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Instructions

DBpedia is a crowd-sourced community effort that aims at the extraction of information from Wikipedia
and providing this information in a machine-readable format. One of the core datasets behind DBpedia is
the DBpedia NIF dataset which provides the content of all Wikipedia articles in 128 languages. When using
the dataset for training different NLP tasks, there is a need to pre-process the dataset, e.g. tokenization,
sentence splitting, POS tagging, enrichment with additional links, etc. The ultimate goal of the thesis is to
enrich the dataset with additional information, where the main challenge is the size of the dataset.
Guidelines:
- Get familiar with the DBpedia NIF dataset.
- Analyze the existing text pre-processing methods.
- Select and adapt several pre-processing methods (for several languages) for the DBpedia NIF dataset.
- Apply the implemented methods on several DBpedia NIF languages.
- Validate and evaluate the results.

References

Will be provided by the supervisor.



Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Enrichment of the DBpedia NIF dataset

Bc. Pragalbha Lakshmanan

Supervisor: Ing. Milan Dojchinovski, Ph.D.

28th May 2020



Acknowledgements

First and foremost, I would like to thank my parents for motivating me and
supporting me during my studies in Czech Technical University. Next, I
would like to thank god for his unfailing love and affection throughout my
life. It is with incredible appreciation that I acknowledge the help of my
supervisor Mr.Milan Dojchinovski. Without his assistance, guidance and
support this thesis would not be possible.

Besides my supervisor, I would like to thank the Czech Technical Uni-
versity in Prague for giving me an opportunity to study in this prestigious
institution.



Declaration

I hereby declare that the presented thesis is my own work and that I
have cited all sources of information in accordance with the Guideline for
adhering to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as school
work under the provisions of Article 60(1) of the Act.

In Prague on 28th May 2020 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
© 2020 Pragalbha Lakshmanan. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty
of Information Technology. The thesis is protected by the Copyright Act
and its usage without author’s permission is prohibited (with exceptions
defined by the Copyright Act).

Citation of this thesis

Lakshmanan, Pragalbha. Enrichment of the DBpedia NIF dataset. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.



Abstrakt

DBpedia je komunitním projektem který má za cíl poskytnout obsah článku
z Wikipedie ve strojově čitelném formátu. DBpedia poskytuje získanou
informaci jako NIF dataset obsahující všechny články z Wikipedie v 128
jazycích. Cílem diplomové práce je obohatit datový soubor o výsledky rozdě-
lení na věty, rozdělování tokenu, nacházení částí řeči a tokenu a obohacení
odkazů pro Wikipedia články v Anglickém, Francouzském, Německém, Špa-
nělskem a Japonským jazycích. Následně na výsledku pouštíme různé NLP
úlohy, konkrétně rozdělení vět, Tokenizaci a označování částí řeči. Později
přispějeme do DBpedia komunity přidáním dalších odkazů na články z
Wikipedie. Nakonec vyhodnotíme a zkontrolujeme statistickou výsledků.
Obohacení datasetu výsledkami těchto úloh bude nápomocné pro provedení
složitějších a víc mocných NLP úloh.

Klíčová slova DBpedia, NIF dataset, předběžné zpracováni, NLP úlohy,
dalších odkazu
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Abstract

DBpedia is a crowd-sourced community effort which aims at extracting
information from Wikipedia articles and providing this information in a
machine-readable format. DBpedia provides the extracted information as
NIF datasets with the content of all Wikipedia articles in 128 languages.
The aim of the thesis is to enrich this dataset with additional information
by providing the results of splitting sentences, segregating tokens, finding
parts of speech for tokens and enhancing links for the content of Wikipedia
articles in English, French, German, Spanish and Japanese languages.
The implementation consists of performing NLP tasks namely sentence
splitting, tokenization, part of speech tagging on the pre-processed NIF
datasets. Eventually contributing to the DBpedia community by adding
additional links to the Wikipedia articles. Finally, evaluating the runtime
of various NLP tasks and checking the accuracy of the results statistically.
Enriching NIF dataset with the result-set of NLP tasks generated from the
tool, is useful for performing more complicated NLP task(s).

Keywords DBpedia, NIF dataset, text pre-processing, NLP, enhancing
links
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Chapter 1
Introduction

Wikipedia defines DBpedia as "DBpedia (from ’DB’ for ’database’) is a pro-
ject aiming to extract structured content from the information created in
the Wikipedia project" [3]. DBpedia community project [4] extracts know-
ledge from Wikipedia and makes it widely available using Semantic Web
standards [5]. DBpedia community provides this extracted knowledge in a
machine-readable format. It allows users to semantically query relation-
ships and properties of Wikipedia resources. DBpedia generates several
sets of datasets to represent the extracted knowledge and DBpedia NIF
dataset is one among them. DBpedia NIF dataset [6] provides content of all
Wiki articles in 128 languages. The knowledge is obtained from different
Wikipedia language editions, thus covering more than 100 languages, and
mapped to the DBpedia community ontology. The resulting datasets are
linked to more than 1000 other datasets in the Linked Open Data (LOD)
cloud [7]. DBpedia project was started in 2006 and has meanwhile attrac-
ted large interest in research.

DBpedia community [8] uses a flexible and extensible framework to ex-
tract structured information from Wikipedia primarily by representing the
knowledge present at Wikipedia Infoboxes. DBpedia represents the Wiki
pages in NLP Interchange Format (NIF) in order to broaden and deepen the
quantity of structured data. DBpedia NIF provides all information directly
extractable from the HTML source code divided into three datasets namely
NIF context, NIF page structure and NIF text links.

DBpedia NIF dataset is stored in RDF triples. Resource description
framework is realized with the concept of triples (Subject - Predicate -
Object). NIF datasets are available in different formats on the official
DBpedia site [9].
Key features of NIF datasets [10] are:
1) Content available in over 128 Wikipedia languages.
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2) Over 9 billion RDF triples, which is almost 40% of DBpedia.
3) Selected partitions published as linked data [11].
4) Exploited within the TextExt- DBpedia Open Extraction challenge.
5) Available for large-scale training NLP methods.

Various Natural Language Processing (NLP) tasks are trained on the
NIF dataset. Applying NLP over the dataset provides meaningful informa-
tion which is used to enrich the NIF dataset with additional information.
NLP is a branch of artificial intelligence that deals with the interaction
between computers and humans using the natural language. The ultimate
objective of NLP is to read, decipher, understand, and make sense of the
human languages in a manner that is valuable. Most NLP techniques rely
on machine learning to derive meaning from human languages. NLP en-
tails applying algorithms to identify and extract the natural language rules
such that the unstructured language data is converted into a form that
computers can understand. With natural language, data can be assessed,
analysed and communicated with precision. The NLP tasks implemented
in the thesis include:
1) Sentence splitting - To split a given paragraph of text into sentences, by
identifying the sentence boundaries.
2) Tokenization - Chopping up a large sample of text into words called
tokens, perhaps at the same time throwing away certain characters such
as punctuations.
3) POS tagging - Must read text and assign parts of speech to tokens or
words that is detected.
4) Links enhancement- Every Wikipedia article has a set of links or hyper-
links that redirects the page to another Wikipedia article. This NLP task
increases the amount of such links.

The following pre-processing tasks had to be done for the implementa-
tion of above mentioned NLP tasks:
1) NIF datasets are not confined to an individual Wikipedia article. NIF
context dataset contains the full text of all Wiki pages from a particular
language in a single file. Separation of this huge dataset into individual file
for each article is required as this allows faster and easier processing of
the dataset. This also allows NLP tasks to be performed on a subset of NIF
context dataset.

2) In order to perform the enhancing links NLP task, it is necessary to
have the list of possible surface forms (links on the Wiki articles). NIF
text links dataset provides details regarding the surface forms. Recording
the details of surface forms on a CSV file helps enhancing links on a Wiki
article by searching the tokens one by one on the generated CSV file. The
CSV file should consist the tokens of surface form, it’s link to the Wiki
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1.1. Goals

page (DBpedia resource) and it’s part of speech. The combination of these
pre-preprocessing tasks along with the NLP tasks are my main focus on
the thesis.

Since DBpedia is an open source organisation, I admire the effort put
by the team and am motivated to contribute my part to this organisation.
DBpedia project was started roughly 15 years ago and has meanwhile
attracted huge amount of interest among various research teams and
engineers. My contribution to DBpedia community is the result-sets of
the 4 NLP tasks namely sentence splitting, tokenization, part of speech
and enhancing links performed on NIF datasets for 5 different languages
namely English, French, German, Spanish and Japanese. These result-sets
serves as an input for performing a wide variety of other complicated tasks
such as sentiment analysis. I have performed each NLP task with multiple
libraries which serve me as an opportunity to compare the accuracy of
these libraries. The produced result-sets gives an opportunity to analyse
and experiment it by finding exquisite insights such as average number
of sentences in an article, most frequently used part of speech, average
number of tokens in each article, average number of links etc.

1.1 Goals

The goals of the thesis are:
1) Develop a tool for performing NLP tasks namely sentence splitting,
tokenization, part of speech tagging and links enhancement on NIF data-
set(s).

2) Performing NLP tasks for multiple languages. The tool should work
for English, French, German, Spanish and Japanese languages. A docu-
mentation on integrating a new language to the developed tool should be
specified.

3) Integrate multiple NLP libraries to perform each of the NLP tasks.
Tool currently supports libraries namely Natural Language Tool Kit pack-
age, TextBlob , Spacy, StanfordPOSTagger, Pattern, Nagisa and Konoha. A
documentation on integrating a new library to the developed tool should
be specified.

4) The tool should be configurable. User should be able to generate
the result-set of the NLP tasks with the opportunity to choose the task
(sentence splitting, tokenization, part of speech, links enhancement) to be
performed, number of Wiki articles on which the NLP task should be per-
formed, library with which the tasks must be performed and the language
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1.1. Goals

(among English, Spanish, German, French and Japanese). This allows
generation of the output files in a much simpler fashion based on user’s
choice.

5) Evaluate the performance of NLP tasks by comparing the runtime among
different libraries. Evaluate the accuracy of the generated results for each
task through different libraries. Generated result-set should be analysed
to gain insights and should be depicted statistically.
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Chapter 2
Background and Related works

It is necessary to get familiar with certain concepts before moving on
to my contribution to the DBpedia community. Such concepts include
Resource Description Framework (RDF), linked data, DBpedia projects,
contents of NIF dataset(s) and natural language processing in general. I
have performed a case study on the related works which are summarised
in the Section 2.2.

2.1 Background

This section provides understanding of RDF, linked data, DBPedia NIF
dataset and NLP with short explanations and examples wherever necessary.
A clear understanding of these topics are considered to be a prerequisite
for achieving my goals.

2.1.1 Resource Description Framework

Resource Description Framework (RDF) [12] is a family of specifications
developed by the organization World Wide Web Consortium (W3C), ori-
ginally designed as a metadata model. It is used as a general method
for modelling information in different syntaxes. RDF is a standardized
format that lets you express descriptive information about web resources.
The source described by RDF could be any resource that can be uniquely
identified by a Uniform Resource Identifier (URI). This identifier uniquely
determines the particular resource involved in a web content composed of
different types of documents.

2.1.1.1 Triples

A semantic triple is an atomic data entity in the Resource Description
Framework (RDF) data model. As its name indicate, a triple is a set of three
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2.1. Background

entities that codifies a statement about semantic data in the form of subject,
predicate and object expressions. Given this semantic data, it allows to
be queried without any ambiguity. An example such as "Elephant has the
colour black" symbolically implies "elephant" as the subject, "colour" as
predicate and "black" as object. The object oriented design has a similar
notation as entity, attribute and value model ie. the entity is "elephant",
attribute is the "colour" and value is "black".

What makes RDF triples special is that every part of the triple could
have a URI associated with it, so a statement "John’s age is 23" might be
represented in RDF as:

1 <http://database.org/people#John> <http://database.org/attribute/age> "23"

Statements encoded in triples could be spread across different websites as
shown:

Fig. 2.1. Representation of RDF

Website A presents the entity John and the fact that he knows Stephan.
Website B provides all the information about Stephan and on the Website C
we can find information about Stephan’s hometown. Each page contains
the structured data to describe an entity.

2.1.1.2 Various Serialization Formats

Turtle : It is a syntax and file format for expressing data in the Resource
Description Framework (RDF) data model. DBpedia NIF datasets are
available in the turtle Format. RDF in terse RDF triple language (turtle)
format is much easier as you can define prefixes at the beginning of the
file, shortening each triple. Another feature of turtle is that multiple triples
with the same subject are grouped into blocks for instance:
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2.1. Background

1 @prefix dbr : <http : / / dbpedia . org / resource/>
2 @prefix nif : <http : / / persistence . uni−leipzig . org / nlp2rdf / ontologies /

nif−core#>
3 @prefix rdf : <http : / /www.w3. org/1999/02/22−rdf−syntax−ns#>
4 dbr : Animalia_ (book) a nif . Context
5 nif . beginIndex "0"
6 nif . endIndex "2294"
7 nif .predLang <http : / / lexvo . org / id / iso639−3/eng>

Listing 2.1: Sample triples from NIF context dataset

There are 3 prefixes declared on each of the first 3 lines of the listing. The
set of triples starts from Line 4 with all the triples having the same subject
as "dbr:Animalia_(book)". One unique shortening is the predicate
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> represented with an
alphabet ’a’. The subject is not repeated for the rest of the 3 triples as it is
common for all of them. On Line 5, the predicate is ’nif.beginIndex’ and
the object is "0". Similarly the next two lines have predicate and object
pairs. So, totally there are 4 triples in this listing.

N-triples : Storing and reading RDF as N-Triples is simple since every
line on the file has a single triple (<subject> <predicate> <object>) that
together forms a directed knowledge graph. N-Triples is a format for
storing and transmitting data. It is a line-based, plain text serialisation
format for RDF graphs. For example:

1 <http : / / one.example/ subject1> <http : / / one.example/ predicate1> <http
: / / one.example/ object1> .

2 _ : subject1 <http : / / an.example/ predicate1> "object1" .
3 _ : subject2 <http : / / an.example/ predicate2> "object2" .

Listing 2.2: Examples of N-triples serialization format

RDF/XML : It is an XML based syntax that is the first standard format
for serializing RDF. Like turtle, prefixes can be defined at the top of RD-
F/XML files to avoid unnecessary repetition of URIs. RDF/XML is still not
as humanly readable as turtle.

Notation 3 : It is a shorthand non-XML serialization of resource de-
scription framework models, designed with human-readability in mind.
N3 is much more compact and readable than XML RDF notation. A non-
standard serialization that is very similar to turtle, but has some additional
features such as the ability to define inference rules.
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2.1. Background

2.1.2 Linked Data

Linked data [11] is using the web to connect related data that wasn’t
previously linked, or using the web to reduce the barriers to linking data
currently linked using other methods. Wikipedia defines linked data as "a
term used to describe a recommended best practice for exposing, sharing,
and connecting pieces of data, information, and knowledge on the Semantic
Web using URIs and RDF" [13].

According to Tim Berners-Lee, "The Semantic Web isn’t just about put-
ting data on the web. It is about making links, so that a person or machine
can explore the web of data. With linked data, when you have some of it,
you can find other, related, data." [14]. In addition Tim Berners-Lee coined
the four main principles of Linked data:
1) Use URIs as names for things.
2) Use HTTP URIs so that people can look up those names
3) When someone looks up a URI, provide useful information.
4) Include links to other URIs. So that they can discover more things.

The idea behind these principles is to use standards for representation and
access to data on web. The principles propagate to set hyperlinks between
data from different sources. These hyperlinks connect all linked data into a
single global data graph similar to the hyperlinks on the classic web which
connects all HTML documents into a single global information space. The
rationale of these principles uses URIs to identify individuals, classes, and
properties.
Names perform two important roles:
1) It refers to the relevant thing
2) It give us a location on the web where we could look for information
about the thing itself. Computing linked data describes a method for pub-
lishing and linking data coming from heterogeneous data sources that can
be interlinked and shared.

2.1.2.1 Linked Open Data

Open data is the data that can be freely used and distributed by anyone.
Linked Open Data (LOD) is a powerful blend of Linked Data and Open Data.
It is both linked and uses open sources. One notable example of an LOD set
is DBpedia. Linked Data breaks down the information that exist between
various formats and brings down the fences between various sources. It
facilitates the extension of the data models and allows easy updates. As a
result, data integration and browsing through complex data become easier
and much more efficient.
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2.1. Background

Fig. 2.2. Linked Open Data Cloud

The Linked Open Data Cloud [7] depicts publicly available linked data-
sets. LOD Cloud has been divided into nine subclouds each one repres-
enting a separate knowledge domain: geography, government, linguistics,
life science, media, publications, social networking, user-generated and
cross-domain (anything else like DBpedia, Wikidata). Each colour of the
bubble represents different subcloud. It currently contains over 1,200
datasets with 16,000 links. DBpedia contains 4.6 million concepts which
are described by over 1 billion triples [2].

2.1.3 DBpedia

DBpedia is a project aiming to extract structured content from the informa-
tion created in the Wikipedia project. This structured information is made
available on the World Wide Web (WWW). DBpedia allows users to semantic-
ally query relationships and properties of Wikipedia resources, including
links to other related datasets. DBpedia is a crowd sourced community
effort to extract structured content from the information created in various
Wikimedia (a mission to bring free educational content) projects. Wiki-
media includes Wikipedia, Wiktionary, Wikiquote, Wikibook, Wikisource
etc. Through various projects, chapters, and the support structure of
the non-profit Wikimedia foundation, Wikimedia strives to bring about a
world in which every single human being can freely share all knowledge.
This structured information resembles an open knowledge graph which is
available for everyone on the web. A knowledge graph is a special kind of
database which stores knowledge in a machine readable form and provides
a means for information to be collected, organised, shared, searched and
utilised.
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2.1. Background

A knowledge base is used to store complex structured and unstructured
information used by a computer system. Some important points about
DBpedia knowledge base are:
1) It covers many domains
2) It represents real community agreement
3) It automatically evolves as Wikipedia changes
4) It is truly multilingual
5) Support for information integration.

DBpedia’s knowledge base for the English version consists of 4.58
million things. DBpedia knowledge base for French, German, Spanish
and Japanese versions consists of 1.78 million, 1.9 million, 1.3 million
and 0.9 million things respectively. Out of the 4.58 million things in Eng-
lish language, about 4.22 million are for the consistent ontology which
includes 1.4 million persons, 0.75 million places (including 0.48 million
populated places), 0.41 million creative works (including 123,000 music
albums, 87,000 films and 19,000 video games), 0.24 million organizations
(including 58,000 companies and 49,000 educational institutions), 0.25
million species and 6,000 diseases [2].

