
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 8, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Homework management system in Jupyter

 Student: Bc. Dmitry Vanyagin

 Supervisor: doc. Ing. Štěpán Starosta, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The goal of the thesis is to design and implement a homework management system using Jupyter notebook
system. The system may be composed of open source components and must fulfill the following
requirements:

1) Manage (distribute, collect) homeworks for specific courses. A homework is a single Jupyter notebook
with possible data file attachments. The distribution and collection of homeworks should be modifiable to
fit the workflow of a course.
2) Provide feedback support: grading and comments of individual cells. The feedback should be in a form of
a thread, i.e., with multiple possible responses.
3) The management system should have a possibility to be provided for students without the need of local
installation of any software.
4) The system and its usage should be in maximum compliance with other faculty systems (the login should
be done using Usermap credentials, the system should use student's list from KOS, it should provide means
to export the grading to a grading system).

References

Will be provided by the supervisor.

Master’s thesis

Homework management system in Jupyter

Dmitry Vanyagin Bc.

Department of Software Engineering
Supervisor: Štěpán Starosta

February 10, 2020

Acknowledgements

I would like to thank my friends and colleagues for support and my supervisor
Štěpán Starosta for help and guidance during work on this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on February 10, 2020 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Dmitry Vanyagin. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vanyagin, Dmitry. Homework management system in Jupyter. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2020.

Abstrakt

Tato práce popisuje proces analýzy a implementace správy úkol̊u v systému
Jupyter. Hlavńım ćılem je umožnit vyučuj́ıćımu připravit, distribuovat a
sb́ırat zadáńı ve formě Jupyter sešit̊u. Výsledkem práce je funguj́ıćı proto-
typ splňuj́ıćı tyto požadavky. Práce d̊ukladně popisuje všechny kroky vývoje:
analýzu, implementaci, konfiguraci a nasazeńı.

Kĺıčová slova JupyterHub, Kubernetes, nbgrader, Systém

Abstract

This thesis describes the process of analysis and implementation of the Home-
work Management system in Jupyter. The main goal of this system is to allow
teachers to prepare, distribute and collect homework assignments, which are
prepared as Jupyter notebooks. Result of this work is a working prototype of
the system that fulfills the requirements. All the steps of analysis, implemen-
tation, configuration, and deployment are thoroughly described.

Keywords JupyterHub, Kubernetes, nbgrader, System

vii

Contents

Citation of this thesis . vi

1 Introduction 1
1.1 Motivation and goals . 1
1.2 Requirements . 2

1.2.1 Functional requirements 2
1.2.2 Non-functional requirements 2

2 Analysis and design 3
2.1 Distribution . 3

2.1.1 Manual installation . 3
2.1.2 Virtualization . 4
2.1.3 Docker . 6
2.1.4 Centralization . 8

2.2 Authentication . 9
2.2.1 OAuth 2.0 . 9

2.3 KOS . 15
2.4 Feedback module . 20

2.4.1 Notebook file format . 20
2.5 Infrastructure . 26

2.5.1 How the Subsystems Interact 26
2.5.2 User login . 27
2.5.3 Kubernetes . 28

2.6 Managing the homeworks . 30
2.6.1 Teacher’s use cases . 30
2.6.2 Student’s use cases . 33
2.6.3 nbgrader . 35

3 Implementation 39
3.1 Authentication . 40

ix

3.1.1 Making custom Authenticator 41
3.1.2 Making custom Docker image 44

3.2 Homework management . 45
3.2.1 Feedback module . 45
3.2.2 nbgrader installation . 47

3.3 Kubernetes . 48
3.3.1 Helm . 48

3.4 JupyterHub . 49
3.4.1 KOSAPI . 49
3.4.2 Spawner . 50
3.4.3 Deployment . 54
3.4.4 Testing . 55

4 Conclusion 57

Bibliography 59

A User manual 63
A.1 Authentication . 63

A.1.1 Login . 63
A.1.2 Logout . 63

A.2 Student’s guide . 64
A.2.1 Working with assignments 64

A.3 Teacher’s guide . 66
A.3.1 Managing assignments 66

B Glossary 69

C Acronyms 71

D Contents of enclosed flash drive 73

x

List of Figures

2.1 Using virtual machine . 5
2.2 Using Docker containers . 7
2.3 Using Hub for distribution . 8
2.4 OAuth2.0 protocol flow . 11
2.5 Authorization code flow . 12
2.6 GET /students/{studyCodeOrId} response body 18
2.7 GET /teachers/{usernameOrId}/courses response body 19
2.8 Example of top level schema . 20
2.9 Example of cell schema . 21
2.10 Example of markdown cell schema 21
2.11 Example of code cell schema . 22
2.12 Reserved cell metadata keys . 22
2.13 Feedback module use cases . 24
2.14 Schema of the Feedback module 24
2.15 Minimal code for Jupyter Notebook extension 25
2.16 Installation of an extension . 25
2.17 JupyterHub subsystems . 27
2.18 Management of homework use cases 36
2.19 Directory structure of a teacher . 37
2.20 Directory structure of a student . 37
2.21 nbgrader diagram . 38

3.1 Authentication process . 41
3.2 Custom spawner sequence diagram 53
3.3 Jupyter Homework Management system 56

A.1 Fetching assignment . 64
A.2 Downloaded assignment . 64
A.3 Assignment list expanded . 65
A.4 Assignment passed tests . 65

xi

A.5 Formgrader extension . 66
A.6 Creating assignment . 66
A.7 Assignment toolbar . 67
A.8 Generate student version . 67

xii

Chapter 1
Introduction

With the growing amount of easily accessible computation power, more and
more researchers are enabled to use every day computers for processing of
data.

There is a wide selection of software tools that allow people to use their
favorite programming language for it. One of the most popular solutions on
the market is Jupyter.[1] Project Jupyter is a non-profit, open-source project,
born out of the IPython Project in 2014 as it evolved to support interactive
data science and scientific computing across all programming languages.[2]

Jupyter Notebook - one of their solutions, is an open-source web appli-
cation that allows to create and share documents that contain live code,
equations, visualizations and narrative text. Uses include: data cleaning and
transformation, numerical simulation, statistical modeling, data visualization,
machine learning, and much more.[1]

1.1 Motivation and goals

The task of the thesis is to design and implement a homework management
system using Jupyter. Such a tool would allow teachers to efficiently create,
distribute and collect homework. Students will have immediate access to their
assignment and will be using features of JN to better understand the problem
by analyzing and visualizing it.

Moreover, another benefit of it is that students will be able to receive feed-
back from the teacher and follow a discussion thread. All of that plus seamless
integration into existing university information system by using Usermap cre-
dentials and KOSAPI.

The main goal will be to design a set of small applications (plugins) that
would solve individual requirement while being decoupled from the Jupyter
Notebook. All the plugins should be extendable and replaceable in case of
future changes in requirements.

1

1. Introduction

1.2 Requirements

In this section listed the set of functional and non-functional requirements,
which were extracted from the thesis assignment specification.

1.2.1 Functional requirements

The set of functional requirements consists of processes which needs to be
implemented in the Jupyter ecosystem in order for teachers and students to
manage homework assignments.

• Teacher should be able to manage (create, distribute and collect) home-
work assignments for specific courses.

• Teacher should be able to export list of grades from the system.

• Students should be able to fetch, implement and submit the homework
assignment.

• System should allow homeworks to be prepared as Jupyter notebook file
with possible data attachments.

• Teacher should be able to grade the assignment and provide feedback to
a student. The feedback should be in a form of a thread.

• User’s authentication should be done using University system.

• List of subjects for a logged in teacher should be fetched from University
API.

• List of students for a given subject should be fetched from University
API.

1.2.2 Non-functional requirements

• System should be scalable to handle different workloads.

• The management system should have a possibility to be provided to a
students without need of local installation of any software.

• System should be fast and responsive.

• System should be composed of open source components.

2

Chapter 2
Analysis and design

This chapter will demonstrate the analysis of the requirements and derivation
of the possible solution that would satisfy them. Of course there might exist
multiple approaches for individual features of the application, they will be
thoroughly described and compared between each other. Key topics will be
analyzed:

• Distribution of software among the students

• User authentication

• Connection with university system (KOSAPI)

• Communication between student and teacher

• Export of grades from the system

2.1 Distribution

Choice of distribution highly depends on specific requirements, in this case
it should be avoided to ask students to install or configure any software on
their own devices. Jupyter notebook – is a solution which is built as a web
application, so it could potentially be used to allow students to access it via
the internet. On top of that, custom functionality (plugins) will need to
be distributed, for example the one that will be connecting software with
university API. Although manual installation is not an acceptable solution,
it would still be a good idea to start the analysis from. By doing so, it will
demonstrate the complexity of the process from beginning till the end.

2.1.1 Manual installation

Installation process of Jupyter Notebook is not trivial for regular user.[3] Main
prerequisite is the Python installed on a target device, thus there could be used

3

2. Analysis and design

some tools that ease the process of setup. One of those tools is Anaconda.
Anaconda Distribution – is the open source platform for data science using
Python and R programming languages. It allows user to manage libraries,
dependencies and environments.[4] Steps to install Jupyter Notebook using
Anaconda are following:

• Download Anaconda. It’s recommended to download Anaconda’s latest
Python 3 version (currently Python 3.7).

• Install the version of Anaconda which was downloaded, following the
instructions on the download page.

Another alternative for experienced Python users is to use pip tool. Pip – is
a standard package-management system which is used to install and manage
software packages written in Python. A lot of the packages can be found
in the default source for packages and their dependencies - Python Package
Index. Python Package Index – is a repository of software for the Python pro-
gramming language. Currently it contains more than two hundred thousand
projects.

In order to install Jupyter Notebook using pip, it’s enough to run:

pip install jupyter

Both alternatives are good to install the basic configuration of Jupyter
Notebook, but the goal is to distribute custom build of it. Among those
customizations are features which fulfill other requirements, like integration
with university authentication system, homework review module, etc. Those
”packages” will need to be installed separately and definitely will make whole
setup more complicated and time consuming.

In the following section will be discussed only approaches which somehow
eliminate the need to install or configure the environment and deliver final
working ”bundle” to end users (students).

2.1.2 Virtualization

To minimize any custom installation, one approach could be to create a virtual
machine image with whole environment installed and configured, in this case
student will only need to download it from university server and run. Virtual
machine is basically an emulation of whole computer system. They are based
on computer architectures and provide functionality of a physical computer.

