38] 

39 Blood-brain-barrier is a selective semipermeable membrane that allows only certain substances to flow from the bloodstream 

to the brain. Its function is to protect the brain from e.g. pathogens that could be potentially harmful to neurons. 

40 Though, some non-tumoral lesions, such as infections, infarctions and demyelinating diseases, can break the BBB as well, 

thus simulate the brain tumor behavior. [39] 
41 Brain necrosis refers to the death of cells in the brain living tissue. 

42 Brain hemorrhage represents bleeding in the brain. 



5 Magnetic resonance imaging of the central nervous system  
 

45 
 

„The association of contrast enhancement with tumor grade has been extensively studied. 

Although contrast enhancement is a common feature of HGG, it remains a nonspecific finding. 

For example, almost a third of HGG tumors do not enhance.“ [41] 

Metastatic brain tumors (also called secondary brain tumors) origin is related to spreading cancer 

cells, so-called metastasizing process, to the brain tissue from another part of the body, such 

as lungs, kidneys, a colon, breasts and melanoma. Metastatic brain tumors are commonly 

considered malignant. „On MRI, metastases are usually iso- or hypointense on 𝑇1, hyperintense 

on 𝑇2, and exhibit avid enhancement. Some metastases, such as melanoma, are 𝑇1 hyperintense 

due to the paramagnetic effects of melanin. Hemorrhagic metastases may also demonstrate 𝑇1 

signal hyperintensity, depending on the age of hemorrhage. DWI usually demonstrates facilitated 

diffusion (i.e., bright on apparent diffusion coefficient (ADC) map), rather than diffusion 

restriction.” [42] Metastasis are often surrounded by vasogenic edema43. [43] 

Meningioma is a brain tumor which arises from meninges. Most meningeal tumors are benign. 

„The typical MRI signal intensity characteristics consist of isointensity to slight hypointensity 

relative to gray matter on the 𝑇1-weighted sequence and isointensity to slight hyperintensity 

relative to gray matter on the 𝑇2 sequence. After contrast administration, meningiomas typically 

demonstrate avid, homogeneous enhancement; however, they may occasionally have areas 

of central necrosis or calcification that do not enhance.“ [44] This brain tumor type is usually not 

associated with brain edema. [44]

 
43 Vasogenic edema is a type of brain edema in which BBB is disrupted. 
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6. Image processing 

Image analysis includes several steps to extract the meaningful information from acquired MR 

images. This chapter deals with the theoretical explanation of basic processing steps in MR 

images, namely the brain extraction and the image registration. In addition, the explanation 

of distortions correction on MR anatomical and diffusion images is given. Lastly, the image 

segmentation process is described. 

6.1. Brain extraction 

MR head images incorporate instead of brain and non-brain tissue other components, such 

as the skull, fat, bones, skin and eye orbits. The first step in brain image processing is the non-

brain tissue removal, the so-called skull stripping. Non-brain segments might influence further 

processing, thus their removal at the beginning of further processing is crucial. The skull stripping 

quality highly influences outcomes of further processing steps. In practice, it is always better to 

apply a less stringent method of non-brain segments removal and thus to leave some non-brain 

segments than to choose an aggressive algorithm removing all non-brain tissue 

but simultaneously eliminating little parts of brain tissue, too. 

Several skull stripping algorithms are present today. This section briefly describes mathematical 

morphology-based methods, intensity-based methods, atlas-based methods and deformable 

surface-based methods. Today´s software tools are commonly based on the automated 

processes. „Skull stripping process is a sophisticated and challenging task due to the intrinsically 

imprecise nature of the brain images. Automated algorithms for skull stripping should be robust, 

efficient, reliable, and produce consistent and more accurate results on the large volume of 

datasets. However, the presence of noise and various imaging artifacts in MR may introduce 

undesired distortions to the brain images which may substantially degrade their quality.“ [45] 

6.1.1. Mathematical morphology-based methods 

Morphological image processing is a collection of non-linear operations based on a shape of an 

object. „The key idea of morphological analysis is extracting knowledge from the relation of 

an image and a simple, small probe (called the structuring element), which is a predefined shape. 

It is checked in each pixel, how does this shape matches or misses local shapes in the image.” [46] 
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Since morphological processing originally handles with binary images as an input, the first 

processing step is thresholding. An example of thresholding technique, which is commonly used 

in skull stripping, is the Otsu´s thresholding algorithm44. In the next steps, morphological 

operations, such as erosion and dilatation, are applied on the binary images. Erosion excludes 

pixels on the object´s boundaries resulting in the object´s shrinking and the overall structure 

simplification, whilst dilation adds pixels to the boundaries and thus fills small gaps resulting 

in the structure´s size increase. There are other morphological operations based 

on a combination of erosion and dilatation, such as morphological opening (erosion followed 

by dilatation) that is intended to remove small objects from an image and morphological closing 

(dilatation followed by erosion) that is used for holes filling in the image while keeping a shape 

and a size of larger objects in the image. These operations are applied to binary images in order 

to separate the skull and other non-brain tissues from brain tissue. „The main drawbacks of these 

methods are that they often depend on many parameters such as size and shape of the structural 

element for morphological operation. These parameters are fixed by empirical experimentation; 

the value on these parameters directly influences the final output of these methods.“ [45] 

Brain Surface Extractor (BSE) is an algorithm based on this method. Its idea stems from the 

technique edge detection45 which identifies the brain border. After the edge detection algorithm 

is used, the image is binarized and then morphological operations are used to find the boundary 

between the skull and the brain tissue. These operations break connections between both tissue 

types. To improve the brain extraction accuracy, the anisotropic diffusion filter (ADF) for noise 

reduction46 is applied to MR images prior morphological operations are put into effect. [47] [48] 

6.1.2. Intensity-based methods 

Intensity based skull striping methods proceeds from classifying the brain and the non-brain 

tissue according to their intensity values of pixels in the image. These techniques are not robust 

 
44 The Otsu´s thresholding method is intended to convert a gray image onto a binary image considering two classes of the image´s 

pixels, which means foreground and background pixel classes. The threshold value for ideal separation between two classes is chosen 

if the inter-class variance is maximized, whereas the intra-class variance is minimized. The assumption of the Otsu´s thresholding 

method is a bimodal histogram of an input image. 

45 Edge detection is a method in digital image processing that finds pixels, in which the image intensity changes sharply. The edges 

might be detected by applying filters that enhance the brightness change in the image in the vertical and the horizontal direction. 
46 The anisotropic diffusion filter is an adaptive filter which removes high frequency noise preserving the sharp edges in the image.  
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since they depend on the MR scanner properties and the origin of image artefacts, which means 

for instance, on the homogeneity imperfections of the radiofrequency coils, field 

inhomogeneities, motion artefacts, low resolution, low contrast and high noise. [45] An example 

of these skull stripping methods might be thresholding whose cut value is determined from the 

intensity histogram. 

An example of this algorithm is the watershed algorithm (WAT). WAT is intended to find the local 

minima and maxima image intensities in order to find a boundary between the skull and the 

brain and thus to segment the image onto brain and non-brain components. „The basic 

assumption of the watershed algorithm is the connectivity of the white matter. Since darker gray 

matter and even darker CSF surround the connected white matter, this region can be interpreted 

as the top of a hill in a 3-dimensional virtual landscape.” [49] This approach suffers from over-

segmentation, thus it is usually followed by post-processing steps to combine regions belonging 

to the same structure. [49] On the other hand, its advantage is the simplicity and fact that it 

usually creates complete brain boundaries. [50] 

6.1.3. Atlas-based methods 

These brain extraction methods utilize already defined brain template images created by experts. 

„In recent years, several multi-atlas–based methods have been proposed, producing very 

accurate, state-of-the-art segmentations. The main premise is that multiple atlases cover much 

wider anatomical variations and, when registered to the target image, they can correct errors 

among each other, thus providing an increased accuracy and robustness.“ [51] A major challenge 

of this method is to choose an optimal brain template from the external atlas library that best 

fits the data within the study. The overall skull stripping quality is proportional to a range 

of similarity between the brain atlas images and the brain target images. 

6.1.4. Deformable surface-based methods 

A basic idea of deformable surface brain extraction methods is the application of surface models 

that specify a degree of deformation of the brain surface. The surface deformation is conducted 

iteratively. The force defining the deformation of the surface is derived from image intensities 

calculation. The level of external deforming force depends on the surface topology 

and smoothness. [52] „In general, deformable models have the potential to produce more robust 



6 Image processing  
 

49 
 

and accurate skull stripping results than methods using edge detection and threshold 

classification.“ [45] This skull stripping technique has been proven to be very robust but are 

highly susceptible to initialization of the deformation effect location. [53] Hence, some today´s 

automatic skull stripping algorithms, the so-called hybrid skull stripping methods, use 

deformable models calculated in the pre-segmentation steps according to the histograms 

analysis resulting in more accurate initialization of deformable models. [53] The study [49] 

applies firstly the watershed algorithm as the pre-segmentation step that removes most of the 

non-brain tissue. This hybrid approach shows in total both the robustness of the watershed 

algorithm and the accuracy of deformable models. 

Brain Extraction Tool (BET) applies deformable models to find the outer surface of the skull. The 

initial step is to roughly estimate a center of gravity in the brain image and the minimum 

and maximum of intensity values that determine an approximate threshold for brain/non-brain 

segmentation. It follows the brain image is binarized and the brain mask is created. [47] The 

deformation effect is initialized in the center of gravity and the deformation of the brain surface 

is performed in an iterative fashion. [53] The deformable model is expanded or shrunk in order 

reach the brain boundary. 

6.2. Image registration 

Image registration is a process of aligning two images with overlapping of common features 

located in both images and with enhancing an abnormality that is visible only in one image. 

„Image registration is the process of finding the transformation that aligns or maps an object 

of one coordinate to an object of a different coordinate. The goal of registration is to find 

a corresponding anatomical or functional position in two or more images.” [54, p. 24] Image 

registration is typically used to merge MR images with images acquired from other imaging 

modalities, to compare current image data with older image data and for distortions minimizing. 

The image that is deformed by geometric transformation is called a source image (also a moving 

image) and the second image is called a reference image (also a target image). A reference image 

controls the final resolution and FOV of a fused image. 

There are several image registration types differing from how many degrees of freedom (DOF) 

they use. The following image registration examples are given for 3D images registration. The 
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image registration might be divided into two main groups; linear and non-linear registration. Two 

main types of linear registration that were implemented in my task is rigid and affine registration. 

The rigid registration transforms images by applying rotation and translation. The actual size 

and a shape of an object is constant. It uses 6 DOF – three DOF for rotation and three 

for translation. This type of registration is convenient for the registration within the same 

subject. The affine registration is able to utilize up to 12 DOF. Not only can the affine registration 

apply rotation and translation operations, but also allows to apply scaling and shearing. Three 

DOF are used for rotation, three for transformation, three for scaling and three for shearing. This 

type of image registration is used for distortions correction, especially for eddy currents 

correction described in the section 6.3.2.3. 

The 3D affine registration is described with 12 transformation parameters usually displayed 

with the 4x4 transformation matrix 𝑇 combining effects of translation, rotation, scaling 

and shearing. The affine matrix 𝑇 transforms a vector (or a point) 𝑥 to a vector (or point) 𝑦 

according to the formula 6.2. The parameters 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 represent translation of an object 

in all three axes. Translation matrices slightly move an object along three axes, whereas rotation 

matrices are intended to rotate an object about three axes. The affine transformation is 

described by three rotation matrices representing a rotation of an object about each axis. Scaling 

matrices change a size of an initial object by shrinking or expanding an object. Last matrices, the 

so-called shearing matrices, tilt an object. The final 4x4 affine transformation matrix is acquired 

by multiplication of all the aforesaid 4x4 matrices. 

𝑇 =

𝑎11 𝑎12 𝑎13 𝑑𝑥

𝑎21 𝑎22 𝑎23 𝑑𝑦

𝑎31 𝑎32 𝑎33 𝑑𝑧

0 0 0 1

          (6.1) 

𝑦 = 𝑇 · 𝑥          (6.2) 

The non-linear registration uses more than 12 DOF and is a right method for image registration 

between different subjects. It is represented by 3D deformation (displacement) field. 

If the image registration includes the image resizing from one grid to another one, it is necessary 

to apply an interpolation method assigning values to each pixel in the output image. The 

interpolation algorithms might be divided into two main groups, into adaptive and non-adaptive 
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algorithms. „Adaptive interpolation algorithms use a pixel-by-pixel approach for interpolation 

and generate images of good visual quality whereas non adaptive interpolation algorithms 

interpolate by predetermined prototype for all pixels equally. The accuracy of output image 

depends on the number of pixels used in interpolation. But the computation time increases 

with the use of more number of pixels.” [55] In this section most frequently used adaptive 

interpolation algorithms are explained. 

• Nearest neighbor interpolation 

Nearest neighbor interpolation is a simple method that is the least time consuming. The effect 

of this algorithm is making bigger each pixel. It considers only one pixel; the unknown pixel value 

is calculated as the value of the closest neighbor pixel in the known original image. This 

interpolation method tends to produce images with lower quality. 

• Bilinear and trilinear interpolation 

The bilinear type of interpolation calculates the value of an unknown pixel according to the 

closest 2x2 pixels in the original image surrounding an unknown pixel. The value is calculated 

as a weighted average value of these 4 pixels. It results in smoother visualization which, however, 

takes more time. An extension of the bilinear interpolation is the trilinear interpolation taking 

into account 8 pixels surrounding an unknown pixel. 

• Bicubic interpolation 

The most computationally expensive interpolation technique among aforementioned methods, 

which gives on the other hand the most accurate results, is the bicubic interpolation. This 

technique uses 16 closest pixels to calculate an unknown pixel value. 

There are other interpolation methods, such as the B-spline, which is a piecewise polynomial 

function47. Unknown pixel values are estimated by fitting a polynomial curve through all the 

known data points. The B-spline interpolation is usually an optimal choice for non-linear 

registration. Another similar interpolation solution uses fitting through the sinc function. 

 
47 The piecewise polynomial function shows a polynomial shape on each of its sub-domains but likely with a different shape at each 

sub-domain. 
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6.3. Image distortions correction 

The magnetic resonance itself is a source of several image artefacts that have to be in some cases 

minimized before further image processing. Some artefacts are typical only for anatomical 

(structural) images and some only for diffusion images. Naturally, some artefacts are visible 

in both image structures. This chapter describes the most common artefacts enhanced 

in anatomical and diffusion MR images. The causes of their origin and their appearance on the 

images are given. The post-processing correction methods are emphasized. The minimizing 

of distortions on diffusion images, which is a main practical task, is highlighted. 

Motion artefacts are an example of distortions that can be present in all types of images no 

matter which sequence parameters are chosen. A typical cause of motion artefacts is the 

patient´s movement resulting from involuntary physiological motion and from the subject´s 

movement during the data acquisition. „The two main components of motion in brain imaging 

are bulk motion (translation and rotation) of the whole head and the periodic local motion 

of brain tissue due to cerebral spinal fluid pulsation.” [56] These distortions are typically shown 

in the phase encoding direction; random motion causes a smear in a phase encoding direction. 

Fast sequences are useful to address these distortions. The motion artefacts reduction can be 

accomplished in the post-processing stage by the image registration. Diffusion images are more 

susceptible to motion distortions. In the section 6.3.2. common retrospective corrections 

in diffusion images are mentioned. 

6.3.1. Distortions correction in anatomical MR images 

MR anatomical images are usually prone to image artefacts caused by noise and inhomogeneities 

in the main magnetic field. This section describes in brief both mentioned artefacts. 

6.3.1.1. Image distortions due to noise 

The noise degrades the MR image quality; thus, it deteriorates the further image processing 

and eventually MR parameters quantification. Thereby, it might be crucial to remove (or at least 

to minimize) the noise, which means to apply the denoising process. „Noises caused due 

to several reasons like movements of charge bodies, measurement anomalies, and pulse 

sequence bandwidth and device configuration like size of radio frequency coil.“ [57] Typical 
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spatial filtering techniques48 include using the common filters, namely median filters49, Gaussian 

filters50, Wiener filters51, mean filters52, anisotropic diffusion filters and non-local means (NLM) 

filters53. These filters remove a certain kind of the noise. The study [59] investigating these filters 

on skull-stripped MR anatomical brain images revealed the Wiener filter leads to most accurate 

results (the highest SNR) and non-local means filters perform the best smoothening. The filtering 

method choice always depends on the type and the amount of the noise in the image. 

6.3.1.2. Image distortions due to field inhomogeneities  

MR bias distortions54, which are mainly caused by inhomogeneities in the static magnetic field, 

represent a smooth signal intensities variation in the same tissue type across the image. The 

signal intensities variation is expressed by an image, the so-called the bias field. The example 

of the bias field that was created in my practical task is shown in the section 8.3.1. The source 

of these distortions might be the MR machine itself that can be calibrated and thus the 

disturbance impact minimized. Another source may be the examined object itself and its 

orientation that is difficult to compensate, though. Minimizing of this artefact might be attained 

in a prospective fashion by a combination of using surface coils (high SNR but high bias, too) 

and a body coil (low SNR and low bias, too). [60] 

There are also several retrospective correction techniques. „The model of bias field in medical 

images is commonly based upon the assumption that bias field is a low-frequency artifact and 

perceived as a smooth spatially varying function alters the image intensities.” [60] Hence, post-

processing correction methods, which use low-pass filtering methods, remove these low-

frequency distortions from the high-frequency image. However, this approach is limited since: 

„first, many useful low-frequency structures might be mistakenly eliminated by low-pass filtering. 

Second, high contrast structures characterized at the low frequencies may generate filtering 

 
48 Spatial filters adjust the pixels values in the image through a function of intensities of the pixels in the neighborhood. [58] 
49 Median filters reduce a type of the noise salt and pepper (random presence of light and dark pixels in the image) caused by the 

sudden disturbance in the MR signal. 

50 Gaussian filters reduce the Gaussian noise (noise following the normal distribution). 

51 Wiener filters are a frequency domain filters reducing the additive noise and performing the smoothness simultaneously. 

52 Mean filters smooth the image since they act as low-pass filters. It removes the grain noise. 

53 NLM filters tend to calculate a new signal intensity value in a voxel by computing a weighted average value of signal intensities 

in a whole image. The NLM filters reduce the spatially varying noise. 

54 Also called the intensity non-uniformity (INU) and the intensity inhomogeneity distortions. 



6 Image processing  
 

54 
 

artifacts known as edge effects, which can cause distortion of homogeneous tissues near the 

edges.” [60] Other retrospective reduction techniques are directly based on signal intensity 

histograms. This is an automatic method that does not require any prior knowledge of intensity 

variation through the image. The last-mentioned corrections methods are segmentation-based 

methods. The bias correction is often considered as a necessary step for the image segmentation. 

[60] Several segmentation approaches are present, such as the method considering the 

maximum likelihood criterion to estimate the image intensity probability distribution. [61] 

6.3.2. Distortions correction in diffusion MR images 

As mentioned in the section 4.2.1., diffusion images might be acquired with the fast EPI sequence 

that is highly prone to image distortions. The EPI sequence is extremely sensitive to any 

inhomogeneities in the main magnetic field. „The acquisition as well as the interpretation 

of diffusion imaging results are not straightforward. This is both due to the sensitivity of diffusion 

imaging experiments to phenomena other than diffusion, and to the fact that, like any other 

magnetic resonance imaging (MRI) technique, it remains subject to artifacts, numerous technical 

difficulties, and other sources of error. More specifically, in addition to common MRI artifacts, 

DWI encounters characteristic problems regarding gradient hardware, especially in terms of eddy 

currents and sensitivity to motion.” [62] Furthermore, a higher noise level typically present 

in images with higher b values is also a source of artefacts. In MR diffusion demands are placed 

on the hardware to be able to produce stable gradients with a maximal intensity that may be 

challenging in the whole-body exams. [63] Artefacts in diffusion MR usually result from the 

strong diffusion gradient pulses use. 

Motion distortions are extremely important in MR diffusion methods since strong and long 

gradient pulses are applied. Consequently, the same voxels location in two DWI images 

corresponding to the same anatomical location is not guaranteed. Motion artefacts can be 

reduced by the affine registration of non-zero b value images to the zero b value image, so the 

same technique that is used for eddy currents effects minimizing described in the section 6.3.2.3. 

In addition, these distortions might be minimized by the registration of DWI images to the 

reference anatomical 𝑇2 image. [64] 

The subsections below give a description of typical artefacts highlighted in diffusion images, 

namely distortions caused by noise, eddy currents and susceptibility induced distortions. 
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6.3.2.1. Image distortions due to noise 

Noise in MR images tends to, in general, increase the mean signal intensity. A higher noise level 

is typically seen on DWI images since diffusion gradients are applied and the echo time is 

prolonged. [65] A simple method to overcome these distortions is to repeat scans and average 

them, however, it significantly prolongs the total acquisition time that is not usually acceptable 

in the clinical practice. Noise in the real and imaginary part of complex images follows commonly 

the Gaussian distribution with the same noise variance, whereas noise in the magnitude images 

usually follows the Gaussian distribution and the Rician distribution55, too. MR data are acquired 

as the complex data with real and imaginary part. Magnitude images, which represent the 

scanning outcome, are reconstructed from complex data; which simply means a combination 

of the real and the imaginary complex data into a single magnitude image. The denoising 

techniques are mostly applied on magnitude images since complex images are not commonly 

present on MR scanners and in addition, magnitude images are free of phase distortions. [67] 

If SNR is high, the Gaussian and the Rician distribution are almost equal, whereas in the lower 

SNR values both distributions differ. [68] This section incorporates the post-processing denoising 

methods conducted on magnitude MR images. To adequately apply a denoising approach, it is 

substantial to determine the noise distribution in the image. To do it so, information concerning 

a type of parallel imaging sequence56, a number of receiver coils and a type of filters and other 

factors should be known. [69] „Estimation of signal distributions deviating from theoretical cases 

is challenging and oftentimes requires information such as coil sensitivities or reconstruction 

 
55 The Rician distribution is closely related to the Gaussian distribution since the Rician distribution is basically distribution modelling 

the square root of the sum of squares of two independent and identically distributed Gaussian distributions with the same variance. 

[66] The Rician distribution is valid only for positive numbers, therefore it indicates MR magnitude images gain only positive values. 

56 MR parallel imaging is a method for MR data acquisition. The acquisition time is shortened by decreasing a number of k-space lines 

that have to be acquired. A measured signal is detected by several receiver coils surrounding an object in different locations. Two 

reconstruction methods are present. The Sensitivity Encoding (SENSE) method is performed in the image space right after data are 

acquired from each individual coil. Whilst, Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) method is performed 

in the k-space. 

In the case of parallel imaging reconstruction the noise in the DWI images follows the Rician distribution, whereas in the case of 

GRAPPA parallel imaging the noise follows the non-central Chi-squared distribution (the distribution modelling the square root of 

the sum of squares of several independent and identically distributed Gaussian distributions with the same variance. [66] 
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matrices. This information may not be recorded at acquisition time or is even not available from 

the scanner, making techniques relying on these parameters difficult to apply in practice.” [69] 

„The correction scheme based on the Rician distribution shows the advantages of easy calculation 

and ability to handle averaged magnitude images. However, this scheme is not recommended 

when the SNR is very low.” [68] The reduction of the Rician noise can be achieved by several 

denoising approaches, for instance the anisotropic diffusion filtering and the non-local means 

filtering. The study [70] revealed the high accuracy of NLM filters adapted to the Rician 

distributed noise since the NLM filters still preserve sharp edges in small structures, such 

as vessels. The study [71] presents some significant limitations of ADF approach; it highly blurs 

the edges in the image at the induced noise level greater than 3%. In the study [72] the Local 

Principal Component Analysis (LPCA) approach for the noise reduction was introduced. „The key 

idea of this process is the fact that image patterns can be represented as a linear combination 

of a small number of basis images while the noise, being not sparse will be spread over all 

available components.“ [72] The approach is performed in three steps. Firstly, the signal in the 

image is divided into the local principal components. Secondly, the least relevant components 

are shrunk. Lastly, the signal is back reconstructed. To optimally reduce the noise in the DWI 

images, the Rician nature of the noise must be taken into account. This technique is intended to 

be used in images with spatially varying noise that is typical for MR parallel imaging methods. 