DBpedia provides localized versions of DBpedia in 128 languages. Look-
ing at all the versions, DBpedia provides 38.3 million things, out of which
23.8 million are localized descriptions of things. The full DBpedia dataset
features 38 million labels and abstracts in 125 different languages. It can
be noticed that only 11.7% of the total Wikipedia articles belongs to English.
About 10.7% belongs to Cebuano, a language spoken in Phillipines (most
of the articles just has one or two sentences), 7.5% belongs to Swedish
and 4.5% in German and 4.2% in French. DBpedia consists of 4.58 million
things in English compared to the overall 38.3 million things which is about
13%. The ratio is very close to that of 11.7% in Wikipedia.

DBpedia’s knowledge could help us get interesting information for very
complex queries unlike Wikipedia. For eg. it is possible to retrieve answers
for these queries through DBpedia: Display all the Cities in the world with
a population more than 10 million people or display all Fresco painter-
s/artists from the 18th century. Altogether, the use cases of the DBpedia
knowledge base are widespread and range from enterprise knowledge
management over web search to revolutionizing Wikipedia search.

DBpedia data is served as linked data, which is revolutionizing the way
applications interact using the web. One can navigate this web of facts
with standard web browsers, automated crawlers or pose complex queries
with SQL like query languages (eg. SPARQL). DBpedia dataset provided
in RDF triples is hosted and published by using "OpenLink Virtuso". The
access to the DBpedia’s RDF dataset is provided through SPARQL endpoint,
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alongside HTTP support for any web client’s standard GET requests for
HTML or RDF representations of DBpedia resources.

2.1.3.1 DBpedia Ontology

DBpedia Ontology has been manually created from the infoboxes present
inside the Wikipedia. An infobox is a fixed-format table usually added to
the top right-hand corner of articles to consistently present a summary
of some unifying aspect that the articles share and sometimes to improve
navigation to other interrelated articles. Many infoboxes also emit struc-
tured metadata which is sourced by DBpedia and other third party re-users.
The generalized infobox feature grew out of the original taxoboxes (tax-
onomy infoboxes) that editors developed to visually express the scientific
classification of organisms. DBpedia ontology can also be queried via the
DBpedia SPARQL endpoint and can be explored via the DBpedia linked
data interface. The table below lists the number of instances for several
classes within the ontology for English language.

Class Instances

Resource (overall) 4,233,000
Place 735,000

Person 1,450,000
Work 411,000

Species 251,000
Organisation 241,000

Table 2.1: DBpedia ontology for English language [2]

DBpedia ontology is shallow and available across multiple domains. DBpe-
dia ontology currently uses 685 classes which are described by about 2800
different properties.

2.1.4 DBpedia NIF Dataset

DBpedia’s primary focus is on retrieving the factual knowledge from the
Wikipedia infoboxes. With the representation of wiki pages in the NLP
Interchange Format (NIF), DBpedia provides all information directly ex-
tractable from the HTML source code divided into three datasets:
1) NIF context dataset: The full text of a page as context.
2) NIF page structure dataset: the structure of the page in sections and
paragraphs (titles, subsections etc).
3) NIF text links dataset: Links in the Wikipedia articles

These datasets will serve as the groundwork for further NLP fact ex-
traction tasks to enrich the gathered knowledge of DBpedia. From release
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2016-10, they have started providing the full text of Wiki pages in NIF
format.

The NLP Interchange Format (NIF) aims to achieve interoperability
between NLP tools, language resources and annotations. To extend the
versatility of DBpedia, furthering many NLP related tasks, they decided
to extract the full text of any Wikipedia page (NIF context), annotated
with NIF tags. For this first iteration, they restricted the extent of the
annotations to the structural text elements directly inferable by the HTML
(NIF page structure). In addition, all contained text links are recorded in a
dedicated dataset (NIF text links).

2.1.4.1 NIF 2.0 Core Ontology

NIF 2.0 Core Ontology [15] provides classes and properties to describe the
relation between substrings, text, documents by assigning URIs to strings.
The main class in this ontology is ’nif:String’, which is the class of all words
over the alphabet of unicode characters.
A pictorial representation of various relationships:

Fig. 2.3. NIF Core Ontology [1]

The subclass of ’nif:String’ is the ’nif:Context’ OWL class. This class is
assigned to the whole string of the text (ie. all characters). The purpose
of an individual of this class is special because string of an individual is
used to calculate the indices for all substrings. Therefore, all substrings
should have a relation ’nif:referenceContext’ pointing to an instance of
’nif:Context’. The datatype property ’nif:isString’ consists of full text of
Wiki page. ’nif:word’ could be combined with either ’nif:title’, ’nif:phrase’
or ’nif:paragraph’ which are defined in the ’nif:Structure’. Thus, ’nif:word’
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is a subclass of ’nif:Structure’ which in turn is a subclass of string. All the
subclasses can use the properties of parent class.

2.1.4.2 NIF Context

The full text present in each Wikipedia page is available in NIF context
dataset. I have used the NIF context dataset versions in English, French,
German, Spanish and Japanese languages for my thesis work. Each Wiki
page has 6 triples on NIF context dataset. The triples in NIF context
dataset for the English Wiki article "Anthropology" are :

1 dbr :Anthropology?dbpv=2016−04&nif=context a nif :
Context .

2 dbr :Anthropology?dbpv=2016−04&nif=context nif : isString "
Anthropology is the study of humanity . I ts main subdivisions are
. " <The fu l l text of Anthropology Wiki page> .

3 dbr :Anthropology?dbpv=2016−04&nif=context nif : beginIndex "0" .
4 dbr :Anthropology?dbpv=2016−04&nif=context nif :endIndex "634" .
5 dbr :Anthropology?dbpv=2016−04&nif=context nif : sourceUrl <http : / /

en. wikipedia . org / wiki /Anthropology> .
6 dbr :Anthropology?dbpv=2016−04&nif=context nif :predLang <http : / /

lexvo . org / id / iso639−3/eng> .

Listing 2.3: DBpedia NIF context for Anthropology Wiki page

Each line on this dataset consists of one triple. Every line has a sub-
ject, predicate and object separated by spaces among them. The triples
mentioned on the listing are taken from ’nif_context_en.ttl’ file. The name
of the Wiki page appears on the subject of each triple occurring between
the namespace "dbr:" and the question mark "?". Each triple gives the
following information in chronological order:
1) These triples are a part of NIF context dataset.
2) The full text present in Wikipedia page.
3) The begin index of the page which is always 0.
4) The end index of the full text of Wiki page.
5) URL link to access the Wikipedia article via browser.
6) Indicates the language of Wiki page.
The ’nif_context_en.ttl’ file consists these 6 triples for all the Wiki pages
in English language. Although DBpedia provides 3 different extensions
of NIF context dataset - TTL,TQL and HDT, I used the TTL format due to
availability of favourable libraries in Python for parsing and processing in
my tool.

2.1.4.3 NIF Page Structure

The structure of the Wikipedia page as NIF:Structure instances, such as
section, paragraph and title. A sportsman’s Wikipedia page for instance
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contains various sections such as Early age, personal life, achievements
etc. Each such section could contain multiple paragraphs within them. It is
necessary to keep track of these sections, titles and paragraphs in DBPedia
for maintaining the amount of structured data. The following is an example
taken from NIF page structure dataset :

1 dbr :Anthropology?dbpv=2016−04&nif=context nif : hasSection
dbr :Anthropologydbpv=2016−04&nif=section_0_634 .

2 dbr :Anthropology?dbpv=2016−04&nif=section_0_634 nif : beginIndex
"0" .

3 dbr :Anthropology?dbpv=2016−04&nif=section_0_634 nif :endIndex
"634" .

4 dbr :Anthropology?dbpv=2016−04&nif=section_0_634 nif :
referenceContext dbr :Anthropologydbpv=2016−04&nif=context .

5 dbr :Anthropology?dbpv=2016−04&nif=section_0_634 nif :hasParagraph
dbr :Anthropologydbpv=2016−04&nif=paragraph_0_330 .

6 dbr :Anthropology?dbpv=2016−04&nif=section_0_634 nif :hasParagraph
dbr :Anthropologydbpv=2016−04&nif=paragraph_331_634 .

7 dbr :Anthropology?dbpv=2016−04&nif=section_0_634 nif : firstParagrap
dbr :Anthropologydbpv=2016−04&nif=paragraph_0_330 .

8 dbr :Anthropology?dbpv=2016−04&nif=section_0_634 nif : lastParagraph
dbr :Anthropologydbpv=2016−04&nif=paragraph_331_63 .

Listing 2.4: DBpedia NIF page structure for Anthropology Wiki page

These triples correspond to Anthropology Wiki page informing about
the section and paragraph details. The following could be inferred from
the triples in chronological order:
1) Wikipedia page ’Anthropology’ has section(s)
2) Section’s begin index on the Wiki page
3) Section’s end index on the Wiki page
4) Content’s of this section could be seen in NIF context file ie. the full text
present within this section
5) There exists a paragraph in this section from index 0 to 330
6) There exists a paragraph in this section from index 331 to 634
7) The paragraph with index 0 to 330 is the first paragraph
8) The paragraph with index 331 to 634 is the last paragraph

Similarly there is a description of each paragraph within the section as
can be viewed below:

1 dbr :Anthropology?dbpv=2016−04&nif=paragraph_0_330 a nif :
Paragraph .

2 dbr :Anthropology?dbpv=2016−04&nif=paragraph_0_330 nif : beginIndex
"0" .

3 dbr :Anthropology?dbpv=2016−04&nif=paragraph_0_330 nif :endIndex
"330" .

4 dbr :Anthropology?dbpv=2016−04&nif=paragraph_0_330 nif :
referenceContext dbr :Anthropology?dbpv=2016−04&nif=context .
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5 dbr :Anthropology?dbpv=2016−04&nif=paragraph_0_330 nif : superString
dbr :Anthropology?dbpv=2016−04&nif=section_0_634 .

Listing 2.5: DBpedia NIF page structure wrt paragraph

This describes the paragraph properties and links the paragraph to its
section with the "superstring" attribute. We could infer the following from
each of the triples:
1) This is a paragraph taken from article Anthropology
2) The begin index of the paragraph is 0.
3) The end index of the paragraph is 330.
4) The reference to this paragraph is available in the NIF context dataset.
5) It is a part of the section from the index 0 to 634 in the Anthropology
wikipedia page. It can be noticed from the predicate being "superString".

2.1.4.4 NIF Text Links

This dataset has the properties of ’words’ containing link(s) to other DB-
pedia resources (Wiki pages have a corresponding DBpedia resource). In
other words, this dataset consists of links present in the Wiki pages. I
have used the NIF text links dataset versions in English, French, German,
Spanish and Japanese languages for developing my tool. A line taken from
Wikipedia page of Anthropology in English language:
"Anthropology is the scientific study of humanity, human behavior and
societies in the past and present."

Here "humanity" has a link on it, which when clicked redirects the
browser to Wiki page of "human". Such words that has a link is called
as Surface Form. In this dataset, properties of such surface forms are
recorded. The details of "humanity" is stored as follows in NIF text links
dataset:

1 dbr :Anthropology?dbpv=2016−04&nif=word_41_49 a nif :Word .
2 dbr :Anthropology?dbpv=2016−04&nif=word_41_49 nif : referenceContex

dbr :Anthropologydbpv=2016−04&nif=context .
3 dbr :Anthropology?dbpv=2016−04&nif=word_41_49 nif : beginIndex

"41" .
4 dbr :Anthropology?dbpv=2016−04&nif=word_41_49 nif :endIndex

"49" .
5 dbr :Anthropology?dbpv=2016−04&nif=word_41_49 nif : superString

dbr :Anthropology?dbpv=2016−04&nif=paragraph_0_634 .
6 dbr :Anthropology?dbpv=2016−04&nif=word_41_49 <http : / /www.w3. org

/2005/11/ i t s / rdf#taIdentRef> dbr :Human .
7 dbr :Anthropology?dbpv=2016−04&nif=word_41_49 nif :anchorOf "

humanity" .

Listing 2.6: DBpedia NIF text links for Anthropology Wiki page
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Each of the triples inform the following in chronological order:
1) The surface form has only one word. If the surface form has more than
one word, then the object is ’nif.Phrase’. Since ’humanity’ has one token,
the object is ’nif.Word’.
2) The content is available in NIF context dataset referencing to DBpedia
resource of Anthropology.
3) Begin index of the surface form in the Wiki page
4) End index of the surface form in the full text of the page
5) It is a part of the paragraph with index 0 to 634 on the Anthropology
DBpedia resource.
6) Theoretically when ’humanity’ is clicked, the browser would redirect us
to the Wiki page of human. Here "dbr:" is a namespace. This triple informs
the DBpedia resource that this surface form is linked to.
7) The tokens of the surface form. Actual word that has the link from index
29 to 37 is "humanity".

2.1.5 Natural Language Processing

Natural Language Processing (NLP) in simple terms is the intersection of
computer science, linguistics and machine learning. It is in concern with
the communication between humans and computers in natural language.
NLP is all about enabling computers to understand and generate human
language. Applications of NLP techniques are voice assistants like Alexa
and Siri but also machine translation and text-filtering. NLP is very much
benefited by the recent advancement of machine learning especially from
the deep learning. The field is divided into the three following parts:
1) Speech recognition is the translation of spoken words into text.
2) Natural language understanding is the computers ability to understand
what we say.
3) Natural language generation is the generation of natural language by a
computer.

Syntactic analysis (Syntax) and Semantic analysis (Semantic) are the
two main techniques for understanding of natural language. Language
is a set of valid sentences, but what makes a sentence valid? Actually,
you can break validity down into two things: syntax and semantics. The
term "syntax" refers to the grammatical structure of the text whereas the
term "semantics" refers to the meaning that is conveyed by it. However,
a sentence that is syntactically correct, does not have to be semantically
correct. Just take a look at the following example. The sentence ’pigs flow
adversely’ is grammatically valid (subject verb adverb) but does not make
any sense.

Text Segmentation [16] in NLP is the process of transforming text into
meaningful units which can be words, sentences, different topics, the
underlying intent and much more. Mostly, the text is segmented into its
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component words, which can be a difficult task, depending on the language.
This is again due to the complexity of human language. For example, it
works relatively well in English to separate words by spaces, except for
words like ’ice box’ that belong together but are separated by a space. The
problem is that people sometimes also write it as ’ice-box’.

Python supports wide varieties of NLP libraries. Python is one of
the widely used languages and it is implemented in almost all fields and
domains. Some of the widely used NLP libraries are:
1) Natural Language Toolkit (NLTK) [17].
2) spaCy [18].
3) Pattern [19].
4) TextBlob [20].
5) CoreNLP [21].
Refer Section 3.2 for more information regarding the libraries used to build
my tool.

2.1.5.1 NLP Tasks

This section provides general understanding of various NLP tasks. Descrip-
tion of each task in basic words along with some of the challenges faced
are listed out.

Sentence splitting - Sentence splitting means to split a given para-
graph of text into sentences, by identifying the sentence boundaries [22].
In many cases, a full stop is all that is required to identify the end of a
sentence, but the task is not all that simple. Let’s look at some of the
challenges faced:
1) Abbreviations: Dr. H.N.Abraham is the author of Animalia. In this case,
the first and second dot(.) occurring after ’Dr’ (Doctor) and ’H’ (initial in
the person’s name) respectively. This should not be confused with the full
stop.
2) Sentences enclosed in quotes: "What good are they? They’re led about
just for show!" should be identified as one sentence.
3) Questions and exclamations: What is it? - This is a question. This should
be identified as a sentence. "I am tired!" - something which has been
exclaimed. This should also be identified as a sentence.
4) Short forms for instance ’etc.’ or ’ie.’ doesn’t refer to a sentence bound-
ary. Although this contains a dot, it doesn’t imply the end of a sentence.

The challenges differs for French, German, Spanish and Japanese lan-
guages for eg. Japanese language does not have spaces in written lan-
guage. Every language is treated differently following their specific rules
and standards while performing this NLP task.
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Tokenization- Given a string or a paragraph or a sequence of char-
acters and a defined document unit, tokenization [23] is the operation of
cutting it up into pieces, called tokens, perhaps at the same time throwing
away certain characters, such as punctuations. Word tokenization is the
process of splitting a large sample of text into words. Some of the chal-
lenges faced in this task:
1) Words that belong together but are separated by a special character
such as "ice-box".
2) Numbers, special characters, hyphenation, and capitalization. In the
expressions "don’t," "I’d," "John’s" do we have one, two or three tokens?
3) Removal of stop words. Once the tokens are separated lets say "This is
it.", here the tokens should be "this" "is" and "it", however not "this" "is"
"it." . So detecting stop words and separating it could be tricky.
4) German language has compound words wherein multiple words are
written without spaces in between each of them.

Part of speech - Part of speech is a category to which a word is
assigned in accordance with its syntactic functions. Some words have
multiple meanings and they could be used in different contexts. The part
of speech varies depending upon the context in which the word appears.
On looking at the following sentence:
"They refuse to permit us to obtain the refuse permit"
The word refuse is being used twice in this sentence and has two different
meanings here. Refuse is a verb meaning "deny," while refuse is a noun
meaning "trash" (that is, they are not homophones). Thus, we need to know
which word is being used in order to pronounce the text correctly (For this
reason, text-to-speech systems usually perform POS tagging).

Numbers are usually adjectives because the information they give is
how many of the "noun" present. They can be cardinal (like one, two,
three), or ordinal (like first, second, third). Punctuations don’t have part
of speech. Part of speech in Japanese is quite different as Japanese is
a SOV (Subject-Object-Verb) language whereas English is typically SVO
(Subject-Verb-Object). In Japanese, the verb always appears at the end of
clauses and sentences. Japanese parts of speech are usually marked with
words called "particles" that follow the word they modify. A sentence or
paragraph should be provided as an input in order to find the POS rather
than using a token as the usage of token could differ based on the context.

Links enhancement - Enhancing the number of surface forms in Wiki
pages ie. increasing the links in Wiki pages. While every Wikipedia page
already contains few links, the goal of this task is to increase the amount of
such links. This should ideally help the readers to enhance the knowledge
of a certain page in depth. Some important challenges to be considered for
this task are:
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1) A surface form could appear multiple times within an article. Duplication
of providing links to same surface forms on a particular Wiki article must
be avoided. If a surface form occurs multiple times within a Wiki article, in
this case only the first occurrence of the surface form must be given a link.
2) Should not provide too many links on a particular Wiki page. Could be
achieved by ignoring obvious words or basic words.
3) Should be able to provide link to surface forms that has more than one
word.
Please refer the Section 3.7 for a detailed explanation on link enhancement
task and the challenges faced on it.