There exist multiple kinds of virtual machines:

• System virtual machine

• Process virtual machine

4

2.1. Distribution

System virtual machine provide a substitute for real machine, which means
that it is possible to run whole operating system on them. In order to achieve
this hypervisor is used to share and manage hardware and allows multiple
environments to to exist (and be isolated from one another) on the same
physical machine.

The term ”virtual machine” was originally defined by Popek and Goldberg
as ”an efficient, isolated duplicate of real computer machine”.[5]

The physical, ”real-world” hardware running the VM is generally referred
to as the ”host”, and the virtual machine emulated on that machine is generally
referred to as the ”guest”. A host can emulate several guests, each of which
can emulate different operating systems and hardware platforms.

Virtual machine image that was referred to before, could be a snapshot
of a hard disk which contains whole environment installed and configured.
Student then could run it as a ”guest” and have immediate access to Jupyter
Notebook with all the packages ready.

Figure 2.1: Using virtual machine

5

2. Analysis and design

This approach has several advantages and disadvantages.
Advantages:

• Students don’t need to configure environment

• For distribution it’s enough to just send a link for downloading the
virtual machine image

Disadvantages:

• Big size of image

• Not every OS supports virtualization

• To update the image, everyone need to delete old one and download new
version, thus whole process needs to be controlled by teacher in order to
ensure that every student has the most recent version.

• Students still need to install some software (virtual machine)

In order to get rid of several disadvantages, another approach could be
used: containerization.

With containers, instead of virtualizing the underlying computer like a
virtual machine (VM), just the OS is virtualized. Containers sit on top of a
physical server and its host OS — typically Linux or Windows. Each container
shares the host OS kernel, binaries and libraries. Shared components are read-
only. Sharing OS resources such as libraries significantly reduces the need
to reproduce the operating system code, and means that a server can run
multiple workloads with a single operating system installation. Containers
are thus exceptionally light — they are only megabytes in size and take just
seconds to start. Compared to containers, VMs take minutes to run and are
an order of magnitude larger than an equivalent container.

In contrast to VMs, all that a container requires is enough of an operating
system, supporting programs and libraries, and system resources to run a
specific program.[6]

By using containerization it will be possible to run Jupyter Notebook en-
vironment within the containers, to which only part of system resources is
allocated. This approach effectively reduces the overhead compared to full
virtualization, because applications do not need to be subjected to emulation
or run on intermediate virtual machine.

2.1.3 Docker

Docker – is a one one type of containers which was launched in 2013 as an
open source Docker Engine.

It leveraged existing computing concepts around containers and specifically
in the Linux world, primitives known as cgroups and namespaces. Docker’s

6

2.1. Distribution

technology is unique because it focuses on the requirements of developers and
systems operators to separate application dependencies from infrastructure.

Technology available from Docker and its open source project, Moby has
been leveraged by all major data center vendors and cloud providers. Many of
these providers are leveraging Docker for their container-native IaaS offerings.
Additionally, the leading open source serverless frameworks utilize Docker
container technology.[7]

Figure 2.2: Using Docker containers

The benefit of using Docker is that it would be possible to create a custom
docker image which will contain preinstalled and configured Jupyter notebook
software with custom plugins and be available for students to use.

Choosing this option is effectively solving the majority of issues with previ-
ous approach, such as size of the image and burden of distribution of updated
image to students, however here are still two main drawbacks:

• Students need to install docker on their computers

• Not every OS supports virtualization (thus Docker won’t be supported
as well)

7

2. Analysis and design

2.1.4 Centralization

The only approach which would completely eliminate any need in installation
or other manual work from students – is to create a centralized solution (hub)
accessible over the internet, that will be hosting all student’s notebooks.

This way it’s possible to integrate authentication system of the hub with
University, effectively fulfilling another requirement. Each user will be pro-
vided with JN instance that will contain all the necessary plugins and univer-
sity API integration. The configuration and update of those instances will be
realized by webmaster and all the students will be getting updated Jupyter
notebooks after next login to the system.

Figure 2.3: Using Hub for distribution

Unfortunately, this is solution is not perfect as well - since all the compu-
tation will be realized on server side, this hub needs to be hosted on a high
performance hardware with plenty of system resources. In case of a very com-
plex computations inside Jupyter notebook, system administrator would need
to ensure that CPU cores have high frequency, for bigger amount of simul-
taneous computations - high number of CPU cores themselves. Bigger data

8

2.2. Authentication

sets would need a lot of RAM to be effectively processed (to minimize read
amount from hard disk).

2.2 Authentication

Another important topic to analyse is authentication. Authentication – is a
process of verification of identity of a person. In this case, teacher or a student.

From the requirements, it’s needed to identify individual student or a
teacher because of multiple factors like:

• Teacher will be sending specific homework to specific subset of students
(enrolled in the class)

• Teacher and student will be exchanging messages regarding homework
solution

• Teacher will be grading homework of a student

The most popular way of authentication is a by providing a pair of login
and password. Each user has it’s associated username and secret password
which she needs to supply to prove that account belongs to her. This pair is
usually stored in database of a web server which is responsible for authenti-
cation.

Taking into account the requirements, authentication process needs to be
integrated with university one, meaning that both student and teachers should
be able to authenticate in the application by using their university credentials.
In order to do that, it is necessary to use university server as an identity
provider.

Identity provider – is a system that creates, maintains and manages iden-
tity information of so-called principals while providing authentication services
to allowed applications. Identity providers offer user authentication as a ser-
vice. Relying party applications, such as web applications, outsource the user
authentication step to a trusted identity provider.

2.2.1 OAuth 2.0

OAuth is an open standard for access delegation, commonly used as a way for
Internet users to grant websites or applications access to their information on
other websites but without giving them the passwords.[8]

Generally, OAuth provides to clients a ”secure delegated access” to server
resources on behalf of a resource owner. It specifies a process for resource own-
ers to authorize third-party access to their server resources without sharing
their credentials. Designed specifically to work with Hypertext Transfer Proto-
col (HTTP), OAuth essentially allows access tokens to be issued to third-party
clients by an authorization server, with the approval of the resource owner.

9

2. Analysis and design

The third party then uses the access token to access the protected resources
hosted by the resource server.[9]

OAuth 2.0 defines four roles:

• Resource owner

• Client

• Resource server

• Authorization server

Resource owner – is the user who authorizes an application to access
their account. The application’s access to user’s account is limited to the
”scope” of the authorization granted.

Both resource server and authorization server are located on the
side of identity provider. They host the protected user accounts (in this case
university accounts) and verify the identity of the user. Once identity is
verified, authorization server issues access tokens to the application. From
current perspective it is possible to fully delegate authentication mechanism
to identity provider hosted by the University and work with access tokens
returned from it. Each access token will be used to communicate with other
university systems.

Client – is the application that wants to access the user’s account. Before
it may do so, it must be authorized by the user.

Flow of the OAuth protocol is very straightforward. It consists of the
following steps:

1. The application requests authorization to access service resources from
the user

2. If the user authorized the request, the application receives an authoriza-
tion grant

3. The application requests an access token from the authorization server
(API) by presenting authentication of its own identity, and the autho-
rization grant

4. If the application identity is authenticated and the authorization grant
is valid, the authorization server (API) issues an access token to the
application. Authorization is complete.

5. The application requests the resource from the resource server (API)
and presents the access token for authentication

6. If the access token is valid, the resource server (API) serves the resource
to the application

10

2.2. Authentication

Figure 2.4: OAuth2.0 protocol flow

In order to use University identity provider, it’s needed to register the
application first. Registration consists of filling in some information about
the application, most importantly:

• Application name

• Application website

• Callback URL

Callback URL is the URL where the service will redirect the user after
they authorize or deny the application to access their account. Application
should handle both cases.

After registration, it will obtain client ID and client secret – client creden-
tials. Client ID is a public string that is used by the service API to identify
the application. The client secret – is a string which is used to authenticate
the identity of the application to the service (university identity provider API)
when application requests to access user’s account. Client secret must be kept
private.

In the figure 2.4 another important entity is demonstrated – authoriza-
tion grant. OAuth 2 defines four grant types:

11

2. Analysis and design

• Authorization code: used with server-side applications

• Implicit: used with mobile or web applications

• Resource owner password credentials: used with trusted applica-
tions, such as those owned by service itself

• Client credentials: used with applications API access

According to the university OAuth 2 server documentation, it supports
authorization code and client credentials grant types. Since the goal is to
authenticate the app as a user (student or teacher), the only grant type which
can be used is authorization code.

Figure 2.5: Authorization code flow

The authorization code grant type – is the most commonly used because
it is optimized for server-side applications, where source code is not pub-
licly exposed, and Client Secret confidentiality can be maintained. This is a
redirection-based flow, which means that the application must be capable of
interacting with the user-agent (i.e. the user’s web browser) and receiving
API authorization codes that are routed through the user-agent.[10]

12

2.2. Authentication

Flow consists of following steps:

1. Authorization code link
First, the user is redirected to specific authorization URL with a set of
following query parameters. The user is prompted to login and then
asked to approve authorization request.

Parameter Description
response type A value of code must be used.
client id Indicates the client that is making the re-

quest. The client ID is obtained during
the client registration.

redirect uri URL where users will be sent after autho-
rization.

scope (Optional) A space delimited set of scopes
the client requests. It might be all scopes
registered for the client or just a subset of
them. If not provided then all registered
scopes will be issued.

state (Optional) A string value used by the
client to maintain state between the re-
quest and callback. This value is in-
cluded when redirecting the user back to
the client. It should be used for preventing
cross-site request forgery attacks.

2. After that user is redirected back to the client, to URL specified by
the redirect uri. If the user approves the authorization request, then the
response contains an authorization code and state parameter (if included
in the request). If the user does not approve the request, the response
contains an error message.

3. Obtaining of access token
After the client receives the authorization code, it may exchange it for
an access token and a refresh token. This request is an HTTPS post
and includes the following parameters:

Field Description
code The authorization code returned from the

initial request.
grant type A value of authorization code must be

used.
redirect uri The URI registered with the application.

13

2. Analysis and design

Additionally extra request header needs to be sent:

Authorization: Basic ZHVtbXktY2xpZW50OnRvcC1zZWNyZXQ=

Where value is Base64 encoded string, combined as client id:client secret

A successful response to this request contains the following fields:

Field Description
access token The token that can be used to access re-

sources on a resource provider.
expires in The remaining lifetime of the access token,

in seconds.
refresh token A token that may be used to obtain a new

access token. Refresh tokens are valid un-
til the user revokes access.

scope A space delimited set of scopes the token
was issued for.

token type At this time, this field will always have the
value Bearer.