The LPCA filter is robust and fully automatic and moreover, it is the only filter considering the 

nature of 4D DWI images data set. [72] 

6.3.2.2. Distortions due to magnetic susceptibility effect 

Susceptibility artefacts in MR are encountered on the interface of structures with different 

magnetic properties. „Dedicated experiments have demonstrated that in most of healthy brain, 

iron and myelin dominate tissue susceptibility variations, although their relative contribution 

varies substantially. Local variations in these compounds can affect both amplitude 

and frequency of the MRI signal. In white matter, the myelin sheath introduces an anisotropic 

susceptibility that has distinct effects on the water compartments inside the axons, between the 

myelin sheath, and the axonal space, and renders their signals dependent on the angle between 

the axon and the magnetic field.” [73] The susceptibility difference generates local gradient fields 

that influence a degree of protons dephasing resulting in the signal loss. It causes geometric 
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distortions appearing themselves as pixel movements and intensity modulations in images. To 

minimize the artefacts prior the scanning, it is important to decrease a voxel size, to acquire 

thinner slices, to shorten the 𝑇𝐸 time for spins dephasing less time and to increase a receiver 

pixel bandwidth. Susceptibility artefacts are more highlighted at larger magnetic field strength. 

Susceptibility induced distortions are significant in EPI diffusion images due to its low bandwidth 

in the phase encoding direction. These distortions are generated by the main homogenous 

magnetic field disruptions caused by scanning an object; a human head. „When a non-spherical 

object rotates around an axis other than that parallel with the magnetic flux (the z-axis) it 

changes the way it disrupts the field, leading to different distortions.“ [74] The difference 

between the initial homogenous field and the current disrupted field is called the susceptibility 

induced off-resonance field, the so-called field map. The field map represents the pixels shift due 

to the field inhomogeneities and is used to correct the distortions. The field map is subsequently 

combined with the distorted images to generate new undistorted images. The example of the 

field map that was created in my practical task is shown in the section 8.3.2.1. 

Susceptibility artefacts might be minimized with post-processing methods based on the field map 

calculation. There are two main methods; the first method is based on the phase difference 

between two different echoes using the double echo sequence, while the second method uses 

the acquisition of a pair of diffusion images acquired with both phase encoding polarities. 

• Phase difference between two echo times in double echo sequence 

This method is based on using double echo sequences. Two images at two different echo times 

are acquired and the field map is calculated according to the phase shift between two images. 

The phase difference is proportional to the time difference between two echoes and the 𝐵0 

inhomogeneity. „This method has various limitations due to the difficulty of calculating the phase 

difference in areas where the field inhomogeneity is high, challenges regarding phase 

unwrapping, and the lack of voxel intensity information. The scan sequences required to obtain 

the phase map also takes several minutes to acquire, as opposed to the few seconds it takes to 

acquire an EPI scan of an entire brain, therefore subject motion during the former can lead to 

large errors in the field map and subsequent correction.” [75] 
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• Reversed polarity of phase gradients 

The second method means the acquisition of a pair of diffusion images with a negative and 

a positive polarity in the phase encoding direction during the EPI scan. It results in the reversed 

distortions with respect to the pixel shift direction along the phase encoding direction. The phase 

encoding is commonly performed in the y-axis direction; the classical image acquisition 

corresponds to anterior-posterior AP direction (the so-called blip-up image), whereas the image 

acquired only for the distortions correction purposes corresponds do the posterior-anterior PA 

direction (the so-called blip down image). The displacement field is created by matching these 

two diffusion images. Relative to the previous method, this is much less time consuming. 

Another approach of susceptibility induced distortions reduction is the use of the non-rigid 

registration, so the non-linear registration using tens of DOF. It does not require to obtain 

additional data as aforesaid methods do. It uses anatomical images as reference images without 

significant distortions to estimate distortions location and subsequently to correct the intensity 

values in diffusion images which are considered as the moving images. The study [76] revealed 

significant limitations of this method; different contrast of diffusion images and the reference 

anatomical image. The undistorted anatomical image is typically the 𝑇1 and the 𝑇2 image. [76] 

6.3.2.3. Distortions due to eddy currents 

The eddy currents origin in MR is related to the application of large diffusion gradients 

and radiofrequency coils. Eddy currents represent electrical currents induced within conductors 

by either changing the magnetic field or the motion of a conductor in the stationary magnetic 

field. Eddy currents generate an additive magnetic field with the opposite effect to the main 

magnetic field as stated in the Lenz´s law57. Diffusion images using fast EPI sequences are prone 

to the origin of distortions caused by eddy currents generated by very rapid gradient switching. 

Eddy currents deteriorate gradients switching do the shift in the main magnetic field 𝐵0 

and generate an undesirable time varying gradient magnetic field. [78] „Image distortions 

from eddy currents blur the interface of gray and white matter tissues, cause misregistration 

between individual diffusion-weighted images, produce erroneous calculations of the diffusion 

 
57 „The Lenz's law states that the direction of the current induced in a conductor by a changing magnetic field is such that the magnetic 

field created by the induced current opposes the initial changing magnetic field.“ [77] 
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signals.“ [79] Since diffusion images are acquired with a different degree of diffusion weighting 

(a different b value), the distortions vary between DWI images resulting in the data bias 

and inaccuracy. [63] „Unlike magnetic susceptibility induced distortions, these effects vary across 

diffusion gradient orientations and are enhanced by the fact that higher b-values require the 

application of stronger diffusion gradients for longer periods.“ [80] 

There are several post-processing strategies minimizing the influence of eddy currents which are 

described below. Moreover, selection of a right pulse sequence is important, too. „Post-

processing techniques are the most widely used, as they have several advantages: they can be 

applied retrospectively to already acquired data, a user can revert to the original data if the 

technique does not work as hoped, and they don't require additional scan-time, which is often 

expensive.“ [81] In this section three basic correction retrospective methods are present. 

• Correction based on pairs of images acquired with the opposite gradient polarity 

This correction technique uses inverse characteristics of induced distortions created by both 

polarities of diffusion gradients. Two images acquired with both diffusion gradients polarities 

have very similar contrast. „Based on Maxwell's laws, voxel shifts resulting from the eddy currents 

induced by the diffusion gradients have the same magnitude but opposite direction if the polarity 

of the gradients is reversed, that is, if a gradient 𝐺−= −𝐺 + is effective instead of 𝐺 +. This 

enables a correction scheme that only uses diffusion‐weighted images and, most importantly, 

images with identical contrast properties for the alignment procedure.“ [82] In this case, the 

acquisition of non-diffusion weighted images is not required. It is demanding to acquire an equal 

number of datasets with both gradient polarities. Another correction possibility, which stems 

from the same idea, is the use of reversed polarities of phase encoding gradients. 

Other post-processing techniques are based on the affine registration approaches. Eddy currents 

(and motion distortions as well) cause the diffusion data misalignment that can be characterized 

by the 3D affine transformation. [83] It follows these distortions might be removed (or at least 

minimized) by the affine registration. There are two main registration approaches; pairwise 

and groupwise registration. Pairwise registration represents registration of a series of images 

with the reference image separately, whilst in groupwise registration a whole image series is 

registered with the reference image simultaneously. According to the study [84], „using 

a groupwise approach, a bias towards the reference image is avoided and the intensity 
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information of all images is taken into account simultaneously, lead into more consistent 

registration results.“ [85] There are commonly two types of the affine transformation for eddy 

current corrections. The slice-wise registration ensures the misalignment correction between 

slice planes, whereas the whole-brain transformation corrects 3D eddy current distortions. 

• Affine registration of non-zero b value images to zero b value image 

Another possibility of aligning DWI images, and thus eddy currents distortions reduction, might 

be attained by the affine registration of images with non-zero b value to the 𝑏 = 0 value that is 

considered as a reference image. This method does not require to obtain another data set, 

however, on the other hand, this method is less convenient for artefacts correction at high b 

values that represent the higher signal attenuation and the greater contrast difference between 

these high b values images and the reference 𝑏 = 0 image. [80] 

• Registration of diffusion and non-diffusion weighted images 

The third possibility refers to coregister DWI images to the reference images with no diffusion 

weighting, which means they are considered almost without no eddy currents effects. [86] 

6.4. Image segmentation 

„Segmentation is one of the most important steps in medical image processing that is normally 

after enhancement. It extracts any clot/abnormal lesion or blood cells/blood vessels present in an 

image. Each region in a segmented image possesses homogenous properties with respect to 

features, such as gray level, texture or color, and the property is different for different regions in 

an image.” [54, p. 24] The segmentation can be conducted on 2D or 3D images. The image 

segmentation might be classified into three main groups. In the automatic approach, the 

segmentation runs automatically without any response from the operator. The semiautomatic 

method represents the automatic segmentation with the segmentation´s parameters 

adjustment. The last approach; the manual segmentation, is fully performed by an operator that 

segments and labels the input image by hand. This method in 3D images segmentation, which is 

done in a “slice-by-slice” fashion, is very time consuming and moreover is impossible to 

reproduce. On the other hand, this method is believed to be very accurate. 
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Today, several segmentation approaches are present. In this section a brief description of the 

most typical algorithms is given. 

• Thresholding 

The traditional segmentation method is based on setting threshold values to group all pixels in 

the image into several classes. The threshold cut-off value is determined by the image intensity 

histogram analysis. It is a fast method that is, however, sensitive to noise and intensity 

inhomogeneities. [87] The example of this segmentation approach is the skull stripping method 

based on morphological operations described in the section 6.1.1. 

• Region growing 

In the region growing segmentation method pixels with similar intensity values are grouped, 

thus a segment is created and is subsequently being broadened. At first, an initial point 

in a segment, the so-called a seed, is set. The seeds define the area with the properties that are 

typical for a particular region. The seed point can be set by an operator or calculated 

by an automatic algorithm finding the seed points. „Region growing is suitable for segmentation 

of volumetric images which are composed of large connected homogeneous regions. Thus, it is 

successfully used in medical image analysis to segment different tissues, organs, or lesions 

from MR images. For example, it is used in brain MRI analysis for segmentation of brain vessels, 

brain tumor segmentation, or extraction of brain surface.“ [87] 

Another segmentation approach, the clustering method, represents the pixels classification 

into several groups (clusters) based on the calculation of intensities in each pixel. The edge 

detection and the watershed segmentation algorithms are already mentioned in the sections 

6.1.1. and 6.1.2. as the skull stripping methods.
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7. Data and software tools description 

This chapter names used software tools in the image processing practical task, gives their brief 

description and describes the acquired MR data. 

7.1. Acquired data description 

Data were acquired at the University Hospital Brno in 2019 using the MR system Achieva with the 

magnetic field strength 1.5 T manufactured by the company Philips Healthcare. 

The MR data represent brain images in patients with brain tumors. The contrast agents58 were 

applied during an examination. The DWI IVIM method at the University Hospital Brno is used 

as a pre-surgical planning tool. It is conducted in patients with suspicion of brain tumors that can 

be surgically removed. The MR exam consists of following MR sequences. 

• 3D navigation 

3D navigation is a sequence with an isotropic voxel59 after the contrast agent is administered. 

This sequence is crucial for the medical stuff for localization and segmentation of anatomical 

structures and pathologic lesions. Due to the tumor enhancement by contrast agents, which 

means the signal intensity increase compared to the 𝑇1 weighting signal, 3D navigation enables 

more detailed evaluation of lesions in images. When referring to the 𝑇1 sequence in the practical 

task, it means this 3D navigation sequence. This sequence takes roughly 3.5 minutes. 

• FLAIR 

3D FLAIR sequence is a right sequence for pinpointing brain edema and 𝑇2 brain hyperintensities. 

Moreover, this sequence is used for detecting brain tumors and verifying health brain tissue. The 

FLAIR sequence takes circa 5 minutes. 

• 𝑻𝟏 weighting 

2D 𝑇1 weighting images are native, so before contrast media application. Medical stuff looks 

at these images to compare them with the images acquired by the 3D navigation sequence. The 

 
58 In these exams the contrast agents ProHance and Dotarem were used. 

59 Isotropic voxels of a cubic shape are uniform in all directions. 



7 Data and software tools description  
 

63 
 

comparison reveals which brain parts are enhanced after contrast agents administration. A 

degree of enhancement represents a degree of blood flow and the brain tumor activity. These 

images are not optimal for image analysis purposes. Its duration is about 2 minutes. 

• 𝑻𝟐 weighting 

2D 𝑇2 native weighting sequence is a basic sequence for the medical stuff for determining the 

primary diagnosis. It takes approximately 2 minutes. 

• DWI b0 – b1000 

It is a diffusion sequence acquired with two b values, 𝑏 = 0 and 𝑏 = 1000 [
𝑠

𝑚𝑚2]. It is used to 

calculate ADC values according to the formula 4.7. The duration is approximately 60 seconds. 

• dADC b0 – b1000 

These images represent calculated ADC values; it means values in all voxels correspond to the 

ADC values. These values are calculated by using the values from the DWI b0-b1000 sequence. 

• DWI IVIM 

The DWI IVIM is a diffusion sequence. Unlike the DWI b0-b1000 sequence, these images are 

acquired with more b values. There are 10 b values: 0, 10, 20, 30, 50, 100, 200, 500, 1000, 2000 

[
𝑠

𝑚𝑚2]. For b values: 0, 10, 20, 30 and 50 [
𝑠

𝑚𝑚2] one NEX value was implemented. For b values: 

100 and 200 [
𝑠

𝑚𝑚2] two NEX values were applied, for b values: 500 and 1000 [
𝑠

𝑚𝑚2] three NEX 

values were used and 6 NEX values were applied for b value 2000 [
𝑠

𝑚𝑚2]. Unlike other 

implemented sequences, this sequence might not cover a whole head area since this sequence 

is intended to pinpoint mainly the area of a brain lesion. This sequence takes circa 6 minutes. 

Other data necessary for my practical task are binary masks of brain segments; edema, contrast 

enhanced part of brain lesions (tumors) and not contrast enhanced part of brain tumors. The 

example of these masks highlighted in colors is given in the section 8.4. 

𝑏 = 0 DWI images were acquired with both polarities of a phase encoding gradient. Both images 

(images in the AP and PA direction) are used for distortions correction. 
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Clinical MR images were collected from 20 patients at the University Hospital Brno. 10 subjects 

were female with a mean age of 61.7 ± 10.9 and 10 subjects were male with a mean age of 58.9 

± 10.6. After the brain surgery, the histology60 of brain tissue was performed in order to 

determine the concrete brain tumor type. 10 subjects suffer from the high-grade gliomas, 6 

patients from the meningeal tumors and 4 patients from metastatic brain tumors. The brain 

lesions (tumors) were segmented for each patient. For all patients suffering from HGG tumors 

and metastatic brain tumors, brain edema and contrast non-enhanced part of the tumor were 

segmented, too. For 5 from 6 patients with a diagnosis of meningeal tumors, brain edema 

and the contrast non-enhanced part of brain tumors did not surround the brain tumor, 

thus these brain masks were not created. 

7.2. Used software tools 

In the practical task of my master´s thesis I used several programs for MR images processing. 

Here is a list of the programs I used. 

The software ITK-SNAP [88] [89] (version 3.6.0) is based on ITK (Insight Tool Kit) libraries 

with open sources. I used this tool especially as a medical image viewer, a convertor to other 

medical image formats and for image registration. Moreover, this tool was used for image 

segmentation. 

Software FSL [90] [91] (version 6.0.1) is a complex library for overall image data analysis acquired 

from magnetic resonance and its methods (functional and diffusion MR). Overall MR image 

analysis was performed in the FSL tool. 

Software package FreeSurfer [92] [93] (version 6.0) is an extensive tool for evaluating 

the parameters of MR brain images. 

Program interface and programming language MATLAB [94] (version R2019.a) includes already 

implemented algorithms. In my practical task I utilized the Image Processing Toolbox. 

 
60 During the histology microscopic structure of cells are examined. 
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Neuroscientific toolbox SPM [95] (Statistical Parametric Mapping) (version SPM12) is primarily 

utilized for statistical analyses acquired from functional magnetic resonance. This toolbox is run 

through the MATLAB interface. Whole MR image processing was performed in this software tool. 

BrainSuite [96] [97] (version 19a) software toolbox enables the magnetic resonance data 

processing. This tool serves for all the image processing steps. 

ANTs [98] (Advanced Normalization Tools) is an open-source software package without 

a graphical interface. I used this tool for brain extraction and image registration. 

IVIM model fitting and producing parametric maps of IVIM parameters was performed in the 

MITK Diffusion application. [106]
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8. Image analysis implementation 

This chapter provides the explanation of all the steps that were performed in the practical task 

during the image processing stage. In a nutshell, below is a list of all consecutive steps performed. 

The steps 1., 2. and 3. were not conducted by me. The steps 1. and 2. were performed by my 

supervisor Mgr. Ing. Marek Dostál, Ph.D. The step 3. was done by MUDr. Tereza Kopřivová from 

the University Hospital Brno. The segmentation step requires a professional medical approach. 

Image analysis was run in different software tools whose time duration is roughly measured 

and results are shown in Appendix B and briefly described in the chapter 10.3. The duration 

of automated image analysis algorithms is a significant factor in praxis in order to choose 

an optimal technique. 

1. Skull stripping of anatomical 𝑇1 and FLAIR images 

2. Rigid registration of 𝑇1 and FLAIR images (𝑇1 a reference image, FLAIR a moving image) 

3. Segmentation of brain components from the registered image 𝑇1 and FLAIR 

4. Skull stripping of 4D DWI diffusion images acquired at 10 b values 

5. Distortions correction of 4D DWI diffusion images acquired at 10 b values 

6. Rigid registration of 𝑇1 and DWI 𝑏 = 0 image 

7. Transformation of segmented binary masks from the anatomical space to the diffusion 

space determined by the transformation matrix acquired with the rigid registration of 𝑇1 

and DWI 𝑏 = 0 image 

8.1. Skull stripping 

In my practical task I performed skull stripping of MR head images in the following six software 

tools. More detailed description of skull stripping methods these software tools are based on is 

given in the section 6.1. This section covers the use of concrete algorithms. The skull stripping 

was conducted in MR anatomical head images of the 𝑇1 and FLAIR sequences and on diffusion 

DWI images acquired at 10 b values. Brain extraction of anatomical images was conducted by my 

supervisor in FSL. After skull stripping is performed, it is essential to display the segmented brain 

mask overlaid into the original head image. Some inconsistency in the brain tissue removal are 

likely to be revealed in a sagittal plane. If little brain tissue is removed or non-brain tissue is left, 
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it is crucial to repeat the process with adjusted skull stripping parameters. The assessment 

of skull stripping quality is not a part of my thesis. 

The skull stripping using mathematical morphological operations I realized in MATLAB. I utilized 

already built functions performing the morphological operations. The figure 8.1 shows a process 

of removing non-brain tissue from 2D slices. This method is convenient for brain extraction of 2D 

slices but is not a right method for automated skull stripping. Its benefit is running of already 

implemented functions which offer a variety of morphological operations. 

 

Figure 8.1: The skull stripping of a 2D brain 𝑇1 axial image based on morphological operations implemented 

in MATLAB. 2: The image histogram with the approximate bimodal gray level distribution, x-axis: the 

intensity range of pixel values in the image of 16-bits (brightness values ranging from 0 to 6553561), y-axis: 

the count of pixels for each brightness level, 3: The binary image acquired after applying the Otsu´s 

thresholding method , 4: The skull-stripped binary image by applying morphological operations (erosion, 

holes filling and opening), 5: The final grayscale image produced by superimposing of the binary image 

with the input image. 

The BSE brain extraction algorithm is built in the software BrainSuite. To optimally perform the 

skull stripping, several parameters might be adjusted. It is possible to set a number of diffusion 

iterations (usually up to 6 iterations) determining how many times the diffusion filter is applied 

to the image. A higher number of diffusion iterations might cause the blurring in the region of low 

edges. The edge constant parameter determines a number of edges in the image. Decreasing the 

edge constant (typically in the range 0.5 – 1) ensures less stringent skull stripping (more brain 

 
61 In the image the whole range of brightness values is not displayed. 
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tissue included). The parameter erosion size (ranging from 1 to 4) defines how much small brain 

components will be removed. 

The software package FreeSurfer utilizes the watershed algorithm as the intensity-based skull 

stripping method. The skull stripping is conducted in the recon-all (autorecon1) stage. The degree 

of skull stripping might be determined by adjusting the watershed parameter wsthresh whose 

values are in the range of 0 to 50 percent (the default value is 25 percent). The lower this value, 

the skull stripping more aggressive, thereby more brain tissue is removed and vice versa. 

SPM tool does not explicitly use one of four skull stripping methods explained in the chapter 6.1. 

The extracted brain tissue may be generated by the probabilistic brain tissue segmentation 

method. Firstly, tissue segmentation of MR images is performed resulting in the creation 

of probability maps of brain compartments GM, WM and CSF. Final brain images are acquired 

by multiplying of the sum of probability maps of brain compartments and the initial head 

image62. Final skull stripping quality in my data was poor. Little part of brain usually was removed. 

The atlas-based brain extraction tools were implemented in the program ANTs. ANTs software 

performs the brain extraction by running the script antsBrainExtraction.sh. The template 

that works the best with the data was the Kirby template. [99] 

Last but not least, I executed the brain extraction in the software package FSL whose skull 

stripping algorithm BET is based on the deformable surface-based methods. The main brain 

extraction program integrated in FSL is called bet2. [100] It is possible to set the fractional 

intensity threshold within the range between 0 and 1 (a default value is 0.5). This value 

determines the threshold value separating brain and non-brain tissue. The higher value, the 

more stringent brain tissue removal (more brain tissue removed) and vice versa. In addition, 

by setting the parameter vertical gradient in fractional intensity threshold in the range between 

-1 and 1 (a default value 0), the bigger fractional intensity threshold value for the slices at the 

top and the lower value for the slices at the bottom, and vice versa, can be obtained. Overall, the 

skull stripping quality is visually on a high level; it includes just little of non-brain tissue in the 

 
62 The probability map of GM labeled with 𝑖2, of WM with 𝑖3 and of with CSF 𝑖4. 𝑖1 denotes to the initial head image. The skull stripped 

images were acquired by using the equation: 𝑖1.· ((𝑖2 + 𝑖3 + 𝑖4) > 0.5). 0.5 is the optimal threshold value for my data. The higher 

threshold value, the more brain tissue removed and vice versa. 
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final images. Moreover, it is possible to remove the residual non-brain tissue in the neck area 

and furthermore, FSL enables to remove residual eye and optic nerve voxels as well. 

 

Figure 8.2: The skull stripping of 3D brain 𝑇1 images displayed in a sagittal plane implemented in FSL BET. 

Background gray images are the initial head images, foreground color highlighted images are brain images 

after the skull stripping with applying different fractional intensity threshold values. On the left: the 

fractional intensity threshold value 0.1, it includes also little non-brain tissue, especially in the neck area. 

In the middle: the fractional intensity threshold value 0.5, it is an optimal choice including approximately 

only brain tissue. On the right: the fractional intensity threshold value 0.9, it removes lot of brain tissue, 

the result is unacceptable, thus the skull stripping must be repeated with adjusted parameters. 

8.2. Image registration 

In my practical task the process involves applying two different image registration steps. Firstly, 

the image registration of anatomical images of sequences 𝑇1 and FLAIR was performed. Secondly, 

it was the image registration of the anatomical image of the sequence 𝑇1and the diffusion DWI 

image acquired at 𝑏 = 0. The image registration of 𝑇1 and FLAIR images was done by my 

supervisor in FSL Linear Image Registration Tool (FLIRT) using rigid transformation. The 

evaluation of the image registration quality, which is based on the minimizing or maximizing the 

cost function63 and using some optimization algorithms, is not included in this work. Today´s 

image processing software tools enable to choose a right registration method determined 

by a number of DOF and a type of interpolation. 

Within the registration of anatomical images 𝑇1 and FLAIR, a reference image is the 𝑇1 image 

and the FLAIR image is taken as a moving image. The important characteristic of 𝑇1 images is its 

high spatial resolution; thus, these images offer an accurate pinpointing of brain abnormalities. 

 
63 The cost functions determine the degree of similarity between two images. The image registration is an iterative process aiming 

to find the best alignment of two 3D volumes by minimizing (or maximizing) the cost function. 
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Hence, the 𝑇1 images are considered as the reference images. The approximate voxel size of the 

𝑇1 image is 0.48 x 0.48 x 0.55 mm and of the FLAIR image 1.04 x 1.04 x 0.57 mm. 

