

ASSIGNMENT OF MASTER’S THESIS

Title: Web interface for real-time video analytics system

Student: Bc. Vladislav Khachaturian

Supervisor: prof. RNDr. Tomáš Skopal, Ph.D.

Study Programme: Informatics

Study Branch: Web and Software Engineering

Department: Department of Software Engineering

Validity: Until the end of summer semester 2020/21

Instructions

The goal of the diploma thesis is a design and implementation of a web portal for
visualization and management of the Videolytics system. The portal should support the
following functions:

- Playback of a live stream, the source of which could be either an IP camera or a local file.
- Navigation in the video stream - stop and resume, frame skipping (forward, backward).
- Playback of several video streams simultaneously including identification of the same

objects and their trajectories.
- Visualization of detected objects and their trajectories in the video playback.
- Management of detection processes.
- Support for editing of interaction objects for further analytics, like a number of line

crossings, realtime spent within an area, etc.
- Statistics generation and reporting
A part of the thesis will be an experimental evaluation of the web portal functionality based

on real use- cases.

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina,
Ph.D. Dean

Prague January 6, 2020

Master’s thesis

Web interface for real-time video analytics
system

Bc. Khachaturian Vladislav

Department of Software Engineering

Supervisor: prof. RNDr. Tomáš Skopal, Ph.D.

May 27, 2020

Acknowledgements

I would like to thank prof. RNDr. Tomáš Skopal, Ph.D., my tutor, for all his

advice, patience, and time he spent helping me finish this thesis. I would also like to

thank Antošík Vojtěch, Dobranský Marek Mgr., Mařík Matouš, Smrž Dominik Bc.,

Ďurišková Dominika – students of Charles University in Prague, for their contribution

into our mutual project Videolytics.

https://gitlab.mff.cuni.cz/antosikv
https://gitlab.mff.cuni.cz/dobransm
https://gitlab.mff.cuni.cz/marikma
https://gitlab.mff.cuni.cz/smrzdom
https://gitlab.mff.cuni.cz/duriskod

Declaration

 I hereby declare that the presented thesis is my own work and that I have cited

all sources of information in accordance with the Guideline for adhering to ethical

principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated

by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article

46(6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this

thesis, including any and all computer programs incorporated therein or attached

thereto and all corresponding documentation (hereinafter collectively referred to as the

“Work”), to any and all persons that wish to utilize the Work. Such persons are entitled

to use the Work in any way (including for-profit purposes) that does not detract from its

value. This authorization is not limited in terms of time, location and quantity. However,

all persons that makes use of the above license shall be obliged to grant a license at

least in the same scope as defined above with respect to each and every work that is

created (wholly or in part) based on the Work, by modifying the Work, by combining the

Work with another work, by including the Work in a collection of works or by adapting

the Work (including translation), and at the same time make available the source code

of such work at least in a way and scope that are comparable to the way and scope in

which the source code of the Work is made available.

 In Prague on May 27, 2020

Czech Technical University in Prague

Faculty of Information Technology

© 2020 Khachaturian Vladislav. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been

submitted at Czech Technical University in Prague, Faculty of Information Technology.

The thesis is protected by the Copyright Act and its usage without author’s permission is

prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Khachaturian, Vladislav. Web interface for real-time video analytics system

Master’s thesis. Czech Technical University in Prague, Faculty of Information

Technology, 2020.

xi

Abstract

Tato diplomová práce je věnována návrhu a implementaci webového
rozhraní pro systém video analytiky v reálném čase Videolytics. Hlavní cíl daného
systému je extrakce, uložení a zpracování vysokoúrovňových rysů z video
streamu. Výsledná aplikace je schopna spravovat různé zdroje dat a moduly:
video stream, detekce a trajektorie objektů z databáze, procesy pro generování
dat.

Vyvinutá aplikace se dotýká různých aspektů: řízení video streamů,
efektivní dotazování na databázi, přesná (v rozsahu milisekund) synchronizace
zdrojů dat, řízení procesů serveru.

Udržování velkého počtu různých aspektů uvnitř jedné aplikace je velmi
složité. Z tohoto důvodu je webový portál Videolytics založen na architektuře
mikroservisů. Webový klient komunikuje se službami pomocí protokolu HTTP,
zatímco každá služba dosahuje svého určitého odlišného cíle.

Webový portál spolupracuje s dalšími moduly implementovanými v
různých programovacích jazycích. Všechny fungují na jednom Unix serveru, aby
bylo možné předejít zbytečnému zatížení sítě. Sdílení zdrojů a závislosti balíčků
jsou vyřešeny pomocí technologie virtualizace docker.

Webový portál je implementován pomocí webového serveru Apache v
kombinaci s jazykem PHP.

Klíčová slova webová applikace, streamování videa, video analytika,

vizuální analytika, microslužby, docker, PHP

xiii

Abstract

This master’s thesis is dedicated to the design and implementation of
web interface for real-time video analytics system named Videolytics. Main
target of this system is extraction, storage and processing of high-level features
from video surveillance data. The resulting application is able to combine various
data sources and modules: video stream, object detections and trajectories from
database, management of processes for data generation.

Developed application touches on various different aspects: video stream
management, effective database querying, precise (milliseconds range)
synchronization of data sources, server process management.

Maintaining large number of different aspects inside one application is
highly complex. This is why Videolytics web portal is based on microservices
architecture. Web client communicates with services using HTTP protocol, while
each service accomplishes it’s certain distinct goal.

Web portal collaborates with other modules implemented in different
programming languages. All of them are functioning on single Unix server to
avoid redundant network load. Resource sharing and dependencies are resolved
using docker virtualization technology.

Web portal is implemented using Apache web server in combination with
PHP language.

Keywords web application, video streaming, video analytics, visual

analytics, microservices, docker, PHP

xv

Contents

Introduction ... 1

Video surveillance: potential and challenges.. 1

Improvements ... 1

Videolytics ... 2

Web client module .. 2

Purpose of work .. 3

Structure of work .. 3

1 Related work ... 4

1.1 Video streaming .. 4

1.2 Video analytics systems: review ... 5

1.3 Motivation ... 8

2 Analysis ... 9

2.1 Software requirements ... 9

2.2 Web server .. 10

2.3 Server-side scripting .. 13

2.4 Database ... 14

2.5 Internet protocols ... 14

2.6 Video streaming software ... 16

3 Design ... 21

3.1 Virtualization ... 21

3.2 Unique user id ... 22

3.3 Database ... 23

3.4 Modes ... 25

3.5 Use-cases ... 26

3.6 User interface .. 27

3.7 Architecture .. 29

4 Implementation .. 35

4.1 Virtualization ... 35

4.2 Container management .. 38

4.3 Visualization .. 40

4.4 Full service specification ... 41

5 Testing .. 43

xvi

5.1 Approach ... 43

5.2 Demonstration .. 44

5.3 Load ... 44

Conclusion .. 49

Future work ... 49

Bibliography ... 50

A Acronyms .. 53

xvii

List of figures

Figure 1.1: PureActiv – Shadow removal demonstration .. 7

Figure 1.2: PureActiv – Forensic Browser ... 7

Figure 2.1: Example of 7 frames delay in object detection .. 15

Figure 3.1: Database schema ... 23

Figure 3.2: Wep app – Compact window layout ... 28

Figure 3.3: Wep app – Wide layout .. 28

Figure 3.4: Wep app – Fullscreen window layout ... 28

Figure 3.5: Wep app – Extended panel ... 29

Figure 3.6: Server-side service process diagram ... 33

Figure 5.1: App work demonstration ... 44

Figure 5.2: Database dashboard - idle .. 45

Figure 5.3: Database dashboard – stream only ... 45

Figure 5.4: Database dashboard – detections only ... 45

Figure 5.5: Database dashboard – trajectories only .. 45

Figure 5.6: Database dashboard – detections and trajectories .. 45

Figure 5.7: Database dashboard – real-time detection generation 46

Figure 5.8: Server CPU load – idle .. 47

Figure 5.9: Server CPU load – stream only .. 47

Figure 5.10: Server CPU load – stream with visualization .. 47

xviii

List of tables

Table 2.1: Comparison of video conversion tools ... 18

Table 2.2: Comparison of video conversion tools ... 20

Table 3.1: Comparison of web client modes ... 26

Table 4.1: Full service specification .. 41

Table 5.1: Measurements of database load.. 46

Table 5.2: Measurements of CPU load ... 48

1

1 Introduction

Video surveillance: potential and challenges

Nowadays amounts of produced data are terrifying and continue to grow
exponentially [1]. There are different kinds of data: it can be valuable or useless,
public or private, take up a little storage space or lots of it, easy to process or
extremely hard.

Video surveillance takes a special place in this classification. It is
potentially valuable as it contains data about people and transport movement.
Collecting such statistics may be useful in many ways: for the municipalities to
optimize traffic and public transport or for local businesses to predict suitability
of certain location.

Before data is processed it needs to be collected. In big cities there are
video cameras almost on every corner [2], but not every camera is publicly
available. Many are owned by government or private enterprises, so it can be
problematic to get access to them.

Manual video processing is possible but requires a lot of resources.
Considering simplest use-case – determine amount of people in sight of a certain
camera in certain time interval. There must be large enough storage, because
even compressed videos take up a lot of disk space. Storing H264 encoded video
in 720p quality from ten cameras for a month will require about 7712 terabytes
of space. Even then manual processing takes some time and gathered statistics
can become irrelevant. One more problem is to ensure security of all that data.

Automated processing requires a complex system, which must be able to
do multiple things:

 detect different kinds of objects;

 in order to count them somehow distinguish same objects for whole
interval of their presence in sight;

 build objects’ trajectories;

 convert data into structured format and store in database;

 provide interface for data visualization and querying.

Improvements

Described system is already complex enough. But one more complication
will bring a great improvement. And that is – system should process all data in
real-time. Advantages of such processing are:

 no need in huge storage for video files, because structured data can be
stored in database and take up a relatively little space;

2

 real-time statistics are the most valuable ones;

 if no video is stored and gathered statistics are impersonalized, there is
no possibility to violate GDPR [3].

Such system also should be modular, because then it will become:

 easier to scale;

 easier to develop – subdivision into modules allows to utilize best fitting
programming languages and technologies for each concrete task, while
developers may work in their field of specialization independently.

Videolytics

What is described above is currently evolving video analytics system
Videolytics. It is developed by group of students from Charles University and CTU
under the guidance of prof. RNDr. Tomáš Skopal, Ph.D. Every student is engaged
in development of his own part of system.

The system consists of independent modules, which are communicating
through the central database. Current modules in development are:

 Detection module,

 Trajectory module – TrajAn,

 Real-time processing module – LiveED,

 Web client module,

 Reidentification module – ReID,

 Querying module.

Web client module

Subject of this work is development of Videolytics web client module. Its
responsibilities are:

 Video stream management – connecting to IP camera or creation of
stream from local file;

 Visualization of features from the database – real-time (with a small
delay) drawing of detections and trajectories on top of video stream,
synchronization of data, exclusion of redundancy while querying
database;

 Management of server processes and other modules – their
startup/shutdown, data flows.

Originally when assignment for this work was created, querying and
report generation were also considered part of this module. However during the
development collective discussion revealed the fact that it does not depend on
other parts of this module and can be a separate application. Thus it was
separated as distinct module with independent assignment for other students.

