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Abstract

This work focuses on the analysis of the intermodal transport network using a multi-criteria
algorithm that considers preferences of the city. To perform the analysis, we first describe
the representation of the intermodal transport network. Given the representation, we de-
fine the intermodal transport network analysis problem with preferences of the city. We
aim at algorithmic analysis, which computes key performance indicators using given travel
demand. Thus, we provide various key performance indicators, e.g., the number of over-
crowded trip segments, the total duration of all passenger journeys, and the total costs of
passenger journeys. The goal of the analysis is to optimize the number of overcrowded parts
of the public transport network. To achieve the goal, we offer passengers alternative jour-
neys. These journeys try to avoid public transport vehicles with occupancy beyond a certain
level of comfort. In other words, a passenger may choose another public transport connec-
tion, ride a bike, or use a taxi service. We propose a multi-criteria algorithm that finds
a suitable journey for each passenger while optimizing four criteria, i.e., vehicle occupancy,
duration, costs, and the number of interchanges. We also implement an analysis tool that
includes the multi-criteria algorithm and calculates the required key performance indicators.
By using the analysis tool, we perform an analysis using the intermodal transport network
of the capital city of Prague. In the evaluation, we achieve the reduction in the number
of overcrowded trip segments in the intermodal transport network by 79.4 % on randomly
generated travel demand.

Abstrakt

Tato práce je zaměřena na analýzu intermodální dopravní sítě pomocí multikriteriálního
algoritmu s ohledem na priority města. Nejprve popisujeme reprezentaci intermodální do-
pravní sítě. Poté definujeme úlohu analýzy nad danou reprezentací. Jedná se o algoritmickou
analýzu, tedy na základě zadané poptávky cestujících vyhodnocujeme klíčové indikátory.
Mezi zahrnuté indikátory patří počet přeplněných úseků spojů, doba jízdy všech cestujících
a celkové náklady všech cestujících. Cílem analýzy je optimalizovat počet přeplněných úseků
dopravní sítě tím, že nabídneme cestujícím alternativní jízdy. Tyto cesty se snaží vyhnout
úsekům dopravní sítě, kde jsou spoje přeplněné. Vyhnout se lze vybráním jiného spoje
veřejné dopravy, jízdou na kole, nebo využitím taxi služby. Popisujeme multikriteriální al-
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goritmus, který pro každého cestujícího vyhledá vhodnou cestu, přičemž optimalizuje čtyři
kritéria: obsazenost vozu, dobu jízdy, cestovní náklady a počet přestupů. Také implemen-
tujeme nástroj pro analýzu, který obsahuje tento multikriteriální algoritmus a z nalezených
cest vypočítá chtěné klíčové indikátory. Pomocí našeho nástroje provádíme analýzu inter-
modální dopravní sítě hlavního města Prahy. Při evaluaci námi vygenerované poptávky
cestujících dosahujeme snížení počtu přeplněných úseků spojů v intermodální dopravní síti
o 79,4 %.
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Chapter 1

Introduction

Public transport is essential for citizens that need to move across a city on a daily ba-
sis, especially in highly populated cities, where citizens are facing peak hours. At first,
in the morning when they are going to work or school, then in the evening when they travel
back home. In these hours, public transport vehicles are usually crowded with passengers,
which may be uncomfortable. Many people solve this problem by using a private car to
travel. It is understandable because a lot of people feel more comfortable in their cars
than in crowded public transport vehicles. Unfortunately, this behavior has consequences,
e.g., a lack of free parking spaces or traffic congestion. According to the research made
by INRIX1, every London driver lost 149 hours on average in 2019 due to traffic conges-
tion. In another study called the TomTom Traffic Index2, Bengaluru in India is ranked as
the most congested city in the world, where a journey in the evening takes an average of
thirty minutes longer than in a free flow situation.

We think that the only way to make a highly populated city suitable for living is to
provide a robust and well-designed intermodal transport network. There is another often
occurred term in the literature, the multimodal transport network. The problem with these
terms is that the definitions are not fully established, which leads to the fact that the terms
are usually not differentiated. In many publications, using one of the terms simply means
that multiple transport modes are included in the network. In our work, we decided to
distinguish these terms, as it is described in [1]. On the one hand, the multimodal transport
network describes a transport network, where only public transport modes are included,
e.g., bus, tram, subway, train, and ferry. On the other hand, the intermodal transport
network describes a transport network that combines transport modes for public transport,
individual transport (e.g., car, bike, walk), and on-demand transport (e.g., taxi). We claim
that such a definition of the intermodal transport network fully describes the real-world
transport in a city.

As we would like to contribute to the improvement of transport in cities, we have decided
to analyze the intermodal transport network. We aim at the algorithmic analysis that
considers the preferences of the city. We assume that a city requires to avoid overcrowding
in public transport vehicles. In the case travel demand is known, we should be able to

1http://inrix.com/scorecard/
2https://www.tomtom.com/en_gb/trafficindex/

1

http://inrix.com/scorecard/
https://www.tomtom.com/en_gb/trafficindex/


2 CHAPTER 1. INTRODUCTION

detect the weak spots of the public transport network. Furthermore, if a city provides
us a list of overcrowded segments in the transport network, we should be able to analyze
how the crowdedness can be reduced. One option is to recommend alternative journeys
to passengers who travel in crowded public transport vehicles. A passenger usually has
a choice of several journeys. Although, the passenger often demands the fastest journey. We
would like to assign a single alternative journey to each passenger where the increase of the
journey’s duration is not high in comparison to the fastest journey. Also, the journey’s cost
and the number of interchanges have to be considered during the journey selection. To be
able to measure the effectiveness of the analysis, we define several key performance indicators
(KPIs), e.g., the total duration of journeys, the total cost of journeys, and the number of
overcrowded trip segments. Our primary goal is to describe and implement an analysis tool
that takes travel demand as the input and returns KPIs as the output.

1.1 Structure of the Thesis

In Chapter 2, we begin with a research of existing publications where the topic of the in-
termodal journey planning and the transport network analysis is examined. We follow by
formalizing the intermodal transport network analysis problem with preferences of the city
in Chapter 3. Then, we provide a solution to the problem in Chapter 4. In Chapter 5, we
describe our implementation of the proposed solution in detail. The analysis using the real-
world data can be found in Chapter 6. Finally, we summarize our work and discuss future
extensions in Chapter 7.



Chapter 2

Related Work

In this chapter, we survey recent studies related to the topic of this thesis. Firstly, we
present list publications that aim at the analysis in the transport network. Then, we present
selected publications with solutions of journey planning problems. Finally, we describe our
contributions to the topic of intermodal transport network analysis.

2.1 Transport Network Analysis

Many ways of analyzing the transport network were invented in the last years. Generally, the
analysis is based on the specification and computation of key performance indicators (KPIs).
Usually, the transport network is modeled as a graph. Thus the topological indicators are
mostly presented, e.g., node degree or betweenness centrality.

• Node degree: A metric for a node in the graph which is computed as the number of
nodes connected by an edge with the given node.

• Betweenness centrality: A metric for a node (or an edge) in the graph computed
as the number of shortest paths that traverse the given node (or the given edge).

There are many more metrics used in the literature. Since we do not describe them in detail,
we recommend the survey [14] with a list of all standard metrics used for transport network
analysis.

2.1.1 Level of Service

The interesting methodology for analyzing the performance of the intermodal transport
network is described in [2]. The work is aimed at the computation of the multimodal
performance index (MPI) that measures the quality of the transport network in which walk,
bicycle, and public transport modes are included. The MPI is a single value computed by
aggregating mode-specific key performance indicators (KPIs). The mode-specific KPIs are
computed separately for every transport mode. Members of these KPIs are person-related
delay and level of service.

3



4 CHAPTER 2. RELATED WORK

• Delay: A difference between actual travel time and the minimum travel time.

• Level of service: A classification of the traffic flow into six levels, rated from A
(best) to F (worst).

In [3], the multimodal level of service is deeply studied with an entirely different defini-
tion. The authors also determine the level of service by six grades from A to F. The difference
is that the authors use a quality of service to classify the level of service (in [2], the level
of service is determined by the traffic flow). The quality of service is a measure based on
the travel experience of the users (and potential users) of the specific transport mode, e.g.,
bicycle, walk, or public transport modes.

2.1.2 Network Modeling from Geographical Data

To perform an analysis on the transport network, it is crucial to model the network from
real-world geographical data. For this purpose, in [6], the author describes how to build
multimodal network models in order to analyze them. To create the model, the author uses
the OpenStreetMap1 (OSM) data and other volunteered geographic information. The work
contains valuable information about OSM data quality and availability. The spatial data
model design combines particular parts of the transport network, e.g., private transport
network and public transport network.

2.1.3 Non-public Transport Network Analysis

The non-public transport networks are analyzed in the following studies. In [7], the authors
claim that characterizing the transport network purely on topological means is insufficient.
Therefore, the authors include additional measures, namely the fastest-path interpolation
and the routing-service interpolation. Then, the authors propose the correlation analysis of
two transport networks based on GPS traces of taxis in San Francisco and Shanghai. Then,
they identify the driving behavior during peak hour and non-peak hours. The authors also
prove that including the node weight and the travel speed into the betweenness analysis
improves the traffic prediction performance. The similar attempt is in [8], where the authors
also use GPS traces of taxis to estimate the traffic flow in Qingdao. The interesting point is
that the authors use the Monte Carlo algorithm to simulate the traffic distribution. Then,
they measure the correlation between the simulated and observed data.

2.1.4 Public Transport Network Analysis

The analysis of the public transport network is thoroughly studied in many publications.
The authors in [9] model a graph of the network and the traffic flows using the timetables.
Their representation is formed by space-of-changes, space-of-stations, and space-of-stops. In
the analysis, they measure a node load by a weighted combination of four metrics: simple
load, node degree, betweenness, and restricted betweenness. The authors compare three
large transport networks in Warsaw, Switzerland, and the whole of Europe. They conclude
that the real-world traffic patterns are significantly heterogeneous in traffic flow intensity.

1https://openstreetmap.org/

https://openstreetmap.org/


2.1. TRANSPORT NETWORK ANALYSIS 5

Another approach is used in [10], where the authors propose a network model called
the supernode graph structure representation. A supernode is a set of nodes that are geo-
graphically close to each other. The bus and metro transport networks are both represented
using the graphs of supernodes. Then, the spatial amalgamation method is used to combine
these two transport layers. Then, the analysis is based on assigning weights to nodes in
the graph. They evaluate their method on the bus and metro transport network of London
by comparing the mono-layer and the proposed multi-layer representation. Their finding is
that analyzing separated mono-layers may lead to significantly different network behavior
than real-world usage is.