 

Figure 8.3: The rigid registration with 6 DOF of anatomical images of 𝑇1 and FLAIR implemented in the 

MATLAB script register_files_affine [101] that is a part of BrainSuite software package (a reference image: 

𝑇1 and a moving image: FLAIR), brain images displayed in the axial plane. On the left: the skull stripped 

FLAIR image, in the middle: the skull stripped 𝑇1 image, on the right: the final fused image. 

The second registration step involves fusing of the anatomical 𝑇1 image and the diffusion DWI 

image acquired at 𝑏 = 0. Despite the fact that the DWI 𝑏 = 0 image shows worse spatial 

resolution and thus the anatomical information description gets deteriorated, the DWI 𝑏 = 0 

image is considered as a reference image and the 𝑇1 image as a moving image. If the 𝑇1 image 

was taken as a reference image, the interpolation od DWI data would be strictly necessary (the 

approximate voxel size of the 𝑇1 image is 0.48 x 0.48 x 0.55 mm and of the DWI 𝑏 = 0 image 1.0 

x 1.0 x 4.0 mm), which could result in the bias in DWI data. Since the accuracy of DWI data 

in further data processing is crucial, the registration was performed in this fashion. 

 

Figure 8.4: The rigid registration with 6 DOF of the anatomical image of 𝑇1 and the diffusion DWI image 

acquired at 𝑏 = 0 implemented in the software tools ITK-SNAP and ANTs (a reference image: 𝑇1 

and a moving image: DWI image), brain images displayed in the axial plane. On the left: the skull stripped 

𝑇1 image, in the middle: the skull stripped diffusion DWI image, on the right: the final fused image. 
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8.3. Image distortions correction 

This section incorporates the procedure of distortions correction in MR images in the practical 

task. The emphasis is put on corrections techniques in diffusion images. Images after distortions 

reduction are not shown since a difference between the initial and corrected image cannot be 

simply visible. 

8.3.1. Distortions correction in anatomical images 

As stated above, the distortions correction on anatomical images was not conducted in this task 

since doctors in normal clinical practice do not perform these steps as well. Despite all of this, I 

performed the distortions correction on anatomical images as well. In this section, the denoising 

and bias field correction methods are present. 

The image processing software tools enable to use already built filters to denoise anatomical 

images. The SPM denoising tool smooth uses the Gaussian filter that can be further specified 

by determining its Full Width at Half Maximum64 (FWHM) in the x, y and z direction. The optimal 

FWHM choice depends on the voxels´ size of the initial image. By using great FWHM values, high 

frequencies from the image are removed and the image is considered to be blurred. The loss 

of spatial precision is followed. 

 

Figure 8.5: The impact of different FWHM values of the Gaussian smoothing filter on the appearance of the 

𝑇1 anatomical image, implemented in SPM. It is the effect of a low-pass filter removing high frequencies 

of the signal intensities, while enhancing low frequencies. The first image on the left: the original image, 

the second image from the left: the application of FWHM=1 mm, the second image from the right: the 

application of FWHM=4 mm, the first image on the right: the application of FWHM=8 mm. 

 
64 FWHM represents the width of the kernel at half of the maximal height of the Gaussian function.  
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Bias field correction approaches are in image processing software packages often built within the 

segmentation module. The example of the bias field correction approach is the FMRIB's 

Automated Segmentation Tool (FAST) in FSL. [102] This tool produces a bias-field corrected input 

image and the estimation of a bias field. This tool enables to adjust some parameters. The bias 

field estimation is an iterative process; thus, a number of iterations can be set. Moreover, a level 

of smoothness on the estimated bias field defined by the FWHM parameter can be adjusted. 

 

Figure 8.6: The application of the bias field correction on 3D 𝑇1 anatomical image implemented in the FSL 

FAST tool; brain images displayed in the axial plane. On the left: the original corrupted 3D 𝑇1 image, in the 

middle: the estimated bias field (values ranging between approximately 0.9 (a dark color) – 1.1 (a light 

color)), on the right: the corrected image (since there were no significant bias distortions in the initial 

image, the corrected image is visually the same as the initial). 

8.3.2. Distortions corrections in diffusion images 

The corrections of the diffusion 4D DWI image containing images acquired at 10 b values were 

conducted in three software tools; FSL, SPM and BrainSuite. This step is essential in the further 

IVIM analysis and these software tools´ influence on the IVIM parameters calculation is discussed 

in the chapters 10. and 11.. A theoretical description of all steps performed in these software 

tools is given in this section 6.3.2. Moreover, I performed the denoising on 4D DWI images. 

The software tools for 4D DWI image correction often require specifying a text file containing 

a list of all b values applied during the data acquisition, the so-called bvals file and a text file 

of diffusion gradient directions, the so-called bvecs file. In my data the gradient direction in three 

axes for non-zero b value images is represented with 1 and for 𝑏 = 0 image with 0. 

8.3.2.1. Diffusion images reduction performed in FSL 

The diffusion data processing in FSL includes the magnetic susceptibility distortions, eddy 

currents and motion reduction. 
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1. Magnetic susceptibility artefacts reduction 

The FSL tool topup [103] creates a field map calculated by specifying two 𝑏 = 0 DWI images 

acquired with both polarities of the phase encoding gradient. These images are optimal for the 

field map estimation due to reaching the highest SNR from the 4D DWI dataset and are least 

susceptible to eddy currents. To estimate the field map, it is essential to set the total EPI readout 

time (a time interval from the center of the first echo to the center of the last echo). The total 

EPI readout time was calculated in the data according to the formula published by BrainVoyager 

neuroimaging software package. [107] The value for my data is: 3.81 · 10−5𝑠. 

 

Figure 8.7: The generation of a field map based on the method using two DWI 𝑏 = 0 images acquired 

with both phase encoding polarities. On the left: the AP DWI 𝑏 = 0 image, in the middle: the PA DWI 𝑏 = 0 

image, on the right: a created field map. 

Once the field map is created, the whole 4D DWI data set is corrected by running the command 

script applytopup. [103] 

2. Eddy current and motion correction 

After applying the magnetic susceptibility correction, I ran the command line script eddy_correct 

[81] minimizing the motion and eddy current distortions. This approach uses the affine 

groupwise registration with the trilinear interpolation method of the 4D DWI image containing 

10 images acquired at different b values to the reference DWI image 𝑏 = 0. 

8.3.2.2. Diffusion images reduction performed in SPM 

The diffusion images correction in SPM was performed in its sub-toolbox ACID (Artefact 

Correction in Diffusion MRI). It includes the eddy currents and motion correction followed 

by susceptibility induced distortions reduction. 
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1. Eddy current and motion correction 

In the first step I applied the technique minimizing the distortions caused by eddy currents 

and the effects of motion by running the tool ECMOCO (Eddy Current and Motion Correction). 

[86] This algorithm runs the affine groupwise registration of 10 non-zero b images to the 𝑏 = 0 

image. 

ECMOCO tool enables to generate graphical representation of motion distortions parameters. 

A head movement might be described in terms of three axes and three planes; a median plane 

(vertically from the top to the bottom), a frontal plane (vertically from side to side) 

and a transverse plane (horizontally through a head). The x-axis determines a movement from 

front to back, the y-axis a movement from side to side and the z-axis a vertical movement. A head 

movement is described by three parameters of translation and three parameters of rotation. 

 

Figure 8.8: Both graphs show the movement of 10 DWI images acquired with different b values between 

each image. The whole DWI sequence takes roughly 6 minutes, thus the alignment of each DWI image little 

bit differs due to patient´s movement. The lower graph represents three components of translation of head 

movement, x-axis: a number of DWI images acquired at 10 different b values, y-axis: translation of the 

head in millimeters. Red color: the backward and forward head movement along the x-axis, green color: 

the head movement from side to side along the y-axis, blue color: the vertical head movement along the z-

axis. The upper image represents three components of rotation of head movement, x-axis: a number of 

DWI images acquired at 10 different b values, y-axis: rotation of the head in radians. Red color: Rotation 

of the head in a frontal plane along the x-axis, green color: rotation of the head in a median plane along the 

y-axis, blue color: rotation of the head in a transverse plane along the z-axis. 
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2. Magnetic susceptibility artefacts reduction 

The second correcting step involves the magnetic distortions correction conducted in the SPM 

software tool HYSCO 2.0 (Hyperelastic Susceptibility Artefact Correction). [104] The field map is 

estimated by the same procedure as in the FSL topup tool. The whole DWI dataset of 10 images 

is then combined with the field map in the tool Write HYSCO Corrected Images. 

8.3.2.3. Diffusion images reduction performed in 

BrainSuite 

The distortions in diffusion images can be reduced in the BrainSuite Diffusion Pipeline (BDP). For 

this purpose, the Registration-based distortion correction technique [76] implemented in BDP 

was used. Unlike the diffusion data correction procedures in FSL and SPM, this method does not 

require to add a field map for geometric distortions correction. This method uses the extracted 

information from the anatomical 3D 𝑇1 image to correct some geometric misalignment in the 

diffusion data set. 

It includes two steps; the first step is initialized by using the simple rigid transformation to 

register the anatomical 𝑇1 image to the EPI 𝑏 = 0 image followed by the correction of EPI 

geometric distortions in the second step. The correction of EPI geometric distortions is based 

on implementing the non-linear non-rigid transformation as discussed in the section 6.3.2.2. The 

bias field corrected anatomical 𝑇1 image is considered as the reference template to which the 

whole 4D DWI data set is fused. 

8.3.2.4. Diffusion images denoising 

The software tools SPM, FSL and BrainSuite, in which the distortions correction on the DWI data 

was performed, do not include the denoising approaches that would be relevant to the DWI data. 

Hence, I performed the denoising approach on the 4D DWI magnitude images containing 10 

images and compared the calculation of IVIM parameters with and without the denoising 

approach as discussed in the sections 10. and 11. The LPCA filter (explained in the section 

6.3.2.1.) was implemented in MATLAB in the DWI Denoising Software package introduced 

by Pierrick Coupé and Jose Manjon. [105] This method is a convenient filtering technique 

for these MR data since the parallel technique SENSE is used and moreover, due to the SENSE 
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reconstruction, the noise could become non-stationary65. It is assumed the noise in the DWI data 

follows the Rician distribution. According to the concept of these MR data, it is assumed the 

denoising approach does not have significant impact since only one direction of diffusion was 

active. Moreover, for higher b values images several NEX values were used, thus the random 

noise influence should be minimized. 

8.4. Image segmentation 

In the image segmentation process three different segments were created. It is a mask of brain 

edema, a contrast enhanced part of a brain lesion (a tumor) and a contrast non-enhanced part 

of a tumor. The image segmentation was performed by MUDr. Tereza Kopřivová from the 

University Hospital Brno in the tool ITK-SNAP in the semiautomatic fashion using the pre-

segmentation method classification66. The segments were created on the skull-stripped fused 3D 

image of anatomical 𝑇1 and FLAIR images. Any further pre-processing was not conducted 

on these images. The segmented parts of brain were afterwards manually corrected. 

 

Figure 8.9: The brain 3D 𝑇1 images with highlighted segmented binary masks, brain images visualized 

in three planes (on the left: an axial plane, in the middle: a sagittal plane, on the right: a coronal plane). 

Blue color binary masks: brain edema, red color binary masks: contrast enhanced parts of a brain lesion, 

yellow color binary masks: not-enhanced parts of a brain tumor. This patient suffers from the metastatic 

brain tumor. In this case, the tumor is little hyperintense, brain edema is hypointense.

 
65 The non-stationary noise is modeled with a different value of the standard deviation for each voxel instead of a single value of the 

standard deviation for whole volume. 

66 Desired ROI is drawn by a user on a 2D slice and automatic machine learning algorithms use this segment´s example to create the 

3D ROI in a whole image. 
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9. IVIM parameters modelling and statistical 

processing 

The main practical task is to calculate the IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ for each of three brain 

segmented masks and perform their statistical analysis. IBM SPSS (version 21.0.) [109] 

and MedCalc [110] statistical software tools were used to perform all statistical analysis. 

This section incorporates a description of all steps conducted for the acquisition of IVIM 

parameters and performing the statistical analysis. 

9.1. IVIM fitting methods 

In the MITK tool it is required to specify a 4D DWI image and a binary mask of a brain segment. 

MR DWI data in each segment are fitted with the bi-exponential IVIM model. In the MITK tool 

three fitting algorithms can be selected. The detailed mathematical description of fitting 

algorithms is provided in the Appendix A. 

• Jointly fit D, f and D* 

This is the one step fitting method of the Levenberg-Marquardt algorithm. 

• Fit 𝑫 and 𝒇 with fixed 𝑫 ∗ value 

It is the one step fitting method of the Levenberg-Marquardt algorithm, except that 𝐷 ∗ is fixed 

and can be set in the range between 0 and 0.1 [
𝑠

𝑚𝑚2]. In the practical task the 𝐷 ∗ value was set 

to 0.07 [
𝑠

𝑚𝑚2]67. 

• Fit 𝑫 and 𝒇 (with high b), then fit 𝑫 ∗ 

This is the two steps fitting method of the Levenberg-Marquardt algorithm. In the MITK software 

this is a default method. In this algorithm it is crucial to set the option Ignore b< (first fit). This 

algorithm takes the b value greater than the set threshold, performs the fitting and calculates 

values of 𝐷 and 𝑓 parameters. The 𝐷 ∗ parameter values are calculated with the b value lower 

than the set threshold. In this work the Ignore b< (first fit) parameter was set to 𝑏 = 300 [
𝑠

𝑚𝑚2]. 

 
67 The value of 𝐷 ∗ was selected according to the study [111]. 
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Figure 9.1: The fitting IVIM curves acquired with the fitting algorithm “Fit D and f (with high b), then fit D*” 

with three different values of the parameter “Ignore b< (first fit),“ the input is the 4D DWI image of 10 b 

values, implemented in the MITK tool. x-axis: b values, y-axis: the signal attenuation in the range between 

0 and 1. The left image on the top: Ignore b< (first fit) = 0, the right image on the top: Ignore b< (first fit) = 

300, the image at the bottom: Ignore b< (first fit) = 600. Red curve: the total IVIM fitting curve, the green 

dashed curve: the fitting curve with b values above the threshold. If the b-value threshold is set to a low 

value (e.g. 𝑏 = 0 [
𝑠

𝑚𝑚2]) both curves are overlapped and the IVIM effect at low b values is not enhanced, 

the D* value calculation is underestimated. Conversely, if the b value threshold is set to a high value (e.g. 

𝑏 = 600 [
𝑠

𝑚𝑚2]) both curves are highly separated, and the D* value calculation is overestimated. The 

optimal threshold b value is approximately 𝑏 = 300 [
𝑠

𝑚𝑚2] in which both curves are separated at low b 

values. 

The result of the fitting process is a parametric map for each IVIM parameter, which means 

a value in each voxel corresponds to the value of IVIM parameter. I created the parametric map 

for every brain segment by multiplication of a whole brain parametric map and a binary mask 

of a brain segment. Values of the parameter 𝑓 are in the range between 0 and 1. In MITK the 

parameters 𝐷 and 𝐷 ∗ are bounded above; 𝐷 parameter with the upper bound 0.003 and 𝐷 ∗ 

with 0.15. Greater values are physiologically not plausible and probably represent computational 

and fitting error. 
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Figure 9.2: Parametric maps of IVIM parameters, visualized in the axial plane. On the left: 𝑓 IVIM 

parameter, in the middle: 𝐷 IVIM parameter, on the right: 𝐷 ∗ IVIM parameter. 

9.2. Statistical analysis 

For optimal statistical analysis it is crucial to know the data distribution of parametric maps. 

A common shape of histograms for three IVIM parameters is visualized in the figure 9.3. The 𝐷 ∗

 data are transformed with 𝑙𝑜𝑔 (𝑥) function in order to acquire symmetric data distribution. 

 

Figure 9.3: A typical histogram shape for IVIM parameters 𝑓 (on the left on top), 𝐷 (on the right on top) 

and 𝐷 ∗ (in the middle at the bottom). 
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All numerical values in each brain segment are aggregated and expressed as a vector of statistical 

parameters; mean value, median, first quartile Q 25%, third quartile Q 75% and interquartile 

range (IQR) (difference between third quartile and first quartile). Due to the aggregation of all 

data together the loss of sensitivity in some brain segments might be followed. The choice 

of statistical method among brain segments including specific brain tumors depends on the data 

distribution. For further data processing I express the aggregated numerical values in parametric 

maps for each brain segment as IQR value. I visually verified the data distribution of IQR measure 

follows roughly normal distribution. Since the number of subjects is low68 any test 

for determining whether a data set is modeled with a normal distribution cannot be performed, 

thereby the assumption of normality of data distribution is confirmed visually. The figure 9.4 

represents the data distribution of three IVIM parameters in three brain segments. 

 

 

 

 
68 20 subjects with contrast enhanced part of all brain tumor types, 15 subjects with brain edema of all tumor types and 15 subjects 

with contrast not enhanced part of all brain tumor types. There are 10 patients with contrast enhanced part of HGG tumor, 4 patients 

with contrast enhanced part of brain tumor metastasis and 6 patients with contrast enhanced part of brain tumor meningioma. 

Furthermore, 10 patients with brain edema of HGG tumor and 4 patients with brain edema of tumor metastasis. In addition, there 

are 10 patients with contrast not enhanced part of HGG tumor and 4 patients with contrast not enhanced part of tumor metastasis. 
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Figure 9.469: Data distribution of three IVIM parameters in three brain segments. Numerical values in all 

voxels of parametric maps expressed as IQR value. The red crosses represent the mean value of IQR 

parameter for each patient. There are 15 subjects with brain edema, 15 subjects with contrast not 

enhanced part of all tumor types and 20 subjects with contrast enhanced part of all tumor types. Normal 

distribution of data assumed. Diffusion images correction implemented in SPM, without denoising, fitting 

algorithm: Fit D and f (with high b), then fit D*. 

Three IVIM parameters in two corresponding following brain regions were statistically analyzed: 

• Brain edema and contrast enhanced part in brain tumors 

• Brain edema and contrast not enhanced part in brain tumors 

• Contrast enhanced and contrast not enhanced part in brain tumors 

• Contrast enhanced part in brain tumors HGG and metastasis 

• Contrast enhanced part in brain tumors HGG and meningioma 

• Contrast enhanced part in brain tumors metastasis and meningioma 

• Brain edema in brain tumors HGG and metastasis 

• Contrast not enhanced part in brain tumors HGG and metastasis 

 
69 Data distribution for other approaches in the practical task (application of diffusion images correction in other software tools, 

denoising technique and other fitting algorithms and for brain segments in particular brain tumors) is not visualized. Due to the low 

number of subjects, the test of normality cannot be practically performed, thus the normality for other data is assumed. 
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The data for all subjects, for each IVIM parameter and for each brain segment are presented 

as mean value, standard deviation (std), median, first quartile, third quartile, IQR, maximum 

value, minimum value and range (difference between maximum and minimum value). These 

statistical parameters for the data are shown in the tables and graphically represented by 

boxplots in Appendix C. The data for IVIM parameters in each brain segment come from the same 

subjects, thus the statistical independence of data cannot be presumed. Since normal 

distribution of data presented as IQR for each subject is assumed70, parametric tests for a mean 

value were applied. A paired Student´s t-test was performed to determine the statistical 

difference between brain edema and contrast not enhanced part of brain tumors. 

For determining the statistical difference between other brain segments the independent t-test 

was conducted. Moreover, the statistical analysis between different DWI correction software 

tools (with the noise reduction, too) and different fitting algorithms within IVIM parameters 

in brain edema, contrast enhanced and not enhanced part of brain tumors was executed using 

a paired Student´s t-test. All t-tests were performed with not equal variances assumed. All tests 

were adopted with the level of p-value 𝑝 < 0.05 indicating statistical significance. 

Receiver operating characteristics (ROC) curves71 were derived to analyze the statistical 

difference of IVIM parameters in different brain segments to determine the optimal cut-off 

value, sensitivity and specificity. ROC was implemented to compare the ability of IVIM 

parameters in differentiating brain edema, contrast enhanced and not enhanced part of brain 

tumors and moreover, in discriminating patients with different brain tumor types; HGG, 

metastasis and meningioma. ROC curves constructed for the data are shown in Appendix C. The 

area under curve (AUC)72, sensitivity and specificity of each IVIM parameter for every brain 

segment is calculated at the threshold value maximizing the value of the Youden index73. 

Comparison of ROC curves between two regions was carried out by given p value at 𝐴𝑈𝐶 = 0.5.

 
70 For other statistical measures; mean, median, first and third quartile, data distribution does not visually follow roughly normal 

distribution. In that case, non-parametric tests would be used that could eventually result in the lack of statistical power and higher 

risk. 

71 ROC is a probability curve that is created by plotting sensitivity against 1 - specificity. 

72 AUC represents the entire area underneath the ROC curve. It shows the accuracy of the test; a degree of separability between two 

classes. 

73 In this practical task it is assumed the sensitivity and specificity are diagnostically equally significant, thus Youden index is used. 

The Youden index is defined as the sum of sensitivity and specificity minus one. 
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10. Results 

In this chapter the results of all the statistical tests I performed are given. The section 10.1. 

incorporates statistical comparison between different approaches for IVIM parameters 𝑓, 𝐷 

and 𝐷 ∗ calculation in brain edema, contrast enhanced and not enhanced part of brain tumors. 

In the subsection 10.1.1. statistical analysis of four diffusion images correction methods is given. 

The subsection 10.1.2. provides the results acquired by analyzing the IVIM parameters obtained 

after the application of four different diffusion correction tools with the noise reduction. Lastly, 

the subsection 10.1.3. contains the comparison between three different IVIM fitting algorithms. 

Statistically significant difference 𝑝 < 0.05 is highlighted with a gray color. Individual statistical 

tests were performed for a different number of subjects n. The chapter 10.2. is focused on the 

results derived from analyzing the ROC curves, which means on the ability of differentiation 

of different tissues types and different brain tumor types. 8 statistical tests between 

corresponding pairs were conducted. The subsection 10.2.1. incorporates results acquired 

from four different correction tools, the subsection 10.2.2. provides the results acquired 

from the statistical analysis of IVIM data after the application of diffusion data correction 

and denoising approach, too, and the subsection 10.2.3. gives the results obtained by using three 

different IVIM fitting algorithms. The results are shown for each correction approach 

and for each fitting algorithm. Analyzing of statistically significant differences between individual 

approaches and fitting algorithms is not a part of this study. In addition to statistical analysis, the 

part of my practical task was the comparison of time duration between individual automated 

software tools within the image analysis. The results are described in the section 10.3. 

10.1.  IVIM parameters calculation in different brain 

tissue types 

I am investigating whether the statistical analysis of computed IVIM parameters differs from the 

diverse DWI data correction tools. I performed the distortions correction on 4D diffusion IVIM 

images in three tools; FSL, SPM and BrainSuite. Moreover, I show the results for the input image 

without running any correction algorithms. In this task I calculated IVIM parameters with the 

default fitting algorithm; Fit D and f (with high b), then fit D*. In addition to distortions minimizing 

in diffusion images, I reduced the noise by the denoising approach described in the section 
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6.3.2.1. Distortions correction was also carried out in three software tools and the results without 

DWI data correction are shown, too. The fitting algorithm was the default algorithm, so Fit D 

and f (with high b), then fit D*. Lastly, I´m aiming to prove how different IVIM fitting algorithms 

influence final IVIM parameters. The distortions correction on input 4D IVIM data was conducted 

in SPM without denoising. 

10.1.1. Different DWI correction tools 

 mean value (standard 
deviation) 

FSL SPM BrainSuite 
Without 

correction 

ed
em

a 
(n

=1
5

) f [-] 0.12 (0.04) 0.11 (0.03) 0.12 (0.04) 0.12 (0.03) 

D [x 10-4 mm2/s] 3.36 (1.12) 3.71 (1.29) 3.81 (1.27) 3.80 (1.31) 

D* [x 10-3 mm2/s] 7.25 (6.14) 5.46 (3.64) 7.13 (5.13) 6.95 (5.12) 

en
h

an
ce

d
 

tu
m

o
r 

(n
=2

0
) f [-] 0.16 (0.03) 0.16 (0.04) 0.17 (0.04) 0.16 (0.03) 

D [x 10-4 mm2/s] 2.87 (1.05) 3.08 (1.15) 3.21 (1.24) 3.05 (1.15) 

D* [x 10-3 mm2/s] 13.32 (9.27) 12.81 (9.38) 17.80 (14.72) 15.25 (10.60) 

n
o

n
-e

n
h

. 
tu

m
o

r 
(n

=1
5

) f [-] 0.16 (0.03) 0.15 (0.04) 0.16 (0.03) 0.16 (0.04) 

D [x 10-4 mm2/s] 4.51 (2.25) 4.81 (2.44) 4.84 (2.39) 4.78 (2.31) 

D* [x 10-3 mm2/s] 6.95 (4.31) 6.88 (4.29) 8.73 (4.81) 8.44 (4.93) 

Table 10.1: Comparison of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 

not enhanced part of brain tumors. Values expressed as mean value (standard deviation). Diffusion images 

correction implemented in FSL, SPM, BrainSuite and without diffusion correction. Without denoising. Fitting 

algorithm: Fit D and f (with high b), then fit D*. 

p-values 

FSL 
x 

SPM 

FSL 
x 

BrainSuite 

FSL 
x 

Without cor. 

