
MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420189Personal ID number:Střasák FrantišekStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Should I click on a link? Machine Learning to Protect from Cyber Attacks on the Web

Master’s thesis title in Czech:

Strojové učení k ochraně před kybernetickými útoky na webu

Guidelines:
1. Review the state-of-the art methods for detection malicious websites and links.
2. Find available datasets and also create own datasets for this problem.
3. Propose and implement new features and methods for detection malicious websites and links with special attention to
Deep learning methods.
4. Experimentally evaluate the proposed solution on real malicious and normal website and attacks on links datasets.
5. Create a web service for the general public to test if some URL is malicious or not.
6. Critically analyze the results and propose further extensions of the solution with respect to its applicability.

Bibliography / sources:
[1] Graph Neural Networks: A Review of Methods and Applications; Jie Zhou,
Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, Maosong Sun; 2019
[2] Framework for Malicious HTML File Detection; Samuel Hess, School of
Electrical and Computer Engineering, University of Arizona; 2017
[3] Malicious web content detection by machine learning; Yung-Tsung Hou,
Yimeng Chang, Tsuhan Chen , Chi-Sung Laih , Chia-Mei Chen; 2010
[4] Learning detectors of malicious web requests for intrusion detection in
network traffic; Lukas Machlica, Karel Bartos, Michal Sofka; 2017
[5] Convolutional Neural Networks on Graphs with Fast Localized Spectral
Filtering; Michaël Defferrard Xavier Bresson Pierre Vandergheynst; 2017

Name and workplace of master’s thesis supervisor:

Ing. Sebastián García, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 22.05.2020Date of master’s thesis assignment: 03.07.2019

Assignment valid until: 19.02.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Sebastián García, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s thesis

Should I click on a link? Machine Learning to Protect from
Cyber Attacks on the Web

Bc. František Střasák

Supervisor: Ing. Sebastián García, Ph.D.

Study Programme: Open Informatics

Field of Study: Artificial Intelligence

May 22, 2020

iv

v

Aknowledgements
I would like to express my very great appreciation to Ing. Sebastián García, Ph.D for the
patience and for his valuable and constructive suggestions during the development of this
thesis. I would also like to extend my thanks to all members of Stratosphere team for the
help with writing this thesis. I am particularly grateful for the assistance given by Johannes
Gilger for consultation about urlscan.io and Angelo Dell’Aera for consultation about Thug
tool. Finally, I wish to thank to Bára, my parents and rest of the family for their support
and encouragement throughout my study.

vi

vii

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Prague on May 22, 2020 .

viii

Abstract

The detection of unsafe websites poses a challenging task for our security community
because their attacking techniques are varied, advanced and dangerous. There are many
types of unsafe websites that can infect user’s devices or steal their sensitive data. The
most prevalent representative type of unsafe websites are the evil twin websites that use
phishing techniques to steal sensitive data and credentials from users. Evil twin websites are
clone websites imitating other real websites to trick users into using them. Therefore, users
judging the authenticity of a website by its look, can be defrauded by inputting sensitive
information in the evil twin website. To detect these unsafe websites, previous studies have
mainly used blacklists, but they constant updates when a new URL appears. This results in
the approach not protecting from the new and current threats. Another common solution is
to detect the website by analyzing the URL string, which may shows satisfying results under
certain conditions. However, the complexity of domain names and URL parameters makes
this approach to have errors also. Since websites offer much more information than only a
URL, this thesis proposes novel methods to detect unsafe and evil twin websites based on
the analysis of the behavior, content, and structure of websites. The structure refers to the
HTML structure, the content and the behavior refer a large group of features extracted from
the urlscan.io service that provides a complex description of websites. To fulfil its goal of
better detecting unsafe websites, this thesis is mainly separated in two parts. The first part
focuses on the detection of unsafe websites in general by using different set of features. The
second part of this thesis specifically concentrates on the detection of evil twin websites. For
both problems we created and publish our own datasets that can be useful for the whole
community. This thesis presents evidence that features from the content, behaviour and
structure of websites play an essential role for detecting cyber attacks on the websites. The
results show that our models are able to separate between unsafe and legitimate websites
with an accuracy of 92.69% and between evil twin websites and legitimate websites with an
accuracy of 95.28%. Detecting unsafe websites is a hard topic because they keep evolving,
but we believe that this thesis improves the research to detect this threat.

Keywords: Unsafe Websites, Evil Twin Websites, Machine Leaning, Phishing

ix

x

Abstrakt

Detekce nebezpečných webových stránek dnes představuje velkou výzvu, neboť techniky,
které jsou v útocích využívány, jsou velmi rozmanité, pokročilé a nebezpečné. Nebezpečná
webová stránka může infikovat uživatelovo zařízení či ukrást jeho citlivá data. Nejrozšířenějším
zástupcem nebezpečných stránek jsou tzv. evil twin webové stránky, které používají phishin-
gové praktiky ke krádeži citlivých dat. Evil twin webové stránky se snaží co nejvěrněji
napodobit vzhled reálné webové stránky, zmást uživatele a přesvědčit ho k zadání citlivých
údajů, těmi jsou například přihlašovací údaje. Uživatelé, kteří ověřují autenticitu webové
stránky pouze podle vzhledu, mohou být tedy velmi jednoduše podvedeni. Častou technikou
k detekci nebezpečných stránek jsou blacklisty, jež obsahují list nebezpečných URL. Problém
ale nastává, když se objeví nová URL, která v blacklistu není obsažena, a tím pádem nemůže
být detekována. Možným řešením tohoto problému je detekce založená na analýze URL, při
jejíž použití bylo v minulosti během několika výzkumů dosaženo uspokojivých výsledků. We-
bová stránka ale obsahuje více informací než pouze URL. V této práci jsou předkládány nové
metody pro detekci nebezpečných a evil twin stránek, jež jsou založeny na analýze chování,
obsahu a struktuře webové stránky. Data o chování a obsahu webové stránky jsou získána z
analýzy vytvořené pomocí urlscan.io. Tato analýza ukazuje komplexní popis webové stránky
v mnoha směrech. Data o struktuře webové stránky jsou brána ze zdrojového kódu HTML.
První část této práce je věnována obecně detekci nebezpečných stránek a druhá část je za-
měřena pouze na detekci evil twin webových stránek. Pro oba problémy byly vytvořeny
datasety, které jsou veřejně přístupné a mohou být použity pro další výzkum. Z výsledků
výzkumu této diplomové práce vyplývá, že data založená na obsahu, chování a struktuře
webové stránky hrají důležitou roli při detekci kybernetických útoků. Na základě metod
této diplomové práce bylo dosaženo přesnosti 92.69% pro detekci nebezpečných stránek a
95.28% pro detekci evil twin stránek.

Klíčová slova: Nebezpečná webová stránka, Evil Twin, Strojové učení, Phishing
Překlad titulu: Strojové učení k ochraně před kybernetickými útoky na webu

xi

xii

Contents

1 Introduction 1

2 Background 5
2.1 Unsafe websites . 5

2.1.1 Phishing Websites . 5
2.1.2 Malware Websites . 6

2.2 Evil Twin Websites . 7

3 Related Work 11

4 Detection of Unsafe Websites 13
4.1 Dataset of Unsafe Websites . 13

4.1.1 Finding Suitable Data . 13
4.1.2 Generation of the UWD Dataset . 14
4.1.3 Exploration of the UWD Dataset . 14

4.1.3.1 Usage of HTTPS per Class in UWD Dataset 14
4.1.3.2 Size of Downloaded Content per Class in UWD Dataset . . . 15

4.2 Feature Extraction . 16
4.3 Data Models . 17

4.3.1 Visualisation of Data Models . 17
4.4 Methods . 18

4.4.1 Machine Learning Algorithms . 18
4.4.2 Evaluation Metrics . 20
4.4.3 Feature Selection with Feature Importance 20

4.5 Experiments to Detect Unsafe Websites . 22
4.5.1 Experiments using the UWD-feature-set-1 22

4.5.1.1 Training and Hyper-parameter Tuning 22
4.5.1.2 Training with the Best Features 23
4.5.1.3 Comparison of the Trained Models 23
4.5.1.4 Evaluation on the Testing Data 24

4.5.2 Experiments using the UWD-feature-set-2 25
4.5.2.1 Training with the Hyper-parameter Tuning 25
4.5.2.2 Training with the Best Features 25
4.5.2.3 Comparison of the Trained Models 26
4.5.2.4 Evaluation on the Testing Data 27

xiii

xiv CONTENTS

4.6 Analysis of Results . 28

5 Detection of Evil Twin Websites 29
5.1 Dataset of Evil Twin Websites . 29

5.1.1 Finding Suitable Data of Evil Twin Websites 29
5.1.2 Generation of the CETD Dataset . 30
5.1.3 Dataset Cleaning . 30
5.1.4 Dataset Exploration . 31

5.1.4.1 Use of HTTPS per Class in the CETD Dataset 32
5.1.4.2 Size of Downloaded Content per Class in the CETD Dataset 32
5.1.4.3 Total Amount of HTML Tags per Class in CETD Dataset . . 32
5.1.4.4 Amount of HTML Tags per Class in CETD Dataset 33

5.2 Data models . 34
5.2.1 Data Models CETD-feature-set-1 and CETD-feature-set-2 35

5.2.1.1 Visualisation of Data Models CETD-feature-set-1 and CETD-
feature-set-2 . 35

5.2.2 Data Model CETD-DOM-1 . 36
5.2.3 Data Model CETD-DOM-2 . 38

5.3 Methods . 39
5.4 Experiments to Detect Evil Twin Websites . 40

5.4.1 Experiments using the CETD-feature-set-1 41
5.4.1.1 Training with the Hyper-parameter Tuning 41
5.4.1.2 Training with the Best Features 41
5.4.1.3 Comparison of the Trained Models 41
5.4.1.4 Evaluation on the Testing Data 43

5.4.2 Experiments using the CETD-feature-set-2 43
5.4.2.1 Training with the Hyper-parameter Tuning 43
5.4.2.2 Training with the Best Features 44
5.4.2.3 Comparison of the Trained Models 44
5.4.2.4 Evaluation on the Testing Data 45

5.4.3 Experiments using the CETD-DOM-1 46
5.4.4 Experiments using the CETD-DOM-2 47

5.5 Analysis of Results . 48
5.5.1 CETD-feature-set-1 and CETD-feature-set-2 48
5.5.2 CETD-DOM-1 and CETD-DOM-2 . 48
5.5.3 The best model for the Detection of Evil Twin Websites 49

6 Exploiting websites 51

7 Should I Click Web Service 53

8 Conclusion 57

CONTENTS xv

A Description of Features 63
A.1 feature-set-1 - 233 features . 63
A.2 feature-set-2 - 310 features . 69
A.3 The Most Important Features for XGBoost evaluated on UWD-feature-set-1 . 73
A.4 257 unique HTML tags for data model CETD-DOM-1 78
A.5 The Most Important Features for XGBoost evaluated on CETD-feature-set-1 84

B Content of the attachment 89

xvi CONTENTS

List of Figures

2.1 Basic categories of unsafe websites and their relationships. This thesis is
focused only on the detection of unsafe websites and evil twin websites. Based
on the Google Safe Browsing category of the Google Transparency Report [1] 6

2.2 Amount of phishing and malware websites detected per week by Google Safe
Browsing [1]. Data obtained on May 10th, 2020. 6

2.3 An example of a scam web page offering iPhone 11. 7
2.4 Amount of attacking websites created on purpose and amount of attacking

websites that were legitimate websites compromised by attackers. Information
from the detected by Google Transparency ReportSafe Browsing [1]. Data
obtained on May 10th, 2020. 8

2.5 An example of an evil twin web page imitating the Google login form. 9

4.1 Usage of HTTPS by unsafe and legitimate websites in the UWD dataset. . . . 15
4.2 UMAP representation of the Data model using the UWD-feature-set-1 reduced

from 233 dimensions to 2 dimensions. Green dots are legitimate websites and
red dots are unsafe websites. 18

4.3 UMAP representation of the data model using the UWD-feature-set-2, re-
duced from 310 dimensions to 2 dimensions. Green dots are legitimate web-
sites, red dots are malicious websites. 19

4.4 Learning curve for Random Forest with the best hyper-parameters and subset
of 147 the most important features for the UWD-feature-set-1Train. 24

4.5 AUC ROC curve for Random Forest with the best hyper-parameters and with
a subset of 147 the most important features for the UWD-feature-set-1Train. . 24

4.6 Learning curve for XGBoost with the best hyper-parameters and with the all
features for the UWD-feature-set-1Train. 24

4.7 AUC ROC curve for XGBoost with the best hyper-parameters and with the
all features for the UWD-feature-set-1Train. 24

4.8 Learning curve for Random Forest with the best hyper-parameters and subset
of 222 the most important features for the UWD-feature-set-2Train. 26

4.9 AUC ROC curve for Random Forest with the best hyper-parameters and
with a subset of 222 the most important features with the all features for the
UWD-feature-set-2Train. 26

4.10 Learning curve for XGBoost with best hyper parameters and with a subset of
the 183 most important features for the UWD-feature-set-2Train. 27

xvii

xviii LIST OF FIGURES

4.11 ROC for XGBoost with best hyper parameters and with a subset of the 183
most important features for the UWD-feature-set-2Train. 27

5.1 Example process of how to find the URL for the log-in page into each of the
legitimate websites. First, the SP tool adds the phrase “Log in” to the domain
and sends it to “startpage.com”. The site “startpage.com” returns the results
from the search engine. The URL of the first result from the search engine is
taken as the final legitimate URL. 30

5.2 Percentage of usage of HTTPS in evil twin websites and normal websites. . . 33

5.3 Average occurrences of HTML tags for legitimate websites (blue) and evil twin
websites (red). 34

5.4 UMAP representation of data model CETD-feature-set-1, reduced from 233
dimensions to 2 dimensions. Green dots are legitimate websites, and red dots
are evil twin websites. 36

5.5 UMAP representation of the data model CETD-feature-set-2 reduced from
310 dimensions to 2 dimensions. Green dots are legitimate websites, and red
dots are evil twin websites. 37

5.6 Conversion of the HTML structure, into HTML tags occurrences and into a
feature vector. 37

5.7 Representation of the HTML tags in an HTML structure into a graph structure. 38

5.8 There is the PCA node embedding matrix with n rows (nodes) and d columns.
The first histogram is created from the first 2 columns of the matrix. The
second histogram is created from the second 2 columns of the matrix, etc. . . 39

5.9 An example of an evil twin HTML DOM transformation to multi-channel image. 40

5.10 Learning curve for Random Forest with the best hyper parameters and subset
of the 93 most important features for the CETD-feature-set-1Train. 42

5.11 AUC ROC curve for Random Forest with the best hyper parameters and with
a subset of the 93 most important features for the CETD-feature-set-1Train. . 42

5.12 Learning curve for XGBoost with the best hyper parameters and subset of
the 170 most important features for the CETD-feature-set-1Train. 43

5.13 AUC ROC curve for XGBoost with the best hyper parameters and with a
subset of the 170 most important features for the CETD-feature-set-1Train. . . 43

5.14 Learning curve for Random Forest with the best hyper-parameters and subset
of 158 the most important features for the CETD-feature-set-2Train. 45

5.15 AUC ROC curve for Random Forest with the best hyper-parameters and
with a subset of 158 the most important features with the all features for the
CETD-feature-set-2Train. 45

5.16 Learning curve for XGBoost with best hyper parameters and with a subset of
the 229 most important features for the CETD-feature-set-2Train. 46

5.17 ROC for XGBoost with best hyper parameters and with a subset of the 229
most important features for the CETD-feature-set-2Train. 46

LIST OF FIGURES xix

5.18 LeNet architecture - The input shape of multichannel images is (55,55,5),
therefore the input layer has the same shape. Then, there are four convolutional-
pooling layers (each repeated twice) in parallel. with the filter sizes of 3, 4, 5
and 6, followed by two fully connected layers. All this is flatten to and sent
to the Dense layer with a drop out rate of 0.3. Finally there are output layers
consisting of 2 units (negative class, positive class). 48

7.1 Main page of the Should I Click service that was created to implement some
of the methods in this thesis for the free benefit of our community. The site
is https://www.shouldiclick.org. 53

7.2 Web architecture of the implementation of the Should I Click service 55
7.3 Example analysis of a website by the Should I Click service. The web page

http://storecovid.blog is detected as suspicious and suggested not to be clicked
on. 56

xx LIST OF FIGURES

List of Tables

4.1 The UWD dataset contains 20,388 data samples with the same amount of
positive (unsafe) and negative (legitimate) data samples. 14

4.2 The data model UWD-feature-set-1 is split into the training and testing parts.
The same holds for the UWD-feature-set-2. 17

4.3 The best found hyper-parameters for Random Forest and XGBoost algorithms. 22
4.4 Results for Random Forest and XGBoost algorithms with the best hyperpa-

rameters. The mean and std are computed from the 10 folds of the cross
validation. 22

4.5 Results for the FSFI method. 23
4.6 Result of Random forest and XGBoost on UWD-feature-set-1Test data model. 25
4.7 The best found hyper-parameters for both algorithms. 25
4.8 Result for Random Forest and XGBoost algorithms with best hyper-parameters.

Each metric is a mean of 10 results from 10 folds from cross validation. . . . 25
4.9 Results for the FSFI method. 26
4.10 Result of Random forest and XGBoost on UWD-feature-set-2Test data model. 27

5.1 The CETD dataset has 25,571 evil twin samples and 13,112 legitimate sam-
ples. After removing the invalid samples it has 12,544 evil twin samples and
12,239 legitimate samples. 31

5.2 CETD dataset contains 25,088 samples with the same amount of positive (evil
twin) and negative (legitimate) samples . 32

5.3 Statistic about total number of tags in the HTML DOM for both classes. . . 34
5.4 The data model CETD-feature-set-1 is split into the training and testing parts.

The same holds for the CETD-feature-set-2. 35
5.5 The CETD-DOM-1 was split into the training and testing parts. 36
5.6 The CETD-DOM-2 was split into the training and testing parts. 40
5.7 The best found hyper-parameters for both algorithms. 41
5.8 Results for Random Forest and XGBoost algorithms with the best hyper-

parameters. The mean and std are computed from the 10 folds of the cross
validation. 41

5.9 Results for the FSFI method. 42
5.10 Result of Random Forest and XGBoost on CETD-feature-set-1Test data model.

. 43
5.11 The best found hyper-parameters for both algorithms. 44

xxi

xxii LIST OF TABLES

5.12 Result for Random Forest and XGBoost algorithm with best hyper-parameters.
Each metric is a mean of 10 results from 10 folds from cross validation. . . . 44

5.13 Results for the FSFI method. 44
5.14 Result of Random forest and XGBoost on CETD-feature-set-2Test data model. 46
5.15 The results for XGBoost and MLP on CETD-DOM-1Test data model. 47
5.16 The results for CETD-DOM-2Test data model. 47

7.1 Statistics for Should I Click . 55

A.2 feature-set-2 - Categorical features. All these features are computed from the
lists. They represent, how many times the value occurs. For example, feature
1 in the first row, describes amount of occurrences for value "false" in the
subsection "httpOnly" in section "cookies" in urlscan.io analysis. 73

A.4 The feature importance for 233 features (all features) for the XGBoost algo-
rithm with experiment UWD-feature-set-1. 78

A.5 The selcetd HTML tags for CETD-DOM-1. 81
A.1 feature-set-2 - Absolute features. These feature are length of lists except

features 299-310. The features 299-310 describes how many urls contain the
value in the third column. For example feature 299 represents amount of url
containing ".js". 82

A.3 feature-set-2 - Numerical features. These features are the mean, standard
deviation, maximum and minimum from the list of numbers. Therefore each
row in this tables represents four features (the first column contains four
indexes). The second and third columns represents keys in JSON urlscan.io
analysis. Only the "https" json key for features 48,49,50,51 does not exist,
the real JSON path is: [’response’][’response’][’securityDetails’][’sanList’]. . . . 83

A.6 The feature importance for the subset of 170/233 features for XGBoost algo-
rithm with experiment with the CETD-feature-set-1. 88

Chapter 1

Introduction

With the growth of Internet usage, websites have become part of human life. They
are used every day in countless activities facilitating human interaction with the rest of the
world. Along with this trend, attackers also create websites with intent to defraud and attack
users, they are consider unsafe websites. Unsafe websites comprise a wide variety of websites
having malicious content or behavior and therefore, their detection poses a challenging task.
According to the Google Safe Browsing category of the Google Transparency Report [1],
unsafe websites can be broadly divided into two categories: malware websites and phishing
websites.