2.2 Related Work

This section provides understanding of related work to my thesis. Related
work could be anything that applies NLP over Wikipedia articles or annot-
ates Wikipedia articles or just enriches Wikipedia in general. Some of the
notable related works are "Annotating documents with relevant Wikipe-
dia concepts" by Wikifier, "A Model for Enriching Multilingual Wikipedias
Using Infobox and Wikidata Property Alignment" by Thang Hoang Ta and
"Extracting and annotating Wikipedia Subdomains" by Gisle and Flickinger.

2.2.1 Annotating documents with relevant Wikipedia
concepts

This work is similar to the "Links enhancement" NLP task. In this work,
they provide links based on the pagerank of Wiki pages. The tool developed
for this work is called Wikifier [24]. All words, phrases from an input
document (that needs to be annotated) referring to certain concepts from
the Wikipedia are listed out.

All the possible concepts to Wiki page(s) are listed out for the input doc-
ument using the internal links from the Wikipedia to identify such phrases:
1) If some Wikipedia page contains a link with the anchor text ’a’ and target
page ’t’
2) Whenever ’a’ occurs in the input document, they consider that as a
(possible) mention of the concept ’t’, and ’t’ is a candidate annotation for
this input document.

The problem is that the links with the same anchor text ’a’ can point to
different targets ’t’. They tried to overcome this by using a pagerank-based
global disambiguation approach.
The approach to solve this issue :
• Construct a mention-concept graph
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• Bipartite graph: left vertices = mentions, right vertices = concepts
• Transition probabilities: P(a -> t) = [number of links with anchor text a
and target t] / [number of links with anchor text a]

Fig. 2.4. Wikifier User Interface

The goal of Wikifier is to relate words on input document to appropriate
Wikipedia concepts whereas goal of my thesis is to enhance links on Wiki
pages by providing links to all surface forms. This tool relates Wikipedia
concepts for any textual file whereas I have considered only full text of Wiki
pages to be enhanced with links. The algorithm used is different from each
other as well. Their algorithm chooses Wiki page with better pagerank
for surface forms with multiple links. On the other hand, my work finds
the POS of surface form. Surface forms with multiple links have different
parts of speech. Depending upon the result of POS, links are assigned
accordingly. My work is expected to give more accurate result compared
to Wikifier. The surface form with the better pagerank always wins on
Wikifier, so there are no chances for Wiki pages with lower pagerank to be
given a link.

2.2.2 Model for Enriching Multilingual Wikipedias

A model for enriching multilingual Wikipedias using infobox and Wikidata
property alignment [25]. It provides some processes to enrich Wikipedia
content which will retrieve semantic relations based on alignment between
infobox properties and Wikidata properties in various languages. The tool
developed for this work compares the infobox contents to Wikipedia data
and enriches the Wiki pages by filling the additional information present
on infobox but are missing on Wiki pages. This work enriches Wikipedia in
general. The goal of this work is similar to mine. The processes carried
out in this work are:
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• Align infobox parameters with Wikidata properties. A semi-automated
tool is created to support searching and aligning the semantic equi-
valence between Wikidata properties (or items which has no "relevant
property") and infobox properties.

• Detect missing inter Wiki links and connecting them to articles in dif-
ferent languages as well as synthesize all semantic relations. Com-
parisons of semantic relations and assess their correlations to detect
missing interwiki links.

• Enrich article content and Wikidata statements after implementing the
comparisons of gathered semantic relations. They enriched more
data for articles which have new inter Wiki links.

Semantic analysis has been performed in this work. Semantic analysis
in simple terms is the process of understanding the natural language ie.
the way humans communicate based on meaning and context. The NLP
tasks are performed on infobox and Wikidata in this project. However, my
tool applies NLP tasks only on NIF datasets (ie. text of Wikipages). The
infoboxes used in this work emits structured metadata which is considered
to be a source for DBpedia datasets.

2.2.3 Extracting and Annotating Wikipedia Sub-Domains

This paper suggests a simple procedure for the extraction of Wikipedia
sub-domains, proposes a plain-text (human and machine readable) corpus
exchange format reflecting on the interactions of Wikipedia markup and
linguistic analysis [26]. In their work, they have used a variety of NLP tasks
- sentence segmentation, grammatical analysis, and discriminant based
treebanking and the interactions of document mark-up, linguistic analysis.
They have proposed a simple technique of compiling and annotating domain
specific corpora of scholarly literature, initially drawing predominantly on
Wikipedia. This is a related work to mine as NLP is applied over Wikipedia.
For a given sub-domain, this work extracts and annotates the Wiki pages
with results of various NLP tasks that fall under the given sub-domain.

These are the related works to my thesis. The work goals between my
tool and the related works are compared. I have performed some of the
NLP tasks which are used in these related works. My main goal is to enrich
the DBpedia NIF dataset which is completely different from any of these.
The results of my NLP tasks are stored in the format that complies with
DBpedia norms.
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Chapter 3
Data Processing

This chapter provides description of the tool developed for enriching NIF
dataset. It also provides explanation of pseudocodes and algorithms for
performing various NLP tasks on multiple languages of NIF datasets by
using different libraries. This chapter starts with a workflow explaining
the step by step process carried out to in my thesis. This chapter also
describes about the Python libraries used to build my tool.

Data processing [27] is generally a collection and manipulation of data
to produce meaningful information. Carrying out operations on data espe-
cially by a computer to retrieve, transform, or classify information. With
respect to my thesis, NIF context is the dataset on which various NLP
operations are performed (sentence splitting, tokenization, part of speech
tagging and enhancement of links). NIF text links dataset has been used
for the pre-processing task. However, NLP operations were not performed
on NIF text links dataset.

NIF context and NIF text links datasets have been downloaded from
the official DBpedia download page [9]. DBpedia provides NIF datasets
separately for each language ie. NIF context, NIF text links and NIF page
structure datasets are provided separately for each language. I downloaded
NIF context & NIF text links datasets for English, French, German, Spanish
and Japanese languages. Size of the extracted file vary upon language.
Although the datasets are available for other languages, I have taken these
5 languages as the primary focus of my thesis. In case if a user wants to
integrate a new language with my tool, a documentation on how this could
be achieved is mentioned in Usage chapter. The information provided on
NIF structure dataset is not required for my work and was not considered.
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3.1 Workflow

A flowchart to depict the steps carried out in the Thesis for building the
tool :

Fig. 3.1. Flowchart

Explanation of each step mentioned on flowchart :

• STEP 1 Separation of Wikipedia articles: As NIF context dataset consists
the triples of all the Wiki pages in one huge file for every language,
there is a need to separate this huge file into triples pertaining to
each Wiki article. The triples corresponding to each Wiki article must
be stored separately. Since there is a separate NIF context dataset for
each language, this step has to be done for all languages. This step
helps to process data faster while performing various NLP operations
on it. This also allows NLP tasks to be performed on a subset of
the NIF datasets. A new directory will be created for each language
to store the separated files from NIF context dataset. The naming
convention of the directory is "Input<language_name>/". Each of the
generated output files from this task contains its corresponding Wiki
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page’s triples obtained from NIF context dataset. These small files
are saved with the name of their Wiki page. On looking at the Spanish
NIF context dataset as an example "nif_context_es.ttl" has a size of
4.5 GB after extraction. This dataset comprises triples of all the 1.3
million Wiki pages in Spanish language. After step 1, a new directory
called ’Inputes/’ will be created containing the generated 1.3 million
small files inside them. Each small file will have the name of its Wiki
page, containing all its 6 triples obtained from nif_context_es.ttl". I
have discussed the pseudocode of this task in section 3.3.

• STEP 2 Sentence Splitting: Perform sentence splitting on files gener-
ated as an output to the previous step. Every small file generated
in the previous step contains 6 triples and only one of these triples
contain the full text of a Wiki page. This is the only triple which is
required for performing the sentence splitting task and thus needs
to be uniquely identified among the other five. The object of this
uniquely identified triple will contain the full text of Wiki page. Split
the obtained full text into individual sentences and store each of these
sentences as a separate triple on the output file. The begin and end
index of each sentence is recorded as the object of the predicates
"nif:beginIndex" and "nif:endIndex" respectively. The contents of each
sentence are stored in the object with predicate "nif:anchorOf". This
task has to be performed on all 5 languages. The ideal outcome of
this task should separate the full text of Wiki pages into its individual
sentences. The separated sentences are stored in individual triples
with appropriate namespaces, specifications [28] and annotations
that complies with the DBpedia standards, adding great benefit to
DBpedia’s usefulness. The output file must be of turtle format. A
directory to store the results of sentence splitting is created as "Sen-
tences/". This NLP task has been performed with 5 different libraries
namely NLTK, spaCy, TextBlob, Pattern and Konoha in Python.

• STEP 3 Tokenization: This step should detect all the tokens present in
the full text of Wiki pages. The full text of the Wiki page is obtained
from one of the six triples contained in the output files of Step 1.
The begin and end index of every token is recorded as the objects
to the predicates "nif:beginIndex" and "nif:endIndex" respectively.
The content of each token is provided as the object having predicate
"nif:anchorOf". This task has to be performed on all 5 languages. I
have discussed the algorithm to perform this task on Section 3.5.
The ideal outcome of this task should detect all tokens on the full text
of Wiki pages. The detected tokens should be stored in triples with
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appropriate namespaces, specifications and annotations [28] that
complies with the DBpedia standards. The output of tokenization task
is stored on the directory "Tokens/". The results are stored with the
name of the file same as their Wiki article name. The output file must
be in turtle format containing details of each token. For instance, lets
say there are 6000 words on a Wikipedia article, then the generated
result should contain 6000 tokens. The generated output files for this
task are stored with the name of the Wiki article, under "Tokens/"
directory. Tokenization is performed with 4 different libraries namely
NLTK, spaCy, TextBlob and nagisa. The results of each library are
slightly different from each other.

• STEP 4 POS Tagging: This step is to find the part of speech for each
token. In this case, we cannot use the output of previous task to find
the parts of speech. Every token could have multiple parts of speech
and in order to detect the correct part of speech for the given word,
it is always recommended to use the sentences or paragraphs as an
input for this task. For instance, the word ’next’ could be used as an
adjective, adverb, preposition or even as a noun depending upon the
context it is used. This NLP task has been performed with 4 different
libraries namely Stanford POSTagger, spaCy, TextBlob and NLTK. The
begin index, end index and content of each token are recorded along
with the token’s part of speech in the output file. Section 3.6 provides
description of the implementation. The output file of this task should
contain all triples that are in the output files of tokenization task.
In addition, there should be three additional triples indicating the
short form of token’s POS, full form of token’s POS and the output
obtained from POS tagger. For instance let’s consider a token called
"Prague", the output of POS tagger is "NNP" (result obtained from
NLP library), short form POS is "Noun" and the full form POS for this
token is "Proper Noun". A directory called "POS/" is created to store
the results of part of speech tagging task. The parts of speech for the
tokens belonging to an individual article are stored with the name
of the Wiki page that this token belongs to, on "POS/" directory in a
format complying with DBpedia’s norms.

• STEP 5 Surface Form Analysis: All the existing surface forms are ob-
tained from NIF text links dataset and thus this dataset is downloaded
for 5 different languages from the official DBpedia Download page [9].
The goal of this step is to create CSV file containing 3 important
attributes about the "Surface Forms". First attribute should con-
sist the tokens present in a surface form (the word(s) that has link).
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The second attribute should have the URL link to the DBpedia re-
source that will load when the corresponding surface form is clicked.
The third attribute should consist the part of speech for the tokens
present in the surface form. A surface form could contain more than
one token. Parts of speech for the token(s) in surface form must be
contained as the third attribute of the CSV file. The generated CSV
file could contain duplicates and it is better to remove the duplicates
for performing faster search operation on this file. This step is con-
sidered to be a preprocessing task for the Links enhancement NLP
task. My tool consists a separate script for removing the duplicates
on the generated CSV file from NIF text links file. Naming convention
of the generated CSV file after removal of duplicates is "LinkData-
set<language>.csv". For French language the CSV file is saved as
"LinkDatasetfr.csv".

• STEP 6 Links Enhancement: This is the final step wherein the Wiki
pages are enhanced with additional links. Additional links are provided
to the full text of Wiki pages and thus the output obtained from step
1 is used as an input to this task. The list of all surface forms already
existing are available in the CSV file generated from the previous
step. Read the full text of Wiki pages token by token in order to
detect the tokens that are surface forms. If the content and part of
speech of token(s) read on full text of Wiki pages matches the content
and part of speech of a surface form entry on the CSV file, then a
link is provided to these read tokens(s) for their respective DBpedia
resource. Also, the longest possible match is taken into consideration.
For instance let’s take the words "colouring book" , here "colouring"
and its POS has a match on csv file. Whereas "colouring book" and its
POS has a match on the CSV file too. In this case, the link is provided
to the longest surface form being "colouring book". This NLP task
is performed with 3 different libraries namely spaCy, TextBlob and
NLTK. A new directory called "Links/" is created which stores the
result-set of the articles with enhanced links. The begin index, end
index, content of the word and the link to the DBpedia resource are
recorded as triples in the result-set with appropriate specifications
and annotations [29] that complies with the ITS 2.0 standards.

These are the 6 main steps carried out in my thesis. The upcoming
sections would describe these steps in detail with the help of pseduocodes
and some examples. I used Python programming language and Shell
scripting for developing my tool. Python is used for implementation of
the NLP tasks and Shell scripting is used for interacting with the user in
order to obtain the input to reproduce the result-set(s) for making my tool
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configurable. The Shell script would in-turn call the appropriate Python
script(s) for generating the output. Python programming language supports
Object Oriented Programming (OOP) which is used for defining a class
with attributes and methods that can be called later. This will be easier
to organise and structurize the scripts used to build my tool. Creation
of "main.py" - a central script in my tool used for calling the appropriate
Python script(s) based on user’s input and helps to follow a structured
order for managing various python scripts.

3.2 Python libraries

This section covers all the Python libraries used to build my tool with short
explanations. Also snippets taken from my python scripts for performing
NLP tasks are provided as examples wherever necessary.

3.2.1 RDFLib

RDFLib [30] is a Python library for working with RDF, a simple yet powerful
language for representing information. Some important features of RDFLib
are:
1) RDFLib contains parsers and serializers for RDF/XML, N3, Turtle
formats.
2) The library presents a graphical interface which can be backed by any
one of the store implementations. It contains both in-memory and persist-
ent graph backends.
3) The core RDFLib includes store implementations for in-memory storage,
persistent storage.
4) A wrapper for remote SPARQL endpoints. Supports SPARQL queries and
update statements.

RDFLib reads the triples from NIF datasets and stores it as a graph. The
’parse()’ function takes name of the file and format as parameters. Parsing
with RDFLib segregates the subject, predicate and object of every triple.
This helps in uniquely identifying one out of the 6 triples containing the full
text of Wiki pages, on the output files generated from Step 1. On parsing
input file, the subject, predicate and object of each triple are accessible
through a loop. RDFLib is used for storing the result-set of NLP task in
sets of triples on the turtle format.

3.2.2 NLTK

NLTK [17] is a leading platform for building Python programs to work with
human language data. It is a widely used NLP library in Python. Some of
the cool features provided by NLTK :
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1) It provides easy to use interfaces to over 50 corpora and lexical re-
sources such as WordNet, along with a suite of text processing libraries
for classification, tokenization, stemming, tagging, parsing, and semantic
reasoning, wrappers for industrial strength NLP libraries.

2) Processing the given dataset with various operations. NLP operations
performed using NLTK:

• Separating the content of a file with individual sentences

1 sentence_result = nltk . sent_tokenize (o , language=’ ’+assign+’ ’ )

Here, the variable ’o’ corresponds to the full text of Wiki pages on
which sentences are split. Language is detected based on the user’s
input while executing the tool. It is supplied as a parameter to the
sentence tokenize function. The variable ’sentence_result’ is a list
having each sentence stored on a different index.

• Separation of individual words

1 token_result = nltk . word_tokenize( txt , language=’ ’+assign+’ ’ )

The variable ’txt’ is a sentence or a paragraph on which the token-
ization is to be performed. Language is detected from the user’s
input to my tool and provided as a parameter to the word tokenize
function. The variable "assign" contains the language name. Word
tokenization is performed on the text present on variable ’txt’ and the
individual generated tokens are stored on different indices of the list
"token_result".

• Finding the part of speech

1 tagged = nltk . pos_tag( tokens , lang=’ ’+assign+’ ’ )

The variable ’tagged’ is a list storing tokens and their parts of speech
as pairs on separate indices of the list.

• Separate words by spaces using WhitespaceTokenizer.

3) It can perform sentence splitting, tokenization and part of speech for
multiple languages but the accuracy is good only for the English language.
This library was built primarily for English.

For German, Spanish and French I have used StanfordPOSTagger on
top of NLTK to perform the NLP tasks. I have used NLTK for performing all
the 4 NLP tasks in English and NLTK with StanfordPOSTagger for French,
German and Spanish languages.

28



3.2. Python libraries

3.2.3 Spacy

spaCy [18] is a library for advanced NLP in Python and Cython which
comes with a variety of interesting features. Its becoming increasingly
popular for processing and analysing data in NLP. Key features :

• spaCy comes with pre-trained statistical models and word vectors cur-
rently supporting tokenization for 49 different languages

• It features state of the art speed, convolutional neural network models
for tagging, parsing, named entity recognition and easy deep learning
integration.

• spaCy encodes all strings to hash values to reduce memory usage and
improve efficiency

I have used spaCy for performing all 4 NLP tasks in English, German,
French and Spanish languages. spaCy doesn’t support Japanese language.
On identifying the language based on user’s input, appropriate spaCy
language model is loaded as follows:

1 nlp = spacy . load ( ’ ’+lang+’_core_news_sm ’ )
2 sentences = nlp (o .encode( ) .decode( ’ utf−8’ ) )
3 for i in sentences . sents :
4 content = nlp ( i . text .encode( ) .decode( ’ utf−8’ ) )
5 for j in content :
6 print ( j . text )
7 print ( j . tag_ )

Listing 3.1: NLP tasks using Spacy

Each of the lines in the above mentioned snippet does the following on
chronological order:
1) The variable ’lang’ stores the language name obtained from user and
is used to load the appropriate spaCy language model. All the Spacy
language model names follows the same naming pattern - "<language
name>_core_news_sm". The variable ’nlp’ has the loaded Spacy language
model.
2) The variable ’o’ on the second line refers to the full text of a Wiki page.
The variable ’sentences’ stores the list of separated sentences from the
full text of Wiki page, in a hashed format. Displaying variable ’sentences’
would return a hashed hexadecimal value. Using the sents property ie.
’sentences.sents’ it is possible to store the contents of each sentence stored
on a separate index of the list.
3) Iterating over every sentence present on Wiki page in human readable
format.
4) The ’content’ stores the list of tokens on these sentences in hashed
format.
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5) Loop over all tokens on the list
6) Displays all the tokens in human readable format.
7) Displays all the parts of speech for the corresponding tokens listed on
step 6.