SPM 
x 

BrainSuite 

SPM 
x 

Without cor. 

BrainSuite 
x 

Without cor. 

ed
em

a f 0.195 0.928 0.794 0.060 <0.001 0.858 

D <0.001 <0.001 <0.001 0.069 <0.001 0.414 

D* 0.021 0.470 0.424 0.010 0.004 0.671 

en
h

an
ce

d
 

tu
m

o
r f 0.988 0.272 0.591 0.124 0.591 0.297 

D 0.007 0.014 0.004 0.503 0.537 0.287 

D* 0.584 0.065 0.073 0.006 0.001 0.120 

n
o

n
-e

n
h

. 
tu

m
o

r f 0.280 0.958 0.739 0.095 0.001 0.301 

D 0.008 0.160 0.005 0.653 0.628 0.716 

D* 0.683 0.031 <0.001 0.018 <0.001 0.807 
Table 10.2: The analysis between different DWI correction tools within IVIM parameters in edema, contrast 

enhanced and non-enhanced part of brain tumors. Statistical difference p<0.05 highlighted with gray color. 
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10.1.2. DWI denoising 

 mean value (standard 
deviation) 

FSL SPM BrainSuite 
Without 

correction 

ed
em

a 
(n

=1
5

) f [-] 0.09 (0.03) 0.08 (0.03) 0.08 (0.04) 0.07 (0.03) 

D [x 10-4 mm2/s] 3.22 (1.23) 3.48 (1.44) 3.56 (1.43) 3.53 (1.47) 

D* [x 10-3 mm2/s] 3.18 (2.63) 3.11 (1.85) 3.19 (2.67) 3.08 (1.99) 

en
h

an
ce

d
 

tu
m

o
r 

(n
=2

0
) f [-] 0.13 (0.03) 0.13 (0.05) 0.14 (0.05) 0.13 (0.04) 

D [x 10-4 mm2/s] 2.58 (1.02) 2.80 (1.13) 3.11 (1.45) 2.70 (1.11) 

D* [x 10-3 mm2/s] 6.56 (5.89) 6.41 (4.88) 9.02 (8.74) 6.93 (5.45) 

n
o

n
-e

n
h

. 
tu

m
o

r 
(n

=1
5

) f [-] 0.14 (0.03) 0.13 (0.04) 0.14 (0.05) 0.13 (0.05) 

D [x 10-4 mm2/s] 4.32 (2.49) 4.59 (2.65) 4.74 (2.63) 4.53 (2.60) 

D* [x 10-3 mm2/s] 3.08 (3.00) 3.38 (2.55) 4.58 (4.58) 3.58 (2.92) 

Table 10.3: Comparison of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 

not enhanced part of brain tumors. Values expressed as mean value (standard deviation). Diffusion images 

correction implemented in FSL, SPM, BrainSuite and without diffusion correction. Image denoising included. 

Fitting algorithm: Fit D and f (with high b), then fit D*. 

p-values 

FSL 
x 

SPM 

FSL 
x 

BrainSuite 

FSL 
x 

Without cor. 

SPM 
x 

BrainSuite 

SPM 
x 

Without cor. 

BrainSuite 
x 

Without cor. 

ed
em

a f 0.055 0.077 0.015 0.484 0.431 0.392 

D 0.001 <0.001 <0.001 0.113 0.017 0.249 

D* 0.870 0.671 0.719 0.435 0.905 0.867 

en
h

an
ce

d
 

tu
m

o
r f 0.804 0.553 0.880 0.551 0.380 0.180 

D 0.018 0.036 0.029 0.179 0.083 0.076 

D* 0.772 0.075 0.460 0.030 0.049 0.059 

n
o

n
-e

n
h

. 
tu

m
o

r f 0.313 0.919 0.748 0.214 0.216 0.344 

D 0.015 0.083 0.021 0.839 0.127 0.595 

D* 0.189 0.026 0.019 0.096 0.164 0.120 
Table 10.4: Statistical analysis between different DWI correction tools (after implementing the denoising 

approach) within IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ calculation in brain edema, contrast enhanced and not 

enhanced part of brain tumors. Statistical difference p<0.05 highlighted with a gray color. 
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10.1.3. Different IVIM fitting algorithms 

mean value (standard 
deviation)  

Jointly D, f, D* 
fitting 

Fit D and f with 
fixed D* value 

Fit D and f (with high b) 
then fit D* 

ed
em

a 

(n
=1

5
) f [-] 0.69 (0.13) 0.06 (0.02) 0.11 (0.03) 

D [x 10-4 mm2/s] 7.48 (2.27) 4.84 (1.62) 3.71 (1.29) 

D* [x 10-3 mm2/s] 29.92 (24.95)   5.46 (3.64) 

en
h

an
ce

d
 

tu
m

o
r 

(n
=2

0
) f [-] 0.46 (0.16) 0.08 (0.03) 0.16 (0.04) 

D [x 10-4 mm2/s] 4.75 (1.75) 4.68 (2.00) 3.08 (1.15) 

D* [x 10-3 mm2/s] 66.98 (35.03)   12.81 (9.38) 

n
o

n
-e

n
h

. 
tu

m
o

r 
(n

=1
5

) f [-] 0.66 (0.12) 0.07 (0.02) 0.15 (0.04) 

D [x 10-4 mm2/s] 6.84 (1.83) 7.51 (4.18) 4.81 (2.44) 

D* [x 10-3 mm2/s] 37.26 (26.25)   6.88 (4.29) 

Table 10.5: Comparison of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 

not enhanced part of brain tumors. Values expressed as mean value (standard deviation). Diffusion images 

correction implemented in SPM. Without denoising. Fitting algorithms: Jointly fit D, f and D*, Fit D and f 

with fixed D* value (0.07 [
𝑠

𝑚𝑚2]) and Fit D and f (with high b), then fit D*. 

p-values 

Jointly D, f, D* fitting 
x 

Fit D and f with 
fixed D* value 

Jointly D, f, D* fitting 
x 

Fit D and f (with high b) 
then fit D* 

Fit D and f with fixed D* value 
x 

Fit D and f (with high b) 
then fit D* 

ed
em

a f <0.001 <0.001 <0.001 

D <0.001 <0.001 <0.001 

D*  0.001  

en
h

an
ce

d
 

tu
m

o
r f <0.001 <0.001 <0.001 

D 0.850 <0.001 <0.001 

D*  <0.001  

n
o

n
-e

n
h

. 
tu

m
o

r f <0.001 <0.001 <0.001 

D 0.506 0.004 <0.001 

D*  <0.001  
Table 10.6: Statistical analysis between different IVIM fitting algorithms within IVIM parameters 𝑓, 𝐷 

and 𝐷 ∗ calculation in brain edema, contrast enhanced and not enhanced part of brain tumors. Statistical 

difference p<0.05 highlighted with a gray color. 
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10.2.  Brain tissue and brain tumor types differentiation 

I am analyzing whether the IVIM method is able to differentiate diverse brain tissue types 

and different brain tumor types based on the patient´s data. I am finding out the impact 

of different correction approaches and fitting algorithms on the differentiation ability. 

I performed the distortions correction on diffusion images, applied the noise reduction and used 

three different fitting algorithms. The procedure is the same as in the section 10.1. In this chapter 

the results obtained from the ROC curves by applying SPM DWI correction tool (without and after 

applying the denoising approach) are given. The results for other correction approaches; FSL, 

BrainSuite and without correction (without and after applying the denoising approach) are 

shown in Appendix D. Moreover, this chapter contains the results acquired by implementing 

three fitting algorithms. 
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10.2.1. Different DWI correction tools 

 mean value (standard 
deviation) 

SPM 

en
h

. H
G

G
 

(n
=1

0
) f [-] 0.14 (0.03) 

D [x 10-4 mm2/s] 3.23 (1.09) 

D* [x 10-3 mm2/s] 7.45 (3.37) 

en
h

. m
et

a 
 

(n
=4

) 

f [-] 0.16 (0.03) 

D [x 10-4 mm2/s] 4.21 (0.61) 

D* [x 10-3 mm2/s] 8.94 (2.11) 

en
h

. m
en

i. 
 

(n
=6

) 

f [-] 0.18 (0.05) 

D [x 10-4 mm2/s] 2.06 (0.57) 

D* [x 10-3 mm2/s] 24.34 (9.07) 

ed
em

a 

H
G

G
 

(n
=1

0
) f [-] 0.12 (0.04) 

D [x 10-4 mm2/s] 3.45 (1.45) 

D* [x 10-3 mm2/s] 5.81 (3.94) 

ed
em

a 

m
et

a.
  

(n
=4

) f [-] 0.09 (0.01) 

D [x 10-4 mm2/s] 4.44 (0.71) 

D* [x 10-3 mm2/s] 3.35 (0.75) 

n
o

n
-e

n
h

 

H
G

G
 

(n
=1

0
) f [-] 0.15 (0.03) 

D [x 10-4 mm2/s] 4.94 (2.75) 

D* [x 10-3 mm2/s] 5.36 (2.45) 

n
o

n
-e

n
h

 

m
et

a 
(n

=4
) f [-] 0.16 (0.03) 

D [x 10-4 mm2/s] 4.80 (2.09) 

D* [x 10-3 mm2/s] 7.45 (2.11) 

Table 10.7: Comparison of IVIM parameters in contrast enhanced part of tumors HGG, metastasis and 

meningioma, in edema of tumors HGG and metastasis, in contrast non-enhanced part of tumors HGG and 

metastasis. Values expressed as mean value (standard deviation). Images correction implemented in SPM. 

Without denoising. Fit D and f (with high b), then fit D*. 
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• SPM DWI correction tool 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 
x 

en
h

an
ce

d
 

f 0.001 0.83 <0.001 0.70 0.13 [-] 90.00 80.00 

D 0.139 0.64 0.158 0.30 3.64 [x 10-4 mm2/s] 70.00 60.00 

D* 0.004 0.80 <0.001 0.60 5.96 [x 10-3 mm2/s] 80.00 80.00 

ed
em

a 
x 

n
o

n
-e

n
h

an
. 

f 0.003 0.83 <0.001 0.60 0.11 [-] 93.33 66.67 

D 0.152 0.62 0.270 0.33 4.78 [x 10-4 mm2/s] 46.67 86.67 

D* 0.273 0.66 0.122 0.33 2.98 [x 10-3 mm2/s] 86.67 46.67 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.911 0.50 0.987 0.10 0.16 [-] 40.00 70.00 

D 0.020 0.75 0.003 0.42 3.69 [x 10-4 mm2/s] 66.67 75.00 

D* 0.018 0.74 0.005 0.47 5.96 [x 10-3 mm2/s] 66.67 80.00 

en
h

an
. H

G
G

 
x 

en
h

. m
et

a.
 

f 0.159 0.79 0.025 0.60 0.14 [-] 100.00 60.00 

D 0.061 0.78 0.048 0.55 3.69 [x 10-4 mm2/s] 75.00 80.00 

D* 0.346 0.61 0.484 0.40 5.96 [x 10-3 mm2/s] 100.00 40.00 

en
h

an
. H

G
G

 
x 

en
h

. m
en

i. f 0.068 0.78 0.042 0.53 0.14 [-] 83.33 70.00 

D 0.013 0.80 0.009 0.60 2.66 [x 10-4 mm2/s] 100.00 60.00 

D* 0.005 0.94 <0.001 0.83 13.41 [x 10-3 mm2/s] 83.33 100.00 

en
h

. m
et

a 
x 

en
h

. m
en

i f 0.469 0.63 0.527 0.42 0.16 [-] 66.67 75.00 

D 0.001 1.00 <0.001 1.00 2.66 [x 10-4 mm2/s] 100.00 100.00 

D* 0.008 0.94 <0.001 0.83 11.92 [x 10-3 mm2/s] 83.33 100.00 

ed
em

a 
H

G
G

 
x 

ed
em

. m
et

a 

f 0.124 0.68 0.256 0.60 0.10 [-] 100.00 60.00 

D 0.112 0.73 0.132 0.50 2.91 [x 10-4 mm2/s] 100.00 50.00 

D* 0.087 0.73 0.066 0.40 4.47 [x 10-3 mm2/s] 100.00 40.00 

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a 

f 0.464 0.68 0.299 0.40 0.13 [-] 100.00 40.00 

D 0.921 0.50 1.000 0.25 4.80 [x 10-4 mm2/s] 25.00 50.00 

D* 0.158 0.78 0.024 0.50 4.47 [x 10-3 mm2/s] 100.00 50.00 

Table 10.8: The p-value indicating the statistically significant difference, the values of AUC, p-value 

(AUC=0.5), Youden index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 

and 𝐷 ∗ derived from the ROC curve in different brain tissue types and different brain tumor types. 

Statistical difference p<0.05 highlighted with a gray color. Diffusion images correction implemented 

in SPM, without denoising, fitting algorithm: Fit D and f (with high b), then fit D*. 
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10.2.2. DWI denoising 

 mean value (standard 
deviation) 

SPM 

en
h

. H
G

G
 

(n
=1

0
) f [-] 0.11 (0.03) 

D [x 10-4 mm2/s] 2.91 (1.12) 

D* [x 10-3 mm2/s] 3.73 (1.61) 

en
h

. m
et

a 
 

(n
=4

) 

f [-] 0.14 (0.02) 

D [x 10-4 mm2/s] 3.81 (0.67) 

D* [x 10-3 mm2/s] 4.47 (2.11) 

en
h

. m
en

i. 
 

(n
=6

) 

f [-] 0.17 (0.08) 

D [x 10-4 mm2/s] 1.96 (0.79) 

D* [x 10-3 mm2/s] 12.17 (5.11) 

ed
em

a 

H
G

G
 

(n
=1

0
) f [-] 0.08 (0.04) 

D [x 10-4 mm2/s] 3.18 (1.62) 

D* [x 10-3 mm2/s] 3.18 (1.54) 

ed
em

a 

m
et

a.
  

(n
=4

) f [-] 0.06 (0.01) 

D [x 10-4 mm2/s] 4.30 (0.74) 

D* [x 10-3 mm2/s] 1.86 (0.75) 

n
o

n
-e

n
h

 

H
G

G
 

(n
=1

0
) f [-] 0.12 (0.03) 

D [x 10-4 mm2/s] 4.75 (2.98) 

D* [x 10-3 mm2/s] 2.53 (1.01) 

n
o

n
-e

n
h

 

m
et

a 
(n

=4
) f [-] 0.12 (0.02) 

D [x 10-4 mm2/s] 4.53 (2.31) 

D* [x 10-3 mm2/s] 3.35 (0.75) 

Table 10.9: Comparison of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 

metastasis and meningioma, in brain edema of brain tumors HGG and metastasis, in contrast non-

enhanced part of brain tumors HGG and metastasis. Values expressed as mean value (standard deviation). 

Diffusion images correction implemented in SPM. Denoising included. Fitting algorithm: Fit D and f (with 

high b), then fit D*. 
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• SPM DWI correction tool 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 
x 

en
h

an
ce

d
 

f <0.001 0.85 <0.001 0.70 0.08 [-] 90.00 80.00 

D 0.143 0.65 0.125 0.35 3.42 [x 10-4 mm2/s] 75.00 60.00 

D* 0.010 0.75 0.002 0.38 2.98 [x 10-3 mm2/s] 65.00 73.33 

ed
em

a 
x 

n
o

n
-e

n
h

an
. 

f 0.001 0.86 <0.001 0.80 0.08 [-] 100.00 80.00 

D 0.180 0.60 0.376 0.27 4.39 [x 10-4 mm2/s] 46.67 80.00 

D* 0.657 0.52 0.815 0.13 1.49 [x 10-3 mm2/s] 73.33 40.00 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.783 0.54 0.694 0.25 0.14 [-] 45.00 80.00 

D 0.025 0.73 0.009 0.42 4.42 [x 10-4 mm2/s] 95.00 46.67 

D* 0.024 0.75 0.003 0.45 2.98 [x 10-3 mm2/s] 65.00 80.00 

en
h

an
. H

G
G

 
x 

en
h

. m
et

a.
 

f 0.074 0.85 0.002 0.70 0.12 [-] 100.00 70.00 

D 0.097 0.78 0.048 0.55 3.42 [x 10-4 mm2/s] 75.00 80.00 

D* 0.555 0.59 0.628 0.25 5.96 [x 10-3 mm2/s] 25.00 100.00 

en
h

an
. H

G
G

 
x 

en
h

. m
en

i. f 0.111 0.76 0.051 0.40 0.10 [-] 100.00 40.00 

D 0.067 0.73 0.073 0.50 2.98 [x 10-4 mm2/s] 100.00 50.00 

D* 0.009 1.00 <0.001 1.00 5.96 [x 10-3 mm2/s] 100.00 100.00 

en
h

. m
et

a 
x 

en
h

. m
en

i f 0.341 0.50 1.000 0.33 0.11 [-] 66.67 0.00 

D 0.005 0.96 <0.001 0.83 2.39 [x 10-4 mm2/s] 83.33 100.00 

D* 0.013 0.96 <0.001 0.75 4.47 [x 10-3 mm2/s] 100.00 75.00 

ed
em

a 
H

G
G

 
x 

ed
em

. m
et

a 

f 0.174 0.63 0.438 0.50 0.07 [-] 100.00 50.00 

D 0.103 0.73 0.132 0.50 2.53 [x 10-4 mm2/s] 100.00 50.00 

D* 0.054 0.76 0.033 0.45 1.49 [x 10-3 mm2/s] 75.00 70.00 

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a 

f 0.846 0.68 0.300 0.40 0.10 [-] 100.00 40.00 

D 0.885 0.50 1.000 0.25 4.51 [x 10-4 mm2/s] 25.00 50.00 

D* 0.135 0.73 0.053 0.40 1.49 [x 10-3 mm2/s] 100.00 40.00 

Table 10.10: The p-value indicating the statistically significant difference, the values of AUC, p-value 

(AUC=0.5), Youden index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 

and 𝐷 ∗ derived from the ROC curve in different brain tissue types and different brain tumor types. 

Statistical difference p<0.05 highlighted with a gray color. Diffusion images correction implemented 

in SPM, denoising included, fitting algorithm: Fit D and f (with high b), then fit D*. 
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10.2.3. Different IVIM fitting algorithms 

mean value (standard 
deviation) 

Jointly D, f, D* 
fitting 

Fit D and f 
with 

fixed D* value 

Fit D and f (with high b) 
then fit D* 

en
h

. H
G

G
 

(n
=1

0
) f [-] 0.56 (0.12) 0.07 (0.01) 0.14 (0.03) 

D [x 10-4 mm2/s] 5.46 (1.93) 4.75 (1.66) 3.23 (1.09) 

D* [x 10-3 mm2/s] 51.54 (20.49)   7.45 (3.37) 

en
h

. m
et

a 
 

(n
=4

) 

f [-] 0.47 (0.06) 0.09 (0.02) 0.16 (0.03) 

D [x 10-4 mm2/s] 5.09 (1.19) 6.74 (1.61) 4.21 (0.61) 

D* [x 10-3 mm2/s] 47.93 (21.01)   8.94 (2.11) 

en
h

. m
en

i. 
 

(n
=6

) 

f [-] 0.28 (0.12) 0.11 (0.04) 0.18 (0.05) 

D [x 10-4 mm2/s] 3.36 (0.79) 3.19 (1.59) 2.06 (0.57) 

D* [x 10-3 mm2/s] 105.41 (33.22)   24.34 (9.07) 

ed
em

a 
H

G
G

 
(n

=1
0

) f [-] 0.68 (0.15) 0.06 (0.03) 0.12 (0.04) 

D [x 10-4 mm2/s] 7.62 (2.58) 4.43 (1.80) 3.45 (1.45) 

D* [x 10-3 mm2/s] 29.73 (24.02)   5.81 (3.94) 

ed
em

a 
m

et
a.

  
(n

=4
) f [-] 0.75 (0.04) 0.05 (0.01) 0.09 (0.01) 

D [x 10-4 mm2/s] 7.91 (0.67) 5.76 (0.84) 4.44 (0.71) 

D* [x 10-3 mm2/s] 18.14 (13.74)   3.35 (0.75) 

n
o

n
-e

n
h

 
H

G
G

 
(n

=1
0

) f [-] 0.71 (0.07) 0.06 (0.01) 0.15 (0.03) 

D [x 10-4 mm2/s] 7.38 (1.97) 7.46 (4.17) 4.94 (2.75) 

D* [x 10-3 mm2/s] 29.32 (19.60)   5.36 (2.45) 

n
o

n
-e

n
h

 
m

et
a 

(n
=4

) f [-] 0.61 (0.09) 0.08 (0.01) 0.16 (0.03) 

D [x 10-4 mm2/s] 6.00 (0.76) 8.12 (5.27) 4.80 (2.09) 

D* [x 10-3 mm2/s] 40.58 (19.46)   7.45 (2.11) 

Table 10.11: Comparison of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 

metastasis and meningioma, in brain edema of brain tumors HGG and metastasis, in contrast non-

enhanced part of brain tumors HGG and metastasis. Values expressed as mean value (standard deviation). 

Diffusion images correction implemented in SPM. Without denoising. Fitting algorithms: Jointly fit D, f 

and D*, Fit D and f with fixed D* value (0.07 [
𝑠

𝑚𝑚2]) and Fit D and f (with high b), then fit D*. 
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• Fitting algorithm: Jointly fit D, f and D* 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 
x 

en
h

an
ce

d
 

f <0.001 0.88 <0.001 0.73 0.69 [-] 100.00 73.33 

D 0.001 0.82 <0.001 0.58 6.75 [x 10-4 mm2/s] 85.00 73.33 

D* 0.001 0.80 <0.001 0.53 20.47 [x 10-3 mm2/s] 100.00 53.33 

ed
em

a 
x 

n
o

n
-e

n
h

an
. 

f 0.531 0.61 0.295 0.27 0.70 [-] 60.00 66.67 

D 0.308 0.60 0.356 0.40 6.91 [x 10-4 mm2/s] 66.67 73.33 

D* 0.287 0.63 0.238 0.33 9.91 [x 10-3 mm2/s] 93.33 40.00 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f <0.001 0.86 <0.001 0.62 0.55 [-] 86.67 75.00 

D 0.002 0.82 <0.001 0.60 5.64 [x 10-4 mm2/s] 80.00 80.00 

D* 0.007 0.77 0.001 0.50 34.98 [x 10-3 mm2/s] 60.00 90.00 

en
h

an
. H

G
G

 
x 

en
h

. m
et

a.
 

f 0.092 0.73 0.125 0.55 0.48 [-] 75.00 80.00 

D 0.672 0.50 1.000 0.30 3.90 [x 10-4 mm2/s] 100.00 30.00 

D* 0.781 0.58 0.722 0.30 36.97 [x 10-3 mm2/s] 50.00 80.00 

en
h

an
. H

G
G

 
x 

en
h

. m
en

i. f 0.001 0.93 <0.001 0.83 0.36 [-] 83.33 100.00 

D 0.010 0.90 <0.001 0.67 3.37 [x 10-4 mm2/s] 66.67 100.00 

D* 0.008 0.93 <0.001 0.73 73.47 [x 10-3 mm2/s] 83.33 90.00 

en
h

. m
et

a 
x 

en
h

. m
en

i f 0.011 0.88 0.004 0.83 0.36 [-] 83.33 100.00 

D 0.053 0.96 <0.001 0.83 3.70 [x 10-4 mm2/s] 83.33 100.00 

D* 0.010 0.92 <0.001 0.83 72.39 [x 10-3 mm2/s] 83.33 100.00 

ed
em

a 
H

G
G

 
x 

ed
em

. m
et

a 

f 0.187 0.58 0.660 0.40 0.69 [-] 100.00 40.00 

D 0.749 0.50 1.000 0.40 8.69 [x 10-4 mm2/s] 0.00 60.00 

D* 0.284 0.60 0.527 0.40 37.46 [x 10-3 mm2/s] 100.00 40.00 

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a 

f 0.122 0.81 0.010 0.60 0.70 [-] 100.00 60.00 

D 0.084 0.75 0.077 0.60 6.68 [x 10-4 mm2/s] 100.00 60.00 

D* 0.384 0.68 0.300 0.40 16.10 [x 10-3 mm2/s] 100.00 40.00 

Table 10.12: The p-value indicating the statistically significant difference, the values of AUC, p-value 

(AUC=0.5), Youden index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 

and 𝐷 ∗ derived from the ROC curve in different brain tissue types and different brain tumor types. 

