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Abstract

The majority of modern navigation sys-
tems are mainly focused on minimizing
the travelling time of a planned route.
While travelling time is undeniably impor-
tant, it is not always the main priority of
a user. Although a limited set of planning
customizations is available, these must be
set manually and do not provide distinc-
tion between different types of users, such
as car drivers and cyclists.

This thesis studies the topic of naviga-
tion personalization through the exami-
nation of previous user routes. The the-
oretical part addresses the task of path
planning in road networks and the utiliza-
tion of optimization algorithms in route
preference computation. The practical
part of the thesis is dedicated to the im-
plementation of an algorithm capable of
deducing a user’s priorities from the his-
tory of their routes. The algorithm has
been tested both on artificially generated
and real-world trajectories.

Keywords: navigation, route planning,
personalization, machine learning

Supervisor: doc. Ing. Michal Jakob,
Ph.D.

Abstrakt

Majorita současných navigačních systému
je zaměřená na plánování nejrychlejší
cesty. Zatímco důležitost doby cesty nelze
popřít, není vždy hlavní prioritou uživa-
tele. Ačkoli existuje limitované množství
dostupných úprav plánování, mají být za-
dány ručně a nezajišťují rozlišení různých
typů uživatelů, jako jsou řidiči a cyklisti.

Tato diplomová práce se zabývá stu-
diem personalizace navigace prostřednic-
tvím zkoumání předcházejících tras uživa-
tele. Teoretická část je věnována úloze plá-
nování cest v dopravních sítích a využití
optimalizačních algoritmů k výpočtu drá-
hových preferencí. Praktickou částí práce
je implementace algoritmu schopného zís-
kávání uživatelských priorit z historie jeho
cest. Algoritmus je otestován na umělé vy-
tvořených a skutečných trajektoriích.

Klíčová slova: navigace, plánování tras,
personalizace, strojové učení

Překlad názvu: Personalizované
plánování tras využívající strojového
učení
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Chapter 1

Introduction

Navigation in its broad definition is the process of controlling the position
and movement of an object on its path from an origin to a destination. The
term can also refer to a set of special skills used to determine one’s location.
Generally, four categories of navigation are distinguished: space navigation,
aerial navigation, land navigation, and marine navigation.

The emergence of navigation as a form of art can be traced back to
3500 B.C., when the first records of trading ships appeared. These boats
followed the coast and used visible landmarks at day and major constellations
at night to monitor their position. Obviously, maps and charts were not
available then, and the only instrument available was sandglass. One of
the first known crafted navigation instruments were the mariner’s compass,
the earliest example of a magnetic compass, and the lead line, which was a
tool for measuring the water depth and the landscape of the bottom. The
efficiency and ease of use of compasses were greatly increased by the Mercator
Projection, the first accurate spherical model of the planet’s surface. On this
projection, the compass bearing could be represented in a straight line. As
a result, the ability to precisely determine the longitude became crucial for
consistent navigation. Since seamen already had the means to measure a
ship’s speed, an accurate time-keeping tool was necessary. It was invented
by John Harrison[T.G23]. Born in England, this self-educated clockmaker
designed a chronometer accurate to one-tenth of a second per day. James Cook
used a copy of this device in his third voyage (1776-1780) [Hou94] to create
the first accurate charts. Although expensive, the ship chronometers were
irreplaceable due to their precision. However, after the worldwide spread and
adoption of radio in the 20th century, regularly provided time updates made
a usual wrist watch sufficient for precise longitude calculation. Eventually, a
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1. Introduction .....................................
number of radio systems were developed, including Gee, Loran, and Decca —
hyperbolic radio navigation systems introduced during World War II. These
systems were later replaced by GPS (Global Positioning System), a satellite
radio navigation system designed by the U.S. Department of Defense in 1973.

GPS operates to this day along with analogical systems (GLONASS, Galileo,
BeiDou) and can provide location data with accuracy within 0.5 meters.
Moreover, these systems are accessible not only for mariners and militaries,
but virtually for anyone. A personal navigation assistant device can be
bought at any consumer electronics store, most smartphones have preinstalled
navigation applications such as Google Maps and Apple Maps. These provide
users with highly detailed interactive maps and 3D models of countries,
cities, and even streets. Moreover, traffic information is processed and
updated continuously, including jams, accidents, and roadworks. Using this
information, the navigation devices are able to quickly build a fastest route to
a desired destination considering different means of transport. These features
make navigation applications valuable not only for professional drivers, but
also for vehicle owners, commuters, travelers, and tourists.

Despite the efficiency and usage simplicity of navigation applications, they
have some drawbacks. Namely, in the overwhelming majority of cases, the
main planning criterion is the time a route takes. Although the travelling
time is undeniably important, it is not always the main priority. Some
other route properties such as road surface and elevation may be of greater
significance to an individual user. Moreover, the ratios of importance of road
qualities can influence the desired path choice significantly. The individual
dependencies of a user must also depend on the type of transport they use.
For example, the route choice of a person driving a car is unlikely to be
dictated by elevation degree, while it is of great importance to a cyclist. On
the other hand, a cyclist takes the surface quality and bicycle infrastructure
into great consideration, but these are less relevant to a driver. Even if one
decides to build a navigation system capable of considering and prioritizing
multiple route parameters, not every user is able or willing to take time to
express their preferences explicitly. Therefore, the aim of this thesis is to
implement and algorithm capable of computing and employing the route
preferences of individual users based on the history of their commutes.

The main challenge of this thesis project is the extraction of an individual’s
route preference coefficients. The expected input is a set of a user’s previous
commute trajectories. Analyzing these commutes, the program extracts
the "preference weights" of the route features in question. It should be
emphasized that in order for the algorithm to make a correct conclusion,
the input trajectories must reflect the user’s priorities correctly. In other
words, the routes have to be built by an informed user (i.e. familiar with
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......................................1. Introduction

the area) according to their personal preferences. If the input trajectories
are produced by a navigation planner instead of being chosen by the user,
the results of the algorithm will reflect the planner’s priorities instead of the
personal preferences of a user. Simultaneously, if the input trajectories are
built by a user in an area they are not well aware of, the trajectories will be
random to significant extent. After the preference analysis is performed, the
algorithm can use the extracted coefficients to plan new routes according to
the user’s priorities.

For a route search algorithm to be able to run on a road network, its map
should be modelled into a directed weighted graph. Processing a digital map
for graph extraction is a non-trivial task on its own, so for this thesis project,
a previously built graph of Prague’s road network has been used. The project
can be divided into two subtasks: preference computation from trajectory
data and route search in a road network, which is necessary to evaluate the
quality of proposed paths during preference optimization and to be able to
plan further routes once the preferences are extracted.
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Chapter 2

Related work

Since automatic navigation is not a new concept, there is a significant amount
of articles and algorithms dedicated to it. Nevertheless, navigation tailored
to individual preferences is a relatively new concept. Therefore, there are
still relatively few advances in the topic. The work related to personalized
navigation can be separated into two parts: shortest path query in road
networks and optimization algorithms capable of deducing the preference
ratios. Instead of briefly listing the researches conducted on the topic, this
section provides a more detailed description of the algorithms applied to these
tasks and their performance.

2.1 Shortest path search

As it is stated above, a road network can be modelled as a directed weighted
graph, where intersections correspond to vertices, the road segments connect-
ing them correspond to edges, and the edge weights are resembled by chosen
metrics (e.g. distance, traversal time, fuel consumption). After the directed
graph is built, the route search task can be narrowed down to a special case
of the search of a shortest point-to-point path in a graph. Shortest path
problem in graph theory is a task of finding a path between two vertices of
a graph such that it has the minimum sum of the weights of its component
edges. Graphs built from road networks usually consist of thousands and
millions of vertices. Hence, time efficiency of the shortest path algorithm is
crucial for online usage of the navigation system. Some of the algorithms
developed for route query in road networks employ preprocessing techniques,
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2. Related work.....................................
which are capable of accelerating the path searches by tens of times. However,
in the case of personalized navigation, one should take into account the
continuous adjustment of preference ratios (and final edge costs) during the
optimal preference extraction. These adjustments may necessitate repetitive
preprocessing, resulting in a significant increase of the overall running time.
Therefore, methods both with and without preprocessing should be considered
[BDG+15].