In [11], the authors model the network as a graph with weighted directed edges, where
the weight represents the capacity of the bus, tram or trolleybus in the peak morning hour.
The authors measure 11 metrics, including average path length, eccentricity distribution,
and betweenness centrality. One interesting metric they use is page rank centrality. The idea
behind page rank centrality is to differentiate nodes with the same in-degree. The PageRank
[12], originally used in a web search engine, is a scoring algorithm that iteratively assigns
the PageRank value to each node in the network, where a node with the incoming edge from
the strongly linked node is considered as more important. In the evaluation, the authors
analyze the public transport network of five Hungarian cities, and they identify which routes
and stations of the public transport network are overloaded.

The structural efficiency of the metro transport network from the network science per-
spective is studied in [13]. In the work, two criteria are optimized, number of transfers
and distance. The authors propose a metric called node occupying probability to measure
the level of utilization of stations. The analysis is based on random failure and target attack
in metro network. The random failure is simulated by the random deletion of several nodes.
To simulate the target attack, the nodes with the highest betweenness or with the highest
node occupying probability are deleted. According to the analysis of six metro networks
(Beijing, London, Paris, Hong Kong, Tokyo, and New York), the New York metro has
the best topological efficiency. Hong Kong’s metro is most robust under random attack,
and Tokyo is the least vulnerable to the target attack.

In [4], the author implemented a tool that analyzes the public transport network by
computing eight KPIs, including node degree, trip workload, and betweenness centrality.
The tool is able to calculate all metrics within 10 ms per query.

A very comprehensive analysis is provided in [5]; the authors compare public trans-
port networks of fourteen cities. They measure many metrics on four types of graphs for
each transport network. During the analysis, the authors explain many counter-intuitive
observations, e.g., why routes share the same path instead of exploring more areas.

Finally, a well-written survey on recent work in public transport analysis is [14]. The sur-
vey summarizes various graph models and topological characteristics used in other studies.

2.1.5 Applications

The European Cooperation in Science and Technology2 (COST) organized an action called
Accessibility Instruments for Planning Practice in Europe. During this action, 24 instru-

2https://www.cost.eu/who-we-are/about-cost/
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ments were reviewed and compared. One of the instruments is the Spatial Network Anal-
ysis for Multimodal Urban Transport Systems (SNAMUTS), firstly provided in [15], [16].
The SNAMUTS is able to compute the following KPIs for each node:

• Closeness centrality: The minimum cumulative impediment value between each
pair of nodes.

• Degree centrality: The minimum number of transfers between each pair of nodes.

• Betweenness centrality: The geographical distribution of attractive travel paths
between each pair of nodes.

• Contour catchment: The number of residents and jobs within the walkable catch-
ment areas of nodes that can be reached within a public transport up to 30 minutes
from the reference node.

• Nodal connectivity: The suitability of nodes for making transfers with minimal
disruption to the flow of movement.

• Nodal resilience: The overcrowding index of a node.

• Composite index: The above metrics combined into a single value for each node.

More details about metrics are available on the SNAMUT’s website3 as well as the result of
computation for selected cities.

Another instrument studied during the COST’s action is the Walk Score4. The web-
based application provides several scoring techniques to measure the quality of a location
in the transport network. The following metrics are included:

• Walk score: The metric that analyzes walking routes from the location to nearby
amenities. For every amenity within 30 minutes away, points are added to the loca-
tion. The score determines how a location is independent of a car or another way of
transport.

• Transit score: The metric that describes how well the location is served by public
transport. The Transit score is based on measuring the distance, frequency, and type
of nearest routes.

• Bike score: The metric that describes how the surrounding area of the location is
suitable for biking.

Every score values are in the range from 0 to 100. The authors even patented the walk score
and the transit score metrics.

3http://www.snamuts.com/
4https://www.walkscore.com/

http://www.snamuts.com/
https://www.walkscore.com/
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2.2 Journey Planning Algorithms

The journey planning topic is actively studied for many years, and plenty of works were
published. We will focus on publications that provide algorithmic solutions to journey
planning problems. Generally speaking, the journey planning (or route planning) is a group
of problems where the common problem is to find an optimal journey (or multiple journeys)
in a transport network. In publications, the representations of the journey or transport
network vary. The most common representation comes from graph theory. The transport
network is a directed weighted graph, and the journey is a path. The path is a sequence of
nodes in the graph where the first node in the sequence is called origin, and the last node
is called destination. The journey planning algorithm is an algorithm that solves a certain
journey planning problem. There are almost no limits in specifying the criterion which is
optimized in journey planning problems. The most occurred criteria are journey duration
or distance. A more critical property is whether the journey planning problem requires
the optimization of a single criterion or multiple criteria at once. The problems where
multiple criteria have to be optimized are more challenging and result in a full Pareto set
of non-dominated journeys.

Very exhausting surveys on journey planning algorithms of any kind are [1], [17], [18],
and [19]. In the following text, we categorize the journey planning methods by the type of
transport network in which they operate and by the number of optimized criteria.

2.2.1 Journey Planning in Road Network

The Road network is the transport network of roads where the non-public transport modes
(car, bicycle, taxi service, etc.) operate. In journey planning, the Road network is mostly
represented as a directed weighted graph. Nodes are junctions and edges are the roads
between them.

Single criterion algorithms: The basic algorithm that finds the shortest path in a graph
is Dijkstra’s algorithm [20]. The Dijkstra’s algorithm is not applicable to solve the problem
in large road networks since its computational complexity is O(|E| + |V | + log|V |) (when
the Fibonacci heap is used). Fortunately, the algorithms that solves the problem in mi-
croseconds on large graphs were invented, e.g., Contraction Hierarchies [21], Customizable
Route Planning [22], [23], SHARC [24], or ALT [25]. Contraction Hierarchies and Cus-
tomizable Route Planning have one property in common. The algorithms are divided into
the query phase and the pre-processing phase. The graph is pre-processed once, but the
computation is demanding on time. Then, the query phase computes the journeys quickly.
The consequence is that when the graph is modified, the pre-processing phase needs to be
redone. In [26], the author presented the External Customizable Route Planning, which is
a variant of the Customizable Route Planning that does the pre-processing phase within
few minutes in the external memory of the mobile device.

Multi-criteria algorithms: Finding the Pareto set of journeys is computationally more
expensive. The computation time of the algorithm grows with the size of the resulting Pareto
set. One of the algorithms that solve the multi-criteria problem is called multi-criteria label-
setting algorithm (MLS) [27]. MLS is an extension of Dijkstra’s algorithm that stores a bag
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of non-dominated labels for each expanded node. Each label has a vector of criteria values,
and one label dominates the other if it has a strictly better value of at least one criterion,
and it does not have worse value in other criteria. In comparison to Dijkstra’s algorithm,
the priority queue stores labels in lexicographic order. In each iteration, the minimal label
in the priority queue is expanded. Another approach is the multi-criteria label-correcting
algorithm (MLC) [28]. The main difference from MLS is that all non-dominated labels of
the current node are processed at once. It leads to visiting the same label more times.

Instead of extending Dijkstra’s algorithm, the MOA* [29] and NAMOA* [30] algorithms
extends the A* algorithm [31]. These algorithms use an additional search graph and heuristic
vector. In [32], the authors proposed a heuristic for NAMOA* that speed-up the bi-criteria
road routing [33] in order of magnitude.

2.2.2 Journey Planning in Public Transport Network

For journey planning in the public transport network, it is specific that transport modes
are limited by timetables. Also, the network usually contains multiple public transport
modes (e.g., bus, tram, subway, train, ferry). The intermodal transport network is usu-
ally modeled as time-dependent graph [34] or time-expanded graph [35]. On the one hand,
the time-dependent graph has one node for each stop. On the other hand, the time-expanded
graph has defined nodes by events at stops, e.g., departure time of public transport vehicles.
One exception is [36], where the model of the public transport network are lists of routes
and trips.

Single criterion algorithms: Here, we consider the journey problems where one crite-
rion is optimized. If the public transport network contains only one public transport mode,
the algorithms for road networks may be applied, e.g., SHARC or Contraction Hierarchies.
More often are journey planning problems with more public transport modes. For that pur-
pose, several graph-based algorithms were proposed, e.g., Layered Dijkstra [34] or Public
Transit Labeling [37]. Nevertheless in [36], the authors invented the RAPTOR algorithm
that is not graph-based. Since the public transport network contains scheduled trips and
one trip is a defined sequence of stops, the authors prove that it is better to use a different
approach that searches through trips round by round from a starting stop. The authors
claim that the computation time of the RAPTOR algorithm is faster in order of magnitude
than previous approaches using the time-dependent or time-expanded model. Furthermore,
the RAPTOR algorithm optimizes travel time and the number of interchanges by default.
That means the output of the algorithm is a full Pareto set of non-dominated journeys.

Multi-criteria algorithms: An attempt to minimize three criteria (travel time, walk-
ing time, number of transfers) in the public transport network is in [38]. The authors
model a graph for each transport mode where nodes are stations, platforms, and departure
events. Then the particular graphs are integrated into one larger graph. Then a modifi-
cation of Dijkstra’s algorithm is used to find the Pareto set. In [39], the authors provide
the gradual approach to minimize travel time and the number of interchanges. The network
is represented by the time-dependent graph with shortcuts, which is daily recomputed using
data provided by transport institutions. The query phase searches k journeys in rounds.
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At first, journeys without transfer are examined; if there is no k journeys returned, the al-
gorithm continues to search journeys with one transfer. This is repeated until the search
with at most five transfers is done. The particular searches are based on a modification
of Dijkstra’s algorithm, and the authors claim that the approach is also inspired by Con-
traction Hierarchies. The authors evaluate the algorithm, called the Gradual Path-finding
algorithm, on the public transport network of Izmir city. They observe that the algorithm
processes the query in 0.63 seconds on average. The authors of the RAPTOR algorithm [36]
propose in the same publication a modification of the RAPTOR algorithm, which is able to
consider additional criteria (McRAPTOR). Unfortunately, the performance of the McRAP-
TOR is not good enough for real-time applications. Thus, partly the same group of authors
improve the McRAPTOR algorithm in [40]. They define the Restricted Pareto Set, which
is the subset of Pareto optimal journeys where the journeys that are considered as not use-
ful in the real-world are omitted. The authors propose an algorithm that is composed of
three phases wherein each phase a different modification of the RAPTOR algorithm is used.
They use the Fuzzy dominance scoring algorithm [41] as the tool to score the journeys in
the Pareto set. By using the scoring algorithm, they observe that the best-rated journeys
in the Pareto Set are also in the Restricted Pareto Set.

2.2.3 Journey Planning in Intermodal Transport Network

As we mentioned in Chapter 1, the intermodal transport network intersects the public trans-
port network and the road network. Hence, the journey planning problem is to find a journey
that may be a combination of scheduled public transport modes (e.g., bus, tram, subway,
train, ferry) and individual transport modes (e.g., bike, walk) and on-demand transport
modes (e.g., taxi service).