• Malware websites use techniques to install malicious software onto user’s devices.
This malicious software can be installed without the user’s knowledge, but sometimes
the user downloads this malicious software because the user thinks it is legitimate.

• Phishing websites use techniques to steal user’s credentials such as emails, passwords,
credit card numbers and other sensitive data. We classify them into two classes: evil
twin websites and scam websites. Evil twin websites imitate real websites to steal
sensitive data from users. Scam websites offer fake products to users with the aim to
steal their sensitive data.

The detection of malware websites and phishing websites is considered a difficult task,
because (i) their attacking techniques evolve, (ii) their behaviour is very diverse for different
websites, and (iii) normal websites are very complex, which makes the differentiation more
difficult [1, 2].

A frequently used solution for detecting unsafe websites is through blacklists. Blacklists
rely on a database containing an updated list of malicious URLs. However, this approach
fails when a new URL or a variant of an existing malicious URL appears [3]. Another
used approach is based on the analysis of the string of the URL. The idea is to split the
URL in several parts, extract features from it and then use machine learning algorithms to
classify it as malicious or not. State-of-the-art methods achieve satisfying results [4, 5, 6].
However, attackers try to avoid the detection by creating new URLs with properties similar
to legitimate URLs.

In contrast to previous approaches based on URL analysis or blacklists, this research
proposes novel methods based on the analysis of the behavior, content, and structure of

1

CHAPTER 1. INTRODUCTION

websites. The behaviour and content data are taken from the urlscan.io service [7] that
provides a complex analysis of a website. The structure data are taken from the HTML
source code of a website. We hypothesize that these data can provide more informative
description of unsafe websites and thus achieve satisfying results in this area.

This thesis concentrates on two main areas:

• Detection of unsafe websites

• Detection of evil twin websites

To fulfil these goals, we not only analyze unsafe websites and evil twin websites, but
we created our own datasets, and we built an online free service which provides users the
possibility to submit any URL and learn if the respective website is safe to visit. Our solution,
called <https://shouldiclick.org> is not only useful for all users, but more importantly
it is important for people at risk, such as journalists, and human right defenders, that can
not afford any other protection.

The first part of this thesis focuses on detecting unsafe websites. It started with the
creation of the Unsafe Website Dataset (UWD) that contains two classes: unsafe and le-
gitimate samples. Each sample from the dataset contains the website URL and its analysis
from urlscan.io. Using extracted features from the urlscan.io analysis, our machine learning
algorithms achieved a detection accuracy of 92.69%.

The second part of this thesis focuses on the more specific problem of detecting evil
twin websites. A core part of this experiment was the creation of the Civilsphere Evil Twin
Website Dataset (CETWD) containing legitimate and evil twin samples. Each sample from
the dataset contains images, JavaScript code, a screenshot of the webpage, the analysis of
urlscan.io and the HTML Document Object Model (DOM). This dataset was generated
and analysed with the necessary diligence in order to ensure clean data for the machine
learning algorithms. In practise it meant that we spent a lot of time finding invalid samples
using various techniques described in Section 5.1. The experiment with evil twin websites
is split into two phases. The first phase focuses on detection using extracted features from
the analysis of urlscan.io service. The second phase concentrates on the detection using
the HTML content represented as a graph structure. The method based on the analysis of
urlscan.io achieved a testing accuracy of 95.28% and the method based on HTML structure
achieved a testing accuracy of 90%.

The contributions of this thesis are:

• Design, creation and publication of new datasets for unsafe websites and evil twin
websites containing also legitimate websites.

• Publication of the set of most important features for detection of both unsafe and evil
twin websites.

• Creation and publication of the <https://www.shouldiclick.org/> service, using
one of the detection methods proposed in this thesis. The goal of the Should I Click
service is to allow users to check if a website is safe to access or not.

2

https://shouldiclick.org
https://www.shouldiclick.org/

One of the initial goals of this thesis was also to analyze and detect websites that directly
attack the user with exploits. These websites can be called exploiting websites or malware
websites. However, during the first phases of this research, while capturing the dataset,
we found that it was extremely hard to find any working exploiting website because they
are alive for days at a time. Therefore, this research line was temporally abandoned. This
finding tells us that finding exploiting websites is very difficult. Nevertheless, as part of this
thesis we provide a description of method we implemented using the Thug tool [8] that is
used in the discovery of exploiting websites.

Since reproducibility and sharing with the community is an important way to advance
science, all the code developed for this thesis is available in this GitHub repository [9]

The rest of the thesis is organized as follows. Chapter 2 discusses differences between
types of unsafe websites and provides an overview of this problem. Chapter 3 contains an
overview of related works. Chapter 4 describes our approach for the detection of unsafe
websites including generation and analysis of the UWD dataset and machine learning ex-
periments with it. Chapter 5 describes and analyses the CETD dataset and shows machine
learning experiments with this dataset. Chapter 6 discusses exploiting websites and the
difficulty to collect a meaningful dataset. Chapter 7 is dedicated to the Should I Click web
service, and Chapter 8 presents the conclusions.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Background

Our research is focused on the detection of unsafe websites and evil twin websites. This
chapter explains each one of these threats, and describes the basic categories of unsafe
websites together with their differences.

2.1 Unsafe websites

Unsafe website is a general term for all websites with malicious content or behavior. Their
techniques are different, but all of them share the same goal: to attack users. Figure 2.1
shows the main categories of unsafe websites based on the Google Safe Browsing category of
the Google Transparency Report [1]. The main two categories of unsafe websites are phishing
websites and malware websites. Phishing websites are subdivided into evil twin websites and
scam websites. Google’s latest Transparency Report [1] shows that in the past few years,
the amount of phishing websites detected per week by Google Safe Browsing is significantly
higher than the amount of malware websites. This trend, that was reversed a decade ago, is
shown in Figure 2.2.

2.1.1 Phishing Websites

The goal of phishing websites is to steal user credentials such as emails, passwords, credit
card numbers and other sensitive data. Phishing websites use several techniques to achieve
their goal, but the main idea is to exploit the lack of attention or education of the user.
The great majority of phishing attacks, including targeted ones, start with a link inside an
email, chat or SMS pointing to a phishing website. When a user does not have enough time
or knowledge to check this link and web page carefully, they can become a potential victim
of an attack. According to the Data Breach Investigations Report in 2019 [10], phishing
websites stand behind 32 percent of all security breaches.

Phishing websites are classified into two classes: Evil twin websites and Scam websites.
Evil twin websites are described separately in Section 2.2.

Scam websites use phishing practices to offer fake products to users with the aim to steal
their credentials. Examples of scams are unexpected wins, ways to get money or offers of
very cheap products. In most cases all this happens under time pressure. For instance, “You

5

CHAPTER 2. BACKGROUND

Figure 2.1: Basic categories of unsafe websites and their relationships. This thesis is
focused only on the detection of unsafe websites and evil twin websites. Based on the

Google Safe Browsing category of the Google Transparency Report [1]

Figure 2.2: Amount of phishing and malware websites detected per week by Google Safe
Browsing [1]. Data obtained on May 10th, 2020.

won a new iPhone7 and you have only 60 seconds to fill this information to get this phone”.
An example of a scam web page is shown in Figure 2.3, offering an iPhone 11 for e1. Scam
websites would also be in the scope of this thesis as a separate problem of detection, however,
we were not able to find a satisfying amount of them to build a dataset.

2.1.2 Malware Websites

The goal of malware websites is to infect user’s devices. Malware websites contain mali-
cious code that installs malicious software onto user’s devices. The malicious software can

6

2.2. EVIL TWIN WEBSITES

Figure 2.3: An example of a scam web page offering iPhone 11.

be delivered to a user’s device in two ways:

• By exploiting a vulnerability on the web browser and installing malware without the
user consent.

• By luring the user to install a program that is malicious but looks legitimate.

Despite the improvements on the security of browsers there are still many security vulnera-
bilities. In 2018, the Common Vulnerability and Exposure list [11] and the National Vulner-
ability Database [12] published a database of 14,760 known security vulnerabilities, which
is twice as many as were reported in 2016. According to review from Malware bytes [13],
the Internet Explorer browser is still exploited in 2019 in a number of drive-by download
campaigns. In our experience hunting of malware websites is very difficult but they still pose
a big risk for users.

It should also be emphasised that many malware websites are compromised websites. It
means that legitimate websites were compromised by attackers and admins of these compro-
mised websites often have no idea about it. According to Google’s Transparency Report [1],
the amount of attacking websites created specifically for malicious activity is less than the
amount of legitimate websites compromised and converted into malicious websites. This
difference is shown in Figure 2.4.

2.2 Evil Twin Websites

One of the most prevalent types of phishing websites are evil twin websites. Evil twin
websites are clones imitating real websites that are often indistinguishable from the real
websites. They use phishing practices to steal emails, passwords, credit card numbers and

7

CHAPTER 2. BACKGROUND

Figure 2.4: Amount of attacking websites created on purpose and amount of attacking
websites that were legitimate websites compromised by attackers. Information from the
detected by Google Transparency ReportSafe Browsing [1]. Data obtained on May 10th,

2020.

other sensitive data. The effectiveness of evil twin websites is based on the user’s inattention,
because humans tend to judge the authenticity of a web page by how it looks instead of the
URL of the web page. An example of an evil twin web page is shown in Figure 2.5, where
the attacker tries to imitate the Google login web page. What can be clearly seen in this
figure, is that no difference is visible by the human eye except the URL of the web page.

Through manual analysis of evil twin websites we detected several common features:

• Fake links on the web page with no action after clicking on them. They are often used
with phrases such as “Terms”, “Data Policy”, “Sign Up”, ”Cookies Policy”, “About” and
countless others. These phrases are also used for links pointing to different websites
(different domain), which is not so common in legitimate websites. For example, if a
user clicks on a link with text “Sign up”, the expectation is that the web page redirects
the user to the same website with the different web page.

• The web page and the images on it have poor resolution. This is not common in
legitimate websites.

• The structure and content of the HTML code on the website is more amateur in
contrast to legitimate websites.

Our analysis shows that evil twin websites are often poor in quality, since they are created
with urgency and they have a short lifespan.

8

2.2. EVIL TWIN WEBSITES

Figure 2.5: An example of an evil twin web page imitating the Google login form.

9

CHAPTER 2. BACKGROUND

10

Chapter 3

Related Work

This chapter discusses recent work related to the detection of unsafe websites and evil
twin websites. It is important to note that many research works use the term malicious
websites instead of unsafe websites and do not distinguish evil twin websites as a separate
category of phishing websites, but it does not affect the discussion in this chapter.

A classical technique for detecting unsafe websites is through blacklists. Blacklists contain
a list of updated URLs that are labeled as unsafe. When a new URL is checked and the URL
is present in the blacklist, the URL is marked as unsafe. Blacklists are hard to maintain, and
new unsafe URLs are easily missed. The research work “An Empirical Analysis of Phishing
Blacklists” [3] studies the effectiveness of phishing blacklists. Authors showed that the false
positive rate of blacklists is excellent, but they also show that blacklists fail for new malicious
URLs. Despite these limitations, blacklists are still widely used today.

The next common solution is applying machine learning on extracted features from a
URL. The advantage of machine learning algorithms is the ability to generalize and be
able to recognize new unsafe URLs unlike blacklisting solutions. The research work “Using
Lexical Features for Malicious URL Detection – A Machine Learning Approach” [4] extracts
static lexical features from the URL string and shows that purely lexical approaches can be
used for the detection. Approaches based on deep learning techniques do not need feature
extraction and domain knowledge. The research work “Malicious URL Detection using Deep
Learning” [5] compares several deep learning methods based on CNN and RNN with very
satisfying results. Their best models achieved around 93-98% malicious URL detection rate
with false positive rate of 0.001. Another work “Detecting Phishing Websites through Deep
Reinforcement Learning” [6] uses deep reinforcement learning providing robust, dynamic,
and self-adaptive solutions with interesting results.

The next area of research is focused on detection by content of a web page. The research
work “A Deep Learning Approach to Fast, Format-Agnostic Detection of Malicious Web
Content” [14] proposes a deep learning approach to detecting malicious HTML content. The
input representation is a sequence of tokens from HTML documents. They bring satisfying
results with performance of 97.5% detection at a 0.1% false positive rate. The research work
“Malicious HTML File Prediction: A Detection and Classification Perspective with Noisy
Data” [15] proposes a framework for detection of malicious HTML files. It is based on static
features extracted from HTML. They analyze the HTML file and show common techniques
used by creators of malicious websites.

11

CHAPTER 3. RELATED WORK

The next research area is focused on classification of JavaScript code. The most common
practice to hide malicious JavaScript code is to use obfuscation techniques. The analysis
from “The power of obfuscation techniques in malicious JavaScript code: A measurement
study” [16] shows that JavaScript obfuscation is a common practice to evade detections.
Moreover they show that many popular anti-virus software can be effectively evaded by the
obfuscation techniques. The research work “A Machine Learning Approach to Malicious
JavaScript Detection using Fixed Length Vector Representation” [17] came with the idea to
detect malicious JavaScript code contents using Doc2Vec, which is a neural network based on
context information of texts. Doc2Vec is also able to detect several obfuscating techniques.

Another perspective of detecting unsafe websites is shown in “Textual and Visual Content-
Based Anti-Phishing: A Bayesian Approach” [18], where authors introduce a solution to
defend protected websites by measuring similarities between the protected web page and
suspicious web pages. They focus on phishing websites and their solution is based on texts
and images from the web page.

Several researchers were also focused on the detection of phishing websites by favicon
images. For example, research work “Favicon - a clue to phishing sites detection” [19] suggest
detection and recognition of favicons to identify the brand sites and determine if a website
is legitimate or phishing. Next research based on favicon is “Phishdentity: Leverage Website
Favicon to Offset Polymorphic Phishing Website” [20]. Authors proposed a method called
Phishdentity utilizing Google search-by-image API to identify phishing websites.

12

Chapter 4

Detection of Unsafe Websites

The first goal of this thesis is to detect unsafe websites by analyzing their content and
behavioral characteristics. The first step of this process is to explain the generation of the
dataset, then to analyze its features, to propose a machine learning method to detect unsafe
websites and to evaluate the results.

4.1 Dataset of Unsafe Websites

One of the main contributions of this thesis is the generation and publication of the
Unsafe Website Dataset (UWD). The UWD dataset was created to train machine learning
methods to detect any type of unsafe website and we made it publicly available for the
research community [21].

The UWD dataset contains two target labels as classes, unsafe websites and legitimate
websites. The unsafe websites include different types of websites that are considered harmful
or attacking the users. In contrast to other datasets containing only URLs of websites [22, 23,
24], each data sample in the UWD dataset contains complex analysis and description of the
website. One of the major drawbacks of the UWD dataset is that it contains both phishing
and malware websites and, therefore, the samples are coming from different populations.

4.1.1 Finding Suitable Data

To generate the UWD dataset it was necessary to find suitable URLs for unsafe and
legitimate websites. The Alexa top 1 million sites [25] were used as the source for the legit-
imate websites. For unsafe websites, we found several blacklists containing a wide spectrum
of phishing and malware websites [23].

In order to increase the certainty that the unsafe URLs from the blacklists were really
malicious, each unsafe URL was submitted to VirusTotal [26]. VirusTotal returned infor-
mation if this URL was marked as unsafe. If at least one detection engine from VirusTotal
marked the URL as unsafe, the URL was labeled as unsafe in our dataset as well.

The same process was performed with the legitimate URLs from the Alexa top 1 million
sites list, because it is known that the list may not contain only legitimate sites. Any
legitimate URLs that were marked as malicious by VirusTotal detection engines were not

13

CHAPTER 4. DETECTION OF UNSAFE WEBSITES

Samples
Unsafe Websites, (Positive samples) 10,194

Legitimate Website, (Negative samples) 10,194
Total Number of Data Samples 20,388

Table 4.1: The UWD dataset contains 20,388 data samples with the same amount of
positive (unsafe) and negative (legitimate) data samples.

added to our dataset. After this process of cleaning the URLs by VirusTotal, we gathered
10,194 unsafe URLs and 10,194 legitimate URLs.

4.1.2 Generation of the UWD Dataset

Once the URLs of legitimate and unsafe websites were collected, the next step was to
use the urlscan.io service to generate the features for all the URLs.

The urlscan.io service [7] is a free service to scan and analyse websites. It provides a
very complex analysis of a website and collects information including a screenshot of a web
page, its HTML DOM, domains linked in the website, IP addresses related with the website,
JavaScript variables, cookies, TLS states and more [7]. Urlscan.io uses the Google Chrome
browser in headless mode to browse the submitted URLs and obtain the information. The
entire analysis is provided in the main webpage and also in one JSON output.

In total, 20,388 data samples were collected with the same amount of positive (unsafe
websites) and negative (legitimate websites) samples as shown in Table 4.1. Each sample in
the UWD dataset contains URL, urlscan.io analysis and positive or negative label.

4.1.3 Exploration of the UWD Dataset

Before creating data models for machine learning algorithms, we investigated a few as-
pects of the UWD dataset. First we explored the usage of HTTPS certificates, because today
HTTPS is a common practise for the vast majority of websites. In particular, we wanted to
know how legitimate and unsafe websites differ in this aspect. Second, we focused on the
content downloaded from the web pages.

4.1.3.1 Usage of HTTPS per Class in UWD Dataset

We found only 1,130 unsafe websites having HTTPS certificates and 6,782 legitimate
websites having HTTPS certificates. Figure 4.1 shows that these values constitute more than
11% unsafe websites with the HTTPS certificate and more than 66% legitimate websites with
the HTTPS certificate. As far as invalid HTTPS certificates (e.g. unknown issuer, expired
time validity, etc.), we found only 3 unsafe websites with invalid certificates and in the case
of legitimate we found no invalid certificate.

Although generating certificates on a website is a very easy process due to the Lets
Encrypt service [27], the creators of malicious websites still do not use HTTPS certificates
extensively. This suggests that HTTPS can play an essential role for the detection of unsafe
websites.

14

4.1. DATASET OF UNSAFE WEBSITES

Figure 4.1: Usage of HTTPS by unsafe and legitimate websites in the UWD dataset.

4.1.3.2 Size of Downloaded Content per Class in UWD Dataset

When a web page is loaded, content is often downloaded from different sources. For
example, CSS styles, JavaScript libraries, images and others. The size of all downloaded
content was taken from each data sample in the dataset and the mean, standard deviation
were computed from all these values. The results show that legitimate websites download,
in average, more content from external sources than unsafe websites, but the results are not
conclusive due to the high standard deviation. The following is a comparison of the size of
downloaded files done by unsafe websites and legitimate websites:

• Unsafe websites

– Mean of downloaded content: 1.39 MB

– Standard deviation of downloaded content: 3.15 MB

• Legitimate websites

– Mean of downloaded content: 3.98 MB

– Standard deviation of downloaded content: 4.12 MB

15

CHAPTER 4. DETECTION OF UNSAFE WEBSITES

These results also show that the size of the downloaded content of web pages is highly varied.

4.2 Feature Extraction

In order to describe all extracted features used for later machine learning experiments,
first we will describe the available data obtained from urlscan.io. The urlscan.io analysis
results presented by urlscan.io is split into several sections where each section describes a
different aspect of the website. Since the analysis contains a large amount of data, only the
important sections for our work are described here. To see all the data from the urlscan.io
analysis, please visit the urlscan.io [7]. The urlscan.io analysis contains the following sections:

• Request section: The request section contains information about the communication
between the browser (from urlscan.io) and the analyzed website. Each request has its
response from the website. The first request is a request to the server of the submitted
URL. The rest of the requests and responses depend on the web page. When a web
page is loading, it often requires other resources to work and be displayed correctly.
For example, CSS styles files, JavaScript libraries or images, which can be located in
the same web page or in other servers. Each request and response is stored and shown.