3

Purpose of work

Purpose of this work is development of web client module for Videolytics
system, achieving the goals defined in task assignment and mentioned above
module responsibilities, while also fulfilling additional requirements that will
come up as a result of related works research and analysis.

Structure of work

 Related works part is dedicated to systems having more or less in
common with Videolytics web portal, their strong and weak parts,
possible use-cases and applications.

 Analysis part is dedicated to different possible software solutions,
protocols, technologies and techniques.

 Design part contains specification of solution components needed to
accomplish tasks defined in assignment.

 Implementation is dedicated to programming techniques used to achieve
goals defined by design.

 Testing part is dedicated to testing methodology and collecting the data
about module performance.

4

1 Related works

1.1 Video streaming

Video streaming is an actively developing way of delivering content on
web [4]. Increase in network bandwidth opened opportunities to transfer video
streams in high-definition quality online [5]. Ability to receive video content
without storing it on local disk significantly raised effectiveness of information
processing.

Some of the most common use-cases of video streaming are reviewed in
this section.

1.1.1 Entertainment

This can be observed on the example of fast growing streaming services
for entertainment [4]. Main reason of their popularity is that there is no more
need of pauses between content deliveries. In the past person needed to go to
the cinema or buy a DVD to watch a film, but now streaming services users are
able to jump from one video to another without any delay, making their time-
spending more enjoyable. And possibility to become a part of live video
translation along with other people (on such platforms as Twitch.tv) surely can
satisfy one of our social needs.

Stepping aside from live video streams, there is one factor that can be
observed in entertainment systems and may be useful while designing
Videolytics web portal. There is argument from people that are not willing to use
streaming services – less control is provided on the viewed content. Different
factors can make service usage less pleasant: unstable internet connection,
interrupting and annoying ads, unavailability of content from another country
etc. One of the basic human needs is a need for control. Things that are meant to
be controlled (like casual TV show watch session), but are uncontrollable, may be
repulsive for the end users. That’s why as much control as possible should be
provided for the best experience, even despite the unsurpassable limitations of
unstoppable video stream.

1.1.2 Criminals tracking

One more benefit of video streaming is opportunity of real-time data
processing. Storing video to process it later requires huge amounts of free disk
space. But advantages of real-time processing are not limited with decreased
system’s costs. When gathering video statistics the delay in processing can be
critical, for example for live criminal tracking systems using city cameras in China
[6] or Russia [7] (Europe and USA are only starting to introduce such systems,
they are doing it more carefully because citizens' rights to privacy are more
valued [8]). However those systems are mainly used by governments and

5

ordinary people usually cannot learn about their inner contents. Those systems
are based on face recognition and require high video resolution.

Some people may be concerned about the fact, that such systems exist
and can be potentially used by government to establish total control of people
[9]. However no state owns sufficient processing power to recognize all faces
from all cameras [10]. Though there is enough of it to track lawbreakers, even
small ones like irresponsible drivers and pedestrians.

People’s security is also a thing that should be considered during
development. Design of Videolytics system guarantees that even security breach
will not lead to a leak of personal information, just because of the fact that
personal information is not stored at all.

1.1.3 Security

Modern neural networks are able to process video streams in real-time,
extracting different features. Some kinds of features can be used to produce
alarms to notify camera owner about specific events. These kind of video
processing is known as object/motion/flame and smoke detection and shape
recognition.

Designed web application is not meant for security purposes. But
generating alarms is a feature that can potentially be implemented in the future
within web module or maybe a completely new one.

1.1.4 Self-driving vehicles

This topic is heatedly debated in mass media and doesn’t need a review.
It is worth to mention, that in the process of this technology introduction into
our everyday lives video stream processing will be used. However it can be
replaced by other technologies, for example with extremely accurate geolocation
introduced with 5G, which is both precise and has low latency (8–12
milliseconds). Invention of communication protocol for device position sharing
will make self-driving vehicles even better, than video recognition can possibly
afford, and with every human being accompanied with 5G device also much
safer (for example in case when a car will be able to prevent accident even in
complete darkness).

1.2 Video analytics systems: review

Computers are better at processing certain kinds of information than
humans. But only humans can interpret results of data processing to accomplish
particular goals, without this interpretation and further analysis all of the
processed information is useless. The best results are achieved during
cooperation between a person and a machine. Taking this into account it is
especially important to design computer analytics systems in such way, that
results are presented in clear and understandable form.

6

Importance of this aspect can be observed on modern mistrust of self-
driving cars [11]. Statistically they can perform better than humans, but that
does not matter, because it is not really clear how a car’s “brain” is making
decisions. It is a black box which cannot be opened even by developers of those
cars, because neural network cannot be understanded after being trained.

This fact is taken into consideration during development of Videolytics
system and its web portal. Containing different modules and building features
using another features is complex, but this complexity can be managed by
visualizing work of each particular module. Thus it is clearly seen how low-level
features become high-leveled so the whole system’s results become more
trustworthy.

Use-cases presented in previous subsection (except for entertainment)
are all examples of video analytics. Review of existing systems oriented on those
use cases will be a reference point while designing own application.

The main difficulty of doing a review of them is low accessibility: usually
such systems are provided as a complex solution for businesses or governments
and there is not much information about them in open sources. This is the
reason why only a few of them were considered as an examples, furthermore
not in many details.

1.2.1 Self-driving vehicles

The most similar to Videolytics detection system are the one from self-
driving cars, so they are worth to mention, even though their purpose is different.
They detect and classify objects and build their trajectories. But first one collects
statistics, while second one tries to predict the future. As such cars don’t provide
tools for video analytics, in context of this work their UI is not going to be useful
for comparison.

1.2.2 Security

There are systems able to collect object trajectories, but mainly for
security reasons. One example of such system’s developer is PureTech Systems
[12]. Their web page provides demonstrations of an application “PureActiv™
Video Analytics” [13]. Those demonstrations are a good source of inspiration to
design video analytics system interface.

First example of usage is shadow removal is shown on figure 1.1. The
important part is how object’s position and trajectory is viewed – rectangle
around the object and a line following it. This method of representation is a good
example of how detections and trajectories should be shown, because it is
intuitive and clear from the first glance. That’s why it will be used as an reference
point while designing Videolytics interface, until better method of visualization
will be found.

7

Figure 1.1: PureActiv – Shadow removal demonstration

Second example of “PureActiv™ Video Analytics” usage is GUI for
application of specific algorithm shown on figure 1.2.

Figure 1.2: PureActiv – Forensic Browser

This graphical user interface does contain a set of control elements that
can be used in Videolytics web application: video player, source selector, video

8

time interval selector, and attributes’ settings. However, this particular design
does not meet modern standards (probably because this application was
presented in 2012).
Downsides of presented interface are:

 Video player shows the stream while applying specific algorithm and
results are saved as screenshots from video, while it would be much
better to visualize results on top of video.

 Video time interval selector’s behavior is not intuitive, because it is not
clear how much time shift will occur on button press a how big is the
interval of possible values. This control will also be used in developed
application, but in another form.

 Attributes’ settings don’t represent as much information as they could.
Using sliders instead of numeric values will significantly improve usability
by defining strict value interval. And again there should be some kind of
visualization of how parameter change will affect processing results. For
the best experience fully dynamic visualization on top of live video must
be used, this will be one of the main goals to achieve.

1.2.3 Crowd analytics

Somewhat similar are queue control systems like AllGoVision [14], that
implements one of the developed use cases of Videolytics system (specific object
class counting in a defined region). Unfortunately, screenshots provided by
official web present only highly complex interfaces with 10 to 30 controls to
setup the analytics process. No visualization of processing or its results is shown.

Another analytics system providing statistics similar to what Videolytics
does is CrowdANALYTIX Inc [15]. However those systems are based on statistical
models and don’t use live surveillance data in any way. Overview of their
software is provided only to companies.

1.3 Motivation

 Highly complex video analytics system must provide highly controllable
and customizable interface for visualization of results and guarantee
security of processed data.

 There are no systems that are completely the same as Videolytics. So no
application can be used as a reference point while designing web portal,
it is rather combination of services described above.

 Use-cases from similar systems (like the ones for queue control) can be
implemented in the future.

 Video analytics systems are highly complex and are used by big
companies or governments. There is little to no information about such
systems publicly available. So research and comparison in relation to
them is very limited.

9

2 Analysis

2.1 Software requirements

Conducted related works research has revealed further software
requirements for the developed web application:

 Compatibility: Videolytics system consists of separate modules which
provide better scalability. As the entire video stream is processed in real-
time, only structured data is stored on disk. With usage of distributed
database it is possible to deploy several servers each running certain
module/modules communicating with each other through the shared
remote database. When using many servers it may be possible that
different machines will be running different operating systems. While
specific tools can be executed inside virtual environment (docker
container), key software like web server or database will be installed in a
standard way to simplify their administration. Thus this software should
be possible to install and maintain on any operating system.

 Easy deployment: As mentioned above, key software must be compatible
with any operating system. It is also preferable that this software will be
easy to deploy in case of cluster expansion or server migration. Because
of the fact that each module of the system is developed separately using
different programming languages, deploying them should be as simple as
possible. For example necessity to compile software from sources during
each deployment is unwanted.

 Universality: It isn‘t known in advance what kinds of data inputs and
outputs must be supported: IP cameras use various communication
protocols and video formats, while Videolytics modules would prefer to
stick to one specific protocol and format as input. Thus some kind of
universal interface for video stream must be provided.

 Independence: as many different modules should be able to be installed
within a single operating system, they should be as virtualized as possible
to avoid potential conflicts (for example dependency hell).

 Control: As it was discovered during the related works research, control
over video stream should be provided, so used software must provide
comprehensive possibilities as well as exhaustive documentation. Not
only live video streaming must be supported, also offline stream
simulation should be provided for debugging purposes. The reason why a
static video source is needed is to observe module behavior and various
processing modules under the same conditions. So it is convenient to be
able to simulate video stream from static source but at the same time
treat it as a live stream.

10

 Loose coupling: As developed application is going to manage other
modules, it will be tightly coupled with them. This can lead to various
problems during development, when a small change in one element will
require a lot of changes in interfaces between modules. One way to
resolve this communication problem is to couple the modules with
smaller interfaces that can be considered as submodules or services. This
brings to an idea of microservices architecture [23] or it can be said to
divide and conquer strategy. Presented application design should use
separate services to realize communication between modules, while the
other tasks can also be achieved taking advantage of microservice
architecture. Separating application functionality into independent
services not only provides loose coupling, but also makes it easy to write,
reuse, test and integrate the same code for different purposes. Division of
an application into parts is also a good way to make it more
understandable not only for programmers, but for the end users as well
by presenting schemes and diagrams showing services interaction and
data flows between them, and this is one of the core requirements of this
work that was defined during the related works research. So chosen
software should support implementation using microservices.

2.2 Web server

Selection of the web server will be made among three of the most
popular nowadays candidates: NGINX [16], Apache [17] and Node.js [18]. They
provide similar functionality. The choice will be based on minor
advantages/disadvantages considering defined requirements and tasks.
Desirable capabilities include simplification of video streaming, accessing server’s
filesystem and command line.

2.2.1 NGINX

When searching for video streaming opportunities among web servers
highly popular solution is based on NGINX web server. That’s because there are
lots of different modules extending server functionality, one of which is
ngx_http_hls_module [19]. It is widely used to implement video streaming
web applications, providing HTTP Live Streaming (HLS) support for MP4 and MOV
video files.