3.2.4 StanfordPOSTagger

Stanford CoreNLP [21] provides a set of human language technology tools.
Stanford CoreNLP’s goal is to make it very easy to apply a bunch of lin-
guistic analysis tools to a piece of text. Stanford CoreNLP integrates many
of Stanford’s NLP tools, including the POS tagger, the named entity re-
cognizer (NER), the parser, the coreference resolution system, sentiment
analysis, bootstrapped pattern learning, and the open information extrac-
tion tools. The library variously uses rule-based, probabilistic machine
learning, and deep learning components. This software is a Java imple-
mentation of the log-linear POS taggers. It supports 9 languages but the
downside is that the time taken to detect the parts of speech are longer
than NLTK or Spacy or Textblob. This library provides ’fast-tagger’ for
German language whose execution time is considerably quick.
A small snippet on usage of this library:

1 st=StanfordPOSTagger( ’ ’+assign+’−ud. tagger ’ )
2 i f lang=="de" :
3 st=StanfordPOSTagger( ’german−fast . tagger ’ )
4 tagged=st . tag ( txt . sp l i t ( ) )

Listing 3.2: Loading StanfordPOSTagger model

The ’StanfordPOSTagger()’ function loads the appropriate POS tagger
model depending upon language chosen by user which is supplied to this
script by variable ’assign’. The loaded tagger is stored on variable ’st’. The
fast-tagger version is loaded for German language and ud-tagger is loaded
for other languages. The ’tag()’ function detects the parts of speech of the
tokens and stores it on the ’tagged’ variable.

3.2.5 TextBlob

TextBlob [20] is a Python library for processing textual data. It provides a
simple API for diving into common NLP tasks such as POS tagging, noun
phrase extraction, sentiment analysis, classification, translation, Word-
Net integration, parsing, word inflection, adds new models or languages
through extensions, and more. It supports multiple languages as well. I
have used this library to perform all the 4 NLP tasks in my thesis.
A small snippet using TextBlob:

1 blob_object = TextBlob( text )
2 print ( blob_object . tags )
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The first line creates a textblob object. The variable ’text’ inside the blob
object can be a sentence, paragraph or even token. Tags property of
created blob object stores the part of speech for the tokens. The second
line prints the (tokens,POS) pairs of ’text’.

3.2.6 Pattern

Pattern [19] is a web mining module in Python. It has tools for data mining
(Google, Twitter, and Wikipedia API, a web crawler, an HTML DOM parser),
natural language processing (POS taggers, n-gram search, sentiment ana-
lysis, WordNet), machine learning (vector space model, clustering, SVM),
network analysis by graph centrality and visualization. Pattern supports
Python 2.7 and Python 3.6. I have used this library only for the sentence
splitting NLP task. This library supports 5 languages.

3.2.7 Konoha and Nagisa

Konoha is a tiny sentence/word tokenizer for Japanese text written in Py-
thon. Nagisa [31] is a Python module for Japanese word segmentation/POS-
tagging. Nagisa is designed to be a simple and easy-to-use library.
This library has the following features:
1) It is based on recurrent neural networks.
2) The word segmentation model uses character and word level features.
3) The POS tagging model uses tag dictionary information.
Usage of Nagisa for NLP tasks is as follows:

1 tokens = nagisa . tagging( text )
2 print ( tokens .words)
3 print ( tokens . postags )

Listing 3.3: Tokenization and POS using Nagisa

The variable ’text’ is the input text on which NLP operations are to be
performed. The ’text’ is tokenized and stored on the variable ’tokens’ as a
list. The "words" property on line 2 displays the tokens of ’text’ and line 3
displays the parts of speech for the tokens using postags property.

3.3 Separation of Wikipedia articles

This section provides description to the first step in the workflow ie. sep-
aration of Wiki articles. The input file to this step is NIF context dataset.
After downloading and extracting the NIF context datasets in English
(nif_context_en.ttl), French (nif_context_fr.ttl), German (nif_context_de.ttl),
Spanish (nif_context_es.ttl) & Japanese (nif_context_ja.ttl) languages, the
idea is to separate each dataset into smaller files. Each of the small files
must have triples corresponding to a single Wiki page. The total number of
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small files to be generated is same as the number of Wiki articles available
in a language.

As mentioned earlier, NIF context datasets consists the triples of all the
Wiki pages in one huge file for every language. The objective of this step is
to separate this huge file into triples pertaining to each Wiki article. The
triples corresponding to each Wiki article must be stored separately. This
process has to be done for all 5 languages ie. on all the 5 versions of NIF
context datasets. This helps to process the dataset quicker and perform
various operations faster and easier.

This step allows my tool to perform NLP tasks only for a subset of the
dataset based on user’s choice. This step is considered to be a prepro-
cessing step for performing the NLP tasks. The pseudocode of this task is
as follows :

1 Get the path to extracted NIF context f i l e
2 Store the language of NIF context f i l e
3 i is assigned as 29 for English and 32 for other languages
4 previous Wiki art icle name is assigned as ’None’
5 Open NIF context dataset from the given path
6 Loop with line from 1 to end of f i l e
7 Store the index of ’? ’ on every line
8 Store the name of Wiki art icle that this line belongs to
9 i f previous and current Wiki art icle names are same

10 Write this line into same f i l e as previous line
11 else
12 try
13 Create a new f i l e with the current Wiki art icle name
14 Write this line into newly created f i l e
15 except
16 pass
17 previous wiki art icle name is assigned to current one

Listing 3.4: Pseudocode for separation of NIF context dataset

Explanation about the Python and Shell scripts in the tool, for separat-
ing Wikipedia articles:
1) The user has to execute the tool by running Shell script
"separate_scripts.sh" with a path argument. The path argument should
point to the location of extracted version of the NIF context file (of any
language). The Shell script validates the path to NIF context file. If the
validation is successful, the Shell script would then call the Python script
whose pseudocode is mentioned above in the listing.

2) The Python library "sys" is required for receiving the location of NIF
context file from the Shell script. For passing the value from Shell script to
the Python script "sys" supports a property called "agrv" through which
values entered by user are read on Python scripts via Shell interface.

32



3.3. Separation of Wikipedia articles

3) The Python script used for separating the Wiki articles in my tool
detects the language of NIF context dataset provided. It does so by check-
ing the last 6 characters of the location to NIF context file entered in
the path argument. The naming convention for NIF context dataset is
"nif_context_<language-name>.ttl". The language is obtained from the
sixth last index to fourth last index from the name of NIF context file. It
is necessary to find and store the language of NIF context file in order to
store the output files of this task in appropriate language directory.

4) A variable ’i’ is declared as 29 if the language is English. Otherwise it is
declared as 32. This variable assists in retrieving the article name of every
Wiki page. Every line in NIF context file corresponds to one triple showed
as follows, taken from English NIF context file:

1 <http : / / dbpedia . org / resource /Andrea_Andreani?dbpv=2016−10&nif=
context> <http : / / persistence . uni−leipzig . org / nlp2rdf /
ontologies / nif−core#beginIndex> "0" .

The name of Wiki article here is "Andrea Andreani". Its index in the subject
of the triple is from 29 till the occurrence of ’?’. The index ’29’ is not
expected to change in the future releases of DBpedia NIF datasets as they
follow a convention of defining subject of the triples in such a manner. This
is the reason why the index 29 is hard coded. On looking at a sample triple
from French version of NIF context dataset :

1 <http : / / fr . dbpedia . org / resource / Cardonville?dbpv=2016−10&nif=context
> <http : / / persistence . uni−leipzig . org / nlp2rdf / ontologies / nif−
core#beginIndex> "0" .

The name of the Wiki article is "Cardonville". Its index in the subject of the
triple is from 32 till the occurrence of ’?’. There is a change in the begin
index because of the appearance of "fr." before the "dbpedia.org" on every
subject of the triples.

5) The tool then opens the NIF context file mentioned on the given location,
in "UTF-8" encoding style. This encoding style allows to read special char-
acters if they appear inside the dataset. A loop to read all lines present in
the file is created. This loop finishes on reaching the end of the file until all
the lines are read.

6) Since every line consists a triple in this dataset, I will start addressing
the lines of NIF context dataset as triples of NIF context dataset. For
each triple on the dataset, find the name of the Wiki article that this triple
belongs to. Each Wiki article consists of 6 triples and all these 6 triples
appear one after the other in the NIF context dataset. The name of the
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Wiki article could be obtained from index 29 to the first appearance of
question mark(?) in case of English language. Otherwise it is obtained
from index 32 to ’?’.

7) Check if the previous triple’s Wiki article name is same as the cur-
rent triple’s Wiki article name. If they are same, the current triple is added
to the same file as that of previous triple. If they are different, a new file is
created with the name of current Wiki article under the ’Input<language-
name>/’ directory and this triple is added to the newly created file. For the
Japanese language, the newly created file gets saved on "Inputja/" directory
where ’ja’ indicating Japanese language.

8) There exists a ’try’ block on line 12 within the else condition because
some operating systems doesn’t support certain file names that includes
characters like ’/’, ’*’, ’:’, ’?’, ’|’ as these characters are reserved. Also
there are some reserved keywords such as CON, PRN, AUX, NUL, COM1,
LPT1 on Windows. However, these names and characters are very unlikely
to appear as the Wiki article name. This try block prevents stopping the
execution of the tool in case any of these reserved keywords appear as a
name of Wiki article. If these keywords or special characters appear as the
name of the Wiki article then the output file isn’t generated and basically
the triple is not stored. Again, there are hardly be 1000 files that has these
characters or keywords. This is a very negligible number compared to the
number of files that are being dealt with.

9) The previous Wiki article name is assigned as the current Wiki art-
icle name before an iteration completes. After this, it reads the next line
in the NIF context dataset, if the name of the article is same it continues
to add this triple on the same output file as that of the previous triple. If
the name of the article is different, in this case a new output file is created
with the name of the current Wiki article. And this loop goes on until the
end of the file is reached.

So the triples belonging to same Wiki article name are stored on one
small file saved in the name of Wiki article that the line (triple) belongs
to. This is a very convenient way of storing so that in the future these
files could be accessed easily. There is another argument which the shell
script on my tool will accept apart from the path to the location of NIF
context dataset. This optional argument is Search wherein a user can do
the separation of Wiki articles only for a subset of NIF context file. Some
users might be interested in only a subset of Wiki articles to be separated.
It takes roughly about 30mins for entire nif_context_en.ttl to be separated
into its individual articles. So, in this case if a user wants only the Wiki
articles starting with alphabet ’A’ separated from NIF context file - it is
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achievable using the argument (-s) for filtering out articles that start with
alphabet ’A’ by executing the shell script as follows:
An example of execution with search argument:
"./separate_scripts.sh -p F:/Master_thesis/nif_context_en.ttl -s A" (Separ-
ates all Wiki articles that starts with "A" from NIF Context file in English
Language and stores the results in "Files/Inputen/" directory).

It is also possible to specify name of an article that has to be separated
from NIF context dataset. The shell script on my tool calls a different
python script in case the search argument is entered by the user. The
implementation of the search feature is similar to that of the one mentioned
above with one additional step in the pseudocode as mentioned:

1 Open NIF Context f i l e from the given path
2 Loop with line from 1 to end of f i l e
3 i f ’dbpedia . org / resource/<VALUE−TO−SEARCH>’ exists on this

tr iple ( line )
4 same steps as the previous pseudocode
5 else
6 skip this tr iple ( line )

Listing 3.5: Pseudocode for separating a subset of Wiki articles

This prevents separating those triples that doesn’t satisfy the search con-
dition. The "if" condition on line 3 ensures this and separates only the
triples of Wiki articles those satisfying the search condition. An output file
generated as a result of this task:

1 @prefix nif : <http : / / persistence . uni−leipzig . org / nlp2rdf / ontologies /
nif−core#>

2 @prefix rdf : <http : / /www.w3. org/1999/02/22−rdf−syntax−ns#>
3 <http : / / dbpedia . org / resource / Animalia_ (book)?dbpv=2016−10&nif=

context> nif . beginIndex "0"
4 rdf . type nif . Context
5 nif . endIndex "2294"
6 nif .predLang <http : / / lexvo . org / id / iso639−3/eng>
7 nif . sourceUrl <http : / / en. wikipedia . org / wiki / Animalia_ (book)?oldid

=741600610>
8 nif . isString "< fu l l text of Animalia_ (book) article>"

Listing 3.6: Output file of this task - Animalia_(book).ttl

Explanation of the output with each point same as the line number on
the listing:
1) A namespace "nif" is a prefix with the URL to NIF core ontology. Once
defined as a prefix, it uses the namespace throughout the file instead of
repeating the long URL everytime. The word "nif" is used as a substitute
to the long URL. This conserves lot of space.
2) Another namespace "rdf" defined as a prefix pointing to "W3C".
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3) This is the first triple. The URL within angular brackets is the subject
and it is the same for all the triples. That’s why it isn’t repeated in the
upcoming triples. All the other triples just have predicate-object pair (lines
4-8). This triple implies the begin index of the content (full text) of wiki
page "Animalia_(book)".
4) These set of 6 triples are a part of NIF context file
5) The end index of Wiki article
6) The content of this Wiki article is in English
7) The URL for accessing this wikipedia article on a browser
8) The full text of this article always appearing with predicate in
"nif:isString". Each of the output files have 6 triples inside them.

3.4 Sentence Splitting

This section provides understanding of the first NLP task ie. sentence split-
ting for each or a subset of the small files generated from the ’Separation
of Wiki articles’ step. The input to this task are the output files generated
from previous step. Out of the 6 triples in every file, only one of the triple
contains the full text of Wiki pages. This is the only triple which is required
for performing the sentence splitting task and thus needs to be uniquely
identified. Sentence splitting is performed on the object of this uniquely
identified triple. The general challenges regarding the sentence splitting
can be found on Section 2.1.5.1. The ideal outcome of this task should
separate the full text into its individual sentences and store the begin index,
end index and content of every sentence in turtle format. The pseudocode
for this task is as follows:

1 Get the language and instance size as input
2 In i t ia l i ze count as 0
3 Loop with f i l es one by one in "Input<lang_name>/" directory
4 I f count is less than the instance size
5 Create graph through RDFLIB
6 Parse the graph with f i l e as a parameter
7 Serialize the graph with the parsed f i l e
8 Store the name of the f i l e
9 Loop over every sub , pred and obj on serialized graph

10 I f type of obj is Literal and pred is nif : isString
11 Split sentences on the object via l ibraries
12 Loop over every sentence on l i s t
13 Find Begin and End index of every sentence
14 Write BI , EI and sentence onto output f i l e
15 Increment count
16 else
17 Break

Listing 3.7: Pseudocode for sentence splitting
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Explanation about the pseudocode of the Python script in my tool for per-
forming sentence splitting:
1) The user has to run my tool by executing the shell script specifying
the arguments regarding language for which sentence splitting must be
performed, number of files for which sentence splitting must be performed,
task to be performed ie. sentence splitting in this case and the library that
should be used to perform sentence splitting. The shell script passes these
argument details to "main.py". This central python script manages all the
other python scripts in the tool by calling the appropriate python script
based on the library and task chosen. The above mentioned pseudocode is
common for all the libraries for performing sentence splitting task. Only
the commands to perform sentence splitting varies depending upon the
library used. I have performed this task with 5 different libraries namely
NLTK, Spacy, TextBlob, Pattern and Konoha. So, my tool consists of 5
different python scripts just for the implementation of this NLP task. The
differences in result between each library is listed on "Experimentation"
chapter.

2) The library "sys" is required for this Python script in my tool, to re-
ceive the user’s input(s) from "main.py". The library "rdflib" is required for
parsing the TTL file generated through the previous step. Since RDFLib
also supports Namespace class, it helps in creating prefixes such as ’nif’ for
"http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core". The library
"os" is needed for reading the input files from "Input<language-name>/"
directory. Apart from these 3 common libraries, each implementation of
sentence splitting requires its own library to be imported such as NLTK,
Spacy, Pattern, TextBlob, Konoha.

3) Once the language to be processed and the number of files for which
the sentence splitting has to be performed is obtained, the variable ’count’
is initialised as 0 to keep track of instance size. The processing must not
continue for files more than the number of files (instance size) mentioned
by the user.

4) All the files in the "Input<language-name>/" directory must be iter-
ated one by one. Since the language and instance size are obtained as an
input to this script based on user’s choice, files from appropriate input
directory has to be read one by one. The first step inside the loop is to
check if the count is less than the instance size. If the instance size is
lesser than the count, then break the loop and stop the execution.

5) If the condition satisfies ie. count is lesser than the instance size, then
create a graph through RDFLib for parsing the file from "Input<language-
name>/" directory provided as a parameter to the graph. Once parsed and
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serialized it is convenient to separate all the triples as subject, predicate
and object in the input files.
The parsing and serialization are implemented in Python as follows:

1 graph2=rdfl ib .Graph( )
2 graph2. parse( ’ Input ’+lang+’ / ’+filename , format=’nt ’ )
3 s=graph2. serial ize ( format="nt" )

Listing 3.8: Parsing and serializing graph

The ’graph2’ parses and serializes the files present in "Input<language-
name>/" directory one by one. The variable ’filename’ contains the full
name of the files with extension ".ttl". The name without extension is
stored in order to name the output file that will be stored on "Sentences/"
directory. Therefore, the name of the Wiki article is obtained by extracting
content before dot on ’filename’ variable.

6) Loop over every subject, predicate and object on the serialised graph.
This loop runs 6 times for every file since there are 6 triples present inside
each small file generated from the "Separation of Wiki articles" task. As
mentioned earlier, we are interested in only the triple containing the full
text of the Wiki article. In order to uniquely detect this triple, a condition
checks if the type of object is Literal and the predicate is "nif:isString". The
full text of the Wiki page is stored as an object to predicate "nif:isString".
This object contains numerals as well along with the full text of Wiki pages.
I am not interested in this numerals. So, in order to filter out this numerals,
the object is checked if it has a "Literal" tag.

7) If the conditions are satisfied (ie. object is "Literal" and predicate
is "nif:isString"), perform sentence splitting through each library on the
object of this triple. Refer Section 3.2 to see how sentences are split
through different libraries. Also, the source code is added as a part of the
CD attached along with my Thesis. The result of the split sentences are
stored on a variable in a list format. Iterate over every sentence present in
the full text of Wiki pages in order to find its begin and end index in the
full text of their corresponding Wiki page. Begin and end index could be
found by searching for the sentences inside the object (whose predicate
is nif:isString and object being Literal) of the triple. The search will be
successful definitely because we are basically searching for a sentence
from the paragraph which is obtained from the paragraph. On successful
search python returns its begin index. End index is calculated by adding
the length of the sentence to the begin index.