• Cookies section: This section contains all HTTP cookies sent from and to the website.
Each cookie contains information such as domain, time, validity, size, etc.

• Console section: This section contains console messages with their text message, URL,
type and other information.

• Links section: This section contains all links from the web page with their texts. This
information is taken from anchor tags.

• Globals section: This is a list of all JavaScript global variables used by a web page. It
includes the name of the global variable and its type (function, object, number, etc.).

• Stats section: This section contains statistics about the usage of protocols, TLS, do-
mains, IPs, etc.

• Lists section: The list section contains a list of IP addresses, countries, ASNs, domains,
servers, URLs, sub domains and certificates.

All these sections contain numerical, categorical and text data. We manually extracted
two feature sets from the urlscan.io analysis: feature-set-1 and feature-set-2. The feature-
set-1 was created in 2018 in the beginning of our research and then we found out that the
feature-set-1 does not contain all available information from the urlscan.io analysis. So we
decided to create the feature-set-2 with additional information. The feature-set-1 contains
233 features based mainly on numerical data. The feature-set-2 contains 310 features based
on numerical and categorical data. Due to the high number of features in both feature sets,
they are detailed in sections A.1 and A.2 in the appendix.

16

4.3. DATA MODELS

Rows # Positive rows # Negative rows # Features
UWD-feature-set-1Train 16,310 8,155 8,155 233
UWD-feature-set-1Test 4,078 2,039 2,039 233
UWD-feature-set-1 20,388 10,194 10,194 233
UWD-feature-set-2Train 16,310 8,155 8,155 310
UWD-feature-set-2Test 4,078 2,039 2,039 310
UWD-feature-set-2 20,388 10,194 10,194 310

Table 4.2: The data model UWD-feature-set-1 is split into the training and testing parts.
The same holds for the UWD-feature-set-2.

4.3 Data Models

With data models we refer to matrices of values where each row is identified as a data
sample from UWD dataset and the columns are the feature values. Also each row has its
own label, either positive or negative sample.

The data models UWD-feature-set-1 and UWD-feature-set-2 were computed from the
feature-set-1 and feature-set-2, respectively. Both data models contain the same amount of
rows as a number of samples in the UWD dataset. Then both data models UWD-feature-set-
1 and UWD-feature-set-2 were split into training and testing data for later experiments. The
idea behind this is to keep the testing data for final evaluation and use the training data for
finding and tuning the best methods. With a ratio of 80:20, the training part contained 16,310
samples and the testing part contained 4,078 samples for both data models. It is important
to note that the training and testing data (rows) in the data model UWD-feature-set-1 come
from the same samples of the MWD dataset as the training and testing data in the data
model UWD-feature-set-2. Also the number of positive and negative samples is balanced
for the training and testing data in both data models. The detailed overview is shown in
Table 4.2.

4.3.1 Visualisation of Data Models

High dimensional data is difficult to interpret for humans. As analysts, to have a better
idea of how the data looks like, it is possible to use dimensionality reduction methods that
can convert high dimensional data into a lower dimension and provide a visualization in a
low-dimensional space of two or three dimensions. By reducing the dimension in a way that
preserves as much of the structure of the data as possible, we can get a visual representation
of the data. This representation can provide us an intuition about complexity of the data.

In this thesis we decided to use a technique called the Uniform Manifold Approximation
and Projection (UMAP) [28] due to its good performance and scaling. UMAP is a nonlinear
dimensionality reduction technique that is created from a theoretical framework based in
Riemannian geometry and algebraic topology. In contrast to other methods, such as PCA,
UMAP is optimized using a randomly initiated stochastic gradient descent. Therefore, each
run of UMAP produces slightly different results.

A visualisation of the UWD-feature-set-1 using UMAP is shown in Figure 4.2. The
figure contains many different groups of samples for both classes. Many of them are mixed

17

CHAPTER 4. DETECTION OF UNSAFE WEBSITES

together and many single data points are spread through the whole figure. We can clearly
see that positive and negative samples are not linearly separable and it can pose a difficult
classification task.

Figure 4.2: UMAP representation of the Data model using the UWD-feature-set-1 reduced
from 233 dimensions to 2 dimensions. Green dots are legitimate websites and red dots are

unsafe websites.

The visualisation of the UWD-feature-set-2 is shown in Figure 4.3. In this case, there
are two groups of negative samples in the middle of the figure. The positive samples are
spread across the whole image without noticeable grouping. The concentration of negative
samples close to each other could mean that negative samples are similar in our feature space
in contrast to positive samples. Even in this case, data are not linearly separable.

To compare both UMAP projections, it seems the UWD-feature-set-2, shown in Fig-
ure 4.3, has a better ability to separate positive and negative samples, because their clusters
are more clear. Therefore, we expect better classification results for the UWD-feature-set-2
than UWD-feature-set-1.

4.4 Methods

4.4.1 Machine Learning Algorithms

Experiments in this chapter are based on the Random forest and XGBoost algorithms.
One of the reasons why both both algorithms were chosen is because they provide an impor-
tance score for each feature. They were implemented with the sklearn library [29].

18

4.4. METHODS

Figure 4.3: UMAP representation of the data model using the UWD-feature-set-2, reduced
from 310 dimensions to 2 dimensions. Green dots are legitimate websites, red dots are

malicious websites.

The random forest algorithm is a combination of tree predictors where each tree depends
on the values of a random vector sampled independently and with the same distribution for
all trees in the forest [30].

During tuning the hyper-parameters were chosen by cross-validated grid-search [31], the
following hyper-parameters were picked:

• n_estimators: the number of trees in the forest

• max_depth: the maximum depth of the tree

• min_samples_leaf: The minimum number of samples required to be at a leaf node

XGBoost is an implementation of gradient boosted decision trees designed for speed and
performance [32]. During tuning the hyper-parameters by cross-validated grid-search [31],
the following hyper-parameters were picked:

• n_estimators: Number of gradient boosted trees

• max_depth: Maximum tree depth for base learners

• min_child_weight: Minimum sum of instance weight(hessian) needed in a child

19

CHAPTER 4. DETECTION OF UNSAFE WEBSITES

4.4.2 Evaluation Metrics

A choice of which evaluation metric to use depends on various factors and it is a critical
aspect of later evaluation of our machine learning algorithms. One of the factors is the
proportion of positive and negative samples in the dataset. The balanced data is a more
ideal case and many real world problems contain unbalanced data which involves using
suitable metric and techniques. In this thesis all used datasets are balanced. Therefore, we
compute following metrics from the confusion matrix:

• Accuracy: (TP + TN) / (P + N)

• False positive rate (FPR): FP / (FP + TN)

• False negative rate (FNR): FN / (FN + TP)

The next technique used in the experiments is the ROC curve. A ROC curve is a graph
showing the true positive rate (TPR) on the y-axis and the false positive rate (FPR) on the
x-axis at various threshold settings. A ROC curve shows the performance of a classification
model at all classification thresholds. Based on the ROC curve, the Area Under Curve (AUC)
measures the entire area under the entire ROC curve. The AUC metric tells if a model is
capable of distinguishing between classes accurately. If the AUC is high, that means a
model is good at prediction. The implementation of ROC curves that we used comes from
the sklearn library [29].

In order to evaluate results we use learning curves. The learning curves are graphical rep-
resentations of the validation score and training score with an increasing amount of training
samples. Learning curves shows us how much we benefit from adding more training data.
The learning curve consists of the validation curve and the training curve where the vertical
axis is the accuracy of detection and the horizontal axis is the amount of the train data. The
implementation of learning curves was used from sklearn library [29].

4.4.3 Feature Selection with Feature Importance

In our experiments, we used the feature selection with feature importance method (FSFI) [33]
for selecting the most important features. The FSFI method is able to find the most impor-
tant features using iterative training by selecting a subset of features. The FSFI method is
shown in the Algorithm 1.

The algorithm starts on the ninth line of the pseudocode by creating a new model m
trained with data Xtrain and labels ytrain. Then the testing data Xtest is used to evaluate
the model with ytest as labels, getting an accuracy of the model with all available features.
In line 14 starts the search for the best subset of features. First the threshold θ is chosen
and Xtrain and Xtest are transformed into X ′

train and X ′
test by the function ∆ in such a way

that all columns of the matrix of features with lower importance than the threshold θ are
removed from the matrix. After the subset of best features is computed, in line 17 a new
model m′ is created using the transformed training data X ′

train and labels ytrain. This new
model is evaluated by X ′

test and a new accuracy is computed. If this new accuracy is greater
than accbest, this new accuracy and the current threshold θ are saved. The output of this
algorithm is the list of the most important features.

20

4.4. METHODS

Algorithm 1 FSFI
1: Helpful functions
2: Φ(X, y) ← Function to train the parameters of the model using the inputs X and y. It

returns the trained model.
3: Ω(m) ← Function that returns the feature importance list of the trained model m.
4: ∆(X, θ, I) ← Function that returns the subset of features of X that have their feature

importance Ii greater or equal to θ.
5: σ(X,m) ← Function to make predictions over a set of samples X using the model m. It

returns the list predictions.
6: A(ytrue, ypred) ← Function that returns the accuracy computed using ground truth and

predicted labels.
7: β(t, L) ← Function that returns values from list L greater or equal to threshold t.
8: procedure FSFI(Xtrain, ytrain, Xtest, ytest)
9: m ← Φ(Xtrain, ytrain)

10: ypred ← σ(Xtest,m)
11: I ← Ω(m)
12: accbest ← A(ytest, ypred)
13: θbest ← 0
14: for θ in I do
15: X

′
train ← ∆(Xtrain, θ, I)

16: X
′
test ← ∆(Xtest, θ, I)

17: m
′ ← Φ(X

′
train, ytrain)

18: ypred ← σ(X
′
test,m

′
)

19: acc ← A(ytest, ypred)
20: if acc > accbest then
21: accbest ← acc
22: θbest ← θ
23: end if
24: end for
25: return β(θbest, I)
26: end procedure

21

CHAPTER 4. DETECTION OF UNSAFE WEBSITES

Random Forest XGBoost
n_estimators 500 500
max_depth None 10

min_samples_leaf 1 ∅
min_child_weight ∅ 5

Table 4.3: The best found hyper-parameters for Random Forest and XGBoost algorithms.

Random Forest XGBoost
mean std mean std

Accuracy 0.9038 0.0080 0.9273 0.0044
FPR 0.0815 0.0095 0.0645 0.0062
FNR 0.1108 0.0123 0.0809 0.0079

Table 4.4: Results for Random Forest and XGBoost algorithms with the best
hyperparameters. The mean and std are computed from the 10 folds of the cross validation.

4.5 Experiments to Detect Unsafe Websites

To detect unsafe websites we propose to train and compare two algorithms: Random
Forest and XGBoost. We implement and compare the performance of Random Forest and
XGBoost algorithms on the data models UWD-feature-set-1 and UWD-feature-set-2. This
section consists of two parts. The first part in Subsection 4.5.1 focuses on using the data
model UWD-feature-set-1 to:

• train models without features selection

• select the best features

• train a model with the best features

• finally evaluate the best trained models in the testing data.

The second part in Subsection 4.5.2 repeats the process for the second data model UWD-
feature-set-2.

4.5.1 Experiments using the UWD-feature-set-1

4.5.1.1 Training and Hyper-parameter Tuning

The hyper-parameter tuning with 10-fold cross validation procedure was performed on
the UWD-feature-set-1Train data model for Random Forest and XGBoost. The best found
hyper-parameters are shown in Table 4.3. The Random Forest algorithm achieved 90.38%
of accuracy and XGBoost algorithm achieved 92.73% of accuracy with the selected hyper-
parameters (Table 4.4).

22

4.5. EXPERIMENTS TO DETECT UNSAFE WEBSITES

Random Forest XGBoost
Best features 147/233 107/233

mean std mean std
Accuracy 0.9046 0.0079 0.9257 0.0057

FPR 0.0808 0.0092 0.0684 0.0077
FNR 0.1100 0.0116 0.0802 0.0095

Table 4.5: Results for the FSFI method.

4.5.1.2 Training with the Best Features

To find the most important features the FSFI method was performed. The FSFI method
was run with the hyper-parameters above and it found a subset of the 147 most important
features for Random Forest and a subset of the 107 most important features for XGBoost.

Then the 10-fold cross validation procedure was performed with the subsets of the features
for both algorithms with the selected hyper-parameters from Table 4.3. The Random Forest
algorithm achieved 90.46% of accuracy and XGBoost algorithm achieved 92.57% of accuracy
(Table 4.5).

4.5.1.3 Comparison of the Trained Models

The Random Forest achieved better results with the selection of 147 features given
by the FSFI method (Table 4.5) than with the all features (Table 4.4), because all metrics
(the validation accuracy, false positive and false negative rates) were improved compared to
results with all features.

Random Forest Summary:
• n_estimators: 500
• max_depth: None
• min_samples_leaf: 1
• The most important features: 147/233
• Accuracy: 90.46%

The figure 4.4 shows the learning curve for the Random Forest with the mentioned setting.
We can see clearly that the training score is still around the maximum. The validation score
could be increased a little bit with more training samples. The figure 4.5 shows the ROC
curve with the 10-fold cross validation. The AUC value achieved 0.9588 which means it has
good measure of separability.

In the case of XGBoost, the subset of 107 features given by the FSFI method did not
improve the results except the false negative rate. Thus, the results from table 4.4 still
remain the best results.

XGBoost summary:
• n_estimators: 500
• max_depth: 10
• min_child_weight: 5
• The most important features: All features (233)

23

CHAPTER 4. DETECTION OF UNSAFE WEBSITES

Figure 4.4: Learning curve for Random
Forest with the best hyper-parameters and

subset of 147 the most important features for
the UWD-feature-set-1Train.

Figure 4.5: AUC ROC curve for Random
Forest with the best hyper-parameters and
with a subset of 147 the most important
features for the UWD-feature-set-1Train.

Figure 4.6: Learning curve for XGBoost with
the best hyper-parameters and with the all
features for the UWD-feature-set-1Train.

Figure 4.7: AUC ROC curve for XGBoost
with the best hyper-parameters and with the
all features for the UWD-feature-set-1Train.

• Accuracy: 92.73%

Figure 4.6 shows the learning curve during training with the mentioned setting. We can
see clearly that the training score is still around the maximum. In contrast to the learning
curve for the Random forest, in this case the validation score could be increased more with
next training samples. The Figure 4.7 shows the ROC curve with 10-fold cross validation.
The AUC value achieved 0.9742 which means it also has a good measure of separability.

4.5.1.4 Evaluation on the Testing Data

The final step was to perform the Random Forest and XGBoost with the best found
settings on the testing data UWD-feature-set-1Test. The results are shown in the Table 4.6.

24

4.5. EXPERIMENTS TO DETECT UNSAFE WEBSITES

UWD-feature-set-1Test Random Forest XGBoost
Testing accuracy 0.9024 0.9269

FPR 0.0760 0.0564
FNR 0.1192 0.0897

Table 4.6: Result of Random forest and XGBoost on UWD-feature-set-1Test data model.

Random Forest XGBoost
n_estimators 500 500
max_depth 100 10

min_samples_leaf 1 ∅
min_child_weight ∅ 10

Table 4.7: The best found hyper-parameters for both algorithms.

4.5.2 Experiments using the UWD-feature-set-2

4.5.2.1 Training with the Hyper-parameter Tuning

The hyper-parameter tuning with 10-fold cross validation procedure was performed on
the UWD-feature-set-2Train data model for Random Forest and XGBoost algorithms. The
best found hyper-parameters are shown in Table 4.7. The Random Forest algorithm achieved
90.15% of accuracy and XGBoost algorithm achieved 91.50% of accuracy with the selected
hyper-parameters (Table 4.8).

4.5.2.2 Training with the Best Features

To find the most important features the FSFI method was performed. The FSFI method
was run with the hyper-parameters above and it found a subset of the 222 most important
features for Random Forest and a subset of the 183 most important features for XGBoost.

Then the 10-fold cross validation procedure was performed with the subsets of the features
for both algorithms with the selected hyper-parameters from Table 4.7. The Random Forest
algorithm achieved 90.17% of accuracy and XGBoost algorithm achieved 91.52% of accuracy
(Table 4.9).

Random Forest XGBoost
mean std mean std

Validation accuracy 0.9015 0.0065 0.9150 0.0048
FPR 0.1097 0.0107 0.0867 0.0108
FNR 0.0873 0.0112 0.0833 0.0094

Table 4.8: Result for Random Forest and XGBoost algorithms with best hyper-parameters.
Each metric is a mean of 10 results from 10 folds from cross validation.

25

CHAPTER 4. DETECTION OF UNSAFE WEBSITES

Random Forest XGBoost
Best features 222/310 183/310

mean std mean std
Validation accuracy 0.9017 0.0050 0.9152 0.0048

FPR 0.1108 0.0111 0.0864 0.0097
FNR 0.0858 0.0094 0.0831 0.0097

Table 4.9: Results for the FSFI method.

Figure 4.8: Learning curve for Random
Forest with the best hyper-parameters and

subset of 222 the most important features for
the UWD-feature-set-2Train.

Figure 4.9: AUC ROC curve for Random
Forest with the best hyper-parameters and
with a subset of 222 the most important
features with the all features for the

UWD-feature-set-2Train.

4.5.2.3 Comparison of the Trained Models

The Random Forest achieved slightly better results with the selection of 222 features
given by the FSFI method (Table 4.9) than with the all features (Table 4.8), except the false
positive rate. Despite the worse false positive rate the results with the subset of 222 features
are still better.

Random Forest Summary:

• n_estimators: 500
• max_depth: 100
• min_samples_leaf: 1
• The most important features: 222/310
• Accuracy: 90.17 %

The Figure 4.8 shows the learning curve during training with the mentioned setting. We
can see clearly that the training score is still around the maximum. The validation score
could be increased a little bit with more training samples. The Figure 4.9 shows the ROC
curve with 10-fold cross validation. The AUC value achieved 0.9591 which means it has good
measure of separability.

26

4.5. EXPERIMENTS TO DETECT UNSAFE WEBSITES

Figure 4.10: Learning curve for XGBoost
with best hyper parameters and with a

subset of the 183 most important features for
the UWD-feature-set-2Train.

Figure 4.11: ROC for XGBoost with best
hyper parameters and with a subset of the

183 most important features for the
UWD-feature-set-2Train.

UWD-feature-set-2Test Random Forest XGBoost
Testing accuracy 0.9031 0.9139

FPR 0.1172 0.0927
FNR 0.0765 0.0795

Table 4.10: Result of Random forest and XGBoost on UWD-feature-set-2Test data model.

The XGBoost algorithm achieved better results with the subset of 183 features given by
the FSFI method (Table 4.9) than with all features (Table 4.8). All metrics (the validation
accuracy, false positive and false negative rates) were improved compared to all features.

XGBoost summary:

• n_estimators: 500
• max_depth: 10
• min_child_weight: 10
• The most important features: 183/310
• Accuracy: 91.52 %

The Figure 4.10 shows the learning curve with the mentioned setting. We can see clearly
that the training score is still around the maximum. The validation score could be increased
with more training samples. The Figure 4.11 shows the ROC curve with 10-fold cross
validation. The AUC value achieved 0.9688 which means it has good measure of separability.

4.5.2.4 Evaluation on the Testing Data

The final step was to perform the Random Forest and XGBoost with the best found
settings on the testing data UWD-feature-set-2Test. The results are shown in the Table 4.10.
The best testing accuracy was achieved with XGBoost with a value of 91.39%. In comparison
Random Forest achieved 90.31%.

27

CHAPTER 4. DETECTION OF UNSAFE WEBSITES

4.6 Analysis of Results

According to results on the testing data shown in Tables 4.6 and 4.10, the XGBoost
model achieved the best accuracy for both data models UWD-feature-set-1Test and UWD-
feature-set-2Test. The best model for any dataset variation is XGBoost as show in Table 4.6
trained and tuned using the UWD-feature-set-1Train dataset because it achieved the highest
accuracy with a value of 92.69% and the lowest false positive rate of 5.64% on the testing
data.

These results suggest that the feature-set-1 provides a better description than the feature-
set-2 for detection of unsafe websites. This fact is somewhat surprising, because the feature-
set-2 contains more complex information from the urlscan.io analysis so we expected better
results for models trained with the feature-set-2. Furthermore, the UMAP reduction method
showed us also a better outcome 4.3.1 for data model UWD-feature-set-2.