In [42], the authors combine two approaches to provide an algorithm for the intermodal
transportation network. A modification of the RAPTOR algorithm is used for planning on
the public transport network, and the Dijkstra-based algorithm is used for planning on other
transport modes. In [43], the author presented several versions of the speed-up algorithm
called State Dependent ALT (SDALT). The SDALT algorithm is an extension of ALT [25]
that also performs well on the intermodal transport networks.

2.3 Our Contribution

While a lot of studies were presented in the field of journey planning or transport network
analysis, we were not able to find a work that solves the intermodal transport network
problem with preferences of the city. By preferences of the city, we mean that a city has
the data about travel demand and overcrowded parts in the transport network and wants to
distribute the demand in a way that overcrowding in public transport vehicles is reduced.
In this thesis, we use the existing journey planning algorithms to form the Intermodal CRP-
McRAPTOR algorithm that analyzes the intermodal transport network with preferences of
the city. The Intermodal CRP-McRAPTOR algorithm distributes the given travel demand
in the intermodal transport network by searching optimal journeys that avoid to the highly
occupied public transport vehicles. In order to measure the vehicle occupancy, we also define
several KPIs, e.g., number of overcrowded segments and total duration of journeys.
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Chapter 3

Problem Specification

In this chapter, we describe our representation of the intermodal transport network. Then,
we provide definitions of travel demand and preferences of the city. We also specify the key
performance indicators (KPIs) that are used in this thesis to analyze the intermodal trans-
port network. Finally, we formalize the intermodal transport network analysis problem with
preferences of the city.

3.1 Transport Modes

Since we analyze the intermodal transport network, we need to consider standard public
transport modes, individual transport modes, and on-demand transport modes. We use
the following notation:

• Subway (S): Public transport mode where a subway is used to travel. The maximum
capacity of the subway cs ∈ N+ is defined as the maximum number of passengers that
one subway train is able to transport between two stops.

• Bus (B): Public transport mode where a bus is used to travel. The maximum capacity
of the subway cb ∈ N+ is defined as the maximum number of passengers that one bus
is able to transport between two stops.

• Tram (T): Public transport mode where a tram is used to travel. The maximum
capacity of the subway ct ∈ N+ is defined as the maximum number of passengers that
one tram is able to transport between two stops.

• Rail (R): Public transport mode where a city train is used to travel. The maximum
capacity of the subway cr ∈ N+ is defined as the maximum number of passengers that
one train is able to transport between two stops.

• Ferry (F): Public transport mode where a ferry is used to travel. The maximum
capacity of the subway cf ∈ N+ is defined as the maximum number of passengers that
one ferry is able to transport between two stops.

• Public Transport (PT): A group that includes all above public transport modes.

11
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• Walk (W): Individual transport mode where a walk is used to travel.

• Bicycle (BC): Individual transport mode where a bicycle is used to travel.

• Taxi Service (TS): On-demand transport mode where taxi service is used to travel.

• Non-public Transport (NPT): A group that includes individual transport modes
(W, BC) and on-demand transport modes (TS).

The capital letters are used to simplify the full name of the transport mode or its group.
Every public transport mode may contain multiple vehicles that operate during a day. Also,
the maximum capacity of a vehicle is defined only for public transport modes. For W, BC,
and TS modes, the maximum capacity is not defined, since it’s considered that passenger
travels alone.

To represent all transport modes included in the model of the intermodal transport
network, let us define a set of supported transport modes M as a set that contains all
available modes in the intermodal transport network. Also, we want to observe how KPIs
differ when we add or remove any transport mode from the intermodal transport network.
Thus, we need a set that includes only selected transport modes from M. Formally, we
define a set of allowed transport modes as a set Ma ⊆ M. In a single process of analysis,
only allowed transport modesMa may be used by passengers.

3.2 Road Network Representation

From our perspective, the road network of the city is a system of roads where citizens
travel by individual or on-demand transport modes. To represent a road network, we use
a directed multi-weighted graph called the Road Graph. The Road Graph contains roads
and crossroads with relation to its geographical locations. Formally, we define the Road
Graph as a directed weighted graph Gr = (Vr, Er, δ, ν, Rr, %), where

• Vr is a set of vertices describing the junctions where a vertex v ∈ Vr is defined by its
latitude latv ∈ R, longitude lonv ∈ R, and elevation elevv ∈ R,

• Er is a set of edges describing roads between junctions,

• a function δ : Er 7→ R+
0 assigns a distance for each edge e ∈ Er,

• a function ν : Er 7→ R+
0 assigns an average speed for each edge e ∈ Er,

• Rr is a set of all road categories that occur in the graph,

• a function % : Er 7→ Rr assigns a road category for each edge e ∈ Er.
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3.3 Public Transport Network Representation

The public transport network of the city is a transport system that includes roads and
scheduled trips of public transport modes, e.g., B, S, T or R. We represent the public
transport network the same way as in [36]; the Timetable is a tuple Υ = (Π,S, T ,R,F)
where

• Π ⊂ N is the period of operation, e.g., seconds of the day,

• S is a set of stops, and a stop s ∈ S corresponds to a location in the network where
a person can board or get off a vehicle,

• T is a set of trips, and a trip t ∈ T represents a sequence of stops a vehicle visits
along a route and each stop in the trip has its arrival time τarr ∈ Π and departure
time τdep ∈ Π for which holds τarr ≤ τdep,

• R is a set of routes, and a route r ∈ R consists of a set of trips that shares the same
sequence of stops,

• F is a set of transfers, and a transfer f ∈ F consists of two stops pfrom, pto and
the transfer time l(pfrom, pto) ∈ R+ between two stops.

3.4 Intermodal Transport Network Representation

As we described in Chapter 1, the intermodal transport network in the city is a complete
system of roads where citizens may travel by a combination of transport modes from PT and
NPT. Thus, the journey is divided into a sequence of legs where a leg is a part of the journey
determined by a certain transport mode. We represent the intermodal transport network
as a tuple I = (M, Gr,Υ), where M is a set of supported transport modes defined in
Section 3.1, Gr is a road graph defined in Section 3.2 and Υ is a timetable from Section 3.3.

3.5 Preferences of the City

We know that everyone has a different point of view on what the city should demand
from the transport system, e.g., low-cost tickets for citizens, quality of service, etc. In our
opinion, the overcrowding in public transport vehicles decreases quality of living in the city.
Therefore, the city should require the transport system that prevents overcrowding in public
transport vehicles. More formally, let us have a tuple (Es, ϕ) where Es is a set of all trip
segments in the public transport network, and ϕ : Es 7→ R is a function that assigns a level
of occupancy to each trip segment in Es. A trip segment is defined by two stops, scheduled
trip and public transport mode associated with the trip. The higher value assigned by
the function ϕ determines that the trip segment is more occupied. Then, we say that
the city prefers to spread out passengers from highly occupied segments into surrounding
less occupied segments. As a result, the total overcrowding in public transport vehicles has
to be decreased.
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3.6 Travel Demand

To reduce the overcrowding in public transport vehicles, we need to know how many people
are using the intermodal transport network at a time. In other words, we need from every
traveling citizen a starting location, destination location, and a time of departure. Formally,
we define the travel demand D as a tuple (L, τ) where

• L is a set of origin-destination pairs,

• τ is a function that assigns a departure date-time to every origin-destination pair
from L.

An origin-destination pair l ∈ L is composed of the origin location lo and the destination
location ld. Therefore, the size of the L is equal to the number of citizens in the travel
demand.

3.7 Key Performance Indicators

Key performance indicators (KPIs) are a set of the leading indicators that measure how
effective the progress towards the desired result is. In an analysis, this usually means that
we have a set of target values that we compute for each scenario. Then, these values are
compared to determine which of the scenarios is closest to the desired objectives of the anal-
ysis. In this thesis, we focus on dynamic metrics that measure the movement of citizens in
the intermodal transport network. Hence, we search journeys for origin-destination pairs
and aggregate their parameters into network-based KPIs. For these metrics, four criteria
are essential, vehicle occupancy, duration, costs, and the number of interchanges. We define
a set of KPIs in the intermodal transport network as the set K that includes the following
KPIs.

• kn: Number of journeys

• kdt: Total duration of journeys

• kct: Total costs of journeys

• kd: Average journey duration

• kc: Average journey costs

• knoi: Average number of interchanges

• ku: Number of used trip segments

• ki: Number of inconvenient trip segments

• ko: Number of overcrowded trip segments

• ksu: Number of overcapacity trip segment usages

In the rest of this section, we describe the particular KPIs in detail.
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3.7.1 Feasibility

For several reasons, no journey may be found for an origin-destination pair. A passenger
may have requested a journey with a departure time for which no transport service is
available. Another possibility is that the origin or destination is too far from the transport
network. To observe these situations, we define the KPI kf ∈ N called number of journeys
as the number of origin-destination pairs for which at least one feasible journey is found.

3.7.2 Journey Duration

An indicator that measures a time that passengers spent by traveling must not be left out.
Many citizens want to travel as fast as possible, especially those that live in the city with
a high population density. Let us define a duration d(j) ∈ N of a journey j as a duration
(in seconds) between the departure at origin location and the arrival to the destination
location. Then, the KPI kdt ∈ N called total duration of journeys is computed as follows

kdt =
∑
j∈J

d(j)

where J is a set of journeys and d(j) is a duration of a particular journey j ∈ J . For each
origin-destination pair in the travel demand, there is at most one journey in J . Then, we
define the KPI kd ∈ R called average journey duration by the following equation:

kd =

∑
j∈J

d(j)

|J |

The J and d(j) are the set of journeys and journey duration, respectively. In other words,
the kd describes the average duration (in seconds) per one passenger.

3.7.3 Journey Costs

Similarly, we define costs c(j) of journey j as costs that a passenger need to pay (in Euro)
for the realization of the journey. Then, given a set of journeys J and journey costs c(j),
the KPI kct ∈ N called total costs of journeys is defined as follows

kct =
∑
j∈J

c(j)

and the KPI kc ∈ R called the average journey costs is defined by the following equation:

kc =

∑
j∈J

c(j)

|J |

Also, the average journey costs are in Euro and describes how much a passenger needs to
pay for a journey on average.
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3.7.4 Number of Interchanges

The third criterion that we consider is the number of interchanges in a journey. This criterion
is sometimes more important to passengers than the duration. When a journey with no
interchange is a few minutes slower than the fastest journey with one interchange, a passenger
may choose the slower journey since it is more comfortable. Let us define the number of
interchanges noi(j) in a journey j as the number of transfers made by a passenger during
the journey j. To include this criterion into KPIs, we define the KPI knoi ∈ R called average
number of interchanges as follows:

knoi =

∑
j∈J

noi(j)

|J |

In the equation, the J is a set of journeys and noi(j) is the number of interchanges in
the particular journey j ∈ J .