Features:

 Modules extending server functionality can be installed.

 Video stream input format: MP4 or MOV.

 Video stream output format: RTMP (Real-Time Messaging Protocol)
stream or HLS stream.

11

Advantages:

 Low memory usage.

 Better performance than other candidates can provide – more requests
per second, better thread handling. Though the developed web
application is not required to utilize that, only several users must be
served simultaneously, as each of them will significantly load the server.

 Various server modules (for example for PHP support) which are mostly
free.

 While streaming a local video file, stream position can be fully controlled
by user.

 Server’s command line is accessible with help of one of the modules (Lua).

Disadvantages:

 The input for the module is limited with MP4 or MOV formats. In case
when another video format is provided from camera or local storage,
additional conversion with external tools is required, and that is
unwanted load for the server.

 HLS stream output provides one of two formats: .m3u8 or .ts. These
formats can be played in web browsers, but special video player must be
used, as HLS is not natively supported in some of the most popular web
browsers like Chrome or Firefox [20]. As for Internet Explorer its version
11 or higher must be used as well as operating system Windows 8 or
newer, the only other way is to use video player based on Adobe Flash
technology [21], support of which is currently disabled in modern
browsers by default for security reasons and its further development is
stopped this year. Even if compatibility problems with web browsers
were solved, there are further Videolytics modules that will use the
stream. These modules are written in different programming languages,
so their support of HLS is questionable.

 RTMP stream output uses RTMP protocol. Similar to previous HLS stream
case it can be played only with Adobe Flash Player and possibility to
process it with Videolytics modules is unknown.

 NGINX HLS module is not free, it comes within a NGINX Plus package. It
provides some useful features like load balancing but at a price of $2500
a year per server instance. There is no possibility to pay just for one
particular module or it is not listed on official web, whereas a minimum of
two modules is needed (HLS and Lua).

 During the testing it turned out that server configuration is not that easy
as it is described. Dynamic modules are installed with relative ease, but
they were not used in testing configuration. Modules for RTMP streaming
and PHP support are static and their installation required some advanced
configuration. Even then functioning of these modules was unstable.
Possible cause of this probably was the version of the used operating

12

system (CentOS 8), where irresolvable old package conflicts occurred.
And as it was mentioned above, the system should be deployable on any
operating system without such problems.

 Documentation is present, but for the RTMP module some of the
described features were not functioning at all (for example exec
directive). Possible reason of that is unknown, as server has not provided
error logs for each configuration directive.

Conclusion:

NGINX was a first candidate to use as a web server for Videolytics.
Described features and advantages looked promising. But as a consequence of
many problems mentioned above, this variant was rejected.

2.2.2 Apache

Apache HTTP Server was launched in 1995 and since then stays one the
most popular web servers [17]. The fact that it is old doesn’t make it a bad
option, because it was going through the path of development all these years. As
it is open-source project, for many years of voluntary community work many
packages were implemented, which can be installed using standard package
manager on any Linux operating system. There even exists a H264 video
streaming module [22], but it has two big disadvantages: it is not free for
commercial use and it doesn’t provide complete documentation (only a few
tutorials). But this doesn’t really matter as there are plenty of other streaming
tools that can be used alongside Apache.
Advantages:

 Reliable, fast and flexible web server with a long history.

 Well-documentated.

 Easy to administrate and to get technical support as it is highly popular
and thus frequently used.

 Deployment and configuration is really simple task – it is only needed to
install server and needed modules, place web site at default folder and
run the server.

 Simple module installation allows using PHP language to implement
server-side operations.

 Server changes can be done instantly without restarting it.

 Apache can be run even on Windows server without problems.
Disadvantages:

 Despite easy deployment, advanced server configuration can be complex.

 There is no built-in support for video streaming, existing modules are
hard to use. So this task must be achieved with some external tool.
Fortunately with usage of PHP and docker almost any soft can be utilized.

 PHP language is often not considered as a good option for several reasons.
However if utilized according to its original purpose (programming simple

13

server-side services) and not overused way too much (for example trying
to implement a new framework), PHP stays a decent option.

Conclusion:
Apache is a good web server option in context of current task. Sufficient

tools are provided to complete it, while server popularity brings many other
advantages. Mentioned weaknesses are not significant and can be managed.

For the purposes of this work Apache HTTP Server will be used.

2.3 Server-side scripting

One of the tasks to accomplish is management of server-side processes,
particularly various Videolytics modules. This includes their startup/shutoff and
checking execution status. Using heavy server-side technologies (like Java) is sure
a way to do that, but at the same time is redundant. Another option is manage
those processes using simple command line commands that can be called with
light-weighted scripting language.

When it comes to choosing such language, the two most popular variants
are PHP and NodeJS. They provide similar functionality and both are capable of
accomplishing assigned task, both not having significant drawbacks. However
there are a few things worth to mention in context of Videolytics web portal
module‘s responsibilities:

 Both provide sufficient tools to implement video streaming, but not with
features that are needed. It is possible to publish a simple video stream
from local file, but when it comes to live streaming, an external tool is
needed. And rather than combining two different tools for the same
purpose, it is more convenient to leave video streaming task for the
specialized software and use scripting language only for management of
that software.

 Both are able to communicate with database with installation of
corresponding modules.

 Both are able to execute a command line on server, thus managing server
processes.

 Advantages of PHP include:

o simpler deployment on server, just because it is an Apache module
that starts working ones installed and does not require anything else;

o being faster [24], which is not so profitable considering that the
biggest load on server will come from the other modules.

o integration with HTML that allows to easily combine both when
needed;

o less code amount required – a simple .php file with a script in it is
ready to be executed without server restart or any other code
changes;

14

o NodeJS is a newer technology and author of this work had more
experience with PHP.

 Advantages of NodeJS include:

o same server and client programming language syntax makes a code
easier to write and understand;

o support for asynchronous operations (which can reduce server load
during the database querying).

As a conclusion, for the purposes of current task scripting language PHP is
a slightly better option for the developed web application.

2.4 Database

Main requirements for database are:

 no NoSQL – there will be a lot of connected data and a lot of complicated
requests for them, so standard relational database is the best choice;

 speed – database speed is one the most critical parts of the whole system,
sufficient amount of requests per second must be achieved to accomplish
live video processing;

 compatibility and maintenance – same as for all of the used software, it
should be easy deployable and administratable on various operating
systems, as well as accessible with PHP.

Selection is made from the most popular relational database
management systems: Oracle [25], MySQL [26], SQL Server [27], PostgreSQL [28].

From these Oracle and SQL Server does not meet the compatibility
requirement, as the first one has no support for many operating systems and the
second one is run exclusively on Windows.

As for performance, it is hard to tell which one of MySQL and PostgreSQL
is better. Different studies show different results in different conditions.

Final decision was made during collective discussion of Videolytics project
members, and according to their personal preferences and experience the choice
was made in favor of PostgreSQL. For the whole exploitation period its speed
was enough to achieve desired goals, even before data scheme optimization.

2.5 Internet protocols

There are many other protocols and technologies that can be used and it
is too difficult for now to decide which to stick to. These subsection is more
dedicated to determination of what cannot be used. This will be helpful during
the selection of video streaming software in the following subsection.

15

2.5.1 Transport layer

There are two main types of transport protocols – TCP and UDP. TCP
protocol is more reliable:

 it requires connection between server and client verified with three-way
handshake;

 error and packet loss handling mechanisms;

 integrity of data is guaranteed – client knows in which order received
packets should be viewed

Mentioned above features of TCP are not provided by UDP, making it
more lightweight and generally faster for sending a lot of requests.

While UDP is often used for video streaming due to its advantages, it
cannot be used for Videolytics web application. The main reason if that not only
the video stream must be shown to end user, but also high level features
(detections and trajectories) associated with individual frames of video.
Synchronization between these two data sources must be extremely precise, as
even a small delay of several frames can be perceived by user and make usage of
service less comfortable. Example of such delay is shown on figure 2.1.

Figure 2.1: Example of 7 frames delay in object detection

Thus the video stream must be highly stable, which can be guaranteed
only by TCP protocol. The disadvantage that it is slower is compensated with two
factors:

 The data portion of packets is going to have much bigger size then the
header because it is a video stream. And the speed of UDP protocol
comes partly from smaller packet header size.

 UDP shines when serving large amounts of clients, which is not the case
of Videolytics service. There are not going to be thousands of
simultaneous users served by one single server, as each connection
requires a lot of resources. Number of users able to connect to single
server is limited by server’s hardware, but in general won’t be able to

16

exceed dozens of clients. To serve more people more servers will be used
as the system is highly scalable.

Also UDP packets do not contain information about their order, which can
lead to huge desynchronizations.

And there is one more fact that speaks in favor of TCP. High level features
associated with video frames are stored in database and will be fetched using
PHP, leading to utilization of HTTP, which is commonly used along with TCP. It
can be used with UDP, but in this particular case it won’t be for the same already
mentioned reasons. And sending those different data with the same protocol will
lead to smaller latency dispersion, which will allow for smaller delay of live video.

As a conclusion, there are many factors indicating advantages of using
TCP protocol for the developed application. Even if UDP may be a faster
transport protocol, it also comes with inacceptable disadvantages. So the final
choice is TCP.

2.5.2 Application layer

Traditional video streaming protocols are RTMP (Real-Time Messaging
Protocol) and RTSP (Real-Time Streaming Protocol). Both of them are using TCP
transport protocol (UDP is also an option). However they maintain client-side
connection with Adobe Flash Player. Usage of this technology is undesirable for
the same reasons as described in subsection 2.2.1 at the part describing HLS
streaming: end of support, need for external player (which makes stream control
more difficult), Videolytics modules communication problem.

It is worth to mention HTTP-based protocols, as they provide high
compatibility with both web client and Videolytics modules due to the fact that
HTTP is commonly used for communication and thus almost anything can utilize
it.
As a result of protocols analyze several guidelines have arisen:

 Stick to TCP transport protocol instead of UDP;

 Usage of RTMP, RTSP and HLS technologies as well as usage of external
video player is unwanted;

 HTTP communication is preferred.

2.6 Video streaming software

There are two types of video streaming software that is needed:

 First to carry out video conversion to the required format and/or codec.

 Second to establish a video stream source, that can be used by web client
and the other Videolytics modules.

The most popular software options will be listed, discussed and
compared . Then a final choice will be made.

17

2.6.1 First task – video conversion

FFmpeg [29] is a complete, cross-platform solution to record, convert and
stream audio and video. It provides tools to carry out all of the imaginable video
conversion supporting all of the discussed formats, codecs and protocols.
Conversion process is highly customizable and all available options are
documented in detail with examples. This tools is extremely popular and widely
used in many applications including open-source projects, which provides access
to many more possible usage examples and scenarios for inspiration. License of
FFmpeg allows free commercial use, however distinct codec libraries such as
libx264 (for h264 support) have independent licenses which limit commercial
use based on number of service users, which will remain very small in case of
Videolytics. One more advantage is that FFmpeg also provides its own streaming
tool FFserver.

HandBrake [30] is a free and open-source transcoder for digital video files.
It is cross-platform tool with huge variety of supported video formats. While it is
definitely possible to output a video stream with it, acceptance of such stream as
an input from IP camera is limited to specific formats. Commercial use is fully
free. It also provides needed command line tools that are however documented
with fewer details than FFmpeg.