To conclude this chapter, the best method found for detection of unsafe websites is the
XGBoost algorithm trained and evaluated on the UWD-feature-set-1 with the feature-set-1.
The complete set of features with their importance values are shown in Section A.3. As an
example, the following are the top ten more important features:

• 127_secureRequests: Total number of request that use HTTPS correctly.

• 67_ips_mean: Mean number of IP addresses using HTTPS between the browser
and web servers.

• 128_securePercentage: Percentage of requests using HTTPS over all requests

• 18_length_linkdomains: Total number of domains linked to this request

• 48_ips_std: Mean number of IP addresses used between the client and the web
server.

• 132_adBlocked: Total number of advertisement trackers in the web page.

• 231_cookie_expires_now_mean: Mean of all the remaining time in seconds for
when all cookie will expire.

• 222_cert_valid_mean: Mean of the validity length of all certificates used between
client and webserver.

• 228_hashes_list_mean: Total amount of cookies.

• 131_totalLinks: Total amount of links contained in the web page

These top ten most important features also tell us that the study of HTTPS is paramount
for the detection of unsafe websites given that four of the top ten features are based on
HTTPS.

28

Chapter 5

Detection of Evil Twin Websites

The main purpose of this thesis is to develop machine learning methods to detect unsafe
websites. However, there are many different types of unsafe websites with different char-
acteristics and features. The second part of this thesis deals with a special type of unsafe
websites, the evil twin website. These type of unsafe websites are probably the most common
ones nowadays. Evil twin websites are websites designed to look like another official website
with the purpose of stealing credentials.

The study of evil twin websites is done by analyzing its content, its behavioral charac-
teristics and the structure of the website. The first step is to explain the generation of the
dataset, then to analyze its features and propose a machine learning method to detect evil
twin websites.

5.1 Dataset of Evil Twin Websites

In order to try to detect evil twin websites we created the Civilsphere Evil Twin Dataset
(CETD), which we made publicly available for the research community [21]. The CETD
dataset was created to train machine learning methods to detect evil twin websites and
contains two target labels as classes, evil twin websites and legitimate websites. In contrast
to the MWD dataset, the CETD dataset is very specific and its data has been verified more
closely.

5.1.1 Finding Suitable Data of Evil Twin Websites

To generate the CETD dataset it was necessary to find suitable URLs for evil twin and
legitimate websites.

The evil twin URLs were taken from three sources: the PhishTank database [22], the
Phishing Domain Database [34] and the OpenPhish [35]. This is because evil twin websites
are the primary tool in phishing attacks. All these three sources provide a list of evil twin
URLs1 being alive. However, since many evil twin websites have short life expectancy, it
must be taken into account that a considerable number of these URLs may not have been
alive when we obtained the data for our dataset.

1URLs from the mentioned sources are used for phishing attacks but their type is evil twin.

29

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

The process of finding legitimate websites was more complex. We needed to obtain the
login web page of the legitimate websites, because our analysis shows that most evil twins
websites are trying to copy the login web page. Therefore, the domains from the Alexa top 1
million list [25] were submitted to google search engine with “Log in” phrase. For example, for
the “paypal.com” domain, the query to google search engine was “paypal.com Log in”. Then
the first result from the search engine was taken and its URL was used as the final legitimate
URL. For making a google search query automatically, the SP tool [36] was used. The SP
is a command line tool to search startpage.com from the terminal. The startpage.com [37]
is a service that provides a private search on Google search engine. The whole process of
generating legitimate URLS is shown in Figure 5.1 with “paypal.com” example. At the end
of the process, we gathered 25,571 evil twin URLs and 13,112 legitimate URLs.

Figure 5.1: Example process of how to find the URL for the log-in page into each of the
legitimate websites. First, the SP tool adds the phrase “Log in” to the domain and sends it
to “startpage.com”. The site “startpage.com” returns the results from the search engine.
The URL of the first result from the search engine is taken as the final legitimate URL.

5.1.2 Generation of the CETD Dataset

When the lists of evil twin and legitimate URLs were gathered, the process of generating
the dataset could start. In this case, we used the urlscan.io [7] service to generate the
urlscan.io analysis of a website, just like we did with the MWD dataset. However, from
urlscan.io we also extracted HTML DOM for the CETD dataset. In summary, for each URL
in the dataset there are two piece of data: urlscan.io analysis of a website and HTML DOM
of a web page. These data are called a data sample.

Besides, for each URL from the CETD dataset we also extracted next data from the web
page: a screenshot, all images and all JavaScript code. However, in this thesis, these data
are not used for the experiments and they are intended for the further research. Especially
the screenshot of the web page serves as proof of the website validity.

5.1.3 Dataset Cleaning

As in any other dataset, invalid samples are unfortunately included in our dataset due
to several errors. One approach is to ignore the errors in case of a small number of invalid
samples, because most machine learning algorithms can deal with small errors. However,
during the generating of the dataset we observed that there was a significant amount of

30

5.1. DATASET OF EVIL TWIN WEBSITES

Evil twin # Legitimate
Invalid Data Samples 13,027 873
Valid Data Samples 12,544 12,239
All gathered samples 25,571 13,112

Table 5.1: The CETD dataset has 25,571 evil twin samples and 13,112 legitimate samples.
After removing the invalid samples it has 12,544 evil twin samples and 12,239 legitimate

samples.

invalid samples, mainly in the positive class. For this reason we decided to spend some time
and effort to explore our dataset and remove invalid samples.

To clean our dataset we first checked randomly a few hundreds samples by hand to know
which types of invalid samples are contained in the dataset. By looking at screenshots of
web pages, we found two types of invalid samples:

• Error messages such as “Page Not Found” or “Server Not Found”.

• Offers from domain providers to buy a domain of the website (parked domains).

These type of errors are expected when the domains are not valid anymore due to age,
as was discussed previously.

To remove these invalid samples, we decided to use the structure of HTML DOM. The
idea behind is that these invalid samples could have the same HTML structure. Our approach
was following:

• For each sample construct the tree from HTML DOM

• Gather sets of samples having the same trees

• Check only one screenshot from each set

• If the checked screenshot indicates invalid sample, mark all samples from the set as
invalid.

After the cleaning process, we found 13,027 invalid samples in the evil twin class and 873
invalid samples in legitimate class. These numbers show that evil twin websites have very
short life expectancy in general and we had to remove more than half of all evil twin data
samples (Table 5.1).

Since the amount of legitimate websites was slightly lower than the amount of evil twin
websites, we collected a few more legitimate samples to have a balanced dataset. The final
amount of samples in the dataset are shown in table 5.2.

5.1.4 Dataset Exploration

Before creating data models for machine learning algorithms, we investigated a few as-
pects of the CETD dataset. The first investigation was about the usage of HTTPS certifi-
cates, because nowadays HTTPS certificates are a common practise for the vast majority of

31

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

Positive Data Samples 12,544
Negative Data Samples 12,544

Total Number of Data Samples 25,088

Table 5.2: CETD dataset contains 25,088 samples with the same amount of positive (evil
twin) and negative (legitimate) samples

websites and the most clear indicator that a site is secure and (mistakenly) trusted. There-
fore we wanted to know how legitimate and evil twin websites state in this aspect. The
second investigation was focused on downloaded content from the web pages. Then we also
analysed the HTML DOM. So the third investigation was about total number of HTML
tags in the HTML DOMs and the fourth investigation was concentrated on the number of
selected HTML tags in the HTML DOM.

5.1.4.1 Use of HTTPS per Class in the CETD Dataset

We only found 5,739 evil twin websites using HTTPS certificates and 11,394 legitimate
websites using HTTPS certificates. Figure 5.2 shows that it is more than 45 percent for evil
twin websites and more than 90 percent for the legitimate websites. It is worth pointing out,
that there were no invalid HTTPS certificates in the dataset (unknown issuer, expired time
validity, etc.).

One of our main assumptions was that evil twin websites would use more HTTPS because
they imitate legitimate services. However, results show that many creators of evil twin web
pages still rely on the lack of user knowledge about HTTPS importance, because all users
should know that all websites with login pages should use HTTPS.

5.1.4.2 Size of Downloaded Content per Class in the CETD Dataset

When a web page is loaded, usually some other content is downloaded from different
sources. For example, CSS styles, JavaScript libraries, images and others. The size of all
downloaded content was taken for each data sample and mean, standard deviation were
computed throughout the whole dataset. The results show that the size of all downloaded
data is higher for legitimate websites than in case of evil twin websites:

• Evil twin: Mean: 1.45 MB, Standard deviation: 2.58 MB

• Legitimate websites: Mean: 3.55 MB, Standard deviation: 4.13 MB

These results show that the size of the downloaded content of web pages is highly varied.

5.1.4.3 Total Amount of HTML Tags per Class in CETD Dataset

To have an idea about the amount of tags on each HTML DOM, from each HTML
DOM the total number of all tags was taken. Then, for both classes we computed the mean,
standard deviation, maximum and minimum. What stands out in table 5.3, is that the mean
of tags for legitimate websites is four times higher than the mean for the evil twin websites.

32

5.1. DATASET OF EVIL TWIN WEBSITES

Figure 5.2: Percentage of usage of HTTPS in evil twin websites and normal websites.

Special attention shall be devoted to standard deviation of the legitimate websites, where
the value is very large. This indicates that the number of tags in the legitimate websites is
very varied in the CETD dataset.

5.1.4.4 Amount of HTML Tags per Class in CETD Dataset

The last investigation was about the occurrences of HTML tags in the HTML DOM.
We selected the most used HTML tags for both classes. Figure 5.3 shows the means of
occurrences for each selected tag per one HTML DOM. For example, we can see in the
Figure that the mean of “div” tags occurrences for legitimate web pages is almost 300 while
the mean of "div" tags occurrences for evil twin web pages is only 78 “div” tags. The
interesting thing is, that “url” and “loc” tags are not contained in any evil twin sample, while
the average legitimate web page contains 4 “URL” and “loc” tags.

33

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

Evil twin Legitimate
Mean 305.09 1,224.23

Standard deviation 666.25 10,786.07
Max 22,328 1,124,596
Min 3 5

Table 5.3: Statistic about total number of tags in the HTML DOM for both classes.

Figure 5.3: Average occurrences of HTML tags for legitimate websites (blue) and evil twin
websites (red).

5.2 Data models

With data models we refer to matrices of values where each row is identified as a data
sample from the CETD dataset and each column is a feature value. Also each row has its
own label, either positive or negative. This chapter explains the creation of the four data
models that are going to be used for the detection of evil twin websites.

The CETD-feature-set-1 and CETD-feature-set-2 are computed from the urlscan.io anal-
ysis. The CETD-DOM-1 and CETD-DOM-2 are generated from the HTML DOMs.

34

5.2. DATA MODELS

Rows # Positive rows # Negative rows # Features
CETD-feature-set-1Train 20,070 10,035 10,035 233
CETD-feature-set-1Test 5,018 2,509 2,509 233
CETD-feature-set-1 25,088 12,544 12,544 233
CETD-feature-set-2Train 20,070 10,035 10,035 310
CETD-feature-set-2Test 5,018 2,509 2,509 310
CETD-feature-set-2 25,088 12,544 12,544 310

Table 5.4: The data model CETD-feature-set-1 is split into the training and testing parts.
The same holds for the CETD-feature-set-2.

5.2.1 Data Models CETD-feature-set-1 and CETD-feature-set-2

We computed data models CETD-feature-set-1 and CETD-feature-set-2 from the CETD
dataset by feature-set-1 and feature-set-2 explained in the section 4.2. Both data models
contain the same amount of rows as a number of samples in the CETD dataset. Then both
data models were split into training and testing data for the later experiments. The idea
behind this is to keep the testing data for the final evaluation and use the training data for
finding and tuning the best methods. With a ratio of 80:20, the training part contained
20,070 samples and the testing part 5,018 samples for both data models. It is important
to note that the training and testing data in the CETD-feature-set-1 come from the same
samples of the CETD dataset as the training and testing data in the CETD-feature-set-2.
Also the number of positive and negative samples is balanced for the training and testing
data in both data samples. The detailed overview is shown in Table 5.4.

5.2.1.1 Visualisation of Data Models CETD-feature-set-1 and CETD-feature-
set-2

High dimensional data is difficult to interpret for humans. As analysis, to have a better
idea of how the data looks like, we use UMAP reduction method.

Visualisation of the data model CETD-feature-set-1 by UMAP method is shown in Fig-
ure 5.4. The figure contains many different groups of samples for both classes. Many of
them are mixed together and many single data points are spread through the whole figure.
We can clearly see that positive and negative samples are not linearly separable and it can
pose a difficult classification task.

The result of visualisation of CETD-feature-set-2 by UMAP method is shown in Fig-
ure 5.5. In the middle of the figure, there is one group of negative samples. The positive
samples are rather spread across the whole figure without a noticeable group of samples.
Even in this case, data are not linearly separable.

To compare both UMAP projections by human eye, it seems that features from the data
model CETD-feature-set-2, shown in Figure 5.5, have better ability to separate positive and
negative samples, because their group of samples are more clear. Therefore we expect better
results in the experiments for the CETD-feature-set-2 than CETD-feature-set-1.

35

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

Figure 5.4: UMAP representation of data model CETD-feature-set-1, reduced from 233
dimensions to 2 dimensions. Green dots are legitimate websites, and red dots are evil twin
websites.

Rows # Positive rows # Negative rows # Columns
CETD-DOM-1 25,088 12,544 12,544 257
CETD-DOM-1Train 16,808 8,404 8,404 257
CETD-DOM-1Test 8,280 4,140 4,140 257

Table 5.5: The CETD-DOM-1 was split into the training and testing parts.

5.2.2 Data Model CETD-DOM-1

The data model CETD-DOM-1 was computed from the number of occurrences of selected
HTML tags from each data sample in the dataset. We selected the 200 most frequently used
HTML tags from both classes. Since many of them were the same, we got 257 unique HTML
tags shown in A.4. The data model CETD-DOM-1 was computed by the following way: for
each HTML DOM in the dataset, we computed the feature vector containing occurrences
of the 257 HTML tags and this vector was normalized by the total number of HTML tags
contained in the HTML DOM.

At the end, the data model CETD-DOM-1 contained 25,088 rows as the number of
samples in the dataset and 257 columns as a number of selected HTML tags. All values
were between 0 and 1, effectively converting it into a probability distribution. The process
of computing the feature vector from the HTML DOM is shown in Figure 5.6. The last step
was to split the data model CETD-DOM-1 into the training and testing parts as Table 5.5
shows.

36

5.2. DATA MODELS

Figure 5.5: UMAP representation of the data model CETD-feature-set-2 reduced from 310
dimensions to 2 dimensions. Green dots are legitimate websites, and red dots are evil twin
websites.

Figure 5.6: Conversion of the HTML structure, into HTML tags occurrences and into a
feature vector.

37

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

5.2.3 Data Model CETD-DOM-2

The data model CETD-DOM-2 was created in a complex way based on the work Graph
classification with 2D convolutional neural networks [38]. The authors represent a graph as
a multi-channel image and then classify it with standard Convolutional Neural Networks.
We applied this approach to the graph-like structure of the HTML DOM.

Each HTML DOM is transformed to a multi-channel image in the following way. Since
an HTML DOM can be represented as a tree (Figure 5.7), the first step was to construct
a tree from each HTML DOM. The tree was represented as a list of edges. Then the list
of edges was processed by node2vec algorithm [39] to create a node embedding. Thus, each
node of the tree has its own feature vector with the length of 128 features. Since node2vec
is a stochastic algorithm and each run provides different results, this means that a given
dimension will not be associated with the same concepts across trees in the dataset or even
across several runs on the same tree. After the vectors with 128 dimensions were found, we
used the PCA algorithm [40] to ensure that the embedding of all the trees in the dataset
are comparable. The PCA method reduces the dimension of each node from 128 to 10
dimensions. This new matrix contains 10 columns and n rows as a number of nodes in the
tree.

Figure 5.7: Representation of the HTML tags in an HTML structure into a graph structure.

The final step was to create histograms from the PCA node embedding matrix as de-
scribed in the paper. The first histograms were taken from the first and second columns of
the matrix, the second histograms were taken from third and fourth columns of the matrix,
etc. The values of the columns were discretized into the bins of the histograms. An example
of this process is shown in Figure 5.8.

Using this process we transform each HTML DOM into a multi-channel image with the
following shape:

• Width: 55
• Height: 55
• Channels: 5

38

5.3. METHODS

Figure 5.8: There is the PCA node embedding matrix with n rows (nodes) and d columns.
The first histogram is created from the first 2 columns of the matrix. The second histogram
is created from the second 2 columns of the matrix, etc.

All these images constitute our CETD-DOM-2 data model. Figure 5.9 shows a real example
of a multi-channel image from the CETD-DOM-2 data model.

After the data model CETD-DOM-2 is created it is split into training and testing
datasets. The training data is used for training parameters. The testing data is used for the
final evaluation (Table 5.6).

5.3 Methods

This chapter uses the same methods for the data models CETD-feature-set-1 and CETD-
feature-set-2 as in the previous chapter (Section 4.4). For experiments with data models
CETD-DOM-1 and CETD-DOM-2, we use Multilayer Perceptron (MLP) and Convolutional
Neural Network (CNN) implemented in TensorFlow 2 [41]. The Architectures for both
algorithms are described in the experiment sections.

39

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

Figure 5.9: An example of an evil twin HTML DOM transformation to multi-channel image.

5.4 Experiments to Detect Evil Twin Websites

To detect evil twin websites, first we make experiments with data models CETD-feature-
set-1 and CETD-feature-set-2, in sections 5.4.1 and 5.4.2 respectively. For both data
models, experiments have the following structure:

• train models without features selection
• select the best features
• train a model with the best features
• finally evaluate the best trained models in the testing data.

Rows # Positive rows # Negative rows
CETD-DOM-2 25,088 12,544 12,544
CETD-DOM-2Train 16,808 8,404 8,404
CETD-DOM-2Test 8,280 4,140 4,140

Table 5.6: The CETD-DOM-2 was split into the training and testing parts.

40

5.4. EXPERIMENTS TO DETECT EVIL TWIN WEBSITES

Random Forest XGBoost
n_estimators 500 500
max_depth 100 10

min_samples_leaf 1 ∅
min_child_weight ∅ 5

Table 5.7: The best found hyper-parameters for both algorithms.

Random Forest XGBoost
mean std mean std

Accuracy 0.9322 0.0065 0.9523 0.0049
FPR 0.0566 0.0044 0.0404 0.0046
FNR 0.0790 0.0118 0.0550 0.0086

Table 5.8: Results for Random Forest and XGBoost algorithms with the best
hyper-parameters. The mean and std are computed from the 10 folds of the cross

validation.

The sections 5.4.3 and 5.4.4 contains experiments with data models CETD-DOM-1 and
CETD-DOM-2.

5.4.1 Experiments using the CETD-feature-set-1

5.4.1.1 Training with the Hyper-parameter Tuning

The hyper-parameter tuning with 10-fold cross validation procedure was performed on
the CETD-feature-set-1Train data model for Random Forest and XGBoost. The best found
hyper-parameters are shown in Table 5.7. The Random Forest algorithm achieved 93.22%
of accuracy and XGBoost algorithm achieved 95.23% of accuracy with the selected hyper-
parameters (Table 5.8).

5.4.1.2 Training with the Best Features

To find the most important features the FSFI method was performed. The FSFI method
was run with the hyper-parameters above and it found a subset of the 93 most important
features for Random Forest and a subset of the 170 most important features for XGBoost.

Then the 10-fold cross validation procedure was performed with the subsets of the features
for both algorithms with the selected hyper-parameters from Table 5.7. The Random Forest
algorithm achieved 93.38% of accuracy and XGBoost algorithm achieved 95.25% of accuracy
(Table 5.9).

5.4.1.3 Comparison of the Trained Models

The Random Forest achieved better results with the subset of 93 features given by
the FSFI method (Table 5.9) than with all features (Table 5.8). All metrics (the validation
accuracy, false positive and false negative rates) were improved compared to all features.