3.7.5 Occupancy

As we defined in Section 3.5, the city prefers to spread out the passengers from highly
occupied segments in the intermodal transport network. Let the Es be a set of trip segments.
The trip segment s ∈ Es is defined by two stops, trip, and the transport mode that is assigned
to the trip. Then, the trip segment is used by passenger if the passenger’s journey contains
the trip segment. The occupancy of the trip segment u(s) ∈ N is defined by the number
of passengers that use the trip segment to travel. At first, we define KPI ku ∈ N called
the number of used trip segments, which is the count of trip segments that are used by
at least one passenger. The next KPI ko ∈ N is the number of overcrowded trip segments.
The ko is a count of trip segments that are occupied above the maximum capacity cmax of
the transport mode on the segment.

Also, we want to be able to observe trip segments that are almost fully occupied.
Thus, before defining a new KPI, we need to introduce the maximum convenient occupancy
bconv ∈ R of the trip segment, and a convenience function ς : Es 7→ {0, 1}. The maximum
convenient occupancy determines the boundary of how many passengers may be in the pub-
lic transport vehicle to consider the occupancy as comfortable. The function ς determines
if the trip segment s ∈ Es is convenient (1) or inconvenient (0) by the following rule

ς(s) =
{

1 if u(s) ≤ bconv

0 otherwise

where u(s) is the occupancy of the trip segment s ∈ Es. The difference of the convenient,
inconvenient and overcrowded segments is depicted in figure 3.1.

We use the convenience function ς to define the KPI ki ∈ N called the number of
inconvenient trip segments. Similarly to ko, the ki is defined as the count of trip segments
that are occupied above the maximum convenient occupancy bconv of a transport mode that
is assigned to the trip segment.
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Figure 3.1: The schema of trip segment occupancy. The occupancy increases from the left
to the right. The segments that are occupied above the convenient boundary bconv are
called inconvenient and the segments that are above the maximum capacity cmax are called
overcrowded.

The last occupancy-based KPI ksu ∈ N is called the number of overcapacity trip segment
usages. We assume that the trip segment usage is a passenger traveling across the trip seg-
ment. A trip segment usage is called the overcapacity trip segment usage if the passenger use
the trip segment that is already fully occupied to the maximum capacity of the transport
mode. In other words, if the maximum capacity of the transport mode is five and the occu-
pancy on the trip segment is seven, then the number of overcapacity trip segment usages is
two. The ksu is the number of overcapacity segment usages in all trip segments Es. Denote
that the ksu describes how many passengers would not fit into a public transport vehicle in
each segment.

3.8 Intermodal Transport Network Analysis Problem with
Preferences of the City

Finally, we have all set up to define the analysis problem studied in this thesis. By using
the properties described in this chapter, the following parameters are given:

• intermodal transport network I,

• set of allowed transport modesMa,

• preferences of the city (Es, ϕ),

• travel demand D = (L, τ).

Then, the Intermodal Transport Network Analysis Problem with Preferences of the City
(ITNAP-PC) is to compute a set of KPIsK defined in Chapter 3.7. During the computation,
only the modes in theMa are allowed to be used by a passenger. By using this definition,
we are able to observe the changes of KPIs for various settings of the input parameters.
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Chapter 4

Solution Approach

In this chapter, we introduce our approach for solving the Intermodal Transport Network
Analysis Problem with Preferences of the City (ITNAP-PC). The solution of ITNAP-PC
is divided into the following steps. At first, we use the customizable route planning (CRP)
technique for searching first mile journeys in the Road Graph Gr. Then, we convert the jour-
neys from the first step to initial transfers that are accepted by a multi-criteria algorithm
called McRAPTOR. The McRAPTOR algorithm returns a Pareto set of optimal journeys
for each origin-destination pair. At this time, journeys in Pareto sets may be composed
of parts of different transport modes. After we search all Pareto sets, we compute key
performance indicators (KPIs) of the intermodal transport network as they are defined in
Chapter 3. By merging above algorithms together we get the Intermodal CRP-McRAPTOR
algorithm that solves the whole ITNAP-PC.

4.1 Customizable Route Planning

The Customizable Route Planning (CRP) in [22] solves a part of our problem, which is
the journey planning in the Road Graph. The CRP is a technique for computation of
journeys in road networks that focuses on customization for arbitrary criteria. The technique
is divided into three phases:

1. Metric-independent pre-processing: Given a topology of the graph Gr, it finds
multilevel partitions by dividing the Gr into nested cells on a fixed number of levels.

2. Metric-dependent customization: This phase builds a multilevel overlay from
the graph partitions for a given metric. It stores the customization data independently
to support multiple metrics for the same road network at the same time.

3. Query phase: At first, start and destination nodes are added to the pre-processed
graph; it generates the search graph G′. Then, an algorithm searches for journeys in
the search graph with respect to the given criterion. The algorithm uses the output
from previous phases to speed-up the computation. For this phase, the Multi-level
Dijkstra algorithm is usually used.
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In our thesis, we use CRP to find first mile journeys from the origin locations to sur-
rounding stops of the public transport network. For each non-public transport mode and
origin location, we do the following. Firstly, we find the neighboring stops of the origin
location within some range where each transport mode may have a different range defined.
Then, we use CRP to search the optimal journey in the Road graph from the origin location
to every stop within the range. The CRP algorithm optimizes single criterion. In this thesis,
we decided to optimize the journey duration. Thus, we obtain a set of journeys for each
origin location. The set includes journeys of all allowed non-public transport modes.

4.2 Contraction Hierarchies

In [21], the authors present the Contraction Hierarchies (CH) algorithm, which is the speed-
up technique for finding optimal journeys in a graph. The algorithm is based on contracting
nodes in the pre-processing phase and bidirectional search in the query phase.

1. Pre-processing phase: Nodes in the graph are sorted by importance, and then
the least important node is replaced with shortcut edges. This whole process is re-
peated many times.

2. Query phase: A query is processed by the bidirectional search. The forward search
expands the edges that direct to a more important node only. On the other hand,
the backward search expands only the outgoing edges of the important node.

Since we need to process many one-to-all queries on the Road Graph, we use CH to speed-up
the process of finding journeys with non-public transport modes.

4.3 McRAPTOR Algorithm

The multi-criteria version of the Round-Based Public Transit Router (McRAPTOR) search
journeys for public transport modes given a timetable Υ = (Π,S, T ,R,F). It is introduced
in [36], where the pseudo-code of the single criterion RAPTOR is also included. The main
idea of the algorithm is to work in rounds where at most K rounds are processed. The al-
gorithm starts by marking the departure stop ps. A round k computes the fastest way of
getting to every stop with at most k − 1 transfers. During each round, the stops that were
visited for the first time or with better arrival time are marked. In the following round k+1,
the algorithm processes all marked stops. The algorithm could be stopped earlier at the end
of a round if the terminal stop pt was visited. The basic RAPTOR optimizes the arrival
time and the number of interchanges. The McRAPTOR also optimize the arrival time and
number of interchanges by default. Nevertheless, it is possible to add more criteria, since
the McRAPTOR uses label bags to keep all non-dominated labels of a stop.

In this thesis, we use the McRAPTOR to solve the second part of our problem, which is
journey planning in the public transport network. If we find the nearest stop for each origin
and each destination, we can search for journeys that use strictly public transport modes,
e.g., bus, tram, rail. As the criteria, we set the duration, occupancy, costs, and number of
interchanges. Thus, the result of the McRAPTOR is a Pareto set of optimal journeys for
each origin-destination pair where each journey may contain more public transport modes.
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4.4 Fuzzy Dominance Scoring Algorithm

Since we work with Pareto sets, it is useful to be able to determine which journey is the most
suitable for a passenger. For this purpose, the fuzzy dominance scoring algorithm is pre-
sented in [41], [42]. This algorithm uses properties from Fuzzy logic to score a journey from
Pareto set in the range from 0 to 1.

Fuzzy logic is a generalization of propositional logic, where the main difference is in
the assignment of truth values to variables. On the one hand, the values of variables in
propositional logic are 0 (false) or 1 (true). On the other hand, the truth values in Fuzzy
logic are real numbers from the inclusive interval [0,1]. The truth value assigned to a variable
determines the partial truth, where 0 is completely false, and 1 is completely true.

The basic dominance is a relation between two journeys, where a journey j1 dominates
a journey j2 if j1 is strictly better than j2 in at least one criterion, and no worse in any other
criteria. Then, we say that the Pareto set is a set of journeys where every two journeys do
not dominate each other. It does not hold for the Fuzzy dominance. The Fuzzy dominance
gives more information about the relation between two journeys than the basic dominance.
Loosely speaking, if we compare two journeys from the Pareto set by using the Fuzzy
dominance, instead of obtaining a single value (true or false), we get a real number that
determines how much a journey dominates another.

More formally, when two journeys (j1, j2) in Pareto set are compared by the Fuzzy
dominance, we get a degree of domination d(j1, j2) ∈ [0, 1]. The degree of domination
measures how much the first compared journey j1 fuzzy-dominates the other journey j2.
The degree of domination is computed by the following equation:

d(j1, j2) =


2nb(j1,j2),+ne(j1,j2)−|M |

nb(j1,j2) if nb(j1, j2) > |M |−ne(j1,j2)
2

0 otherwise

where M is set of optimized criteria, nb(j1, j2) is fuzzy number of criterion in which j1 is
better than j2. Similarly, the ne(j1, j2) is fuzzy number of criterion in which the j1 is equally
good as the j2. The following equation applies for nb(j1, j2) and ne(j1, j2), respectively.

nb(j1, j2) =
∑

m∈M

µm
< (km(j1), km(j2))

ne(j1, j2) =
∑

m∈M

µm
= (km(j1), km(j2))

The km(ji) is a value computed for the journey ji according to the criteria m, e.g. journey
duration in seconds from Section 3.7.2. The µm

< and µm
= are the fuzzy operators according

to the criteria m. The fuzzy operator µm
= (x, y) is computed for any x, y ∈ R as follows:

µm
= (x, y) = exp(lnχ

ε
(x− y)2)

where ε < 0 and 0 < χ < 1 are parameters that control the degree of fuzziness. The ε
and χ might be set differently for each criteria m ∈M . Then, we compute the second fuzzy
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operator µm
< (x, y) for the same x, y by the following equation:

µm
< (x, y) =

{
1− µm

= (x, y) if (x− y) < 0
0 otherwise

To fulfill the condition µm
= (x, y) +µm

< (x, y) +µm
> (x, y) = 1 which is required for consistency.

We also define a third fuzzy operator µm
> (x, y) as follows:

µm
> (x, y) =

{
1− µm

= (x, y) if (y − x) > 0
0 otherwise

Nevertheless, we do not need µm
> (x, y) to compute the degree of dominance d(j1, j2). Note

that when the degree of domination d(j1, j2) is equal to 1, we say that the journey j1
completely dominates the j2. Finally, we define the score function s : J 7→ [0, 1] that assigns
a score s(j) to a journey j in Pareto set J as follows:

s(j) = 1− max
ji∈J\{j}

d(ji, j)

The score s(j) is determined by a journey ji ∈ J \ {j} that dominates the journey j ∈ J
the most. Since we find the computation not trivial, we recommend the original source [42],
where the Fuzzy dominance is described in detail.