8) All the content needed to write into the output file (begin index, end
index and content of every sentence) are available. Therefore, all these
details are written in triples to the output TTL file. There are 5 triples
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required for displaying the output of sentence split as per the DBpedia
norms.
Storing result-set of sentence splitting is as follows:
Syntax: <graph>.add([subject,predicate,object])

1 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=sentence_offset_"+str (BI)+"_"+str (EI) ) ,RDF. type , nif
.Sentence ] )

2 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=sentence_offset_"+str (BI)+"_"+str (EI) ) , nif .
beginIndex , rdf l ib . term. Literal ( str (BI) ) ] )

3 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=sentence_offset_"+str (BI)+"_"+str (EI) ) , nif . endIndex
, rdf l ib . term. Literal ( str (EI) ) ] )

4 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=sentence_offset_"+str (BI)+"_"+str (EI) ) , nif . anchorOf
, rdf l ib . term. Literal ( str ( i ) ) ] )

5 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=sentence_offset_"+str (BI)+"_"+str (EI) ) , nif .
referenceContext , rdf l ib . term.URIRef( "http : / / dbpedia . org / resource
/ "+name+"?dbpv=2016−10&nif=context" ) ] )

6 g. bind( " nif " , nif )
7 g. serial ize ( format=" turtle " ) )
8 g. serial ize ( destination="Sentences / "+filename . t t l , format=" turtle " )

Listing 3.9: Triples to be added to the output file

The graph ’g’ is used to store the triples on output files whereas graph
’graph2’ was used to read, parse and serailize the input file. "nif" is a
namespace created above. And similarly RDF.type is
"http://www.w3.org/1999/02/22-rdf-syntax-ns#type". The 5 triples (Line
1 to 5) appear for every sentence in a particular output file, implying the
following:
1) The following set of triples will inform details about a sentence.
2) Stores the begin index of the sentence.
3) Stores the end index of the sentence.
4) Stores the content of sentence - every iteration of "i" consists one sen-
tence
5) This data is derived from NIF context file. And finally write the output
in a serialized form on a TTL file.

Binding the graph is to give the name "nif" for the namespace "nif".
Otherwise, python automatically assigns the name for the namespace cre-
ated as "ns1" standing for namespace 1.
A sample of the output file looks like as shown, the following is taken from
"Sentences/Animalia_(book).ttl" file :
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1 <http : / / dbpedia . org / resource / Animalia_ (book)?dbpv=2016−10&nif=
sentence_offset_1179_1273> a nif :Sentence ;

2 nif :anchorOf "The Great American Puzzle Factory created a 300−
piece jigsaw puzzle based on the book ’s cover . " ;

3 nif : beginIndex "1179" ;
4 nif :endIndex "1273" ;
5 nif : referenceContext <http : / / dbpedia . org / resource / Animalia_ (book

)?dbpv=2016−10&nif=context> .

Listing 3.10: Sentence splitting result

It is interesting to note that triples are not stored in the order we saved.
It gets jumbled up and sometimes appear in a different order. Since we
added the second triple as begin index, however it is stored as third triple.
So, if we execute the source code again, the result on output file might
appear in a different order and the order in which it appears doesn’t matter
at all. The subject for all these triples is common, so it appears only on the
first triple. Other triples just have predicate-object pairs.

3.4.1 Challenges

As far as the challenges are concerned, all the NLP libraries are good
enough to detect the salutation, initial of people etc. Let us check one
of the sentences from the output file generated on "Sentences/Anim-
alia_(book).ttl" -
"H. N. Abrams published The Animalia Wall Frieze, a fold-out over 26 feet
in length, in which the author created new riddles for each letter."
NLTK, spaCy, TextBlob, Pattern libraries can detect question marks as the
end of the sentence and other punctuations as well.

However, the following is supposed to be a single sentence -
"Each creature (A is for alligator, B is for butterfly, etc.) is unique."
Some tools detect this as two different sentence since there is a full stop
after etcetra within the brackets which is incorrect. However, these type
of issues are hard to handle. Could be checked if special character appears
immediately after "etc." without any space. However, adding a condition
like this would only increase the complexity of the program as this needs
to be checked in every iteration.

There is another problem where it doesn’t detect sentences wrongly
but it is arguable and debatable as shown below:
"External links
1) Graeme Base’s official website
2) Animalia The Television Series official website "
The following is detected as a single sentence by NLTK. However I am
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not sure if it is right or wrong. It is a side heading with points having
incomplete sentences. One way to deal with this is segregating each point
as a sentence and the heading external link as a separate sentence. But it
is again debatable if it correct or not. Spacy automatically detects this as
separate sentences while NLTK detects this as a single sentence.

Spacy supports sentence splitting on English, Spanish, French and
German. Loading appropriate language model and using it for sentence
splitting is straightforward in spaCy. TextBlob and NLTK supports sentence
splitting for these languages too. It is implemented by specifying the
language within the argument inside sent_tokenize function. Pattern library
does sentence splitting for English, German and French. The sentence
splitting in Japanese are well dealt by Konoha tool.

3.5 Tokenization

This section describes the second NLP task ie. tokenization for each or a
subset of the small files generated from the separation of Wikipedia articles
step. Tokenization has to be done on the full text of the Wiki page. The
triple with object as Literal and predicate as "nif:isString" consists the full
text of Wiki pages and is used to detect the tokens. Tokens are individual
linguistic units which are obtained once we tokenize text. This task is
performed with 4 different libraries namely NLTK, Spacy, TextBlob and
Nagisa. The ideal outcome of this task should detect all tokens on the full
text in Wiki pages. The detected tokens should be stored along with its
begin index and end indexin the turtle format as per DBpedia norms. The
output files of tokenization task are stored on the directory "Tokens/". The
triples of all tokens in a Wiki page are stored on one output file.

The function to tokenize a string or a sentence is as follows:

1 Function spans( text ) :
2 Split tokens of input text through different l ibraries
3 In i t ia l i ze offset as 0
4 Loop over every token on the l i s t :
5 Store offset with the begin index of token
6 Yield token , offset , offset+length (token)
7 Increment offset by length of token

Listing 3.11: Function to perform tokenization

The function "spans" takes every sentence of the Wiki page as an in-
put. Tokenization is performed through various libraries on the sentences
received as an input parameter to the function. The pseudocode is same
for implementation of tokenization through different libraries, only the
specific commands to split tokens vary depending upon library used. The
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source code of the Python scripts for implementing tokenization are added
as a part of the CD and refer section 3.2 for their snippets. The result of
tokenization applied over the given sentence is stored as a list with each
index containing a token saved in the same order as they appear on the
sentence.

The "offset" variable is used to keep track of the begin index of tokens.
The index of any given sentence starts from 0, so offset is assigned as 0
initially. Loop over every token present in the list, that is obtained as a
result of performing tokenization on an input sentence. On each iteration of
the loop, a find operation is used to search the token being iterated on the
input sentence. Every token being iterated will be found on the sentence
and their begin index with respect to the sentence will be retrieved. The
find operation in Python is declared as follows:

1 Syntax : <ful l−text >.find(<word−to−search−on−fu l l−text>,<begin−index−
to−start−search>)

2 text . find (token , offset )

The variable "token" is to be searched on the given "text" from the index
corresponding to "offset". The search of a token in a sentence begins from
the index that "offset" is currently referring to. This helps to retrieve the
correct begin index of "token" on a sentence even if the "token" appears
multiple times on the same sentence. The result of the index found is stored
as "offset" in order to track the token currently being iterated. Since all the
tokens in a sentence are going to be iterated in the order as they appear in
a sentence, it is ok to assign the result of the find operation to "offset" again.

"Yield" is a keyword in Python that is used similar to return, except
the function will return a generator. A generator function is defined like
a normal function, but whenever it needs to generate a value, it does so
with the yield keyword rather than return. This situation demands yield
over return since it sends sequence of values to its caller. The function
’spans’ returns the token, its begin index and its end index to its caller. It
returns these parameters for all the tokens in the sentence separately in
each iteration of the loop. End index is calculated by adding the length of
the token to the begin index of the token. The offset is then incremented by
the length of the token. This allows retrieval of correct index of every token
even if a particular token appears multiple times within a given sentence.

The loop finishes after all the tokens in a given sentence are iterated.
From line 6, it is evident that it returns token, offset (begin index) and
offset+ length of the token (end index).
The function is integrated in the main program as illustrated in the follow-
ing listing:
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1 Get the language and instance size as input
2 In i t ia l i ze count as 0
3 Loop over f i l es one by one in "Input<lang_name>/" directory
4 I f count is less than the instance size
5 Create graph through RDFLIB
6 Parse the graph with f i l e as a parameter
7 Serialize the graph with the parsed f i l e
8 Store the name of the f i l e
9 Loop over every sub , pred and obj on serialized graph

10 I f type of obj is Literal and pred is nif : isString
11 Split sentences on the obj through different l ibraries
12 Loop over every sentence on l i s t of sentences
13 Store the begin index of sentence
14 Loop over every token in spans(sentence) function
15 Assert condition checking i f token is correct
16 Calculate Begin index of every token
17 Calculate End index of every token
18 i f token is not a punctuation
19 Write BI , EI and tokens onto output f i l e
20 Increment count
21 else
22 Break

Listing 3.12: Pseudocode for tokenization

Explanation about the pseudocode of the Python script in my tool for
performing Tokenization:
1) The user has to run my tool by executing the Shell script with arguments
namely NLP task, library, instance size and language. Instance size corres-
ponds to the number of files from "Input<language-name>/" directory, on
which tokenization must be performed. The Shell script passes the value of
these arguments to "main.py". This central Python script manages all the
other Python scripts calling appropriate Python script based on the library
and task chosen.

2) The library "string" is used for finding if there are tokens detected
only with punctuations. Apart from the common libraries namely "os" and
"sys", each of the four different implementations requires its own library
such as NLTK, Spacy, TextBlob, Nagisa for carrying out the tokenization
task.

3) The implementation follows the same procedure as sentence splitting for
the first 12 lines of the pseudocode. The begin index of the sentence has to
be found out before calling the "spans" function. In order to calculate the
correct index of tokens wrt to a Wiki page, we need to add the begin index
returned by spans function and the begin index of the sentence. Every
sentence is given as an input to the spans function. The iteration of every
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token in a sentence is coded as follows in Python:

1 for token in spans(sentences[ i ] ) :
2 assert token[0]==sentences[ i ] [ token [1] : token[2]]

The "for" loop iterates over every token it receives from the spans function.
If a sentence has 10 words, then this loop runs 10 times and the "spans"
function returns 10 sets of tokens, begin index and end index. For instance
(book,9,12) is one of the sets returned by spans function where the token
is "book" (token[0]) with begin index "9" (token[1]) and end index "12"
(token[2]).

4) The "assert" keyword helps detect problems earlier in a program rather
than finding it later as a side-effect of another operation. "Assert" checks if
the token returned by spans function exist on the returned begin index to
the returned end index of a sentence. It is a better practice to insert the
assert statement inside try-except block. If the assert condition fails, it just
passes to next token without any interruption. The index of the tokens in a
Wiki page needs to be recalculated as the begin and end index obtained
from spans function is confined to the particular sentence. In order to
calculate the index of token with respect to the entire Wiki article, adding
the begin index of sentence to the begin index returned by spans function is
necessary, to get the correct value. Same is applicable for end index as well.

5) "string.punctuation" includes string of ASCII characters which are con-
sidered punctuation characters in the C locales. In line 18 of the listing,
the "if" condition checks whether a punctuation exist as an entire token
returned by spans function. If so, it is prevented from writing onto the
final output file as it isn’t a valid token. Some libraries don’t consider punc-
tuation as tokens while some do. This condition is mainly to address the
libraries that consider punctuation as tokens. If the condition is satisfied,
write the begin index,end index and content of the tokens as shown:

1 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=word_offset_"+str (BI)+"_"+str (EI) ) , RDF. type , nif .
Word] )

2 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=word_offset_"+str (BI)+"_"+str (EI) ) , nif . beginIndex ,
rdf l ib . term. Literal ( str (BI) ) ] )

3 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=word_offset_"+str (BI)+"_"+str (EI) ) , nif . endIndex ,
rdf l ib . term. Literal ( str (EI) ) ] )

4 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=word_offset_"+str (BI)+"_"+str (EI) ) , nif . anchorOf ,
rdf l ib . term. Literal ( token[0]) ] )
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5 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=word_offset_"+str (BI)+"_"+str (EI) ) , nif .
referenceContext , rdf l ib . term.URIRef( "http : / / dbpedia . org /
resource / "+name+"?dbpv=2016−10&nif=context" ) ] )

Listing 3.13: Triples added to output file for tokenization

The triples added to the output file should have the following information
regarding tokens in order to store it in a structured manner according to
Dbpedia norms:
1) The token in this case is a word. If there are multiple tokens having
more than one word, it is considered to be a phrase.
2) Store the begin index of the token.
3) Store the end index of the token.
4) Store the content of the token ie. word present in the token. Should
have the predicate as "nif:anchorOf".
5) The reference to this extracted data is NIF context dataset.

A sample taken of the output file taken from "Tokens/Animalia_(book)":

1 <http : / / dbpedia . org / resource / Animalia_ (book)?dbpv=2016−10&nif=
word_offset_2281_2284> a nif :Word ;

2 nif :anchorOf "Big" ;
3 nif : beginIndex "2281" ;
4 nif :endIndex "2284" ;
5 nif : referenceContext <http : / / dbpedia . org / resource / Animalia_ (book

)dbpv=2016−10&nif=context> .

Listing 3.14: Tokenization result

3.5.1 Challenges

I have identified several challenges related to tokenization:
1) Separation of stop words such as full stops, comma, open brackets

and few other punctuations from the sentences. If a text "Base." is given as
input to the spans function, then it detects "Base" as a token and ignores
".". Most of the NLP libraries return this result. Therefore, this function
basically separates punctuation if it appears at the end or beginning of a
token. Here, however "." isn’t a token. In case if any library detects "." as
a token, while writing onto output file, tokens are tested if they contain
only punctuation. If so, this triple is not written onto the output file. It is
necessary to keep note of the begin and end index of punctuation as well
in "spans" function for incrementing the "offset" value.

2) The biggest challenge is when the punctuations appear in the
middle of the token. It is really hard to deal with. Examples such as
"twenty-six", "iphone/ipod" are considered as a single token according
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to the nltk word tokenizer. By using Spacy we could eliminate the "/" in
between the words and consider them as two different tokens. Also "chil-
dren’s" would be considered as single token in Spacy. But NLTK detects
children as one token and "’s" as another.

3) Reading files from "Input<lang_name>/" directory - All files
within the "Input<lang_name>/" directory has to be read in order to per-
form tokenization on them. The following piece of code is used in Python
for reading all the files from a specific directory:

1 import os
2 for filename in os . l i s td i r ( ’ Files / Input ’+<language>+’ / ’ ) :
3 name=filename . sp l i t ( " . " ) [0]
4 <code for tokenization>
5 <store the results in Tokenization folder>

Listing 3.15: Reading all files on a directory

Importing "os" helps to get access to the contents of each and every in-
dividual file present inside the home directory of the tool. The variable
"filename" has the name of every file inside the Input directory along with
their extensions, so in order to strip out the extension I have used a split
function and retrieved the part before the full stop. The entire tokenization
source code appears within this loop.

4) Performing Tokenization on 5 different languages - Spacy sup-
ports tokenization on English, Spanish, French and German. Loading
appropriate Spacy language model is sufficient for using it to tokenize
contents of Wiki articles in these languages. TextBlob and NLTK supports
tokenization for these languages as well. It is possible to be implemented
by specifying the language within the parameter, inside tokenize function:

1 nltk . word_tokenize( str ( txt ) , language=’ ’+assign+’ ’ )

However, for accuracy purposes NLTK is used along with StanfordPOSTag-
ger for languages other than English to detect tokens. Tokenization in
Japanese is achieved by using Nagisa library.

3.6 Part of Speech Tagging

This section explains the third NLP task ie. part of speech tagging for each
or a subset of the files generated from the separation of Wikipedia articles
step. The goal is to find the part of speech for every token present in the
full text of a Wiki page. This step serves to be important for performing the
links enhancement task. Let’s say a word "work" appears multiple times
in different contexts. For eg. "Martin was tired after a day’s work" and
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"Martin was working on field theory", in both these cases the word "work"
points to different Wikipedia articles. In the first case, "work" is a noun
and in the second case "work" is a verb. Depending on the part of the
speech, the new link assigned will be differed. This task is performed with
5 different libraries namely NLTK, StanfordPOSTagger, Nagisa, Spacy and
TextBlob. Each library has a corresponding python script created on my
tool. The result of each tool is expected to be quite different from each
other.

POS tagger [32] is a piece of software that reads text and assigns parts
of speech to all tokens or words it detects, such as noun, verb, adjective,
pronoun, adverb etc. The output from the POS tagger of a token appears
in abbreviations such as "NNP" or "PRP". Here, NNP signifies Proper
Noun and PRP indicates Personal Pronoun. So, mapping the output of
POS taggers to their corresponding expansions is required as it is hard
to interpret that PRP is a Personal Pronoun. So, it is necessary to map all
possible results of POS taggers to their respective human readable parts
of speech. An efficient and quicker way to implement this mapping is by
using a DataFrame. Pandas DataFrame is a two-dimensional size-mutable,
potentially heterogeneous tabular data structure with labelled axes (rows
and columns). In our case, the DataFrame will contain 3 attributes :

• The first column contains all possible abbreviations obtained as output
from the library’s POS taggers such as NNP, PRP etc. The entire list
is gathered from the official NLTK documentation [33].

• The second column(SF) consists short form expansion of abbreviation on
first column such as Noun, Pronoun.

• The third column(FF) contains the full form expansion of abbreviation
such as Proper Noun, Personal Pronoun.