4. Refreshing of access token

When using grant authorization code, a refresh token is returned with an
access token. Once the original access token expires, the corresponding
refresh token can be sent to the OAuth 2 server to obtain a fresh access
token without requiring the user to re-authenticate.

To obtain a new access token this way, the client performs an HTTPs
POST to URL:

https://auth.fit.cvut.cz/oauth/token

The request must include the following parameters:

Field Description
refresh token The refresh token returned from the au-

thorization code exchange.
grant type A value of refresh token must be used.

Additionally header Authorization should be used again as before. In
response new access token will be returned.

14

2.3. KOS

2.3 KOS

Distribution of homework via the system would require another important
integration with University infrastructure, it needs to be able to pull the in-
formation about students and their courses in order to know who is enrolled
where. Luckily, there is a system which is used by university for management
of this information: KOS.

KOS – is a system which stores information about students, courses,
grades, final projects etc. Student can enroll subjects and manage her time
schedule. There exist multiple ways of interaction with the system, most
popular one is via web user interface. Another one is via it’s API (KOSAPI).

KOSAPI – is a web service which conforms with REST architectural style,
style that defines a set of constraints to be used for creating web services.

RESTful web services (services which conform with REST style) allow the
client (requesting system) to access and manipulate textual representations of
web resource by using predefined set of stateless operations.

Lets discuss RESTful web service architecture in more detail, the backbone
of whole concept is the resource oriented architecture (ROA). The main
term here is a resource – it’s a something that can be stored on a computer
and can be represented as a stream of bits. What makes resource a resource –
it has to have at least one URI, which is the name and address of a resource.[11]

Each URI should be descriptive, for example:

https://example.org/users/1231

Could be an address of user with ID 1231. In this case resource is the the
information about this user.

Another important features of ROA are addressability and statelessness.
An application is addressable if it exposes the interesting aspects of its data
set as resources. Since resources are exposed through URIs, an addressable
application exposes a URI for every piece of information it might conceivably
serve. This is usually an infinite number of URIs.

From the end-user perspective, addressability is the most important aspect
of any web site or application. To fully understand what addressability is, let’s
look at this URI:

https://example.org/search?q=cat

It is clear that this URI could lead to the page with search results (cats).
By incorporating query into URI, user can directly be navigated to this page
any time.

Example of non-addressable website would have URI for the same search
results page look like this:

15

2. Analysis and design

https://example.org/search

Which would present a search page where it is needed to input ”cat”
manually to get the same list of cats.

Addressability is one of the four features of ROA, second one is state-
lessness. Statelessness means that every HTTP request happens in complete
isolation. When the client makes an HTTP request, it includes all informa-
tion necessary for the server to fulfill that request. The server never relies on
information from previous requests. If that information was important, the
client would have sent it again in this request.

More practically, statelessness could be considered in terms of addressabil-
ity. Addressability says that every interesting piece of information the server
can provide should be exposed as a resource, and given its own URI. Stateless-
ness says that the possible states of the server are also resources, and should
be given their own URIs.[11]

Statelessness also brings new features. It’s easier to distribute a stateless
application across load-balanced servers. Since no two requests depend on
each other, they can be handled by two different servers that never coordinate
with each other. Scaling up is as simple as adding more servers into the load
balancer. A stateless application is also easy to cache: software can cache the
response returned from given URI.

Third feature of ROA called ”Hypermedia as the engine of application
state” (HATEOAS).[12] This means that the current state of an HTTP “ses-
sion” is not stored on the server as a resource state, but tracked by the client
as an application state, and created by the path the client takes through the
Web. The server guides the client’s path by serving “hypermedia”: links and
forms inside hypertext representations.

Fourth feature is the uniform interface of a web service. In order to control
resource, it is possible to use one of the several HTTP methods, where each
of them has a specific semantic:

• Retrieve a representation of a resource: HTTP GET

• Create a new resource: HTTP PUT to a new URI, or HTTP POST
to an existing URI

• Modify an existing resource: HTTP PUT to an existing URI

• Delete an existing resource: HTTP DELETE

In the case of a GET request, the server sends back a representation in
the response body. For a DELETE request, the response body may contain a
status message, or nothing at all. To create or modify a resource, the client
sends a PUT request that usually includes a body. The body contains the

16

2.3. KOS

client’s proposed new representation of the resource. What data this is, and
what format it’s in, depends on the service.

Since the goal is to pull the data about students, teachers and their courses,
GET requests are the ones to be used. More specifically, these URIs:

• GET /students/{studyCodeOrId} – returns information about given
student. Each student can have multiple studies and it is needed to know
which is the actual one (that information is part of response)

• GET /students/{studyCodeOrId}/enrolledCourses – returns in-
formation about enrolled courses for given student. It is needed to know
which subjects are accessible to current user.

• GET /teachers/{usernameOrId}/courses – returns information
about which courses given teacher is teaching. This endpoint is needed
to determine which courses the current teacher can manage in the sys-
tem.

Format from all URIs is Atom, extension of XML.[13]

17

2. Analysis and design

Field Data type Description
branch Branch Branch of studies
department Division Department of student

(only for PhD students)
email string Email
startDate date Date of beginning of stud-

ies
faculty Division Information about faculty

of studies
firstName string First name
grade integer Year of studies
interruptedUntil date Date till when studies are

interrupted
lastName string Last name
personalNumber string Personal number
programme Programme Program of studies
endDate date Date of finishing of studies
studyForm StudyForm Form of studies
studyGroup integer Number of study group
studyPlan StudyPlan Study plan
studyState StudyState State of studies
supervisor Teacher Supervisor of thesis (only

for PhD students)
supervisorSpecialist Teacher Supervisor of specialist

(only for PhD students)
studyTerminationReason StudyTermination Reason of termination of

studies
titlesPost string Titles after name
titlesPre string Titles before name
username string Username

Figure 2.6: GET /students/{studyCodeOrId} response body

18

2.3. KOS

Field Data type Description
allowedEnrollmentCount integer How many times student

can sign up for this subject
during whole studies

approvalDate date Date of approval
classesLang ClassesLang Language of teaching
classesType ClassesType Type of teaching (lectures,

seminars etc.)
code string Unique identificator
completion Completion Method of completion
credits integer How many credits
department Division Department
description string Description
homepage string Web page of the course
keywords string Keywords
lecturesContents string Content of lectures
literature string Literature list
name string Name
note string Note
objectives string Goals and objectives
programmeType ProgrammeType Type of programme
range string Range of teaching time
requirements string Requirements
season Season Season of the year
state CourseState State of subject
studyForm StudyForm Form of study
superiorCourse Course Parent course
subcourses Course Subcourses
tutorialsContents string Content of seminars
instance Instance Instance of course

Figure 2.7: GET /teachers/{usernameOrId}/courses response body

19

2. Analysis and design

2.4 Feedback module

Feedback module should allow simple communication between teacher and
student in the scope of a cell. In order to continue the analysis, it is needed
first to determine how data is being store in Jupyter Notebook and what is a
cell in particular.

2.4.1 Notebook file format

The official Jupyter Notebook format is defined as a JSON schema. At the
highest level, notebook is a dictionary with a few keys:

• metadata

• nbformat

• nbformat minor

• cells

On the following figure 2.8 JSON schema is demonstrated. The most
interesting entities are cells, which needs to be described in more details.

{
"metadata" : {

"kernel_info": {
if kernel_info is defined, its name field is required.
"name" : "the name of the kernel"

},
"language_info": {

if language_info is defined, its name field is required.
"name" : "the programming language of the kernel",
"version": "the version of the language",
"codemirror_mode": "The name of the codemirror mode to use"

}
},
"nbformat": 4,
"nbformat_minor": 0,
"cells" : [

list of cell dictionaries
],
}

Figure 2.8: Example of top level schema

There are few basic cell types for encapsulating code and text. All cells
have the following structure:

20

2.4. Feedback module

{
"cell_type" : "type",
"metadata" : {},
"source" : "single string or [list, of, strings]",

}

Figure 2.9: Example of cell schema

First cell type is markdown, those cells are used for body of notebook
and contain markdown formatted text. Markdown – is a lightweight markup
language, which allows to structure a text. The result of it is similar to HTML,
for example it is possible to specify headings, paragraphs, lists, links, images,
etc. Features of markdown allow to nicely format the body text of Jupyter
notebook.

The basic structure of markdown cell:

{
"cell_type" : "markdown",
"metadata" : {},
"source" : "[multi-line *markdown*]",

}

Figure 2.10: Example of markdown cell schema

Second cell type is code. Code cells are the primary content of Jupyter
notebooks.[14] They are used to contain a source code and outputs associated
with executing that code. Example of a code cell structure is demonstrated
on the following figure:

According to notebook format documentation [14], metadata field which
is present in both cell types, can be used to store arbitrary JSON information.
Some metadata keys are already defined at the cell level and it is prohibited
to use their names:

21

2. Analysis and design

{
"cell_type" : "code",
"execution_count": 1, # integer or null
"metadata" : {

"collapsed" : True, # whether the output of the cell is
collapsed

"scrolled": False, # any of true, false or "auto"
},
"source" : "[some multi-line code]",
"outputs": [{

list of output dictionaries
"output_type": "stream",
...

}],
}

Figure 2.11: Example of code cell schema

Key Value type Description
collapsed bool Whether the cell’s output

container should be col-
lapsed

scrolled bool or ”auto” Whether the cell’s output
is scrolled, unscrolled, or
autoscrolled

deletable bool If False, prevent deletion of
the cell

editable bool If False, prevent editing of
the cell (by definition, this
also prevents deleting the
cell)

format ”mime/type” The mime-type of a Raw
Cell

name string A name for the cell. Should
be unique across the note-
book. Uniqueness must be
verified outside of the json
schema.

tags list of string A list of string tags on the
cell. Commas are not al-
lowed in a tag

Figure 2.12: Reserved cell metadata keys

22

2.4. Feedback module

As specified in requirements, feedback will be provided in a scope of a
cell, meaning that any cell could have a possible conversation thread between
student and a teacher. Please note, that it’s not planned to use schema to
provide grading functionality, it will be realize using open source plugin which
fulfills that requirement and will be discussed in section 2.6. Taking this
information and the list of requirements into account, using metadata field for
storing of this conversation looks like a possible solution. In order to proceed
with it, several things needs to be defined:

• Unique namespace of a key, which will prevent collision with other cus-
tom modules of Jupyter Notebook.