Format Factory [31] is a set of Free and multifunctional, multimedia file
processing tools. While supporting a lot of video formats, its use via command
line is limited and not properly documented, thus cannot be customized.
Commercial usage is completely free, however the only available platform is
Windows, which is a huge disadvantage.

VLC media player is able to convert between video formats, even video
streams. However it is only able to save output to local disk, which is not the best
option considering intense local storage usage. Command line interface exists
and is documented but is not customizable enough. During the tests with video
stream conversion this tool unpredictably changed playback speed, but still
provided a surprising variety of functionality for a product positioning itself as a
video player.

Comparison of video streaming tools is shown in table 2.1, where
significant disadvantages are in bold.

Every tool has at least one significant disadvantage, most of which greatly
affects functionality. While certain workarounds can be utilized to compensate
some disadvantages, it is not the best option. From the set of reviewed tools
only one satisfies all defined software requirements and it is FFmpeg. Its
disadvantage is that it is not completely free, because some of its libraries,
including necessary libx264 for H264 support, have distinct licenses. This
required library however is free for commercial use under certain conditions,
and more specifically number of users per month, which is going to remain very
low for Videolytics system due to its nature.

18

Table 2.1: Comparison of video conversion tools

 FFmpeg HandBrake Format Factory VLC

cross-platform yes yes Windows only yes

H264 yes yes yes yes

command line interface yes yes limited yes

customization excellent good unknown poor

documentation excellent good poor yes

commercial use limited allowed allowed allowed

input stream yes limited unknown yes

output stream yes yes unknown no

So considering all the above the best option among the reviewed

candidates is FFmpeg. As a bonus it comes with its own video streaming software
FFserver.

2.6.2 Second task – video streaming server

There are plenty of implementations of video streaming server. While
making decision open source projects are preferred as they are generally better
documented, customizable and clear, while also being free.

Paid servers may have better UI (some even provide web GUI), but they
also have a many disadvantages:

 being more heavy, so it is much harder to deploy them including for initial
testing purposes;

 payment system is one more responsibility to worry about when
managing server, which can stop the entire system when forgotten and
resumption of work may last at least for a duration of a bank transaction;

 it costs money, which may not be a lot but still is acts as a demotivation
for project members;

 all the other software used for now is free, so Videolytics maybe can
someday also become an open source project if all of its parts are also
open source.

When choosing from free options, the possible choices are FFserver [32],
SRS [33], PHP FFmpeg Video Streaming [34], mkvserver_mk2 [35] and many
more. There is a huge list of such software containing 47 tools [36]. Only a few of
them will be considered.

FFserver comes within FFmpeg package. Communication between them is
implemented with .ffm (FFserver live feed) stream format. When the server is

19

configured, no further customization is required. Once conversion is launched,
stream source is generated according to the configuration file. These tools work
perfectly in pair which is a huge advantage. As FFserver comes with FFmpeg, it
brings all its benefits described in previous subsection: support of various
formats, codecs and protocols. Documentation is not so good and comes as a set
of configuration examples, a full list of supported directives is not provided, so
configuration of FFserver can be done only with trial and error method. There is
also a controversial disadvantage described on the main page of the server and
that is the end of its support. This also means that new official versions of
software will not appear. However as this project is also open source, distinct
libraries for it can still be developed by enthusiasts and libraries for the most
widely used standards (specifically H264) are already implemented long ago and
won’t ever need a change. It also may be problematic to install FFserver on the
newest operating systems versions as the newest FFmpeg packages come
without FFserver and the older ones are not present in repositories. As docker
will be used to run this software, so this is not a problem at all.

SRS is similar to FFserver in all relations, the only differences are that it is
an individual tool not connected with FFmpeg and that binaries are not provided.
This makes usage of SRS a bit more complicated, as further FFmpeg configuration
will be needed and building software from source code may be tricky to do inside
a docker container. An attempt to build SRS on test server has failed and this
tool has been left as a reserved option.

PHP FFmpeg Video Streaming is a wrapper, but for another tool PHP-
FFmpeg, rather than FFmpeg. This tool makes it easier to work with FFmpeg in
PHP, both of which are already a part of the developed application. The
disadvantage is that the output stream is whether HSL stream or DASH (Dynamic
Adaptive Streaming over HTTP), both of which will require a separate video
player and bring compatibility issues during integration with Videolytics modules.

Mkvserver_mk2 (or Matroska Server Mk2) is a software to produce
stream in matroska format (more known by its extension
names .mkv, .mk3d, .mka, .mks). Though this software is recommended to
use on FFserver main page, it has a lot of limitations. Firstly this output format is
not natively supported by modern browsers, which brings the same problems as
for PHP FFmpeg Video Streaming. Secondly this project is poorly documented, all
its description is located at the main page, where there are a few lines about
software, usage examples that consist of two command lines and architecture
description. Thirdly, no binaries are provided and again same as for SRS build on
test server has failed.

Summary of reviewed video streaming servers is shown in the following
table 2.2. Significant disadvantages are written in bold.

20

Table 2.2: Comparison of video conversion tools

FFserver SRS

PHP FFmpeg Video
Streaming Mkvserver_mk2

binaries available only source available only source

output anything
RTMP, HLS or

HTTP FLV
HLS or DASH matroska

documentation average good good poor

configuration easy easy easy missing

customization rich rich rich missing

friendly with FFmpeg - FFmpeg and PHP -

FFserver’s end of support did not fit onto the table and moreover is not

that significant. In fact when FFmpeg was chosen, it became first candidate for
streaming purpose. Testing has proven its capabilities of accomplishing assigned
task (server can be deployed from zero in minutes), while fulfilling all the
requirements. Comparison with other software was made just in case something
better or at least interesting will come up. Moreover it allows using HTTP
protocol for stream which is a preferred option.

As a conclusion FFserver is the best fitting option for given task.

2.6.3 Summary

 Web server – Apache

 Server-side scripting – PHP

 Protocols:

o Transport layer - TCP
o Application layer – HTTP

 Video streaming software:

o Video conversion – FFmpeg
o Video streaming server – FFserver (part of FFmpeg)

21

3 Design

3.1 Virtualization

Docker virtualization technology allows creation of an independent
environment inside of an operating system. This environment much like virtual
machine is based on some operating system’s image (docker also allows to build
own modification of images). This helps to solve compatibility problems, when
some software for whatever reasons should not or cannot be run on parent
operating system. One more benefit is that multiple containers can easily be run
or stopped using the same image. With regard to Videolytics system, there is
hierarchy of responsibilities - to ensure nothing goes wrong on production server,
it has only one administrator. To use resources of the machine other team
members use docker container to install whatever software and run whatever
processes they want without causing any conflicts such as dependency hell. At
the same time containers can communicate with parent’s filesystem or network
or other containers without interfering with parent processes (except that they
share computing resources).

From chosen software Apache web server with PHP and PostgreSQL
database can be installed almost on any operating system and once deployed
and run won’t need almost any management: updates on server will be made by
changing files containing web pages’ code in local storage, updates of database
will be made with administration tool PgAdmin or its analogue running on
different machine. These two processes are critical for the whole system and
putting them inside a docker container will bring one more layer of management
and complexity, in case of accidental container shutdown or corruption there is
need to run other process that will restart it and to make backups. One more
reason not to use docker for the web server and database is that they are used
by every developer, so there is no need to make a separate environment.
Virtualization is a good technology, but it should not be overused, and this is the
case.

As for other remaining software – FFmpeg and FFserver – there are
several reasons to put them inside a container. Firstly FFserver cannot be easily
installed on any operating system, to do so it sometimes must be built from
source code. The reason for this is that newest version of operating systems
don’t always provide sufficient backward compatibility for software by not
including older versions of that software into repositories. Secondly there can be
several instances of FFmpeg conversions running simultaneously, each serving
certain user’s or module’s needs.

For this two purposes separate docker images are defined based on latest
release of Ubuntu operating system, as it provides access to FFserver package
without need to build it from the source. Benefits of predefined docker images is

22

that they are built with set of instructions (Dockerfile), which allows to manage
software on every step: installation, configuration (in this case by copying
configuration file from parent system) and even running it automatically when
container starts. This allows going through all the difficult stages at the beginning
and then run needed software by simply starting a container.

To avoid disambiguation in names of containers and FFserver stream
feeds, several rules are defined:

 Name consists of its general name and a numeral suffix when needed;

 General name represents the nature of an object:

o feed – live stream feed,
o ffmpeg, ffserver, liveed – containers,
o containers will also have a word instance on their general name to

explicitly distinguish them from the corresponding docker images;

 Numeral suffix following general name is a unique user id.

3.2 Unique user id

As it was mentioned above, multiple users may request for different
video streams simultaneously. When someone is watching such stream in a
specific moment of time the other must not interfere with it in any way. So there
is need of some kind of service providing information about server status. There
is a possibility to run such service with FFserver, it is implemented as a kind of
video stream with format status, being actually a HTML page. Unfortunately,
contents of that page cannot be configured and provide almost the whole variety
of information about the server, furthermore status of stream feeds is not
provided as a clear true/false variable, but still can be derived from the few lines
at the bottom of the page. Another downside of this output format is that it is
not supposed to be read by a computer. Parsing HTML on client side will mean
that the user will have access to server’s details, which are not really needed for
client application functionality. So the solution is to develop a server-side HTML
parser, which will consume that status page and produce only the required set of
values. FFserver status page can then be configured to be available only from the
server itself, limiting access from the outside.

Output of this service will be in JSON format, as it is JS-native (easy to
process in browser), but also human-readable (convenient for development and
debugging). Output variables will have boolean type and show, whether FFserver
or a specific feed is running or not.
The algorithm of getting the unique id is:

0) If user is not watching the stream, he does not need the unique id.
Process of getting the id starts after the user initializes stream start;

1) Get the server status in JSON format from the defined service;
2) If FFserver is not running, send a request to start it and wait for it to

start;

23

3) Choose any of the available stream feeds, get a unique id from the
feed name numeral suffix (defined by naming convention);

4) Start the video stream, so that the id becomes reserved;
5) If the stream has started successfully, remember the id till the end of

the stream. Otherwise return to step 2.

3.3 Database

The process of designing the database was cooperative between all the
Videolytics project members. Adjustments and agreements in relation to every
individual module ware made, so the whole design process will not be described
here, as it involves too much context of the other modules. Instead only the final
result will be shown to provide necessary context needed for the further design
and implementation.

Database schema is shown on figure 3.1.

Figure 3.1: Database schema

Table descriptions:

 Camera - available cameras or videos in the local storage

o id: PK;
o name: For videos this is the name of the file;
o ip: Only for live camera;
o port: Only for live camera;
o codec: Only for live camera;
o fps;
o h: height, w: width.

24

The last three fields were added to reduce web module complexity. First
database versions didn’t have them, to determine these parameters the module
was using separate service based on mediainfo tool. Whereas that was enough
for local videos, for the live stream sources it is more complicated. So the fields
for fps, height and width were introduced, defining video parameters.

 Frame - a record for each frame of each camera/video:

o id: PK;
o camera: ID of the camera this frame corresponds to (FK to Camera);
o timestamp: Time the frame was captured;
o sequence_number: Sequence number of the frame within given

camera. This is a replacement for timestamp field in cases where it is
not good enough (during frame drops etc.).