The implementation of the DataFrame in Python is done as follows:

1 data = [
2 [ ’NN’ , ’Noun’ , ’Noun’ ] ,
3 [ ’VB’ , ’Verb ’ , ’Verb ’ ] ,
4 [ ’DT’ , ’DET’ , ’Determiner ’ ] ,
5 [ ’ JJS ’ , ’ADJ ’ , ’ Adjective ’ ]
6 ]
7 df = pd.DataFrame(data , columns = [ ’POS’ , ’SF’ , ’FF’ ] )

Listing 3.16: DataFrame for mapping POS

The variable ’data’ stores the list of all possible POS tagger’s results, their
short form expansions and their full form expansions in a list. The values
are hard-coded and there are 32 sets overall. The DataFrame ’df’ is created
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by loading ’data’ as the contents of the DataFrame with the column names
defined using ’columns’ parameter. The DataFrame is used to obtain every
token’s short and full form expansion of parts of speech by searching the
result of POS tagger on it. Sample data saved on the DataFrame :

POS SF FF

NNP Noun ProperNoun
JJ ADJ Adjective

VBZ Verb VerbSingularPresent
PRP Pronoun PersonalPronoun
NNS Noun PluralNoun
VBD Verb VerbPastTense

Table 3.1: Sample data on DataFrame

The ideal solution of this NLP task must provide the part of speech for
every token. The output file should contain content, begin index, end index
and the part of speech for every token stored in turtle format. Function to
detect the part of speech :

1 Function Postags( text ) :
2 Find (Token,POS) pair for the text through NLP library
3 Store a l l the (Token,POS) pairs on a l i s t for given text
4 In i t ia l i ze offset as 0
5 Loop over every (Token,POS) pair on the l i s t :
6 Store offset as the begin index of token
7 Return token , begin index , end index , POS
8 Increment offset by length of token

Listing 3.17: Function to detect POS

The "Postags" function returns the content of the token, its begin index,
its end index and its part of speech. The result of POS taggers using
different NLP libraries is a list of (Token,POS) pairs. The first step in the
implementation is to find and store such pairs. This pseudocode is very sim-
ilar to the "spans" function for tokenization. Only difference is that instead
of just finding the tokens of the text, "Postags" finds its corresponding
parts of speech on the same step. It is not recommended to find the tokens
first and then find the token’s part of speech later because POS has to be
found from a sentence’s perspective and not from a token’s perspective.
The POS of tokens differs based on the context they appear. The input to
this function is either a sentence or a paragraph. The offset is used to keep
track of the token and provide the correct indexes of the tokens even if a
token appears multiple times inside the given text.
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Every token is iterated one by one inside the "Postags" function so
that the results are returned one by one to the main program. The "yield"
keyword has been used for passing the results of the function to the main
program. This situation demands yield too as it sends sequence of values
to its caller. The offset is incremented at the end to let know that the next
token is ready to be processed. The functioning of Postags function for
a sample text "Over three million copies have been sold." is as follows.
Various libraries are used to find parts of speech for every token in the
given text. The result of finding (Token,POS) pair for the sample text is
stored as follows : [(’Over’, ’IN’), (’three’, ’CD’), (’million’, ’CD’), (’copies’,
’NNS’), (’have’, ’VBP’), (’been’, ’VBN’), (’sold’, ’VBN’)].
Let’s say that name of the variable that has (Token,POS) pairs stored is
called ’tagged’.
Then tagged[0] is (’Over’, ’IN’) and tagged[1] is (’three’, ’CD’) and so on.
And tagged[0][0] should have ’Over’ whereas tagged[0][1] should contain
’IN’.
The function is integrated to the main program as illustrated in the follow-
ing listing:

1 Loop over every sub , pred and obj on serialized graph
2 I f type of obj is Literal and pred is nif : isString
3 Split sentences on the fu l l text via l ibraries
4 Loop over every sentence on l i s t of sentences
5 Store the begin index of sentence
6 Loop over every token in postags (sentence) function
7 Assert condition checking i f token exists
8 Calculate Begin index of every token
9 Calculate End index of every token

10 Store the POS obtained from Postags function
11 Get the fu l l form of POS from DataFrame
12 i f token is not a punctuation
13 Write the triples onto output f i l e

Listing 3.18: Pseudocode for POS

Explanation about the pseudocode of the Python script in my tool for
performing part of speech tagging:
1) The user has to run the developed tool by executing the shell script with
NLP task argument chosen as POS. The shell script passes this value to
central python script which would in turn call the script whose pseudocode
is mentioned above in the listing. Libraries "pandas" and "numpy" are used
for implementing DataFrame.

2) The implementation of POS follows the same procedure as tokeniz-
ation for the first 9 lines of the pseudocode in the listing. Every sentence
is given as an input to the ’Postags’ function. If a sentence has 10 words,
then this loop runs 10 times and the ’Postags’ function returns 10 sets of
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tokens, begin index, end index and POS. For instance (Prague,9,14,NNP) is
one of the sets returned by the function to the main program. In this set,
token is "Prague" (token[0]) with begin index "9" (token[1]), end index "14"
(token[2]) and part of speech is "NNP" (token[3]). NNP indicates Proper
Noun.

3) The next step is to search for the token’s POS obtained from the ’Postags’
function on the DataFrame to get its expansion. The value of ’token[3]’ is
searched against the attribute called ’POS’ on the DataFrame. The search
will always be successful because the DataFrame consists of all possible
results from POS tagger. The entire row from the DataFrame is extracted
on which the search turns out to be successful. The short form and full
form are obtained as follows from the DataFrame:

1 value=df [ ’SF’ ] [ df [ ’POS’]==token[3]]
2 for val in value :
3 short_form="http : / / purl . org / ol ia / ol ia .owl#"+val
4 fullvalue=df [ ’FF’ ] [ df [ ’POS’]==token[3]]
5 for jval in fullvalue :
6 full_form="http : / / purl . org / ol ia / ol ia .owl#"+jval

Listing 3.19: Integration of DataFrame to the main program

The variable ’value’ picks up the short form expansion from the row
which has the same POS as that of the one returned from the ’Postags’ func-
tion for every token. The values of attribute ’POS’ on the Dataframe are
searched one by one to see if there is a match for the result from the POS
Tagger. The row that has matching value is extracted, it’s corresponding
short form expansion is received from the attribute ’SF’ and the full form
expansion is received from the attribute ’FF’. Their values are recorded
on variables ’value’ and ’fullvalue’ respectively in a list. The list is iterated
inside a loop to store the result on variable ’short_form’ and ’full_form’
along with URL link for storing on the output file which suits the DBpedia
norms. Even though the list has only one value, it has to be iterated inside
a loop to get the value.

4) As a part of the URL link ’olia’ is used to represent the POS. The Onto-
logies of Linguistic Annotations (OLiA) provide an OWL taxonomy of data
categories as a reference for linguistic annotation (OLiA Reference Model),
plus OWL models for a large number of annotation schemes (OLiA An-
notation Models) and their relationship to reference data categories (OLiA
Linking Models). The OLiA ontologies were originally developed in the
context of an infrastructure for the sustainable maintenance of linguistic
resources, and they have been applied for the formalization of annotation
schemes, concept-based querying over heterogeneously annotated corpora,
the development of interoperable NLP pipelines, and as a central hub for
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annotation terminology in the Linguistic Linked Open Data (LLOD) cloud.

5) The ’string.punctuation’ prevents the tokens from writing into the final
output file that just has punctuation,. Some libraries don’t consider these
punctuation as tokens while some do. The output file should contain all the
triples as that of the tokenization task and the following triples wrt. part of
speech in addition :

1 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=word_offset_"+str (BI)+"_"+str (EI) ) , nif . oliaLink ,
rdf l ib . term.URIRef( "http : / / purl . org / ol ia /penn.owl#"+token[3]) ] )

2 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=word_offset_"+str (BI)+"_"+str (EI) ) , nif . oliaCategory
, term.URIRef( short_form) ] )

3 g.add( [ rdf l ib . term.URIRef( "http : / / dbpedia . org / resource / "+name+"?dbpv
=2016−10&nif=word_offset_"+str (BI)+"_"+str (EI) ) , nif . oliaCategory
, term.URIRef( full_form ) ] )

Listing 3.20: Triples added to output file for POS

The triples added to the output file should contain the following information
to maintain a structured manner, according to Dbpedia norms:
1) The following set of triples correspond to a token which is a word.
2) Store the begin index of the token.
3) Store the end index of the token.
4) The content of the token. Should have the predicate as "nif:anchorOf".
5) The reference of where this data is extracted from ie. NIF context
dataset.
6) Store the result obtained from the POS Tagger for the token.
7) The short form expansion of the POS for the token.
8) The full form expansion of the POS for the token.
All the output files are stored on "POS/" directory. A sample taken from the
output file of "POS/Agricultural_science" is as follows:

1 <http : / / dbpedia . org / resource / Agricultural_science?dbpv=2016−10&nif=
word_offset_10007_10016> a nif :Word ;

2 nif :anchorOf "Pathology" ;
3 nif : beginIndex "10007" ;
4 nif :endIndex "10016" ;
5 nif : oliaCategory <http : / / purl . org / ol ia / ol ia .owl#Noun>,
6 <http : / / purl . org / ol ia / ol ia .owl#ProperNoun> ;
7 nif : oliaLink <http : / / purl . org / ol ia /penn.owl#NNP> ;
8 nif : referenceContext <http : / / dbpedia . org / resource /

Agricultural_science?dbpv=2016−10&nif=context> .

Listing 3.21: Part of speech tagging result

All the triples have the same subject. The triples added to the output file
informs the following:
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1) Lines (1-4) are same as the output from the Tokenization task result-set.
2) Line 5 informing the short form expansion of the part of speech for the
token as "Noun" (at the end of URL) under the predicate ’nif:OliaCategory’
for the token ’Pathology’. The URL ’<http://purl.org/olia/olia.owl#>’ is
added
3) Line 6 informing the full form expansion of POS for the token as "Pro-
perNoun" under the same predicate as ’nif:oliaCategory’. It has the same
predicate as the short form expansion and that is why the predicate doesn’t
appear on Line 6, it just has the object.
4) Line 7 displaying the POS obtained from the result of POS Tagger as an
object to the predicate ’nif:oliaLink’.
5) Line 8 gives reference to where the data is obtained from.

3.6.1 Challenges

I have identified several challenges related to POS NLP task:

1) Incorrect part of speech obtained while supplying tokens as an input
to "postags" function. It is solved by finding the part of speech by using
sentence as an input to the function rather than using individual token
as an input. If individual tokens are provided as an input to various NLP
libraries, the POS taggers returns the POS that has higher confidence value
but ignores the context under which the token is used. The confidence
value of a token’s POS is calculated based on the primary meaning of the
token and the primary usage of the token in general. For example "They
refuse to permit us to obtain the refuse permit", if I provide every token
individually to NLTK library’s POS Tagger then both the "refuse" would
have verb as their part of speech. However, the correct result should have
first refuse as noun and second one as verb. It chooses both as VERB
because confidence value of verb is higher for refuse as in most cases
refuse is used as verb. The primary usage of refuse is verb over noun. But
this is not the correct result in our case. So, this challenge is overcome by
providing sentences as an input to the various libraries POS taggers.

2) The part of speech for "." is assigned as "." which is incorrect as punctu-
ations don’t have any POS. So, I just prevented these tokens from writing
to the final output file. If an entire token is a punctuation, the tool automat-
ically assigns the POS as the same punctuation token by default which is
quite strange. Anyway, this step was skipped in the tokenization task as
well.

3) Finding the part of speech in different languages. NLTK’s accuracy
for POS is good only in English language. Thus, StanfordPOSTagger is
used to detect POS for German, Spanish and French languages and Nagisa
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explicitly for Japanese. spaCy and TextBlob do support wide variety of
languages for detecting POS. StanfordPOSTagger provides fast POS Tagger
for German and it has the highest precision rate for German language.

4) Tracking the begin and end index of each token. If a particular word/-
token appears more than once in a particular sentence that is given as input
to ’Postags’ function, then this has to be dealt carefully to assign correct
begin index to the token. The variable ’offset’ is maintained explicitly to
deal with this problem which is incremented at the end of each token inside
the loop. This variable is supplied to the find operation as start index, from
where the operation has to start its search on the input sentence. So if the
same token appears the second time on a given sentence, then the index of
second appearance of the token is searched to get the correct begin index.

3.7 Links Enhancement

Surface form analysis is a pre-processing step for enhancing additional
links. NIF text links dataset is required for generating surface forms CSV
file. After downloading and extracting the NIF text links datasets in English
(nif_text_links_en.ttl), French (nif_text_links_fr.ttl),
German (nif_text_links_de.ttl), Spanish (nif_text_links_es.ttl) and Japanese
(nif_text_links_ja.ttl) languages, the goal is to generate the list of all words
having link(s) to other DBpedia resource(s). The list of such generated
surface forms are stored on a CSV file. This process has to be done for all
5 languages ie. on all the 5 versions NIF text links files. The objective is to
extract the details of surface forms from these huge files and store them
in a format that supports quick search operation. The generated CSV file
must contain the following attributes :

• Surface Form - The list of all the words that has link to other DBpedia
resource(s). All in-text links to other DBpedia resources as well as
external references. In Wikipedia, the words that holds a link on
them which when clicked redirects the browser to a different Wiki
page. Such words that has a link is called as Surface Form. The first
column should have the token(s) of these surface forms.

• Link - The second column should consist the link to DBpedia resource
which should load the contents of new DBpedia resource. It should
posses the URL link to load the new DBpedia resource.

• Part of Speech - The third column should have the part(s) of speech
for the token(s) of the surface form. If the surface form comprises
multiple tokens, each token should have part of speech.
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There are 5 CSV files generated, one for each language. This is a pre-
processing step for "Links Enhancement" NLP task. The naming convention
of these CSV files are "LinkDataset<language>_with_duplicates.csv" as
the generated output file will have duplicate values. It is problematic
for performing search operation on a TTL file as opposed to a CSV file
which explains why we need to store the result in CSV. The pseudocode for
generation of links dataset is as follows:

1 Get the path to NIF Text Links f i l e
2 Store the language of NIF Text Links f i l e provided
3 Define the columns of CSV f i l e
4 Create and Open the CSV f i l e on ’write ’ mode
5 Open NIF Text Links f i l e from the given path
6 Write the column names onto CSV f i l e
7 Loop with line from 1 to end of f i l e
8 Check i f " nif−core#anchorOf" is part of the line
9 Store the name of the surface form

10 Store the link to the DBpedia resource for surface form
11 Replace empty spaces by ’ _ ’ on surface form
12 Store the tokens on the surface form
13 Store the POS of the tokens
14 Declare an empty l i s t
15 Loop over every token on surface form
16 Add the POS of token to the empty l i s t
17 Write Surface Form, Link , POS to CSV f i l e

Listing 3.22: Pseudocode for generating links dataset

Explanation about the pseudocode of the Python script on my tool for
generating the surface form dataset:
1) The user has to run my tool by specifying the path to the location of NIF
text link file as an argument. The shell script validates the path to NIF text
links file. If the validation is successful, the shell script would then pass
the location of NIF text links file to the python script whose pseudocode is
mentioned above in the listing.

2) The language of the NIF text links file is mentioned as a part of its
name - "nif_text_links_<language>.ttl", similar to that of NIF context file.
Storing the language is necessary for the naming the generated CSV file.
The columns of the CSV file are surface form, link and POS. A new CSV file
is created as "LinkDataset<lang>_with_duplicates.csv" inside the "Files/"
directory. This CSV file is opened on write mode with encoding style "UTF-
8". Write the defined column names into created CSV file.

3) Iterate over each line present in the NIF text links file. There are
7 triples for each surface form in the text links file. The triple that contains
the tokens of the surface form has the predicate "nif-core#anchorOf". The
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object of the triple consists the tokens of the surface form. The link to
the DBpedia resource is obtained from the object of the triple with pre-
dicate "taIdentRef". Store the tokens present on the surface form and
the link to its DBpedia resource. Create an empty list to append the POS
of these tokens into the list. Finally, write every set of Surface Form -
Link - POS into the CSV file. A sample output taken from "Files/LinkData-
seten_with_duplicates.csv" file:

Surface Form Link POS

Graeme Base https://dbpedia.org/resource/Graeme_Base NNP NNP
Synopsis https://dbpedia.org/resource/Synopsis NN

alliterative https://dbpedia.org/resource/Alliterative JJ
alphabet https://dbpedia.org/resource/Alphabet NN
alligator https://dbpedia.org/resource/Alligator NN
butterfly https://dbpedia.org/resource/Butterfly NN

Table 3.2: Sample data from generated CSV file

However, this CSV file consists of duplicate records. In order to remove
duplicity, another script is created to delete the duplicate records on the
CSV file. The pseudocode for removing the duplicate records on the surface
forms CSV file generated from NIF text links dataset is as follows:

1 Create a new CSV f i l e on write mode with ’UTF−8’ style
2 Open the CSV f i l e with duplicate records on read mode
3 seen = set ( ) / / set for fast O(1) amortized lookup
4 Loop for every record on f i l e with duplicate records
5 i f record is seen
6 continue / / skip duplicate record
7 Set record as seen
8 Write the record into new CSV f i l e

Listing 3.23: Pseudocode for removing duplicate records

This creates a new CSV file and stores unique records within it by skip-
ping the already seen records. Open the CSV file with duplicate records
on read mode and open the newly created empty CSV file on write mode.
Loop over every record on the CSV file with duplicate records, and set the
record as seen for the records appearing first time on the file. Immediately
after making it seen, write this record onto the new CSV file. If an already
seen record appears again during the future iterations of the loop, then
this record is skipped from writing onto the output file. Naming conven-
tion of the CSV file without duplicates is "LinkDataset<language>.csv".
For instance, French language surface forms are stored with the name
"Files/LinkDatasetfr.csv". Removing the duplicate records helps the size of
the CSV file reduce drastically and therefore the search operation could be
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done faster. It is not necessary to generate all the surface forms from NIF
text links dataset to the CSV file. The execution of "separate_scripts.sh"
for generating the surface forms CSV file could be terminated at anytime
after the execution starts. The longer it runs, more records are generated
on surface forms CSV file. Now that the pre-processing step is completed,
next step is to enhance the links.

1 In i t ia l i ze counter as 0
2 Loop over every sub , pred and obj on the input f i l e
3 I f type of obj is Literal and pred is nif : isString
4 Tokenize the obj ( fu l l text ) through NLP library
5 Store the (Tokens ,POS) pair
6 store the count of the total tokens in the input f i l e
7 Loop with i less than count of total tokens
8 In i t ia l i se flag2 and flag as 0
9 store the token[ i ]

10 i f the token[ i ] is neither a punctuation nor a stopword
11 Store the combination of token[ i ] , token[ i+1] & token[ i+2]
12 Store the combination of token[ i ] & token[ i+1]
13 Open the generated CSV f i l e with removed duplicates
14 Read the records on CSV
15 Check i f token[ i ] and POS[ i ] matches a record on CSV f i l e
16 Check i f combination of 3 tokens matches an entry on CSV
17 Find begin index of these 3 tokens on fu l l text
18 Provide link to these 3 tokens obtained from CSV
19 Check i f begin index is greater than counter
20 Write the triples onto output f i l e
21 Increment counter by length of token[ i+1] & token[ i+2]
22 Increment i by 2
23 Break
24 Check i f combination of 2 tokens matches entry on CSV
25 Store the begin index and link of tokens
26 flag2=1
27 Check i f token[ i ] matches the record on CSV
28 Store the begin index and link of token
29 flag=1
30 Check i f flag2=1 and begin index of tokens > counter
31 Provide stored link to these 2 tokens obtained from CSV
32 Write the triples onto output f i l e
33 Increment counter by length of token[ i+1]
34 Increment i by 1
35 Check i f flag2=0 and flag=1 and begin index > counter
36 Provide stored link to the token obtained from CSV
37 Write onto output f i l e
38 Increment counter by length token[ i ]
39 Increment ’ i ’ and counter by 1

Listing 3.24: Pseudocode for link enhancement
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The final part of my thesis is enhancing links on NIF context dataset.
The goal is to enhance the amount of links on each or a subset of output
files generated from "separation of Wiki articles" task. The pseudocode is
presented in the listing as follows:

Linking Wikipedia articles to each other is important. The links allows
users to move to a new article from the current Wiki article helping to
understand the original article in depth, greatly adding to Wikipedia’s
usefulness. But at the same time adding too many links can be distracting.
This could however be avoided by providing link to the same word again
and again within one article. The list of all surface forms already existing
are available in the CSV file generated from the previous step.