In our solution of ITNAP-PC, we use the Fuzzy dominance scoring algorithm after
obtaining the Pareto set from the McRAPTOR algorithm. We assign a score to every
journey in the Pareto set, and then we select the journey with the highest score. This post-
processing phase is repeated for every origin-destination pair. Thus, we obtain at most
one selected journey for each origin-destination pair. In other words, the journey selected
from the Pareto set is the same journey that the passenger chooses to travel from the desired
origin to the destination. When the Pareto set is the empty set, we consider the origin-
destination pair as not feasible.

4.5 Intermodal CRP-McRAPTOR Algorithm

If we combine the CRP and the McRAPTOR, we will obtain the algorithm that finds
the Pareto set of journeys in the intermodal transport network for an origin-destination
pair. Furthermore, we select the journey for each origin-destination by using the fuzzy
dominance scoring algorithm. Also, we add the algorithm that computes KPIs at the end
of the combined algorithm. The resulting algorithm we provide is called the Intermodal
CRP-McRAPTOR algorithm, and it solves the ITNAP-PC as a whole. The pseudo-code
of the Intermodal CRP-McRAPTOR algorithm is in Algorithm 1. The algorithm accepts
the parameters of the ITNAP-PC described in Section 3.8, as arguments. In the beginning,
the function extractNonPublicModes extracts the non-public transport modes Mnp from
the allowed transport modesMa. Then, the main loop iterates across all origin-destination
pairs. The variable o is the origin location, and the variable d is the destination location from
the same origin-destination pair. In the main loop, the set of initial transfers Tinit and the set
of neighboring stops Ln are initialized as empty sets. Then, each non-public transport mode
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is iterated in the inner loop. The inner loop starts with the function findNeighboringStops,
which finds the surrounding stops Ln of the origin location within the defined range for
the transport mode m that is being processed. Afterward, the CRP algorithm is called to
compute the optimal journeys Jfm from the origin location to every neighboring stop from
Ln. At the end of the inner loop, the first mile journeys Jfm are added into the set of initial
transfers Tinit.
Algorithm 1: Intermodal CRP-McRAPTOR algorithm
Input: allowed modesMa, preferences of the city {Es, ϕ}, set of origin-destination pairs L
Output: set of KPIs K
Data: road graph Gr, timetable Υ, supported modesM
J∗ ← {}
Mnp ← extractNonPublicModes (Ma)
for {o, d } ∈ L do

Tinit ← {}, Ln ← {}
for m ∈ Mnp do

Ln ← findNeighboringStops (o, Υ, m)
Jfm ← crpQuery (o, Ln ∪ {d }, Gr, m)
Tinit ← Tinit ∪ Jfm

end
J ← mcRaptorQuery (Ln, d, Tinit, Υ, {Es, ϕ},Ma)
js ← fuzzySelectJourney (J)
J∗ ← J∗ ∪ {js }

end
K ← computeKpis (J∗)
return K

After the initial transfers Tinit are collected for currently processed origin-destination
pair, the McRAPTOR is called to find Pareto set of optimal journeys J . The McRAPTOR
algorithm extends the initial transfers by public transport trips while all specified criteria
are optimized. Thus, the Pareto set J contains intermodal journeys. From the Pareto set J ,
we select only one journey js and add it to the set of selected journeys J∗. The journey
js is the best-ranked journey according to the Fuzzy dominance scoring algorithm. When
the main loop is exited, we have a set of selected journeys J∗ where at most one journey
is present for each origin-destination pair. Finally, the set of KPIs K is computed using
the function computeKpis which meets the conditions defined in Section 3.7. The set of
KPIsK is the result of the Intermodal CRP-McRAPTOR, and it complies with the expected
solution of the ITNAP-PC.

In short, the inner loop collects initial transfers Tinit that are needed for the McRAPTOR
algorithm. The main loop collects selected journeys J∗ that are required for the computation
of KPIs. In the end, the set of KPIs K is computed and returned.
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Chapter 5

Implementation

In this chapter, we describe the implementation of the Intermodal CRP-McRAPTOR algo-
rithm and other related components. Firstly, we introduce the format of input data used
to model the Road Graph and how we utilize the Open Source Routing Machine. Then, we
describe the data format for the Timetable structure. As next, we describe how we imple-
ment the Intermodal McRAPTOR algorithm in Java. At the end, we describe the parallel
computation that is used to process the travel demand faster.

5.1 OpenStreetMap Data

Since the Road graph is a part of the intermodal transport network, we need data that
contain a description of roads in the desired city. Preferably such data that carries informa-
tion about GPS coordinates of every route segment. The OpenStreetMap1 (OSM) project
provides precisely this type of data for the whole planet Earth. OSM project is a com-
munity of voluntary contributors that enter and edit the geographical data into the OSM
database. Every building, road, point of interest, and more map data are included in
the OSM database, and they are provided under the Open Database license. OSM data of
particular regions are available in various formats. We prefer files with the Protocolbuffer
Binary Format (PBF) since the size is smaller, and the processing of the is faster than other
available formats. Now, we briefly look at the structure of OSM data; it is a composition of
three basic elements:

• Nodes: A node is a single point determined by nodeId and GPS coordinates (latitude
and longitude). More nodes together can describe the shape of a way or the single
location on the map.

• Ways: A way is a list of nodes that represent a road, a river, or an area boundary.
The way can be open or closed, depending on if it describes a line or an area.

• Relations: A relation is a group of elements that describes a relationship between
them. For example, a relation can describe a type of route, e.g., a bus route, or a cycle
route.

1https://openstreetmap.org/
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Each element may contain a tag which is a key-value pair. Tags describe the meaning
of a particular element, which can be a type of building, type of road, etc. In this thesis,
we do not need a deep understanding of OSM data, as many tools that process the OSM
data already exist. The first example is the tool Osmconvert2, which can convert OSM files
between formats or extract OSM data within a specified region. This tool is really useful,
since on the Geofabrik’s website3 the smallest region is usually a country. We only need
data that are from the area of the city. Thus, we download a PBF file with OSM data for
country and use the Osmconvert tool to extract data within the desired rectangle.
Example command to extract OSM data within the Prague area:

$ ./osmconvert czech-republic-latest.osm.pbf -o=prague-latest.osm.pbf
-b=14.240707,49.946334,14.709360,50.180942

After the command is processed, we still have data containing all elements in the area.
Thus, we need to extract only the elements that describes roads. We use another command-
line tool called Osmfilter4 that filters data by specifying OSM tags. Note that Osmfilter
does not accept PBF format, but OSM or O5M formats, hence the PBF file should be
converted using Osmconvert first.
Example usage of Osmfilter to filter roads:

$ ./osmfilter prague-latest.o5m –keep="highway=" –drop="access=no"
-o=prague-roads.o5m

In this thesis, we need not to filter the road data by ourselves. We use the Open Source
Routing Machine (OSRM) that is accompanied by the tool Osrm-extract that extracts roads
from PBF file. The detailed description of the usage of the OSRM is Section 5.2.

5.2 Open Source Routing Machine

The Open Source Routing Machine5 (OSRM) is the open-source engine that searches short-
est journeys. The OSRM is designed to work with OSM data and is able to search optimal
journeys for non-public transport modes, bicycle, car, and walk. A car mode in OSRM is
sufficient for our taxi service transport mode, which we want to include in our analysis.
According to OSRM website, there are two algorithms implemented for journey planning,
the Contraction Hierarchies (CH) and Multi-Level Dijkstra (MLD). Since the Multi-Level
Dijkstra is a name for a query phase in Customizable Route Planning (CRP) [22], we con-
sider the MLD as another name for CRP. As we already described in Chapter 4, CRP and
CH have a pre-processing phase. Also, the OSRM is accompanied by command-line tools
that pre-process the OSM data. Since the OSRM meets our requirements; we decided to
use this engine to compute journeys in the Road Graph. There are two possibilities how

2https://wiki.openstreetmap.org/wiki/Osmconvert
3https://download.geofabrik.de/
4https://wiki.openstreetmap.org/wiki/Osmfilter
5http://project-osrm.org/

https://wiki.openstreetmap.org/wiki/Osmconvert
https://download.geofabrik.de/
https://wiki.openstreetmap.org/wiki/Osmfilter
http://project-osrm.org/
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to integrate the OSRM to another application. One possibility is to use the C++ library,
which is more difficult because our application is written in Java. Instead of using the Java
Native Interface6 to call the C++ library, we implement a connector to an HTTP API.
There is one consequence of choosing this option. We need a running instance of OSRM
while calling the API from our application. The full list of accessible services of HTTP API
is the following:

• Nearest: A service that returns k-nearest OSM nodes with their GPS coordinates.

• Route: A service that finds the fastest journey between GPS coordinates in the spec-
ified order.

• Table: A service that computes the duration or distance of the fastest journey between
all pairs of specified GPS coordinates.

• Match: A service that matches noisy GPS traces to the GPS locations of the road
network in the most acceptable way.

• Trip: A service that solves the Traveling Salesman Problem.

• Tile: A service that returns Mapbox Vector Tiles7.

All we need is to compute the duration of the fastest journey from an origin location
to surrounding stops. Thus, we implemented the OSRM connector in our Java application
(package: osrm) that access the Table service via HTTP requests. As a next step, we need
to run an OSRM instance that accepts the HTTP requests. To run the OSRM instance,
we need to pre-process the OSM data first. The pre-processing phase differs in accordance
to which algorithm (CH or CRP) is used in the query phase. We provide an example of
commands which needs to be processed to do the pre-processing phase. In the example, we
use the PBF file with OSM data as the input. Also we specify the OSRM profile foot.lua
that means walk transport mode in our notation.
Example of the pre-processing phase for CH:

$ ./osrm-extract prague.osm.pbf -p profiles/foot.lua
$ ./osrm-contract prague.osrm

Example of the pre-processing phase for MLD:

$ ./osrm-extract.exe prague.osm.pbf -p foot.lua
$ ./osrm-partition.exe prague.osrm
$ ./osrm-customize.exe prague.osrm

Then, the algorithm which is used during the computations is specified while running
the OSRM instance by the parameter algorithm. The instance of OSRM computes journeys
for only one transport mode, but we need to compute journeys for more transport modes

6https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
7https://docs.mapbox.com/vector-tiles/reference/

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.mapbox.com/vector-tiles/reference/
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at once. The solution is to run one OSRM instance for each desired transport mode on a
different port.
Example of running the OSRM on a local machine:

$ ./osrm-routed.exe –algorithm=CH –ip=127.0.0.1 –port=5000 prague.osrm

To ease the process, we created a GitHub repository8 with a Dockerfile9. The Dockerfile
assembles a Docker image10 with the OSRM HTTP API for all profiles within the region of
the city of Prague. During the build, the pre-processing phase of OSM data for CH is done.
The Docker image is publicly accessible on the DockerHub11.

