
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 21, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Anomaly detection using Extended Isolation Forest

 Student: Bc. Adam Valenta

 Supervisor: Ing. Veronika Maurerová

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2020/21

Instructions

Survey anomaly detection algorithms used to detect unusual patterns in data. Focus on the Extended
Isolation Forest algorithm, where several decision trees are build to isolate anomalous data points.
Implement the algorithm to the H2O-3 Open Source Machine Learning platform in the distributed
Map/Reduce framework and utilize the Java Fork/Join framework for multi-threading. Test the functionality
and scalability on toy problems, evaluate the performance on at least two anomaly detection datasets.
Compare the performance with other open-source algorithms and discuss the results.

References

Will be provided by the supervisor.

Master’s thesis

Anomaly detection using Extended
Isolation Forest

Bc. Adam Valenta

Department of Applied Mathematics
Supervisor: Ing. Veronika Maurerová

May 28, 2020

Acknowledgements

I would like to thank Ing. Veronika Maurerová for supervision, leadership,
smooth communication, and useful advices during the thesis. Many thanks
also go to the H2O.AI company for giving me the opportunity to become
a contributor to their product, as well as to the SSP portal for giving me
the contact with H2O.AI. Furthermore, I would like to thank my partner
MUDr. Julie Koskubová for providing me with an asylum and a quality work-
ing environment during COVID as well as for her patience. Last but not least,
I would like to thank my family for their endless support during my studies
and my cousin Vı́tězslav Grepl for proofreading this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 28, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Adam Valenta. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Valenta, Adam. Anomaly detection using Extended Isolation Forest. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.

Abstrakt

Práce se zabývá r̊uznými typy algoritmů pro detekci anomálíı, podrobně pak
algoritmem Extended Isolation Forest. Extended Isolation Forest rozšǐruje
svého předch̊udce Isolation Forest. Původńı Isolation Forest přináš́ı zcela nový
př́ıstup k detekci, ale trṕı zaujet́ım (bias) plynoućım ze zp̊usobu, jakým vytvář́ı
stromy. Rozš́ı̌rená verze algoritmu se tohoto zaujet́ı zbavuje úpravou větveńı a
p̊uvodńı algoritmus je jeho speciálńım př́ıpadem. Extended Isolation Forest je
v rámci práce implementován do H2O-3 Machine Learning open-source plat-
formy pro strojové učeńı. Základńım požadavkem implementace je schopnost
jej́ıho spuštěńı na systému s distribuovaným výpočtem pomoćı Map/Reduce
knihovny.

Kĺıčová slova Detekce anomálíı, Detekce outlier̊u, Novelty detection, Dis-
tribuovaný výpočet, Map/Reduce, Extended Isolation Forest, Open-source,
H2O.AI

vii

Abstract

The thesis deals with anomaly detection algorithms with a focus on the Ex-
tended Isolation Forest algorithm. Extended Isolation Forest generalizes its
predecessor algorithm, the Isolation Forest. The original Isolation Forest al-
gorithm brings a brand new form of detection, although the algorithm suffers
from bias coming from tree branching. Extension of the algorithm removes
the bias by adjusting the branching, and the original algorithm becomes just
a special case. Extended Isolation Forest is implemented into the H2O-3 Ma-
chine Learning open-source platform. Implementation is required to run on a
distributed computing system with a Map/Reduce library.

Keywords Anomaly detection, Outlier detection, Novelty detection, Dis-
tributed computing, Map/Reduce, Extended Isolation Forest, Open-source,
H2O.AI

viii

Contents

Introduction 1
Goal and Motivation . 2

1 Anomaly detection 3
1.1 Types of Anomalies . 4
1.2 Data for Anomaly Detection . 5
1.3 Output of the Anomaly Detection 6
1.4 Task for Anomaly Detection . 6
1.5 Types of Anomaly Detection Techniques 7

1.5.1 By the input . 7
1.5.2 By the nature of used algorithm 8

1.6 Anomaly Detection Algorithms 9
1.6.1 K-means . 10
1.6.2 DBSCAN . 11
1.6.3 Support Vector Machine Extension For Anomaly Detec-

tion . 12
1.6.4 Autoencoders . 12

2 Isolation Forest 15
2.1 Concept of Isolation . 15
2.2 Concept of sub-sampling . 16
2.3 Anomaly score computing . 17
2.4 Isolation Forest Algorithm . 18

2.4.1 Training stage . 19
2.4.2 Evaluation stage . 20

2.5 Solution to high dimensions . 20
2.6 Advantages and Disadvantages of the Isolation Forest Algorithm 20

3 Extended Isolation Forest 23
3.1 Generalization of Isolation Forest 23

ix

3.1.1 Rotated Trees . 25
3.1.2 Branching adjustment 25

3.2 Extended Isolation Forest Algorithm 26
3.2.1 Training stage . 26
3.2.2 Evaluation stage . 27

3.3 Comparison with Isolation Forest 28
3.4 Current implementation of the Extended Isolation Forest . . . 28

4 Implementation 29
4.1 H2O.AI . 30
4.2 H2O-3 Machine Learning platform 31
4.3 Study of the Original Isolation Forest Code 35
4.4 Parallelization possibilities . 36