Statistical difference p<0.05 highlighted with a gray color. Diffusion images correction implemented 

in SPM, without denoising, fitting algorithm: Jointly fit D, f and D*. 
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• Fitting algorithm: Fit D and f with fixed D* value (𝟎. 𝟎𝟕 [
𝐬

𝐦𝐦𝟐]) 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 
x 

en
h

an
ce

d
 

f 0.015 0.79 0.001 0.63 0.06 [-] 90.00 73.33 

D 0.793 0.52 0.818 0.22 3.59 [x 10-4 mm2/s] 35.00 86.67 

D*               

ed
em

a 
x 

n
o

n
-e

n
h

an
. 

f 0.346 0.69 0.078 0.47 0.06 [-] 80.00 66.67 

D 0.038 0.71 0.038 0.47 5.57 [x 10-4 mm2/s] 66.67 80.00 

D*               

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.089 0.70 0.040 0.42 0.07 [-] 66.67 75.00 

D 0.025 0.72 0.013 0.45 6.11 [x 10-4 mm2/s] 60.00 85.00 

D*               

en
h

an
. H

G
G

 
x 

en
h

. m
et

a.
 

f 0.088 0.86 0.001 0.60 0.07 [-] 100.00 60.00 

D 0.088 0.83 0.015 0.65 6.06 [x 10-4 mm2/s] 75.00 90.00 

D*               

en
h

an
. H

G
G

 
x 

en
h

. m
en

i. f 0.025 0.90 <0.001 0.83 0.08 [-] 83.33 100.00 

D 0.087 0.77 0.057 0.53 3.99 [x 10-4 mm2/s] 83.33 70.00 

D*               

en
h

. m
et

a 
x 

en
h

. m
en

i f 0.223 0.69 0.312 0.42 0.09 [-] 66.67 75.00 

D 0.012 0.96 <0.001 0.83 3.99 [x 10-4 mm2/s] 83.33 100.00 

D*               

ed
em

a 
H

G
G

 
x 

ed
em

. m
et

a 

f 0.090 0.71 0.213 0.55 0.05 [-] 75.00 80.00 

D 0.086 0.80 0.031 0.65 5.46 [x 10-4 mm2/s] 75.00 90.00 

D*               

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a 

f 0.045 0.91 <0.001 0.70 0.06 [-] 100.00 70.00 

D 0.832 0.53 0.898 0.25 6.92 [x 10-4 mm2/s] 75.00 50.00 

D*               

Table 10.13: The p-value indicating the statistically significant difference, the values of AUC, p-value 

(AUC=0.5), Youden index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 

and 𝐷 ∗ derived from the ROC curve in different brain tissue types and different brain tumor types. 

Statistical difference p<0.05 highlighted with a gray color. Diffusion images correction implemented 

in SPM, without denoising, fitting algorithm: Fit D and f with fixed D* value (0.07 [
𝑠

𝑚𝑚2]). 

• Fitting algorithm: Fit D and f (with high b), then fit D* - the same as in the table 10.8., page 89.
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10.3.  Time duration of software tools 

In this section I compare the results of time duration of different software tools within skull 

stripping, image registration and diffusion images correction approach. The results are 

introduced in the Appendix B. 

According to the results, the automated algorithms perform brain extraction in greatly different 

time. The longest running tool ANTs executed skull stripping in more than 60 minutes, whilst the 

shortest running program FSL in less than one minute. Then, I compared the time duration 

of three different software tools (FSL FLIRT, BrainSuite and ITK SNAP + ANTs) executing image 

registration of 𝑇1 and FLAIR images. The longest running tool BrainSuite registered both images 

in more than 25 minutes, whereas ITK SNAP + ANTS, the shortest running method, in roughly 3 

minutes. I measured, furthermore, the time duration of three diffusion images correction tools. 

FSL tools carried out the distortions correction on 4D IVIM images in about 50 minutes, SPM 

in circa 9 minutes and BrainSuite in roughly 25 minutes.
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11. Discussion 

This chapter is divided into three parts. The first part 11.1. focuses on the description of IVIM 

parameters acquired with different four diffusion images correction tools; FSL, SPM, BrainSuite 

and without diffusion correction, with included denoising approach and last but not least, with 

the use of three different IVIM fitting algorithms. The comparison of the data regarding the 

ability to differentiate between single brain tissue types and brain tumor types is described in the 

section 11.2. The explanation of the results based on the theoretical background is given. In the 

last chapter 11.3. the main outcomes of this study are emphasized. Moreover, I suggest the 

optimal procedure including the use of concrete software tools and fitting algorithms. Last not 

least, the strengths and the limitations of the study are analyzed. 

The null hypothesis in the tests I performed is the mean value in each IVIM parameter is equal 

in both brain segments and in both correction and fitting algorithms, respectively. The 

alternative hypothesis is that the mean value in each IVIM parameter is not equal in both brain 

segments and in both correction and fitting algorithms, respectively. 

11.1.  Different DWI correction tools and fitting 

algorithms 

This chapter includes the analysis how IVIM parameters values differ from using diverse software 

tools for diffusion images correction (with denoising included as well) and different IVIM fitting 

algorithms. The statistically significant difference was investigated between different 

approaches within IVIM parameters in brain edema, contrast enhanced and contrast non-

enhanced part of brain tumors. A remarkable finding out is there is no statistically significant 

difference in any IVIM parameter in any of three brain segments between the BrainSuite tool 

and the approach without diffusion correction. Contrarily, the statistically significant difference 

was confirmed between other correction approaches. Significant differences between a pair 

of correction tools were revealed in 𝐷 and 𝐷 ∗ parameter, while 𝑓 parameter did not usually 

show any significant difference. A significant point of using three different correction software 

tools is their time duration. SPM tool enables to obtain the final images in much shorter time 

than FSL and BrainSuite, thus SPM tool is a convenient method in the clinical practice. Since I 

assume the use of denoising does not have substantial impact on IVIM parameters it was 
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confirmed that the results after the noise reduction shows similar results as without denoising 

application. Moreover, mean 𝐷 ∗ values after the application of denoising were lower than 

without the use of denoising. Almost all the tests confirmed the statistically significant difference 

between a pair of individual three fitting algorithms. Principal finding is that perfusion 

coefficients 𝑓 and 𝐷 ∗ for the fitting algorithm Jointly fit 𝐷, 𝑓 and 𝐷 ∗ are greatly higher than 

other two fitting algorithms; Fit 𝐷 and 𝑓 with fixed 𝐷 ∗ and Fit 𝐷 and 𝑓 (with high b), then fit 𝐷 ∗. 

11.2.  Brain tissue types and brain tumor types 

differentiation 

In this chapter the overall comparison of results concerning differentiation of brain tissue types 

and brain tumor types within three diffusion correction approaches based on theory is given. 

At the end of this chapter, the influence of different DWI correction tools (with and without 

denoising) and different fitting algorithms on the ability of brain tissues and brain tumors 

differentiation is mentioned. 

IVIM parameters 𝑓 and 𝐷 ∗ are physiological markers of perfusion, which means they represent 

the current condition of the capillary network. According to the theoretical background, the 

higher capillary perfusion, the higher 𝑓 value. 𝑓 parameter correlates with the total vessel area, 

vessel count differentiation degree and vascular area fraction. [112] 𝐷 ∗ is proportional to the 

dynamic flow rate and correlates with mean vessel diameter. [112] 𝐷 parameter (the pure 

diffusion coefficient) does not include microcirculation of blood in capillaries, while reflects the 

diffusion in both intra- and extra-cellular space. 𝐷 parameter highly depends on cell density 

and extracellular space. [112] 

• Brain edema and contrast enhanced part of brain tumors 

In all the tests brain segments edema and contrast enhanced part of brain tumors could have 

been optimally distinguished in 𝑓 and 𝐷 ∗ IVIM parameter. 𝑓 and 𝐷 ∗ values in edema are lower 

than in contrast enhanced part of brain tumors. I expect 𝑓 values in the contrast enhanced part 

of brain tumors are higher than in brain edema due to rapid tumor cells proliferation, so due to 

the neovascularization (formation of new blood vessels). 𝐷 ∗ values in contrast enhanced part of 

brain tumors are higher than in brain edema indicating that capillary perfusion is higher due to 

more distinct vascular proliferation. It was concluded 𝐷 parameter does not have statistically 
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significant difference between both components. A possible explanation is that when tumor cells 

enter the brain tissue free movement of the fluid in the brain is restricted but these tumor cells 

infiltrate surrounding area as well (especially in highly invasive HGG brain tumors), thus the 

diffusion in brain edema would be restricted as well. 

• Brain edema and contrast not enhanced part of brain tumors 

Nearly all the approaches revealed statistical significance between edema and contrast not 

enhanced part of brain tumors in 𝑓 parameter. The values of this parameter in edema are lower 

than in contrast non-enhanced part of tumors. 𝐷 and 𝐷 ∗ values did not detect the significant 

difference. The clarification for statistical significance of 𝑓 IVIM parameter and non-statistical 

significance of 𝐷 parameter is anticipated the same as for the test brain edema and contrast 

enhanced part of brain tumors. 

• Contrast enhanced and contrast not enhanced part of brain tumors 

Results in 𝐷 and 𝐷 ∗ are considered statistically significant between contrast enhanced 

and contrast non-enhanced part of brain tumors in almost all the tests I performed. 𝐷 parameter 

values in contrast enhanced part are significantly lower than in contrast non-enhanced part, 

whereas 𝐷 ∗ values in contrast enhanced tissue are higher than in contrast not enhanced part of 

brain tumors. 𝐷 parameter is lower in contrast enhanced part due to limited diffusion and 𝐷 ∗ 

parameter is higher in this brain tissue so the higher capillary perfusion in this tissue is expected. 

By contrast, 𝑓 parameter does not have an ability to separate between both brain components. 

Proportion of microcirculation of both segments do not significantly differ. 

• Contrast enhanced part of brain tumors HGG and metastasis 

According to the results I assume contrast enhanced part of HGG tumor and metastasis cannot 

be considered as statistically significant in any IVIM parameter. This result is incompatible 

with the study [113] which revealed the statistical significance in 𝑓 and 𝐷 ∗ parameter between 

the HGG tumor and metastasis. It was proven 𝐷 ∗ derived from HGG was significantly higher 

than that of metastatic tumors since HGG tumors show a wider range of vascular proliferation, 

thus capillary perfusion in HGG tumor is higher than in metastasis. 
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• Contrast enhanced part of brain tumors HGG and meningioma 

In all the tests the 𝐷 ∗ parameter revealed the statistically significant difference between 

contrast enhanced part of brain tumors HGG and meningioma. 𝐷 ∗ in contrast enhanced part 

of HGG tumor was significantly lower than in meningioma. In comparison with HGG, meningioma 

is considered less invasive tumor [114], thereby it is assumed 𝐷 ∗ in HGG is higher 

than in metastasis that was not, however, confirmed by the test analysis. Moreover, 𝑓 and 𝐷 

parameters are also considered to have an ability to distinguish between both brain segments. 

𝑓 parameter in contrast enhanced part of HGG tumor is supposed to be statistically lower 

than in contrast enhanced part of meningioma. Due to the invasion of HGG tumors, the capillary 

perfusion in HGG is lower than in less invasive metastatic tumors. 𝐷 values in contrast enhanced 

part of HGG tumor are considered statistically higher than in contrast enhanced part 

of meningioma tumor. This result is also in contrary to the initial assumption that free movement 

of fluid is especially restricted by the invasive tumor cells, so the 𝐷 gets decreased as supported 

by the study. [112] The discrepancy might be caused by a different size of both samples. 

• Contrast enhanced part of brain tumors metastasis and meningioma 

The samples of contrast enhanced part of brain tumors metastasis and meningioma were 

especially statistically different in 𝐷 and 𝐷 ∗. 𝐷 values in contrast enhanced part of metastasis 

were revealed significantly higher than in contrast enhanced part of meningioma, while 𝐷 ∗ 

in contrast enhanced part of metastasis was significantly lower than in contrast enhanced part 

of meningioma. It might indicate the higher rate of capilary perfusion is more enhanced 

in meningioma than in metastatic tumors, thus 𝐷 ∗ is higher in meningioma. The reason why 𝐷 

parameter in metastasis is significantly higher than in meningioma can be that infiltration 

of meningioma tumor cells cause the increased cellular density in this tissue resulting in the 

restriction of free diffusion. 𝑓 IVIM parameter is said not to be statistically significant between 

both components. It follows the proportion of perfusion of microcirculation in both tumor types 

is not significantly different. 

• Edema in brain tumors HGG and metastasis 

According to the results, there is no statistical significance in most of the tests so I presume both 

brain components cannot be distinguished. This result is contrary to the study [113] that revealed 
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the 𝐷 ∗ values in brain edema of HGG tumors are significantly higher than in brain edema 

of metastasis due to their different pathological changes. Brain edema of metastatic tumors 

(vasogenic edema) represents lower capillary perfusion since metastatic tumor cells do not 

infiltrate brain edema, whereas HGG tumor cells grow in an invasive fashion in which tumor cells 

infiltrate other brain tissue, so including the brain edema. 

• Contrast not enhanced part of brain tumors HGG and metastasis 

Almost all the tests did not show the statistical significance between contrast not enhanced part 

of brain tumors HGG and metastasis thus I guess both brain segments cannot be distinguished. 

It is not strictly proven whether there is some difference between three correction software tools 

and which algorithm performs the correction resulting in the most accurate differentiation 

ability. Moreover, it cannot be determined whether the approach without diffusion images 

correction is significantly different from correction methods. On the other hand, in some IVIM 

parameters within a pair of brain segments the ability of differentiation was revealed in 

a correction tool, whilst another correction tool did not reveal the differentiation ability. Hence, 

I presume the individual correction tools might play an important role in the ability of 

differentiation, too. 

According to the results acquired with the diffusion data correction methods and with the 

correction including denoising, the denoising does not have any significant impact on the ability 

of differentiation between individual brain tissue types and brain tumor types. This fact was 

assumed since DWI images with higher b values were acquired with more NEX values, thereby 

the influence of random noise is not significant. 

Despite the fact that the statistically significant difference was revealed between several brain 

segments within using the fitting algorithm Jointly fit 𝐷, 𝑓 and 𝐷 ∗ I assume this algorithm is not 

a right method for different brain tissue types and different brain tumor types differentiation. 

This approach does not provide accurate IVIM parameters calculation since it executes 

simultaneous fitting of all three IVIM parameters over all b values. The fitting algorithm Fit 𝐷 

and 𝑓 with fixed 𝐷 ∗ highly depends on the choice of the fixed 𝐷 ∗ value so the differentiation 

ability is highly influenced by the choice of this parameter. Hence, thorough analysis of data prior 
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the fitting is crucial. I suppose the most accurate differentiation ability was obtained by applying 

the fitting algorithm Fit 𝐷 and 𝑓 (with high b), then fit 𝐷 ∗. 

11.3.  Overall summary 

I cannot explicitly determine which diffusion data correction tool was the best in terms of the 

results accuracy and the ability of differentiation. Nonetheless, a significant factor I would be 

considering is the time duration, thereby I assume the SPM correction tool is the best approach. 

The noise reduction on this dataset does not markedly influence the results and the ability 

of differentiation, thus the denoising approach on this dataset did not have to be applied. 

However, the denoising approach for other datasets may be very important. Within other studies 

and in the clinical practice it is essential to examine the acquired data, to find out the acquisition 

parameters and thus to decide whether the denoising approach is necessary. I guess the most 

convenient fitting method for IVIM data is the Fit 𝐷 and 𝑓 (with high b), then fit 𝐷 ∗. This 

algorithm is able to separate perfusion effects that are negligible at high b values that is a key 

feature for IVIM concept. I would suggest using this algorithm in other studies. 

Within the study it was revealed the following brain segments pairs can be significantly 

distinguished: brain edema and contrast enhanced part of brain tumors, brain edema 

and contrast non-enhanced part of brain tumors, contrast enhanced and not enhanced part 

of brain tumors, contrast enhanced part of brain tumors HGG and meningioma, contrast 

enhanced part of brain tumors metastasis and meningioma. It follows brain tumors HGG 

and meningioma can be distinguished by the IVIM concept. Moreover, the study showed the 

ability to differentiate between brain tumors metastasis and meningioma. According to the 

results, the brain tumors HGG and metastasis cannot be differentiated. 

The strengths of this study include the use of several approaches for IVIM parameters 

calculation. I thoroughly tested individual software tools for diffusion data correction 

and investigated the impact of the noise minimizing that is often a crucial step in diffusion images 

analysis. Furthermore, I acquired IVIM parameters by implementing three fitting algorithms that 

highly influence final IVIM parameters. Moreover, I investigated the time duration of single 

software tools that is an important aspect of implementing in practice. 
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This study suffers from several limitations. Firstly, the number of all the subjects (20) was 

relatively small. In addition, the sample size of patients suffering from brain tumors HGG (4) 

and brain tumor meningioma (6) was small. Despite the fact that in some tests between these 

samples the final results were excellent, the fact might be misrepresented due to a low number 

of both subjects whose sample sizes are not equal. Secondly, the data in three IVIM parametric 

maps were together aggregated in all voxels and expressed as one value. This could have resulted 

in the loss of sensitivity in some subjects in some brain components. A possible way how to 

increase the power of the statistical analysis could be to perform the measurement on the 3T 

MR system resulting in higher SNR. Thirdly, 𝑓 values depend on the echo time 𝑇𝐸  representing 

the degree of signal attenuation at low b values, thus 𝑓 value in some cases might not be the 

true perfusion fraction parameter. Furthermore, absolutely precise image segmentation of brain 

lesions is very challenging so it might represent a source of inaccuracies, too. Lastly, in several 

statistical tests three types of different tumor types with a different growth pattern and behavior 

were combined together that could lead to wrongly assessment. 

In further studies, it is essential to include several other brain tumor types and to extend 

a number of subjects. This could result in more precise verification of the IVIM concept to have 

an ability to differentiate between individual brain tumor types.
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12. Conclusion 

In this thesis I analyzed a new concept of diffusion magnetic resonance intravoxel incoherent 

motion. IVIM is a promising tool having an ability to assess perfusion and diffusion in tissue 

without the need of any contrast medium. One of the advantages of IVIM method is that it can 

be integrated onto routine magnetic resonance protocols. I performed the statistical analysis 

of acquired IVIM parameters. Before the statistical analysis was taken, I had executed the overall 

image analysis in different software tools. A crucial step for statistical analysis of IVIM parameters 

is distortions reduction in diffusion images which I conducted within four approaches. The results 

acquired by different correction approaches do not greatly differ. Moreover, the noise reduction 

on MR images did not influence final IVIM parameters, too. I compared three fitting algorithms 

for IVIM data. I assume the fitting algorithm Fit 𝐷 and 𝑓 (with high b), then fit 𝐷 ∗ is the most 

accurate since its ability to model separately perfusion and diffusion effects. 

The main objective proven in this thesis is the ability of the IVIM concept to distinguish between 

a brain tumor and its surrounding areas and to differentiate between individual brain tumor 

types. The study revealed a significant variability of IVIM parameters in following pairs of brain 

components: brain edema and contrast enhanced part of brain tumors, brain edema 

and contrast non-enhanced part of brain tumors, contrast enhanced and not enhanced part 

of brain tumors, contrast enhanced part of brain tumors HGG and meningioma, contrast 

enhanced part of brain tumors metastasis and meningioma. Brain tumors HGG and meningioma; 

and metastasis and meningioma were confirmed to have an ability to be distinguished between 

each other. Brain tumors HGG and metastasis were not shown to be statistically different. 

In the future, it would be interesting to repeat this study on a larger data set. I performed the 

statistical analysis testing the mean value in each IVIM parameter. Analysis of the variation 

of IVIM parameters could be a right approach, too. In this study the statistical analysis was 

executed on segmented brain components. It could be beneficial to run the analysis on a whole 

brain segment which could be a less time-consuming method since image segmentation would 

not be required. In the study I applied the IVIM biexponential method to model the non-Gaussian 

behavior. The use of other models and their comparison could be advantageous for the clinical 

practice.
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14. APPENDICES 
The list of appendices contains three following parts: 

Appendix A: Mathematical description of IVIM fitting algorithms 

Appendix B: Time duration of automated software tools for image analysis 

Appendix C: Statistical analysis of IVIM parameters 

Appendix D: Brain tissue and brain tumor types differentiation 

 

14.1.  Appendix A 

This appendix part incorporates the mathematical description of two IVIM fitting algorithms groups; least 
squares algorithms (introduced in the section 4.3.3.1.1.) and algorithms based on probability theory 
(introduced in the section 4.3.3.1.2.). 

A.I. Least squares algorithms 
In general in the least square fitting problem, there is a set of independent and dependent variables (𝑥𝑖, 𝑦𝑖) 

and the aim is to find the parameters β of the model 𝑓(𝑥, β) in the way of minimizing the sum of the 
squares of deviations 𝑆(β). 

β̂ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛β 𝑆(β) = 𝑎𝑟𝑔𝑚𝑖𝑛β ∑[𝑦𝑖 − 𝑓(𝑥𝑖 , β)]2          (A. 1)

𝑛

𝑖=1

 

Least squares algorithms minimize a difference between the real (acquired) and predicted (fitted) DWI 
signal and thus adjust the parameters of the bi-exponential model. The objective function of the 
minimization is: 

𝑚𝑖𝑛β ∑[𝑆𝑖 − 𝑆̂𝑖(β)]2          (A. 2)

𝑛

𝑖=1

 

o β: a set of parameters 𝑓, 𝐷, 𝐷 ∗ 
o 𝑆𝑖: given signal strength 

o 𝑆̂𝑖(β): predicted signal strength using a β set and is calculated for the 𝑖-th b value 
o 𝑛: a total number of b values 

The iterative Levenberg-Marquardt algorithm, a nonlinear least squares minimization algorithm, is often 
used. This technique is aiming to find a minimum of the 𝑆(β) function. The minimization process starts 
with an initial starting point for the parameter vector β. After each iteration step, the β vector is updated 
to a new estimate β𝑘+1 = β𝑘 + 𝑑. To determine an additional term 𝑑, the relation A.3 can be used. 

𝑓(𝑥𝑖 , β + d)~f(𝑥𝑖 , β) + 𝐽𝑖 · 𝑑          (A. 3) 

o 𝐽𝑖 =
∂f(𝑥𝑖,β)

∂β
: Jacobian matrix 

The sum of square of deviations is expressed with the following equation. 
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𝑆(β + d)~∑[𝑦𝑖 − 𝑓(𝑥𝑖 , β) − 𝐽𝑖 · 𝑑]2
𝑛

𝑖=1

         (A. 4) 

After taking the derivation of 𝑆(β + d) with respect to 𝑑 and setting it to zero, there is a following 
equation. 

(𝐽𝑇 · 𝐽) · 𝑑 = 𝐽𝑇 · [𝑦 − 𝑓(𝛽)]         (A. 5) 

In the Levenberg-Marquardt equation A.6 there is an additional term, the damping factor λ𝑖 . This positive 
factor is adjusted at each iteration 𝑖 to assure an error reduction. 

(𝐽𝑖
𝑇 · J + λ𝑖 · 𝐼) · 𝑑𝑖          (A. 6) 

o 𝐼: an identity matrix 

A.II. Algorithms based on probability theory 
The principle of the Bayesian method stems from maximizing the posterior probability of IVIM parameters. 
Bayes´ theorem describes the probability of an event, in this case the MR signal level 𝑆, based on prior 
conditions that are used to describe properties of model parameters without seeing the data. 