The recapitulation of this section is that we implement a HTTP connector that com-
municates with OSRM API. By using this implementation, we are able to compute optimal
journeys in the Road graph. Thus, we implemented the first mile phase of the Intermodal
CRP-McRAPTOR. Note that the first mile phase collects initial transfers by searching
the optimal journeys for non-public transport modes.

5.3 Timetable Data

To model a public transport network which is the part of the intermodal transport network,
we need data to create the Timetable structure. More precisely, we need data that include
information about scheduled trips in the public transport network. Also, such data have to
include GPS coordinates of stops and roads wherever the public transport vehicles move.
For this purpose, Google has introduced the General Transit Feed Specification12 (GTFS).
The GTFS defines a common format for public transport data, and it includes everything we
need for modeling the Timetable structure. The data in the GTFS format is a group of text
files collected in a ZIP file. The most known public database of GTFS data is accessible
via OpenMobilityData’s website13. Each file in the ZIP describes a particular aspect of
the public transport network. The following list is the group of required files of the GTFS
format:

• agency.txt: A list of institutions that manage public transport.

• stops.txt: A list of stops in the public transport network where a vehicle picks up or
drops off passengers. Each stop has a geographical location associated with the name
of the stop and additional properties.

• routes.txt: A list of routes in the public transport network. Each route is determined
by routeId, name, and type. For example, a route is a bus link, on which several trips
are arranged during the day.

8https://github.com/fiserto1/osrm-java8-docker
9https://docs.docker.com/engine/reference/builder/

10https://docs.docker.com/engine/reference/commandline/images/
11https://hub.docker.com/r/fiserto1/osrm-backend-openjdk8
12https://developers.google.com/transit/gtfs/
13https://openmobilitydata.org/feeds

https://github.com/fiserto1/osrm-java8-docker
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/commandline/images/
https://hub.docker.com/r/fiserto1/osrm-backend-openjdk8
https://developers.google.com/transit/gtfs/
https://openmobilitydata.org/feeds
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• trips.txt: A list of trips in the public transport network. A trip describes one
journey managed by one vehicle on a route. A trip is determined by routeId, tripId,
and optionally a geospatial shape of the journey.

• stop_times.txt: A list of entries that include arrival and departure times for each
stop and vehicle that visits the stop during a day.

• calendar.txt, calendar_dates.txt: Files that determine whether a trip is realized
on a certain day of a week. Either one of these files is required in the GTFS dataset.

Unless required files, there is another file transfers.txt that is usually included in the GTFS
dataset. It is a list of transfers, where the transfer is the relation between two routes, where
it is possible to switch trips. In our implementation, we add the duration of the transfer to
the total duration of a journey.

To load the GTFS files, we used the existing implementation that is available in the Git-
Lab repository14. The implementation is provided by the Artificial Intelligence Center15

(AIC). We extended this implementation by the class GtfsRouteType, which is the enumer-
ation of route types specified by GTFS reference. In our code, all classes that are needed
to load the GTFS into Java objects are in the package cz.tfiser.gtfs. Then, we used
the same GitLab repository to model the Timetable structure. We slightly edited the code
and added a class MultiTransfer, which models the initial transfers of non-public trans-
port modes, as stated in Algorithm 1 in Section 4.5. The resulting classes are in package
cz.tfiser.raptor.structures.timetable.

5.4 McRAPTOR

In the Gitlab repository mentioned in the previous section, there is the implementation of
the RAPTOR algorithm, which is a single-criteria version of the McRAPTOR algorithm.
While the principle is similar, the implementation of the multi-criteria version is more chal-
lenging. Thus, we implemented the McRAPTOR algorithm ourselves, except that the code
from the repository is used to load the Timetable structure. Our implementation supports
optimization of at most four criteria. The criteria journey duration and number of inter-
changes are optimized by default. In addition, the optimization of occupancy and costs can
be enabled. The implementation is in the class McRaptor which is located in the package
cz.tfiser.raptor.

The McRAPTOR is the essential part of the Intermodal CRP-McRAPTOR algorithm,
which follows up on the first mile computation from Section 5.2 by finding journeys in
the public transport network.

5.5 Intermodal CRP-McRAPTOR

The implementation of the Intermodal CRP-McRAPTOR from Section 4.5 is a composition
of components where each component solves a particular part of the problem. The list of
general components is the following:

14https://gitlab.fel.cvut.cz/kasnezde/raptor
15http://aic.fel.cvut.cz/

https://gitlab.fel.cvut.cz/kasnezde/raptor
http://aic.fel.cvut.cz/
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• Journey Planner: The core component that processes the travel demand and returns
the selected journey for every origin-destination pair. It includes the McRAPTOR
algorithm and the OSRM connector that calls the OSRM API component. Also,
it includes the Fuzzy selector that selects the best journey from each Pareto set of
optimal intermodal journeys.

• OSRM API: A standalone third-party application that provides the OSRM HTTP
API for computing a duration of fastest journeys in the Road Graph. Every particular
non-public transport mode has its running instance.

• KPI Computer: A component that computes key performance indicators of the in-
termodal transport network. It takes the output of the Journey Planner component
and exports the results into files.

Now, we describe the complete process of one analysis instance by using the schema in
Figure 5.1. At first, we prepare input data for the Journey Planner. The Travel Demand is
the GeoJSON16 file that contains origin-destination pairs and departure times. The Occu-
pancy Data is the CSV file that defines the level of occupancy for every trip segment. The
GTFS data is a group of text files described in Section 5.3. All three inputs are consumed
by the Journey Planner component. As next, we prepare data for OSRM. We process the
OSM data for each desired OSRM profile (driving, walking, or cycling) as it is described
in Section 5.2. Then, we run the instance of OSRM application from the command-line
for every OSRM profile. After that, we can run the Journey Planner component by using
the class RequestProcessorMain. When the Journey Planner finishes the processing, we
use the output as the input for the KPI Computer component.

Journey Planner

KPI Computer

Travel Demand

OSRM 
Driving

OSRM 
Cycling

OSRM 
Walking

Occupancy Data

GTFS Data

OSM Driving 
Data

OSM Cycling 
Data

OSM Walking 
Data

Figure 5.1: The general schema of the implementation.

16http://geojson.org/

http://geojson.org/
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When we compare our implementation with the pseudo-code in Section 4.5, the in-
ner loop is implemented in the class FirstMileSolver, and the main loop is in the class
RequestProcessor. In the FirstMileSolver, the OSRM connector sends queries to OSRM
HTTP API. The RequestProcessor calls the class McRaptor, which computes the Pareto
sets. Our implementation of the Fuzzy dominance scoring algorithm located in the class
FuzzyDominancePassengerProfile. The last part of the pseudo-code is KPI computation;
it is located in the class Analyser. Our implementation is accessible on GitLab repository17.

5.6 Parallel Processing

Since the Journey Planner component optimizes four criteria during the computation, it is
very demanding on the computation time. We decided to divide the passenger demand
into equally large parts. Then, each part is processed on the standalone Journey Planner
instance. Although, all instances of Journey Planner use the same OSRM HTTP API. Thus,
we still run at most three instances of OSRM application. After all parts of the passenger
demand are processed, we use the ResultMerger to merge the results of a particular Journey
Planner into one file. The schema in Figure 5.2 depicts the parallel processing. In the end,
the KPI computer can be used to finish the process.

Figure 5.2: The schema of parallel processing of passenger demand.

17https://gitlab.fel.cvut.cz/fiserto1/analyser-of-intermodal-transport-network

https://gitlab.fel.cvut.cz/fiserto1/analyser-of-intermodal-transport-network
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Chapter 6

Evaluation

In this chapter, we provide an analysis of a real-world intermodal transport network. Firstly,
we describe data from which the intermodal transport network is modeled. Then, we deter-
mine values for the parameters that are needed to run our application. Finally, we present
the outcome of the analysis itself. The analysis is divided into four experiments. In the first
experiment, we collect the occupancy data which are needed to detect the inconvenient trip
segments. In the following experiments we process the same travel demand while chang-
ing the set of allowed transport modes in the intermodal transport network. To process
the travel demand, we use the Journey Planner application from Section 5.5. By using
the parallel processing (see Section 5.6), we run all the experiments on a remote computing
machine1 provided by Metacentrum2. The hardware specification that we used to request
a machine in the grid is: 12 CPU and 64 GB of RAM.

6.1 Input Data

We have chosen the city of Prague as an area for our analysis. This area is sufficiently large
and contains many transport modes. In this evaluation, we explicitly include these transport
modes: bus, tram, subway, ferry, taxi service, bicycle, and walk. For all experiments, we
set the departure time window from 7 a.m. to 8 a.m. which simulates the peak hour in the
morning.

6.1.1 Transport Modes

In the analysis, we want to show the difference of key performance indicators when we
change the set of allowed transport modes in the intermodal transport network. Thus, we
experiment with different settings of the set of allowed transport modesMa, which is defined
in Section 3.8.

1http://metavo.metacentrum.cz/pbsmon2/hardware#alfrid-cluster.meta.zcu.cz
2http://metacentrum.cz
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6.1.2 GTFS Data

The General Transit Feed Specification (GTFS) is a data format for public transport timeta-
bles. The GTFS data are composed of text files that contain detailed description of public
transport entities (e.g., stops, routes, and trips) and their precise GPS locations. We have
used the GTFS data provided by Pražská integrovaná doprava.3 From this dataset, we
have extracted only data that are inside the bounding box shown in Figure 6.1. Obtained
data are used to represent the public transport part of the intermodal transport network.
The resulting numbers of entities are in Table 6.1. We also provide a view of GTFS stops
categorized by the transport mode in Figure 6.2.

Figure 6.1: The outer bounding box of Prague that is used for data extraction (blue).
The outer bounding box has approximately 34 km in width and 26 km in length. The red
bounding box describes the destination area for commuters.

3https://pid.cz/o-systemu/opendata/

https://pid.cz/o-systemu/opendata/
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# Stops # Routes # Trips Time Period
4,755 375 72,109 21/02/2020 - 01/03/2020

Table 6.1: The description of GTFS data obtained Pražská integrovaná doprava after ex-
tracting the data in the outer bounding box of the Prague area.

Figure 6.2: The GTFS stops in the outer bounding box. The stops are categorized by
the transport mode. (Green - Bus, Red - Tram, Yellow - Subway, Black - Rail, Blue - Ferry,
Brown - Cable car)

6.1.3 OSM Data

As the source with OpenStreetMap (OSM) data, we use the website that is managed by
Geofabrik4. Although there are no data for the Prague area but for the Czech Republic
as a whole. From the dataset for the Czech Republic, we extract data within the bounding
box as we did with GTFS data. Then, we use features accompanied by Open Source Routing
Machine (OSRM) to extract routes and compute route contractions. After that, we pass
the data as a parameter to run the OSRM. These data form the Road graph which is the part
of the intermodal transport network.