2.1.1 Naive methods

Dijkstra’s algorithm [Dij59] is the basic and probably the most standard
shortest path algorithm. It is a one-to-all shortest path algorithm developed
by Edsger Dijkstra in 1956. The method works by building a priority queue
of vertices ordered by minimum distances from the source node s. Initially,
the priority queue only contains s, and the distance from the starting vertex
to every other one is set to infinity, marking these vertices as unprocessed. At
every iteration, the algorithm extracts the current minimum distance node u
from the priority queue and updates the distances of the adjacent vertices. For
every adjacent vertex v, it calculates the distance dist(s, u) + e(u, v), where
e(u, v) is the cost of the edge between u and v. If this new distance is smaller
than the current distance from s to v, an update is performed: dist(s, v) is
set to the new value and vertex v is added to the priority queue. Once the
current vertex u is processed (all its neighbor vertices are updated), it is
considered closed and the minimum distance dist(s, u) is correct. Thanks to
that label-setting property, the algorithm can be stopped when the destination
vertex is processed for point-to-point queries, which are more frequent in
navigation. The asymptotic complexity of standard Dijkstra’s algorithm is
O((|V |+|E|) log |V |) orO(|E|+|V | log |V |) for priority queues based on binary
heaps and Fibonacci heaps respectively, where |V | is the number of vertices
in the graph and |E| is the number of edges. For point-to-point, the number
of vertices processed can be reduced significantly by applying bidirectional
search. It is performed by running forward search from the starting vertex and
backward search from the destination vertex simultaneously. The bidirectional
search can terminate when a vertex has been closed by both the forward and
backward searches.

An alternative one-to-all shortest path technique is the Bellman-Ford
algorithm [BEL58]. Instead of maintaining a priority queue of minimum
distances, it processes all of the edges in each of the |V | − 1 cycles. For every
edge (u, v) with cost e(u, v), if the condition dist(u) + e(u, v) < dist(v) is
satisfied, the distance to v is set to the new value. In contrast to Dijkstra’s
algorithm, the Bellman-Ford algorithm is a label-correcting algorithm, since
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................................. 2.1. Shortest path search

every vertex is scanned multiple times. In every iteration, at least one vertex
is assigned correct minimum distance. Hence, the algorithm is bound to assign
optimal distances to all vertices in |V | − 1 iterations. This bound makes the
algorithm useful for negative weight cycle detection. A cycle in a graph is said
to have negative weight, if the sum of its component edges is less than 0. If
after |V |−1 iterations the algorithm can still decrease the distance of a vertex
in the graph, the vertex is a part of a negative cycle. Although important in a
number of problems, this property is of no significant use in most road network
planning tasks, since all road segment costs are assumed to be positive. The
worst-case asymptotic complexity of Bellman-Ford is O(|V ||E|), although it
can be modified slightly to decrease the number of iterations. If an iteration
has been performed without decreasing the distance of any of the nodes, the
algorithm can terminate, since the optimal solution has been found. This
modification makes the technique competitive to Dijkstra’s algorithm in some
tasks.

The third algorithm that should be noted in this subsection is the Floyd-
Warshall algorithm [Flo62], sometimes called the Roy-Warshall algorithm.
As opposed to previous techniques, this method is an all-to-all shortest path
algorithm, meaning it calculates minimum distances for all pairs of vertices in
a graph. This is achieved by comparing all possible paths between each pair
of vertices. The asymptotic complexity of the algorithm is Θ(|V |3), which,
however, usually yields better execution time than |V | iterations of Dijkstra’s
algorithm for a dense graph. As one can assume, this algorithm is rarely
used on road networks, since those usually contain thousands and millions of
vertices.

2.1.2 Informed methods

All of the algorithms discussed above compute shortest distances to all ver-
tices. For a point-to-point navigation, the most effective approach would be
terminating Dijkstra’s algorithm after it scans the destination node. Never-
theless, it still processes all the nodes with distances smaller than the one of
the destination vertex. In contrast to that, informed or goal-directed search
methods employ techniques directing them towards the goal, thus decreasing
the number of nodes processed.

Probably the most well known informed shortest path search algorithm is A*
[HNR68], which can be considered an extension of Dijkstra’s algorithm. The
distinction consists in the application of a heuristic function h : V → R which
estimates the potential distance from a vertex to the destination node. Similar
to Dijkstra’s algorithm, A* maintains a priority queue of most promising
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2. Related work.....................................
vertices to be expanded. However, the vertices are ordered not by their
distance from the source vertex, but by the function f(u) = g(u) + h(u),
where g(u) is the distance from the source vertex to a vertex u, and h(u) is a
heuristic estimate of the cost of the shortest path from u to the target vertex.
This ordering allows A* to expand its search tree mainly in the direction of the
target node. The heuristic function is problem-specific, and its formulation
affects the efficiency of the algorithm dramatically. If h is admissible, meaning
it never overestimates the cost of reaching the destination, the algorithm is
guaranteed to find the minimum-cost path from start to destination. Moreover,
if the heuristic estimate is exact, meaning it always returns a true distance
to destination, the algorithm will only process and expand the vertices on
the shortest path from start to target vertex. If A* is applied to a classic
road network navigation problem with cost denoted by distance, a standard
heuristic estimate function would be a straight-line distance (for relatively
small search areas) or a great-circle distance (the minimum distance on
a sphere surface). If the cost metric is travel time, geographical distance
between vertices divided by the maximum speed occurring in the road network
is an admissible heuristic. In practice, however, the time gain given by these
estimates is relatively small. A more aggressive heuristic function has a
chance of improving the performance, but a non-admissible heuristic cannot
always return an optimal solution. The asymptotic time complexity of the
algorithm can be expressed as O(bd), where b is the branching factor(the
average number of successors per vertex) and d is the depth of the solution
(the number of vertices in the shortest path). There is a number of major
improvements and modifications to the standard A* method, some of which
use preprocessing. Namely, LPA* (Lifelong Planning A*) is an incremental
version of A* effective on non-stationary graphs. LPA* is able to adapt to
changes in a graph without reprocessing it entirely. Theta* [DNKF14] is one
of any-angle path planning algorithms, which are tailored for path search
in a space. Theta* accepts transitions between any vertices connected by a
straight line without obstacles. This modification results in a relatively direct
path with few turns. ALT (A*, landmarks, and triangle inequality) [GH05]
includes a preprocessing phase where a small subset of vertices is selected as
landmarks. The path costs between these landmarks and all vertices in the
graph are precomputed and used in triangle inequality during path queries
to estimate distance to destination. However, this modification is ineffective
in preference optimization, since the preprocessing phase must be repeated
after every cost function adjustment.

Another informed path search algorithm is Geometric Containers. Similar
to ALT, it has a preprocessing phase. For every edge e = (u, v), it labels a
set of vertices the shortest paths from u to which start with e. In its core,
the preprocessing phase is an all-to-all shortest path search. However, in case
of application on road networks, the preprocessing phase can be accelerated
by replacing a standard all-to-all path search with heuristic approximation
based on vertex coordinates. Unfortunately, if the cost metric is not based
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................................. 2.1. Shortest path search

on travel distance or time, this heuristic is unsuitable. The query phase
is a graph traversal guided by the label information: for every node, if a
label of an incident edge e does not contain the target vertex, the search
tree should not be expanded via e. Unfortunately, the algorithm cannot be
used for preference optimization, since every weight adjustment necessitates
repetitive preprocessing, and coordinate heuristic cannot be applied due to
consideration of other road parameters apart from distance and traversal
time.

The Arc Flags [HKMS09] method resembles Geometric Containers to some
extent despite not using coordinate heuristic. The preprocessing phase of
Arc Flags splits the graph into a predefined number K of parts, also called
cells. The partition is performed so as to balance the cells by assigning an
approximately equal number of vertices to every cell and minimize the number
of border vertices. Every edge is the assigned a vector of K flags, where the
i-th flag of is set to true if the edge is a part of the shortest path to the cell i.
There are multiple possible ways of flag computation, the standard one being
backward shortest path search from border vertices for every cell. After all
flags are set, the edges without true flags can be safely pruned. During a query,
edges that do not contain true flag for the destination cell can be ignored. For
large graphs multiple nested partitions can be built, which generally improves
the query performance. Although Arc Flags yields relatively fast shortest
path queries, time requirements of the preprocessing stage are relatively high,
making it especially inefficient for cost function adjustment — whenever the
preference coefficients are changed, flag assignment must be performed again.