• Key for storing of data of the feedback module

• Feedback module JSON schema

At first, JSON schema should be defined. Decision on how should it look
like must be derived from analysis of particular use cases for this module:

Write a message for specific cell: Both student and teacher can write
a message into the cell of Jupyter notebook.

1. user selects the cell (focuses)

2. user types the text of a message

3. user clicks submit button to add message to the thread

Delete a message from specific cell: Both student and teacher can
delete a message that is owned by them from the thread. In order to keep the
replies of deleted message, the text of it will change to ”deleted” instead of
removing of whole record.

1. user clicks ”delete” icon on a message

2. user confirms that she wants to delete a message

Main element of the schema is a message. Each message is defined by
content, author and a time of creation - these are the three basic attributes.
All the messages will be stored as an array defined by messages key.

Final JSON schema will look like this:

23

2. Analysis and design

Figure 2.13: Feedback module use cases

{
...
"metadata" : {

...
"feedback_md" : {

"messages" : [
...
{

"id" : "unique id of the message",
"text" : "contents of the message",
"username" : "username of the author".
"datetime" : "date and time of creation"

},
...

]
},
...

},
...

}

Figure 2.14: Schema of the Feedback module

Decision to store messages as metadata value fulfills the requirements 1.2,
however it has some disadvantages. The main disadvantage is that the source

24

2.4. Feedback module

of data is located at client’s side, meaning that theoretically user can alter or
remove this data if she edited the JSON structure of notebook directly.

The proper solution for that problem would be to transfer the source of
data to a remote server (backend) and store the messages in dynamic storage
like database. In this case Feedback module would be loading messages from
remote URI and user’s actions on local JSON data won’t be affecting records
on remote server. This solution although a superior one, but greatly extends
the scope of this thesis.

The functionality of this module will be implemented as an extension.
Jupyter Notebook provides possibility to create custom front-end extensions,
which allow to modify the behavior of the various pages like the dashboard,
the notebook, or the text editor.[15]

A front-end extension is a JavaScript file that defines a module which
exposes at least a function called load ipython extension, which takes no
arguments.[15] The minimal code needed for a working extension:

// file my_extension/main.js

define(function(){

function load_ipython_extension(){
console.info(’this is my first extension’);

}

return {
load_ipython_extension: load_ipython_extension

};
});

Figure 2.15: Minimal code for Jupyter Notebook extension

After extension is implemented, it can be installed and enabled via follow-
ing commands:

jupyter nbextension install path/to/my_extension/
jupyter nbextension enable my_extension/main

Figure 2.16: Installation of an extension

25

2. Analysis and design

2.5 Infrastructure

As was described earlier 2.1.4, the best solution for distribution would be
the centralized one. Luckily, there exists a project which exactly fulfills the
requirements - JupyterHub.

It is a software that solves the problem with centralization of Jupyter
notebook instance management. It spawns, manages, and proxies multiple
instances of the single-user Jupyter notebook server. It can be used to serve
notebooks to a class of students, a corporate data science group, or a scientific
research group. This means that it can deliver custom instances of notebooks
(customized with different plugins) to teachers and students.

JupyterHub is a set of processes that together provide a single user Jupyter
Notebook server for each person in a group. It consists of a three major
subsystems:

• Multi-user Hub (tornado process)

• Configurable http proxy (node-http-proxy)

• Multiple single-user Jupyter notebook servers (Python/IPython/tornado)

JupyterHub performs the following functions:

1. The Hub launches a proxy

2. The proxy forwards all requests to the Hub by default

3. The Hub handles user login and spawns single-user servers on demand

4. The Hub configures the proxy to forward URL prefixes to the single-user
notebook servers

2.5.1 How the Subsystems Interact

Users access JupyterHub through a web browser, by going to the IP address
or the domain name of the server.

The proxy is the only process that listens on a public interface. The Hub
sits behind the proxy at /hub. Single-user servers sit behind the proxy at
/user/[username].

Different authenticators control access to JupyterHub. The default one
(PAM) uses the user accounts on the server where JupyterHub is running. In
order to use it, it is needed to create a user account on the system for each per-
son. Using other authenticators, it is possible to allow users to sign in with e.g.
a GitHub account, or with any single-sign-on system of the organization.[16]

Existing authenticator can be used to connect the instance with University
OAuth server.

26

2.5. Infrastructure

Figure 2.17: JupyterHub subsystems

Next, spawners control how JupyterHub starts the individual notebook
server for each user. The default spawner will start a notebook server on the
same machine running under their system username. The other main option
is to start each server in a separate container, often using Docker 2.1.3.

2.5.2 User login

When a user accesses JupyterHub, the following events take place:

1. Login data is handed to the Authenticator instance for validation

27

2. Analysis and design

2. The Authenticator returns the username if the login information is valid

3. A single-user notebook server instance is spawned for the logged-in user

4. When the single-user notebook server starts, the proxy is notified to for-
ward requests to /user/[username]/* to the single-user notebook server.

5. A cookie is set on /hub/, containing an encrypted token.

6. The browser is redirected to /user/[username], and the request is han-
dled by the single-user notebook server.

The single-user server identifies the user with the Hub via OAuth:

1. on request, the single-user server checks a cookie

2. if no cookie is set, redirect to the Hub for verification via OAuth

3. after verification at the Hub, the browser is redirected back to the single-
user server

4. the token is verified and stored in a cookie

5. if no user is identified, the browser is redirected back to /hub/login

Support of OAuth allows to integrate JupyterHub with the University
authentication server, which means that users will be able to login using Uni-
versity credentials as specified in requirements 1.2.

2.5.3 Kubernetes

There are exist several deployment options for JupyterHub, it’s possible to in-
stall it via different package managers like pip and conda directly to running
OS. Environment also possible to deploy via docker or build from the ground
up by setting up every module of JupyterHub manually.[17]

In order to have the most robust and flexible instance of JupyterHub, it’s
preferred to deploy it on a Kubernetes cluster.

Kubernetes is an open-source container-orchestration system for automat-
ing application deployment, scaling and management. It defines a set of
”building blocks”, which provide mechanisms for deployment, maintaining
and scaling of applications based on CPU, memory or custom metrics.[18]

The key objects are:

• Pods
Pod is a higher level of abstraction grouping containerized components.
A pod consists of one or more containers that are guaranteed to be
co-located on the host machine and can share resources.[19] Each pod
is assigned a unique Pod IP address within the cluster, which allows
application to use ports without the risk of conflict.[20] When application

28

2.5. Infrastructure

• Services
Service is a set of pods function together. Services are discoverable
via Kubernetes DNS or via environmental variables. Each service is
assigned a stable IP address and load balancer decides in round-robin
manner which pod inside a service is being used. By default all service
are exposed only inside cluster.

• Volumes
By default, storage inside Kubernetes is not ”persistent” – it will be
wiped out after restart of the pod. In order to store data persistently,
volumes should be used. Each volume acts as a storage which can be
shared between containers inside a pod. Each volume is mounted to
specific mount points which is defined by configuration.

• Namespaces
Kubernetes provides possibility to partition resources into non-overlapping
sets which are called namespaces.[21] They are very helpful in environ-
ments with many users spread across multiple teams. This way these
people can work independently on different namespaces without affect-
ing each other.

Architecture of Kubernetes follows the master/slave architecture, where
one device or process controls one of more other devices or processes and acts
as a communication hub between them. The components of Kubernetes can
be divided into those that manage an individual node and those that are part
of the control plane.[22]

The Kubernetes master is the main unit which controls and manages com-
munication across the system. The Kubernetes control plane consists of var-
ious components, that can run both on single node or multiple masters.[22]
These are some components of the control plane:

• etcd
etcd is a persistent, lightweight, distributed key-value store which stores
the configuration data of the cluster and represents the overall state of it
at any given time. For example, if deployer specifies that three instances
of a given pod need to be running, this fact is stored in etcd. If happens,
that only two instances are running, then Kubernetes will schedule pod
creation of the missing one.[22]

• API server
The API server is the key component which provides API using JSON
over HTTP for internal and external interface to Kubernetes.[19] The
API server processes requests and updates the state of objects in etcd
and by doing so, allows to configure workloads and containers across the
nodes.[19]

29

2. Analysis and design

• Scheduler

The scheduler is a component which selects the node that will be used to
run a new pod, based on resource availability. The scheduler monitors
resource use on each node to ensure that workload is not scheduled in
excess.[19]

• Controller manager

A controller is a reconciliation loop which is driving the cluster state
towards the desired one, communicating with API server to create, up-
date, and delete the resources.[23] The controller manager is a process
that manages a set of Kubernetes controllers. One type of controllers
is a Replication Controller, which handles replication and scaling by
running a specified number of copies of a pod across the cluster. If some
pod fails, it handles creation of replacement pods.[23]

Kubernetes node is a machine where containers (workloads) are de-
ployed. Every node in a cluster runs a container runtime such as Docker and
other components listed below:

• Kubelet

Kubelet is responsible for the state of each node, ensuring that every
container in the node is ”healthy”. It takes care of starting, stopping
and maintaining application containers.[19]

• Kube-proxy

Kube-proxy is an implementation of a network proxy and a load bal-
ancer. It’s responsible for routing traffic to the appropriate container
based on IP and port of incoming request.[19]

2.6 Managing the homeworks

Technical requirements specify several main features which are required for
course teachers to create, update, distribute, collect, and grade the home-
works. At the same time, students needs to be able to receive, implement,
submit and view the results of those homeworks. Let’s structure it into well
defined use cases:

2.6.1 Teacher’s use cases

Teacher’s use cases should cover all the core functionality regarding creation,
distribution, collection, and grading of the homeworks.

• Select a course

30

2.6. Managing the homeworks

Each teacher should be able to select a course she is teaching. Courses
should be fetched from University system.
Scenario:

1. Teacher is presented with a list of her courses.
2. Teacher selects a course. All other actions will be made in the scope

of selected course.

Postconditions:

– Teacher sees all homework related data for selected course.

• Create homework
Each teacher should be able to create homework for a course. Home-
works are created as Jupyter notebook files.
Scenario:

1. Teacher prepares Jupyter notebook file with homework assignment.
2. Teacher uploads the file with assignment into the system as a home-

work.
3. (Alternative flow) Teacher creates empty Jupyter notebook file in-

side the system and writes the assignment.

Postconditions:

– Created homework is stored into the system as a draft.

• Update homework
Each teacher should be able to modify already created homework as-
signment.
Preconditions:

– Teacher has selected already created homework in the system.