6.1.4 Demand Data

Since we do not know the real travel demand in the morning peak hour, we generate origin-
destination pairs randomly. Each origin location is inside the outer (blue) bounding box

4https://download.geofabrik.de/europe/czech-republic.html

https://download.geofabrik.de/europe/czech-republic.html
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but outside the inner (red) bounding box in Figure 6.1. On the other hand, all destination
locations are in the inner (red) bounding box. As the time of departure, we randomly
assigned a time to each origin-destination pair from the time window from 7 a.m. to 8 a.m.
In all experiments, we use the same travel demand with 160 000 origin-destination pairs.

6.1.5 Occupancy Data

As we discussed in Section 3.5, preference of the city is to avoid the overcrowding of the public
transport network. To consider this in the analysis, we need data that determines the level
of occupancy to each trip segment. We were not able to find a source with these type of
data. Therefore, we generate a dataset by computing optimal journeys for origin-destination
pairs and by collecting occupancy data of each trip segment.

6.2 Journey Planner Configuration

Parameter Value Description
Rmax 4 rounds Number of rounds for the McRAPTOR algorithm i.e.,

returned journey has at most 3 transfers between PT modes
and one transfer from NPT mode to PT mode.

Dts 8 km Maximal distance reachable by taxi from the origin location.
Dbc 4 km Maximal distance reachable by bicycle from the origin location.
Dw 2 km Maximal distance reachable by walk from the origin location.
St 35 km/h Average speed of a taxi in a city.
Ppt 3 e Price of a single ticket that is required to buy before boarding

to the first PT vehicle i.e., a transfer with the same ticket
is allowed.

Pt

km 1 e/km Average price per kilometer for a taxi in a city.
bconv 67 % of max.

capacity
Maximum convenient occupancy (see Section 3.7.5).
The parameter is defined relatively to a maximum capacity
of particular transport mode.

cs 1,500 pers. Maximum capacity of the subway transport mode.
cb 100 pers. Maximum capacity of the bus transport mode.
ct 170 pers. Maximum capacity of the tram transport mode.
cr 2,000 pers. Maximum capacity of the rail transport mode.
cf 50 pers. Maximum capacity of the ferry transport mode.

Table 6.2: Configuration of the Journey Planner.

To run the analysis, we need to determine values of the input parameters. The parameters
that need to be set up for the Journey Planner are listed in Table 6.2, and parameters for
the setting of Fuzzy dominance are in Table 6.3. To set up the Intermodal CRP-McRAPTOR
algorithm, we need to specify the number of rounds and parameters to compute the passenger
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costs for using a taxi service. Then, we need maximal reachable distance for every NPT
mode to compute first mile journeys. We also need maximum capacities of particular PT
modes to compute the KPIs. In the end, we set up the parameters that are used during
the journey selection.

Criterion χ ε

Journey duration 0.8 60
Journey costs 0.8 2
Number of interchanges 0.1 1
Occupancy 0.8 300

Table 6.3: Configuration of Fuzzy dominance (see Section 4.4)

6.3 Analysis

In this section, we describe four experiments by which we analyze the intermodal transport
network. In the first experiment we analyze the network without knowledge of occupancy
data while only PT andWmodes are allowed. By using the results of the first experiment, we
generate occupancy data that are later used in other experiments as the input. In the second
experiment, we enable the occupancy criterion and analyze the intermodal transport network
with the same transport modes (PT and W). In the third experiment we allow the bicycle
transport mode in addition to PT and W modes. In the last experiment, the taxi service
transport mode is allowed instead of the bicycle mode. Denote that travel demand is the
same for every experiment. In the following text, we use the terms, convenient trip segment,
inconvenient trip segment and overcrowded trip segment as it is defined in Section 3.7.5.

6.3.1 Experiment 1: Occupancy Generation

The purpose of this experiment is to analyze the default state of the public transport network
and generate the occupancy data for the following experiments. At first, we allow only public
transport and walk modes in the intermodal transport network model. Since we do not have
any occupancy data yet, the criterion that optimizes occupancy is disabled. Then, we use
the Intermodal CRP-McRAPTOR algorithm to process the travel demand and compute
KPIs. To detect the inconvenient segments and overcrowded segments, we use parameters
that determine capacities for each public transport mode and the maximum convenient
occupancy from Table 6.2. After 37 minutes of computation, the Journey Planner has
found journey for 157,684 passengers out of a total of 160,000. Journeys for other passengers
cannot be found for two reasons. At first, we allow at most four transfers during a journey,
thus the passenger requested a journey that may be realized only with five or more transfers.
At second, the walking range from the origin location is limited to two kilometers. Thus,
a passenger requested a journey from a location that is too far from the public transport
network. The average duration traveled by one commuter is 63.8 minutes. It is not surprising
value according to the size of the outer bounding box in Figure 6.1. Note that the walking
time to reach the first stop and the transfer time are included in the duration of the journey.
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As the next step, we divide 157,684 selected journeys into trip segments. Then, we
obtain the occupancy of every trip segment by calculating the occurrences of particular trip
segment. As a result, we get 59,649 unique trip segments that at least one passenger used to
travel. To see how occupied, the segments are, we create a histogram of occupancy, where
only inconvenient trip segments are included. The histogram is shown in Figure 6.3.

Figure 6.3: Histogram with inconvenient trip segments of all PT modes. The intervals of
the segment occupancy is on the x-axis. The occupancy is measured as percents from the
maximum capacity of the particular public transport mode. The number of segments that
belongs to each occupancy interval is on the y-axis

Figure 6.4: Histogram with inconvenient trip segments of the bus transport mode. The
intervals of the segment occupancy is on the x-axis. The occupancy is measured as per-
cents from the maximum capacity of the particular public transport mode. The number of
segments that belongs to each occupancy interval is on the y-axis
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Figure 6.5: Histogram with inconvenient trip segments of the tram transport mode. The
intervals of the segment occupancy is on the x-axis. The occupancy is measured as per-
cents from the maximum capacity of the particular public transport mode. The number of
segments that belongs to each occupancy interval is on the y-axis

In Figure 6.3, we see that 1,592 trip segments are occupied more than twice the maximum
capacity of the vehicle; it is 29.3 % of all inconvenient trip segments (5,433). The most of
all inconvenient segments belongs to the bus transport mode followed by the tram transport
mode. To clarify this, we also show the histograms of the same type for the bus transport
mode (see Figure 6.4) and for the tram transport mode (see Figure 6.5).

To summarize the first experiment, we observe that the usage of randomly generated
demand lead to 5,433 inconvenient trip segments in the public transport network, and from
5,433 inconvenient trip segments, 3,636 trip segments are overcrowded. Also, we collected
the occupancy data to model the preferences of the city (see Section 3.5).

6.3.2 Experiment 2: PT and Walk with Occupancy Criterion

In the second experiment, we process the same travel demand and keep the PT and Wmodes
allowed. Nevertheless, we use the occupancy data obtained from the first experiment to as-
sign a value to every trip segment in the public transport network. After that, we are able
to include the occupancy criterion into a set of optimized criteria. This time, the computa-
tion time of the Intermodal CRP-McRAPTOR was 3.3 hours. The increase in computation
time is caused by adding the fourth criterion. To be exact, more labels are expanded in the
McRAPTOR algorithm since the labels are not eliminated by the dominance.

When we look at the composite histogram in Figure 6.6, we observe the trip segment
occupancy that is obtained from both experiments. Although, only the segments that were
found inconvenient in the first experiment are included in both datasets. In other words,
we see how the occupancy has changed on the trip segments that the city marked as incon-
venient. The blue color belongs to the first experiment and the yellow color to the second
experiment. In the first experiment, we marked 5,433 segments as inconvenient. In the sec-
ond experiment, 2,636 of them became convenient, and 2,796 segments are inconvenient
even after optimization of the vehicle occupancy. When we extract only trip segments with
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tram transport mode (see Figure 6.7), we observe that no segment is occupied more than
140 % of the maximum tram capacity. Also, in the interval 80-100 %, more than a half of
trip segments were distributed into intervals on the left. Thus, the occupancy in many tram
segments was reduced.

Figure 6.6: Histogram of occupancy in trip segments that are marked inconvenient by
the city. The occupancy of trip segments from the first experiment are blue and the occu-
pancy of trip segments from the second experiment are yellow. In the second experiment,
the vehicle occupancy is optimized. We say that the occupancy data from the first exper-
iment are before applying the preferences of the city (Without PoC). Similarly, the data
from the second experiment are after applying PoC (With PoC).

Figure 6.7: Histogram of occupancy in tram trip segments that are marked inconvenient by
the city. The occupancy of trip segments from the first experiment are blue and the occu-
pancy of trip segments from the second experiment are yellow. In the second experiment,
the vehicle occupancy is optimized. We say that the occupancy data from the first exper-
iment are before applying the preferences of the city (Without PoC). Similarly, the data
from the second experiment are after applying PoC (With PoC).
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The KPIs computed for the second experiment are as follows. The algorithm assigned
157,687 journeys in which the average journey duration is 81.6 minutes. In total, 4,507
segments are inconvenient and 2,541 are overcrowded. Thus, when we apply the occupancy
criteria, the number of inconvenient and overcrowded segments is decreased. Nevertheless,
the average journey duration was increased by 17.8 minutes, which is more then we expected.
Note that the optimization distributes occupancy mainly from the trip segments that are
marked by city as overcrowded, although it may lead to overload in previously convenient
segments. In Figure 6.8, we show all overcrowded trip segments of both experiments on
a map of Prague.

Figure 6.8: Overcrowded trip segments visualized on the map of Prague. The red segments
are overcrowded trip segments marked by the city as inconvenient. The blue segments are
overcrowded trip segments after the reduction. The segments are categorized from the lowest
(light color) to the highest (dark color) occupancy.

6.3.3 Experiment 3: PT, Walk and Bicycle with Occupancy Criterion

In the third experiment, we optimize occupancy with the addition of a bicycle transport
mode i.e., we allow the bicycle transport mode along with PT and W modes in the inter-
modal transport network. The algorithm was processing the travel demand almost for 4
hours. Note that the addition of the bicycle transport mode allowed the Intermodal CRP-
McRAPTOR algorithm to find journeys for 159,999 origin-destination pairs. The increase
of the number of found paths is caused by the fact, that the commuters more than two
kilometers away from public transport are able to access to the public transport network
with a bicycle.
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Similarly to the second experiment, we observe the change in segment occupancy by
using histograms. A histogram of the occupancy of inconvenient trips is in Figure 6.9 and
histograms of the occupancy of Bus and Tram trip segments are in Figures 6.10 and 6.11,
respectively.

Figure 6.9: Histogram of occupancy in trip segments that are marked inconvenient by
the city. The occupancy of trip segments from the first experiment are blue and the occu-
pancy of trip segments from the third experiment are yellow. In the third experiment,
the vehicle occupancy is optimized. We say that the occupancy data from the first exper-
iment are before applying the preferences of the city (Without PoC). Similarly, the data
from the third experiment are after applying PoC (With PoC).