2.1.3 Separator-based methods

The planar separator theorem [LT77] states that any planar graph can be
partitioned into smaller subgraphs through a removal of a small number of
vertices. The removal of O(

√
n) nodes from a graph with n vertices can

split the graph into separate subgraphs containing at most 2
3n nodes each.

Although road graphs are not planar (due to tunnels and overpasses), the
separator property can be applied to them [DGRW11, EG08] for shortest
path search acceleration in both vertex separator and edge separator forms.

A vertex separator is a subset of vertices whose removal splits the graph
into several disjoint components. The separator subset should be as small as
possible while keeping the sizes of the resulting components roughly equal. The
separators are used to produce an overlay graph, while shortcut edges [Vli78]
are added to it in a manner that preserves the initial distances between all
pairs of separator vertices. The produced overlay graph is then incorporated
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2. Related work.....................................
in shortest path search. The separator vertices play the role of landmarks —
important nodes that have to be traversed if the origin and the destination
belong to different components. There are multiple possible specifications to
the general approach. Namely, the separator vertex choice can be based on
different properties, for example the number of adjacent edges. The shortcut
edges offer a trade-off between search speed and preprocessing requirements.
A nested multilevel model of the overlay graph is possible to.

Arc separator approach follows the same logic, but in a different order.
First, the graph is partitioned in a set of cells so that it is roughly balanced and
the number of separator edges is minimized. A separator edge connects two
border vertices belonging to different cells. Afterwards, one can add shortcut
edges connecting pairs of border vertices belonging to the same component
while preserving distances between them. An outstanding arc separator
algorithm in context of road networks is Customizable Route Planning (CRP)
[DGPW11]. CRP can be considered the current ”state-of-the-art” shortest
path search algorithm designed specifically for application to road networks
[DGPW15]. Similar to the algorithms described above, the preprocessing
phase starts with the generation of a balanced cell partition of the initial
graph G. After that, it builds an overlay graph H consisting of border vertices
and the edges connecting them. When the border structure is extracted, a
clique is built inside every partition: for every pair of boundary vertices in
a cell, an edge is added with the cost of the shortest path between these
vertices. It should be noted that preprocessing becomes metric-dependent at
this stage. Traditionally, the clique of a cell can be built by running standard
Dijkstra’s algorithm from each of its border vertices one by one. After the
cell cliques are produced, H becomes the overlay graph of G. Nested levels of
the overlay graph can be built in a recursive manner for query acceleration.
A query in CRP is performed using the bidirectional version of Dijkstra’s
algorithm. For an origin vertex s and a destination vertex t, the query runs
as follows. If s is a border vertex, no preparations must be performed. If s
does not belong to the set of border vertices, it is connected to H via the
border vertices of its cell C(s) in the same way the cell cliques are produced
(i.e. Dijkstra’s algorithm is run from s to the border vertices of C(s)). After
that, t is analyzed and prepared similarly. The resulting structure is called
the search graph, and bidirectional Dijkstra’s algorithm is run. It returns a
shortest path from s to t consisting of three parts: a prefix transition inside
C(s), a path in H, and a suffix part in C(t). Since H is an overlay graph
preserving the distances between pairs of vertices, the distance of the path
is equal to that of the shortest path in G. To further improve the running
time of queries a pruning technique can be applied. Not necessarily all inner
shortcuts are needed for shortest distance preservation in the overlay graph,
since only the paths that are fully inside a cell are used in clique generation.
These unnecessary edges can be easily removed using Dijkstra’s algorithm.
For every vertex u ∈ H, Dijkstra’s algorithm is run until it processes all
nodes adjacent to u. Afterwards, for every neighbor v of u connected by
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................................. 2.1. Shortest path search

an edge e(u, v) with cost l, if dist(v) < l, then e can be removed from H.
Since CRP has been designed specifically for operation on road networks, it
incorporates a number of distinctive features. Namely, it is able to consider
turn restrictions and impose additional costs on undesired types of turns (e.g.
left turns, U-turns). This is done by associating a turn table T with every
vertex. If a vertex u has p incoming edges and q outgoing edges, its turn table
Tu takes form p× q, where Tu[i, j] is the cost of turning from the incoming
road segment i to the outgoing segment j. In practice, the number of possible
turn tables is dramatically smaller than the number of intersections. Thus,
it is more memory-efficient to store turn tables only once and assign each
vertex a pointer to the turn table it is associated with. Besides, CRP handles
metric adjustment better than most other algorithms with preprocessing.
The reason is that preprocessing can be divided into two phases. The first
stage only considers the topology of the graph and is metric-independent.
During this stage, the initial graph is partitioned into multiple levels of cells
and arc separators are determined. Since the topology of a road networks
is static, these operations can only be performed once. The second phase of
preprocessing assigns costs to edges of the overlay graph, for which the actual
cost function is necessary. Fortunately, this stage can be accelerated through
parallelization and performed on GPUs, since the clique of every cell is built
using only the internal paths.

2.1.4 Hierarchical methods

The techniques of this category exploit the hierarchical topology of road
networks, since long routes tend to converge to a subset of roads consisting of
highways and primary roads. One of the most efficient hierarchical algorithms
is Contraction Hierarchies (CH) [GSSD08]. It implements the idea of skipping
unimportant vertices via addition of shortcuts. This is done by repetitive
node contraction. For a graph G, a vertex v is contracted by removing it
from the network while preserving the shortest paths in G. The preservation
is achieved by replacing paths (u, v, w) with shortcut edges of the form (u,w).
Since it is necessary to preserve only the shortest paths, an edge (u,w) must
be added only if the unique shortest path from u to w goes through v. The
contraction of nodes is performed in a specific order based on a heuristic
estimate of their importance. A heuristic provided in [GSSD08] is based on
edge difference: the number of shortcut edges added during the contraction of
v minus the number of edges incident to v. This heuristic helps the algorithm
minimize the overall number of edges after preprocessing. The queries are
performed using a modified version of bidirectional Dijkstra’s search. Both
forward and backward searches only visit nodes in ascending importance
order. Both searches are bound to process the highest ranked vertex on the
shortest path from origin to destination. Hence, among all of the vertices
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2. Related work.....................................
processed by both searches, the one minimizing the sum of distances to origin
and destination represents the shortest path. However, both searches have
to process all nodes, since the first node processed by both the forward and
backward search is not necessarily on the shortest path.

2.1.5 Path extraction

Since a navigation program must not just calculate the cost of the minimum
path, but provide the actual sequence of road segments to traverse, the
algorithms listed above must be modified to return the minimum cost routes.
Fortunately, these modifications are relatively simple to implement and cause
no substantial performance decline. The methods that do not utilize shortcuts
can be augmented to maintain the parent pointers for each of the vertices and
update them every time a shorter route to a vertex is found. After the search
is complete, traversing the parent pointers one by one from the destination
vertex until the starting vertex is met gives the reversed shortest route. When
considering the algorithms that use shortcuts (e.g. CRP and CH), one must
bear in mind that such approach will only return the ”compact” form of the
route represented by the shortcut vertices traversed. In order to extract the
full representation of the shortest route, one can store the entire sequences of
vertices corresponding to each of the shortcut edges or run a local shortest
path search algorithm for the endpoints of the shortcut to be restored.

2.2 Optimization algorithms

In order for a shortest path search algorithm to be able to tailor routes to a
user’s desires, it must have access to a mathematical representation of the
user’s preferences. These can be represented as a vector of coefficients α ∈ Rn.
Using the coefficients and a function c(α, p) : Rn+ × Rn+ → R+ which maps
coefficients and an edge parameter vector p ∈ Rn to a scalar edge cost, a
shortest path algorithm will be able to plan a route from any origin to any
destination in accordance with the user’s priorities. As it was stated earlier,
a user’s preferences should be computed based on a set of his preceeding
commutes. Several optimization algorithms have been successfully applied to
this task.

12
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2.2.1 Linear Programming

In their research, Funke et. al. [FLS16] attempted to solve the task using a
linear programming model. The cost function they have experimented on is
of linear form c(α, p) :=

∑n
i=1 αipi. The cost function of a full path P can

then be expressed as c(α, P ) :=
∑
e∈P α

T pe, and the parameter vector of P
is denoted as c(P ) =

∑
e∈P p

e. In order to limit the search space of possible
preference coefficients, all coefficients have been locked on the conditions
of ∀αi ∈ α : αi ∈ 〈0, 1〉 and

∑n
i=1 αi = 1. This assumption does not cause

the loss of generalization, since any vector α which does not satisfy these
conditions can be replaced with α′ = α∑n

i=1 αi
without changing the respective

ratios of any of the coefficients.