 Detection - a record for each part of frame containing detected object:

o id: PK;
o frame: FK;
o class: the class of the detected object (person, car etc.);
o left, top, right, bottom: left/top/right/bottom-most coordinate of the

bounding box of the detection in the frame;
o feature: Legacy column; not used for now;
o crop: Whole image (crop) of the detection in numpy-byte format;
o conf: Confidence of the algorithm for detection (0 – 1).

As for coordinates, originally [x, y, w, h] were used, but such names (x and
y) collided with trajectory centroids definition. To avoid that fields were renamed.

Some field names (for example class or left) are colliding with PostgreSQL
in-built operator names, which must be considered while constructing SQL
queries – to avoid disambiguation field names must be quoted.

 Traj_model - Models of trajectories:

o id: PK;
o description;
o feature_type: Which feature type was used when creating this model

(FK to feature_type).

 Traj - Auxiliary table to connect detections and trajectories. One row
represents one trajectory:

o id: PK;
o traj_model: FK to traj_model;
o camera: In which camera/video is this trajectory (FK to camera).

 Traj_detection - Actual assignment of detection into trajectories:

o id: PK;
o traj: ID of trajectory (FK to traj);
o detection: Which detection we assign (FK to detection).

25

 Traj_smooth – the result of trajectory smoothing:

o id: PK;
o traj: FK to traj;
o frame: FK to frame;
o w: horizontal coordinate;
o h: vertical coordinate;
o The other tables are used by the other modules only are not touched

on in this work in any way.

3.4 Modes

Developed application works with various data from different sources.
Those data will be visualized and synchronized between each other. Correct
client-side visualization is highly important not only for the end user, but also for
the other developers, as they will tune behavior of their modules. In this context
application must be designed in such way, that it can provide interface to
process the same data as an input over and over again. Using this method web
portal will also become a testing tool for the other modules including itself.

However live video stream is not repeating itself, so for testing purposes
there must be available some kind of live stream simulation.

One way of doing so is to create constant repeating stream source of
defined interval. This solution leads to an unsolvable paradox – proper testing
cannot be done if the interval is too short, as there will not be enough video
material to work with, but at the same time effective testing cannot be done,
because the developer must wait for the defined interval each time he wants to
test specific moment.

To overcome this an another approach is used, which is more difficult to
implement, but at the same will greatly pay off later during development, testing
and even normal usage. The approach is to introduce three different modes of
application, each with its own purpose and appropriate functionality.

These modes are:

 Offline and real-time simulation – a repeating video stream is created
from a file located in local storage with a defined by user playback
starting position.

o In case of offline mode detections and trajectories are preliminarily
computed and stored in the database.

o In case of real-time simulation on each start of the stream all the
detections and trajectories are created in real-time and stored in the
database. Then when the user leaves they are removed from the
database, as this is a simulation only mode.

 Real-time – video stream source is an IP camera, detections and
trajectories are generated in real-time the same way as for simulation

26

mode, with the only difference that the features are then not removed
from the database, but instead stored for further analytics.

Though the features are extracted in real-time, there is a delay of several
seconds before they are ready to be visualized.

A better representation of what these modes have in common is a
following table 3.1.

Table 3.1: Comparison of web client modes

 offline
real-time

simulation real-time

stream source local file local file IP camera

feature
generation

preliminarily
real-time

with a delay

real-time
with a delay

features after
the user leaves

left as they
are

removed
afterwards

saved

3.5 Use-cases

Use-cases that should be supported by this application come up from the
task assignment combined with requirements developed during the related
works research (summed up in subsection 1.3).

 Playback of a live stream:

o Choose the stream source (local file or IP camera);
o Choose the stream start time (when the source is local file);
o Start the stream;
o Stop the stream.

 Visualization of detected objects and their trajectories in the video
playback:

o Enabling and disabling detections in general and for individual
detection classes;

o Changing opacity and line width of detections layer;
o Customizing information about detections: font size, enabling and

disabling displaying of class name, confidence, id, coordinates and size;
o Enabling and disabling trajectories;
o Choosing trajectories model;
o Changing trajectories width, fade time, curve radius, opacity;
o Enabling and disabling smooth trajectory fading;
o Changing framerate of detections or trajectories layer.

Management of detection processes is automated to reduce complexity
for users, so not being a use-case.

27

3.6 User interface

User interface design is a result of the related applications’ research and
collective discussions, and the result is a decision to follow material design [37]
conventions, the main of which is responsiveness in all senses. By that it is meant
that not only the design will adapt to screen resolution, but all the visualization
customization changes will take effect as fast as possible (preferably
immediately).

The color theme choice is mainly affected by the fact, that video is almost
always present in the user’s view. One characteristic of a video is that when it
does not perfectly fit inside its container (which considering responsiveness will
sometimes be the case), black strips appear at the top/bottom or left/right
borders. Theoretically they can be recoloured, but it may be hard when they are
a part of video it is better to stick to standard black. Thus black will be one of the
main colors used in an application, background and header should be distinct
from black to emphasize the video, which already makes a total of three. Though
almost any good combination can be used, the main part of the UI is still a video,
so any chosen dominating color may interfere with the rest of UI. The decision is
to choose the most neutral color palette – shades of gray. As pure white makes
too much contrast with pure black, it is preferred not to use it. Instead final
choice of three main colors is a combination of black, dark and light gray.

Material design suggests making UI flat. While remaining flat it can be
divided into background and top layer, where the top contains important
elements such as the video, buttons or header. General logic is to make those
top elements more contrasting and closer to pure black and white while also
casting a shadow to the background, which strives for the middle gray.

The rule for input forms is to make user avoid mistakes by elimination of
text inputs. Combo boxes, progress bars or other elements are used instead.
Disabled elements will have lighter gray color.

During the layout design standards of video streaming and web in general
are considered: header is located at the top of the web page, video – in top left
corner, video controls – at the bottom of the video, and all the visualization tools
– in the remaining space at the. Considering use-case list of previous subsection,
there are going to be a lot of customization elements. To avoid the user being
overwhelmed by this variety they are divided into categories.

Responsiveness manifests itself not only in adjustment to window size
(which by the way is also the case). Customization tools panel can have different
width depending on which category is chosen, while video width must adjust to
its size. The user may also want to change panel’s width in the way like any
desktop application would allow. All that should be accompanied by appropriate
smooth animations. One more way to “respond” to user is to save all his settings
and restore them when he comes back.

28

Following screenshots are showing the resulting design and how it adapts
to different window or panel size.

Figure 3.2: Wep app – Compact window layout

Figure 3.3: Wep app – Wide layout

Figure 3.4: Wep app – Fullscreen window layout

29

Figure 3.5: Wep app – Extended panel

3.7 Architecture

The architecture of the application is divided into two main parts: client-
side and server-side. The latter can further be split into container related and
database related, which can be server-side only as the user must not have access
to the details about containers or the database’s credentials.

Organization of server-side processes is based on the concept of
microservices architecture (its advantages are described in analysis section).
Instead of programming a huge monolithic application, it is divided into
individual services as much as possible. Those services can then be initialized by
the client with a simple HTTP request. This allows utilizing asynchronous
communication: instead of taking care of various application states with flags or
anything else, the client simply follows a chain of asynchronous requests and
callbacks.

In this subsection a general description is provided, full detailed service
specification is located at subsection 4.4.

3.7.1 RESTfulness

Common architecture for creation of web services is REST
(Representational state transfer) [38]. The designed architecture follows some
constraints of REST:

30

 Client-server;

 Statelessness – the server is somewhat stateless except that it only
knows whether the client is connected or not, which is another
convenient simplification;

 Cacheability is a bit controversial, as the client maintains a cache of data,
but also metadata about that cache, so unwanted requests are not made
at all.

However uniform interface is not reached. Moreover explicit goal was to
avoid it, as it could reduce understandability of the architecture. Almost all of the
services are limited with GET operation (only one carries out a DELETE), while
not simply getting the resource state, but rather a specific part of info about it,
so uniform naming makes unclear, what the service is actually providing.

For example, a frame can be considered as a resource, for the
implementation of synchronization two services must be defined: to get first
available frame or to get a frame nearest to provided timestamp. While there
can be a single resource frame, it is not clear that sending a timestamp as part
of HTTP request will completely change the meaning of the response. Function-
style naming provides better understanding of what the service does, so these
two will have names getStartFrame and getNearestFrame.

Yet the application is not needed to be RESTful at all, as it does not
provide API and accessing its services outside the GUI makes no sense. It does
not claim to be, but still may be called semi-RESTful.

3.7.2 Container related services

Container related services provide interface to manage containers and
can be categorized by their general purpose:

 Container startup: ffmpeg, ffserver, liveed. Response of this service
has two phases. First the client receives empty response meaning the
server is preparing environment for container startup, second signalizes
successful of failed state. More detailed description of this process and
why it is designed is provided in subsection 4.2.1.

 Container stop: docker_stop, docker_killer. First is actually
stopping the containers, while second watches for client’s connection
state and shuts down the containers when user stops the stream or
leaves the page. More detailed description of this service is provided in
subsection 4.2.3.

 Informational: ffserver_status, list_local_videos,
video_duration. There services behave in a simple request/response
manner and provide some information to the client. The first one is a
wrapper around FFserver status page, the reasons why this is needed are
discussed in subsection 3.2. The last service can fit into all the categories,
as it starts container, provides some information and then cleans up after
itself. More information about it is provided in subsection 4.1.4.

31

 Helper: stay_connected.php. This service is used only by the other
ones and is actually a code that changes default service behavior when
included. It makes service to not stop its work if the client closes
connection, so that containers will continue their work despite possible
network problems. More details are provided in subsection 4.2.3.

3.7.3 Database related services

Database related services are introduces in the order of their call by client:

 Initial state, where user has just came to the web page. At this point he
needs to discover available cameras to be able to start the stream. As
own live IP camera is not yet available, only files in local storage are listed
with help of service list_local_videos.

 When the camera is chosen, further information about it is obtained with
help of getCameraByName service.

 If local video with already extracted and stored features is chosen, some
information about them can be found in the database and displayed even
before the stream start. First the presence of features should be
controlled with haveDetections and haveTrajectories. Then if
they are present, further information can be discovered and more
specifically a list of object classes (person, car etc.) and a list of trajectory
models, obtained with getClassList and getModelList accordingly.

 Then video stream can be started. Its playback is possible without any
metadata, however to know exactly what data are needed to be fetched
a reference to database is needed. That is a frame id corresponding to
first video frame, which is received from getStartFrame. With this
frame further orientation inside the database is possible, as frames are
connected with camera id and sequence number.

 For better synchronization between video stream and features (described
in subsection 4.3) there should be a service that can be used periodically
to control exact frame inside database corresponding to current video
frame. That cannot be calculated with start frame id only, as unexpected
frame drops may lead to synchronization errors accumulating
proportionally to time passed. Instead an expensive operation of control
by timestamp is periodically called with getNearestFrame.

 If an option to generate features in real-time is chosen, corresponding
processes (LiveED for detections) should be initialized. It is done with help
of container related services that are among the rest creating a
temporary camera in the database. To get information about that new
camera getLiveEdCam service is used, then after the user ends the
session by stopping the stream or leaving the page all the temporary data
must be cleaned, which is responsibility of cleanDbFromTestLiveED.

 Finally to provide all these services access to the database a unified
connection service connection.php is used. When included by the
other services a connection to the database is established.