4.4.1 Training Stage . 36
4.4.2 Evaluation Stage . 36

4.5 Model Implementation . 37
4.6 Model Testing . 39

4.6.1 Anomaly detection performance 39
4.6.2 Scalability . 40

4.6.2.1 Training stage 41
4.6.2.2 Evaluation stage 42
4.6.2.3 Scalability Test Outcome 42

Conclusion 47

Bibliography 49

A Acronyms 53

B Contents of enclosed CD 55

x

List of Figures

1.1 Novelty detection . 4
1.2 Anomalies . 5
1.3 K-means - anomaly detection . 10
1.4 DBSCAN visualization . 11

2.1 Isolation Tree . 16

3.1 Isolation Forest - single blob . 24
3.2 Isolation Forest - double blob . 24
3.3 Splits . 25

4.1 H2O.AI technology overview . 30
4.2 H2O-3 Architecture . 31
4.3 Frame . 32
4.4 Isolation Forest Study . 35
4.5 Training Stage Diagram . 36
4.6 Evaluation Stage Diagram . 37
4.7 Anomaly score map - dense and sparse blob 39
4.8 Anomaly score map - data circle 40
4.9 Anomaly score map - data S . 40
4.10 Anomaly detection performance . 41
4.11 Scalability - training stage - sample size = 256 43
4.12 Scalability - training stage - sample size = 15 000 44
4.13 Scalability - evaluation stage - sample size = 256 45
4.14 Scalability - evaluation stage - sample size = 15 000 46

xi

Introduction

In the age of processing and storage of rapidly increasing high volume infor-
mation, commonly known as big data, it is necessary to have not only the
means, but also methods, to analyze and evaluate this kind of information.
It is important in the business sector, where correctly analyzing information
could mean gaining a crucial lead in a highly competitive environment, but
also in fields such as academia, healthcare, computer science and even space
research. All these fields have an urgent need to analyze vast amounts of data
to further their progress.

There are many ways to perform data analysis. One of them is the so-
called anomaly detection or outlier detection. These two terms are equivalent,
but only anomaly detection will be used in the thesis. Anomaly detection di-
vides data into two types: normal (nominal) observations (samples, instances,
distribution) and anomalies (outliers, novelties). Normal observation refers to
data without any unusual characteristics; on the other hand, anomalies are
data points that somehow differ from the normal observation – both in posi-
tive as well as negative sense. Negative anomalies in health care could signal
a disease, in card transactions they could signal fraud. On the other hand in
space data these could be new unknown objects and in the business sphere an
important (new) customer.

The beginnings of anomaly detection date back to 19th century statistics.
Anomaly detection has been needed for a variety of domains and has developed
separately in each domain. Hence many techniques use the specific nature of
data in a particular field or industry. Before the era of big data there was no
intention for a general technique of anomaly detection. With the evolution of
data analysis, researchers began to study the specific techniques, defined the
nature of the data, and tried to develop a general anomaly detection algorithm
that would be scalable through multiple domains.

1

Introduction

Goal and Motivation

Most of the existing anomaly detection algorithms are based on an assumption
that precise knowledge of the normal observation behavior leads to a good
understanding of anomalies. In other words, the algorithms are optimized to
find a normal observation, not the anomalies themselves.

In 2008 several researchers recognized these approaches and developed the
Isolation Forest (IF) algorithm, one of few algorithms that is optimized pri-
marily for detection of anomalies instead of detection of normal observations.
IF is based on an assumption that anomalous points are few and different,
hence it is easy to differentiate and isolate them from normal points. IF
builds hundreds of decision binary trees and studies the mean length path of
the point through all the built trees. The assumption that anomalies are closer
to the root implies a shorter path through the trees. On the contrary, normal
points are deeper in the trees, and hence the path is significantly longer for
them.

The thesis deals with the Extended Isolation Forest (EIF) algorithm that
was presented in 2018 as an improvement of the Isolation Forest algorithm.
IF’s performance is promising, though it does suffer from bias due to the
method it branches binary decision trees. EIF implements a new technique for
branching, which leads to the improvement of the anomaly score distribution
and mitigates this bias. The EIF uses a new hyperparameter ”extension level”
in order to allow for ordinary IF to run inside the EIF algorithm. The EIF
algorithm was developed in Python and currently there is no other known
implementation of the algorithm that would be suitable for a production en-
vironment or for processing of big data.

The goal of this thesis is to implement the Extended Isolation Forest
algorithm in Java. The algorithm will be implemented into the H2O-3 Machine
Learning open-source platform developed by the H2O.AI company. H2O-3 is
one of the company’s products for distributed Machine Learning, written in
Java, using the Map/Reduce framework for cloud computing. Therefore the
implementation of the EIF in Java will be tested, and its results compared to
the only known implementation in Python. Furthermore, the algorithm’s Java
implementation will be compared to the existing open-source implementations
of Isolation Forest in various libraries, including H2O.AI’s.

The motivation is to create the first production-ready, well tested, and
fully supported implementation of Extended Isolation Forest with the possi-
bility to scale the algorithm for big data. This will allow for a significantly
wider usage of the EIF, as the model will be implemented into a widely used
platform, thereby democratizing the EIF for the masses who will be able to
use implementation for their experiments, ranging from small with MBs of
data to large ones with TBs of big data.

2

Chapter 1
Anomaly detection

In the beginning, it is necessary to define why anomalies should be detected
and what to do with them. The motivation for researchers to find anomalies
is different across various domains; however, the common part is “interesting-
ness” of anomaly points and their real-life relevance [1]. Anomalies should be
identified for further study as this knowledge could be used to create a more
robust model that can take into account the possibility of anomalies’ presence
even without being interested in the specific anomalies [2].

”The identification can lead to (i) rejection (removal) of spuri-
ous data; (ii) recognition of important new information or even
(iii) revision of the model describing the data by incorporating
allegedly outlying elements; (iv) refinement of the experimental
setup.“ [2]

As was already written, the term anomaly is equal to outlier, and the
thesis uses anomaly, but there are also two related terms. First is ”noise”.

”Noise can be defined as a phenomenon in data which is not
of interest to the analyst, but acts as a hindrance to data analysis.
Noise removal is driven by the need to remove the unwanted objects
before any data analysis is performed on the data.“ [1]

Thus, in that respect, noise cannot provide any value and thereby is ex-
cluded from anomaly detection.