41

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

Random Forest XGBoost
Best features 93/233 170/233

mean std mean std
Accuracy 0.9338 0.0051 0.9525 0.0063

FPR 0.0542 0.0049 0.0397 0.0056
FNR 0.0781 0.0097 0.0554 0.0091

Table 5.9: Results for the FSFI method.

Figure 5.10: Learning curve for Random
Forest with the best hyper parameters and
subset of the 93 most important features for

the CETD-feature-set-1Train.

Figure 5.11: AUC ROC curve for Random
Forest with the best hyper parameters and
with a subset of the 93 most important
features for the CETD-feature-set-1Train.

Random Forest Summary:
• n_estimators: 500
• max_depth: 100
• min_samples_leaf: 1
• The most important features: 93/233
• Accuracy: 93.38%

The Figure 5.10 shows the learning curve with the mentioned setting. We can see clearly
that the training score is still around the maximum and the validation score could be in-
creased with more training samples. The Figure 5.11 shows the ROC curve with 10-fold
cross validation. The AUC value achieved 0.9764 which means it has a very good measure
of separability.

In the case of XGBoost, the subset of 170 features given by the FSFI method (Table 5.9)
achieved a better results than with all features (Table 5.8). The validation accuracy and false
positive rate improved the results compared to all features, except the false negative rate.

XGBoost summary:
• n_estimators: 500
• max_depth: 10
• min_child_weight: 5
• The most important features: 170/(233)

42

5.4. EXPERIMENTS TO DETECT EVIL TWIN WEBSITES

Figure 5.12: Learning curve for XGBoost
with the best hyper parameters and subset of

the 170 most important features for the
CETD-feature-set-1Train.

Figure 5.13: AUC ROC curve for XGBoost
with the best hyper parameters and with a

subset of the 170 most important features for
the CETD-feature-set-1Train.

CETD-feature-set-1Test Random Forest XGBoost
Testing accuracy 0.9350 0.9528

FPR 0.0510 0.0407
FNR 0.0789 0.0538

Table 5.10: Result of Random Forest and XGBoost on CETD-feature-set-1Test data model.

• Accuracy: 95.25%

The Figure 5.12 shows the learning curve during training with the mentioned setting.
We can see clearly that the training score is still around the maximum and the validation
score could be increased with more training samples. The Figure 4.7 shows the ROC curve
with 10-fold cross validation. The AUC value achieved 98.44% which means it also has a
good measure of separability.

5.4.1.4 Evaluation on the Testing Data

The final step was to perform the Random Forest and XGBoost with the best found
settings on the testing data CETD-feature-set-1Test. The results are shown in the Table 5.10.

5.4.2 Experiments using the CETD-feature-set-2

5.4.2.1 Training with the Hyper-parameter Tuning

The hyper-parameter tuning with 10-fold cross validation procedure was performed on the
CETD-feature-set-2Train data model for Random Forest and XGBoost algorithms. The best
found hyper-parameters are shown in Table 5.11. The Random Forest algorithm achieved
93.80% of accuracy and XGBoost algorithm achieved 94.89% of accuracy with the selected
hyper-parameters (Table 5.12).

43

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

Random Forest XGBoost
n_estimators 500 500
max_depth 100 10

min_samples_leaf 1 ∅
min_child_weight ∅ 10

Table 5.11: The best found hyper-parameters for both algorithms.

Random Forest XGBoost
mean std mean std

Accuracy 0.9380 0.0065 0.9489 0.0073
FPR 0.0710 0.0094 0.0580 0.0102
FNR 0.0531 0.0098 0.0442 0.0085

Table 5.12: Result for Random Forest and XGBoost algorithm with best hyper-parameters.
Each metric is a mean of 10 results from 10 folds from cross validation.

5.4.2.2 Training with the Best Features

To find the most important features the FSFI method was performed. The FSFI method
was run with the hyper-parameters above and it found a subset of the 158 most important
features for Random Forest and a subset of the 229 most important features for XGBoost.

Then the 10-fold cross validation procedure was performed with the subsets of the features
for both algorithms with the selected hyper-parameters from Table 5.11. The Random Forest
algorithm achieved 93.85% of accuracy and XGBoost algorithm achieved 94.96% of accuracy
(Table 5.13).

5.4.2.3 Comparison of the Trained Models

The Random Forest achieved better results with the subset of 158 features given by the
FSFI method (Table 5.13) than with all features (Table 5.12). The accuracy, false positive
rate were improved but the false negative rate was not improved. Despite the worse false
negative rate the results with the subset of 158 features are still better.

Random Forest Summary:
• n_estimators: 500
• max_depth: 100

Random Forest XGBoost
Best features 158/310 229/310

mean std mean std
Accuracy 0.9385 0.0066 0.9496 0.0068

FPR 0.0690 0.0096 0.0569 0.0093
FNR 0.0540 0.0097 0.0439 0.0072

Table 5.13: Results for the FSFI method.

44

5.4. EXPERIMENTS TO DETECT EVIL TWIN WEBSITES

Figure 5.14: Learning curve for Random
Forest with the best hyper-parameters and

subset of 158 the most important features for
the CETD-feature-set-2Train.

Figure 5.15: AUC ROC curve for Random
Forest with the best hyper-parameters and
with a subset of 158 the most important
features with the all features for the

CETD-feature-set-2Train.

• min_samples_leaf: 1
• The most important features: 158/310
• Accuracy: 93.85%

The Figure 5.14 shows the learning curve with the mentioned setting. We can see clearly
that the training score is still around the maximum and the validation score could be in-
creased with more training samples. The Figure 5.15 shows the ROC curve with 10-fold
cross validation. The AUC value achieved 0.9808 which means it has a very good measure
of separability.

The XGBoost algorithm achieved better results with the subset of 229 features given
by the FSFI method (Table 5.13) than with all features (Table 5.12). All metrics (the
validation accuracy, false positive and false negative rates) were improved compared to all
features.

XGBoost summary:
• n_estimators: 500
• max_depth: 10
• min_child_weight: 10
• The most important features: 229/310
• Accuracy: 94.96 %

The Figure 5.16 shows the learning curve with the mentioned setting. We can see clearly
that the training score is still around the maximum. The validation score could be increased
with more training samples. The Figure 5.17 shows the ROC curve with 10-fold cross
validation. The AUC value achieved 0.9851 which means it has good measure of separability.

5.4.2.4 Evaluation on the Testing Data

The final step was to perform the Random Forest and XGBoost with the best found
settings on the testing data CETD-feature-set-2Test. The results are shown in the Table 5.14.

45

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

Figure 5.16: Learning curve for XGBoost
with best hyper parameters and with a

subset of the 229 most important features for
the CETD-feature-set-2Train.

Figure 5.17: ROC for XGBoost with best
hyper parameters and with a subset of the

229 most important features for the
CETD-feature-set-2Train.

CETD-feature-set-2Test Random Forest XGBoost
Testing accuracy 0.9370 0.9519

FPR 0.0694 0.0542
FNR 0.0566 0.0418

Table 5.14: Result of Random forest and XGBoost on CETD-feature-set-2Test data model.

5.4.3 Experiments using the CETD-DOM-1

We apply two machine learning algorithms on the data model CETD-DOM-1. First we
trained XGBoost algorithm on CETD-DOM-1Train and subsequently Multilayer perceptron.

The XGBoost was trained and turned on the CETD-DOM-1Train with a 10 fold cross
validation procedure. The best found parameters were:

• n_estimators: 500
• max_depth: 10
• min_child_weight: 10

Then this trained model was performed on the testing data CETD-DOM-1Test. It
achieved testing accuracy of 90% with 11.84% of false positive rate and 8.16% of the false
negative rate. The results are shown in the Table 5.15.

Then the multilayer perceptron was used. For the training procedure we split the CETD-
DOM-1Train into training and validation parts with a ratio of 80:20. The training part was
used only for training and the validation data was used for checking performance of the
trained model. We tried multiple architecture and the best result on the validation data
was achieved after 85 epochs of the training with the validation accuracy of 81.12% with the
following architecture:

• An input layer ∈ R257 (as a number of columns in the data model)
• A dense layer ∈ R100

46

5.4. EXPERIMENTS TO DETECT EVIL TWIN WEBSITES

CETD-DOM-1Test XGBoost MLP
Testing accuracy 0.9000 0.7909

FPR 0.1184 0.2360
FNR 0.0816 0.1821

Table 5.15: The results for XGBoost and MLP on CETD-DOM-1Test data model.

CETD-DOM-2Test LeNet
Testing accuracy 0.7072

FPR 0.1536
FNR 0.4377

Table 5.16: The results for CETD-DOM-2Test data model.

• A dropout layer with 0.1 rate of dropping
• A dense layer ∈ R50

• A dense layer ∈ R10

• A output dense layer ∈ R2 with softmax activation function

In addition, we used L2 regularization with the value of 0.001 and label smoothing with
value 0.1 and the model was trained with batch sizes of 100 samples. Then this trained
model was applied on testing data CETD-DOM-1Test . The testing accuracy was 79.09%.
The results are shown in Table 5.15.

5.4.4 Experiments using the CETD-DOM-2

Since the data model CETD-DOM-2 contains multichannel images, this experiment is a
computer vision task. We used two types of CNN architecture. The first architecture was our
implementation based on ResNet [42] and the second architecture was our implementation of
LeNet [43] proposed in the original work Graph classification with 2D convolutional neural
networks [38].

First, we split the CETD-DOM-2Train into training and validation parts with a ratio of
80:20. The training part was used for the training of both architectures and the validation
part was used for checking the performance of the model. During the training phase, we
tried many variants and hyperparameters for the ResNet architecture, but the validation
accuracy was not higher than 55%. The LeNet architecture worked better (Figure 5.18).
With the hyper-parameters L2 regularization of 0.001 and label smoothing of 0.1, the best
trained model achieved validation accuracy of 71.28%.

Then we evaluated the trained model on testing data CETD-DOM-2Test. The testing
accuracy was 70.72%, false positive rate was 15.36% and false negative rate was 43.77%. The
results are shown in Table 5.16.

47

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

Figure 5.18: LeNet architecture - The input shape of multichannel images is (55,55,5),
therefore the input layer has the same shape. Then, there are four convolutional-pooling
layers (each repeated twice) in parallel. with the filter sizes of 3, 4, 5 and 6, followed by two
fully connected layers. All this is flatten to and sent to the Dense layer with a drop out rate
of 0.3. Finally there are output layers consisting of 2 units (negative class, positive class).

5.5 Analysis of Results

5.5.1 CETD-feature-set-1 and CETD-feature-set-2

According to results on the testing data shown in Tables 5.10 and 5.14, the XGBoost
model achieved the best accuracy for both data models CETD-feature-set-1Test and CETD-
feature-set-2Test. The best model is XGBoost as show in Table 5.10 trained and tuned using
the CETD-feature-set-1Train dataset because it achieved the highest accuracy with a value
of 95.28% and the lowest false positive rate of 4.07% on the testing data.

These results suggest that the feature-set-1 provides a better description than the feature-
set-2 for detection of evil twin websites. This fact is somewhat surprising, because the
feature-set-2 contains more complex information from the urlscan.io service so we expected
better results for models trained with the feature-set-2. Furthermore, the UMAP reduction
method showed us also a better outcome 5.2.1.1 for data model CETD-feature-set-2.

5.5.2 CETD-DOM-1 and CETD-DOM-2

According to results on the testing data shown in Tables 5.15 and 5.16, the XGBoost
has also the the best results. With 90% of testing accuracy, XGBoost achieved significantly
better results then MLP (Tables 5.15) and LeNet (Tables 5.16). The XGBoost result shows
that the number of occurrences of html tags in the HTML DOM is important aspect for
detection of evil twin websites.

The bad results for the LeNet architecture can have several reasons:

48

5.5. ANALYSIS OF RESULTS

• Wrong selected parameters for node2vec during generating embedding for the HTML
DOM trees
• Wrong architecture of CNN
• The method transforming graphs to multichannel images is not suitable for our prob-

lem.

5.5.3 The best model for the Detection of Evil Twin Websites

To conclude this chapter, the best found method for the detection of evil twin websites is
XGBoost algorithm trained and evaluated on the CETD-feature-set-1 with the best 170 fea-
tures from feature-set-1. All 170 features with their importance are shown in the section A.5.
Here we provide the 10 most important features in the following lines:

• 127_secureRequests: Total number of request that use HTTPS correctly.
• 11_https_in_url: Ratio between links on the web page having HTTPS in the URL

and all links on the web page.
• 195_response_connectStart_std: Standard deviation of list of durations, when

the browser started to connect to the remote host.
• 48_ips_std: Mean number of IP addresses used between the client and the web

server.
• 97_domain_in_initiators_mean: Mean of of domain initiators.
• 242_links_domain_in_url_mean: Ratio of links containing the domain of the

website to all links.
• 9_urls: Total number of URLS on the web page.
• 231_cookie_expires_now_mean: Mean of all the remaining time in seconds for

when all cookie will expire.
• 131_totalLinks: Total amount of links contained in the web page.
• 105_ips_mean: Mean of number of IP addresses used for domain.

49

CHAPTER 5. DETECTION OF EVIL TWIN WEBSITES

50

Chapter 6

Exploiting websites

The goal of this chapter was to create a dataset containing exploiting websites and then
to propose suitable methods to detect them. Unfortunately, despite analysing thousands
of potentially exploiting websites, none was found. Therefore, instead of experiments using
machine learning methods, this chapter only describes our approach for hunting exploiting
websites.

Before generating an exploiting website dataset, we wanted to find some method giving
us proof that a website is a really an exploiting website. Therefore we used a tool called
Thug. The Thug tool [8] is a Python low-interaction honey-client to detect client-side attacks
on websites. The goal of Thug is to mimic the behavior of a web browser controlled by a user
and be exploited by the content of the website. A core part of this tool is the Google’s V8
JavaScript engine [44] for analyzing malicious JavaScript code and the Libemu library [45]
to detect and emulate shellcode.

The Thug tool provides more than 40 different user agents for visiting the target website.
Each user agent is a string that represents a specific version of an operating system, browser
and sometimes libraries. For example:

• Windows XP - Internet Explorer 6.0

• Windows XP - Internet Explorer 6.1

• Windows 10 - Internet Explorer 11.0

• MacOS X 10.7.2 - Safari 5.1.1

• iPad, iOS 7.0.4 - Safari 7.0

• Linux - Safari 7.0

The output of Thug tool contains the analysis of the website with information about the
exploits found. This information was converted into the features of our dataset.

After analyzing the features that were going to be extracted from Thug, we looked for
a list of potentially exploiting websites. We found a list of URLs [24] containing over 9,000
URLs with malware, ransomware, trojans and other threats.

51

CHAPTER 6. EXPLOITING WEBSITES

We ran the Thug tool with all the possible user agents in the Thug tool (which are more
than 20 different user agents) to analyse all these URLs from every possible perspective.
However, Thug did not find any exploit for any of these websites. This may mean that
the selected websites did not contain any exploit or that Thug failed to detect them. This
investigation indicates that hunting for exploiting websites may be a harder task compared
to evil twin websites.

52

Chapter 7

Should I Click Web Service

The research methods and techniques described in this thesis may be of great value for
our community, since there is a special focus on detecting websites that attack the clients.
As member of the Civilsphere project I had the opportunity to implement some of these
methods in a public service for our society called the Should I Click service and that can
be found in <https://www.shouldiclick.org/>. Should I Click is a free service to check
if a website is safe to access. The aim of this project is to help people at risk around the
world, such as journalists, NGOs, political activists and other people at risk against targeted
cyber attacks. However, its an open and public service that everyone can use. Figure 7.1
shows the main page of the service.

Figure 7.1: Main page of the Should I Click service that was created to implement
some of the methods in this thesis for the free benefit of our community. The site is
https://www.shouldiclick.org.

53

https://www.shouldiclick.org/

CHAPTER 7. SHOULD I CLICK WEB SERVICE

The idea of creating the Should I Click service was born from the problems seen in the
day to day work of the Civilsphere service, which deals with helping people at risk from
cyberattacks.

The first testing version of Should I Click was launched in 2018 but the official launch
for the community was in February 2020. Since the main part of this thesis was done after
the official launch, Should I Click contains only the variant of XGBoost model trained on
the CETD-feature-set-1 (5.4.1). Future releases will incorporate all the detection models
shown in this thesis.

Figure 7.2 shows the architecture of Should I Click running inside a docker container in
the Czech Technical University in Prague. The web server was constructed using NGINX [46],
Django [47] and uWSGI [48]. These three programs constitute a bridge between requests
from clients and the python modules. When a client sends a request to analyse a URL, this
request is stored in a redis database [49] and the detection module is informed about it.
The detection module sends the URL to the urlscan.io API to analyse the URL and retrive
a JSON file with results (the analysis takes around 30 seconds). After that, the urlscan.io
JSON file is downloaded and all the features are extracted from it. The detection module
predicts if this URL is safe to click or not, and stores the detection result for this URL in
the redis database. The client browser keeps asking for the result every few seconds. When
the detection result is ready, it is shown in client’s browser.

The important part of Should I Click is that clients can provide feedback for its detection
results. When a detection result is shown to a client, the client can choose if the result is
right or not, and the reason. This possibility allows us to measure our performance in real
websites and against the testing data.

Figure 7.3 shows an example run of the Should I Click service with the webpage http:
//storecovid.blog which is detected as suspicious and should not be clicked.

The Should I Click service has ran for 102 days since its launch in February 2020. During
this time we have collected 1,529 submitted URLs and 285 feedback forms for them. Table 7.1
shows the total results based on the feedback sent by users and during the whole lifetime
of the service. It can be clearly seen that the false negative rate is very high with 48.21%
and the false positive rate is better with 19.08%. This means that our detection module is
better in classifying legitimate websites while in case of classification of unsafe websites, our
models fail often. This collection of data is very important for the future improvements in
the service.

54

Figure 7.2: Web architecture of the implementation of the Should I Click service

All requests 1,529
Detected as unsafe websites 438

Detected as legitimate websites 1,091
All feedback 285

TN 140
FP 33
FN 54
TP 58

Accuracy 0.6947
FPR 0.1908
FNR 0.4821

Table 7.1: Statistics for Should I Click

55

CHAPTER 7. SHOULD I CLICK WEB SERVICE

Figure 7.3: Example analysis of a website by the Should I Click service. The web page
http://storecovid.blog is detected as suspicious and suggested not to be clicked on.

56

Chapter 8

Conclusion

The detection of unsafe websites is one of the most important security topics nowadays
given the amount of attacks, phishing and scams that are run on the Internet. To be able to
have a way to determine which site is unsafe and which one is safe is a very hard problem
for our industry.

The aim of our research was to analyse and detect unsafe websites with special attention
to evil twin websites.

The contributions of this thesis are: This thesis publishes two balanced datasets that are
publicly available [21] and they can be used for further research. The first dataset is the
UWD dataset containing all types of unsafe websites, and legitimate websites. The second
one is the CETD dataset containing only evil twin websites and legitimate websites. First,
we proposed the detection of unsafe websites based on the UWD dataset. We used extracted
features from urlscan.io analysis to describe the content and behaviour of a website. Using
these features, Random forest and XGboost algorithms achieved 92.69 percent of accuracy for
detection of unsafe websites. Second, we proposed the detection of evil twin websites using
the CETD dataset. In this case we also used features based on urlscan.io analysis, moreover,
we used the HTML DOM describing the structure of a web page. Using features extracted
from urlscan.io analysis we achieved accuracy of 95.28 percent. In the case of the detection
based on HTML DOM the best result was 90 percent accuracy. As a practical outcome of
this research we created the Should I Click web service (https://www.shouldiclick.org/) to
check whether a website is safe to visit or not.

We conclude that the content, behaviour and structure of websites is an important aspect
for detection of unsafe and evil twin websites and instead of techniques relying only on URLs
it is better to combine both approaches together.

The future work consists of several parts:

• Should I Click service uses only one model from chapter 5. In the future, our goal is
to create an ensemble of all detection methods mentioned in this thesis.

• Should I Click uses urlscan.io web service for generating urlscan.io analysis used for
extracting features. In the future, we would like to replace urlscan.io with our own
solution. This would make the analysis of a website submitted by a user, faster.
Currently urlscan.io analyses the web page for 30 seconds and we have to wait for it.