32

3.7.4 Client side

The client web application is represented with single HTML page. It is
built around the main class App and its structure is as follows:

 stream.html – main page of the application, includes every other file
below, contains all the GUI elements and a minimum amount of code
(event handler function names and App instantiation and initialization);

o style.css – not only actual styles, some additional element classes
like disable-css-transitions that are not present in the HTML
itself and are needed to implement some complex behavior with JS;

o common.js – contains scripts that are independent on the rest of the
application;

o httpRequests.js – the same as common, but specifically
distinguishes wrappers for HTTP requests (implementing “send and
forget” and “polling” behaviors);

o App.js – the main application class, provides access to general
application settings, all the managers and other functions;

o init.js – implements App initialization function, which is separate
from the main class constructor. App constructor can be called
anywhere, while initialization function connects it mutually with the
caller’s context, so must be called from the HTML page;

o helpers.js – a bit similar to common functions, but more specific
for the App.

Then a list of managers follows. Each of them is a separate class with a
reference to the parent class App, making possible a communication between
distinct managers. Their names speak for themselves:

o StreamManager.js
o DetectionManager.js
o DetectionColorManager.js
o TrajectoryManager.js
o AnalyticsManager.js – this part of an application is developed by

another student independently as part of another work.

Such structure is convenient way to separate contexts, where each class
works with its own set of variables, communicating with parent or other
manager classes when needed. In this way additional functions or even
managers can be added without interference with already existing ones.

3.7.5 Server-side service diagram

To make server-side services interaction with client clearer than with just
a textual description, a diagram was created. It is shown on figure 3.6.

33

Figure 3.6: Server-side service process diagram

Central part of the diagram is Web Client page (though it is located in the
most-left side and not in the center). The order of Web Client’s interactions with
the services should be considered from the top in clockwise direction:

 Initial phase:

o The user comes to the web page;
o Available video list is received.

 Playback phase:

o Check server status to generate unique id;
o Start docker containers in the listed order. FFserver is started if it is not

running, LiveED is started if real-time detection generation is chosen;
o Start process killer service;
o Wait for a delay until features are extracted if real-time detection

generation is chosen;
o Fetch features from the database until the end of work.

 Cleanup phase: docker_killer checks if client is connected and stops
docker containers if:

o Client has stopped the stream and has disconnected from the killer;
o Client has left the page.

That was the most complex part of a diagram, the other ones don’t need
and explanation.

34

3.7.6 Additional frame provider service

For the needs of the analytics module one more service camera is added.
It is independent from the rest of the application and provides a frame image by
camera name. It is also is a part of web portal so will be listed in the full
specification among the other services.

35

4 Implementation

4.1 Virtualization

When building docker images with Dockerfile, rather than just installing
software it also needs to be configured and run with proper parameters. These
parameters can be sent to container when running it with -e name=value.
Those parameters are then accepted by container and according to Dockerfile
instruction put instead of ${parameter} strings.

4.1.1 FFmpeg container

Dockerfile for FFmpeg image just defines software to install and then runs
it with a command line command. All of the implementation features reside in
this command line – the way to call it and parameters used:

 FFmpeg should provide constant stream source, for that a specific
parameter -stream_loop can be used. However testing revealed that
this parameter is bugged and not working properly. To achieve the task a
workaround was invented. As command line is used to start conversion,
all its functionality can be utilized, including infinite loops construct
while :; do …; done.

 FFmpeg can be converting input faster or slower that the output requires.
To read input at its native framerate parameter -re is used.

 To start stream simulation from specific position parameter -ss
${position} is defined.

 Input video file is also sent using parameter -i ${videoFile}.

 H264 codec is enabled with -c:v libx264.

 Sometimes when converting video frame drops may occur. By default
FFmpeg skips such frames and continues to write output as if nothing
happened while also shifting its timestamp. For the developed application
this moment is critical, as such shifts along with timestamp rewriting will
lead to desynchronization between video and detections/trajectories.
Solution to this problem is not a single parameter, but a combination of
them:

o -use_wallclock_as_timestamps 1 – force FFmpeg to write
timestamps according to current system time and not shift them
during frame drops (this parameter is not even documented and was
found in code examples).

o -vsync 0 – passthrough, each frame is passed with its timestamp
from the demuxer to the muxer. By default frames can be dropped to
ensure constant framerate, leading to timestamp corruption.

o -enc_time_base -1 – use the input stream timebase when possible.

36

 Finally set the output pointing to FFserver feed element with unique user
index (as described in subsection 3.2):
http://localhost:8081/feed${feedIndex}.ffm.

4.1.2 FFserver container

FFserver works in pair with FFmpeg. Connection between them is
established with special .ffm live feed format. FFmpeg just sends output in
this format to the address on which the server is listening. Video formats to
convert to are defined in server’s configuration file instead of specifying them
with each FFmpeg call. Actually there is no conversion to .ffm and then to
another format, FFmpeg finds out the needed output format from server’s
configuration and converts directly into it, sending the output directly to the
server’s output endpoint through the pipeline. While this may seem to be
complex at first, it is really easy and convenient way of distributing single video
or video stream to multiple independent outputs in different formats.

Dockerfile configuration for FFserver image instructs to install software,
copy already written configuration file to the right place (default FFserver
configuration folder) and the run the server without any parameters (all
configurations resides in the previously copied file).

The configuration file fully defines how server will work. It is quite large
(300+ lines), so only the important parts will be described.

First few lines describe general server parameters like port or
connections limit, nothing particularly interesting.

The second part is describing live feeds in .ffm format. Once run the
server will open those feeds for incoming data, and now FFmpeg can establish
the pipeline and send data to the defined feed. The order is important, FFserver
must be running for the pipeline to arise, and if it's not the convertor will simply
return an error saying the output address does not exist. Each feed configuration
describes name, maximum size of feed contents and address which is allowed to
send the stream (in this case it must be localhost – 127.0.0.1).

The third part is describing the actual stream. Each stream connects to
some feed, so there can be multiple streams in different formats generated from
one video source. Those formats include video codec, resolution, framerate,
bitrate and other. It is not so convenient that there is no way to create some kind
of template to configure all stream outputs at once. For the other applications
where there is only one constant live stream that might not be a problem. But
for the developed one there will be not only live streams, but also stream
simulations, which multiple users may want to play and control individually. For
this reason many stream outputs must be created, with each user watching its
own. Optimistic guess is that the current production server can provide a
maximum of 6-7 stable video streams, more will lead to a decrease in
performance. So current number of available streams is set to 10. Thus there
must be 10 almost identical copies of stream configurations with the only
difference in feed name.

37

There is one more thing that increases configuration file length almost
twice. Originally it was thought that web browser and Videolytics modules will
use the same stream for their purposes. But during the tests (which
unfortunately were not documented and cannot be provided in this work) it
appeared that it is done easier with two different formats - .ogg and .flv.

While most of the browsers natively support playback of both of them,
for some unknown reason (probably something connected with different chunk
encodings) .flv video stream provided by FFserver could not be played with
HTML5 video player and inside the player the stream was automatically
downloaded by browser, while .ogg didn’t have such problem. The fact that this
player can be used is a big advantage, as it is already implemented in most of the
browsers while providing all necessary functionality and no other third-party
player is needed.

As for Videolytics modules, it was much easier to work with .flv format.
Using two different formats may lead to twice as much server load, but
cooperation of FFmpeg tools is cleverly organized – because the same codec is
used, the stream can be packaged into two different formats without significant
load. Thus the only downside of this stream split is increase in configuration file
size, which is not a problem at all, as it is written only once.

The last part of configuration file defines server status page name, which
will be used to determine unique user id (described in subsection 3.2).

4.1.3 LiveED container

LiveED container runs processes to provide real-time detections
generation. It is designed within another work, for this application an example
provided in documentation is used. However a few parameters sent to LiveED
container are related to this work and are worth to mention:

 --name ‘container_name’ – docker parameter

 -c ‘camera_name’ – this actually means camera name inside the
database, which will be created at the start of LiveED work. All the
detections for the inputted stream are associated with this camera.

 ‘stream_url’ – the last parameter for LiveED sent without name,
pointing at .flv live stream.

Each of these parameter names follow the naming convention, having
unique user id at the end.

4.1.4 Duration container

To provide better control of the stream that is generated from local file,
application provides interface to set stream start position, which can be
anywhere from zero to the end of file.

Maximum possible video time position could be defined statically in
database, but that would lead to problems if the file is changed. So a dynamic
approach is used, utilizing FFmpeg capabilities. A command line can be run to get

38

video duration. But because it is calling FFmpeg tool, it is also needed to be run
inside a container. Video file name must be passed as a parameter, Dockerfile
should instruct to simply install FFmpeg and then run a command line with this
parameter: ffmpeg -i /mnt/videos/${videoFile} 2>&1 | grep
Duration | cut -d ' ' -f 4 | sed s/,//

This command will transform information about video duration to a
format H:mm:ss (H may have more than 2 digits, while mm and ss exactly two).

4.2 Container management

4.2.1 Startup

First step of working with each mode is choosing the video source where
start position may be set for local video. Processes are started in particular order
using principle of asynchronous communication – next process starts to load
after the previous one has responded with acknowledgement of startup.

 ffserver if is not running

 ffserver_status (Live feed status service) to determine unique user
id;

 ffmpeg that connects to FFserver live feed corresponding to chosen id;

 LiveED (if in real-time mode) that connects to video stream started by
cooperative work of FFmpeg tools.

To get process startup acknowledgement two different approaches may
be used:

 The simple one. As processes are started with bash commands inside PHP,
the same page may also return its status as a response, while keeping
connection with client alive. Downside of this approach is that during
execution of bash command PHP is not able to do anything else. Running
docker container as a daemon could solve this, but then one more layer
of control is needed to check if daemon process has not failed. A message
signalizing startup of a container may be sent instead, that can cause
process chaining problems if they are starting too slowly. This is not the
case for defined order as FFserver and FFmpeg are starting immediately,
while LiveED is being the last in the chain.

 The complex one – run independent service that will control other
services work. While this is theoretically ideal solution, it increases
architecture complexity and number of client-server connections to
handle.

 The first approach is used until changes are needed.

Containers are started with command line execution within PHP. Client
needs to send HTTP request to appropriate PHP page and then the server starts
the container. Such process with then run independently from the client, though

39

some response may be sent, for example a discussed above acknowledgement.
After receiving it a connection between the client and the server can be closed,
so container will still be running in a separate server process while the client
doesn’t need to maintain active connection for the application work. This is
convenient in case of network connection interruption on both client and server
sides, as there will be no need to restart all the services. However such
independence may cause a situation, where unwanted process continues to run
after the client has left. Solution to avoid that is discussed in following
subsections.

4.2.2 Communication

Containers are running on the server, but the result of their work is used
by both the server and the client. Communication in both directions is
maintained with HTTP requests from the client followed with responses from the
server. Such connection can be established on the client side with help of
XMLHttpRequest or its more convenient jQuery library AJAX wrapper
jQuery.get().

The first one in the context of this work is used only to implement custom
behavior to get container startup acknowledgement. When initializing such
process with PHP a HTTP connection is made. First response from server is empty,
meaning the client should wait. Then the server pushes new data to the page,
and if that data signalizes successful container startup, client can continue to
create his process chain.