Second is ”novelty”. Novelty could be considered the same as an anomaly,
the difference is, let’s say, business value of detected point. Anomaly, in its
nature, is an interesting point different from normal points with no chance
to become a normal point. Novelty, on the other hand, is a point (in most
cases several points), firstly detected as an anomaly, but after domain expert’s

3

1. Anomaly detection

Figure 1.1: Novelty detection [3]

intervention, the point becomes a normal observation. From the anomaly de-
tection algorithms point of view, novelty and anomaly have the same charac-
teristic, but novelties are subsequently included in the normal distribution if
the model’s rebuild. The [3] says that in case of the implementation, novelty
has a lower threshold than the threshold for the anomaly. [1][2]

The reason why anomaly detection is needed is quite clear. However several
different points of view exist for anomaly detection or the anomalies itself. It is
a remnant of previous separated research in a single domain without the focus
on generalization. The [1] studied numerous papers and provides a common
point of view for anomaly points and anomaly detection techniques’ typology.
Paper [3] builds on the same definition. The thesis uses this definition - list
of terms is in the section below.

1.1 Types of Anomalies

Point Anomalies. Instance significantly different from the rest of the data.
A simple and intuitive definition of an anomaly.

Contextual Anomalies. It is a Point Anomaly only when context of the
data is considered. For example, mean temperature of 5°C is anomalous
in July but not in January because the context of a month is taken into
account.

4

1.2. Data for Anomaly Detection

Figure 1.2: Anomalies

−5.0 −2.5 0.0 2.5 5.0
−4

−2

0

2

4

(a) Point Anomalies
0 5 10 15

−4

−2

0

2

4

(b) Collective Anomalies
0 5 10 15

−4

−2

0

2

4

(c) Contextual Anomalies

Another example of this can be usage of electricity - in December it
is high because of the Christmas lights and this could be considered
an anomaly with respect to the whole scope of data. Nevertheless, it is
a normal observation if the context of Christmas is taken into account.

Collective Anomalies. Collection of related instances is anomalous only
when observed as a collection; the individual point in the collection
may not be an anomaly. For example, suppose data with the records
of a patient’s breath during a night’s sleep with 1s samples. Point “not
breathing” is a normal instance if it appears as a single observation.
Collection of twenty “not breathing” points is an anomaly.

In the rest of the thesis, the term anomaly always refers only to point
anomalies. The other types were explained for completeness and are not
covered by the thesis.

1.2 Data for Anomaly Detection

Anomaly detection deals with all sorts of data. Images, time series or tabular
data are very common. For the purposes of this thesis only data in a tabular
structure, meaning rows and columns, will be considered. Data preprocessing
is up to the user. Algorithms expect that data type is a real number. A row
is also referenced as variable x or point, observation, instance, and columns
could be addressed as features. It is possible to mark rows as either normal
or as an anomaly. These marks are called labels. Variable ”N” stands for
number of rows and variable ”P” is number of columns (Features).

To sum up,

• DATA ∈ IRN,P ,

• a row of DATA is x ∈ IRP ,

• N is number of rows, P is number of features.

5

1. Anomaly detection

The data is used to create an anomaly detection model. Model creation
is also called building, training, or learning. The created model is then used
to determine whether the instance is an anomaly or not. This process can be
referenced as an evaluation, testing, or prediction.

1.3 Output of the Anomaly Detection

The difference among algorithms used for anomaly detection, besides used
techniques, is the output. There are techniques that give a two value classifi-
cation, normal point, and anomaly; typically these are algorithms that come
from the clustering family (2). The second possible output is an anomaly
score and user has to define a threshold for an anomaly. The score is most
probably a continuous variable between 0 and 1 or between -1 and 0 (depend-
ing on the implementation). The thesis always considers range [0, 1] where
anomaly score closer to zero means normal point and score closer to 1 stands
for an anomaly. Note that among the multiple implementations of the same
algorithm with anomaly score output, the definition of normal and anomalous
point value may differ. Reading of documentation is essential in all cases.
[1][4][5]

Indeed, the similarity to common data science typology of regression and
classification is obvious. The difference here is that output should always be
labeled as either normal or as an anomaly. In the first case, the label comes
straight from the output. In the second case there is an opportunity to study
the distribution of the anomaly score, with the user deciding what is and what
is not an anomaly.

1.4 Task for Anomaly Detection

Research in [1] states that anomaly detection deals with:

• Definition of the normal region for every possible normal observation
without a precise boundary between normal and anomaly observations.

• Anomalies could be a result of fraudulent action, and those actions are
most likely adapted to behave very similarly to normal actions.

• Normal observations can evolve, and models become increasingly out-
dated as time passes.

• The nature of anomalies differs across domains, a general algorithm
should take this into account.

• No availability of labeled data for model evaluation.

6

1.5. Types of Anomaly Detection Techniques

The literature also introduced two common problems for anomaly detection
based on the nature of anomalies:

Masking. It happens when given data contains anomaly clusters. Anomaly
is not detected because of the close presence of other anomalies. Hence
the anomaly’s presence is masked by the close points. [4][6][7]

Swamping. Refers to the situation when normal points are considered to be
an anomaly merely because the normal point is too close to an anomalous
point. [4][6][7]

1.5 Types of Anomaly Detection Techniques

Both studies [1] and [3] provide a taxonomy of anomaly detection techniques.
First one explores traditional data mining techniques while also covering Deep
Learning (Methods based on artificial Neural Networks (NN)), second study
focuses only on Deep Learning (DL). Furthermore both studies sorted detec-
tion techniques from two points of view. Firstly the given data; and secondly
the algorithm technique. Note that the sorting is not exclusive. The tech-
niques can diverge between the types, but the goal is to define the assumptions
of the algorithms.