User preference computation from previously traversed routes is formalized
using the definition of preferential feasibility: a path P from a vertex s to a
vertex t is preferentially feasible if there is a preference vector α such that
π(s, t, α) = P , where π(s, t, α) is a route built by a shortest path algorithm
in accordance with α. A set of paths P is preferentially feasible if there
exists a preference vector α such that ∀P ∈ P : π(sP , tP , α) = P . As one can
anticipate, in order for an optimization algorithm to be able to find a vector
of coefficients α∗ which accounts for all input trajectories, the set of input
trajectories must be preferentially feasible.

The linear program solving the preferential feasibility uses real positive
variables α1..n. The previously defined constraints these variables must satisfy
can be expressed as

α1 + ...+ αn = 1 (2.1)
α1 ≥ 0
...

αn ≥ 0

The linear definition of preferential feasibility is rather straightforward. For
every P ∈ P, it is necessary to guarantee the shortest path algorithm is not
able to find a route π(sP , tP ) from sP to tP that has smaller cost than P
under the coefficient vector α. The linear constraint that implements this
condition is:

∀P ∈ P : ∀π(sP , tP ) :
n∑
i=1

(ci(P )− ci(π(sP , tP )))αi ≤ 0 (2.2)

Any feasible solution α∗ yielded by these constraints fully satisfies P. Fur-
thermore, a feasible solution will be found only if P is preferentially feasible.
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2. Related work.....................................
However, this approach requires the enumeration of all possible alternative
paths for all P ∈ P , which implies an exponential number of constraints even
for a single trajectory.

This issue has been solved by dynamic constraint addition. The algorithm
starts without any further constraints, attempting to find a feasible solution.
When a solution is found, it is checked against all provided paths. In order
to do that, Dijkstra’s algorithm or any other shortest path search algorithm
is run for every pair (sP , tP ), P ∈ P. If a produced solution α satisfies all
paths, meaning ∀P ∈ P : π(sP , tP , α) = P , the algorithms stops and the
desired preference vector is found. If, on the other hand, the equality does
not hold for a path in the set, a new constraint of the form (2.2) is added to
the linear program. After the linear program is updated, it is optimized again
and the solution is checked against the input path set. The cycle continues
until solution reproducing all paths has been found or the linear program is
proved to be unsatisfiable, in which case P is preferentially infeasible. If P is
proven to be preferentially infeasible, the feasibility of single paths P ∈ P
can be checked by rerunning the algorithm with P = P . After the infeasible
paths have been detected, they can be removed from the initial set or one
could to attempt to extract preferentially feasible subpaths.

One can attempt to minimize the number of distinctive coefficient values in
the preference vector by introducing binary variables eij for ∀i, j : i < j, i ∈
{1, ..., n}, j ∈ {1, ..., n}, where eij = 0 if αi = αj and eij = 1 if αi 6= αj . In
the linear model, this relation is enforced by constraints:

αi − αj ≤ eij
αj − αi ≤ eij .

Then, the model can be led to equalize individual coefficients if possible by
setting the objective function to:

min
∑

i,j={1,...,n},i<j
eij

However, turning the model into a mixed integer linear program significantly
complicates solving it. Therefore, the researchers have proposed a way of
excluding the integer variables through the replacement of eij = {0, 1} by
0 ≤ eij ≤ 1. Although this solution does not return an exact minimum of
the distinctive preference values, it is claimed to yield near-optimal solutions
due to the fact that it still attempts to minimize the sum of the absolute
differences of coefficient pairs.

It is also possible that the whole set of individually feasible paths cannot
be explained by a single preference vector. For example, one would probably
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LP Preference Estimator
Input:

input routes P, graph G = (V,E), edge parameters pe : E → Rn+, e ∈ E,
cost function c(α, ·) : Rn+ × Rn+ → R+;α, · ∈ Rn+

LP ← an empty linear model . initialize the model
LP.set_variables(α = (α1, ..., αn))
for i = {1, ..., n} do

LP.add_constraint(αi ≥ 0)
end for
LP.add_constraint(

∑n
i=1 αi = 1)

LP.set_objective (minimize 0)
LP.solve()

all_explained ← False
while all_explained = False do . optimize preferences

all_explained ← True
for ∀P ∈ P do

Π← PathQuery(G, sP , tP , α)
if c(α, P ) > c(α,Π) then . preferences are not optimal

all_explained ← False
LP.add_constraint(

∑n
i=1 αi(pPi − pΠ

i ) ≤ 0)
end if

end for
if all_explained = False then

LP.solve()
end if

end while
return α

choose the fastest route for work commutes, but would prefer a more scenic
route during a vacation trip. The authors of the research addressed this
scenario to. The proposed approach uses the non-modified version of the
initial algorithm to find the minimum number of importance ratio vectors
satisfying the whole input set. The paths are processed in an order P1..Pm
and sorted into buckets based on their feasibility. First, the algorithm finds
a preference vector α1 for P = {P1}. Next, α1 is checked against P2. If P2
is satisfied by α1, it is added to the bucket with P1. Else, the algorithm is
run on P = {P1, P2}. If a feasible solution is found, P1 and P2 are stored
in a common bucket, and the solution is saved. Otherwise, new importance
coefficients are computed for P = P2 and it is put to a new bucket. Every
next Pi is checked on the subject of preference similarity to all of the existing
buckets, and if it can’t be added to any of those without feasibility violation,
it is put into a new one. When all of the input paths are processed, the
minimum possible number of individual groups of routes with corresponding
preference vectors is produced.
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2. Related work.....................................
For a graph G = (V,E) with n parameters per edge, the basic algorithm

runs in time O(|V | log |V |+ n|E|) per path P ∈ P , which implies polynomial
asymptotic complexity. An advantage of the designed technique is that
it is able to incorporate any shortest path search algorithm, which gives
acceleration opportunities.

2.2.2 Reference trajectories

There has been some research on navigation personalization approaches that
do not use explicit preference functions in shortest path search. Dai et. al.
[DYGD15] designed a method which provides personalized routes using big
trajectory data arrays gathered from other drivers. The building block of the
approach is an Inverted Trajectory Index (ITI) structure which for a given
edge e returns the set of all available routes that contain e. Additionally, the
edges are indexed based on their geographical data. The graph is partitioned
into a uniform grid, and every cell of the grid contains the array of all edges
inside of it. An edge is inside a cell if its starting vertex or sink vertex is
inside it. Another helpful stricture is a mathematical representation of a
driver’s priorities. Given two parameters pi and pj of a path P (e.g. distance
and travel time), the preference ratio with respect to parameters i and j is
pri,j = pi

pj
. For n considered road parameters, a full preference ratio vector

PR = (pr1, ...prm) contains m =
(n

2
)
random variables, where each random

variable pri on the interval 〈0, 1〉 denotes the distribution of a preference ratio.
Using a set of a user’s trajectories, one can calculate a set of corresponding
preference ratio value vectors. Gaussian Mixture Models are employed on
this data to derive a vector of random variable distributions expressing the
driver’s preference ratios. The Personalized Satisfaction Score Function F
uses the preference vector to compute the degree of satisfaction of a route P
for the driver:

F(P, PR) =
m∑
i=0

ri+∆∫
ri−∆

pri(c)dc,

where ri is the preference ratio of P with respect to pri, and ∆ ∈ R+ is a
small real value used for neighborhood definition. The value returned by the
function is directly proportional to the driver’s content.