Simple request and response is not enough to implement such behavior,
as a minimum of two responses is being sent. There are several technologies that
can be used here known as real-time web protocols: polling, long-polling,
streaming and server-side events. Any of them could be used, but as only two
chunks of data are needed to be received and delay between them is very short
(even instant most of the time), there is almost no time advantage of using more
advanced technologies. Downside is however higher complexity, so the simplest
polling is used – connection if kept alive by both sides, client periodically checks
for wanted message and disconnects after getting it and then executes callback
function. Only a few services use this behavior: FFmpeg, FFserver and LiveED
container starters. It is implemented with single JS function
runPhpScript(url, callback), which is for simplicity taking as arguments
request URL and callback function, same as JQuery asynchronous request
function.

4.2.3 Shutdown

As the client leaves when he gets acknowledgement of container startup,
there must be some kind of control that will prevent unwanted processes from
continuing to run. Obviously this control process must somehow know, whether
the client is still using the application or not. As the server cannot directly send
requests to the client (as he doesn’t listen for them), this responsibility stays on

40

the client. But an extreme case of connection interruption must be considered
too, so the client must somehow initialize process shutdown even when he
leaves unpredictably.

PHP provides tools that can help to achieve this task. One of them is
possibility to continue script execution even when the client leaves (that can be
also used to minimize necessary amount of active client connections). This is
realized with ignore_user_abort(true) method. The other tool is
connected with previous one, it provides a flag showing if user has left -
connection_aborted().

A service watching for active connection will use those tools, checking in
infinite loop whether the client has left. And when so, a cleanup service will be
called. This new service is added to the design section.

4.3 Visualization

When the whole process chain is initialized, client can start fetching the
data for visualization. There are three factors that are needed to be handled:

 Fetching – application must always have data from database to work with.
To achieve that a technique is used that can be described as a near future
window. The client defines a window that must always be available to
him, and when he has less data, he fetches a new portion from the
database. The last fetched position is remembered and used when
requesting for the new data to minimize amount of database operations.
To further reduce server load the amount of fetched data is a few
seconds bigger than the window size, so bigger chunks are transferred
through less connections when possible.

 Synchronization – data from the database are drawn of top of video
stream and must correspond to it within approximately 200 ms. To
achieve that a combination of three approaches is used:

o By timestamp – both local video and live stream frames contain a
timestamp, which is stored inside the database, so the features can
reference to it. While at first sight timestamps are completely enough
to synchronize data, it is not that simple – there are two major
problems. First one comes up from incorrect or missing timestamps,
they can be generated on the fly for live stream when missing or set
explicitly for local videos, so they are always present, but still are not
always perfect. The second problem depends on connection
limitations – for a 30 fps video there will be 30 timestamps per second,
querying for that makes a huge load on database. But thanks to the
other approach there is no need to send so many requests.

o By frame sequence id – local videos that are already processed offline
have their features stored inside the database without any frame
drops. This allows to synchronize the data only once at the start of the

41

video, and then calculate frame sequence id offset using the
knowledge of video fps. While making less requests to the database,
the downside is a high potential for errors. First or a group of first
timestamps may be incorrect which will lead to the desynchronization
of the whole video. Also frame drops may occur, which can shift the
balance unpredictably.

o Combination of approaches – the two already discussed approaches
can be combined to eliminate or minimize downsides while keeping
advantages of each of them. The idea is to carry out the
synchronization by timestamp periodically to reduce load on the
database, while the rest of the time go on according to frame
sequence id shift minimizing frame drops consequences. If some
timestamp is incorrect, it will only affect a small period of time, but
then application will continue its normal work.

 Delay – feature extraction requires some time, which is constant due to
pipeline organization of detection processes. This time between current
stream timestamp and features appearance in database is about 2
seconds, this is necessary delay for a live stream to make visualization
possible. Offline preprocessed videos don’t require a delay.

4.4 Full service specification

All of the services described in design section are further specified here in
the following table 4.4. Page width does not allow inserting a description column,
which is instead provided in subsection 3.7. Database related services’ outputs
can be in a form of SQL statement, where the star symbol is a shortcut for all
relation fields. For reference a detailed database description is located
subsection 3.3.

Table 4.1: Full service specification

Name Directory Inputs Output

Output

format

camera.php .

name (string) -

name of videofile

in

/mnt/data/videos

image of camera

view

image/

png

cleanDbFromTestLiveE
D.php

./db uuid - -

getCameraByName.php ./db
name (text) -

camera name

SELECT * FROM
camera

JSON

getClassList.php ./db cameraId (int)
SELECT class
FROM detection

JSON

42

Name Directory Inputs Output

Output

format

getDetections.php ./db

frameLeft (int),

frameRight (int) -

frame interval

SELECT id,
frame, class,
left, top,
right, bottom,
conf FROM
detection

JSON

getLiveEdCam.php ./db uuid
SELECT * FROM
camera

JSON

getModelList.php ./db cameraId (int)

SELECT
model_id,
description
FROM
trajs_models

JSON

getNearestFrame.php ./db
cameraId (int),

timestamp (int)

SELECT * FROM
frame LIMIT 1

JSON

getStartFrame.php ./db cameraId (int)

SELECT id,
cast(extract(e
poch from
timestamp) as
integer) as
timestamp from
frame

JSON

getTrajectories.php ./db

model_id (int);

frameLeft (int),

frameRight (int) -

frame interval

SELECT
traj_id,
model_id,
frame_id, x, y
FROM
trajs_centroid
s

JSON

haveDetections.php ./db
cameraName

(text)
true/false

text/pla

in

haveTrajectories.php ./db cameraId (int) true/false
text/pla

in

various scripts
./php_scri
pts

(uuid for

docker_killer.

php,
docker_stop.ph

p, ffmpeg.php,

liveed.php)

Text indicating

script state

text/pla

in

43

5 Testing

5.1 Approach

The development process is not yet finished because of the mutual
dependence of the Videolytics modules. The whole system is constantly changing,
introducing new functions (and sometimes bugs too). A change in one module
sometimes leads to a change in the other and sometimes opens new possibilities.
Considering the nature of the system not only testing but the whole
development process sticks to agile methodology, rather than the traditional one.
These is a common big goal, but to reach it distinct subgoals are introduced,
reached and discussed every week.

This fact and the mutual dependence of the modules define specificity of
testing: there is no final big testing, instead it is continuous. Developed
visualization tools are used by the other developers which are also taking the
role of testers.

Advantage of this approach is constant control of module functionality.
When during the system change something stops working, that fact is
immediately reported within the group of developers so the solution (sometimes
collective) can be found as fast as possible.
Disadvantages of this approach are:

 The whole module testing almost makes no sense. It may provide
information about application’s state a specific moment in time, but that
ceases to be relevant after the first system change. A specific versioning
system was not yet introduced.

 As testing is carried out constantly by everyone, it is not properly
documented.

For the moment when this work is written all the application parts
function correctly. There is an unsolved problem that influences web portal, but
it comes from another module, so nothing can be done about it. The problem is
that LiveED container won’t stop for some reason after sending termination
signal for 6 minutes. For that period it blocks the other live feature generation
processes, making live visualization not possible, but after 6 minutes it stops and
the system returns to normal state. Offline mode works without any restrictions.

Application is located on a web server with address:
http://videolytics.ms.mff.cuni.cz/.
This link also acts as a demonstration of Videolytics system.

http://videolytics.ms.mff.cuni.cz/

44

5.2 Demonstration

Demonstration of application output is shown on figure 5.1, where a
video is played and object detections and trajectories are drawn on top of it.

Figure 5.1: App work demonstration

Unfortunately all the possible UI variants cannot be show, at it would
take dozens of screenshots. Even so a static image cannot fully represent
application’s working process, how video width and various visualization
parameters (see use-cases at subsection 3.5) can be changed with immediate
response from application.

The time for the real-time detection generation module to initialize is 20
seconds, the minimal delay between the actual stream time and the appearance
of features is 2 seconds.

5.3 Load

While functionality is tested periodically and is correct for the most of
time, the other module parameters are constant and can be measured.

For example the load on server, that can be viewed in context of the
database of CPU – the two narrow parts of the system.

5.3.1 Database

Administration tool PgAdmin for PostgreSQL provides a dashboard
showing current server load. Interesting parts of it are transactions per second
and number of block I/O operations.

Screenshots of the dashboard will be provided with a sum up in form of a
table.

45

Figure 5.2: Database dashboard - idle

Figure 5.3: Database dashboard – stream only

Figure 5.4: Database dashboard – detections only

Figure 5.5: Database dashboard – trajectories only

Figure 5.6: Database dashboard – detections and trajectories

46

Figure 5.7: Database dashboard – real-time detection generation

Table 5.1: Measurements of database load

Approximate average values Transactions per second Block I/O

Idle 1 10

Stream only 1 10

Detections only 4 450

Trajectories only 3 200

Detections and trajectories 5 650

Real-time detections 35 7000

From the results it can be seen, that database load during visualization is

low. The load during trajectory fetching is far from constant, but it can be
smoothed out only for the cost of more frequent transactions, which will
probably only increase server load, as the total amount of blocking I/O
operations will remain the same.

For the comparison while LiveED container is running the numbers rocket
up, but the database still handles it. The reason of increased load is that web
module does only SELECT and DELETE operations, while LiveED also does
primarily more expensive INSERTS.

5.3.2 CPU

Database operations are not CPU heavy because of its proper indexation
and small complexity of queries. There are inner joins, but between two tables
by their index with selection, and the one between three joins relatively small
amount of data. Overwhelming CPU resources are taken by video conversion
into proper stream formats. This load gradually changes with different video
resolution, fps and bitrate. These parameters cannot be too low, as that will not
only reduce video quality for the end user, but also make impossible to detect
objects.

Current FFserver video settings for all feeds are:

 VideoSize 1280x720

 VideoFrameRate 30

 VideoBitRate 3000

47

The results of measuring the server load are shown on the following
screenshots and in sum-up table. Screenshots have inverted colors to settle
better on a paper.

Figure 5.8: Server CPU load – idle

Figure 5.9: Server CPU load – stream only

Figure 5.10: Server CPU load – stream with visualization

48

The table values are calculated considering the fact that server’ CPU has
12 cores. The load of idle state is 1 with 0% CPU load on all cores. Further
increases past 1 represent actual server load. For example load of 2 means that
one core is fully engaged (though the load can be split between multiple cores).

Table 5.2: Measurements of CPU load

Approximate average values Load average Total load, %

Idle 1.05 0.416

Stream only 3.65 22

Stream with visualization 2.76 14.6

There are two things to notice:

 Conversion is split between the cores, that will allow to utilize full CPU
capacity when needed;

 Somehow stream with visualization takes up fewer resources, than
without it. That is not a measurement error, as the results were double-
checked and individual cores also show less load. The reason for this
strange behavior is unknown.

49

Conclusion

As a part of this master’s thesis it was held a related works research
about the current state of video streaming technology. Its modern applications,
their specificity, advantages and downsides were reviewed in details to highlight
features to inherit and problems to avoid during the development.

Then the analysis of research results and existing software and
technologies was carried out. At first software requirements were defined and
according to them a list of software and technologies for the further
development was defined.

After all the tasks and requirements were defined, a design of project was
developed. All the different parts of the application were reviewed, algorithms to
achieve the tasks and solutions to the problems were found and described. A
variant of user interface was proposed. Finally a summary of the project
architecture was made, listing all the services to implement and showing their
interaction within a scheme.