1.5.1 By the input

The simple and most common typology of any data mining technique is by
the input given to the algorithm. Anomaly detection is not an exception. The
techniques can be divided into three classes for data mining and Deep Learn-
ing. The [3] study also provides two more classes based on the combination
of DL and data mining. Suppose a data with only two labels, normal and
anomaly:

Supervised. Both labels are provided, but the data is highly unbalanced.
There are countless normal observations and few anomalies among them.
This type of data is rare, and the technique is the same as building a
predictive model with highly unbalanced data.

Semi-Supervised. Only one label is provided, most likely for the normal
observation, but having a label only for anomalies is also possible in
some cases. The techniques operating in this class most likely build a
model for normal observation and use it to identify anomalies.

Unsupervised. No labels are provided. Most widespread type of anomaly
detection. The essential assumption for anomaly detection is that nor-
mal observations are far more frequent than anomalies. A technique
without this assumption is called binary clustering.

7

1. Anomaly detection

Consider the nature of anomaly detection. Only Semi-Supervised and
Unsupervised types of algorithm is taken into account. Supervised techniques
are excluded from the scope since it is data mining with highly unbalanced
data. The (Extended) Isolation Forest belong to the Unsupervised section.

The two additional techniques proposed by the [3] are:

Hybrid deep anomaly detection. Deep Learning model is used as a fea-
ture extractor to learn robust features. The features are the input into
any Machine Learning model. The algorithms based on hybrid detection
are scalable to high dimensional data.

One-class Neural Networks. One-class Neural Networks combine the abil-
ity of deep networks to extract a progressively rich representation of data
along with the one-class objective. The model simultaneously trains a
deep neural network, and optimizes data-enclosing. Anomalies do not
contain common factors and so data-enclosing fails on them. A disad-
vantage is the long time required to train the model.

1.5.2 By the nature of used algorithm

The typology here comes from [1]. Section 1a in the list below is extended
with the possible Neural Networks architectures presented in the [3] survey.
It has to be kept in mind that combining both studies is not easy nor straight
forward. For every class, besides 1a, it is possible to find a representative from
the Neural Networks family as a standalone or combined with a traditional
Machine Learning algorithm. The purpose of the list is to only get an idea
what kind of algorithms can be used. It also serves as a starting point to get
more information in [1] and [3]. Two algorithms from point 2, one from SVM
and one from Deep Learning will be presented in the following section.

The (Extended) Isolation Forest algorithm brings a new anomaly detec-
tion technique, and that is the reason why it cannot be assigned to any of
the classes. IF and EIF build an ensemble of trees similar to the Random
Forest algorithm, thereby new technique ”Ensamble Based” would be a good
proposal. The Scikit-learn also includes Isolation Forest implementation into
the ensemble package [5].

8

1.6. Anomaly Detection Algorithms

1. Classification Based

a) Neural Networks Based
i. Deep Neural Networks

ii. Spatio Temporal Networks (STN)
iii. Sum-Product Networks
iv. Word2vec Models
v. Generative Models
vi. Convolutional Neural Networks

vii. Sequence Models
viii. Autoencoders

b) Bayesian Networks Based
c) Support Vector Machines Based
d) Rule Based

2. Clustering Based

3. Nearest Neighbor Based

a) Using Distance to kth Nearest Neighbor
b) Using Relative Density

4. Statistical

a) Parametric Techniques
i. Gaussian Model Based

ii. Regression Model Based
iii. Mixture of Parametric Distributions Based

b) Non-parametric Techniques
i. Histogram Based
ii. Kernel Function Based

5. Information Theoretic

6. Spectral

1.6 Anomaly Detection Algorithms

In this section, several anomaly detection algorithms are described. K-means
was chosen for it is simple and easy to understand. DBSCAN further develops
the clustering by considering anomalies. SVM brings a probability estimation
into the anomaly detection task. Last but not least, the Autoencoders are
presented as a representative of NN based techniques. Note that this section
is only a brief introduction to these algorithms. The details for each are in
the mentioned sources.

9

1. Anomaly detection

1.6.1 K-means

Following algorithm from a cluster-based family is an adjustment of K-means.
It goes without saying that K-means is a widely known clustering algorithm.
The algorithm creates ”K” similar clusters of data points. K-means uses the
critical assumption that normal instances belong to ”K” several groups and
points that fall outside of these groups could be marked as potential anomalies.
In K-means implementations, points called centroids are computed to define
the core of the ”K” cluster, and the points closer to one of the centroids are
marked as the class of the particular point. The notorious algorithm can be
easily adjusted for anomaly detection by adding a threshold for the distance
between the centroid of normal observations and the analyzed point, as can
be seen in Figure 1.3. There are different methods for the classification of
anomalies, but all of them use a sort of the mentioned distance to the centroid.
The output of this algorithm is the classification of points as either normal or
as anomalies. [8][9][10]

The significant advantage of this approach is that it is simple and the
anomaly detection is easy to understand. Nonetheless this algorithm has dis-
advantages, which should be critically considered prior to deciding to use the
algorithm in a production deployment. Firstly, choice of the ”K” hyperpa-
rameter [10]. There are techniques to choose K, but it is difficult to set a
number of clusters. This is especially true with high dimensional data, where
visualization possibilities are limited. Second problem of the K-means is that
it is only suitable when clusters can be expected to have relatively regular
shapes [11]. Thirdly, the anomalies themselves affect the centroid’s computa-
tion. This should not be a significant problem since anomalies are rare, but it
is a disadvantage compared to the other algorithms [10][11]. Fourthly, since
there is no lower limit for the number of points in a cluster, it is possible to
create a cluster of perfectly defined anomalies with an unknown ”K” [11].

Figure 1.3: K-means - anomaly detection [8]

10

1.6. Anomaly Detection Algorithms

1.6.2 DBSCAN

(DBSCAN) is another example of a cluster based algorithm that considers
the possibility of anomalies in its application. It requires two parameters:

• neighbor radius value ε (eps) with arbitrary measure of distance,

• minimum number of points required to form a dense region (minPts).