During a query from a vertex s to t, these data are used to extract a
set of reference trajectories. The idea is that it is inefficient to consider all
trajectories of varying relevance to build a route of optimal preference. Instead,
the set of available trajectories is pruned to identify the most relevant ones.
The first of the proposed pruning filters is called spatial filter. It extracts the
set Es of outgoing edges of s and the set Et of incoming edges of t. For every
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pair (es, et), es ∈ Es, et ∈ Et, it searches for an intersection ITI(es)∩ ITI(et).
These intersections consist of trajectories that visited s and t and are therefore
considered relevant to the query. Additionally, one can check timestamps
of these trajectories to make sure s is visited before t. The resulting set
of trajectories is then processed by the temporal filter, which crosses out
trajectories that occurred in a time period different from that of the query.
This filter is based on the observable time-dependence of traffic. Lastly, the
preference filter calculates the satisfaction scores of the given trajectories and
removed routes whose scores are below a predefined threshold. Since the
computation of satisfaction scores requires a history of the user’s previous
trajectories to deduce their preference ratios, this filter can be omitted if
the necessary data are not available. Using the set of reference trajectories,
the algorithm builds a local reference graph Gref = (Vref , Eref ), where Vref
is the set of vertices occurring in the reference trajectories and Eref is the
set of edges included in ones. It is important to note that thanks to the
spatial filter Gref is connected and contains a path from s to t. To further
guide a shortest path search algorithm, the edges of the local reference graph
are weighted by applying the PageRank [ML04] algorithm to the dual graph
Gref = (V ref , Eref ), where every vertex v ∈ V ref corresponds to an edge in
Eref and every edge e ∈ Eref corresponds to a vertex in Vref .
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Chapter 3

Problem statement

In order to formally define the problem in question, it is necessary to define
the setting first. As is usual in this domain and is it was stated earlier,
the road network is modelled as a directed graph. Let the road network be
represented as a graph G = (V,E), where every vertex v ∈ V corresponds to
an intersection or an end of a road, and every edge e = (u, v) ∈ E is a road
segment that connects intersections u and v. A road segment can be one-way
or two-way, so the edges must be directed. Hence, a one-sided path from u to
v is coded as a directed edge (u, v). If the road connecting these intersections
is two-sided, two edges (u, v) and (v, u) are added to the graph. The starting
vertex of an edge e is denoted as se, and its sink is denoted as te. Since the
thesis project is aimed to process multiple road parameters, every edge e ∈ E
is associated with a static parameter vector pe ∈ Rn+ of positive real values
reflecting the details of the corresponding road segment. Thus, the algorithm
operates on a directed weighted graph with multiple edge weights.

A route or a path P = (e1, e2, ..., ek), k ≥ 1 in G is a sequence of edges that
connect a sequence of distinct vertices, where ∀i = {1, ..., k − 1} : tei = sei+1 ,
meaning every pair of consecutive edges shares a vertex. In the context of
real-world road networks it is not always the case that a driver approaching
an intersection can take a turn to any of the outgoing roads, since some
turns can be forbidden. However, the data on permitted turns are difficult to
obtain. Therefore, it is assumed in this thesis that any vertex has an available
turn between any pair of its incoming and outgoing edges. Since the input
routes are expected to be in the form of sequences of vertices (v1, ..., vk+1),
there is no need in the usual definition of a trajectory as a sequence of GPS
trace coordinates. Hence, the term trajectory has the same meaning as the
terms route and path in this thesis. The parameter vector of a path P can be
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3. Problem statement ..................................
calculated as pP =

∑
e∈P p

e.

The priorities of a user are simulated using a vector of positive real pref-
erence weights α ∈ 〈0, 1〉n. The higher is a coefficient αi, the higher is the
importance of the associated road parameter to the driver. As it was stated
in [FLS16], limiting the interval of possible values to 〈0, 1〉 causes no loss of
generality, since any preference vector α which does not satisfy this condition
can be replaced by the corresponding satisfactory vector α′ = α∑n

i=1 αi
with

equal preference ratios. In order to be able to incorporate these preferences
in a route search algorithm, a cost function c(α, p) : Rn × Rn → R mapping
the preference and edge parameter vectors to a scalar is required.

In graph theory, the shortest path problem is the task of computing the
path P ∗ with minimum cost between a pair of vertices. In the context of
multiple edge parameters, for some given preference vector α, the shortest
path P ∗ is such a path that for any other path P from s ∈ V to t ∈ V , the
condition c(α, pP ∗) ≤ c(α, pP ) holds.

To be able to make a conclusion on how well a path accounts for the
preferences of a user, a path similarity function has to be introduced. For two
paths P = (p1, ..., pk) and Q = (q1, ..., ql) connecting two vertices s, t ∈ G,
their similarity can be evaluated using the similarity function

sim(P,Q) =

min(k,l)∑
i=1

[pi = qi]

min(k, l) ,

where [pi = qi] =
{

1, if pi = qi

0, else.

Finally, the formal definition for the preference computation task can
be formulated. In order to deduce a driver’s preferences, an optimization
algorithm must compute the preference vector α∗ = arg minα∈〈0,1〉n L(P, α)
given a set of the driver’s previous routes P = {P1, ..., Pm}. The loss function
L(P, α) expresses the average similarity lack between the given trajectories
P and the ones built by a shortest path algorithm using a set of preference
coefficients α:

L(P, α) = 1−

m∑
i=1

sim(Pi, SP (sPi , tPi , α))

m
, (3.1)

where SP (sPi , tPi , α) is the path from sPi ∈ G to tPi ∈ G produced by a
shortest path algorithm using the preference vector α for edge cost computa-
tion.
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Chapter 4

Proposed method

As it is stated in previous chapters, the two main building blocks of the
algorithm are a shortest path search algorithm and an optimization algorithm
for preference computation. Hence, the overall solution can be described by
defining the solutions of these subtasks first and describing their interaction
afterwards.

4.1 Shortest path search

It is stated in the related work section chapter that various graph preprocess-
ing methods can significantly decreasing the time requirements of routing
algorithms. Since the optimization function L(P, α) operates by comparing
the input trajectories with the built ones, the running time of the full project
will be influenced greatly by the speed of the routing algorithm. Hence, a
preprocessing phase is desirable, though not necessary. However, a prepro-
cessing approach incorporating the cost function would have to be repeated
after every preference adjustment, hence a method that is independent of
preferences has been chosen.

During the preprocessing phase, a k-Path Cover [FNS14, FS15] of the given
graph is built. Given a graph G = (V,E) and a natural value k ∈ N, a k-Path
Cover (k-PC) of G is a subset of vertices C ⊆ V such that for every simple
path P = (v1, ..., vk) in G it holds ∃i = {1, ..., k} : vi ∈ C. There is also a
modification of the structure which is built on the basis of shortest path only.
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4. Proposed method...................................
It is called k-Shortest-Path-Cover (k-SPC) and consists of a subset of vertices
of G such that for every shortest path there is at least one cover node in
it. This modification yields an even smaller subset of the initial graph than
standard k-PC and hence better running times. Unfortunately, it is metric-
dependent and becomes ineffective during continuous preference adjustments.
Therefore, the standard k-PC approach has been used. Intuitively, a smaller
number of cover nodes is expected to yield better performance, but the
problem of minimum k-PC is proved to be of APX-hardness (subsuming
NP-hardness), therefore the project does not aim to find the minimum k-PC
for a given graph.

The basic method of k-PC construction consists in building for every vertex
all paths of size k that start at the vertex and retrieving a feasible cover
using a greedy approach. Unfortunately, this approach is highly ineffective
on road networks due to their large size and hence high time and storage
requirements. For that reason, Funke et. al. have proposed a more efficient
approach [FNS14], the pseudocode of which is laid out below.

k-PC construction
Input:
graph G = (V,E)

C ← V
for vi ∈ V, i = {1, ..., |V |} do
Pi ← the set of all paths starting at vi such that ∀P ∈ Pi : P ∩C = {vi}
if ∃P ∈ Pi : |P | = k then

continue
end if
for ∀P ∈ Pi do

Pr ← the longest path ending at vi such that Pr ∩ (C ∪ P ) = {vi}
if |Pr ∪ P | = k then

continue
else

C ← C \ {vi}
end if

end for
end for
return C

The core idea of the method is to include all vertices in the cover and
then prune the unnecessary ones. The nodes are examined one by one in a
predefined order. To decide whether a vertex should be kept in C or not one
must attempt to find a path of size k that contains no other vertices from
the cover. If no such path has been found, the vertex should be removed

22



................................. 4.1. Shortest path search

from the cover. The path searching operation is divided into two stages.
First, the algorithm builds and stores all the paths that start at the vertex
and contain no other cover vertices. This can be implemented through a
procedure resembling forward depth-first-search, but whenever another cover
vertex is visited, the current path is rebuilt and saved. Since it is possible
that a k-sized path can start at the vertex, the sizes of all the outgoing paths
should be checked before continuation. If no paths of satisfactory length are
found, the algorithm attempts to augment them using the incoming paths,
which are built through backward depth-first-search. Since the paths must
be simple, the augmentation of every outgoing path is performed separately.
At every vertex iteration, the maximum depth of the search tree is k, since C
is a valid cover before the vertex is processed, which can be easily shown via
a proof by induction. A nested version of covers is also possible, though not
used in this thesis.