57

CHAPTER 8. CONCLUSION

• This research shows us that content, behaviour and structure of a website plays an
essential role for their detection. In the future, we would like to focus more on com-
bination of HTML structure with text, images and JavaScript code of web page. We
believe that this data can provide a more complex description of a website and thus
better detection results in this area.

58

Bibliography

[1] Google transparency report. Accessed May 10th 2020. [Online]. Available: <https:
//transparencyreport.google.com/safe-browsing/overview>

[2] Phishing techniques. Accessed May 10th 2020. [Online]. Available: <https:
//www.phishing.org/phishing-techniques>

[3] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. I. Hong, and C. Zhang, “An
empirical analysis of phishing blacklists,” in CEAS 2009, 2009.

[4] A. Joshi, L. Lloyd, P. Westin, and S. Seethapathy, “Using lexical features for malicious
url detection – a machine learning approach,” 2019.

[5] R. Vinayakumar, S. Sriram, K. Soman, and A. Mamoun. (2020) Malicious url detection
using deep learning. [Online]. Available: <https://www.techrxiv.org/articles/
Malicious_URL_Detection_using_Deep_Learning/11492622/1>

[6] M. Chatterjee and A. Namin, “Detecting phishing websites through deep reinforcement
learning,” in 2019 IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), vol. 2, 2019, pp. 227–232.

[7] J. Gilger. urlscan.io. Accessed May 20th 2020. [Online]. Available: <https:
//urlscan.io>

[8] A. Dell’Aera. Thug. Accessed May 20th 2020. [Online]. Available: <https:
//thug-honeyclient.readthedocs.io/en/latest/>

[9] Code for the thesis. Accessed May 10th 2020. [Online]. Available: <https:
//github.com/frenky-strasak/diploma_thesis_shouldiclick>

[10] Verizon. 2019 data breach investigations report. Accessed May 10th 2020.
[Online]. Available: <https://enterprise.verizon.com/resources/reports/
2019-data-breach-investigations-report.pdf>

[11] Common vulnerability and exposure (cve) list. Accessed May 10th 2020. [Online].
Available: <https://cve.mitre.org/>

[12] National vulnerability database (nvd). Accessed May 10th 2020. [Online]. Available:
<https://nvd.nist.gov/>

59

https://transparencyreport.google.com/safe-browsing/overview
https://transparencyreport.google.com/safe-browsing/overview
https://www.phishing.org/phishing-techniques
https://www.phishing.org/phishing-techniques
https://www.techrxiv.org/articles/Malicious_URL_Detection_using_Deep_Learning/11492622/1
https://www.techrxiv.org/articles/Malicious_URL_Detection_using_Deep_Learning/11492622/1
https://urlscan.io
https://urlscan.io
https://thug-honeyclient.readthedocs.io/en/latest/
https://thug-honeyclient.readthedocs.io/en/latest/
https://github.com/frenky-strasak/diploma_thesis_shouldiclick
https://github.com/frenky-strasak/diploma_thesis_shouldiclick
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://cve.mitre.org/
https://nvd.nist.gov/

BIBLIOGRAPHY

[13] Malwarebytes - exploit kits: fall 2019 review. Accessed May 10th 2020. [Online]. Avail-
able: <https://blog.malwarebytes.com/exploits-and-vulnerabilities/2019/
11/exploit-kits-fall-2019-review/>

[14] J. Saxe, R. Harang, C. Wild, and H. Sanders, “A deep learning approach to fast, format-
agnostic detection of malicious web content,” 2018.

[15] S. Hess, P. Satam, G. Ditzler, and S. Hariri, “Malicious html file prediction: A detection
and classification perspective with noisy data,” in 2018 IEEE/ACS 15th International
Conference on Computer Systems and Applications (AICCSA), 2018, pp. 1–7.

[16] W. Xu, F. Zhang, and S. Zhu, “The power of obfuscation techniques in malicious
javascript code: A measurement study,” in 2012 7th International Conference on Mali-
cious and Unwanted Software, 2012, pp. 9–16.

[17] S. Ndichu, S. Ozawa, T. Misu, and K. Okada, “A machine learning approach to malicious
javascript detection using fixed length vector representation,” in 2018 International
Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–8.

[18] H. Zhang, G. Liu, T. W. S. Chow, and W. Liu, “Textual and visual content-based
anti-phishing: A bayesian approach,” IEEE Transactions on Neural Networks, vol. 22,
no. 10, pp. 1532–1546, 2011.

[19] Guang-Gang Geng, Xiao-Dong Lee, Wei Wang, and Shian-Shyong Tseng, “Favicon - a
clue to phishing sites detection,” in 2013 APWG eCrime Researchers Summit, 2013, pp.
1–10.

[20] J. C. S. Fatt, C. K. Leng, and S. S. Nah, “Phishdentity: Leverage website favicon to offset
polymorphic phishing website,” in 2014 Ninth International Conference on Availability,
Reliability and Security, 2014, pp. 114–119.

[21] Unsafe and evil twin website datasets. Accessed May 10th 2020. [Online]. Available:
<https://github.com/stratosphereips/shouldiclick_datasets>

[22] Phishtank. Accessed May 10th 2020. [Online]. Available: <https://www.phishtank.
com/>

[23] Cyber threat intelligence feeds (ctifeeds). Accessed May 10th 2020. [Online]. Available:
<https://github.com/certtools/intelmq-feeds-documentation>

[24] The big list of hacked malware web sites. Accessed May
10th 2020. [Online]. Available: <https://github.com/mitchellkrogza/
The-Big-List-of-Hacked-Malware-Web-Sites>

[25] Alexa top 1 million sites. Accessed May 10th 2020. [Online]. Available: <http:
//s3.amazonaws.com/alexa-static/top-1m.csv.zip>

[26] Virus total. Accessed May 10th 2020. [Online]. Available: <https://www.virustotal.
com/>

60

https://blog.malwarebytes.com/exploits-and-vulnerabilities/2019/11/exploit-kits-fall-2019-review/
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2019/11/exploit-kits-fall-2019-review/
https://github.com/stratosphereips/shouldiclick_datasets
https://www.phishtank.com/
https://www.phishtank.com/
https://github.com/certtools/intelmq-feeds-documentation
https://github.com/mitchellkrogza/The-Big-List-of-Hacked-Malware-Web-Sites
https://github.com/mitchellkrogza/The-Big-List-of-Hacked-Malware-Web-Sites
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.virustotal.com/
https://www.virustotal.com/

BIBLIOGRAPHY

[27] Let’s encrypt. Accessed May 10th 2020. [Online]. Available: <https://letsencrypt.
org/>

[28] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and
projection for dimension reduction,” 2018.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[30] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001.

[31] Tuning the hyper-parameters of an estimator. Accessed May 10th 2020. [Online].
Available: <https://scikit-learn.org/stable/modules/grid_search.html>

[32] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 785–794. [Online]. Available: <https:
//doi.org/10.1145/2939672.2939785>

[33] J. Brownlee. Xgboost with python, machine learning mastery. Accessed
May 10th 2020. [Online]. Available: <https://machinelearningmastery.com/
feature-importance-and-feature-selection-with-xgboost-in-python/>

[34] Phishing domain database. Accessed May 10th 2020. [Online]. Available: <https:
//github.com/mitchellkrogza/Phishing.Database>

[35] Openphish. Accessed May 10th 2020. [Online]. Available: <https://openphish.com/>

[36] Sp tool. Accessed May 10th 2020. [Online]. Available: <https://github.com/garee/
sp>

[37] Startpage. Accessed May 10th 2020. [Online]. Available: <https://www.startpage.
com/>

[38] A. J.-P. Tixier, G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, “Graph classifica-
tion with 2d convolutional neural networks,” 2017.

[39] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 855–864. [Online]. Available: <https:
//doi.org/10.1145/2939672.2939754>

[40] H. Hotelling, Analysis of a complex of statistical variables into principal
components. Baltimore: Warwick & York, 1933, 48 p. [Online]. Available:
<http://hdl.handle.net/2027/wu.89097139406>

61

https://letsencrypt.org/
https://letsencrypt.org/
https://scikit-learn.org/stable/modules/grid_search.html
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://machinelearningmastery.com/feature-importance-and-feature-selection-with-xgboost-in-python/
https://machinelearningmastery.com/feature-importance-and-feature-selection-with-xgboost-in-python/
https://github.com/mitchellkrogza/Phishing.Database
https://github.com/mitchellkrogza/Phishing.Database
https://openphish.com/
https://github.com/garee/sp
https://github.com/garee/sp
https://www.startpage.com/
https://www.startpage.com/
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
http://hdl.handle.net/2027/wu.89097139406

BIBLIOGRAPHY

[41] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: <http://tensorflow.org/>

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2015.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
November 1998.

[44] V8. Accessed May 10th 2020. [Online]. Available: <https://v8.dev/>

[45] Libemu. Accessed May 10th 2020. [Online]. Available: <http://libemu.carnivore.
it/>

[46] Nginx. Accessed May 10th 2020. [Online]. Available: <https://nginx.org/>

[47] Django. Accessed May 10th 2020. [Online]. Available: <https://www.djangoproject.
com/>

[48] uwsgi. Accessed May 10th 2020. [Online]. Available: <https://uwsgi-docs.
readthedocs.io/en/latest/>

[49] Redis. Accessed May 10th 2020. [Online]. Available: <https://redislabs.com/>

62

http://tensorflow.org/
https://v8.dev/
http://libemu.carnivore.it/
http://libemu.carnivore.it/
https://nginx.org/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/
https://redislabs.com/

Appendix A

Description of Features

A.1 feature-set-1 - 233 features

All these features are computed from the urlscan.io analysis. To see an example of
urlscan.io analysis, go to urlscan.io website, choose some submitted URL and then there is a
button called "API". If you click on it, the urlcan.io analysis will be shown in JSON format.
These features are computed from this JSON output. The total number of the features is
233. The last feature has index 246, because some features were removed from the original
list.

Features computed from the ’lists’ JSON key. Feature numbers: 1 - 26:

• 1_number_ips: Total length of list of ’ips’ list.
• 2_number_countries: Total length of list of ’countries’ list.
• 3_number_asns: Total length of list of ’asns’ list.
• 4_mean_asns: Mean of values in ’asns’ list.
• 5_std_asns: STD of values in ’asns’ list.
• 6_number_domains: Total length of list of ’domains’ list.
• 7_diff_domains: Total number of different TLD of the domains int ’domains’ list.
• 8_servers: Total length of list of ’server’ list.
• 9_urls: Total length of list of ’url’ list.
• 10_diff_urls: Total number of different TLD of the domains int ’url’ list.
• 11_https_in_url: Ratio between links on the web page having ’https’ in the URL

and all links on the web page.
• 12_domain_in_url: Ratio of different domains in ’url list’ and all domains int the

’domain’ list.
• 13_image_in_url: Number of urls in ’url’ list containing ’.jpeg’, ’.png’, ’.jpg’, ’.gif’.
• 14_sizemean_url: Mean of length of urls in ’url’ list.
• 15_sizestd_url: STD of length of urls in ’url’ list.
• 16_javascript_url: Ratio of number of urls in ’url’ list containing ’.js’ and all urls.
• 17_javascript_url: Ratio of number of urls in ’url’ list containing ’.cookie’ and all

urls.
• 18_length_linkdomains: Total length of list of ’linkDomains’ list.

63

APPENDIX A. DESCRIPTION OF FEATURES

• 19_difftld_linkdomains: Ratio of number of different TLD of the domains int ’url’
list and all ’urls’.
• 20_numsubdomainmean_linkdomains: Each url is split by ’.’ to several parts.

Mean of the number of these parts is computed.
• 21_numsubdomainstd_linkdomains: Each url is split by ’.’ to several parts.

STD of the number of these parts is computed.
• 22_numcertificates_linkdomains: Total numner of ’certificates’ list.
• 23_certicatevalidationmean_linkdomains: Mean of validity length of certifi-

cates.
• 24_certicatevalidationstd_linkdomains: STD of validity length of certificates.
• 25_certicatevalidation2mean_linkdomains: Mean of amount of seconds for each

certificate remaining to expire time.
• 26_certicatevalidation2std_linkdomains: STD of amount of seconds for each

certificate remaining to expire time.

Features computed from the ’meta’ JSON key. Feature numbers: 27 - 31:

• 27_diff_countries: Number of different countries for all object with json path [’pro-
cessors’][’geoip’][’data’]
• 28_confidence_mean: Mean of ’confidenceTotal’ list.
• 29_confidence_std: STD of ’confidenceTotal’ list.
• 30_priority_mean: Mean of ’priority’ list.
• 31_priority_std: STD of ’priority’ list.

Features computed from the ’stats’ JSON key. Feature numbers: 37 - 132:

• 37_count_mean: Mean of ’count’ values in ’resourceStats’.
• 38_count_std: STD of ’count’ values in ’resourceStats’.
• 39_size_mean: Mean of ’https’ values in ’resourceStats’.
• 40_size_std: STD of ’https’ values in ’resourceStats’.
• 41_ensize_mean: Mean of ’encodedSize’ values in ’resourceStats’.
• 42_ensize_std: STD of ’encodedSize’ values in ’resourceStats’.
• 43_latency_mean: Mean of ’latency’ values in ’resourceStats’.
• 44_latency_std: STD of ’latency’ values in ’resourceStats’.
• 45_compression_mean: Mean of ’compression’ values in ’resourceStats’.
• 46_compression_std: STD of ’compression’ values in ’resourceStats’.
• 47_ips_mean: Mean of number of ips in ’ips’ list.
• 48_ips_std: STD of number of ips in ’ips’ list.
• 49_countries_mean: Mean of number of countries in ’countries’ list.
• 50_countries_std: STD of number of countries in ’countries’ list.
• 51_count_mean: Mean of ’count’ values in ’protocolStats’.
• 52_count_std: STD of ’count’ values in ’protocolStats’.
• 53_size_mean: Mean of ’https’ values in ’protocolStats’.
• 54_size_std: STD of ’https’ values in ’protocolStats’.
• 55_ensize_mean: Mean of ’encodedSize’ values in ’protocolStats’.
• 56_ensize_std: STD of ’encodedSize’ values in ’protocolStats’.

64

A.1. FEATURE-SET-1 - 233 FEATURES

• 57_ips_mean: Mean of number of ips in ’ips’ list in ’protocolStats’.
• 58_ips_std: STD of number of ips in ’ips’ list in ’protocolStats’.
• 59_countries_mean: Mean of number of countries in ’countries’ list in ’protocol-

Stats’.
• 60_countries_std: STD of number of countries in ’countries’ list in ’protocolStats’.
• 61_count_mean: Mean of ’count’ values in ’tlsStats’.
• 62_count_std: STD of ’count’ values in ’tlsStats’.
• 63_size_mean: Mean of ’https’ values in ’tlsStats’.
• 64_size_std: STD of ’https’ values in ’tlsStats’.
• 65_ensize_mean: Mean of ’encodedSize’ values in ’tlsStats’.
• 66_ensize_std: STD of ’encodedSize’ values in ’tlsStats’.
• 67_ips_mean: Mean of number of ips in ’ips’ list in ’tlsStats’.
• 68_ips_std: STD of number of ips in ’ips’ list in ’tlsStats’.
• 69_countries_mean: Mean of number of countries in ’countries’ list in ’tlsStats’.
• 70_countries_std: STD of number of countries in ’countries’ list in ’tlsStats’.
• 71_protocols_mean: Mean of length of protocols in ’protocols’ list in ’tlsStats’.
• 72_protocols_std: STD of length of protocols in ’protocols’ list in ’tlsStats’.
• 73_count_mean: Mean of ’count’ values in ’serverStats’.
• 74_count_std: STD of ’count’ values in ’serverStats’.
• 75_size_mean: Mean of ’https’ values in ’serverStats’.
• 76_size_std: STD of ’https’ values in ’serverStats’.
• 77_ensize_mean: Mean of ’encodedSize’ values in ’serverStats’.
• 78_ensize_std: STD of ’encodedSize’ values in ’serverStats’.
• 79_ips_mean: Mean of number of ips in ’ips’ list in ’serverStats’.
• 80_ips_std: STD of number of ips in ’ips’ list in ’serverStats’.
• 81_countries_mean: Mean of number of countries in ’countries’ list in ’serverStats’.
• 82_countries_std: STD of number of countries in ’countries’ list in ’serverStats’.
• 83_count_mean: Mean of ’count’ values in ’domainStats’.
• 84_count_std: STD of ’count’ values in ’domainStats’.
• 85_size_mean: Mean of ’https’ values in ’domainStats’.
• 86_size_std: STD of ’https’ values in ’domainStats’.
• 87_ensize_mean: Mean of ’encodedSize’ values in ’domainStats’.
• 88_ensize_std: STD of ’encodedSize’ values in ’domainStats’.
• 89_ips_mean: Mean of number of ips in ’ips’ list in ’domainStats’.
• 90_ips_std: STD of number of ips in ’ips’ list in ’domainStats’.
• 91_countries_mean: Mean of number of countries in ’countries’ list in ’domain-

Stats’.
• 92_countries_std: STD of number of countries in ’countries’ list in ’domainStats’.
• 93_redirects_mean: Mean of number of redirects for ’redirects’ values in ’domain-

Stats’.
• 94_redirects_std: STD of number of redirects for ’redirects’ values in ’domainStats’.
• 95_initiators_mean: Mean of number of initiators in ’initiators’ list in ’domain-

Stats’.
• 96_initiators_std: STD of number of initiators in ’initiators’ list in ’domainStats’.
• 97_domain_in_initiators_mean: Mean of of initiators in ’initiators’ list in ’do-

mainStats’ containing domain from ’domainStats’.

65

APPENDIX A. DESCRIPTION OF FEATURES

• 98_domain_in_initiators_std: STD of of initiators in ’initiators’ list in ’domain-
Stats’ containing domain from ’domainStats’.
• 99_count_mean: Mean of ’count’ values in ’regDomainStats’.
• 100_count_std: STD of ’count’ values in ’regDomainStats’.
• 101_size_mean: Mean of ’https’ values in ’regDomainStats’.
• 102_size_std: STD of ’https’ values in ’regDomainStats’.
• 103_ensize_mean: Mean of ’encodedSize’ values in ’regDomainStats’.
• 104_ensize_std: STD of ’encodedSize’ values in ’regDomainStats’.
• 105_ips_mean: Mean of number of ips in ’ips’ list in ’regDomainStats’.
• 106_ips_std: STD of number of ips in ’ips’ list in ’regDomainStats’.
• 107_countries_mean: Mean of number of countries in ’countries’ list in ’regDo-

mainStats’.
• 108_countries_std: STD of number of countries in ’countries’ list in ’regDomain-

Stats’.
• 109_redirects_mean: Mean of number of redirects for ’redirects’ values in ’regDo-

mainStats’.
• 110_redirects_std: STD of number of redirects for ’redirects’ values in ’regDomain-

Stats’.
• 111_subDomains_mean: Mean of number of subDomains for ’subDomains’ values

in ’regDomainStats’.
• 112_subDomains_std: STD of number of subDomains for ’subDomains’ values in

’regDomainStats’.
• 113_size_mean: Mean of ’count’ values in ’ipStats’.
• 114_size_std: STD of ’count’ values in ’ipStats’.
• 115_ensize_mean: Mean of ’https’ values in ’ipStats’.
• 116_ensize_std: STD of ’https’ values in ’ipStats’.
• 117_countries_mean: Mean of number of countries in ’countries’ list in ’ipStats’.
• 118_countries_std: STD of number of countries in ’countries’ list in ’ipStats’.
• 119_redirects_mean: Mean of number of redirects for ’redirects’ values in ’ipStats’.
• 120_redirects_std: STD of number of redirects for ’redirects’ values in ’ipStats’.
• 121_ipv6_mean: Mean of number of ipv6 for ’ipv6’ values in ’ipStats’.
• 122_ipv6_std: STD of number of ipv6 for ’ipv6’ values in ’ipStats’.
• 123_ipv6_mean: Mean of number of requests for ’requests’ values in ’ipStats’.
• 124_ipv6_std: STD of number of requests for ’requests’ values in ’ipStats’.
• 125_domains_mean: Mean of number of domains in ’domains’ list in ’ipStats’.
• 126_domains_std: STD of number of domains in ’domains’ list in ’ipStats’.
• 127_secureRequests: Total number of secure requests in ’secureRequests’.
• 128_securePercentage: Percentage of secure requests in ’securePercentage’
• 129_IPv6Percentage: Percentage of IPv6Percentage in ’IPv6Percentage’.
• 130_uniqCountries: Number of uniqCountries in ’uniqCountries’.
• 131_totalLinks: Total number of links in ’totalLinks’.
• 132_adBlocked: Total number of advertisement trackers in ’adBlocked’.