Scenario:

1. Teacher modifies contents of it directly inside the system.
2. Teacher saves the changes.

Postconditions:

– Changes which were made by teacher are stored into the system

• Delete homework
Each teacher should be able to delete already created homework.
Preconditions:

31

2. Analysis and design

– Teacher has selected already created homework in the system.

Scenario:

1. Teacher executes delete action via user interface.

Postconditions:

– Homework record is deleted from selected course.

• Publish homework

Each teacher should be able to publish a homework draft, so that stu-
dents have access to it. Once it’s published, students should be able to
fetch it and start working.

Preconditions:

– Teacher has selected already created draft of a homework assign-
ment.

Scenario:

1. Teacher executes publish action via user interface.

Postconditions:

– Published homework is available for students of this course.

• Fetch student’s solution

Each teacher should be able to fetch and view student’s solution for
selected homework assignment.

Preconditions:

– Teacher has selected already created and published homework as-
signment.

Scenario:

1. Teacher executes fetch action via user interface.

2. Teacher sees homework solutions which were submitted by stu-
dents.

3. Teacher can view the contents of a solution.

Postconditions:

– Teacher sees the contents of a chosen homework solution.

32

2.6. Managing the homeworks

• Grade student’s solution
Each teacher should be able to grade a student’s solution for a homework
assignment.
Preconditions:

– Teacher fetched and opened a solution to a homework assignment

Scenario:

1. Teacher input grade for a homework solution.
2. Teacher submits the grading.

Postconditions:

– Grading for a student’s solution is stored in the system and avail-
able for student.

• Export grades
Each teacher should be able to export a list of grades from the system
for selected course.
Preconditions:

– Teacher did grading of homework solutions for a specific course.

Scenario:

1. Teacher executes export action via system user interface.

Postconditions:

– Export of grades in text format is available for teacher to download.

2.6.2 Student’s use cases

Student’s use cases cover processes of fetching, implementing, and submitting
of the homeworks.

• Select a course
Each student should be able to select a course she is enrolled in.
Scenario:

1. Student sees a list of courses he is enrolled in.
2. Student selects a course from the list.

Postconditions:

33

2. Analysis and design

– Course is selected. All other actions will be done in the scope of
this course.

• Fetch homework assignments
Each student should be able to fetch a homework assignment that was
already published by the teacher of the course.
Preconditions:

– Student has selected a course.

Scenario:

1. Student executes fetch action via user interface.

Postconditions:

– Student can see the contents of the fetched homework assignment.

• Implement a homework solution
Each student can implement a solution for a homework assignment.
Preconditions:

– Student has fetched and opened homework assignment.

Scenario:

1. Student implements a solution for a fetched homework.
2. Student saves the solution.

Postconditions:

– Solution for a homework is saved into the system and is ready to
be submitted.

• Submit the solution
Each student should be able to submit a solution for a homework as-
signment.
Preconditions:

– Student has implemented and saved a solution for a homework
assignment.

Scenario:

1. Student executes submit action via user interface.

Postconditions:

34

2.6. Managing the homeworks

– Student’s solution to a homework is available for teacher to grade.

• Fetch a grade for a homework
Each student should be able to fetch a grade for a homework solution
she submitted.
Preconditions:

– Student has implemented and submitted homework solution.
– Teacher has graded the solution.

Scenario:

1. Student executes grading fetch action via user interface.

Postconditions:

– Student can see the grading of her solution.

2.6.3 nbgrader

In order to provide the required functionality, it is decided to use an open
source solution Nbgrader - system for assigning and grading of Jupyter note-
books. Core functionality of it covers the requirements regarding management
of the homework.

It organizes the courses and files using specific structure on the filesystem:

{course_dir}/{step}/{stud_id}/{homework_id}/{notebook_id}.ipynb

Example of the course data for a teacher account on the filesystem:
Example of the course data for a student account on the filesystem:

35

2. Analysis and design

Figure 2.18: Management of homework use cases

Nbgrader contains several extensions to provide all it’s functionality to
users. Teachers are utilizing Formgrader and Create Assignment exten-
sions in order to manage and grade the assignments, while students need to use
just Assignment List extension to have access to the assignments prepared
by teachers.

Although nbgrader is a tool for Jupyter Notebook (client-side application),
it also integrates with JupyterHub (server-side application). It’s doing so via
another set of extensions, server-side versions of the ones listed above.

36

2.6. Managing the homeworks

course1...the course directory
gradebook.db..................database of homeworks and students
nbgrader config.py configuration file of a course
source ... homework source

hw1...homework directory
problem1.ipynb.........Jupyter Notebook file with homework
problem2.ipynb

release....................The directory with published homeworks
hw1

problem1.ipynb
problem2.ipynb

submitted.........The directory with submitted homework solutions
student1......................Student’s directory with solutions

hw1
problem1.ipynb........Jupyter Notebook file with solution
problem2.ipynb

student2
hw1

problem1.ipynb
problem2.ipynb

student2
autograded.....................Directory with autograded solutions
feedback....................Directory with teacher’s grading results

Figure 2.19: Directory structure of a teacher

course1...the course directory
hw1..homework directory

problem1.ipynb............Jupyter Notebook file with homework
problem2.ipynb
feedback.................Directory with teacher’s grading results

2019-05-31-11-48-34.................Timestamp of feedback
problem1.html..............Teacher’s feedback with grade
problem2.html

hw2

Figure 2.20: Directory structure of a student

When it’s integrated with JupyterHub, one of the most important com-
ponents of it becomes so-called Exchange. Exchange acts as a ”middleman”
between teacher and student. When teacher releases the assignment, it is
being stored in exchange directory. Later, when student will trigger fetch
operation, it will pull it from the same exchange location.

37

2. Analysis and design

Figure 2.21: nbgrader diagram

In order to get the course results from the system, there exists the Export
plugin which allows teachers to export course grades into CSV format, so that
it can be later imported into school information system (KOS). This plugin
can also be extended if other format is needed.

38

Chapter 3
Implementation

In this chapter implementation part of the requirements will be described.
Following observations and conclusions which were made in previous chapter,
full scope of work will include:

• Implementation of the authentication process against University system

• Implementation of the homework management system

• Setting up infrastructure and preparation of deployment scripts

• Installation and configuration of JupyterHub

In order to not ”reinvent the wheel”, it is advised to reuse existing ap-
proaches and solutions.

At first, authentication part of the solution would be described.

39

3. Implementation

3.1 Authentication

Authentication process in University follows OAuth2 protocol, which was de-
scribed in subsection 2.2.1. The target is to implement this process into
JupyterHub, which will be used as a main component in whole system.

JupyterHub supports various OAuth2 providers out of the box, this list
includes:

• Auth0

• Bitbucket

• CILogon

• GitHub

• GitLab

• Globus

• Google

• MediaWiki

• Okpy

• OpenShift

It is not required to use any of these services, so more general solution
should be found. Luckily, there exists a ”generic” implementation of the
Authenticator.[24]

In order to test this Authenticator, it is needed to register application in
University Apps Manager [25], where client ID and client secret will be
obtained which will be used as credentials for client application.

Lets summarize the process which needs to happen in order to fully au-
thenticate the user against University system:

It is clear from figure 3.1, Authenticator needs to handle the process from
receiving the authorization code till retrieving user’s details. Unfortunately,
generic Authenticator bundled with JupyterHub uses different naming of pa-
rameters in requests and because of that University server is not able to process
them.

In order to make it work, it is necessary to implement custom Authenti-
cator and bundle it with JupyterHub Docker image.

40

3.1. Authentication

Figure 3.1: Authentication process

3.1.1 Making custom Authenticator

Making of custom Authenticator for JupyterHub starts from extending of
existing Authenticator class and overriding authenticate method:

from IPython.utils.traitlets import Dict
from jupyterhub.auth import Authenticator

class DictionaryAuthenticator(Authenticator):

passwords = Dict(config=True,
help="""dict of username:password for authentication"""

)

async def authenticate(self, handler, data):
if self.passwords.get(data[’username’]) == data[’password’]:

return data[’username’]

Here depicted the example of a custom Authenticator which uses simple
dictionary to do authentication.

For the Authenticator it is possible to reuse existing class OAuthenti-
cator which is bundled with JupyterHub, it already has some required logic
implemented.

41

3. Implementation

from .oauth2 import OAuthenticator

...

class ZuulOAASOAuthenticator(OAuthenticator):

...

@gen.coroutine
def authenticate(self, handler, data=None):

...

First step is getting the code value from URL. It will be used to get
access/refresh token pair from University system as per figure 3.1.

def authenticate(self, handler, data=None):
code = handler.get_argument("code") #getting code value

http_client = httpclient.AsyncHTTPClient()

params = dict(
redirect_uri=self.get_callback_url(handler),
code=code,
grant_type=’authorization_code’

)

...

req = httpclient.HTTPRequest(url,
method="POST",
headers=headers,
body=urllib.parse.urlencode(params)
)

#getting response with access/refresh tokens
resp = yield http_client.fetch(req)

Next step is to fetch user details (username of the user is the most impor-
tant). Once it is fetched, whole process is finished.

...

def authenticate(self, handler, data=None):

...

42

3.1. Authentication

resp = yield http_client.fetch(req)

resp_json = json.loads(resp.body.decode(’utf8’, ’replace’))

access_token = resp_json[’access_token’]
refresh_token = resp_json.get(’refresh_token’, None)
token_type = resp_json[’token_type’]

...

req = httpclient.HTTPRequest(url,
method=self.userdata_method,
headers=headers
)

resp = yield http_client.fetch(req)
resp_json = json.loads(resp.body.decode(’utf8’, ’replace’))
name = resp_json.get(self.username_key) #getting username

return auth data to be used by the rest of the system
return {

’name’: name,
’auth_state’: {

’access_token’: access_token,
’refresh_token’: refresh_token,
’oauth_user’: resp_json,
’scope’: scope,

}
}

The Authenticator passed testing and successfully completed authentica-
tion process against University system. Next step is to make it available inside
JupyterHub build.

43

3. Implementation

3.1.2 Making custom Docker image

There are multiple methods of JupyterHub installation, each of them would
require different way to embed custom Authenticator. As was concluded in
previous chapter, the best way to setup JupyterHub for current use case will
be to do so inside Kubernetes cluster.

As was already written in section 2.5.3, Kubernetes nodes operate Docker
containers, thus all applications which are deployed should be containerized.