After the vertices of the overlay graph are determined, the edges connecting
them are produced. An edge between two cover vertices u and v is added
to the overlay graph if there is a simple path from u to v that contains no
other vertices from C. To build the set of overlay edges, a breadth-first-search
is run from every cover vertex. Whenever the search hits another cover
node, an edge between these vertices is built, and the corresponding search
tree branch is pruned. Obviously, this approach can produce more than
one path between a pair of vertices. Therefore, for every found path the
parameter vector and the vertex sequence of the path are computed and
added to the set of parameter vectors and node sequences associated with
the corresponding overlay edge. Due to the storage of all path parameter
vectors the preprocessing phase is independent of preference coefficients and
can only be run once. The described procedure of building overlay edges
returns exponential number of possible paths and corresponding parameter
vectors, the majority of which cannot become the shortest irrespective of the
preferences. For that reason, several pruning techniques are used. The set
S of parameter vectors associated with a single edge is pruned using three
rules: domination pruning, convex pruning, and triangle pruning.

Domination pruning is the most simple and straightforward pruning strat-
egy, while being possibly the most efficient ones. It effectively removes all the
excessively long paths. A parameter vector p ∈ Rn dominates vector p′ ∈ Rn
if ∀i = {1, ..., n} : vi ≤ v′i and ∃i = {1, ..., n} : vi < v′i. A naive algorithm of
performing domination pruning consists in comparing every vector p ∈ S to all
other vertices and pruning out the vectors that are dominated by it. However,
the asymptotic complexity of this approach is O(n|S|2). Alternatively, one
could select a subset of n promising vectors and prune other vectors by these,
which would yield O(n|S|). A good rule for the selection of promising vectors
is to pick for each parameter the vector that has the minimum respective
value.
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4. Proposed method...................................
Convex pruning is based on the lemma provided and proved in [FS15]. This

lemma states that a vector p ∈ Rn can be pruned from a set of vectors S ⊂ Rn
if a convex combination p′ of at most n other vectors from S dominates p. The
subset p1, ..., pn of promising vectors that have been chosen during domination
pruning can also be used as a control set in convex pruning. The procedure of
checking if a parameter vector p should be pruned from S consists essentially
in searching a feasible solution for a system of linear inequalities:

γ1p
1
1 + ...+ γnp

1
n ≤ p1

γ1p
2
1 + ...+ γnp

2
n ≤ p2

...

γ1p
n
1 + ...+ γnp

n
n ≤ pn

γ1 + ...+ γn = 1

Unlike previous methods of pruning, triangle pruning utilizes the structure
of the overlay graph instead of processing the edges individually. In order
to further prune parameter vectors of an edge, the technique examines all
triangles induced by it. The set of parameter vectors induced by these pairs
is computed and used to prune the vectors from the original edge through
any of the pruning methods described above. Triangle pruning can even
modify the structure of the graph: if all of the parameter vectors of an edge
are removed, the edge can be deleted from the graph. After the pruning is
complete, the preprocessing phase ends.

The shortest path query is performed using a modified version of Dijkstra’s
algorithm, which can be separated into two stages: connection of the origin
and destination vertices to the overlay graph, and the shortest path search.
The origin is connected to the overlay graph through Dijkstra’s algorithm,
which operates on the initial graph, begins with the starting vertex, and
operates until all nodes in the priority queue are cover nodes. The destination
node is connected in the same way, but the graph search traverses edges in
the reversed direction. The second phase of the query is conducted on the
overlay graph. Dijkstra’s algorithm starts with all cover nodes to which the
origin is connected. For every inspected edge, it computes the actual costs of
the parameter vectors and selects the one which returns the minimum value
for the given preferences, and the corresponding vertex sequence is labelled
for the reconstruction of the actual path. The search continues until all of
the cover nodes connected to the destination vertex are settled. The overall
path is chosen so as to minimize the cost sum of the path segments from
origin to the destination’s adjacent cover node and from the cover node to
the destination itself.

In [FS15], the performance of the k-PC method has been compared to those
of CRP and CH. The experiments have shown that out of the three, k-PC
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yields the least acceleration compared over the standard Dijkstra’s algorithm.
However, there is a number of reasons why it has been chosen for this project.
For example, there are fewer articles researching the extent of efficiency of
k-PC on road networks than there are of CRP and CH. Additionally, k-PC
appears to be more universal than other algorithms. The preprocessing phase
of the algorithm is built purely on the structure of the graph in question.
In contrast to CRP, which incorporates the coordinates of nodes for cell
partitioning, it requires no information about the geographic locations of
the vertices. CH is the most efficient on large scale tasks: it works well
with long-range routes since those usually go through important roads like
highways. Unfortunately, this advantage of CH is of no significant importance
if for example it is necessary to build a route for a cyclist. On the other
hand, the road hierarchy is not an inherent part of k-PC, and it can work
equally well in small and large scales. Moreover, k-PC can be adjusted to
work with large graphs and routes if necessary by building multiple nested
levels of the overlay graph. And lastly, as it is stated in [FS15], k-PC is the
most lightweight algorithm out of the three — the auxiliary data generated
by its preprocessing phase have the smallest memory requirements. This is a
huge advantage if the program is deployed on a less powerful device such as a
smartphone, which is an ordinary case nowadays since the majority of drivers
and commuters use navigation systems on their portable devices, often in
offline mode.

4.2 Preference optimization

Although preference extraction via linear programming appears to be an
effective optimization approach, it has only been tested on artificial data. The
condition (2.2) of linear program limits the scope of possible cost functions to
linear ones. Unfortunately, there is no guarantee that routes of a real driver
can be explained by a linear function, so an optimization approach capable
of incorporating cost functions of any form would be preferable. Therefore, a
modified version of random or stochastic coordinate descent (SCD) [RT11]
has been chosen as an optimization algorithm for this project.

The standard random coordinate descent is an optimization algorithm that
works on smooth convex functions. It has been later generalized to work on
composite functions such as sums of smooth convex and convex block-separable
functions. The smoothness of a function f(x) implies the coordinate-wise
Lipschitz continuity of its gradient with constants L1, ..., Ln. This condition
can be written as ∀x ∈ Rn, h ∈ R : |∇if(x + hei) − ∇if(x)| ≤ Li|h|. The
pseudocode of the full algorithm is laid out below.
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Random Coordinate Descent
Input:
starting point x0 ∈ Rn

x← x0

while termination criterion not met do
i← random value from the discrete uniform distribution over {1, ..., n}
xi ← xi − 1

Li
∇fi(x)

end while
return x

Since the objective function (3.1) is non-differentiable, the standard stochas-
tic coordinate descent algorithm cannot be applied to it. Instead, a version
of SCD has been proposed and tested specifically on driver preference opti-
mization in [DGG+15]. Since the optimization process cannot be guided by
the gradient of the loss function, three different operations have been used to
improve its convergence: local search, perturbation, and specialized sampling.
The algorithm starts with an initial solution and attempts to improve through
local search. Local search is the main learning procedure of the algorithm,
systematically exploring and examining the search space. It operates in
several iterations and terminates when several consecutive iterations fail to
improve the solution. During every round, a random permutation of the
parameter examination order is generated. Then for every parameter in
the given order, a better coefficient value is attempted to be found. Since
the objective function cannot be differentiated, a set of random candidate
coefficients is generated with a bias towards its current value. Then every
candidate value is evaluated. During the evaluation, the candidate value
replaces the true one in the coefficient vector and the loss of the modified
solution is computed. If the candidate solution yields a better loss than the
initial one, it is accepted as the current best coefficient vector. If a solution
decreasing the objective function has been found, the local search iteration
is considered successful. On the other hand, if all the parameters have been
processed and no improvement of the objective function has been achieved,
the iteration of the local search terminates with failure.