Features computed from the ’data’ JSON key. Feature numbers: 133 - 246:

• 133_len_request: Total number of requests.

66

A.1. FEATURE-SET-1 - 233 FEATURES

• 134_domain_in_docuurl_list_mean: Mean of requests containing domain of
the website.
• 135_domain_in_docuurl_list_std: STD of requests containing domain of the

website.
• 136_upgrade_insecure_requests_mean: Mean of ’Upgrade-Insecure-Requests’.
• 137_upgrade_insecure_requests_std: STD of ’Upgrade-Insecure-Requests’.
• 140_content_length_mean: Mean of ’Content-Length’ values.
• 141_content_length_std: STD of ’Content-Length’ values.
• 142_encodedDataLength_mean: Mean of ’encodedDataLength’ values.
• 143_encodedDataLength_std: STD of ’encodedDataLength’ values.
• 146_proxyStart_mean: Mean of ’proxyStart’ values.
• 147_proxyStart_std: STD of ’proxyStart’ values.
• 148_proxyEnd_mean: Mean of ’proxyEnd’ values.
• 149_proxyEnd_std: STD of ’proxyEnd’ values.
• 150_dnsStart_mean: Mean of ’dnsStart’ values.
• 151_dnsStart_std: STD of ’dnsStart’ values.
• 152_dnsEnd_mean: Mean of ’dnsEnd’ values.
• 153_dnsEnd_std: STD of ’dnsEnd’ values.
• 154_connectStart_mean: Mean of ’connectStart’ values.
• 155_connectStart_std: STD of ’connectStart’ values.
• 156_connectEnd_mean: Mean of ’connectEnd’ values.
• 157_connectEnd_std: STD of ’connectEnd’ values.
• 158_sslStart_mean: Mean of ’sslStart’ values.
• 159_sslStart_std: STD of ’sslStart’ values.
• 160_sslEnd_mean: Mean of ’sslEnd’ values.
• 161_sslEnd_std: STD of ’sslEnd’ values.
• 162_workerStart_mean: Mean of ’workerStart’ values.
• 163_workerStart_std: STD of ’workerStart’ values.
• 164_workerReady_mean: Mean of ’workerReady’ values.
• 165_workerReady_std: STD of ’workerReady’ values.
• 166_sendStart_mean: Mean of ’sendStart’ values.
• 167_sendStart_std: STD of ’sendStart’ values.
• 168_sendEnd_mean: Mean of ’sendEnd’ values.
• 169_sendEnd_std: STD of ’sendEnd’ values.
• 170_pushStart_mean: Mean of ’pushStart’ values.
• 171_pushStart_std: STD of ’pushStart’ values.
• 172_pushEnd_mean: Mean of ’pushEnd’ values.
• 173_pushEnd_std: STD of ’pushEnd’ values.
• 174_receiveHeadersEnd_mean: Mean of ’receiveHeadersEnd’ values.
• 175_receiveHeadersEnd_std: STD of ’receiveHeadersEnd’ values.
• 176_len_request_list_mean: Mean of length of requests.
• 177_len_request_list_std: STD of length of requests.
• 178_response_encodedDataLength_mean: Mean of ’encodedDataLength’ val-

ues in ’response’.
• 179_response_encodedDataLength_std: STD of ’encodedDataLength’ values

in ’response’.

67

APPENDIX A. DESCRIPTION OF FEATURES

• 180_response_dataLength_mean: Mean of ’dataLength’ values in ’response’.
• 181_response_dataLength_std: STD of ’dataLength’ values in ’response’.
• 182_response_respo_encodedDataLength_mean: Mean of ’encodedDataLength’

values in [’response’][’response’].
• 183_response_respo_encodedDataLength_std: STD of ’encodedDataLength’

values in [’response’][’response’].
• 186_response_proxyStart_mean: Mean of ’proxyStart’ values in [’response’][’response’][’timing’].
• 187_response_proxyStart_std: STD of ’proxyStart’ values in [’response’][’response’][’timing’].
• 188_response_proxyEnd_mean: Mean of ’proxyEnd’ values.
• 189_response_proxyEnd_std: STD of ’proxyEnd’ values.
• 190_response_dnsStart_mean: Mean of ’dnsStart’ values.
• 191_response_dnsStart_std: STD of ’dnsStart’ values.
• 192_response_dnsEnd_mean: Mean of ’dnsEnd’ values.
• 193_response_dnsEnd_std: STD of ’dnsEnd’ values.
• 194_response_connectStart_mean: Mean of ’connectStart’ values.
• 195_response_connectStart_std: STD of ’connectStart’ values.
• 196_response_connectEnd_mean: Mean of ’connectEnd’ values.
• 197_response_connectEnd_std: STD of ’connectEnd’ values.
• 198_response_sslStart_mean: Mean of ’sslStart’ values.
• 199_response_sslStart_std: STD of ’sslStart’ values.
• 200_response_sslEnd_mean: Mean of ’sslEnd’ values.
• 201_response_sslEnd_std: STD of ’sslEnd’ values.
• 202_response_workerStart_mean: Mean of ’workerStart’ values.
• 203_response_workerStart_std: STD of ’workerStart’ values.
• 204_response_workerReady_mean: Mean of ’workerReady’ values.
• 205_response_workerReady_std: STD of ’workerReady’ values.
• 206_response_sendStart_mean: Mean of ’sendStart’ values.
• 207_response_sendStart_std: STD of ’sendStart’ values.
• 208_response_sendEnd_mean: Mean of ’sendEnd’ values.
• 209_response_sendEnd_std: STD of ’sendEnd’ values.
• 210_response_pushStart_mean: Mean of ’pushStart’ values.
• 211_response_pushStart_std: STD of ’pushStart’ values.
• 212_response_pushEnd_mean: Mean of ’pushEnd’ values.
• 213_response_pushEnd_std: STD of ’pushEnd’ values.
• 214_response_receiveHeadersEnd_mean: Mean of ’receiveHeadersEnd’ values.
• 215_response_receiveHeadersEnd_std: STD of ’receiveHeadersEnd’ values.
• 216_securityState_mean: Mean of of secure requests.
• 217_securityState_std: STD of of secure requests.
• 218_sanList_mean: Mean of length ’sanList’ list.
• 219_sanList_std: STD of length ’sanList’ list.
• 220_subject_name_in_san_list_mean: Mean of subject names in sun list.
• 221_subject_name_in_san_list_std: STD of subject names in sun list.
• 222_cert_valid_mean: Mean of list of validity length of certificates.
• 223_cert_valid_std: STD of list of validity length of certificates.
• 224_cert_valid_now_mean: Mean of valid certificates.
• 225_cert_valid_now_std: STD of valid certificates.

68

A.2. FEATURE-SET-2 - 310 FEATURES

• 226_hashes_list_mean: Mean of hashes list.
• 227_hashes_list_std: STD of hashes list.
• 228_hashes_list_mean: Total number of cookies.
• 231_cookie_expires_now_mean: Mean of seconds reaming for cookie expiration.
• 232_cookie_expires_now_std: STD of seconds reaming for cookie expiration.
• 233_cookies_sizes_mean: Mean of sizes of cookies.
• 234_cookies_sizes_std: STD of sizes of cookies.
• 235_cookie_http_only_mean: Mean of cookies using only http.
• 236_cookie_http_only_std: STD of cookies using only http.
• 237_cookie_secure_mean: Mean of cookies using only https.
• 238_cookie_secure_std: STD of cookies using only https.
• 239_cookie_session_mean: Mean of cookies using session.
• 240_cookie_session_std: STD of cookies using session.
• 241_len_links: Total number of links of the web page.
• 242_links_domain_in_url_mean: Mean of links containing domain of the web-

site.
• 243_links_domain_in_url_std: STD of links containing domain of the website.
• 244_diff_tld: Total number of different TLD extracted from the links.
• 245_diff_tld: Total number of global variables in JavaScript.
• 246_diff_globals: Total number of unique global variables in JavaScript.

A.2 feature-set-2 - 310 features

All these features are computed from the urlscan.io analysis. To see an example of
urlscan.io analysis, go to urlscan.io website, choose some submitted URL and then there
is a button called "API". If you click on it, the urlcan.io analysis will be shown in JSON
format. These features are computed from this JSON output. The feature-set-2 contains
tree categories of features.

• Absolute feature - Total number of items in lists.

• Categorical feature - Total number of occurrences for a value.

• Numerical feature - Mean, Standard deviation, maximum or minimum is computed
from the a list of numbers.

Each category has own table. The absolute features are shown in Table A.1, the categorical
features are shown in Table A.2 and numerical features are shown in Table A.3.

The first column of each table is index of feature. The second and third columns are
keys from urlscan.io analysis json. To see an example of urlscan.io analysis, take a look on
the urlscan.io.

Feature Index json key json sub key value
1 cookies httpOnly false
2 cookies httpOnly true
3 cookies secure false

69

APPENDIX A. DESCRIPTION OF FEATURES

4 cookies secure true
5 cookies session true
6 cookies session false
7 cookies expires expired
8 cookies expires valid
14 globals type object
15 globals type function
16 globals type string
17 globals type number
18 globals type boolean
19 globals type undefined
20 globals type symbol
22 https securityState insecure
23 https securityState None
24 https securityState secure
25 https securityState unknown
26 https protocol None
27 https protocol TLS 1.3
28 https protocol TLS 1.2
29 https protocol TLS 1.0
30 https protocol TLS 1.1
31 https keyExchange None
32 https keyExchange
33 https keyExchange ECDHERSA
34 https keyExchange RSA
35 https keyExchange ECDHEECDSA
36 https keyExchangeGroup None
37 https keyExchangeGroup P-256
38 https keyExchangeGroup X25519
39 https keyExchangeGroup P-384
40 https cipher None
41 https cipher AES256GCM
42 https cipher AES128GCM
43 https cipher CHACHA20POLY1305
44 https cipher AES128CBC
45 https cipher AES256CBC
46 https cipher 3DESEDECBC
47 https websitecert websitecert
53 requests method GET
54 requests method None
55 requests method POST
56 requests method OPTIONS
57 requests method PUT

70

A.2. FEATURE-SET-2 - 310 FEATURES

58 requests method HEAD
59 requests method GET.html
60 requests method PATCH
61 requests method SCRIPT
62 requests method DELETE
63 requests mixedContentType none
64 requests mixedContentType None
65 requests mixedContentType optionally-blockable
66 requests mixedContentType blockable
67 requests initialPriority VeryHigh
68 requests initialPriority Low
69 requests initialPriority None
70 requests initialPriority High
71 requests initialPriority Medium
72 requests initialPriority VeryLow
73 requests referrerPolicy no-referrer-when-downgrade
74 requests referrerPolicy None
75 requests referrerPolicy origin-when-cross-origin
76 requests referrerPolicy strict-origin-when-cross-origin
77 requests referrerPolicy origin
78 requests referrerPolicy no-referrer
79 requests referrerPolicy unsafe-url
80 requests referrerPolicy same-origin
81 requests referrerPolicy strict-origin
82 requests Upgrade-Insecure-Requests 1
83 requests Upgrade-Insecure-Requests None
84 requests Sec-Fetch-User None
85 requests Sec-Fetch-User ?1
86 requests type Document
87 requests type Image
88 requests type None
89 requests type Stylesheet
90 requests type Script
91 requests type Font
92 requests type XHR
93 requests type Other
94 requests type Fetch
95 requests type Media
96 requests type EventSource
97 requests type TextTrack
98 requests hasUserGesture false
99 requests hasUserGesture None
100 requests documentURL false

71

APPENDIX A. DESCRIPTION OF FEATURES

101 requests documentURL true
102 requests hasdomain true
103 requests hasdomain false
104 requests hasdomain2 true
105 requests hasdomain2 false
106 requests notsamedocument true
107 requests notsamedocument false
108 requests fromPrefetchCache false
109 requests fromPrefetchCache None
110 requests protocol http/1.1
111 requests protocol None
112 requests protocol h2
113 requests protocol data
114 requests protocol blob
115 requests protocol http/1.0
116 requests :method None
117 requests :method GET
118 requests :method POST
119 requests pragma None
120 requests pragma no-cache
121 requests cache-control None
122 requests cache-control no-cache
123 requests sec-fetch-site None
124 requests sec-fetch-site none
125 requests sec-fetch-site cross-site
126 requests sec-fetch-site same-origin
127 requests sec-fetch-site same-site
128 requests sec-fetch-mode None
129 requests sec-fetch-mode navigate
130 requests sec-fetch-mode nested-navigate
131 requests sec-fetch-mode no-cors
133 console level error
134 console level info
135 console level log
136 console level warning
137 console level debug
139 links emptylinks true
140 links emptylinks false
141 links emptylinks None
151 resourcestat type Image
152 resourcestat type Document
153 resourcestat type Script
154 resourcestat type Stylesheet

72

A.3. THE MOST IMPORTANT FEATURES FOR XGBOOST EVALUATED ON
UWD-FEATURE-SET-1

155 resourcestat type Font
156 resourcestat type XHR
157 resourcestat type Fetch
158 resourcestat type Other
159 resourcestat type Media
160 resourcestat type EventSource
161 resourcestat type TextTrack

Table A.2: feature-set-2 - Categorical features. All these features are computed from the
lists. They represent, how many times the value occurs. For example, feature 1 in the
first row, describes amount of occurrences for value "false" in the subsection "httpOnly" in
section "cookies" in urlscan.io analysis.

A.3 The Most Important Features for XGBoost evaluated on
UWD-feature-set-1

Feature Name Importance
get_127_secureRequests 0.466766

get_67_ips_mean 0.123362
get_128_securePercentage 0.065410
get_18_length_linkdomains 0.035108

get_48_ips_std 0.012397
get_132_adBlocked 0.008381

get_231_cookie_expires_now_mean 0.007439
get_222_cert_valid_mean 0.005895
get_228_hashes_list_mean 0.005125

get_131_totalLinks 0.004603
get_23_certicatevalidationmean_linkdomains 0.004451

get_242_links_domain_in_url_mean 0.004327
get_232_cookie_expires_now_std 0.004315

get_111_subDomains_mean 0.003925
get_20_numsubdomainmean_linkdomains 0.003918
get_134_domain_in_docuurl_list_mean 0.003850

get_25_certicatevalidation2mean_linkdomains 0.003750
get_31_priority_std 0.003512

get_9_urls 0.003120
get_6_number_domains 0.002948
get_16_javascript_url 0.002883
get_66_ensize_std 0.002846
get_37_count_mean 0.002828
get_72_protocols_std 0.002718

get_45_compression_mean 0.002691

73

APPENDIX A. DESCRIPTION OF FEATURES

get_13_image_in_url 0.002670
get_15_sizestd_url 0.002650

get_215_response_receiveHeadersEnd_std 0.002600
get_84_count_std 0.002537

get_50_countries_std 0.002508
get_46_compression_std 0.002461

get_89_ips_mean 0.002445
get_30_priority_mean 0.002370
get_81_countries_mean 0.002369
get_109_redirects_mean 0.002252

get_38_count_std 0.002229
get_26_certicatevalidation2std_linkdomains 0.002165

get_238_cookie_secure_std 0.002107
get_129_IPv6Percentage 0.002102

get_80_ips_std 0.001989
get_68_ips_std 0.001933

get_119_redirects_mean 0.001920
get_157_connectEnd_std 0.001920
get_12_domain_in_url 0.001907
get_105_ips_mean 0.001894
get_99_count_mean 0.001851

get_182_response_respo_encodedDataLength_mean 0.001847
get_214_response_receiveHeadersEnd_mean 0.001845

get_7_diff_domains 0.001839
get_150_dnsStart_mean 0.001833

get_135_domain_in_docuurl_list_std 0.001821
get_133_len_request 0.001817

get_136_upgrade_insecure_requests_mean 0.001802
get_140_content_length_mean 0.001795
get_19_difftld_linkdomains 0.001784
get_166_sendStart_mean 0.001765

get_8_servers 0.001755
get_91_countries_mean 0.001747

get_175_receiveHeadersEnd_std 0.001723
get_65_ensize_mean 0.001710
get_11_https_in_url 0.001705

get_216_securityState_mean 0.001675
get_137_upgrade_insecure_requests_std 0.001643

get_142_encodedDataLength_mean 0.001628
get_174_receiveHeadersEnd_mean 0.001613
get_239_cookie_session_mean 0.001602

get_103_ensize_mean 0.001591
get_88_ensize_std 0.001589

74

A.3. THE MOST IMPORTANT FEATURES FOR XGBOOST EVALUATED ON
UWD-FEATURE-SET-1

get_179_response_encodedDataLength_std 0.001585
get_49_countries_mean 0.001567

get_57_ips_mean 0.001557
get_146_proxyStart_mean 0.001555

get_141_content_length_std 0.001538
get_87_ensize_mean 0.001534

get_177_len_request_list_std 0.001531
get_176_len_request_list_mean 0.001526

get_245_diff_tld 0.001520
get_69_countries_mean 0.001506
get_14_sizemean_url 0.001500

get_24_certicatevalidationstd_linkdomains 0.001498
get_90_ips_std 0.001487

get_70_countries_std 0.001479
get_117_countries_mean 0.001477

get_79_ips_mean 0.001457
get_95_initiators_mean 0.001425

get_10_diff_urls 0.001417
get_92_countries_std 0.001413
get_167_sendStart_std 0.001408

get_199_response_sslStart_std 0.001397
get_159_sslStart_std 0.001394
get_4_mean_asns 0.001390

get_243_links_domain_in_url_std 0.001384
get_17_javascript_url 0.001382

get_22_numcertificates_linkdomains 0.001367
get_110_redirects_std 0.001364
get_115_ensize_mean 0.001360
get_56_ensize_std 0.001337

get_21_numsubdomainstd_linkdomains 0.001310
get_62_count_std 0.001306

get_183_response_respo_encodedDataLength_std 0.001305
get_47_ips_mean 0.001305

get_220_subject_name_in_san_list_mean 0.001303
get_118_countries_std 0.001298

get_198_response_sslStart_mean 0.001298
get_152_dnsEnd_mean 0.001293

get_207_response_sendStart_std 0.001287
get_221_subject_name_in_san_list_std 0.001285

get_125_domains_mean 0.001285
get_41_ensize_mean 0.001279

get_223_cert_valid_std 0.001276
get_151_dnsStart_std 0.001274

75

APPENDIX A. DESCRIPTION OF FEATURES

get_61_count_mean 0.001267
get_156_connectEnd_mean 0.001257

get_51_count_mean 0.001253
get_219_sanList_std 0.001250
get_83_count_mean 0.001228
get_78_ensize_std 0.001227

get_218_sanList_mean 0.001225
get_126_domains_std 0.001222
get_153_dnsEnd_std 0.001216

get_168_sendEnd_mean 0.001215
get_100_count_std 0.001199
get_55_ensize_mean 0.001180
get_1_number_ips 0.001180
get_73_count_mean 0.001174
get_74_count_std 0.001170

get_143_encodedDataLength_std 0.001160
get_197_response_connectEnd_std 0.001157

get_217_securityState_std 0.001151
get_52_count_std 0.001147

get_246_diff_globals 0.001147
get_82_countries_std 0.001133
get_104_ensize_std 0.001128
get_106_ips_std 0.001123

get_200_response_sslEnd_mean 0.001117
get_71_protocols_mean 0.001115

get_201_response_sslEnd_std 0.001104
get_5_std_asns 0.001082

get_77_ensize_mean 0.001072
get_120_redirects_std 0.001066
get_93_redirects_mean 0.001061

get_180_response_dataLength_mean 0.001057
get_42_ensize_std 0.001035

get_154_connectStart_mean 0.001034
get_158_sslStart_mean 0.001010
get_94_redirects_std 0.001010