Read the full text of Wiki pages token by token in order to detect the
tokens that are surface forms. If the content and part of speech of read
token(s) matches the content and part of speech of a surface form entry
on the CSV file, then a link is provided to these read tokens(s) for their
respective DBpedia resource.

The input files of this task are the files present inside "Input<language-
name>/" directory. These files are read one by one as input to this task.
Explanation about the pseudocode of the Python script in my tool for per-
forming Link enhancement NLP task:
1) The "counter" variable is initialised as "0" and it’s main usage is to pre-
vent giving links to same word more than once on a particular Wiki article.
The implementation is followed by a loop over all the triples present in the
input file. Store the tokens and POS pairs for the full text of the Wiki page.
Loop with variable ’i’ from 1 to total number of tokens present in the full
text of this input Wiki article. Inside the loop store the content of token
that is being iterated and check if it is a punctuation or a part of stop words.
A stop word is a commonly used word such as ’a’,’the’,’an’,’in’,’would’ etc.
that a search engine has been programmed to ignore, both when indexing
entries for searching and when retrieving them as the result of a search
query. The goal of checking if the token is a part of stop word is to prevent
assigning links to such words. Well, if the token is either a punctuation or
a stop word, then increment the counter by length of the token and move
to the next token.

2) My tool should be able to provide links for surface forms containing upto
3 tokens. So, the combination of the current token being iterated along
with the next two upcoming tokens are stored on a variable. Similarly, the
combination of current token being iterated along with the next upcoming
token is stored on another variable.

3) Open and load the appropriate CSV file with duplicates removed, based
on the input language provided by the user. If token currently being iter-
ated matches the first word of an entry of surface form column on CSV file,
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then their corresponding parts of speech are compared. If POS are same,
then my tool compares if this record on CSV file matches with the combina-
tion of first 3 tokens along with their parts of speech. If so, link is provided
to all 3 tokens and the triples are written onto output file. ’i’ incremented by
2 to prevent iterating the next two tokens as they are already provided with
the link. Counter is incremented by the length of next two tokens. Break
statement is executed and the control of the program moves outside the
loop which reads records of CSV file. The length of the current token is in-
cremented to counter, before iterating the third token from the current one.

4) Before writing the surface form provided with a link onto the output
file, the begin index of the surface form is checked if it is greater than
counter. If yes then the link is provided to the three tokens and written
onto the output file. If begin index of the token is lesser than the counter
then the surface form is not provided with a link because it means that this
particular surface form has already appeared on the full text of this Wiki
page. My tool would have provided a link on its first occurrence as the
begin index of the surface form would have been greater than counter. If
begin index of the token is lesser than the counter, then it prevents giving
link to the same surface form again within the same Wiki article.

5) If the combination of first 3 tokens isn’t a match on this record of
CSV file, then it attempts to search for the combination of first 2 tokens
and its POS on the same record of CSV file. If there is a match between
the 2 tokens and their POS on CSV file, then the variable "flag2" is set as
1. The break statement is not executed here because there is a possibility
that another record on CSV file could have a match for 3 tokens. The goal
is to provide link to the longest surface form. So, the variable ’flag2’ is set
to 1 and the begin index and link are stored before reading the the next
record on the CSV file. The point of setting "flag2" as 1 is to remember that
there is a match for 2 tokens which is eligible to be given a link. At the end
of searching the whole CSV file, if there isn’t a match for the combination
of 3 tokens on CSV, then the link is provided to the 2 tokens from the
"if" condition on line 29 of the listing. The begin index is checked if it is
greater than counter before writing onto. ’i’ incremented by 1 to prevent
iterating the next token as it is already provided a link. Counter is set to
the begin index of tokens and incremented by the length of last token ie.
token[i+1]. Before moving onto the second token from the current one
increment counter by length of token[i] and increment ’i’ by 1.

6) If the combination of first 2 tokens isn’t a match on the record of
CSV file, then checks if one token matches the whole surface form and its
POS on CSV. If so, stores the link and begin index of the token. The variable
"flag" is set to one. And the search operation continues on the next records
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of the CSV file. After reading the whole CSV file and if it doesn’t consists
of links to either combination of 2 tokens or combination of 3 tokens, then
the "if" condition on line 34 kicks in. A link is provided to one token after
checking if its begin index is greater than the "counter". This surface form
details are noted down on the output file. The counter is incremented by
the length of the token. ’i’ incremented by 1 to make sure next token is
being iterated. The next token is searched for a possibility to be provided a
link. This process continues until all the tokens in the input file are iterated.

The necessary parameters to be stored on the output file are begin in-
dex of surface form, end index of surface form, token(s) of surface form,
DBpedia resource link to the surface form. A sample taken from the output
file of enhancing links task on "Actrius" article:

1 <http : / / dbpedia . org / resource / Actrius?dbpv=2016−10&nif=
phrase_offset_100_112> a nif :Phrase ;

2 nif :anchorOf "Ventura Pons" ;
3 nif : beginIndex "100" ;
4 nif :endIndex "112" ;
5 nif : referenceContext <http : / / dbpedia . org / resource / Actrius?dbpv

=2016−10&nif=context> ;
6 i tsrdf : taIdentRef dbp:Ventura_Pons .

Listing 3.25: Links Enhancement result

The triples explained (with each point corresponding to the line num-
ber):
1) Surface form is a phrase ie. comprising more than one token. If it had
only one token, then the object appears as "nif:Word".
2) The word that has the link on it is "Ventura Pons". The tokens on surface
form appear as "Ventura Pons".
3) Begin index of surface form in Actrius article is 100.
4) End index of "Ventura Pons"(surface form) in Actrius article is 112.
5) This content is part of the context file.
6) The DBpedia resource for surface form is "dbp:Ventura Pons". The prefix
dbp points to "<http://dbpedia.org/resource/>".

3.7.1 Challenges

Repetition of links to the same surface forms in the article. If a surface
form repeats 5 times within an article, my tool would provide link to the
first occurrence of this surface form. This reduces unnecessary number
of links. It is achieved by using "counter" variable. This variable keeps
track of the begin index of the token being iterated currently. If the begin
index of the surface form on full text of Wiki article is lower than the index
of the token currently being iterated, then this surface form had past its
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first occurrence of its tokens. That’s why it can be safely ignored that this
surface is already provided with links.

Detecting surface forms that has more than one token. My tool can
provide links for surface forms upto 3 tokens. If there is a possible surface
form having more than 3 tokens, my tool doesn’t detect it. However it is
possible to increase this number by checking it token[i+4] matches the
4th token on CSV and subsequently increasing this number. But the initial
version of my tool doesn’t support this now. It will be released in the future
versions of my tool.

Incorrect links - For eg: There is a surface form "It was" which is a
music album. A sentence "It was a beautiful day." is detected in an article.
In this case it should not provide link to the wikipedia page of that music
album "It was". The part of speech has to be compared and the link should
be prevented in this case. Now, lets compare the same example - ’It_was’
is the name of the album, thus it is assigned "NN NN" as POS whereas the
normal english words ’It was" is assigned "PRP VBD" as part Of speech. So
the link is prevented from providing for these words. Incorrect links are
overcome by comparing the parts of speech.

Providing links for words like "The" , "was" etc.. doesn’t makes sense.
A reader will be irritated to see links provided for basic words. The basic
words are detected by importing stopwords package on each language.
Every language has a set of stopwords which covers all the basic word of
the language. These words when appearing on the full text of Wiki pages
are skipped from being searched on the generated CSV file. The length of
the token is added to counter and the next token is being iterated.
This sums up the Data processing chapter. All the tasks implemented in my
thesis are covered.
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Chapter 4
Usage

This chapter provides documentation of the processing steps required
for generating the result-set of NLP tasks through the developed tool.
Also, this chapter explains integration new language(s) and new library(s)
to my tool. All the scripts and necessary directories are stored in my
GitHub repository [34]. my tool for enrichment of DBpedia NIF dataset is a
compilation of Python3 and shell scripts that enables to perform various
Natural Language Processing tasks on Wikipedia on normal off-the-shelf
hardware (e.g., a quad-core CPU, 8 GB of main memory, and 512 GB hard
disk storage).

4.1 Requirements

The requirements to run the developed tool :
Python3
Rdflib >= 4.0 [30]
Numpy >=1.16.3
Pandas >= 1.0
NLTK >= 3.0 [17]
Spacy >=2.0 [18]
TextBlob >=0.15.2 [20]
Pattern >=3.6 [19]
StanfordPOSTagger >= 3.9.0 [21]
Konoha,Nagisa (for Processing Japanese language) [31]

4.2 Processing steps

The processing steps are:

• STEP 1 : Download the NIF context file from the official DBpedia
page [9] in the TTL format. Languages supported in this project
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are :
English (nif_context_en.ttl),
French (nif_context_fr.ttl),
German (nif_context_de.ttl),
Spanish (nif_context_es.ttl) and
Japanese (nif_context_ja.ttl).
Download the language of NIF context version(s) as per the require-
ment. Extract them after downloading. A minimal version of these
files are created and are stored on "NIF_Dataset_Minimal_Version/"
directory located at the home of my GitHub repository [34]. Similarly
download NIF Text Links file in TTL format for any of the above men-
tioned languages. Extract them after downloading. NIF text links file
is required only if you would like to perform the ’Links Enhancement’
NLP task. The minimal version of the NIF Text Links dataset is stored
at "NIF_Dataset_Minimal_Version/" directory.

• STEP 2 : Clone my git repository [34] on your local system. In order
to execute the shell scripts, run the following 4 commands from the
home directory:

1 sed −i ’ s / \ r / / ’ run . sh
2 sed −i ’ s / \ r / / ’ separate{\_}scripts . sh
3 chmod +x run . sh
4 chmod +x separate{\_}scripts . sh

Listing 4.1: Commands to permit execution of Shell scripts

• STEP 3 : Run "separate_script.sh" with an argument -p specifying the
path where NIF context file is stored in the system. The language is
automatically detected by the script and the result will be saved in
"Files/Input<lang>/" directory.
Positional argument:
-p PATH, Specify the stored location to extracted NIF context file.
Optional argument:
-s SEARCH, Specify the subset of article(s) that needs to be extracted
from NIF context file.

Examples:
"./separate_scripts.sh -p F:/Master_thesis/nif_context_de.ttl" (Extracts all
the articles in German language and stores in Files/Inputde/ directory)
"./separate_scripts.sh -p F:/Master_thesis/nif_context_en.ttl -s St" (Extracts
all articles that starts with "St" in English Language and stores in Files/In-
puten/ directory)
"./separate_scripts.sh -p F:/Master_thesis/nif_context_es.ttl -s Apocopis"
(Extracts the article Apocopis in Spanish Language and stores in Files/In-
putes/ directory)
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For performing enhancing links NLP task, run the "separate_script.sh"
again with an argument -p specifying the path to NIF text links file stored.
The result is saved as ’Files/LinkDataset_with_duplicates.csv’.
"./separate_scripts.sh -p F:/Master_thesis/nif_text_links_fr.ttl" (Creates a
CSV file with all the surfaceforms-Links-POS for French Language and
stores it in Files/LinkDatasetfr_with_duplicates.csv)
This might contain duplicate records. So just to speed up the NLP task, you
should run the python script LinkDataset_remove_duplicates.py located at
scripts/preprocessing_scripts.
Python scripts/preprocessing_scripts/LinkDataset_remove_duplicates.py
(Duplicates are removed and result is stored at Files/LinkDataset.csv)

• STEP 4 : Perform Sentence-splitting, Tokenisation, Part-of-speech tag-
ging and Enhance Links by running the script "run.sh" with the
following argument(s) :
1) Language - en for english, fr for French, de for German, ja for
Japanese, es for spanish. Default language is English.
2) NLP task - SEN for sentence splitting, TOK for Tokenisation, POS
for Part of speech tagging, LINK for enrichment of additional links
3) Instance size - Number of articles for which the NLP task(s) should
be performed. Default integer is 1.
Search - Specify a particular article name for which the NLP Task(s)
has to be performed.
4) Library name - NLTK for Natural Language Tool Kit package, TTB
for using TextBlob , SIO for using SpacyIO and PAT for Pattern. De-
fault is NLTK.

Usage
"./run.sh [ -l LANGUAGE] [ -n INSTANCE SIZE] [ -t NLP TASK] [-e TOOL
NAME] [-s SEARCH]"

Positional arguments:
-t NLP TASK, Specify SEN, TOK, POS or LINK
-n INSTANCE SIZE , Specify an integer. (Default: 1)

Optional arguments:
-s SEARCH, Specify the name of an article. You have an option to specify
"-t ALL" to have all NLP tasks performed for this article.
-e TOOL, Specify NLTK, SIO, TTB or PAT. (Default: NLTK)
-l LANGUAGE, Specify en, de, fr, es or ja. (Default: en)

Examples:
"./run.sh -t SEN -n 100" (Performs Sentence splitting on 100 English art-
icles through NLTK)
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"./run.sh -t ALL -s Apollos" (Performs all 4 NLP tasks for the article Apollos)
"./run.sh -t TOK -n 100 -l de -e TTB" (Performs Tokenisation on 100 German
articles through TextBlob)
"./run.sh -t POS -n 10 -l es -e SIO" (Performs Part-of-Speech tagging for 10
Spanish articles through SpacyIO)
"./run.sh -t LINK -n 10 -l fr -e NLTK" (Enhances Links for 10 French Articles
through NLTK)

Output :
Results of sentence-splitting task gets stored in "Files/Sentences/" direct-
ory in RDF triples.
Results of Tokenization task gets stored in "Files/Tokens/" in RDF triples.
Results of Part of speech tasks gets stored in the Files/POS in RDF triples
on the same name as the article.
Results of Link Enrichment task gets stored in "Files/Links" in RDF format.
Results of Search tasks gets stored on "Files/Search" with name of the
article followed by task in RDF format.

4.3 Integrating new language to the tool

This section describes the steps for integration of new language to my tool.
I have used integrating Dutch language to my tool as an example for better
explanation of each step.
The steps to be carried for a new language to be integrated with my solu-
tion are:
1) Download the NIF context dataset for the new language to be integrated
from the official DBpedia download page [9]. For Dutch language, down-
load nif_context_nl.ttl and extract this dataset.

2) Create new empty directory under "Files/" with the name of direct-
ory having the format as "Input<language>/". This is the directory on
which all the output files of "Separation of Wiki articles" task are stored.
For eg. From the home directory of my tool, create an empty directory
"Files/Inputnl/".

3) Separate the Wiki articles from NIF context dataset. Execute the "sep-
arate_scripts.sh" shell script with the path of NIF context dataset as an
argument:
"./separate_scripts.sh -p <Location of NIF dataset>"
For example:
"./separate_scripts.sh -p F:/Master_thesis/nif_context_nl.ttl"
The output gets stored in the "Files/Inputnl/" directory.
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4) Perform the various NLP operations . Execute the "run.sh" shell script
with necessary parameters. Use the argument "-t" for choosing the NLP
task to perform. SpaCy library supports the NLP operations for over 50
languages. Check if the language to be integrated is either supported
by spacy [18] or TextBlob [20] or NLTK [17] or CoreNLP [21] from their
official site. Together these 4 libraries covers all the languages that are
supported by DBpedia. In case, the language is not covered by any of these
libraries, then integration of new library supporting this language has to
be performed in order integrate the language to my tool.
Examples:
"./run.sh -t SEN -n 100 -l nl -e SIO" (Performs sentence splitting for 100
Dutch articles through SpacyIO)
"./run.sh -t TOK -n 1000 -l nl -e SIO" (Performs Tokenization for 1000 Dutch
articles through SpacyIO)
"./run.sh -t POS -n 10 -l nl -e SIO" (Performs Part of Speech Tagging for 10
Dutch article through SpacyIO)
"./run.sh -t ALL -s Apollos -l nl -e SIO" (Performs all 4 NLP tasks for the
Dutch article Apollos)

5) However keep in mind that NIF text links dataset has to be down-
loaded and surface forms CSV file has to be generated for performing the
links enhancement NLP task on the language to be integrated. Example:
"./separate_scripts.sh -p F:/Master_thesis/nif_text_links_nl.ttl" (Generates
the CSV file containing surface forms - links - POS for Dutch language)

4.4 Integrating new library to the tool

Decide the library through which you would like to implement NLP tasks. I
would use the NLP library "Gensim" as an example to explain each step.
Make sure to read the documentation of the library that you would like to
integrate to the tool, from their official site.
The steps to be followed for integrating a new library to my tool:
1) A new library that has to be integrated will have to be installed. This
library becomes a requirement to the tool. For importing Gensim, running
"pip install gensim" on command-line downloads the Gensim package. Sim-
ilarly download the library whichever way it suits you.

2) Create Python scripts for performing NLP task(s) through the library
to be integrated with the naming convention - "<NLP-Task>_<library-
name>.py". These scripts must be created on "scripts/" directory. For per-
forming sentence splitting through Gensim, create "sentence_gensim.py"
on "scripts/" directory.
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3) Copy the source code of scripts for performing the respective NLP
tasks from NLTK or Spacy and paste it on the newly created Python scripts.
NLP tasks for NLTK or Spacy are located at "scripts/" directory such
as "sentence_nltk.py" or "token_sio.py" or "pos_nltk.py" or "links_sio.py".
Choose the scripts to be copied depending upon the NLP task you would
like to perform. For sentence splitting through Gensim, copy the contents
of "sentence_nltk.py" and paste it on "sentence_gensim.py".

4) The library imported must be changed from nltk to the library integrated
on the newly created Python script. That is, change ’import nltk’ to ’im-
port gensim’ on "sentence_gensim.py" at the top of script. The command
used for splitting sentences through Gensim has to be replaced with the
command used for performing sentence splitting in NLTK. For eg. the lines
which perform sentence splitting through NLTK:

1 import nltk
2 sentence_result = nltk . sent_tokenize (o)

These lines must be replaced as follows in order to perform sentence
splitting through Gensim:

1 import gensim
2 from gensim. summarization . textcleaner import split_sentences
3 sentence_result = split_sentences (o)

Save the modified scripts. Similarly the commands used for perform-
ing other NLP task through NLTK has to be replaced with the commands
used for performing the respective NLP task through the integrated library.