The algorithm presented in [12] paper defines a terminology for the points
in the data. This thesis abstracts the terminology and gives a high-level in-
terpretation of the algorithm. See picture 1.4a. In essence the algorithm
starts with a random point (A), point is considered to be in the same clus-
ter when it has a value higher than ”minPts” neighbors within the radius ε
(including the query point). The anomalous point (N) is the point with a
value less than ”minPts” neighbors within ε radius. This process continues
for each point until no undecided points exist. It should be added that the
DBSCAN algorithm was originally presented in 1996 by [13] and became a
core idea for future variations such as HDBSCAN*, OPTICS or LSDBC. The
same happened with the Isolation Forest algorithm - specifically, DeepIF [14],
iForestASD [15], Extended Isolation Forest [16] and several more.

Figure 1.4: DBSCAN visualization

A C

B

N

(a) DBSCAN [12] (b) DBSCAN - clustering [17]

DBSCAN is suited to separate high-density clusters from low-density clus-
ters (1.4b). On the other hand, the algorithm struggles with clusters of varying
densities. Although DBSCAN separates data with contorting clusters, it suf-
fers when data has too many dimensions. Also, algorithm’s output can vary
depending on if it starts with a random choice of the first point like K-means,
but the number of anomalies has no effect on computing the cluster point.
Last but not least, the purpose of DBSCAN is to precisely estimate the clus-
ter of normal points while considering possible occurrence of anomaly points.
However, according to [1] DBSCAN is not optimized to find an anomaly. [17]

11

1. Anomaly detection

1.6.3 Support Vector Machine Extension For Anomaly
Detection

SVM is a kernel technique typically associated with supervised learning; how-
ever, there are adjustments of the original algorithm for unsupervised learning
suited for anomaly detection [9]. Connection of kernel-based techniques and
density-based approaches is well summarize in the following citation:

”Clustering algorithms are further examples of unsupervised
learning techniques which can be kernelized. An extreme point of
view is that unsupervised learning is about estimating densities.
Clearly, knowledge of the density of P would then allow us to solve
whatever problem can be solved on the basis of the data.“ [18]

The algorithm presented in [18] computes binary functions, which is sup-
posed to capture regions in an input space where is the probability density of
normal points. In particular, a function such that most of the data will live
in the region where the function is nonzero. The goal is to bind the probabil-
ity that an anomaly point from the same distribution will lie outside of the
estimated region by a certain margin.

1.6.4 Autoencoders

Autoencoders or also Replicator Neural Networks (RNN) represent data inside
multiple hidden layers by iterative reconstruction of the input data. Well
trained autoencoders can precisely reconstruct any given normal instance,
but for anomalies they produce significant errors during reconstruction. The
points that generate high amount of errors are considered anomalies. [3]

”The choice of autoencoder architecture depends on the nature
of data, convolution networks are preferred for images while Long
short-term memory (LSTM) based models tend to produce good
results for sequential data.“ [3]

Autoencoders are simple and effective NN for anomaly detection, but the
performance is degraded if autoencoders are dealing with training data con-
taining a high amount of noise [3]. The paper [19] provides a way to create
Robust Deep Autoencoder (RDA)s inspired by Robust PCA. The algorithm
presumes that real word data is noisy and deals with this via a method based
on splitting the input data into two classes. One class contains data that
can be easily reproduced, and the second contains anomalies and noise. Af-
ter splitting, the autoencoder is trained on clean, noise-free data and thus
provides a robust estimation of the normal observation. The details of the
method itself are in [19] paper.

12

1.6. Anomaly Detection Algorithms

The authors compare Robust Deep Autoencoder to the Scikit-learn im-
plementation of Isolation Forest [5] on a noisy version of the MNIST data
and conclude that RDA improves the F1-score by approximately 73%. The
reason why the IF performs worse might be due to the 28x28 pixel image,
which leads to 784 features. The Isolation Forest could perform better when
combined with a feature extraction method.

13

Chapter 2
Isolation Forest

Algorithm Isolation Forest (IF) proposes a new technique of anomaly detec-
tion different from all previous ones. The algorithm builds on the assumption
that anomalies are ”few and different”. Instead of profiling a normal distri-
bution and measuring the distance of each point to the normal points, the
algorithm instead isolates anomalies from the rest of the points and measures
their difference using the Isolation Tree (iTree). This approach, together with
an ensemble of Isolation Trees and the sub-sampling method, leads to a model
with low memory requirements as well as low logarithmic complexity of the
training and evaluation stages. [4]

2.1 Concept of Isolation

In this context, the term isolation means ”separating an instance from the
rest of the instances”. Suppose a data-induced Binary Decision Tree with an
anomaly present. The assumption ”few and different” implies anomalies are
decided closer to the root, and normal points are deeper in the tree. The
binary tree is built to isolate all the points and measure their individual Path
Lengths from the root. The following definitions comes from the paper [4].

Definition 1: Isolation Tree (iTree). Let T be a node of an Isolation
Tree. T is either an external-node with no child, or an internal-node with one
test and exactly two daughter nodes (T l, T r). A test consists of an attribute
q and a split value p such that the test q < p divides data points into T l and
Tr.

Definition 2: Path Length h(x) of a point x is measured by the num-
ber of edges x traverses an iT ree from the root node until the traversal is
terminated at an external node.

Definition 3: iForest of size t is an ensemble of t iT rees.

15

2. Isolation Forest

Figure 2.1: Isolation Tree [16]

Suppose data is in the format from section 1.2. In short, DATA are matri-
ces of real numbers of a dimension NxP , where N is number of rows and P
is number of features. In training stage, the Isolation Forest algorithm builds
an ensemble of iT ree over DATA. In the evaluation stage, for any value x the
mean h(x) in ensemble of iT ree is computed. In the following sections the
average h(x) is used to calculate the anomaly score.