get_190_response_dnsStart_mean 0.001008
get_116_ensize_std 0.001000

get_181_response_dataLength_std 0.000991
get_96_initiators_std 0.000961

get_193_response_dnsEnd_std 0.000961
get_155_connectStart_std 0.000954

get_161_sslEnd_std 0.000952
get_187_response_proxyStart_std 0.000938

76

A.3. THE MOST IMPORTANT FEATURES FOR XGBOOST EVALUATED ON
UWD-FEATURE-SET-1

get_160_sslEnd_mean 0.000928
get_58_ips_std 0.000927

get_186_response_proxyStart_mean 0.000914
get_192_response_dnsEnd_mean 0.000908

get_195_response_connectStart_std 0.000885
get_206_response_sendStart_mean 0.000883

get_169_sendEnd_std 0.000862
get_191_response_dnsStart_std 0.000858

get_178_response_encodedDataLength_mean 0.000828
get_196_response_connectEnd_mean 0.000808

get_240_cookie_session_std 0.000783
get_59_countries_mean 0.000747

get_97_domain_in_initiators_mean 0.000739
get_237_cookie_secure_mean 0.000733

get_29_confidence_std 0.000694
get_236_cookie_http_only_std 0.000672

get_194_response_connectStart_mean 0.000632
get_147_proxyStart_std 0.000617
get_130_uniqCountries 0.000601

get_208_response_sendEnd_mean 0.000599
get_209_response_sendEnd_std 0.000585
get_235_cookie_http_only_mean 0.000567

get_244_diff_tld 0.000522
get_28_confidence_mean 0.000520
get_2_number_countries 0.000489
get_27_diff_countries 0.000482
get_60_countries_std 0.000462

get_225_cert_valid_now_std 0.000356
get_112_subDomains_std 0.000244

get_224_cert_valid_now_mean 0.000186
get_101_size_mean 0.000000
get_102_size_std 0.000000

get_107_countries_mean 0.000000
get_108_countries_std 0.000000
get_113_size_mean 0.000000
get_114_size_std 0.000000

get_121_ipv6_mean 0.000000
get_122_ipv6_std 0.000000
get_123_ipv6_mean 0.000000
get_124_ipv6_std 0.000000

get_148_proxyEnd_mean 0.000000
get_149_proxyEnd_std 0.000000

get_162_workerStart_mean 0.000000

77

APPENDIX A. DESCRIPTION OF FEATURES

get_163_workerStart_std 0.000000
get_164_workerReady_mean 0.000000
get_165_workerReady_std 0.000000
get_170_pushStart_mean 0.000000
get_171_pushStart_std 0.000000
get_172_pushEnd_mean 0.000000
get_173_pushEnd_std 0.000000

get_188_response_proxyEnd_mean 0.000000
get_189_response_proxyEnd_std 0.000000

get_202_response_workerStart_mean 0.000000
get_203_response_workerStart_std 0.000000

get_204_response_workerReady_mean 0.000000
get_205_response_workerReady_std 0.000000
get_210_response_pushStart_mean 0.000000
get_211_response_pushStart_std 0.000000
get_212_response_pushEnd_mean 0.000000
get_213_response_pushEnd_std 0.000000

get_226_hashes_list_mean 0.000000
get_227_hashes_list_std 0.000000

get_233_cookies_sizes_mean 0.000000
get_234_cookies_sizes_std 0.000000

get_241_len_links 0.000000
get_39_size_mean 0.000000
get_3_number_asns 0.000000
get_40_size_std 0.000000

get_43_latency_mean 0.000000
get_44_latency_std 0.000000
get_53_size_mean 0.000000
get_54_size_std 0.000000
get_63_size_mean 0.000000
get_64_size_std 0.000000
get_75_size_mean 0.000000
get_76_size_std 0.000000
get_85_size_mean 0.000000
get_86_size_std 0.000000

get_98_domain_in_initiators_std 0.000000

Table A.4: The feature importance for 233 features (all features) for the XGBoost algorithm
with experiment UWD-feature-set-1.

A.4 257 unique HTML tags for data model CETD-DOM-1

div a

78

A.4. 257 UNIQUE HTML TAGS FOR DATA MODEL CETD-DOM-1

span li
td img
tr script
br path
p ul

option i
link meta
input svg
h3 b

label button
strong h2
style g
url loc

article h4
symbol iframe
form use

noscript section
source dd
em time
title tbody
table figure
h1 header
dt small

polygon yatag
footer dl
ins h5
font th
head html
body picture
nav circle
rect hr
h6 text
stop aside

yt-icon template
select ol

yt-formatted-string sup
defs figcaption

fieldset code
ytd-badge-supported-renderer textarea

center f
dom-repeat area

line abbr
cite yt-icon-button

79

APPENDIX A. DESCRIPTION OF FEATURES

u main
lineargradient yt-img-shadow

s paper-tooltip
util-message noindex

video tspan
clippath paper-button
thead canvas

ytd-button-renderer pre
legend blockquote
dom-if ytd-channel-name
ellipse icon

ytd-thumbnail ytd-thumbnail-overlay-now-playing-renderer
mask cnx

ytd-menu-renderer field-formatter
var ytd-thumbnail-overlay-time-status-renderer
col jdiv
base polyline
param ytd-video-meta-block
desc image

dom-module mi
object i-amphtml-sizer

ytd-compact-video-renderer summary
details optgroup
address amp-img
mo nobr
o:p ytd-toggle-button-renderer
del filter

audio animate
fegaussianblur paper-item

mrow map
fecolormatrix sub

ytd-guide-entry-renderer identifier-formatter
c-wiz c-data

relative-time tt
hgroup ytd-grid-video-renderer
pattern wbr

ytd-expander kbd
data-src share-button
feoffset amp-social-share

mat-menu resource-url
clipboard-copy label-with-info

l10n details-menu
theme-icon mark

80

A.4. 257 UNIQUE HTML TAGS FOR DATA MODEL CETD-DOM-1

feblend femergenode
asside ytd-comment-thread-renderer

ytd-comment-renderer ytd-comment-action-buttons-renderer
iron-media-query phoenix-ellipsis

mat-card big
c description

aza-menu-link value
mn yt-next-continuation
node query-string
aliases radialgradient
colgroup phoenix-super-link

phoenix-picture iron-iconset-svg
bdi dfn
samp content
li-icon ion-col
ymaps ion-row
sm embed

wix-image form:error
link-item marquee
ui-view caption

xx_goxgo rabiitch
picture-media ion-card
star-rating menuitem

blink frame
spa dialog

g-dialog g-loading-icon
g-flat-button g-raised-button

aid-web applenav
subnav hero
signin tfoot

router-outlet nf-section
nhbk-modal g:plusone

span1 span2
span3 span4
span5 frameset
menu dynamic-heading
lab rs-layer-wrap

rs-loop-wrap rs-mask-wrap
animatetransform src
ext:horizontal ext:horizontallarge
ext:vertical ext:verticallarge

Table A.5: The selcetd HTML tags for CETD-DOM-1.

81

APPENDIX A. DESCRIPTION OF FEATURES

Feature Index json key json sub key value
13 cookies
21 globals
52 https
132 requests
138 console
150 links
174 resourcestat
187 protocolstat
200 tlsstat
213 serverstat
234 domainstat
255 regdomainstat
272 ipstat
273 asn
290 lists urls ips
291 lists urls countries
292 lists urls asns
293 lists urls domains
294 lists urls servers
295 lists urls urls
296 lists urls linkDomains
297 lists urls certificates
298 lists urls hashes
299 lists urls js
300 lists urls img
301 lists urls css
302 lists urls cookie
303 lists urls ?
304 lists urls html
305 lists urls dll
306 lists urls @
307 lists urls //
308 lists urls =
309 lists urls -
310 lists urls _

Table A.1: feature-set-2 - Absolute features. These feature are length of lists except
features 299-310. The features 299-310 describes how many urls contain the value in the

third column. For example feature 299 represents amount of url containing ".js".

82

A.4. 257 UNIQUE HTML TAGS FOR DATA MODEL CETD-DOM-1

Feature Index json key json sub key
9,10,11,12 cookies size
48,49,50,51 https sanList

142,143,144,145 links href
146,147,148,149 links text
162,163,164,165 resourcestat count
166,167,168,169 resourcestat size
170,171,172,173 resourcestat ips
175,176,177,178 protocolstat count
179,180,181,182 protocolstat size
183,184,185,186 protocolstat ips
188,189,190,191 tlsstat count
192,193,194,195 tlsstat size
196,197,198,199 tlsstat ips
201,202,203,204 serverstat count
205,206,207,208 serverstat size
209,210,211,212 serverstat ips
214,215,216,217 domainstat count
218,219,220,221 domainstat size
222,223,224,225 domainstat ips
226,227,228,229 domainstat initiators
230,231,232,233 domainstat redirects
235,236,237,238 regdomainstat count
239,240,241,242 regdomainstat size
243,244,245,246 regdomainstat ips
247,248,249,250 regdomainstat redirects
251,252,253,254 regdomainstat subDomains
256,257,258,259 ipstat requests
260,261,262,263 ipstat size
264,265,266,267 ipstat redirects
268,269,270,271 ipstat domains
274,275,276,277 lists subdomains
278,279,280,281 lists urlpathlength
282,283,284,285 lists urllength
286,287,288,289 lists numbercounts

Table A.3: feature-set-2 - Numerical features. These features are the mean, standard
deviation, maximum and minimum from the list of numbers. Therefore each row in this
tables represents four features (the first column contains four indexes). The second and
third columns represents keys in JSON urlscan.io analysis. Only the "https" json key for

features 48,49,50,51 does not exist, the real JSON path is:
[’response’][’response’][’securityDetails’][’sanList’].

83

APPENDIX A. DESCRIPTION OF FEATURES

A.5 The Most Important Features for XGBoost evaluated on
CETD-feature-set-1

Feature Name Importance
get_127_secureRequests 0.449097
get_11_https_in_url 0.044782

get_195_response_connectStart_std 0.015201
get_48_ips_std 0.014459

get_97_domain_in_initiators_mean 0.013865
get_242_links_domain_in_url_mean 0.011719

get_9_urls 0.010392
get_231_cookie_expires_now_mean 0.009334

get_131_totalLinks 0.008810
get_105_ips_mean 0.008731
get_244_diff_tld 0.008274

get_82_countries_std 0.007027
get_12_domain_in_url 0.006454

get_243_links_domain_in_url_std 0.006403
get_222_cert_valid_mean 0.006358
get_128_securePercentage 0.006316

get_175_receiveHeadersEnd_std 0.005611
get_1_number_ips 0.005391

get_25_certicatevalidation2mean_linkdomains 0.005274
get_23_certicatevalidationmean_linkdomains 0.004935

get_38_count_std 0.004890
get_130_uniqCountries 0.004842
get_96_initiators_std 0.004785

get_19_difftld_linkdomains 0.004755
get_30_priority_mean 0.004521
get_15_sizestd_url 0.004360

get_157_connectEnd_std 0.004355
get_18_length_linkdomains 0.004289

get_245_diff_tld 0.004229
get_6_number_domains 0.004183

get_228_hashes_list_mean 0.004154
get_224_cert_valid_now_mean 0.004129

get_89_ips_mean 0.003939
get_31_priority_std 0.003919

get_111_subDomains_mean 0.003814
get_232_cookie_expires_now_std 0.003765

get_81_countries_mean 0.003730
get_193_response_dnsEnd_std 0.003720

get_135_domain_in_docuurl_list_std 0.003662
get_47_ips_mean 0.003570

84

A.5. THE MOST IMPORTANT FEATURES FOR XGBOOST EVALUATED ON
CETD-FEATURE-SET-1

get_68_ips_std 0.003434
get_182_response_respo_encodedDataLength_mean 0.003434

get_71_protocols_mean 0.003433
get_17_javascript_url 0.003382

get_237_cookie_secure_mean 0.003335
get_152_dnsEnd_mean 0.003287
get_77_ensize_mean 0.003259

get_20_numsubdomainmean_linkdomains 0.003143
get_61_count_mean 0.003137

get_150_dnsStart_mean 0.003102
get_59_countries_mean 0.003074

get_238_cookie_secure_std 0.003058
get_95_initiators_mean 0.003035
get_14_sizemean_url 0.003024

get_136_upgrade_insecure_requests_mean 0.003016
get_5_std_asns 0.002971
get_57_ips_mean 0.002853
get_104_ensize_std 0.002803

get_223_cert_valid_std 0.002796
get_52_count_std 0.002787

get_174_receiveHeadersEnd_mean 0.002771
get_79_ips_mean 0.002752
get_100_count_std 0.002747

get_183_response_respo_encodedDataLength_std 0.002696
get_4_mean_asns 0.002616

get_50_countries_std 0.002567
get_129_IPv6Percentage 0.002543
get_29_confidence_std 0.002543
get_55_ensize_mean 0.002536

get_134_domain_in_docuurl_list_mean 0.002534
get_26_certicatevalidation2std_linkdomains 0.002523
get_21_numsubdomainstd_linkdomains 0.002502

get_246_diff_globals 0.002491
get_141_content_length_std 0.002413

get_58_ips_std 0.002407
get_199_response_sslStart_std 0.002406

get_66_ensize_std 0.002387
get_235_cookie_http_only_mean 0.002365

get_87_ensize_mean 0.002356
get_13_image_in_url 0.002316

get_240_cookie_session_std 0.002280
get_8_servers 0.002273

get_91_countries_mean 0.002260

85

APPENDIX A. DESCRIPTION OF FEATURES

get_22_numcertificates_linkdomains 0.002253
get_156_connectEnd_mean 0.002237

get_94_redirects_std 0.002235
get_181_response_dataLength_std 0.002225

get_151_dnsStart_std 0.002225
get_133_len_request 0.002220

get_45_compression_mean 0.002219
get_176_len_request_list_mean 0.002206

get_49_countries_mean 0.002206
get_67_ips_mean 0.002202

get_167_sendStart_std 0.002197
get_83_count_mean 0.002193
get_16_javascript_url 0.002193

get_106_ips_std 0.002190
get_218_sanList_mean 0.002187

get_74_count_std 0.002156
get_56_ensize_std 0.002151

get_46_compression_std 0.002127
get_217_securityState_std 0.002092

get_27_diff_countries 0.002079
get_2_number_countries 0.002060

get_116_ensize_std 0.002050
get_65_ensize_mean 0.002031
get_110_redirects_std 0.002010

get_201_response_sslEnd_std 0.002005
get_219_sanList_std 0.001996

get_166_sendStart_mean 0.001971
get_10_diff_urls 0.001968

get_118_countries_std 0.001967
get_197_response_connectEnd_std 0.001961

get_28_confidence_mean 0.001948
get_192_response_dnsEnd_mean 0.001946
get_143_encodedDataLength_std 0.001942

get_158_sslStart_mean 0.001929
get_80_ips_std 0.001926

get_51_count_mean 0.001924
get_7_diff_domains 0.001911

get_216_securityState_mean 0.001853
get_186_response_proxyStart_mean 0.001852

get_73_count_mean 0.001849
get_99_count_mean 0.001806

get_146_proxyStart_mean 0.001792
get_103_ensize_mean 0.001787

86

A.5. THE MOST IMPORTANT FEATURES FOR XGBOOST EVALUATED ON
CETD-FEATURE-SET-1

get_42_ensize_std 0.001777
get_177_len_request_list_std 0.001769

get_62_count_std 0.001765
get_24_certicatevalidationstd_linkdomains 0.001728
get_214_response_receiveHeadersEnd_mean 0.001680

get_126_domains_std 0.001678
get_84_count_std 0.001654

get_208_response_sendEnd_mean 0.001646
get_140_content_length_mean 0.001616

get_142_encodedDataLength_mean 0.001609
get_178_response_encodedDataLength_mean 0.001576

get_88_ensize_std 0.001574
get_180_response_dataLength_mean 0.001559

get_221_subject_name_in_san_list_std 0.001553
get_37_count_mean 0.001534
get_169_sendEnd_std 0.001533
get_125_domains_mean 0.001530

get_90_ips_std 0.001529
get_206_response_sendStart_mean 0.001500

get_119_redirects_mean 0.001430
get_179_response_encodedDataLength_std 0.001421

get_200_response_sslEnd_mean 0.001396
get_109_redirects_mean 0.001379

get_78_ensize_std 0.001369
get_236_cookie_http_only_std 0.001369
get_198_response_sslStart_mean 0.001351

get_215_response_receiveHeadersEnd_std 0.001327
get_220_subject_name_in_san_list_mean 0.001322

get_207_response_sendStart_std 0.001289
get_41_ensize_mean 0.001287

get_155_connectStart_std 0.001286
get_93_redirects_mean 0.001279

get_196_response_connectEnd_mean 0.001275
get_115_ensize_mean 0.001272

get_190_response_dnsStart_mean 0.001189
get_60_countries_std 0.001184
get_69_countries_mean 0.001175

get_239_cookie_session_mean 0.001119
get_120_redirects_std 0.001070
get_160_sslEnd_mean 0.001035

get_112_subDomains_std 0.000935
get_187_response_proxyStart_std 0.000569

get_147_proxyStart_std 0.000540

87

APPENDIX A. DESCRIPTION OF FEATURES

get_72_protocols_std 0.000356

Table A.6: The feature importance for the subset of 170/233 features for XGBoost algorithm
with experiment with the CETD-feature-set-1.

88

Appendix B

Content of the attachment

• textbfsource_code folder: Folder containing source code for both experiments with
detection of unsafe websites and evil twin websites.

89

	Introduction
	Background
	Unsafe websites
	Phishing Websites
	Malware Websites

	Evil Twin Websites

	Related Work
	Detection of Unsafe Websites
	Dataset of Unsafe Websites
	Finding Suitable Data
	Generation of the UWD Dataset
	Exploration of the UWD Dataset
	Usage of HTTPS per Class in UWD Dataset
	Size of Downloaded Content per Class in UWD Dataset

	Feature Extraction
	Data Models
	Visualisation of Data Models

	Methods
	Machine Learning Algorithms
	Evaluation Metrics
	Feature Selection with Feature Importance

	Experiments to Detect Unsafe Websites
	Experiments using the UWD-feature-set-1
	Training and Hyper-parameter Tuning
	Training with the Best Features
	Comparison of the Trained Models
	Evaluation on the Testing Data

	Experiments using the UWD-feature-set-2
	Training with the Hyper-parameter Tuning
	Training with the Best Features
	Comparison of the Trained Models
	Evaluation on the Testing Data

	Analysis of Results

	Detection of Evil Twin Websites
	Dataset of Evil Twin Websites
	Finding Suitable Data of Evil Twin Websites
	Generation of the CETD Dataset
	Dataset Cleaning
	Dataset Exploration
	Use of HTTPS per Class in the CETD Dataset
	Size of Downloaded Content per Class in the CETD Dataset
	Total Amount of HTML Tags per Class in CETD Dataset
	Amount of HTML Tags per Class in CETD Dataset

	Data models
	Data Models CETD-feature-set-1 and CETD-feature-set-2
	Visualisation of Data Models CETD-feature-set-1 and CETD-feature-set-2

	Data Model CETD-DOM-1
	Data Model CETD-DOM-2

	Methods
	Experiments to Detect Evil Twin Websites
	Experiments using the CETD-feature-set-1
	Training with the Hyper-parameter Tuning
	Training with the Best Features
	Comparison of the Trained Models
	Evaluation on the Testing Data

	Experiments using the CETD-feature-set-2
	Training with the Hyper-parameter Tuning
	Training with the Best Features
	Comparison of the Trained Models
	Evaluation on the Testing Data

	Experiments using the CETD-DOM-1
	Experiments using the CETD-DOM-2

	Analysis of Results
	CETD-feature-set-1 and CETD-feature-set-2
	CETD-DOM-1 and CETD-DOM-2
	The best model for the Detection of Evil Twin Websites

	Exploiting websites
	 Should I Click Web Service
	Conclusion
	Description of Features
	feature-set-1 - 233 features
	feature-set-2 - 310 features
	The Most Important Features for XGBoost evaluated on UWD-feature-set-1
	257 unique HTML tags for data model CETD-DOM-1
	The Most Important Features for XGBoost evaluated on CETD-feature-set-1

	Content of the attachment