The plan is to make ZuulOAASOAuthenticator available inside Jupyter-
Hub during it’s runtime on a cluster. To do so, it is necessary to use official
JupyterHub Docker image [26] and customize it according to the needs.

What is required is to modify Dockerfile of the image and to copy custom
Authenticator inside of it, then run installation process:

...

copy folder with custom Authenticator inside
COPY Zuul-OAAS-Authenticator /tmp/Zuul-OAAS-OAuthenticator

install it to be available in the system
RUN pip3 install -e /tmp/Zuul-OAAS-OAuthenticator

...

After Dockerfile was modified, it was built locally and pushed to Docker-
Hub [27] repository. DockerHub is used for storing of Docker images and later
will be used to pull modified JupyterHub image by Kubernetes cluster.

44

3.2. Homework management

3.2 Homework management

Homework management functionality will be realized by installation and con-
figuration of nbgrader - open source solution which is developed and main-
tained under Project Jupyter and currently is one of the most popular solutions
for schools which use Jupyter Notebook.[28]

Whole process of implementation will consists of several steps:

1. Implementation of the Feedback module

2. Preparation of custom Docker image for Jupyter Notebook which will
include the module

3. Installation of nbgrader

3.2.1 Feedback module

Feedback module will be implemented as a Jupyter Notebook extension which
will provide a simple user interface for writing of messages into the notebook
cell as described in section 2.4.

Since Jupyter Notebook is a web application, it is necessart to use web
technologies (JavaScript, HTML, CSS) to create custom extension. The basic
structure consists of just one function which needs to be exposed:

// file my_extension/main.js

define(function(){

function load_ipython_extension(){
console.info(’this is my first extension’);

}

return {
load_ipython_extension: load_ipython_extension

};
});

In this function callback will be registered which will add the new option
into the cell toolbar.

var CellToolbar = celltoolbar.CellToolbar;

CellToolbar.register_callback(
’feedback_md.show_count’,
show_message_count

);

45

3. Implementation

CellToolbar.register_preset(
’Feedback module’,
[’feedback_md.show_count’]

);

After this option is used, new button will appear above the cells. This
button will toggle chat window on mouse press. Everything is implemented
using JQuery library, it’s one of the most popular front-end JavaScript libraries
which provides functions that cover most of the front-end manipulations. The
button code is a simple JQuery snippet:

var button = $(’<button/>’)
.addClass("btn btn-default btn-xs")
.text("Display reviews (" + message_count + " messages)")
.click(function () {

if ($(div).find(’#feedback-form’).length > 0) {
hide_chat(div, cell);

} else {
show_chat(div, cell);

}

return false;
});

In order to modify metadata of the cell, it is needed to pass it inside the
function which will manipulate metadata directly:

var add_message = function(cell, message, username) {
cell.metadata.feedback_md.messages.push({
’id’: uuidv4(),

’text’: message,
’username’: username,
’datetime’: Date().toLocaleString()

});
}

Once extension is implemented, it is necessary to create a custom Docker
image of Jupyter Notebook which will have the extension installed and en-
abled. The process is similar to the one which was described in section 3.1.2.
Dockerfile will be started from one of Jupyter Notebook images, the source
code of extension will be copied inside and installation is executed:

...

COPY ./feedback_md /tmp/feedback_md

46

3.2. Homework management

RUN jupyter nbextension install /tmp/feedback_md/ --sys-prefix && \
jupyter nbextension enable feedback_md/feedback_md --sys-prefix

...

Final built image will be pushed to DockerHub as well.

3.2.2 nbgrader installation

Installation of nbgrader is a very simple process, modification of it’s function-
ality is not needed, so it’s just enough to add setup process to Dockerfile of
Jupyter Notebook:

RUN pip install nbgrader

RUN jupyter nbextension install --sys-prefix --py nbgrader
--overwrite && \

jupyter nbextension enable --sys-prefix --py nbgrader && \
jupyter serverextension enable --sys-prefix --py nbgrader

Configuration of nbgrader itself is done via YAML files and will be de-
scribed in section 3.4.2.

During the testing of nbgrader with the feedback module it was discovered,
that due to specifics of nbgrader it’s not possible for a teacher and a student
to access the same notebook file in order to exchange messages with each
other. This is due to the fact, that student’s volume is not available when she
is not using the system (volume is unmounted). The only time teacher gets
access is when student submits it for grading. However even then, nbgraded
doesn’t have the possibility to return the notebook back to student with added
messages into cells.

All of this makes us introduce a work-around for this problem. Each
teacher needs to be added to list of admin users:

c.Authenticator.admin_users = {’mal’, ’zoe’}

Or assigned to admin group:

c.PAMAuthenticator.admin_groups = {’wheel’}

Then admin access option should be enabled which will allow teacher to
access student’s volume even when student is logged out.

JupyterHub.admin_access = True

Those configuration values should be placed into JupyterHub configuration
file jupyterhub config.py

47

3. Implementation

3.3 Kubernetes

Deployment will be realized on Kubernetes cluster, by doing so it will solve
the non-functional requirements, as well as providing fully working system to
students without any installation on their computer and utilizing scalability of
Kubernetes cluster, it will guarantee that application will handle any amount
of load.

Main tool which is used to manipulate the cluster is kubectl. Kubectl
is the command-line tool which allows to run commands against Kubernetes
clusters. Kubectl can be used to deploy applications, inspect and manage
cluster resources, and view logs.[29]

Installation process of this tool is very simple and includes two main 2
steps:

1. Download latest release of the tool

2. Make downloaded file executable

All configuration for Kubernetes cluster has to be specified using YAML
files. It is necessary to create the configuration file which will enable dynamic
provisioning of disks. That will allow to automatically assign a disk per user
when they login in to JupyterHub.[30]

file storageclass.yml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

annotations:
storageclass.beta.kubernetes.io/is-default-class: "true"

name: gp2
provisioner: kubernetes.io/aws-ebs
parameters:

type: gp2

This config can be applied on the cluster by entering command:

kubectl apply -f storageclass.yml

Next step is to install Helm which is used for deployment of applications
to cluster.

3.3.1 Helm

Helm, the package manager for Kubernetes, is a useful tool for installing,
upgrading and managing applications on a Kubernetes cluster. Helm packages

48

3.4. JupyterHub

are called charts. Charts are abstractions describing how to install packages
onto a Kubernetes cluster. When a chart is deployed, it works as a templating
engine to populate multiple YAML files for package dependencies with the
required variables, and then runs kubectl apply to apply the configuration to
the resource and install the package.[31]

Helm has two parts: a client (Helm) and a server (tiller). Tiller runs
inside of Kubernetes cluster as a pod in the kube-system namespace. Tiller
manages both, the releases (installations) and revisions (versions) of charts
deployed on the cluster. When helm commands are executed, local Helm
client sends instructions to tiller in the cluster that in turn makes the requested
changes.[31]

Installation of the Helm consists of several steps, mainly:

1. Install Helm locally

2. Create account for Tiller in the cluster

3. Initialize both Helm and Tiller

Once both kubectl and Helm installed, JupyterHub application is ready
to be deployed.

3.4 JupyterHub

In this section will be described the implementation of the custom JupyterHub
installation. In order to fulfill technical requirements, it is needed to create a
client, which is able to communicate with KOSAPI for fetching of information
about students, teachers and courses. Another part of the build was a custom
Kubernetes spawner which enables JupyterHub to spawn single-user notebook
servers on the cluster.[32]

3.4.1 KOSAPI

Implementation of KOSAPI client will consists of writing a class KOSApi-
Client which has 4 methods:

• is teacher(username) – method which checks if given username is
teacher or a student

• get courses for teacher(username) – method which fetches course
list for given teacher

• get courses for student(username) – method which fetches course
list for given student

• get students for course(coursename) – method which fetches stu-
dent list for given course. Used to populate database of students.

49

3. Implementation

Part of get courses for student(username) method:

class KOSApiClient:

def __init__(self, access_token):
self.access_token = access_token

self.token_type = ’Bearer’

...

async def get_courses_for_student(self, username):
kosapi_base_url = ’https://kosapi.fit.cvut.cz/api/3’
url = ’{}/students/{}/enrolledCourses’.format(

kosapi_base_url,
username

)
http_client = httpclient.AsyncHTTPClient()

headers = {
"User-Agent": "JupyterHub",
"Authorization": "{} {}".format(

self.token_type,
self.access_token

)
}
try:

req = httpclient.HTTPRequest(url,
method=’GET’,
headers=headers,
)

resp = await http_client.fetch(req)

...

3.4.2 Spawner

Spawner is one of the most important parts of whole system, it spawns pods
in Kubernetes cluster for each logged in user. For current implementation,
KubeSpawner [33] is chosen. It is shipped with JupyterHub installation. Each
server which was spawned by a user has it’s own KubeSpawner instance, so
it is possible to use that fact in order to customize the environment of newly
created pod.

In order to ”inject” the custom logic into the spawner, it is needed to
implement custom spawner class which will extend KubeSpawner and override
some methods.

50

3.4. JupyterHub

Firstly, it is required to be able to mount different storage volumes for
different users, so that each two different users never share one volume, thus
noone has access to someone else’s data. Secondly, it is necessary to generate
dynamically different configuration files for nbgrader in order to prepare the
environment for the chosen course. List of courses should be fetched from
KOSAPI, thus KOSAPI client needs to be used by spawner. In order to
authenticate agains University API, spawner instance needs to receive access
and refresh tokens from custom Authenticator 3.1.1.

According to KubeSpawner documentation [33], it is possible to override
following methods in order to implement required logic:

• KubeSpawner.options form

• KubeSpawner.pre spawn hook

KubeSpawner.options form – An HTML form for options a user can specify
on launching their server. The value returned from this method could be a
string (HTML) or callable, which will be called asynchronously.

This call will be utilized in order to fetch the list of courses, for student
those are the courses she has this semester; for teacher, the ones she is teaching.
Returned list of courses will be stored in KubeSpawner.profile list – list of
profiles which user can select on start of the pod. Each profile will correspond
to one course:

async def options_form(self, spawner):
auth_state = await self.user.get_auth_state()

client = KOSApiClient(auth_state[’access_token’])

check if logged in user is a teacher
is_teacher = await client.is_teacher(

auth_state[’oauth_user’][’user_name’]
)
my_courses = []

if is_teacher is True:
if a teacher, then get list of courses she is teaching
my_courses = await client.get_courses_for_teacher(

auth_state[’oauth_user’][’user_name’]
)

else:
if a student, then get courses in current semester
my_courses = await client.get_courses_for_student(

auth_state[’oauth_user’][’user_name’]
)

...