2.2 Concept of sub-sampling

Problem of masking and swamping was introduced in section 1.4. The goal
of IF is to provide a robust model that mitigates the effects of these two
obstacles. Masking is introduced when anomaly cluster is large and dense, as
this also increases the number of splits in the IF. Swamping also increases the
number of splits required to separate anomalies, which leads to a high average
h(x). [4]

”Note that both swamping and masking are a result of too many
data for the purpose of anomaly detection.“ [4]

The nature of IF provides an opportunity to avoid masking and swamping
by employing the sub-sampling method. Sub-sampling refers to a random
selection of rows of data without replacement. The benefit for IF’s anomaly
detection is data size control, which helps the algorithm to isolate the points
better, and it also improves the diversification of each iT ree, since the ensem-
ble is created. The basic assumption is that anomalies are ”few and different”.
The probability of even selecting a dense cluster of anomalies is lower than

16

2.3. Anomaly score computing

(a) Original Sample (4096 instances) [4] (b) Sub-sample (128 instances) [4]

selecting a cluster of truly normal instances. Finally, the sub-sample of DATA
is created before each iT ree in the iForest is built. [4]

The impact of the sub-sampling size could also be studied. In the case of
IF, there is an upper bound for the sub-sampling size to get the same detection
performance without increasing memory requirements. The size is empirically
determined to the 256 rows. [4]

2.3 Anomaly score computing

The output of the IF algorithm is an anomaly score. Considering the user-
defined threshold the IF algorithm labels individual points either as normal
or as an anomaly. In short, the anomaly score is average h(x) in iForest
normalized by the average path of unsuccessful searches in a Binary Search
Tree (BST). In the following part, the individual components of the anomaly
score formula are presented.

Average h(x) of the unsuccessful search in BST for the data set of size i is:

c(i) =

2H(i− 1)− 2(i−1)

i for i > 2
1 for i = 2
0 otherwise

(2.1)

where:
H(.) = harmonic number estimated as ln(.) + 0.5772156649 (Euler’s

constant [20]),

As is written in the section Isolation Forest Algorithm 2.4.1, the height
of iT ree is limited so as to manage memory requirements. Formula (2.1) is
used to estimate the tree height in cases, where iT ree is not able to isolate
the point. This is done especially for dense clusters of normal points.

17

2. Isolation Forest

The anomaly score formula is:

s(x,N) = 2
−E(h(x))

c(N) (2.2)

where:

x = any row in the DATA
N = number of rows in the DATA
E(h(x)) = mean h(x) in ensemble

The anomaly score is interpreted as follows:

• if instances return s very close to 1, then they are definitely anomalies,

• if instances have s much smaller than 0.5, then they can be quite safely
regarded as normal instances,

• if all the instances return s around 0.5, then the entire sample does not
have any distinct anomalies.

2.4 Isolation Forest Algorithm

The hyperparameters of the IF model are:

t = number of trees,
ψ = sub-sampling size.

The algorithm is split into two stages. First is the Training stage where the
Forest is created. The second stage is the Evaluation stage, which puts a given
point into each tree and provides an average h(x) of the point. Complexity of
the IF algorithm is the same for both stages:

O(tψlogψ) (2.3)

18

2.4. Isolation Forest Algorithm

2.4.1 Training stage

The training stage performs sub-sampling and builds an ensemble of iT rees.
Each iT ree’s height is limited by its ceiling(log2 ψ), which is approximately
the average height of BST for size of given data [4]. Each iT ree focuses on
points that have a shorter path than average. The algorithm for training is
separated into two functions. Recursion is used in Algorithm 2 for building
the iT ree. The output of training stage is an iForest prepared for scoring of
each given point.

Algorithm 1 iForest(X, t, ψ)
Require: X - input data, t - number of trees, ψ - sub-sampling size
Ensure: a set of t iT rees

1: Initialize Forests
2: set height limit l = ceiling(log2 ψ)
3: for i = 1 to t do
4: X ′ ← sample(X,ψ)
5: Forest← Forest ∪ iT ree(X ′, 0, l)
6: end for
7: return Forest

Algorithm 2 iT ree(X, e, l)
Require: X - input data, e - current tree height, l - height limit
Ensure: an iTree

1: if e ≥ l or |X| ≤ 1 then
2: return exNode{Size← |X|}
3: else
4: let Q be a list of attributes in X
5: randomly select an attribute q ∈ Q
6: randomly select a split point p from max and min values of attribute
q in X

7: Xl ← filter(X, q ≤ p)
8: Xl ← filter(X, q > p)
9: return inNode{Left← iT ree(Xl, e+ 1, l),

Right← iT ree(Xr, e+ 1, l),
SplitAtt← q,

SplitV alue← p}
10: end if

19

2. Isolation Forest

2.4.2 Evaluation stage

The output algorithm of the evaluation stage is h(x) of the given point. Av-
erage h(x) in iForest is computed and handed over to the anomaly score
formula (2.2). In Algorithm 3 the formula (2.1) is used to estimate h(x) for
the cases, where IF is not able to isolate the points.

Algorithm 3 PathLength(~x, T, e)
Require: ~x - an instance, T - an iTree, e - current path length; to be

initialized to zero when first called
Ensure: path length of ~x

1: if T is an external node then
2: return e+ c(T.size){c(.) is defined in Equation (2.1)}
3: end if
4: a← T.splitAtt
5: if xa ≤ T.splitV alue then
6: return PathLength(~x, T.left, e+ 1)
7: else xa > T.splitV alue
8: return PathLength(~x, T.rigth, e+ 1)
9: end if

2.5 Solution to high dimensions

Isolation Forest algorithm suffers from the dimensionality curse. The paper [4]
designs a solution based on combining the Isolation Forest algorithm with a
feature selection method. Sub-set of features based on Kurtosis statistical test
is selected from a sub-sample of data before each iT ree is built. The experi-
ment in [4] shows the time advantage of IF due to low processing requirements
on high dimensional data.