𝑃(𝛩|𝑆) =
𝑃(𝑆│𝛩) · P(𝛩)

𝑃(𝑆)
          (A. 7) 

o 𝑃(𝛩|𝑆): the posterior probability 

o 𝑃(𝑆│𝛩): the likelihood function 
o 𝑃(𝑆): a probability of the measurement called an evidence 
o 𝑃(𝛩): prior conditions  

Maximization of the posterior probability does not depend on the evidence; thus, the equation A.7 might 
be simplified. 

𝑃(𝛩|𝑆) = 𝑃(𝑆|𝛩) · P(𝛩)          (A. 8)  

In a nutshell, a fundamental idea of the Bayesian method is to maximize the posterior probability of IVIM 
parameters given the observed signal. The Bayesian model enables to incorporate prior knowledge into 
the fitting technique. 

Maximum likelihood estimation is a technique how to estimate model parameters by selecting model 
parameters values that maximize the likelihood function. The probability density 𝑃 of observing a single 
data point 𝑥 following a univariate normal distribution74 with parameters 𝜇 as a mean value of the 
distribution and its standard deviation σ. 

𝑃(𝑥|𝜇, σ) =
1

σ√2 · 𝜋
· 𝑒

(−
(𝑥−𝜇)2

2·σ2 )
          (A. 9) 

The likelihood function 𝐿(𝛩|𝑥) is equal to the probability density function75 𝑃(𝑥|𝛩) regarded as a function 
of 𝛩. 

 

 
74 There are two main reasons why the computation is based on the Gaussian distribution. Firstly, from the theoretical perspective 
due to the central limit theorem „the distribution of the sum of N independently and identically distributed random variables becomes 
increasingly Gaussian as N grows.“ Secondly, there is a practical reason that it is simple to compute with the normal distribution. 
75 The probability density function (PDF) specifies the probability of a variable falling within the particular range of values. 
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The maximum likelihood estimation: 

𝛩̂(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝛩𝐿(𝛩|𝑥)          (A. 10) 

To specify the likelihood function of IVIM DWI data, it is essential to determine the model of MR signal and 
noise. The signal model is expected to be the IVIM bi-exponential model and the noise model the Rician 
model. „To simplify model fitting, the signal-to-noise ratio (SNR) is typically assumed to be high enough 
such that the Rician distribution can be approximated by a Gaussian one.” [31] 

In this case the probability density function is described according to the following equation A.11. This 
equation specifies a deviation between the measured signal value 𝑆(𝑏) and the predicted value 𝑆𝑏 given 
the IVIM signal model parameters. 

𝑃(𝑆(𝑏)|𝛩, σ) =
1

σ√2 · 𝜋
· 𝑒

[−
(𝑆(𝑏)−𝑆𝑏(𝛩))

2

2·σ2 ]

          (A. 11) 

The likelihood function 𝐿(𝛩), where 𝑛 is a number of measurements, is given A.12 The maximization76 
of this likelihood function is given by its derivation with respect to model parameters. 

𝐿(𝛩) = 𝑃(𝑆|𝛩, σ) = ∏ 𝑃(𝑆(𝑏𝑖|𝛩, σ) = (2 · 𝜋 · σ2)−
𝑛
2 · 𝑒[

 
 
 
−

∑ (𝑆(𝑏𝑖)−𝑆𝑏𝑖
(𝛩))

2
𝑛
𝑖=1

2σ2

]
 
 
 

          (A. 12)

𝑛

𝑖=1

 

14.2.  Appendix B 
This appendix part incorporates approximate duration of software tools performing image data analysis. 
These time data do not serve for any statistical analysis but just for rough comparison between different 
image analysis approaches and software tools. The time data were acquired as the average duration 
for three different subjects. This section includes time duration for skull stripping, image registration 
and for distortions correction in diffusion images. The description of these steps in different software tools 
is given in the chapter 8. 

• Skull stripping performed on 3D 𝑻𝟏 image 

Software tool Duration [minutes] 

FSL 0.5 

SPM 19.0 

ANTs 61.5 

Freesurfer 16.0 

BrainSuite 5.0 
Table B.1: Time duration of automated skull stripping software tools; FSL, SPM, ANTs, Freesurfer and BrainSuite. Skull 

stripping performed on 3D 𝑇1 image. 

 

 

 

 

 
76 It is more convenient to apply log (𝑃(𝑆|𝛩, σ)) since log () is a monotone function so it is easier to find the maximal value. 
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• Image registration of 3D 𝑻𝟏 and FLAIR images 

Software tool Duration [minutes] 

FSL 5.0 

ITK SNAP + ANTs 3.0 

BrainSuite 26.0 
Table B.2: Time duration of automated image registration software tools; FSL, ITK SNAP + ANTs and BrainSuite. 

Image registration of 3D 𝑇1 and FLAIR image (a reference image: 𝑇1 and a moving image: FLAIR). 

• Distortions correction in diffusion images 

Software tool Duration [minutes] 

FSL 50.0 

SPM 9.0 

BrainSuite 25.0 
Table B.3: Time duration of automated software tools (FSL, SPM and BrainSuite) for distortions correction in diffusion 

images. Distortions correction performed on 4D IVIM image. 

 

14.3.  Appendix C 
In this appendix part additional data derived from statistical analysis of IVIM parameters in different brain 
segments are given. The data for all subjects, for each IVIM parameter and for each brain segment are 
presented as mean value, standard deviation (std), median, first quartile, third quartile, IQR, maximum 
value, minimum value and range value. These statistical parameters for the data are shown in the tables. 
n represents a number of subjects. Moreover, the data are graphically represented by boxplots77. 
Furthermore, ROC curves for three IVIM parameters in different brain segments are graphically 
represented. 

 

 

 

 

 

 

 

 

 

 

 

 
77 On each box the central red line represents the median, the top and the bottom edges indicate third quartile and first quartile, 
respectively. Minimum and maximum points (the lowest and the largest point data point excluding any outliers) are visualized with 
a horizontal line under and above the box. The outliers are plotted using a red symbol „+“. 
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C.I. Different DWI correction tools  

C.I.I. FSL 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15)  

f 
[-

] 

mean 0.118 0.155 0.160 

std 0.037 0.030 0.031 

median 0.108 0.153 0.164 

Q 25% 0.096 0.136 0.133 

Q 75% 0.130 0.170 0.172 

IQR 0.033 0.034 0.039 

maximum 0.235 0.235 0.223 

minimum 0.082 0.095 0.111 

range 0.153 0.140 0.112 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.362 2.871 4.507 

std 1.119 1.046 2.249 

median 3.707 2.653 3.902 

Q 25% 2.495 1.954 3.148 

Q 75% 3.977 3.620 5.025 

IQR 1.481 1.665 1.877 

maximum 5.419 4.797 10.837 

minimum 1.240 1.394 1.785 

range 4.179 3.403 9.052 

D
* 

[x
 1

0
-3

 m
m

2 /s
] 

mean 7.251 13.316 6.953 

std 6.140 9.270 4.313 

median 4.470 10.430 5.960 

Q 25% 2.980 7.450 4.470 

Q 75% 8.195 17.135 7.450 

IQR 5.215 9.685 2.980 

maximum 22.350 35.760 19.370 

minimum 2.980 2.980 1.490 

range 19.370 32.780 17.880 
Table C.1: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced 
and contrast not enhanced part of a brain tumor. Diffusion images correction implemented in FSL, without denoising, 
fitting algorithm: Fit D and f (with high b), then fit D*. 
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Figure C.1: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.2: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast not 
enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part of brain tumors.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.136 0.184 0.168 0.119 0.114 0.150 0.181 

std 0.018 0.035 0.022 0.044 0.024 0.032 0.024 

median 0.140 0.172 0.170 0.103 0.113 0.139 0.173 

Q 25% 0.124 0.161 0.155 0.096 0.099 0.130 0.165 

Q 75% 0.147 0.207 0.178 0.131 0.130 0.165 0.196 

IQR 0.023 0.046 0.023 0.035 0.031 0.035 0.031 

maximum 0.159 0.235 0.202 0.235 0.146 0.223 0.216 

minimum 0.095 0.157 0.134 0.082 0.086 0.111 0.162 

range 0.064 0.078 0.068 0.153 0.060 0.112 0.054 

D
 [

x 
1

0
-4

 m
m

2 /s
] 

mean 3.029 3.830 1.966 3.128 3.975 4.604 4.360 

std 1.009 0.705 0.509 1.279 0.491 2.592 1.831 

median 2.718 3.735 1.954 3.227 3.950 4.040 3.869 

Q 25% 2.409 3.335 1.470 2.303 3.615 3.022 3.277 

Q 75% 3.643 IV.60 2.274 3.945 4.336 5.186 5.443 

IQR 1.234 0.990 0.804 1.642 0.721 2.164 2.165 

maximum 4.797 4.766 2.754 5.419 4.587 10.837 6.984 

minimum 1.848 3.086 1.394 1.240 3.416 1.785 2.719 

range 2.949 1.680 1.360 4.179 1.171 9.052 4.265 

D
* 

[x
 1

0
-3

 m
m

2 /s
] 

mean 8.604 8.195 24.585 7.748 4.097 5.662 7.077 

std 3.531 3.101 8.977 6.838 1.426 2.879 2.235 

median 8.940 8.195 25.330 4.470 3.725 5.215 5.960 

Q 25% 5.960 5.960 19.370 2.980 2.980 4.470 5.960 

Q 75% 10.430 10.430 31.290 8.940 5.215 7.450 8.195 

IQR 4.470 4.470 11.920 5.960 2.235 2.980 2.235 

maximum 14.900 11.920 35.760 22.350 5.960 11.920 10.430 

minimum 2.980 4.470 10.430 2.980 2.980 1.490 5.960 

range 11.920 7.450 25.330 19.370 2.980 10.430 4.470 
Table C.2: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain 
edema of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. Diffusion images correction implemented in FSL, without 
denoising, fitting algorithm: Fit D and f (with high b), then fit D*.
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Figure C.3: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.4: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.5: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) and metastasis (n=4). 

 

 

Figure C.6: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.7: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.8: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 
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C.I.II.  SPM 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 
mean 0.111 0.155 0.154 

std 0.034 0.041 0.035 

median 0.102 0.146 0.151 

Q 25% 0.092 0.132 0.133 

Q 75% 0.124 0.166 0.170 

IQR 0.032 0.033 0.038 

maximum 0.193 0.263 0.221 

minimum 0.074 0.075 0.094 

range 0.119 0.188 0.127 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.714 3.076 4.805 

std 1.287 1.145 2.436 

median 4.059 2.856 4.018 

Q 25% 2.702 2.115 3.270 

Q 75% 4.460 3.916 5.264 

IQR 1.758 1.801 1.995 

maximum 6.116 5.220 11.457 

minimum 1.499 1.149 2.010 

range 4.617 4.071 9.447 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 5.463 12.814 6.879 

std 3.635 9.379 4.286 

median 4.470 8.940 5.960 

Q 25% 2.980 7.450 4.470 

Q 75% 5.960 17.135 7.450 

IQR 2.980 9.685 2.980 

maximum 14.900 35.760 19.743 

minimum 2.980 2.980 1.490 

range 11.920 32.780 18.253 

Table C.3: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced 
and contrast not enhanced part of a brain tumor. Diffusion images correction implemented in SPM, without denoising, 
fitting algorithm: Fit D and f (with high b), then fit D*. 
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Figure C.9: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.10: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 
not enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=10) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.135 0.164 0.184 0.117 0.094 0.146 0.159 

std 0.027 0.032 0.051 0.040 0.012 0.034 0.025 

median 0.135 0.152 0.169 0.104 0.100 0.146 0.158 

Q 25% 0.132 0.144 0.145 0.091 0.088 0.123 0.138 

Q 75% 0.157 0.184 0.228 0.135 0.101 0.161 0.180 

IQR 0.025 0.040 0.082 0.044 0.013 0.038 0.042 

maximum 0.168 0.210 0.263 0.193 0.101 0.220 0.187 

minimum 0.075 0.142 0.130 0.074 0.077 0.094 0.133 

range 0.093 0.069 0.133 0.119 0.024 0.126 0.054 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.233 4.207 2.060 3.447 4.443 4.939 4.800 

std 1.085 0.614 0.566 1.445 0.707 2.751 2.086 

median 3.298 4.294 2.043 3.486 4.431 4.467 4.391 

Q 25% 2.419 3.768 1.848 2.444 3.874 3.196 3.370 

Q 75% 3.690 4.646 2.621 4.355 5.013 5.342 6.230 

IQR 1.272 0.878 0.773 1.911 1.139 2.146 2.860 

maximum 5.220 4.847 2.655 6.116 5.251 11.457 7.664 

minimum 1.814 3.394 1.149 1.499 3.661 2.010 2.754 

range 3.406 1.453 1.506 4.617 1.590 9.447 4.910 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 7.450 8.940 24.337 5.811 3.353 5.364 7.450 

std 3.369 2.107 9.071 3.939 0.745 2.453 2.107 

median 8.195 8.195 25.330 4.470 2.980 5.215 6.705 

Q 25% 4.470 7.450 20.860 2.980 2.980 4.470 5.960 

Q 75% 8.940 10.430 29.800 5.960 3.725 5.960 8.940 

IQR 4.470 2.980 8.940 2.980 0.745 1.490 2.980 

maximum 13.410 11.920 35.760 14.900 4.470 10.430 10.430 

minimum 2.980 7.450 8.940 2.980 2.980 1.490 5.960 

range 10.430 4.470 26.820 11.920 1.490 8.940 4.470 
Table C.4: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain 
edema of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. Diffusion images correction implemented in SPM, 
without denoising, fitting algorithm: Fit D and f (with high b), then fit D*.
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Figure C.11: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.12: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.13: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.14: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.15: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.16: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 
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C.I.III. BrainSuite 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 
mean 0.119 0.165 0.164 

std 0.042 0.038 0.033 

median 0.108 0.159 0.159 

Q 25% 0.094 0.139 0.140 

Q 75% 0.125 0.177 0.174 

IQR 0.031 0.037 0.034 

maximum 0.238 0.264 0.250 

minimum 0.077 0.111 0.125 

range 0.161 0.153 0.125 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.809 3.207 4.841 

std 1.273 1.237 2.386 

median 4.075 3.151 3.987 

Q 25% 2.573 2.133 3.339 

Q 75% 4.533 3.911 5.672 

IQR 1.960 1.777 2.333 

maximum 5.895 5.704 10.863 

minimum 1.719 1.108 1.938 

range 4.176 4.596 8.925 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 7.130 17.801 8.727 

std 5.134 14.720 4.814 

median 4.470 13.410 5.960 

Q 25% 4.470 8.940 5.960 

Q 75% 8.940 23.840 11.920 

IQR 4.470 14.900 5.960 

maximum 20.860 58.110 20.860 

minimum 2.980 2.980 2.980 

range 17.880 55.130 17.880 
Table C.5: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and 
contrast not enhanced part of a brain tumor. Diffusion images correction implemented in BrainSuite, without 
denoising, fitting algorithm: Fit D and f (with high b), then fit D*. 
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Figure C.17: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.18: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 
not enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part of brain tumors.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.144 0.172 0.193 0.128 0.100 0.155 0.161 

std 0.017 0.023 0.052 0.050 0.016 0.026 0.016 

median 0.140 0.163 0.190 0.110 0.105 0.152 0.165 

Q 25% 0.134 0.158 0.175 0.093 0.090 0.134 0.150 

Q 75% 0.154 0.187 0.230 0.142 0.110 0.171 0.173 

IQR 0.019 0.029 0.055 0.048 0.019 0.036 0.023 

maximum 0.177 0.208 0.264 0.238 0.114 0.209 0.177 

minimum 0.116 0.157 0.111 0.078 0.077 0.125 0.140 

range 0.061 0.051 0.153 0.160 0.037 0.084 0.037 

D
 [

x 
1

0
-4

 m
m

2 /s
] 

mean 3.486 3.900 2.326 3.451 4.571 5.248 4.223 

std 1.325 0.696 0.974 1.422 0.680 2.789 1.567 

median 3.151 3.796 2.235 3.377 4.606 4.839 3.652 

Q 25% 2.325 3.340 1.694 2.329 4.120 3.512 3.210 

Q 75% 4.228 4.461 2.771 4.511 5.022 6.344 5.236 

IQR 1.903 1.120 1.077 2.181 0.902 2.831 2.026 

maximum 5.704 4.763 3.916 5.895 5.365 10.863 6.507 

minimum 1.969 3.247 1.108 1.719 3.708 1.938 3.081 

range 3.735 1.516 2.808 4.176 1.657 8.925 3.426 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 9.105 11.920 34.766 7.450 4.470 6.787 10.057 

std 3.607 2.720 15.674 5.575 1.216 3.170 3.303 

median 8.940 11.920 33.525 4.470 4.470 5.960 10.430 

Q 25% 7.077 9.685 26.820 4.470 3.725 5.587 7.450 

Q 75% 11.175 14.155 43.210 9.312 5.215 7.077 12.665 

IQR 4.097 4.470 16.390 4.842 1.490 1.490 5.215 

maximum 14.900 14.900 58.110 20.860 5.960 13.410 13.410 

minimum 2.980 8.940 13.410 2.980 2.980 2.980 5.960 

range 11.920 5.960 44.700 17.880 2.980 10.430 7.450 
Table C.6: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain edema 
of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. Diffusion images correction implemented in BrainSuite, without 
denoising, fitting algorithm: Fit D and f (with high b), then fit D*.
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Figure C.19: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.20: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.21: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.22: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.23: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.24: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 

 

 

 

 



14 Appendices 
 

141 
 

C.I.IV. Without correction 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 
mean 0.117 0.157 0.162 

std 0.033 0.034 0.037 

median 0.108 0.158 0.163 

Q 25% 0.096 0.139 0.139 

Q 75% 0.129 0.169 0.175 

IQR 0.032 0.030 0.035 

maximum 0.198 0.224 0.242 

minimum 0.080 0.080 0.099 

range 0.118 0.144 0.143 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.802 3.047 4.780 

std 1.310 1.153 2.312 

median 4.130 2.778 4.043 

Q 25% 2.719 2.182 3.278 

Q 75% 4.556 3.778 5.330 

IQR 1.837 1.596 2.052 

maximum 6.160 5.280 11.021 

minimum 1.553 1.407 2.042 

range 4.607 3.873 8.979 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 6.953 15.251 8.443 

std 5.120 10.600 4.931 

median 4.470 11.175 7.450 

Q 25% 4.470 8.940 5.960 

Q 75% 8.195 17.880 8.940 

IQR 3.725 8.940 2.980 

maximum 20.860 41.293 22.350 

minimum 2.980 2.980 2.980 

range 17.880 38.313 19.370 

Table C.7: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced 
and contrast not enhanced part of a brain tumor. No diffusion images correction, without denoising, fitting algorithm: 
Fit D and f (with high b), then fit D*. 
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Figure C.25: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.26: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 
not enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part of brain tumors.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.138 0.176 0.177 0.122 0.101 0.151 0.170 

std 0.027 0.032 0.030 0.038 0.013 0.034 0.024 

median 0.140 0.162 0.173 0.109 0.108 0.150 0.169 

Q 25% 0.127 0.158 0.151 0.096 0.094 0.125 0.152 

Q 75% 0.162 0.194 0.206 0.138 0.109 0.168 0.188 

IQR 0.035 0.035 0.055 0.042 0.014 0.043 0.035 

maximum 0.173 0.224 0.218 0.198 0.110 0.222 0.200 

minimum 0.080 0.157 0.141 0.080 0.081 0.099 0.142 

range 0.093 0.067 0.077 0.118 0.029 0.123 0.058 

D
 [

x 
1

0
-4

 m
m

2 /s
] 

mean 3.239 4.167 1.981 3.534 4.525 4.923 4.752 

std 1.081 0.617 0.534 1.479 0.704 2.633 1.873 

median 3.033 4.029 1.957 3.567 4.492 4.461 4.227 

Q 25% 2.490 3.709 1.499 2.466 3.953 3.216 3.560 

Q 75% 3.749 4.626 2.398 4.529 5.097 5.443 5.944 

IQR 1.259 0.917 0.899 2.063 1.144 2.227 2.384 

maximum 5.280 5.002 2.672 6.160 5.340 11.021 7.436 

minimum 1.846 3.610 1.407 1.553 3.777 2.042 3.118 

range 3.434 1.392 1.265 4.607 1.563 8.979 4.318 

D
* 

[x
 1

0
-3

 m
m

2 /s
] 

mean 9.089 10.802 28.487 7.301 4.470 6.705 9.312 

std 4.001 2.820 9.560 5.725 1.216 3.081 3.071 

median 9.685 9.685 29.055 4.470 4.470 6.705 8.940 

Q 25% 5.960 8.940 19.370 4.470 3.725 4.470 7.450 

Q 75% 11.920 12.665 35.760 8.940 5.215 7.450 11.175 

IQR 5.960 3.725 16.390 4.470 1.490 2.980 3.725 

maximum 16.390 14.900 41.293 20.860 5.960 13.410 13.410 

minimum 2.980 8.940 16.390 2.980 2.980 2.980 5.960 

range 13.410 5.960 24.903 17.880 2.980 10.430 7.450 
Table C.8: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain edema 
of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. No diffusion images correction, without denoising, fitting algorithm: 
Fit D and f (with high b), then fit D*.
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Figure C.27: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.28: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.29: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.30: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.31: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.32: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 
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C.II. DWI Denoising 

C.II.I.  FSL 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 

mean 0.090 0.129 0.135 

std 0.033 0.028 0.029 

median 0.085 0.129 0.136 

Q 25% 0.071 0.109 0.111 

Q 75% 0.098 0.149 0.150 

IQR 0.027 0.040 0.039 

maximum 0.192 0.184 0.196 

minimum 0.052 0.072 0.090 

range 0.140 0.112 0.106 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.218 2.583 4.324 

std 1.227 1.022 2.491 

median 3.665 2.367 3.659 

Q 25% 2.174 1.722 2.787 

Q 75% 3.921 3.354 4.953 

IQR 1.746 1.632 2.165 

maximum 5.505 4.443 11.517 

minimum 0.950 1.024 1.479 

range 4.555 3.419 10.038 

D
* 

[x
 1

0
-3

 m
m

2 /s
] 

mean 3.178 6.556 3.079 

std 2.633 5.889 3.004 

median 1.490 4.470 2.980 

Q 25% 1.490 2.980 1.490 

Q 75% 2.980 8.195 2.980 

IQR 1.490 5.215 1.490 

maximum 8.940 22.350 13.410 

minimum 1.490 1.490 1.490 

range 7.450 20.860 11.920 

Table C.9: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced 
and contrast not enhanced part of a brain tumor. Diffusion images correction implemented in FSL, denoising included, 
fitting algorithm: Fit D and f (with high b), then fit D*. 
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Figure C.33: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.34: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 
not enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part of brain tumors.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.110 0.155 0.143 0.088 0.092 0.130 0.152 

std 0.020 0.021 0.023 0.040 0.018 0.032 0.019 

median 0.111 0.152 0.148 0.075 0.089 0.117 0.145 

Q 25% 0.097 0.140 0.124 0.066 0.080 0.110 0.141 

Q 75% 0.128 0.170 0.160 0.095 0.103 0.152 0.163 

IQR 0.031 0.030 0.036 0.029 0.023 0.042 0.022 

maximum 0.138 0.184 0.172 0.192 0.117 0.196 0.180 

minimum 0.072 0.134 0.109 0.052 0.072 0.090 0.138 

range 0.066 0.050 0.063 0.140 0.045 0.106 0.042 

D
 [

x 
1

0
-4

 m
m

2 /s
] 

mean 2.762 3.428 1.721 2.968 3.874 4.473 4.075 

std 1.022 0.753 0.470 1.411 0.515 2.869 2.004 

median 2.549 3.397 1.722 3.066 3.964 3.921 3.550 

Q 25% 2.155 2.855 1.437 2.008 3.484 2.668 2.867 

Q 75% 3.457 4.001 2.069 3.902 4.264 5.117 5.282 

IQR 1.302 1.146 0.632 1.894 0.780 2.449 2.415 

maximum 4.443 4.343 2.354 5.505 4.372 11.517 6.939 

minimum 1.467 2.575 1.024 0.950 3.197 1.479 2.261 

range 2.976 1.768 1.330 4.555 1.175 10.038 4.678 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 3.427 4.097 13.410 3.278 1.490 2.235 2.607 

std 1.413 2.235 6.663 2.412 0.000 1.053 0.745 

median 2.980 2.980 11.175 2.980 1.490 1.490 2.980 

Q 25% 2.980 2.980 8.940 1.490 1.490 1.490 2.235 

Q 75% 4.470 5.215 20.860 2.980 1.490 2.980 2.980 

IQR 1.490 2.235 11.920 1.490 0.000 1.490 0.745 

maximum 5.960 7.450 22.350 8.940 1.490 4.470 2.980 

minimum 1.490 2.980 5.960 1.490 1.490 1.490 1.490 

range 4.470 4.470 16.390 7.450 0.000 2.980 1.490 
Table C.10: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain 
edema of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. Diffusion images correction implemented in FSL, 
denoising included, fitting algorithm: Fit D and f (with high b), then fit D*.
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Figure C.35: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.36: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.37: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.38: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.39: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.40: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 
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C.II.II. SPM 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 
mean 0.075 0.131 0.127 

std 0.033 0.051 0.036 

median 0.069 0.119 0.125 

Q 25% 0.049 0.101 0.102 

Q 75% 0.079 0.143 0.135 

IQR 0.029 0.041 0.033 

maximum 0.153 0.292 0.205 

minimum 0.037 0.057 0.085 

range 0.116 0.235 0.120 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.482 2.803 4.588 

std 1.439 1.126 2.649 

median 3.888 2.851 3.802 

Q 25% 2.301 2.025 3.085 

Q 75% 4.366 3.625 5.162 

IQR 2.065 1.600 2.077 

maximum 6.068 4.908 11.955 

minimum 0.919 0.650 1.612 

range 5.149 4.258 10.343 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 3.113 6.407 3.377 

std 1.854 4.884 2.547 

median 2.980 4.470 2.980 

Q 25% 1.490 2.980 1.862 

Q 75% 4.097 7.450 2.980 

IQR 2.607 4.470 1.117 

maximum 7.450 20.860 11.920 

minimum 1.490 1.490 1.490 

range 5.960 19.370 10.430 

Table C.11: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and 
contrast not enhanced part of a brain tumor. Diffusion images correction implemented in SPM, denoising included, 
fitting algorithm: Fit D and f (with high b), then fit D*. 