Then the implementation section follows, explaining the design in further
details, providing more concrete view on the technical aspect of the web module.

Finally results of testing were provided with description of used
methodology and average numbers characterizing the application in its various
working states.

To sum up, apart from original task assignment, this work has also
realized the orchestration of various technologies altogether, while at the same
time providing simple interface for handling complex server processes.

Future work

Further development of web module within the Videolytics system is
being carried out, aiming at more complex tasks and video analytics software
market.

Current snapshot of the system will be sent to the Conference on
Information and Knowledge Management in June 2020.

50

Bibliography

[1] IDC: The Digitization of the World From Edge to Core. [pdf], ©2018 [cit.
2020-05-07]. Available at: https://www.seagate.com/files/www-
content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

[2] The Wall Street Journal: A World With a Billion Cameras Watching You Is
Just Around the Corner. [online], ©2019 [cit. 2020-05-07]. Available at:
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-
be-watching-within-two-years-11575565402

[3] EDPS: EDPS Guidelines on video-surveillance. [pdf], ©2010 [cit. 2020-05-07].
Available at: https://edps.europa.eu/sites/edp/files/publication/10-03-
17_video-surveillance_guidelines_en.pdf

[4] Livestream Blog – Research: 47 Must-Know Live Video Streaming Statistics
[online], ©2020 [cit. 2020-05-07]. Available at:
https://livestream.com/blog/62-must-know-stats-live-video-streaming

[5] Nielsen Norman Group: Nielsen's Law of Internet Bandwidth [online],
©2019 [cit. 2020-05-07]. Available at:
https://www.nngroup.com/articles/law-of-bandwidth/

[6] The New York Times: Inside China’s Dystopian Dreams: A.I., Shame and
Lots of Cameras. [online], ©2018 [cit. 2020-05-07]. Available at:
https://www.nytimes.com/2018/07/08/business/china-surveillance-
technology.html

[7] Forbes: Remember FindFace? The Russian Facial Recognition Company Just
Turned On A Massive, Multimillion-Dollar Moscow Surveillance System.
[online], ©2020 [cit. 2020-05-07]. Available at:
https://www.forbes.com/sites/thomasbrewster/2020/01/29/findface-
rolls-out-huge-facial-recognition-surveillance-in-moscow-russia/

[8] The Washington Post: Those airport cameras tracking your face may not be
legal, study finds. [online], ©2017 [cit. 2020-05-07]. Available at:
https://www.washingtonpost.com/news/the-
switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-
overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-
finds/

[9] The Guardian: Reasons to be fearful about surveillance. [online], ©2015
[cit. 2020-05-07]. Available at:
https://www.washingtonpost.com/news/the-
switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-
overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-
finds/

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://edps.europa.eu/sites/edp/files/publication/10-03-17_video-surveillance_guidelines_en.pdf
https://edps.europa.eu/sites/edp/files/publication/10-03-17_video-surveillance_guidelines_en.pdf
https://livestream.com/blog/62-must-know-stats-live-video-streaming
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nytimes.com/2018/07/08/business/china-surveillance-technology.html
https://www.nytimes.com/2018/07/08/business/china-surveillance-technology.html
https://www.forbes.com/sites/thomasbrewster/2020/01/29/findface-rolls-out-huge-facial-recognition-surveillance-in-moscow-russia/
https://www.forbes.com/sites/thomasbrewster/2020/01/29/findface-rolls-out-huge-facial-recognition-surveillance-in-moscow-russia/
https://www.washingtonpost.com/news/the-switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-finds/
https://www.washingtonpost.com/news/the-switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-finds/
https://www.washingtonpost.com/news/the-switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-finds/
https://www.washingtonpost.com/news/the-switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-finds/
https://www.washingtonpost.com/news/the-switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-finds/
https://www.washingtonpost.com/news/the-switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-finds/
https://www.washingtonpost.com/news/the-switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-finds/
https://www.washingtonpost.com/news/the-switch/wp/2017/12/21/scanning-the-face-of-every-american-traveling-overseas-would-be-invasive-costly-and-potentially-illegal-a-new-report-finds/

51

[10] Public Broadcasting Service – TECH + ENGINEERING: The Limits of Facial
Recognition. [online], ©2013 [cit. 2020-05-07]. Available at:
https://www.pbs.org/wgbh/nova/article/the-limits-of-facial-recognition/

[11] CNN Business: Distrust in self-driving cars on the rise after crashes. [online],
©2018 [cit. 2020-05-07]. Available at:
https://money.cnn.com/2018/05/22/
technology/self-driving-cars-aaa/index.html

[12] PureTech Systems: PRODUCTS: VIDEO ANALYTICS. [online], ©2012 [cit.
2020-05-07]. Available at: https://www.puretechsystems.com/video-
analytics.html

[13] PureTech Systems: PureActivTM Video Analytics. [pdf], ©2012 [cit. 2020-
05-07]. Available at:
https://www.puretechsystems.com/docs/Video%20Analytics%20Overview
.pdf

[14] AllGoVision Video Analytics. [online], ©2017 [cit. 2020-05-07]. Available at:
https://www.allgovision.com/allgovision-analytics.php

[15] CrowdANALYTIX. [online], ©2020 [cit. 2020-05-07]. Available at:
https://www.crowdanalytix.com/

[16] NGINX. [online], ©2020 [cit. 2020-05-08]. Available at:
https://www.nginx.com/

[17] Apache HTTP server project. [online], ©2020 [cit. 2020-05-08]. Available at:
https://httpd.apache.org/

[18] Node.js. [online], ©2020 [cit. 2020-05-08]. Available at:
https://nodejs.org/

[19] NGINX: module ngx_http_hls_module. [online], ©2020 [cit. 2020-05-08].
Available at: https://nginx.org/en/docs/http/ngx_http_hls_module.html

[20] MUX: HLS Playback Support. [online], ©2020 [cit. 2020-05-08]. Available
at: https://docs.mux.com/docs/hls-playback-support

[21] Adobe Flash Technologies [online], ©2020 [cit. 2020-05-08]. Available at:
https://labs.adobe.com/technologies/flash/

[22] Mod-H264-Streaming-Apache-Version2. [online], ©2020 [cit. 2020-05-10].
Available at: http://h264.code-shop.com/trac/wiki/Mod-H264-Streaming-
Apache-Version2

[23] Microservice Architecture. [online], ©2020 [cit. 2020-05-10]. Available at:
https://microservices.io/

[24] PHP vs. NodeJS comparison and benchmarks. [online], ©2020 [cit. 2020-
05-10]. Available at: https://thinkmobiles.com/blog/php-vs-nodejs/

[25] Database - Oracle. [online], ©2020 [cit. 2020-05-10]. Available at:

https://www.pbs.org/wgbh/nova/article/the-limits-of-facial-recognition/
https://money.cnn.com/2018/05/22/technology/self-driving-cars-aaa/index.html
https://money.cnn.com/2018/05/22/technology/self-driving-cars-aaa/index.html
https://www.puretechsystems.com/video-analytics.html
https://www.puretechsystems.com/video-analytics.html
https://www.puretechsystems.com/docs/Video%20Analytics%20Overview.pdf
https://www.puretechsystems.com/docs/Video%20Analytics%20Overview.pdf
https://www.allgovision.com/allgovision-analytics.php
https://www.crowdanalytix.com/
https://www.nginx.com/
https://httpd.apache.org/
https://nodejs.org/
https://nginx.org/en/docs/http/ngx_http_hls_module.html
https://docs.mux.com/docs/hls-playback-support
https://labs.adobe.com/technologies/flash/
http://h264.code-shop.com/trac/wiki/Mod-H264-Streaming-Apache-Version2
http://h264.code-shop.com/trac/wiki/Mod-H264-Streaming-Apache-Version2
https://microservices.io/
https://thinkmobiles.com/blog/php-vs-nodejs/

52

https://www.oracle.com/database/

[26] MySQL. [online], ©2020 [cit. 2020-05-10]. Available at:
https://www.mysql.com/

[27] Microsoft: SQL Server. [online], ©2020 [cit. 2020-05-10]. Available at:
https://www.microsoft.com/en-us/sql-server/

[28] PostgreSQL: The World's Most Advanced Open Source Relational. [online],
©2020 [cit. 2020-05-10]. Available at: https://www.postgresql.org/

[29] FFmpeg. [online], ©2020 [cit. 2020-05-18]. Available at:
https://ffmpeg.org/

[30] HandBrake - Open source video transcoder. [online], ©2020 [cit. 2020-05-
18]. Available at: https://handbrake.fr/

[31] Format factory – Free media file format processing tool. [online], ©2020
[cit. 2020-05-18]. Available at:

http://pcfreetime.com/formatfactory/index.php?language=en

[32] ffserver – FFmpeg. [online], ©2018 [cit. 2020-05-18]. Available at:
https://trac.ffmpeg.org/wiki/ffserver

[33] GitHub – SRS. [online], ©2020 [cit. 2020-05-18]. Available at:
https://github.com/ossrs/srs

[34] GitHub - PHP-FFmpeg-video-streaming. [online], ©2020 [cit. 2020-05-18].
Available at:

https://github.com/aminyazdanpanah/PHP-FFmpeg-video-streaming

[35] GitHub - mkvserver_mk2. [online], ©2020 [cit. 2020-05-18]. Available at:
https://github.com/klaxa/mkvserver_mk2

[36] The Top 47 Video Streaming Open Source Projects. [online], ©2020 [cit.
2020-05-18]. Available at:
https://awesomeopensource.com/projects/video-streaming

[37] Design – Material design. [online], ©2020 [cit. 2020-05-23]. Available at:
https://material.io/design

[38] jQuery. [online], ©2020 [cit. 2020-05-25]. Available at: https://jquery.com/

https://www.oracle.com/database/
https://www.mysql.com/
https://www.microsoft.com/en-us/sql-server/
https://www.postgresql.org/
https://ffmpeg.org/
https://handbrake.fr/
http://pcfreetime.com/formatfactory/index.php?language=en
https://trac.ffmpeg.org/wiki/ffserver
https://github.com/ossrs/srs
https://github.com/aminyazdanpanah/PHP-FFmpeg-video-streaming
https://github.com/klaxa/mkvserver_mk2
https://awesomeopensource.com/projects/video-streaming
https://material.io/design

53

Appendix A

Acronyms

AJAX – Asynchronous JavaScript and XML
CentOS – Community Enterprise Operating System
DASH – Dynamic Adaptive Streaming over HTTP
FFM - FFmpeg Stream File, audio/video format, probably stands for “FFMedia”
fps – frames per second
GUI – graphical user interface
HLS – HTTP Live Streaming
HTML – Hypertext Markup Language
H264 – another name for Advanced Video Coding or MPEG-4 Part 10
JS – JavaScript
JSON – JavaScript Object Notation
MP4 – MPEG-4 Part 14
MPEG – Moving Picture Experts Group
NoSQL – "non SQL" or "non relational" database
RTMP – Real-Time Messaging Protocol
PHP – PHP: Hypertext Preprocessor (recursive acronym)
REST – Representational state transfer
RESTful – services that conform to the REST architecture style
RTMP – Real-Time Messaging Protocol
RTSP – Real-Time Streaming Protocol
TCP – Transmission Control Protocol
UDP – User Datagram Protocol
UI – user interface