2.6 Advantages and Disadvantages of the Isolation
Forest Algorithm

Isolation Forest algorithm uses a different perspective to detect anomalies.
Rather than waste resources on precise defining the normal distribution, it in-
stead focuses on isolation of anomalies. The defined iT ree structure is similar
to BST, thanks to which the memory and computation needs are low. The
empirical evaluation in [4] shows that Isolation Forest performs significantly
better than a near-linear time complexity distance-based method. However,
solutions based on Deep Learning have a better performance than IF [3].
Unlike the K-means adjustment that needs to have the ”K” hyperparameter
defined, there is no need for input of number of clusters in IF. This leads

20

2.6. Advantages and Disadvantages of the Isolation Forest Algorithm

to less maintenance of the production model. In case that the production
data evolves, there is a possibility to set a threshold for novelties as [3] sug-
gest. On the other hand, there is no possibility for continuous updating of
the model - hence if data significantly evolves the model has to be re-built.
Furthermore the IF algorithm lacks the minPts advantage of the DBSCAN
algorithm, which allows create lower bound for a number of points required
to form a dense region. Nevertheless IF is optimized to find an anomalies, not
for defining the normal distribution.

The distribution of the anomaly score should also be mentioned. Anomaly
score suffers from bias caused by the way the iT ree are split. The [16] proposes
a simple but ingenious solution to get rid of this bias and builds a more robust
model with the same performance. Hence it can be concluded that IF is a
special case of the general isolation method.

21

Chapter 3
Extended Isolation Forest

Extended Isolation Forest (EIF) is an algorithm for unsupervised anomaly
detection based on the Isolation Forest algorithm. The extension lies in the
generalization of the Isolation Tree branching method. Original IF branching
provides slicing only parallel to one of the axes. EIF’s branching method
allows for slicing of the data by using hyperplanes with random slopes.

Motivation for the Extended Isolation Forest algorithm was a study of
anomaly score given by IF on toy 2-D data. As can be seen in Figure 3.1,
since the data is generated from a 2-D Gaussian N ((0, 0), (1, 1) the IF should
estimate the lower anomaly score close to the point (0, 0) and an almost cir-
cular and symmetric pattern with increasing values of anomaly score as it
radially moves outward. Another case is shown in Figure 3.2. Occurrence of
ghost clusters is evident. This could lead to false positive anomaly detection
since the threshold is used to find anomalies. [16]

If the splitting of each point is visualized (3.3) and connected with the
score maps, it can then be inferred that it is due to the split method. The
way BST branching creates lines parallel to one of the axes, which in turn
causes the bias. [16]

3.1 Generalization of Isolation Forest

The visualization of the BST splitting leads to the idea that the branching
should be more randomized and not merely focused on the lines parallel to
the axes. Paper [16] proposes two methods for the generalization. First is
suitable for solutions where it is not possible to change the IF algorithm. It
proposes the rotation of the sub-sample before each iT ree is built, thereby
”averaging out” the bias. Second method introduces an adjustment for IF
algorithm which leads to a complete generalization of the IF method, which
is called the Extended Isolation Forest.

23

3. Extended Isolation Forest

−4 −2 0 2 4
x

−4

−2

0

2

4
y

Isolation Forest - single blob

0.0
0.1
0.2
0.3
0.4
0.50.5
0.6
0.7
0.8
0.9
1.0

An
om

al
y
sc
or
e

Figure 3.1: Isolation Forest - single blob

−5 0 5 10 15
x

−5

0

5

10

15

y

Isolation Forest - double blob

0.0
0.1
0.2
0.3
0.4
0.50.5
0.6
0.7
0.8
0.9
1.0

An
om

al
y
sc
or
e

Figure 3.2: Isolation Forest - double blob

24

3.1. Generalization of Isolation Forest

Figure 3.3: Splits [16]

3.1.1 Rotated Trees

Original IF creates a sub-sample of data before each iT ree is built. The bias
can be averaged out if each iT ree is built on a rotated sub-sample. In such
case the bias still exists, however it is different for each iT ree and the bias
is averaged out. Despite this leading to improved results, the method is still
insufficient for the following reasons:

• Each iT ree still suffers from the bias (though the bias is different for
each tree).

• Extra information about the angle of the rotation for each tree needs to
be saved.

• If the data lack symmetry, this method is not sufficient.

• It is not suitable for large and high dimensional data.

3.1.2 Branching adjustment

The cause of the bias is that branching is defined by the similarity to BST. At
each branching point the feature and the value are chosen; this introduces the
bias since the branching point is parallel to one of the axes. The general case
needs to define a random slope for each branching point. Instead of selecting
the feature and value, it selects a random slope ~n for the branching cut and
a random intercept ~p. The slope can be generated from N (0, 1) Gaussian
distribution, and the intercept is generated from the uniform distribution with
bounds coming from the sub-sample of data to be split. [16]

At this point, a new generalization hyperparameter, extensionLevel, is
introduced. The function of extensionLevel is to force random items of ~n to

25

3. Extended Isolation Forest

be zero. The extensionLevel hyperparameter value is between 0 and (P − 1).
Value of 0 means that all slopes will be parallel with all of the axes, which cor-
responds to Isolation Forest’s behavior. The higher number of extensionLevel
indicates that the split will be parallel with extensionLevel-number of axes.
The full-extension means extensionLevel is equal to P − 1. This indicates
that the slope of the branching point will always be randomized. The [16]
recommends to use a completely extended EIF. A lower extension is suitable
for a domain where the range of the minimum and maximum for each feature
highly differs (for example, when one feature is measured in millimeters, and
the second one in meters). [16]

3.2 Extended Isolation Forest Algorithm

This section presents the pseudo-code of Branching adjustment 3.1.2 from [16].
The first method of Rotated Trees 3.1.1 is not included in any pseudo-code
nor in any further implementation. The algorithm is also separated into two
stages. First for iForest building and second for the h(x) computation.
The hyperparameters of the EIF model are:
t = number of trees,
ψ = sub-sampling size,
extensionLevel = value in range [0, P − 1]; where P is the number of

features.