5) Update "main.py" located on "scripts/" directory. Importing the newly
created scripts on "main.py". For eg. import sentence_gensim at the begin-
ning of "main.py" is sufficient. Add a condition on "main.py" to call these
newly added scripts based on the tool and library chosen.

6) Execute the shell script "run.sh" with appropriate parameters to perform
various NLP tasks through the newly integrated library.
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Chapter 5
Experimentation

The result-set generated from the tool is evaluated and analysed in this
chapter. The results generated from different libraries are compared. The
metrics of comparison vary upon the NLP task. Section 5.2 provides the
statistics of the result-set.

5.1 Evaluation

To determine quality of results, 2 experiments are performed. First is to
find the runtime of results obtained through various libraries. Second
experiment is to determine the accuracy of results among various libraries.

5.1.1 Sentence splitting

This section compares the results of sentence splitting task among various
libraries. It was implemented through 5 different libraries namely NLTK,
Spacy, TextBlob, Pattern and Konoha. The criteria considered for evalu-
ation are accuracy of the results (in terms of segregating the sentences on
Wiki articles) and the runtime for performing this NLP task on Hundred
Thousand files. These criteria are applied on all 5 languages focussed on
my thesis.
The comparison between the libraries in terms of accuracy of the results of
sentence splitting task:
1) Section titles of the Wiki pages - Spacy considers the section titles as
a separate sentence in the full text of Wiki articles. Whereas NLTK and
TextBlob considers the section title as a part of the first sentence in their re-
spective sections. Pattern doesn’t segregate the section titles as a separate
sentence. Konoha considers only Japanese sentence boundaries meaning if
the section titles don’t have sentence boundary, then they are considered
to be a part of the first sentence of the section.
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2) Contents listed in points - Wiki articles tend to have text listed out
in points. Every point don’t have full stop towards the end. Spacy detects
each of these points as separate sentences. However, the other libraries
don’t. The other libraries picks up all the points in the listing as one whole
sentence.

3) Length of sentences - Pattern adds one additional index to each sentence
making its end index one more than what is expected. An example of a
sentence detected by Pattern :
"the right to make a plea in mitigation is absolute ."
It adds an unnecessary space between the last token of the sentence and
the sentence boundary ie. between the word "absolute" and sentence
boundary "." . The full text of Wiki page doesn’t have this space. This
problem could be overcome by reducing one to the length of each sentence
in order to get the correct end index. Spacy adds a couple of indexes to
the last sentence in each section. It detects the section boundary and adds
two to the length of the sentence.

Hundred thousand files generated from separation of Wiki articles task
are considered to compare the runtime of all the libraries. Same files
were considered as an input to all the libraries. The table below gives the
runtime (in mins) for performing sentence splitting on 100,000 files for
each library:

English French German Spanish Japanese

NLTK 17 22 20 19 -
Spacy 28 33 23 20 -

TextBlob 28 24 19 23 -
Pattern 20 29 24 - -
Konoha - - - - 19

Table 5.1: Sentence splitting runtime (in mins)

NLTK is the fastest in terms of execution time. It just takes 17mins for
NLTK to perform sentence splitting on 100,000 files. For all the 5 million
Wiki texts in English language, it takes 5 hours for sentence splitting to be
performed. It can be noted that TextBlob is slower for English language
but it is quite fast for languages other than English. Spacy is really slow
for French language but the accuracy is comparatively good. The reason
Spacy takes longer time is because it has to create more triples for each
file as it detects more sentences. The section titles are taken as separate
sentence in Spacy. NLTK only splits text by sentences, without analysing
the semantic structure. Konoha is one of the fastest NLP libraries for
Japanese. Pattern has results very similar to that of NLTK but it has an
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additional operation to be performed - the end index has to be recalculated
as the length of sentences detected by Pattern are 1 more than the correct
length. So the time taken is more than the NLTK. My tool helps the user to
decide which library to run based on their requirements.

5.1.2 Tokenization

This section compares the results of tokenization task among various librar-
ies. It was implemented through 4 different libraries namely NLTK, Spacy,
TextBlob and Nagisa. The criteria considered for evaluation are accuracy
of the results generated (in terms of tokens generated from full text of Wiki
articles) and the runtime for performing this NLP task on 100,000 files.
These criteria are applied on all 5 languages focussed on my thesis.
Comparison between the libraries in terms of results from tokenization :
1) White spaces - Spacy detects white spaces in between the tokens that
appear on listings. For instance:
’1 Geography
2 Earthsea’
Spacy detects the white space as tokens in between ’1’ and ’Geography’.
Whereas the other libraries don’t consider these white spaces as tokens.
These white spaces have to be prevented from writing onto the output file
for tokenization.

2) Hyphens or slashes in between a word - A word ’well-known’ is con-
sidered as one token by NLTK, however spacy detects this as 2 different
tokens ’well’ and ’known’. Spacy ignores ’-’ as a token. TextBlob detects
’ipod/iphone’ as two different tokens and it ignores ’/’. Even if ’-’ or ’/’
appears at the end of word, TextBlob ignores these characters as a part of
the token.

3) Apostrophe or bracket at the beginning or end of a word - NLTK detects
these characters as a part of the token. For eg. ’(Hello World)’ - NLTK
detects 2 tokens as ’(Hello’ and ’World)’. However Spacy detects the tokens
as ’Hello’ and ’World’ and ignores the brackets.

Comparison based on runtime for the Hundred Thousand files:
TextBlob is the fastest in generating the resultset for tokenization task.

On the other hand, Spacy is slow for all the languages because it creates
more tokens such as additional white spaces (between the tokens inside the
listings). NLTK library’s runtime is good but it detects special characters
as a part of some tokens. For the tokenization task, it is recommended to
use TextBlob because of faster runtime and accurate results. Nagisa is
quite slow for detecting the tokens. Spanish NIF context file has 1.3million
articles compared to 5million articles for English language, so time taken
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English French German Spanish Japanese

NLTK 38 35 34 34 -
Spacy 46 48 47 44 -

TextBlob 33 30 29 28 -
Nagisa - - - - 53

Table 5.2: Tokenization runtime (in mins)

for performing all NLP tasks on Spanish is considerably lower due to lesser
number of articles.

5.1.3 Part of speech tagging

This section compares the results of POS tagging task among various lib-
raries. It was implemented through 5 different libraries namely NLTK,
Spacy, TextBlob, StanfordPOSTagger and Nagisa. The criteria considered
for evaluation are accuracy of the results generated (in terms of parts of
speech detected on full text of Wiki articles) and the runtime for performing
this NLP task on 100,000 files.
Comparison between the libraries in terms of results from part of speech
tagging :
1) Detailed part of speech - NLTK and TextBlob are able to find if a part of
speech is singular or plural. For eg. ’islands’ is detected as ’NounPlural’
by these two libraries, however spacy just detects it as a ’Noun’. Similarly
’has’ is detected as ’VerbSingular’ by NLTK and TextBlob whereas ’Verb’
by Spacy. They are also capable of finding the tense of part of speech. For
instance, NLTK and TextBlob detects the token ’derived’ as ’VerbPastParti-
ciple’ whereas spacy detects it as ’Verb’.

2) Part of speech for white spaces and digits - Spacy assigns ’TABSPACE’ as
a part of speech for white spaces that are detected in between the tokens
on points of listings. There are no part of speech for spaces in NLTK and
TextBlob as they don’t detect spaces as tokens. Spacy considers part of
speech for digits as ’NUMBERS’ whereas NLTK and TextBlob detects their
part of speech as ’Cardinal Digits’.

3) Difference in part of speech tags - NLTK has way too many tags for
part of speech compared to Spacy. For eg. the token ’to’ is detected as pre-
position by Spacy which is the correct POS. NLTK detects the POS for ’to’
as ’TO’ which is the short form of ’ADVERB when used to go somewhere’.
The primary POS for ’to’ is preposition but Adverb is the second widely
used POS.
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NLTK is used along with StanfordPOSTagger for French, German and Span-
ish languages as the POS tags detected by StanfordPOSTagger is more
reliable than NLTK for these languages. NLTK separates the sentences
and StanfordPOSTagger detects the tokens and their POS. Comparison
between runtime of the libraries:

English French German Spanish Japanese

NLTK 57 160 118 143 -
Spacy 71 57 50 51 -

TextBlob 54 61 56 58 -
Nagisa - - - - 71

Table 5.3: Part of speech tagging runtime (in mins)

All the triples appearing on tokenization plus three more additional triples
for each token gives the result-set for POS tagging. NLTK and TextBlob
doesn’t produce good results for POS in languages other than English.
StanfordPOSTagger has been used along with NLTK for languages other
than English. This is the reason for NLTK to take longer time for execution
of French, German and Spanish languages. StanfordPOSTagger is really
slow. The time taken for StanfordPOSTagger to perform POS tagging on
German (118 mins) is quicker than French (160 mins) or Spanish (143
mins) because it has ’fast tagger’ developed for German. But still this is
considerably slower than Spacy. NLTK or TextBlob should be preferred for
English language and Spacy for French, German and Spanish languages.

5.1.4 Links enhancement

The accuracy and runtime vary drastically upon the generated surface
forms file ’LinkDataset<lang>.csv’. As mentioned earlier, it is not neces-
sary to generate all the surface forms from NIF text links dataset onto
the CSV file. The execution of "separate_scripts.sh" for generating the
surface forms file could be terminated at anytime after the execution starts.
The time taken for generating all surface forms from English NIF context
dataset is about an hour. The longer it runs, more records are gener-
ated on surface forms CSV file. More records on the CSV file implies
more number of links enhanced and slower the runtime. Fewer records
on CSV file leads to lower number of enhanced links and faster the runtime.

One way to evaluate this task is through the F1 score. To measure the
accuracy, F1 score is used in the statistical analysis of binary classification.
F1 score is defined as the harmonic mean between precision and recall. It
is used as a statistical measure to rate performance. F1 score is from 0 to 1
with 0 being lowest and 1 being the highest. It is a mean of an individual’s
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performance based on two factors i.e. precision and recall. Lets look at the
formulae of the various metrics with which this task could be measured:
1) Precision=(TP)/(TP + FP)
2) Recall=(TP)/(TP+ FN)
3) F1=(2*Precision*Recall)/(Precision + Recall)
Here,
TP - Number of True Positives (model correctly predicts the positive class)
FP - Number of False Positives (model incorrectly predicts the positive
class) and
FN - Number of False Negatives (model incorrectly predicts the negative
class)

I have calculated these metrics for a sample output file generated
for Link enhancement task. ’Links/Animalia}(book)-links.ttl’ was checked
manually. The total number of links originally present in the this article
is 22. Out of the 22, 19 are detected correctly by my tool. Rest 3 of the
surface forms has more than 3 tokens, my tool in current situation detects
surface forms with maximum of 3 tokens. The generated output file from
my tool detects 122 links overall as shown:

Positive Negative

True 114 -
False 3 5

Table 5.4: Evaluation of an output file with enhanced links

My tool detects 100 links more than the already existing links (22). Out
of 122, 114 of them have correct links assigned to their respective DBpedia
resource. However, 3 surface forms which should have been assigned a
link was not assigned by my tool. These 3 links have more than 3 tokens
present. My tool is not able to detect the surface forms with more than
3 tokens. However, a plan to increase this threshold upto 10 tokens are
considered in the future releases of my tool. And 5 of the links assigned
are wrong. These 5 links were assigned twice to the same surface form on
full text of the Wiki page. If a surface form appears twice immediately one
after the other, then the links are assigned to both the surface forms. This
is occurred because of the condition checking if ’begin index > counter’
is passed and the output is written onto the output file. In every iteration,
the token is read along with its upcoming tokens. So the counter variable
doesn’t get increased. But the chances for same token to occur either as
next token or the token after that is really low. On calculating the F1 score:
Precision = 114/(114+3) =0.974 =97.4%
Recall=114/(114+5) =0.957 =95.7%
F1= (2*0.974 *0.957)/(0.974+0.957) = 0.965 =96.5%
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The longer the generated CSV file, longer the runtime of this task.
For the completely generated surface forms file, it takes few seconds for
enhancing link to the full text of one Wiki page. However, the beauty of the
tool is that it allows to generate even half the surface forms from NIF text
links dataset and use this to enhance links. This gives a good runtime and
a really decent amount of enhanced links. The results of above mentioned
’Links/Animalia}(book)-links.ttl’ file used the completely generated surface
forms CSV file as an input. The total number of links detected were 96
when a partially generated CSV file was served as an input. The size of the
CSV file supplied as an input to the script was half the complete size. The
execution time was about twice as fast. And the total links detected is 96
out of overall 114 which is 84%. Even generating half the surface forms
CSV file gives good result.

5.2 Statistics

The analysis has been performed on 100,000 files that was generated for
detecting the runtime on the previous section. These generated files for
each language are stored on separate directories as "Sentences/<lang>/".
The 100,000 files for each language are stored on their appropriate direct-
ories and are used for the analysis. Some important insights figured out:
1) The total number of sentences is 4,380,027 obtained by NLTK whereas
5,091,245 by Spacy for 100,000 English language articles. The average
number of sentences in an article is approximately 44 for NLTK and 51 for
Spacy. This is expected because Spacy considers the section title as a sep-
arate sentence. It was detected by counting the number of ’nif.Sentence’
in the generated output files for Sentence splitting task. The pseudocode
for finding the overall number of sentences present in 100,000 files is:

1 Assign the count to 0
2 Loop with f i l es one by one in "Sentences/<lang>/" directory
3 Parse the graph with f i l e as a parameter
4 Serialize the graph with the parsed f i l e
5 Loop over every sub , pred and obj on serialized graph
6 i f " nif−core#Sentence" in obj
7 count=count+1

Listing 5.1: Total number of sentences

All the TTL files in the given directory are iterated one by one. The graphs
are parsed and serialised. The output of "sentence splitting" task has 5
triples created for each sentence - Each sentence in the file has 5 triples
with each having type,begin index, end index, content and derived data of
a word unit. The triple which has the type of word unit is filtered out in
6th line. The word unit is Sentence in this case.
The ’count’ provides the total number of sentences present in 100,000 files.
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Average number of sentences in French, German, Spanish and Japanese
are 33, 31, 24 and 28 respectively. NLTK was used to calculate the number
of sentences for French, German and Spanish languages whereas Konoha
was used to calculate the average sentences in Japanese languages

2) The total number of tokens in the 100,000 files are 54,300,206 in English
through NLTK which means that every article has an average of 540 tokens.
Average number of tokens in French, German and Spanish are 384, 397
and 268 respectively detected through TextBlob. The script used searches
for ’nif.Word’ in the object and everytime the condition is satisfied, the
count of token is increased by 1.

3) POS obtained from various languages are compared to find the oc-
currence of individual part of speech for each language. Most commonly
used part of speech is Noun and it comprises of about 35% of overall tokens
in English. The complete table of all the POS are represented below :

Part of speech English French German Spanish

Noun 35.6 33.2 30.2 40.1
Verb 14.6 18.1 20.8 19.4

Preposition 12.6 11.2 9.1 5
Adjective 8.2 10.2 12.2 7.3
Adverb 5.5 6.2 4.1 7.9

Conjunction 4.9 5 7.2 6.1
Digits 3.8 4.2 5.5 2.1

Determiner 11.6 10.1 7.5 10.1
Others 3.2 1.6 4.3 1.7

Table 5.5: Distribution of POS for multiple languages

This pie chart depicts the distribution of part of speech for English lan-
guage:
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Fig. 5.1. POS tagging results for English
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Chapter 6
Conclusion and Future work

Created a tool to enrich the DBpedia NIF dataset with additional informa-
tion. The output files generated by the tool for sentence splitting, tokeniza-
tion, part of speech and link enhancement tasks enriches the NIF dataset.
The individual output files generated from the tool are compressed to one
zip file for every language and every task, which is the enriched DBpedia
NIF dataset.
Result-sets generated by the tool consists of:
1) Sentences split on the text of Wiki articles
2) Segregated tokens on the text of Wiki articles
3) Part of speech for all the tokens on Wiki articles
4) Enhanced links on the text of Wiki articles
I have created a topic on DBpedia Forum [35] explaining the working of
my tool and its capability for enriching the NIF dataset.

To conclude, DBpedia NIF datasets are studied in order to obtain the
required details such as obtaining the full text of Wiki pages from NIF
context file, obtaining the details of surface forms from NIF text links file.
The obtained information from NIF datasets are trained with various NLP
tasks to produce meaningful results which helps DBpedia in increasing
the amount of its structured data. Various NLP operations that are ap-
plied on DBpedia NIF datasets are studied. The implementation followed
with storing the triples of individual Wiki articles from the NIF context
file separately. On the text of Wiki pages for multiple languages, NLP
tasks namely sentence splitting, tokenization, POS tagging and link en-
hancement are performed. The results of these NLP tasks are compared
and analysed for different libraries used to build my tool. A document-
ation on integration of new language or a new library to my tool is specified.

As a future work, the tool should be able to assign links to surface
forms having more than 3 tokens. The algorithm to enhance links could be
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improved by not providing links to same surface forms occurring consec-
utively and also improve the execution time of this task, if possible. The
tool could be improved by its ability to perform more NLP tasks. The tool
should be able to support more languages in its future releases.
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Acronyms

NLP Natural Language Processing

NIF NLP Interchange Format

RDF Resource Description Framework

POS Part of Speech

TTL Terse RDF Triple Language

TQL Terse RDF Quad-Turtle Language

HDT Header, Dictionary, Triples

W3C World Wide Web Consortium

LOD Linked Open Data
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Contents of enclosed CD

readme.txt.............................File with CD contents description
Files..................Directory with files generated from various tasks

Input<lang>.......Files generated from Separation of Wiki articles
Links...............Output files generated from Links Enhancement
POS..............Output files generated from Part of speech tagging
SearchOutput files generated from all 4 NLP tasks for specific file(s)
Sentences...........Output files generated from Sentence splitting
Tokens......................Output files generated from Tokenization
LinkDataset<lang>.csv.....Generated CSV file for each language

NIF_Dataset_Minimal_Version..................subsets of NIF dataset
nif_context_minimal_version_<lang>.ttl...NIF context dataset
nif_text_links_minimal_version_<lang>.ttl.Text links dataset

scripts................All python scripts regarding the implementation
Pre-processing scripts..Python scripts related to analysing and
pre-processing tasks

<NLP Task>_<library>.pyscripts wrt implementation of NLP tasks
run.sh.....................................script performing all NLP tasks
separate_scripts.sh..........script performing pre-processing tasks
readme.md.....Markdown consisting the steps for reproducing results
DP_Lakshmanan_Pragalbha.pdf...............Thesis text in PDF format
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