51

3. Implementation

self.profile_list = profile_list

return super().options_form

Another method, KubeSpawner.pre spawn hook – is an optional hook
function that can be implemented to do some bootstrapping work before the
spawner starts. For example, create a directory for a user or load initial
content.[33]

Here the logic will be implemented which will receive the chosen course
name, prepare configuration for the environment and nbgrader. For example,
here it will specify which volumes need to be mounted and where in the system:

async def pre_spawn_hook(self, spawner):
await self.load_user_options()

...

self.volume_mounts = [
{

’mountPath’: home_mount_path,
’name’: volume_name_template

},
{

"mountPath": "/srv/nbgrader/exchange",
"name": ’nbgrader-exchange’,
"subPath": "exchange/{}".format(self.course_id),
"readOnly": False

}
]

This spawner is set to be used by JupyterHub via configuration file jupyter-
hub config.py:

c.JupyterHub.spawner_class = CustomKubeSpawner

There are always required two volumes for nbgrader to function properly,
user home volume and exchange one 2.21.

Nbgrader configuration consists of creation of nbgrader config.py files,
which contain information about current course and directory with assign-
ments:

for line in [
’’,
’c = get_config()’,

52

3.4. JupyterHub

’c.CourseDirectory.course_id = "{}"’.format(self.course_id),
’c.Exchange.course_id = "{}"’.format(self.course_id),
’c.Exchange.assignment_dir = "{}/assignments/{}"’.format(

home_mount_path,
self.course_id

),
’c.AssignmentList.assignment_dir = "{}/assignments/{}"’.format(

home_mount_path,
self.course_id

)
]:

cmds.append(
r"echo ’{}’ >> {}/.jupyter/nbgrader_config.py".format(

line,
home_mount_path

)
)

Figure 3.2: Custom spawner sequence diagram

53

3. Implementation

3.4.3 Deployment

Deployment of JupyterHub to Kubernetes cluster will be done using official
Helm chart.[34]

Firstly, it is needed to build the final version of JupyteHub Docker image,
which will contain all customizations and jupyterhub config.py file:

...

RUN mkdir -p /srv/jupyterhub/
RUN mkdir /etc/jupyter
RUN chmod 775 /etc/jupyter

COPY ./jupyterhub_config.py /srv/jupyterhub_config.py
COPY ./z2jh.py /srv/z2jh.py
COPY ./cull_idle_servers.py /etc/jupyterhub/cull_idle_servers.py
WORKDIR /srv/jupyterhub/

...

In order to use this chart it is necessary to prepare YAML configuration
file which will specify settings of individual components that will be deployed.
Here settings of Authenticator 3.1.1, custom JupyterHub Docker image, and
some general JupyterHub parameters will be placed:

proxy:
secretToken: "28d792014a3df3e6129272a5f3e1ff60c....."
https:

enabled: true
type: "letsencrypt"
letsencrypt:
contactEmail: "vanyadmi@fit.cvut.cz"
hosts:
- "hostname"

hub settings, here is specified custom JupyterHub Docker image
hub:

image:
name: "akasummer/jupyterhub-cvut-v3"
tag: "latest"

Environment auth related settings
extraEnv:

OAUTH2_AUTHORIZE_URL: "https://auth.fit.cvut.cz/oauth/authorize"
OAUTH2_TOKEN_URL: "https://auth.fit.cvut.cz/oauth/token"
OAUTH_CALLBACK_URL: "https://hostname/hub/oauth_callback"
OAUTH2_BASIC_AUTH: true

54

3.4. JupyterHub

OAUTH2_USERDATA_URL: "https://auth.fit.cvut.cz/oauth/check_token"
OAUTH2_USERNAME_KEY: "user_name"
OAUTH_CLIENT_ID: "e09aad91-f3d4-4db0-8b29-xxxxxxxxxx"
OAUTH_CLIENT_SECRET: "SUSQU4jffxqaM3ZLbfSxxXXXxXxxx"
OAUTH2_LOGIN_SERVICE: "CVUT"

auth:
type: "custom"
custom:

className: zuul.ZuulOAASOAuthenticator.ZuulOAASOAuthenticator
config:

login_service: "CVUT"
userdata_token_method: "url"

Once configuration file is created, custom JupyterHub and Jupyter Note-
book images are pushed to DockerHub registry, a Helm command that will
tell Tiller to start deployment process should be invoked:

helm upgrade --install jhub jupyterhub/jupyterhub \
--namespace jhub \
--version=0.8.2 \
--values config.yaml

After several minutes final Homework Management System is running on
Kubernetes cluster.

3.4.4 Testing

In order to validate the functionality of the final solution, testing methodolo-
gies should be applied to some degree. Since the majority of the used tools
are the open source applications, it is enough to launch provided test suite.
Once all automated tests passed, it can be concluded that those applications
are working and nothing was broken during customizations. For the added
functionality, user acceptance testing was used.

JupyterHub allows to specify administrator accounts which were used to
impersonate teacher and students. While being logged in as a teacher whole
process from creation of the first homework assignment till release of the feed-
back was manually tested. Student accounts were used to fetch, implement
and submit the homework. Feedback module proved to be working, but with
the limitation described in section 3.2.1.

KOSAPI connection was manually tested during the student/teacher sce-
nario, list of courses and students was fetched from API successfully.

During testing, some user experience related issues were found. For-
mgrader extension is not visually integrated into the overall system, it is
launched in separate browser tab, thus making it harder to navigate back.

55

3. Implementation

Figure 3.3: Jupyter Homework Management system

56

Chapter 4
Conclusion

The goal of this thesis was to analyse and implement a Homework Manage-
ment system according to various functional and non-functional requirements.
Results of this work indicate that the goal was reached and requirements are
fulfilled. All the core ascpects of implementation, configuration, and deploy-
ment of the system were thoroughly described.

Unfortunately not all implemented use cases are done in the most user-
friendly manner, the limitations were introduced by specifics of open source
applications which were used.

Nbgrader application is heavily dependent on filesystem access and relies
on passing of files between directories, this forced us to add extra steps needed
for teacher to switch the selected course in the system. Also the same reasons
made us to introduce work-around solution for the feedback module.

Result of this work is opening a lot of posibilities for future improvement.
Along with new functionality which can be added, existing features can be
refined in order to make them more intuitive to users.

It is possible to get new experience and knowledge about installation and
configuration of Kubernetes clusters, helm charts and Python programming.

Current ecosystem around project Jupyter is developing very rapidly and
all the parts are being improved along the way. It already enables schools
and universities to introduce Jupyter products into the study process, and
hopefully results of this thesis will help to integrate them into various courses
at the university.

57

Bibliography

[1] Project Jupyter. Jupyter. (accessed: 30.12.2019). Available from: https:
//jupyter.org/

[2] Project Jupyter. About. (accessed: 30.12.2019). Available from: https:
//jupyter.org/about

[3] Project Jupyter team. Installing Jupyter Notebook. (accessed:
30.12.2019). Available from: https://jupyter.readthedocs.io/
en/latest/install.html

[4] Anaconda, Inc. Anaconda Distribution. (accessed: 02.01.2020). Available
from: https://www.anaconda.com/distribution/

[5] Popek, G. J.; Goldberg, R. P. Formal Requirements for Virtualizable
Third Generation Architectures. Commun. ACM, volume 17, no. 7, July
1974: p. 412–421, ISSN 0001-0782, doi:10.1145/361011.361073. Available
from: https://doi.org/10.1145/361011.361073

[6] Blackblaze, I. Docker Containers vs. VMs: Pros and Cons of Containers
and Virtual Machines. (accessed: 15.04.2019). Available from: https:
//www.backblaze.com/blog/vm-vs-containers/

[7] Docker Inc. Docker. (accessed: 14.04.2019). Available from: https://
www.docker.com/

[8] Gordon, W. Understanding OAuth: What Happens When You
Log Into a Site with Google, Twitter, or Facebook. (accessed:
25.12.2019). Available from: https://lifehacker.com/understanding-
oauth-what-happens-when-you-log-into-a-s-5918086

[9] D. Hardt, E. The OAuth 2.0 Authorization Framework. RFC 6749,
RFC Editor, 10 2012. Available from: https://tools.ietf.org/html/
rfc6749

59

https://jupyter.org/
https://jupyter.org/
https://jupyter.org/about
https://jupyter.org/about
https://jupyter.readthedocs.io/en/latest/install.html
https://jupyter.readthedocs.io/en/latest/install.html
https://www.anaconda.com/distribution/
https://doi.org/10.1145/361011.361073
https://www.backblaze.com/blog/vm-vs-containers/
https://www.backblaze.com/blog/vm-vs-containers/
https://www.docker.com/
https://www.docker.com/
https://lifehacker.com/understanding-oauth-what-happens-when-you-log-into-a-s-5918086
https://lifehacker.com/understanding-oauth-what-happens-when-you-log-into-a-s-5918086
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

Bibliography

[10] Anicas, M. An Introduction to OAuth 2. (accessed: 24.12.2019). Avail-
able from: https://www.digitalocean.com/community/tutorials/an-
introduction-to-oauth-2

[11] Richardson, L.; Ruby, S.; et al. RESTful Web Services. O’Reilly, 2007,
ISBN 0596529260.