Local search is able to gradually minimize the loss function until it reaches
a local minimum. At that point, it is bound to fail since it is only able to
accept improving solutions. Intuitively, the objective function has many local
minima, some of which take the form of flat plateaus. These are caused by
the fact that many coefficient combinations can yield identical shortest routes.
When such a plateau is met, an adjustment of a single parameter coefficient
cannot improve the solution, and perturbation is performed to escape it.
Analogically to local search, perturbation operates in several iterations on
randomly ordered parameters. Its core idea is in a simultaneous alteration of
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several coefficients, and, in contrast to local search, it accepts non-improving
solutions. For every parameter pi and its corresponding weight αi, a set of
candidate values is generated randomly. All of the candidates are evaluated
on the loss function, and the minimum αmin

i and maximum αmax
i weight

candidates yielding the same loss are saved. These are then used as limits for
the algorithm to generate new weight candidates at random in the interval
〈αmin

i , αmax
i 〉 until a candidate is found that does not worsen the objective

function. If a non-improving candidate is found, it is accepted as the new
solution and perturbation proceeds to the next parameter. Alternatively, if
an improving candidate is found, it is saved and perturbation terminates with
success.

If perturbation fails to decrease the loss, the algorithm is assumed to be
trapped in a deep local minimum, and specialized sampling is performed
to make a drastic move in the search space. In order to shift the focus to
another area of the search space, it evaluates how well the current solution fits
individual input trajectories. Based on the matching of the input trajectories
to the artificially generated ones, all of the input trajectories are assigned
importance weights: the lower is the matching ratio of a route, the higher
is the weight it is assigned. This is done in order to make the algorithm
focus on the least explained routes. After the trajectories are weighted, the
algorithm attempts to maximize the weighted sum of their similarity scores.

The full optimization algorithm works as follows. The maximum number
of consecutive iterations is set for each of the three operations (i.e. ML, MP ,
MS respectively). The value of the loss function on the initial coefficient
vector is computed. After that, local search starts. It is performed repeatedly
until ML of consecutive failed iterations occur. When local search fails to
improve the solution further, perturbation starts. It is run for at most MP
rounds. If during one of its iterations it manages to further decrease the
objective function, the algorithm returns to local search and sets counters
for all operations to zero. Otherwise, specialized sampling is performed at
most MS times. Similarly, if one of its iterations is successful, the algorithm
returns to the beginning, and if not, optimization terminates and the current
best solution is returned.

4.3 Overall approach

The full algorithm starts with the preprocessing phase of k-PC. After the
overlay graph is constructed and the excess edges are pruned, the optimization
is ready to begin. In order to evaluate the current loss at a single state, the
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4. Proposed method...................................
algorithm runs k-PC queries with current preference weights for the origin-
destination pairs of every input route. When the optimization process is
finished, the program can use the computed preferences to plan personalized
routes for any desired origin-destination pair.
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Figure 4.1: SCD flowchart
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Chapter 5

Experimental evaluation

The project has been implemented in C++ and compiled with Visual C++
2019. The experiments have been conducted on a PC running Windows 10.
The CPU is Intel Core-i7 7700k with 4 cores, 8 threads, 4.2 GHz frequency,
4 × 32 KB L1 cache, 4 × 256 L2 cache, and 8 MB L3 cache. The size
of 2666-DDR4 RAM is 32 GB. Parallelization has been performed on the
CPU and used during overlay edge pruning, local search and perturbation
operations using OpenMP. Since convex pruning requires a linear program
solver, Gurobi has been incorporated. The graph used in the project is a
segment of Prague’s road network consisting of 235970 vertices and 633658
edges. 8 road parameters have been considered: distance, elevation gain,
elevation loss, lane number, maximum allowed speed, bicycle infrastructure,
road type, and surface quality. The maximum iteration numbers for SCD
procedures are ML = 5, MP = 8, MS = 8.

5.1 Preprocessing

As it was stated earlier, the preprocessing phase of k-PC extracts cover
vertices in such a manner that every simple path of size k in the graph
contains at least one cover vertex. There are two parameters to be specified
in the algorithm. First of all, the vertex examination order. This choice
influences the resulting number of nodes in the cover graph. In [FNS14],
different vertex ordering rules have been tested, including the ascending and
descending vertex IDs, number of incoming and outgoing edges, etc. The
resulting difference in overlay graph size, although varying, is not dramatic.
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5. Experimental evaluation ................................
Therefore, the vertices have been ordered in the ascending ID order in this
project. The second parameter to be specified is the value of k. Intuitively,
the increase in this value decreases the number of cover vertices, increasing
the time requirements in return. The table 5.1 presents data on the produced
cover graphs for different values of k: number of cover vertices |V C |, relative
cover size |V C |/|V |, number of overlay edges before pruning, number of
overlay edges after pruning, percentage of pruned edges, and the overlay
graph construction time in seconds. The tested k values are 2i, i = {1, .., 5}.
Higher values have not been tested due to large running time requirements.

k |V C | |V C |/|V | |EC | |EC | pruned pruning % time

2 133040 56.38 % 566369 546940 3.43 % 37
4 84750 35.92 % 633667 542686 14.38 % 27
8 54909 23.27 % 1021645 624644 38.86 % 29
16 38675 16.39 % 3639494 863488 76.27 % 92
32 29408 12.46 % 84867600 1546274 98.18 % 3549

Table 5.1: Overlay graph C parameters for varying k values

As the table shows, a significant increase of k after 16 yields a relatively small
size adjustment of the cover vertex number, while dramatically increasing the
cover edge number and hence time and memory requirements. Interestingly,
the preprocessing phase runs faster for k = 4 than for k = 2. A possible
reason for that is a communications bottleneck. For k = 8, the vertex number
is decreased by 4 while maintaining the edge number on the same level. The
vertex number decrease implies the decrease in the number of iterations of a
shortest path search, and only requires 30 seconds of preprocessing without
GPU usage. Most road networks developers operate on are of significantly
bigger sizes, containing millions of vertices, and the relative graph compression
given by the method is likely to increase even further with the size of the
graph. For further experiments, k has been set to 16, since it appears to be
the optimal value based on the gain/requirements ratio.

k domination pruning convex pruning triangle pruning

2 99.75 0.17 0.08
4 95.66 0.64 3.7
8 90.32 1.36 8.32
16 91.92 2.03 6.05
32 97.97 1.04 0.99

Table 5.2: Pruning percentage by different techniques

Apart from that, it is also important to analyze the contribution of in-
dividual pruning methods. The table 5.2 provides the information about
the portions of edges pruned by each method for varying values of k. It
is important to note that pruning is performed in the order: domination
pruning, convex pruning, triangle pruning. The reason for that is domination
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pruning requires no additional procedures such as linear program solvers
and is straightforward and simple in implementation. On the other hand,
triangle pruning requires multiple times more operations than other methods
due to the fact that for every edge it has to examine all pairs of adjacent
edges that form triangles. As can be seen on the table, in all of the examined
cases, domination pruning on its own accounts for more than 90% of pruned
edges. The method was expected to prune a significant part of the cover
edges due to the fact that for every pair of adjacent cover vertices, the edge
building algorithm saves all possible simple paths between them, including
the winding ones that are excessively and needlessly long. However, the
fact that domination pruning is capable of decreasing the cover edge number
by a factor of 10 all by itself is surprising. This observation hints that the
preprocessing stage of k-PC can be accelerated with no significant slowdown
of its queries by only performing domination pruning.

5.2 Preference optimization

The optimization algorithm has been tested both on artificially generated
data and real-world trajectories. The aim of experiments on artificial data is
to test the learning capabilities of the method and its requirements. Further,
experiments on paths generated by real users should give the answer to the
question of sufficiency of the cost function and parameters in consideration
for simulation of the reasoning of a real person when selecting a route.

5.2.1 Artificial data

The first series of experiments has been conducted in a controlled environment.
The idea is to generate randomly a vector of preferences and use it in a shortest
route search algorithm to build a set of preferentially guided routes. These
routes can then be sent to the optimization algorithm for it to attempt to
recreate them by extracting the generated preferences. This setup aims to
evaluate the learning capabilities of the approach and observe the extent
to which the original preferences can be reconstructed. The advantage of
experiments on artificial data is that while the road qualities a real driver
is concerned with during route selection are unknown and may be out of
the scope of this project, the artificial data are produced using exactly the
named parameters. Moreover, when generating artificial data one can be
confident the routes can be explained by the chosen cost function and a
vector of perfectly fitting preferences (the perfect solution) actually exists.
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5. Experimental evaluation ................................
Another advantage is that while real-world data are hard to acquire, namely
due to privacy concerns, the artificial data can be generated in any desirable
quantity, hence, training and testing route sets of varying sizes can be used
for convergence evaluation.