 



14 Appendices 
 

154 
 

 

Figure C.41: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.42: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 
not enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part of brain tumors.



14 Appendices 
 

155 
 

  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.108 0.135 0.168 0.080 0.060 0.121 0.124 

std 0.029 0.018 0.075 0.040 0.012 0.034 0.020 

median 0.110 0.132 0.141 0.069 0.064 0.117 0.123 

Q 25% 0.092 0.119 0.111 0.048 0.051 0.092 0.107 

Q 75% 0.142 0.151 0.227 0.112 0.069 0.135 0.141 

IQR 0.050 0.031 0.116 0.064 0.017 0.043 0.033 

maximum 0.143 0.157 0.292 0.153 0.069 0.203 0.146 

minimum 0.057 0.119 0.099 0.037 0.043 0.085 0.104 

range 0.086 0.038 0.193 0.116 0.026 0.118 0.042 

D
 [

x 
1

0
-4

 m
m

2 /s
] 

mean 2.907 3.808 1.958 3.178 4.300 4.751 4.527 

std 1.115 0.674 0.785 1.624 0.737 2.982 2.310 

median 3.049 3.974 2.041 3.210 4.347 4.265 4.100 

Q 25% 2.164 3.349 1.658 1.950 3.699 3.048 2.955 

Q 75% 3.415 4.268 2.385 4.293 4.900 5.276 6.099 

IQR 1.251 0.919 0.727 2.343 1.201 2.228 3.143 

maximum 4.908 4.423 2.977 6.068 5.065 11.955 7.688 

minimum 1.311 2.863 0.650 0.919 3.440 1.612 2.220 

range 3.597 1.560 2.327 5.149 1.625 10.343 5.468 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 3.725 4.470 12.168 3.180 1.862 2.533 3.352 

std 1.609 2.107 5.111 1.540 0.745 1.005 0.745 

median 3.725 3.725 11.175 2.980 1.490 2.980 2.980 

Q 25% 2.980 2.980 7.450 1.490 1.490 1.490 2.980 

Q 75% 4.470 5.960 14.900 4.470 2.235 2.980 3.725 

IQR 1.490 2.980 7.450 2.980 0.745 1.490 0.745 

maximum 5.960 7.450 20.860 5.960 2.980 4.470 4.470 

minimum 1.490 2.980 7.450 1.490 1.490 1.490 2.980 

range 4.470 4.470 13.410 4.470 1.490 2.980 1.490 
Table C.12: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain 
edema of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. Diffusion images correction implemented in SPM, 
denoising included, fitting algorithm: Fit D and f (with high b), then fit D*.
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Figure C.43: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.44: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.45: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.46: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.47: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.48: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 
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C.II.III. BrainSuite 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 
mean 0.079 0.138 0.140 

std 0.043 0.051 0.050 

median 0.070 0.131 0.130 

Q 25% 0.049 0.111 0.105 

Q 75% 0.081 0.152 0.142 

IQR 0.032 0.041 0.037 

maximum 0.205 0.310 0.295 

minimum 0.036 0.076 0.095 

range 0.169 0.234 0.200 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.563 3.110 4.744 

std 1.425 1.447 2.627 

median 3.905 2.832 4.289 

Q 25% 2.122 1.713 3.044 

Q 75% 4.520 4.364 5.594 

IQR 2.398 2.650 2.550 

maximum 5.859 5.374 11.523 

minimum 1.242 0.934 1.529 

range 4.617 4.440 9.994 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 3.192 9.018 4.576 

std 2.669 8.737 4.581 

median 2.235 5.960 2.980 

Q 25% 1.490 4.470 2.980 

Q 75% 2.980 10.430 4.470 

IQR 1.490 5.960 1.490 

maximum 10.430 38.740 19.370 

minimum 1.490 1.490 1.490 

range 8.940 37.250 17.880 

Table C.13: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced 
and contrast not enhanced part of a brain tumor. Diffusion images correction implemented in BrainSuite, denoising 
included, fitting algorithm: Fit D and f (with high b), then fit D*. 
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Figure C.49: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.50: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 
not enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part of brain tumors.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.114 0.141 0.171 0.087 0.063 0.127 0.129 

std 0.023 0.008 0.079 0.053 0.014 0.030 0.009 

median 0.118 0.142 0.166 0.070 0.067 0.126 0.130 

Q 25% 0.097 0.135 0.117 0.048 0.053 0.102 0.122 

Q 75% 0.129 0.148 0.194 0.108 0.073 0.147 0.136 

IQR 0.032 0.013 0.077 0.060 0.019 0.045 0.013 

maximum 0.153 0.152 0.310 0.205 0.076 0.182 0.139 

minimum 0.080 0.131 0.076 0.036 0.042 0.095 0.118 

range 0.073 0.021 0.234 0.169 0.034 0.087 0.021 

D
 [

x 
1

0
-4

 m
m

2 /s
] 

mean 3.131 3.844 2.591 3.142 4.441 5.090 3.888 

std 1.390 0.775 1.825 1.582 0.735 3.087 1.769 

median 2.832 4.091 1.828 3.050 4.560 4.811 3.331 

Q 25% 1.959 3.289 1.238 1.812 3.979 3.069 2.745 

Q 75% 3.984 4.400 4.365 4.318 4.903 6.229 5.031 

IQR 2.024 1.111 3.127 2.505 0.924 3.159 2.285 

maximum 5.374 4.439 5.356 5.859 5.206 11.523 6.443 

minimum 1.405 2.756 0.934 1.242 3.438 1.529 2.447 

range 3.969 1.683 4.422 4.617 1.768 9.994 3.996 

D
* 

[x
 1

0
-3

 m
m

2 /s
] 

mean 4.304 5.960 18.128 3.145 1.490 2.814 4.842 

std 1.738 3.218 10.802 1.891 0.000 1.382 1.874 

median 4.470 5.215 14.900 2.980 1.490 2.980 4.470 

Q 25% 2.980 3.725 10.430 1.490 1.490 1.490 3.725 

Q 75% 4.842 8.195 19.370 3.352 1.490 2.980 5.960 

IQR 1.862 4.470 8.940 1.862 0.000 1.490 2.235 

maximum 7.450 10.430 38.740 7.450 1.490 5.960 7.450 

minimum 1.490 2.980 10.430 1.490 1.490 1.490 2.980 

range 5.960 7.450 28.310 5.960 0.000 4.470 4.470 
Table C.14: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain 
edema of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. Diffusion images correction implemented in BrainSuite, 
denoising included, fitting algorithm: Fit D and f (with high b), then fit D*.
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Figure C.51: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.52: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.53: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.54: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.55: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.56: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 
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C.II.IV. Without correction 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 
mean 0.074 0.128 0.132 

std 0.031 0.043 0.045 

median 0.069 0.133 0.128 

Q 25% 0.050 0.100 0.101 

Q 75% 0.078 0.145 0.140 

IQR 0.028 0.044 0.039 

maximum 0.144 0.257 0.251 

minimum 0.037 0.057 0.086 

range 0.107 0.200 0.165 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 3.533 2.697 4.528 

std 1.470 1.110 2.600 

median 4.005 2.538 3.785 

Q 25% 2.268 1.886 3.054 

Q 75% 4.370 3.437 5.176 

IQR 2.101 1.551 2.121 

maximum 6.090 4.937 11.743 

minimum 0.969 0.833 1.540 

range 5.121 4.104 10.203 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 3.079 6.928 3.576 

std 1.988 5.453 2.915 

median 2.980 5.215 2.980 

Q 25% 1.490 2.980 1.862 

Q 75% 2.980 9.685 4.097 

IQR 1.490 6.705 2.235 

maximum 7.450 23.840 13.410 

minimum 1.490 1.490 1.490 

range 5.960 22.350 11.920 

Table C.15: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and 
contrast not enhanced part of a brain tumor. No diffusion images correction, denoising included, fitting algorithm: Fit 
D and f (with high b), then fit D*. 
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Figure C.57: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.58: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 
not enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part of brain tumors.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.105 0.140 0.159 0.078 0.063 0.121 0.130 

std 0.031 0.011 0.054 0.037 0.013 0.037 0.013 

median 0.106 0.137 0.150 0.068 0.067 0.115 0.130 

Q 25% 0.087 0.133 0.115 0.050 0.054 0.089 0.121 

Q 75% 0.137 0.148 0.176 0.105 0.072 0.136 0.139 

IQR 0.050 0.015 0.061 0.055 0.018 0.047 0.018 

maximum 0.145 0.156 0.257 0.144 0.073 0.208 0.147 

minimum 0.057 0.131 0.105 0.037 0.045 0.086 0.114 

range 0.088 0.025 0.152 0.107 0.028 0.122 0.033 

D
 [

x 
1

0
-4

 m
m

2 /s
] 

mean 2.863 3.708 1.747 3.207 4.391 4.714 4.392 

std 1.106 0.623 0.537 1.653 0.739 2.950 2.174 

median 2.713 3.694 1.886 3.250 4.452 4.204 3.845 

Q 25% 2.120 3.251 1.446 1.905 3.791 3.000 2.993 

Q 75% 3.351 4.165 2.127 4.347 4.990 5.308 5.791 

IQR 1.231 0.914 0.681 2.442 1.199 2.308 2.798 

maximum 4.937 4.466 2.307 6.090 5.147 11.743 7.474 

minimum 1.326 2.979 0.833 0.969 3.513 1.540 2.404 

range 3.611 1.487 1.474 5.121 1.634 10.203 5.070 

D
* 

[x
 1

0
-3

 m
m

2
/s

] 

mean 3.725 5.215 13.410 3.129 1.862 2.533 3.725 

std 1.609 1.923 5.732 1.783 0.745 1.005 0.860 

median 3.725 5.215 10.430 2.980 1.490 2.980 3.725 

Q 25% 2.980 3.725 10.430 1.490 1.490 1.490 2.980 

Q 75% 4.470 6.705 16.390 2.980 2.235 2.980 4.470 

IQR 1.490 2.980 5.960 1.490 0.745 1.490 1.490 

maximum 5.960 7.450 23.840 7.450 2.980 4.470 4.470 

minimum 1.490 2.980 8.940 1.490 1.490 1.490 2.980 

range 4.470 4.470 14.900 5.960 1.490 2.980 1.490 
Table C.16: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain 
edema of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. No diffusion images correction, denoising included, 
fitting algorithm: Fit D and f (with high b), then fit D*.
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Figure C.59: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.60: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.61: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.62: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.63: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.64: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 
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C.III. Different IVIM fitting algorithms 

C.III.I. Jointly fit 𝐷, 𝑓 and 𝐷 ∗ 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 

mean 0.685 0.460 0.659 

std 0.130 0.163 0.116 

median 0.742 0.476 0.701 

Q 25% 0.644 0.378 0.629 

Q 75% 0.777 0.583 0.747 

IQR 0.132 0.205 0.117 

maximum 0.818 0.689 0.770 

minimum 0.400 0.193 0.353 

range 0.418 0.496 0.417 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 7.476 4.754 6.841 

std 2.273 1.746 1.825 

median 7.635 4.330 6.517 

Q 25% 5.888 3.512 5.818 

Q 75% 9.472 5.395 7.791 

IQR 3.584 1.883 1.972 

maximum 10.720 8.295 11.359 

minimum 3.595 2.238 4.353 

range 7.125 6.057 7.006 

D
* 

[x
 1

0
-3

 m
m

2 /s
] 

mean 29.919 66.978 37.261 

std 24.948 35.030 26.253 

median 20.469 53.426 25.501 

Q 25% 7.493 40.401 17.805 

Q 75% 47.196 89.897 55.771 

IQR 39.703 49.496 37.966 

maximum 78.894 134.132 103.456 

minimum 5.591 25.148 9.044 

range 73.303 108.984 94.412 

Table C.17: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and 
contrast not enhanced part of a brain tumor. Diffusion images correction implemented in SPM, without denoising, 
fitting algorithm: Jointly fit D, f and D*. 
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Figure C.65: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema (n=15), contrast enhanced (n=20) and contrast 
not enhanced (n=15) part of brain tumors. 

 

 

Figure C.66: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema, contrast enhanced and contrast 
not enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced part of brain tumors.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.562 0.474 0.281 0.677 0.747 0.708 0.612 

std 0.118 0.058 0.122 0.146 0.035 0.065 0.090 

median 0.576 0.472 0.221 0.738 0.744 0.725 0.632 

Q 25% 0.477 0.437 0.198 0.628 0.724 0.691 0.558 

Q 75% 0.683 0.512 0.360 0.785 0.770 0.757 0.667 

IQR 0.206 0.074 0.162 0.157 0.045 0.066 0.108 

maximum 0.689 0.549 0.497 0.818 0.793 0.770 0.701 

minimum 0.396 0.405 0.193 0.400 0.707 0.568 0.486 

range 0.293 0.144 0.304 0.418 0.086 0.202 0.215 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 5.457 5.085 3.363 7.622 7.911 7.379 6.003 

std 1.931 1.186 0.794 2.577 0.668 1.974 0.758 

median 4.891 4.809 3.326 7.685 7.904 7.109 6.160 

Q 25% 3.901 4.307 2.958 5.469 7.390 6.088 5.410 

Q 75% 7.609 5.863 3.704 9.781 8.432 8.790 6.596 

IQR 3.708 1.556 0.746 4.312 1.042 2.702 1.186 

maximum 8.295 6.751 4.628 10.720 8.691 11.359 6.675 

minimum 3.382 3.973 2.238 3.595 7.145 4.353 5.017 

range 4.913 2.778 2.390 7.125 1.546 7.006 1.658 

D
* 

[x
 1

0
-3

 m
m

2 /s
] 

mean 51.539 47.933 105.406 29.734 18.138 29.316 40.576 

std 20.493 21.007 33.215 24.022 13.741 19.595 19.463 

median 45.795 47.098 119.584 25.817 14.079 24.601 40.308 

Q 25% 38.776 31.058 81.572 7.158 8.422 12.023 23.758 

Q 75% 58.010 64.808 127.942 48.916 27.853 39.178 57.394 

IQR 19.234 33.750 46.370 41.758 19.431 27.155 33.636 

maximum 98.222 72.389 134.132 74.609 37.458 66.695 58.764 

minimum 29.034 25.148 49.625 5.591 6.935 9.044 22.924 

range 69.188 47.241 84.507 69.018 30.523 57.651 35.840 
Table C.18: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain 
edema of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. Diffusion images correction implemented in SPM, 
without denoising, fitting algorithm: Jointly fit D, f and D*.
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Figure C.67: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG (n=10), 
metastasis (n=4) and meningioma (n=6). 

 

 

Figure C.68: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 
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Figure C.69: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in brain edema of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.70: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in edema of brain tumors HGG and metastasis. 
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Figure C.71: Box plots of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.72: ROC curves analysis for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast not enhanced part of brain tumors HGG 
and metastasis. 
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C.III.II. Fit 𝐷 and 𝑓 with fixed 𝐷 ∗ value (0.07 [
𝑠

𝑚𝑚2]) 

  parameter 
edema 
(n=15) 

enhanced tumor 
(n=20) 

non-enhanced tumor 
(n=15) 

f 
[-

] 
mean 0.060 0.084 0.069 

std 0.023 0.029 0.021 

median 0.055 0.075 0.066 

Q 25% 0.045 0.068 0.058 

Q 75% 0.062 0.102 0.079 

IQR 0.017 0.034 0.020 

maximum 0.121 0.174 0.129 

minimum 0.039 0.045 0.038 

range 0.082 0.129 0.091 

D
 [

x 
1

0
-4

 m
m

2
/s

] 

mean 4.842 4.680 7.514 

std 1.616 1.996 4.179 

median 5.268 4.660 6.875 

Q 25% 3.887 3.044 4.597 

Q 75% 5.544 5.899 9.144 

IQR 1.657 2.855 4.546 

maximum 7.657 8.446 16.681 

minimum 1.550 1.241 2.417 

range 6.107 7.205 14.264 
Table C.19: Calculated statistical parameters for IVIM parameters 𝑓 and 𝐷 in brain edema, contrast enhanced and 
contrast not enhanced part of a brain tumor. Diffusion images correction implemented in SPM, without denoising, 

fitting algorithm: Fit D and f with fixed D* value (0.07 [
𝑠

𝑚𝑚2]). 
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Figure C.73: Box plots of IVIM parameters 𝑓 and 𝐷 in brain edema (n=15), contrast enhanced (n=20) and contrast not 
enhanced (n=15) part of brain tumors. 

Figure C.74: ROC curves analysis for IVIM parameters 𝑓 and 𝐷 in brain edema, contrast enhanced and contrast not 
enhanced part of brain tumors. On the left: brain edema and contrast enhanced part, in the middle: brain edema 
and contrast not enhanced part, on the right: contrast enhanced and contrast not enhanced pat of brain tumors.
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  parameter 
enhanced 

HGG 
(n=10) 

enhanced 
metastasis 

(n=4) 

enhanced 
meningioma 

(n=6) 

edema 
HGG 

(n=10) 

edema 
metastasis 

(n=4) 

non-enhanced 
HGG 

(n=10) 

non-enhanced 
metastasis 

(n=4) 

f 
[-

] 

mean 0.065 0.088 0.112 0.062 0.048 0.059 0.078 

std 0.011 0.018 0.036 0.026 0.006 0.012 0.012 

median 0.069 0.085 0.112 0.056 0.046 0.059 0.077 

Q 25% 0.059 0.074 0.087 0.045 0.044 0.057 0.068 

Q 75% 0.074 0.103 0.120 0.064 0.053 0.066 0.089 

IQR 0.015 0.029 0.033 0.019 0.009 0.009 0.021 

maximum 0.079 0.113 0.174 0.121 0.058 0.082 0.093 

minimum 0.045 0.071 0.067 0.039 0.043 0.038 0.066 

range 0.034 0.042 0.107 0.082 0.015 0.044 0.027 

D
 [

x 
1

0
-4

 m
m

2 /s
] 

mean 4.754 6.736 3.186 4.431 5.764 7.456 8.117 

std 1.664 1.614 1.589 1.800 0.843 4.168 5.269 

median 4.981 6.853 2.995 4.829 5.734 7.065 6.594 

Q 25% 3.587 5.453 2.158 3.594 5.174 4.578 4.916 

Q 75% 5.448 8.019 3.986 5.362 6.355 9.529 11.318 

IQR 1.861 2.566 1.828 1.768 1.181 4.951 6.402 

maximum 7.862 8.446 5.744 7.657 6.815 16.681 15.714 

minimum 2.356 4.793 1.241 1.550 4.776 2.417 3.565 

range 5.506 3.653 4.503 6.107 2.039 14.264 12.149 
Table C.20: Calculated statistical parameters for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis and meningioma, in brain 
edema of brain tumors HGG and metastasis, in contrast not enhanced part of brain tumors HGG and metastasis. Diffusion images correction implemented in SPM, 

without denoising, fitting algorithm: Fit D and f with fixed D* value (0.07 [
𝑠

𝑚𝑚2]).
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Figure C.75: Box plots of IVIM parameters 𝑓 and 𝐷 in contrast enhanced part of brain tumors HGG (n=10), metastasis 
(n=4) and meningioma (n=6). 

 

 

Figure C.76: ROC curves analysis for IVIM parameters 𝑓 and 𝐷 in contrast enhanced part of brain tumors HGG, 
metastasis and meningioma. On the left: HGG and metastasis, in the middle: HGG and meningioma, on the right: 
metastasis and meningioma. 

 

 

Figure C.77: Box plots of IVIM parameters 𝑓 and 𝐷 in brain edema of brain tumors HGG (n=10) and metastasis (n=4). 
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Figure C.78: ROC curves analysis for IVIM parameters 𝑓 and 𝐷 in edema of brain tumors HGG and metastasis. 

 

 

Figure C.79: Box plots of IVIM parameters 𝑓 and 𝐷 in non-enhanced part of brain tumors HGG (n=10) 
and metastasis (n=4). 

 

 

Figure C.80: ROC curves analysis for IVIM parameters 𝑓 and 𝐷 in contrast not enhanced part of brain tumors HGG 
and metastasis. 

C.III.III. Fit 𝐷 and 𝑓 (with high b), then fit 𝐷 ∗ 

The results acquired with the fitting algorithm Fit D and f (with high b), then fit D* are the same as the 

results given in the section C.I.II. 
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14.4.  Appendix D 

In this appendix section the results acquired from constructing the ROC curves by applying FSL, BrainSuite 
and without any diffusion data correction approaches (without and after applying the denoising approach) 
are shown.  

D.I. Different DWI correction tools 

 mean value (standard deviation) 
FSL BrainSuite 

Without 
correction 

en
h

. H
G

G
 

(n
=1

0
) f [-] 0.14 (0.02) 0.14 (0.02) 0.14 (0.03) 

D [x 10-4 mm2/s] 3.03 (1.01) 3.49 (1.33) 3.24 (1.08) 

D* [x 10-3 mm2/s] 8.60 (3.53) 9.11 (3.61) 9.09 (4.00) 

en
h

. m
et

a 
 

(n
=4

) 

f [-] 0.18 (0.04) 0.17 (0.02) 0.18 (0.03) 

D [x 10-4 mm2/s] 3.83 (0.71) 3.90 (0.70) 4.17 (0.62) 

D* [x 10-3 mm2/s] 8.20 (3.10) 11.92 (2.72) 10.80 (2.82) 

en
h

. m
en

i. 
 

(n
=6

) 

f [-] 0.17 (0.02) 0.19 (0.05) 0.18 (0.03) 

D [x 10-4 mm2/s] 1.96 (0.51) 2.33 (0.97) 1.98 (0.53) 

D* [x 10-3 mm2/s] 24.59 (8.98) 34.77 (15.67) 28.49 (9.56) 

ed
em

a 

H
G

G
 

(n
=1

0
) f [-] 0.12 (0.04) 0.13 (0.05) 0.12 (0.04) 

D [x 10-4 mm2/s] 3.13 (1.28) 3.45 (1.42) 3.53 (1.48) 

D* [x 10-3 mm2/s] 7.75 (6.84) 7.45 (5.58) 7.30 (5.73) 

ed
em

a 

m
et

a.
  