[12] Fielding, R. T. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of Califor-
nia, Irvine, 2000. Available from: http://www.ics.uci.edu/˜fielding/
pubs/dissertation/top.htm

[13] KOSapi contributors. KOSapi. (accessed: 30.12.2019). Available from:
https://kosapi.fit.cvut.cz/projects/kosapi/wiki

[14] Jupyter Development Team. The Notebook file format. (accessed:
01.01.2020). Available from: https://nbformat.readthedocs.io/en/
latest/format_description.html

[15] Jupyter Development Team. Custom front-end extensions.
(accessed: 17.01.2020). Available from: https://jupyter-
notebook.readthedocs.io/en/stable/extending/frontend_
extensions.html

[16] Project Jupyter team. Technical Overview. (accessed: 22.01.2020).
Available from: https://jupyterhub.readthedocs.io/en/stable/
reference/technical-overview.html

[17] Project Jupyter team. Quickstart. (accessed: 22.01.2020). Available from:
https://jupyterhub.readthedocs.io/en/stable/quickstart.html

[18] Bitnami. Configure Kubernetes Autoscaling With Custom Metrics.
(accessed: 22.01.2020). Available from: https://docs.bitnami.com/
kubernetes/how-to/configure-autoscaling-custom-metrics/

[19] Ellingwood, J. An introduction to Kubernetes. (accessed: 21.01.2020).
Available from: https://www.digitalocean.com/community/
tutorials/an-introduction-to-kubernetes

[20] Langemak, J. Kubernetes 101 - Networking. (accessed: 21.01.2020).
Available from: http://www.dasblinkenlichten.com/kubernetes-
101-networking/

[21] The Kubernetes Authors. Namespaces. (accessed: 01.02.2020). Available
from: https://kubernetes.io/docs/concepts/overview/working-
with-objects/namespaces/

60

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://kosapi.fit.cvut.cz/projects/kosapi/wiki
https://nbformat.readthedocs.io/en/latest/format_description.html
https://nbformat.readthedocs.io/en/latest/format_description.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html
https://jupyterhub.readthedocs.io/en/stable/reference/technical-overview.html
https://jupyterhub.readthedocs.io/en/stable/reference/technical-overview.html
https://jupyterhub.readthedocs.io/en/stable/quickstart.html
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
http://www.dasblinkenlichten.com/kubernetes-101-networking/
http://www.dasblinkenlichten.com/kubernetes-101-networking/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Bibliography

[22] OpenShift Commons Authors. Kubernetes infrastructure. (ac-
cessed: 01.02.2020). Available from: https://docs.okd.io/
latest/architecture/infrastructure_components/kubernetes_
infrastructure.html

[23] Red Hat, Inc. Authors. Overview of a Replication Controller. (accessed:
01.02.2019). Available from: https://coreos.com/kubernetes/docs/
latest/replication-controller.html

[24] Project Jupyter team. Authenticators. (accessed: 02.02.2020). Available
from: https://jupyterhub.readthedocs.io/en/stable/reference/
authenticators.html

[25] České vysoké učeńı technické v Praze. Apps Manager. (accessed:
02.02.2020). Available from: https://auth.fit.cvut.cz/manager/
index.jsf

[26] jupyterhub. JupyterHub. (accessed: 02.02.2020). Available from: https:
//hub.docker.com/r/jupyterhub/jupyterhub/

[27] Docker Inc. DockerHub. (accessed: 02.02.2020). Available from: https:
//hub.docker.com/

[28] Project Jupyter. Project Jupyter. (accessed: 03.02.2020). Available from:
https://github.com/jupyter

[29] The Kubernetes Authors. Install and Set Up kubectl. (accessed:
03.02.2020). Available from: https://kubernetes.io/docs/tasks/
tools/install-kubectl/

[30] Project Jupyter Contributors. Kubernetes on Amazon Web Services
(AWS). (accessed: 03.02.2020). Available from: https://zero-to-
jupyterhub.readthedocs.io/en/latest/amazon/step-zero-aws.html

[31] Project Jupyter Contributors. Setting up Helm. (accessed: 03.02.2020).
Available from: https://zero-to-jupyterhub.readthedocs.io/en/
latest/setup-jupyterhub/setup-helm.html

[32] Project Jupyter Contributors. kubespawner. (accessed: 04.02.2020).
Available from: https://github.com/jupyterhub/kubespawner

[33] Project Jupyter team. KubeSpawner. (accessed: 04.02.2020). Avail-
able from: https://jupyterhub-kubespawner.readthedocs.io/en/
latest/spawner.html

[34] Project Jupyter team. JupyterHub and BinderHub Helm charts
for Kubernetes. (accessed: 04.02.2020). Available from: https://
jupyterhub.github.io/helm-chart/

61

https://docs.okd.io/latest/architecture/infrastructure_components/kubernetes_infrastructure.html
https://docs.okd.io/latest/architecture/infrastructure_components/kubernetes_infrastructure.html
https://docs.okd.io/latest/architecture/infrastructure_components/kubernetes_infrastructure.html
https://coreos.com/kubernetes/docs/latest/replication-controller.html
https://coreos.com/kubernetes/docs/latest/replication-controller.html
https://jupyterhub.readthedocs.io/en/stable/reference/authenticators.html
https://jupyterhub.readthedocs.io/en/stable/reference/authenticators.html
https://auth.fit.cvut.cz/manager/index.jsf
https://auth.fit.cvut.cz/manager/index.jsf
https://hub.docker.com/r/jupyterhub/jupyterhub/
https://hub.docker.com/r/jupyterhub/jupyterhub/
https://hub.docker.com/
https://hub.docker.com/
https://github.com/jupyter
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://zero-to-jupyterhub.readthedocs.io/en/latest/amazon/step-zero-aws.html
https://zero-to-jupyterhub.readthedocs.io/en/latest/amazon/step-zero-aws.html
https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-jupyterhub/setup-helm.html
https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-jupyterhub/setup-helm.html
https://github.com/jupyterhub/kubespawner
https://jupyterhub-kubespawner.readthedocs.io/en/latest/spawner.html
https://jupyterhub-kubespawner.readthedocs.io/en/latest/spawner.html
https://jupyterhub.github.io/helm-chart/
https://jupyterhub.github.io/helm-chart/

Bibliography

[35] Jupyter Development Team. Creating and grading assign-
ments. (accessed: 05.02.2020). Available from: https://
nbgrader.readthedocs.io/en/stable/user_guide/creating_and_
grading_assignments.html

[36] Jupyter Development Team. nbgrader. (accessed: 05.02.2020). Available
from: https://nbgrader.readthedocs.io/en/stable/index.html

62

https://nbgrader.readthedocs.io/en/stable/user_guide/creating_and_grading_assignments.html
https://nbgrader.readthedocs.io/en/stable/user_guide/creating_and_grading_assignments.html
https://nbgrader.readthedocs.io/en/stable/user_guide/creating_and_grading_assignments.html
https://nbgrader.readthedocs.io/en/stable/index.html

Appendix A
User manual

A.1 Authentication

A.1.1 Login

Authentication is done using Usermap credentials. To Login:

1. Press the login button

2. You should see login page of university, enter you Usermap credentials
and submit the form

3. You should see the list of courses you have in this semester, choose one
and submit.

A.1.2 Logout

In order to logout, click the button in the upper-right corner of the screen.

63

A. User manual

A.2 Student’s guide

A.2.1 Working with assignments

Figure A.1: Fetching assignment

The image above shows that there has been one assignment released (”ps1”) for
the class ”example course”. To get this assignment, click the ”Fetch” button

After the assignment is fetched, it will appear in the list of ”Downloaded
assignments”:

Figure A.2: Downloaded assignment

Click on the name of the assignment to expand it and see all the notebooks
in the assignment:

64

A.2. Student’s guide

Figure A.3: Assignment list expanded

Clicking on a particular notebook will open it in a new tab in the browser.
After some work on the assignment, but before submitting, you can vali-

date that notebooks pass the tests by clicking the ”Validate” button.

Figure A.4: Assignment passed tests

Once notebooks are validated, you can click the ”Submit” button to submit
the assignment.

65

A. User manual

A.3 Teacher’s guide

A.3.1 Managing assignments

The formgrader extension provides the core access to nbgrader’s instructor
tools. You can access it through the tab in the notebook list:

Figure A.5: Formgrader extension

To create a new assignment, open the formgrader extension and click the
”Add new assignment. . . ” button at the bottom of the page and fill in the
form. Then, you can add files to the assignment and edit them by clicking the
name of the assignment:

Figure A.6: Creating assignment

Use ”Create Assignment” toolbar to create assignment tasks:

66

A.3. Teacher’s guide

Figure A.7: Assignment toolbar

For more details see [35]
After an assignment has been created with the assignment toolbar, you

will want to generate the version that students will receive. You can do this
from the formgrader by clicking the ”generate” button:

Figure A.8: Generate student version

You may release assignments by clicking on the ”release” button.
For more information, please see [36]

67

Appendix B
Glossary

API Application Programming Interface is an interface or communication
protocol between different parts of a computer program.

JSON JavaScript Object Notation is an open standard file format of data,
which consists of key-value pairs and array data types.

HTTP Hypertext Transfer Protocol is an application protocol for distributed
hypermedia information systems. It’s the foundation of data communi-
cation for the World Wide Web.

Python Python is an interpreted, high-level, general-purpose programming
language.

Package-management system Package-management system is a collection
of software tools that automates the process of installing, upgrading,
configuring, and removing computer programs for a computer’s operat-
ing system in a consistent manner.

Repository Repository is a data structure which stores metadata for a set
of files or directory structure.

Snapshot Snapshot is the state of a system at a particular point in time.

XML Extensible Markup Language (XML) is a markup language that defines
a set of rules for encoding documents in a format that is both human-
readable and machine-readable.

HTML HyperText Markup Language is the most basic building block of the
Web. It defines the meaning and structure of web content.

JavaScript Often abbreviated as JS, is a high-level, multi-paradigm pro-
gramming language that conforms to the ECMAScript specification.

69

B. Glossary

YAML YAML (a recursive acronym for ”YAML Ain’t Markup Language”)
is a human-readable data-serialization language.

70

Appendix C
Acronyms

JN Jupyter notebook

CSV Comma separated values

OS Operating system

VM Virtual machine

LXC Linux containers

CPU Central Processing Unit

RAM Random access memory

URL Uniform Resource Locator

CSS Cascading Style Sheets

71

Appendix D
Contents of enclosed flash drive

readme.txt.................the file with flash drive contents description
src.......................................the directory of source codes

feedback md...............................feedback module sources
helm..helm configuration files
jupyterhub jupyterhub customization sources
kube..................................kubernetes configuration files
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

73

	Citation of this thesis
	Introduction
	Motivation and goals
	Requirements
	Functional requirements
	Non-functional requirements

	Analysis and design
	Distribution
	Manual installation
	Virtualization
	Docker
	Centralization

	Authentication
	OAuth 2.0

	KOS
	Feedback module
	Notebook file format

	Infrastructure
	How the Subsystems Interact
	User login
	Kubernetes

	Managing the homeworks
	Teacher's use cases
	Student's use cases
	nbgrader

	Implementation
	Authentication
	Making custom Authenticator
	Making custom Docker image

	Homework management
	Feedback module
	nbgrader installation

	Kubernetes
	Helm

	JupyterHub
	KOSAPI
	Spawner
	Deployment
	Testing

	Conclusion
	Bibliography
	User manual
	Authentication
	Login
	Logout

	Student's guide
	Working with assignments

	Teacher's guide
	Managing assignments

	Glossary
	Acronyms
	Contents of enclosed flash drive