Figure 6.10: Histogram of occupancy in bus trip segments that are marked inconvenient by
the city. The occupancy of trip segments from the first experiment are blue and the occu-
pancy of trip segments from the third experiment are yellow. In the third experiment,
the vehicle occupancy is optimized. We say that the occupancy data from the first exper-
iment are before applying the preferences of the city (Without PoC). Similarly, the data
from the third experiment are after applying PoC (With PoC).
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Figure 6.11: Histogram of occupancy in tram trip segments that are marked inconvenient
by the city. The occupancy of trip segments from the first experiment are blue and the oc-
cupancy of trip segments from the third experiment are yellow. In the third experiment,
the vehicle occupancy is optimized. We say that the occupancy data from the first exper-
iment are before applying the preferences of the city (Without PoC). Similarly, the data
from the third experiment are after applying PoC (With PoC).

As well as in the second experiment, we observe that the inconvenient segments are
distributed from the right side to the left side of the histogram. The high increase in the in-
terval from 0 to 20 % means, that many inconvenient segments become nearly unoccupied,
since the commuters are preferring a bicycle before public transport.

When we observe the total occupancy KPIs measured in the second experiment, 2,818
trip segments are inconvenient and 1,353 are overcrowded. Both KPIs are lower than in
the second experiment. Furthermore, the average journey duration (57.5 minutes) is even
better than in the first experiment. As we expected, riding a bicycle is an efficient way to
ease the overcrowding in the public transport network. The reason for such reduction in
average duration of journey, is that some commuters choose a bicycle (instead of walking)
to connect to the surrounding stops of public transport.

6.3.4 Experiment 4: PT, Walk and Taxi with Occupancy Criterion

In the fourth experiment, we allow the taxi service, walk and PT transport modes. As we
did in the second and the third experiment, the analysis is based on reducing the occupancy
in public transport trips. Hence, the occupancy data from the first experiment are used to
determine preferences of the city.

The Journey Planner has found journeys for all 160,000 origin-destination pairs after
12 hours of computation. Here, the computation takes much longer then in other experi-
ments. The reason is that using a taxi service is much faster than other analyzed modes
whereas journey costs are higher. Recall that we optimize four criteria, duration, number
of interchanges, costs, and occupancy. Thus, when the taxi service mode is included in al-
lowed transport modes with PT and W, the domination of labels is very affected. It means,



44 CHAPTER 6. EVALUATION

that the expanded labels in the McRAPTOR part are rarely dominated. The authors of
the McRAPTOR algorithm have already pointed out this issue in [36].

One more time, we compare the occupancy of trip segments by using histograms. In Fig-
ure 6.12, we observe that the major part of inconvenient segments from the first experiment
has the occupancy between 0 % and 60 % of the maximum vehicle capacity. More precisely,
4,545 of 5,433 trip segments are in the interval from 0 to 60 %. The number of bus segments
in the interval 0-20 % shows that many citizens has used the taxi service to avoid the in-
convenient bus segments. In comparison to Figure 6.9 in the third experiment, we see that
the improvement of overcrowding is noticeable.

Figure 6.12: Histogram of occupancy in trip segments that are marked inconvenient by
the city. The occupancy of trip segments from the first experiment are blue and the occu-
pancy of trip segments from the fourth experiment are yellow. In the fourth experiment,
the vehicle occupancy is optimized. We say that the occupancy data from the first experi-
ment are before applying the preferences of the city (Before PoC). Similarly, the data from
the third experiment are after applying PoC (after PoC).

In the end of this experiment we evaluate the KPIs, the average duration of the journey
is 50.8 minutes per passenger and the average journey costs are 3.2 e. As we expected,
the average of journey duration is lower, and the average journey costs are higher than in
the third experiment where the additional transport mode was bicycle. The total count of
inconvenient trip is 1,442, and the number of overcrowded segments is 749 which is the lowest
value among all four experiments. Note that the usage of taxi service is probably higher
than in the reality. Nevertheless, we would like to regulate the KPIs by changing the input
parameters of taxi service in future work as a future work.

6.3.5 Summary

Finally, we provide the summary of KPIs for all four experiments in Table 6.4. In the second
column, we observe the values for the first experiment. The 157,684 of origin-destination
pairs has feasible journey and detected 5,433 inconvenient trip segments with an average
duration of 63.8 minutes per one commuter. In the second experiment where we optimize
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vehicle occupancy has processed a similar amount of requests and detected 4,507 inconve-
nient segments. The decomposition of overcrowding caused that citizens are traveling by
less occupied buses. The average duration is 81.6 minutes per commuter, which is circa
a 18 minutes prolongation for every commuter on average. In the third experiment, we al-
lowed commuters to use bicycles. It led to finding of journeys for 159,999 origin-destination
pairs, which is the whole demand except one origin-destination pair. In this case, 2,818 in-
convenient trip segments were detected. The very compelling achievement is that we found
more journeys, and the rate of overcrowding in vehicles is still better than in earlier ex-
periments. The foreseen result is that the usage of bicycles improves the average journey
duration per commuter to 57.5 minutes. Even better KPIs were computed in the fourth
experiment, where a commuter travels 50.8 minutes on average, and 1,422 trip segments
are inconvenient. It is almost two times lower occurrences of inconvenient segments than in
the third experiment. Nevertheless, introducing the taxi service in the fourth experiment
led to the increase of the average spending for a journey.

Key Performance Indicator Exp. 1 Exp. 2 Exp. 3 Exp. 4
kn: Number of journeys 157,684 157,687 159,999 160,000
kdt: Total duration of journeys (hours) 167,567 214,463 153,263 135,476
kct: Total costs of journeys (e) 472,518 472,527 475,617 512,640
kd: Average journey duration (minutes) 63.8 81.6 57.5 50.8
kc: Average journey costs (e) 2.997 2.997 2.973 3.204
knoi: Average number of interchanges 2.9 2.8 2.5 2.3
ku: Number of used trip segments 59,649 73,878 56,897 54,537
ki: Number of inconvenient trip segments 5,433 4,507 2,818 1,442
ko: Number of overcrowded trip segments 3,636 2,541 1,353 749
ksu: Number of overcapacity trip segment usages 553,016 252,133 124,960 84,368

Table 6.4: Summary table of all measured KPIs (see Section 3.7) in all four experiments.
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Chapter 7

Conclusion

In this work, we have analyzed the intermodal transport network while considering prefer-
ences of the city. To accomplish the goal, we proceeded with the following steps. Firstly, we
have researched similar work to understand the problem properly. Then, we provided a rep-
resentation of the intermodal transport network as a composition of the public transport
network and the road network. Within the network representation, we defined the inter-
modal transport network analysis problem with preferences of the city. As the next step, we
described our approach to solve the problem. Last but not least, we implemented all fea-
tures needed to process the analysis, Demand Generator, Journey Planner, Result Merger,
KPI Computer. The Demand Generator randomly generates the origin-destination pairs.
The Journey Planner searches journeys for origin-destination pairs while optimizing four
criteria, duration, occupancy, costs, and number of interchanges. The KPI Computer com-
putes key performance indicators (KPIs) and outputs results into files. Lastly, we evaluated
our approach in the area of Prague city. We have analyzed the scenario where commuters
are traveling in peak hour towards the city center. We have compared the KPIs of four
experiments with different settings of the intermodal transport network. We have observed
that even with imperfect demand, our algorithm ease the occupancy of the public transport
network by offering commuters slightly slower journeys in order to avoid overcrowded trips.
The rate of occupancy reduction depends on the types of transport modes that are allowed
for commuters to travel. In the fourth experiment where the taxi service transport mode is
allowed, we achieved the reduction in the number of overcrowded segments by 79.4 %.

7.1 Future Work

This thesis shows the potential to analyze and optimize the overcrowding in public transport.
There are plenty of options move this work forward. We would like to generate a realistic
travel demand and show the real value of our analyzing tool. Also, we would like to process
the analysis with other transport modes, e.g. electric scooters. Another option to go further,
is to improve the algorithm in Journey Planner to have better computation time.
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7.1.1 Data Gathering

Although it is out of the scope of this thesis, it would be excellent to work with a realistic
demand. In future, we would like to aim at reproducing the travel demand that better
corresponds to reality. If might be done by gathering the data from traffic measurement
reports or a census. If we manage to simulate the real demand it would satisfy our efforts.
Similarly important is the gathering of data about other transport modes. With each
introduction of a new transport mode, we need data about the demand accompanied by
extra data e.g., locations of bike racks or park and rides. We want to do analysis even with
modern transport modes including bike-sharing and electric scooters. That would complete
our idea of the real intermodal transport network.

7.1.2 Improvements of Journey Planner

Our multi-criteria Journey Planner optimizes four criteria at once, occupancy, duration,
number of interchanges, and costs. The Journey Planner supports all public transport
modes and above that also walk, bicycle, and taxi service. Except for adding support of
other transport modes, we want to improve computation of the criteria that varies for each
transport mode, e.g. costs of a journey. The multi-criteria computation is tremendously
costly on the processing time of the analysis. Our plan is to include implementation of
Restricted Pareto Sets from [40], it should significantly speed up the Journey Planner.

7.1.3 Improvements of Analysis

The analysis in this work is based only on the analysis of the overcrowding in the public
transport vehicles, but the utilization of our algorithm is wide. With small changes, we can
optimize different criteria of journey and then compute other key performance indicators of
the intermodal transport network. In future, we would like to explore more preferences of
the city. Then, we may adapt our algorithm and analysis to satisfy these preferences. Also,
we would like to automatize process that starts with the data insertion and ends with the
graphical outputs.
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Appendix A

CD Content

The attached CD contains source files with the implementation of the Intermodal CRP-
McRaptor algorithm. The implementation is written in Java (ver. 1.8). We also included
the runnable (JAR) file that is located in the directory: ..\target

To run the application, follow these steps:

1. Copy the directory ..\target to your directory. (The directory path should not
contain any spaces.)

2. Download the OSRM application from: http://build.project-osrm.org/

3. Do the pre-processing phase of the OSRM as it is described in Section 5.1. (Use the
PBF file: ..\target\prague.osm.pbf)

4. Run the OSRM HTTP API for walk transport mode using the command:
$ ./osrm-routed.exe –ip=127.0.0.1 –port=5002 prague.osrm

5. Run the Journey Planner by the following command:
$ java -cp analyser-of-itn-1.0.0.jar \
cz.tfiser.analyser.DemoMain \
travel-demand/example-requests.geojson &> analyser.log

In file example-requests.geojson, there is an example of travel demand with 100 origin-
destination pairs. If this file is passed as and argument of the JAR application, the analysis
of intermodal transport network including the PT and W transport modes will be processed.
After the completion, output files are stored into the ..\target\prague directory.

The configuration files for the application are located in ..\target\config. You can enable
or disable occupancy criterion by setting the property in application.properties:

• request-processor.occupancy-criterion.enabled
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