A set of m artificial traces can be generated as follows. A preference vector
is generated either randomly or manually to guide the route generation. Then,
m vertex pairs are picked randomly from the graph as origin-destination pairs
for future routes. For every such pair, a shortest path search algorithm (in
this implementation — k-PC query procedure) is applied with the preference
vector to return the route from the origin to the destination that has the
minimum cost under the given preferences. 8 road parameters have been
processed in this project: distance, elevation gain, elevation loss, lane number,
maximum speed, bicycle infrastructure, road type, and surface quality. The
distance of a road segment is the direct distance between start and end
vertices calculated using the projected latitude and longitude coordinates.
Elevation gain of a road segment (u, v) is the vertical distance between u and
v, calculated as max(0, a(v)− a(u)), where a(·) is the altitude of the vertex
·. The reason the elevation gain cannot be negative is that elevation loss is
also considered and calculated as max(0, a(u)− a(v)). Lane number is the
expression of the width of the road segment in lanes which is provided in the
graph in the form of a natural number. Maximum speed is also provided in
the graph, but is unknown for some segments. In this case, the maximum
speed for the road segments without available maximum speed is set to some
average value (e.g. 45 km/h). Bicycle infrastructure, road type and surface
quality parameters have some predefined values which have been mapped to
natural numbers to be used in the cost function. The table 5.3 provides the
information about the possible values of the parameters.

For the experiments, randomly generated preference vectors have been
used to build training sets of varying sizes and test sets consisting of 500
routes. Evaluating the loss on a test set helps estimate the number of training
trajectories necessary to replicate the preferences of an abstract user with
a desired precision. The cost function used in these experiments is a linear
function c(α, p) :=

∑n
i=1 αipi. Furthermore, the road parameters have been

normalized. Since, for example, the distance parameter generally has higher
average value than the number of lanes, it is bound to have a significantly
higher influence on the final cost of the road segment for equal coefficient
intervals. Therefore, the normalization should balance out the influence of
the parameters themselves during cost calculation, thus making the generated
routes more diverse.

As can be seen in the figure 5.1, an increase of the size of the training
set decreases the testing loss as expected. 64 training trajectories seem
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parameter possible values

distance R+
elevation gain R+
elevation loss R+
lane number N

maximum speed N

bicycle infrastructure

track = 1
zone = 2
lane = 3

sharrow = 4
none = 5

road type

primary = 1
secondary = 2
tertiary = 3
service = 4

residential = 5
cycleway = 6
offroad = 7
footway = 8
crossing = 9
steps = 10

unknown = 5

surface quality

excellent = 1
good = 2

intermediate = 3
bad = 4

horrible = 5
impassable = 6
unknown = 4

Table 5.3: Road parameters and their possible values

sufficient for the algorithm to reconstruct the target preferences for the 8
parameters in question with 95% accuracy. In fact, the majority of the loss
optimization steps has been performed by local search, an example of the
optimization process being figure 5.2. Hence, at least for the linear cost
function, the maximum consecutive number of perturbation and specialized
sampling iterations can be decreased without loss of the efficiency while
decreasing the expected execution time. Since the pairs of vertices for route
generation have been picked randomly without the consideration of their
respective distances, the average size of the generated paths is relatively high
and exceeds 200 vertices. The k-PC queries have taken at average less than
50 milliseconds while standard Dijkstra’s algorithm runs for approximately 74
milliseconds per query. A closer examination of the query process shows that
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5. Experimental evaluation ................................

Figure 5.1: Average loss for different training set sizes

during a search on the overlay graph, more than half of the running time is
spent on edge cost calculation, since for every overlay edge the algorithm has
to evaluate all of the possible parameter combinations and pick the one which
yields the minimum overall cost under current preferences. On the other hand,
a k-PC query processes several times less vertices than standard Dijkstra’s
algorithm in every iteration. This hints that the relative acceleration provided
by k-PC preprocessing is probable to increase for larger graphs. On the other
hand, since k-PC queries spend a lot of time on cost calculation, they are
likely to accelerate even further during route searches with known preferences.
After the preference coefficients have been extracted, all the edges in the
graph can be processed relatively fast to calculate their final minimum costs.
Thus, k-PC queries will no longer have to spend the majority of the time
evaluating the edges.

5.2.2 Real-world data

After the algorithm has been tested on artificial data, experiments on routes
of real users have been conducted. Unfortunately, the personal trajectories
are not easy to obtain mainly due to privacy concerns. Nevertheless, sets
of 20 trajectories of 6 cyclers have been provided to experiment on. Experi-
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Figure 5.2: An exemplary optimization progression at k = 32

ments have shown varying degrees of convergence with the average loss being
approximately 50%. Due to such an unsatisfactory result, the routes have
been examined individually. Optimization on single routes showed their final
loss values are scattered dramatically despite being produced by one cyclist.
Some of the routes could be perfectly explained by considering only the
distance parameter, others could not be reproduced by optimizing on various
combinations of the 8 listed parameters. To test the preferential feasibility
of individual routes as it is defined in the Linear Programming section of
the Related Work chapter, the linear programming algorithm described in
[FLS16] has been implemented. The algorithm showed that only a fraction
of real routes are in fact preferentially feasible and can be reproduced by a
linear function. Therefore, several possible modifications of the cost function
have been tested, for example

c(α, p) = pd(αd +
∑

i∈{1,...,n}\d
αipi), (5.1)

where pd is the distance parameter of a road segment and αd is its correspond-
ing coefficient. Unfortunately, none of the tested cost functions managed to
decrease the average loss below 40%.

There are multiple possible explanations to the poor convergence on real
trajectories. First, the cyclists whose trajectories have been provided may
consider during route selection a parameter that has not been addressed in
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5. Experimental evaluation ................................
this project, for instance how scenic, crowded or ”green” (i. e. the amount
of vegetation) a road is. On the other hand, the preferences of a user can
change based on the time of the day or the momentary goal of theirs. When
considering the route of a work commute, one would intuitively choose the
fastest path, the possible important parameters being distance, maximum
speed, surface quality. In contrast, a recreational walk can be guided by
scenery, crowdedness, noise level, or greenery. Unfortunately, this assumption
could not be tested since the provided routes had no timestamps and were
not categorized by their goals. Another possible reason is that a route of
an actual cyclist (or a driver) cannot be reproduced by a linear function.
Unfortunately, no alternative cost functions were found in related research
articles. Namely, in [DGG+15] a non-linear function incorporating turn costs
among other parameters has been used with success, but it has not been
described due to being proprietary. Moreover, not only different preferences,
but even varying function forms may be necessary to build routes in different
time periods. Thus, even though the implemented algorithm is capable of
learning preference coefficients, further research on the topic of cost functions
and parameters to be considered is required.
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Chapter 6

Conclusion

The thesis addresses the topic of personalized navigation in road networks.
Namely, the aim of the project was to solve the task of preference extraction
from an exemplary set of routes.

The theoretical part consists of a research of various shortest path search
algorithms and their application to road networks. Multiple preprocessing
techniques aimed to accelerate the route search have been examined. Besides
that, several optimization methods and their efficiency in the computation
of navigational preferences have been considered and researched. Chapter 3
contains a comprehensive formal definition of the preferential optimization
of planned routes. A lightweight yet flexible method for the optimization of
preferences and consequent route planning has been described in Chapter 4.

The practical part of the thesis is devoted to the implementation of the
proposed algorithm and the verification of its efficiency. The project has been
implemented in C++ and tested both on artificially generated and real-world
data. Experiments on synthetic routes showed that the method in question
is indeed capable of making accurate conclusions on the likings of a notional
user and incorporating them during the creation of subsequent paths. Tests
conducted on a sample of trajectories of actual cyclists revealed that the
parameters and cost functions in consideration are not enough to reproduce
their preferences with sufficient quality, thus indicating the direction for
further improvement.

The thesis has revealed multiple possible topics for further research. Most
importantly, a comprehensive study of non-linear cost functions and road
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6. Conclusion......................................
parameters satisfactory for the accurate simulation of a real user’s reasoning
is required. The varying convergence ratios of individual routes indicate that
the consideration of time periods may also be required. Another task to be
addressed is the optimization of the actual algorithm’s efficiency, in particular
through the adjustment of the hyperparameters and interior procedures such
as pruning methods, which is of substantial importance since the algorithms
of the kind are expected to operate mainly on portable devices.
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