(n
=4

) 

f [-] 0.11 (0.02) 0.10 (0.02) 0.10 (0.01) 

D [x 10-4 mm2/s] 3.98 (0.49) 4.57 (0.68) 4.53 (0.70) 

D* [x 10-3 mm2/s] 4.10 (1.43) 4.47 (1.22) 4.47 (1.22) 

n
o

n
-e

n
h

 

H
G

G
 

(n
=1

0
) f [-] 0.15 (0.03) 0.16 (0.03) 0.15 (0.03) 

D [x 10-4 mm2/s] 4.60 (2.59) 5.25 (2.79) 4.92 (2.63) 

D* [x 10-3 mm2/s] 5.66 (2.88) 6.79 (3.17) 6.71 (3.08) 

n
o

n
-e

n
h

 

m
et

a 

(n
=4

) 

f [-] 0.18 (0.02) 0.16 (0.02) 0.17 (0.02) 

D [x 10-4 mm2/s] 4.36 (1.83) 4.22 (1.57) 4.75 (1.87) 

D* [x 10-3 mm2/s] 7.08 (2.24) 10.06 (3.30) 9.31 (3.07) 

Table D.1: Comparison of IVIM parameters in contrast enhanced part of tumors HGG, metastasis and meningioma, in 
edema of tumors HGG and metastasis, in contrast non-enhanced part of tumors HGG and metastasis. Values expressed 
as mean value (standard deviation). Images correction implemented in FSL, BrainSuite and without diffusion correction. 
Without denoising. Fit D and f (with high b), then fit D*. 
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• FSL DWI correction tool 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 

x 

en
h

an
ce

d
 f 0.004 0.85 <0.001 0.65  0.13 [-] 85.00 80.00 

D 0.197 0.64 0.172 0.33  3.64 [x 10-4 mm2/s] 80.00 53.33 

D* 0.026 0.77 0.002 0.53 5.96 [x 10-3 mm2/s] 80.00 73.33 

ed
em

a 

x 

n
o

n
-e

n
h

an
. 

f 0.003 0.85 <0.001 0.67 0.13 [-] 93.33 73.33 

D 0.111 0.65 0.135 0.33 4.09 [x 10-4 mm2/s] 46.67 86.67 

D* 0.866 0.59 0.394 0.27 4.47 [x 10-3 mm2/s] 66.67 60.00 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.671 0.54 0.736 0.24 0.16 [-] 60.00 65.00 

D 0.017 0.75 0.003 0.46 3.64 [x 10-4 mm2/s] 66.67 80.00 

D* 0.011 0.76 0.003 0.50 7.45 [x 10-3 mm2/s] 80.00 70.00 

en
h

an
. H

G
G

 

x 

en
h

. m
et

a.
 

f 0.066 0.98 <0.001 0.90 0.15 [-] 100.00 90.00 

D 0.130 0.73 0.113 0.60 2.88 [x 10-4 mm2/s] 100.00 60.00 

D* 0.837 0.53 0.895 0.15 11.55 [x 10-3 mm2/s] 75.00 10.00 

en
h

an
. H

G
G

 

x 

en
h

. m
en

i. f 0.018 0.87 0.002 0.73 0.15 [-] 83.33 90.00 

D 0.015 0.82 0.005 0.63 2.27 [x 10-4 mm2/s] 83.33 80.00 

D* 0.006 0.95 <0.001 0.83 14.90 [x 10-3 mm2/s] 83.33 100.00 

en
h

. m
et

a
 

x 

en
h

. m
en

i f 0.463 0.63 0.556 0.33 0.18 [-] 83.33 50.00 

D 0.006 1.00 <0.001 1.00 2.75 [x 10-4 mm2/s] 100.00 100.00 

D* 0.005 0.96 <0.001 0.83 11.92 [x 10-3 mm2/s] 83.33 100.00 

ed
em

a 
H

G
G

 

x 

ed
em

. m
et

a f 0.799 0.60 0.617 0.45 0.11 [-] 75.00 70.00 

D 0.099 0.73 0.131 0.50 2.75 [x 10-4 mm2/s] 100.00 50.00 

D* 0.138 0.65 0.342 0.30 5.96 [x 10-3 mm2/s] 100.00 30.00 

n
-e

n
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a f 0.092 0.80 0.017 0.60 0.14 [-] 100.00 60.00 

D 0.847 0.53 0.891 0.25 3.81 [x 10-4 mm2/s] 75.00 50.00 

D* 0.358 0.68 0.223 0.50 4.47 [x 10-3 mm2/s] 100.00 50.00 

Table D.2: The p-value indicating the statistically significant difference, the values of AUC, p-value (AUC=0.5), Youden 
index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ derived from the ROC curve 
in different brain tissue types and different brain tumor types. Statistical difference p<0.05 highlighted with a gray 
color. Diffusion images correction implemented in FSL, without denoising, fitting algorithm: Fit D and f (with high b), 
then fit D*. 
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• BrainSuite DWI correction tool 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 

x 

en
h

an
ce

d
 f 0.003 0.85 <0.001 0.75 0.13 [-] 89.47 85.71 

D 0.185 0.65 0.141 0.36 3.91 [x 10-4 mm2/s] 78.95 57.14 

D* 0.007 0.81 <0.001 0.61 5.96 [x 10-3 mm2/s] 89.47 71.43 

ed
em

a 

x 

n
o

n
-e

n
h

an
. 

f 0.011 0.86 <0.001 0.71 0.12 [-] 100.00 71.43 

D 0.188 0.60 0.389 0.29 4.68 [x 10-4 mm2/s] 42.86 85.71 

D* 0.361 0.67 0.113 0.43 4.47 [x 10-3 mm2/s] 85.71 57.14 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.884 0.50 0.971 0.15 0.17 [-] 78.57 36.84 

D 0.031 0.72 0.016 0.36 3.25 [x 10-4 mm2/s] 78.57 57.89 

D* 0.020 0.75 0.005 0.47 5.96 [x 10-3 mm2/s] 57.14 89.47 

en
h

an
. H

G
G

 

x 

en
h

. m
et

a.
 

f 0.092 0.86 <0.001 0.78 0.15 [-] 100.00 77.78 

D 0.478 0.67 0.291 0.56 3.15 [x 10-4 mm2/s] 100.00 55.56 

D* 0.161 0.75 0.076 0.42 8.94 [x 10-3 mm2/s] 75.00 66.67 

en
h

an
. H

G
G

 

x 

en
h

. m
en

i. f 0.071 0.81 0.063 0.72 0.16 [-] 83.33 88.89 

D 0.073 0.74 0.095 0.50 2.77 [x 10-4 mm2/s] 83.33 66.67 

D* 0.010 0.97 <0.001 0.83 14.9 [x 10-3 mm2/s] 83.33 100.00 

en
h

. m
et

a
 

x 

en
h

. m
en

i f 0.425 0.71 0.286 0.58 0.17 [-] 83.33 75.00 

D 0.018 0.92 <0.001 0.83 2.77 [x 10-4 mm2/s] 83.33 100.00 

D* 0.015 0.94 <0.001 0.83 14.9 [x 10-3 mm2/s] 83.33 100.00 

ed
em

a 
H

G
G

 

x 

ed
em

. m
et

a f 0.165 0.68 0.273 0.44 0.11 [-] 100.00 44.44 

D 0.082 0.81 0.026 0.64 4.53 [x 10-4 mm2/s] 75.00 88.89 

D* 0.160 0.67 0.279 0.33 5.96 [x 10-3 mm2/s] 100.00 33.33 

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a f 0.609 0.65 0.363 0.42 0.16 [-] 75.00 66.67 

D 0.419 0.61 0.543 0.42  3.97 [x 10-4 mm2/s] 75.00 66.67 

D* 0.150 0.78 0.043 0.53 5.96 [x 10-3 mm2/s] 75.00 77.78 

Table D.3: The p-value indicating the statistically significant difference, the values of AUC, p-value (AUC=0.5), Youden 
index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ derived from the ROC curve 
in different brain tissue types and different brain tumor types. Statistical difference p<0.05 highlighted with a gray 
color. Diffusion images correction implemented in BrainSuite, without denoising, fitting algorithm: Fit D and f (with 
high b), then fit D*. 
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• Without diffusion images correction 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 

x 

en
h

an
ce

d
 f 0.001 0.83 <0.001 0.65 0.13 [-] 85.00 80.00 

D 0.087 0.67 0.077 0.35 3.75 [x 10-4 mm2/s] 75.00 60.00 

D* 0.005 0.80 <0.001 0.58 5.96 [x 10-3 mm2/s] 85.00 73.33 

ed
em

a 

x 

n
o

n
-e

n
h

an
. 

f 0.003 0.83 <0.001 0.67 0.14 [-] 80.00 86.67 

D 0.181 0.60 0.376 0.27 4.86 [x 10-4 mm2/s] 40.00 86.67 

D* 0.379 0.66 0.145 0.40 4.47 [x 10-3 mm2/s] 80.00 60.00 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.713 0.53 0.784 0.15 0.17 [-] 40.00 75.00 

D 0.015 0.75 0.003 0.47 3.81 [x 10-4 mm2/s] 66.67 80.00 

D* 0.017 0.74 0.005 0.45 8.94 [x 10-3 mm2/s] 80.00 65.00 

en
h

an
. H

G
G

 

x 

en
h

. m
et

a.
 

f 0.093 0.80 0.017 0.70 0.15 [-] 100.00 70.00 

D 0.072 0.78 0.035 0.60 3.22 [x 10-4 mm2/s] 100.00 60.00 

D* 0.392 0.60 0.539 0.40 7.45 [x 10-3 mm2/s] 100.00 40.00 

en
h

an
. H

G
G

 

x 

en
h

. m
en

i. f 0.029 0.84 0.001 0.53 0.15 [-] 83.33 70.00 

D 0.008 0.88 <0.001 0.70  2.67 [x 10-4 mm2/s] 100.00 70.00 

D* 0.003 0.99 <0.001 0.90 11.92 [x 10-3 mm2/s] 100.00 90.00 

en
h

. m
et

a
 

x 

en
h

. m
en

i f 0.965 0.50 1.000 0.42 0.16 [-] 66.67 75.00 

D 0.001 1.00 <0.001 1.00 2.67 [x 10-4 mm2/s] 100.00 100.00 

D* 0.005 1.00 <0.001 1.00 14.90 [x 10-3 mm2/s] 100.00 100.00 

ed
em

a 
H

G
G

 

x 

ed
em

. m
et

a f 0.163 0.63 0.434 0.50 0.11 [-] 100.00 50.00 

D 0.118 0.70 0.211 0.50 2.91 [x 10-4 mm2/s] 100.00 50.00 

D* 0.167 0.61 0.470 0.30 5.96 [x 10-3 mm2/s] 100.00 30.00 

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a f 0.270 0.70 0.213 0.40 0.14 [-] 100.00 40.00 

D 0.894 0.50 1.00 0.25 4.45 [x 10-4 mm2/s] 25.00 50.00 

D* 0.205 0.76 0.081 0.55 7.45 [x 10-3 mm2/s] 75.00 80.00 

Table D.4: The p-value indicating the statistically significant difference, the values of AUC, p-value (AUC=0.5), Youden 
index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ derived from the ROC curve 
in different brain tissue types and different brain tumor types. Statistical difference p<0.05 highlighted with a gray 
color. No diffusion images correction, without denoising, fitting algorithm: Fit D and f (with high b), then fit D*. 
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D.II. DWI denoising 

mean value (standard deviation) FSL BrainSuite 
Without 

correction 

en
h

. H
G

G
 

(n
=1

0
) f [-] 0.11 (0.02) 0.11 (0.02) 0.11 (0.03) 

D [x 10-4 mm2/s] 2.76 (1.02) 3.13 (1.39) 2.86 (1.11) 

D* [x 10-3 mm2/s] 3.43 (1.41) 4.30 (1.74) 3.73 (1.61) 

en
h

. m
et

a 
 

(n
=4

) 

f [-] 0.16 (0.02) 0.14 (0.01) 0.14 (0.01) 

D [x 10-4 mm2/s] 3.43 (0.75) 3.84 (0.78) 3.71 (0.62) 

D* [x 10-3 mm2/s] 4.10 (2.24) 5.96 (3.22) 5.22 (1.92) 

en
h

. m
en

i. 
 

(n
=6

) 

f [-] 0.14 (0.02) 0.17 (0.08) 0.16 (0.05) 

D [x 10-4 mm2/s] 1.72 (0.47) 2.59 (1.83) 1.75 (0.54) 

D* [x 10-3 mm2/s] 13.41 (6.66) 18.13 (10.80) 13.41 (5.73) 

ed
em

a 

H
G

G
 

(n
=1

0
) f [-] 0.09 (0.04) 0.09 (0.05) 0.08 (0.04) 

D [x 10-4 mm2/s] 2.97 (1.41) 3.14 (1.58) 3.21 (1.65) 

D* [x 10-3 mm2/s] 3.28 (2.41) 3.15 (1.89) 3.13 (1.78) 

ed
em

a 

m
et

a.
  

(n
=4

) 

f [-] 0.09 (0.02) 0.06 (0.01) 0.06 (0.01) 

D [x 10-4 mm2/s] 3.87 (0.52) 4.44 (0.74) 4.39 (0.74) 

D* [x 10-3 mm2/s] 1.49 (0.00) 1.49 (0.00) 1.86 (0.75) 

n
o

n
-e

n
h

 

H
G

G
 

(n
=1

0
) f [-] 0.13 (0.03) 0.13 (0.03) 0.12 (0.04) 

D [x 10-4 mm2/s] 4.47 (2.87) 5.09 (3.09) 4.71 (2.95) 

D* [x 10-3 mm2/s] 2.24 (1.05) 2.81 (1.38) 2.53 (1.01) 

n
o

n
-e

n
h

 

m
et

a 

(n
=4

) 

f [-] 0.15 (0.02) 0.13 (0.01) 0.13 (0.01) 

D [x 10-4 mm2/s] 4.08 (2.01) 3.89 (1.77) 4.39 (2.17) 

D* [x 10-3 mm2/s] 2.61 (0.75) 4.84 (1.87) 3.73 (0.86) 

Table D.5: Comparison of IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ in contrast enhanced part of brain tumors HGG, metastasis 
and meningioma, in brain edema of brain tumors HGG and metastasis, in contrast non-enhanced part of brain tumors 
HGG and metastasis. Values expressed as mean value (standard deviation). Diffusion images correction implemented 
in FSL, BrainSuite and without diffusion correction. Denoising included. Fitting algorithm: Fit D and f (with high b), then 
fit D*. 
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• FSL DWI correction tool 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 

x 

en
h

an
ce

d
 f 0.001 0.85 <0.001 0.63 0.10 [-] 90.00 73.33 

D 0.115 0.65 0.148 0.38 3.66 [x 10-4 mm2/s] 85.00 53.33 

D* 0.031 0.75 0.003 0.43 1.49 [x 10-3 mm2/s] 90.00 53.33 

ed
em

a 

x 

n
o

n
-e

n
h

an
. 

f <0.001 0.89 <0.001 0.73 0.10 [-] 93.33 80.00 

D 0.158 0.61 0.288 0.27 4.16 [x 10-4 mm2/s] 40.00 86.67 

D* 0.896 0.51 0.912 0.13 4.47 [x 10-3 mm2/s] 6.67  80.00 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.554 0.54 0.681 0.17 0.11 [-] 86.67 30.00 

D 0.020 0.76 0.002 0.47 3.46 [x 10-4 mm2/s] 66.67 80.00 

D* 0.030 0.77 <0.001 0.42 2.98 [x 10-3 mm2/s] 86.67 55.00 

en
h

an
. H

G
G

 

x 

en
h

. m
et

a.
 

f 0.014 0.98 <0.001 0.90 0.13 [-] 100.00 90.00 

D 0.218 0.70 0.177 0.50 2.38 [x 10-4 mm2/s] 100.00 50.00 

D* 0.607 0.55 0.777 0.25 5.96 [x 10-3 mm2/s] 25.00 100.00 

en
h

an
. H

G
G

 

x 

en
h

. m
en

i. f 0.018 0.84 0.003 0.66 0.14 [-] 66.67 100.00 

D 0.016 0.83 0.002 0.63 2.07 [x 10-4 mm2/s] 83.33 80.00 

D* 0.014 0.99 <0.001 0.90 4.47 [x 10-3 mm2/s] 100.00 90.00 

en
h

. m
et

a
 

x 

en
h

. m
en

i f 0.433 0.63 0.532 0.33 0.12 [-] 33.33 100.00 

D 0.012 1.00 <0.001 1.00 2.35 [x 10-4 mm2/s] 100.00 100.00 

D* 0.017 0.96 <0.001 0.83 7.45 [x 10-3 mm2/s] 83.33 100.00 

ed
em

a 
H

G
G

 

x 

ed
em

. m
et

a f 0.819 0.69 0.215 0.45 0.09 [-] 75.00 70.00 

D 0.104 0.73 0.132 0.50  2.47 [x 10-4 mm2/s] 100.00 50.00 

D* 0.044 0.80 <0.001 0.60 1.49 [x 10-3 mm2/s] 100.00 60.00 

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a f 0.146 0.75 0.071 0.70 0.14 [-] 100.00 70.00 

D 0.776 0.53 0.894 0.35 3.63 [x 10-4 mm2/s] 75.00 60.00 

D* 0.477 0.64 0.367 0.35 1.49 [x 10-3 mm2/s] 75.00 60.00 

Table D.6: The p-value indicating the statistically significant difference, the values of AUC, p-value (AUC=0.5), Youden 
index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ derived from the ROC curve 
in different brain tissue types and different brain tumor types. Statistical difference p<0.05 highlighted with a gray 
color. Diffusion images correction implemented in FSL, denoising included, fitting algorithm: Fit D and f (with high b), 
then fit D*. 
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• BrainSuite DWI correction tool 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 

x 

en
h

an
ce

d
 f 0.001 0.87 <0.001 0.70 0.10 [-] 84.21 85.71 

D 0.379 0.60 0.341 0.26 3.82 [x 10-4 mm2/s] 68.42 57.14 

D* 0.012 0.83 <0.001 0.58 2.98 [x 10-3 mm2/s] 78.95 78.57 

ed
em

a 

x 

n
o

n
-e

n
h

an
. 

f 0.005 0.88 <0.001 0.79 0.08 [-] 100.00 78.57 

D 0.171 0.62 0.271 0.36 4.60 [x 10-4 mm2/s] 50.00 85.71 

D* 0.155 0.64 0.169 0.29 1.49 [x 10-3 mm2/s] 78.57 50.00 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.912 0.50 0.978 0.16 0.08 [-] 0.00 84.21 

D 0.049 0.70 0.039 0.34 4.44 [x 10-4 mm2/s] 50.00 84.21 

D* 0.069 0.74 0.007 0.43 2.98 [x 10-3 mm2/s] 64.29 78.95 

en
h

an
. H

G
G

 

x 

en
h

. m
et

a.
 

f 0.012 0.86 0.002 0.78 0.13 [-] 100.00 77.78 

D 0.265 0.67 0.334 0.53 3.65 [x 10-4 mm2/s] 75.00 77.78 

D* 0.391 0.65 0.417 0.278 4.47 [x 10-3 mm2/s] 50.00 77.78 

en
h

an
. H

G
G

 

x 

en
h

. m
en

i. f 0.143 0.74 0.172 0.67 0.15 [-] 66.67 100.00 

D 0.554 0.65 0.393 0.39 1.57 [x 10-4 mm2/s] 50.00 88.89 

D* 0.025 1.00 <0.001 1.00 7.45 [x 10-3 mm2/s] 100.00 100.00 

en
h

. m
et

a
 

x 

en
h

. m
en

i f 0.406 0.67 0.429 0.67 0.15 [-] 66.67 100.00 

D 0.178 0.71 0.278 0.67 2.09 [x 10-4 mm2/s] 66.67 100.00 

D* 0.040 0.96 <0.001 0.75 5.96 [x 10-3 mm2/s] 100.00 75.00 

ed
em

a 
H

G
G

 

x 

ed
em

. m
et

a f 0.243 0.61 0.511 0.33 0.08 [-] 100.00 33.33 

D 0.069 0.81 0.026 0.64 4.38 [x 10-4 mm2/s] 75.00 88.89 

D* 0.030 0.83 <0.001 0.67 1.49 [x 10-3 mm2/s] 100.00 66.67 

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a f 0.905 0.56 0.739 0.44 0.11 [-] 100.00 44.44 

D 0.397 0.61 0.543 0.42 3.62 [x 10-4 mm2/s] 75.00 66.67 

D* 0.116 0.85 0.002 0.639 2.98 [x 10-3 mm2/s] 75.00 88.89 

Table D.7: The p-value indicating the statistically significant difference, the values of AUC, p-value (AUC=0.5), Youden 
index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ derived from the ROC curve 
in different brain tissue types and different brain tumor types. Statistical difference p<0.05 highlighted with a gray 
color. Diffusion images correction implemented in BrainSuite, denoising included, fitting algorithm: Fit D and f (with 
high b), then fit D*. 
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• Without diffusion images correction 

  

p-
value 

AUC 
p 

(AUC=0.5) 
Youden 
index 

Cut-off 
value 

Sensit. 
[%] 

Specific. 
[%] 

ed
em

a 

x 

en
h

an
ce

d
 f <0.001 0.86 <0.001 0.70 0.08 [-] 90.00 80.00 

D 0.077 0.68 0.074 0.42 3.35 [x 10-4 mm2/s] 75.00 66.67 

D* 0.007 0.78 <0.001 0.50 2.98 [x 10-3 mm2/s] 70.00 80.00 

ed
em

a 

x 

n
o

n
-e

n
h

an
. 

f 0.001 0.88 <0.001 0.80 0.08 [-] 100.00 80.00 

D 0.224 0.58 0.447 0.20 4.38 [x 10-4 mm2/s] 40.00 80.00 

D* 0.465 0.57 0.512 0.13 1.49 [x 10-3 mm2/s] 73.33 40.00 

en
h

an
ce

d
 

x 

n
o

n
-e

n
h

an
. 

f 0.818 0.53 0.743 0.18 0.14 [-] 73.33 45.00 

D 0.020 0.75 0.003 0.45 2.98 [x 10-4 mm2/s] 80.00 65.00 

D* 0.026 0.75 0.002 0.43 4.47 [x 10-3 mm2/s] 93.33 50.00 

en
h

an
. H

G
G

 

x 

en
h

. m
et

a.
 

f 0.009 0.80 0.017 0.70 0.11 [-] 100.00 70.00 

D 0.101 0.78 0.035 0.60 2.84 [x 10-4 mm2/s] 100.00 60.00 

D* 0.232 0.73 0.167 IV.47 4.47 [x 10-3 mm2/s] 50.00 80.00 

en
h

an
. H

G
G

 

x 

en
h

. m
en

i. f 0.066 0.83 0.006 0.57 0.14 [-] 66.67 90.00 

D 0.017 0.82 0.005 0.70 2.31 [x 10-4 mm2/s] 100.00 70.00 

D* 0.008 1.00 <0.001 1.00 5.96 [x 10-3 mm2/s] 100.00 100.00 

en
h

. m
et

a
 

x 

en
h

. m
en

i f 0.454 0.60 0.611 0.42 0.14 [-] 66.67 75.00 

D 0.002 1.00 <0.001 1.00 2.31 [x 10-4 mm2/s] 100.00 100.00 

D* 0.016 1.00 <0.001 1.00 7.45 [x 10-3 mm2/s] 100.00 100.00 

ed
em

a 
H

G
G

 

x 

ed
em

. m
et

a f 0.284 0.58 0.661 0.40 0.07 [-] 100.00 40.00 

D 0.090 0.73 0.132 0.50 2.50 [x 10-4 mm2/s] 100.00 50.00 

D* 0.086 0.75 0.055 0.45 1.49 [x 10-3 mm2/s] 75.00 70.00 

n
.-

en
h

. H
G

G
 

x 

n
-e

n
h

. m
et

a f 0.514 0.66 0.286 0.50 0.11 [-] 100.00 50.00 

D 0.828 0.50 1.000 0.25 4.11 [x 10-4 mm2/s] 25.00 50.00 

D* 0.064 0.80 0.008 0.40 1.49 [x 10-3 mm2/s] 100.00 40.00 

Table D.8: The p-value indicating the statistically significant difference, the values of AUC, p-value (AUC=0.5), Youden 
index, suggested cut-off, sensitivity and specificity values for IVIM parameters 𝑓, 𝐷 and 𝐷 ∗ derived from the ROC curve 
in different brain tissue types and different brain tumor types. Statistical difference p<0.05 highlighted with a gray 
color. No diffusion images correction, denoising included, fitting algorithm: Fit D and f (with high b), then fit D*. 

 