3.2.1 Training stage

The first part of the algorithm is known from the original IF. There is no
difference in the pseudo-code. The change lies in Algorithm 5, concretely in
lines 4-8, where the branching is adjusted accordingly. Line 9 shows that the
iT ree contains vectors and no single value. The size of the vector is the number
of features. Thus the memory requirements are not significantly increased as
the number of features remains significantly lower than the number of rows.

Algorithm 4 iForest(X, t, ψ, extensionLevel)
Require: X - input data, t - number of trees, ψ - sub-sampling size
Ensure: a set of t iT rees

1: Initialize Forest
2: set height limit l = ceiling(log2 ψ)
3: for i = 1 to t do
4: X ′ ← sample(X,ψ)
5: Forest← Forest ∪ iT ree(X ′, 0, l, extensionLevel)
6: end for
7: return Forest

26

3.2. Extended Isolation Forest Algorithm

Algorithm 5 iT ree(X, e, l, extensionLevel)
Require: X - input data, e - current tree height, l - height limit
Ensure: an iTree

1: if e ≥ l or |X| ≤ 1 then
2: return exNode{Size← |X|}
3: else
4: randomly select a normal vector ~n ∈ IR|X| by drawing each coordinate

of ~n from a standard Gaussian distribution.
5: randomly select an intercept point ~p ∈ IR|X| in the range of X
6: set coordinates of ~n to zero according to extension level
7: Xl ← filter(X, (X − ~p) · ~n ≤ 0)
8: Xr ← filter(X, (X − ~p) · ~n > 0)
9: return inNode{Left← iT ree(Xl, e+ 1, l),

Right← iT ree(Xr, e+ 1, l),
Normal← ~n,

Intercept← ~p}
10: end if

3.2.2 Evaluation stage

The evaluation stage is adjusted correspondingly to the training stage. Focus
on line 6 and 8 in Algorithm 6, where the branching is adjusted. As in IF, the
average h(x) is computed and provided to the anomaly score formula.

Algorithm 6 PathLength(~x, T, e)
Require: ~x - an instance, T - an iTree, e - current path length; to be initial-

ized to zero when first called
Ensure: path length of ~x

1: if T is an external node then
2: return e+ c(T.size){c(.) is defined in Equation (2.1)}
3: end if
4: ~n← T.Normal
5: ~p← T.Intercept
6: if (~x− ~p) · ~n ≤ 0 then
7: return PathLength(~x, T.left, e+ 1)
8: else if (~x− ~p) · ~n > 0 then
9: return PathLength(~x, T.rigth, e+ 1)

10: end if

27

3. Extended Isolation Forest

3.3 Comparison with Isolation Forest

EIF is a generalization of IF. EIF can fully replace the IF since it allows for
leveraging generalization by employing the extensionLevel hyperparameter.
The minimum value of the hyperparameter is 0, which corresponds to IF
behavior. The maximum is P − 1 and stands for a fully-extended EIF.

The reason why the IF should still be taken to account as an alternative
is the lack of EIF implementations. According to the best knowledge of the
data mining platforms, the only current public implementation is the one by
authors of [16]. It is a Python implementation that is not supported by any
ML platform, which makes it unsuitable for production-ready solutions.

Even if enough implementations of EIF would exist, the IF should remain
in use due to its interpretability. Since the IF uses BST inside, then it is
easy to interpret why some point was considered an anomaly. Of course, the
ensemble of trees makes it difficult also, but there is a chance at least. The
interpretability of EIF is irretrievably lost with the adjustment of branching.

3.4 Current implementation of the Extended
Isolation Forest

As was said in the previous section, there is a lack of EIF implementations.
Only implementation is by the founders [21]. Their implementation will be
used as a reference for the one presented in the following sections. The main
reasons why their implementation cannot be used in a production environment
are:

• Lack of support.

• At this time, the Python package is not working on all platforms ac-
cording to the opened issue [22].

• Missing seed parameter to make the algorithm deterministic across mul-
tiple runs.

• Despite the algorithm itself having low resource requirements, the im-
plementation in Python does not allow for processing of big data.

All these limitations will be corrected in the following chapter by imple-
menting EIF into the H2O-3 library.

28

Chapter 4
Implementation

There are several options how to make a Machine Learning algorithm public.
The quick and easy way is to implement a Python package and publish it on
PyPi [23], a repository of all public Python packages. For a user, the R or
Python is a well known Machine Learning tool. Therefore by implementing the
function in a Python package a wide community of users is covered. Another
option is to create a public repository on GitHub [24] for communication with
users and/or cooperation with other contributors.

In cases where a Python implementation is insufficient (e,g, for perfor-
mance reasons) Java can be used instead. Following the implementation the
algorithm can be published in the Maven repository [25]. From the user point
of view, Java itself is not generally known for ML, and the publishing will take
longer because the implementation needs to undergo an approval process.

The best option to make an algorithm usable and user friendly is to con-
tribute the implementation into an open-source platform. Some of these plat-
forms even offer paid user support, which improves the rate at which users’
issues or bugs are fixed. This in turn leads to an even better implementation
over time.

One such platform is the Python-based Scikit-learn library. However the
platform is selective when it comes to adding new algorithms because of the
limited resources for code maintenance [26]. In [27] is a list of other Machine
Learning platforms with wideranging focuses. Some of them focus on GPU
computing [28], scalable Neural Networks [29], scalable linear algebraic oper-
ations [30] and more. A Python interface is a ”must have” requirement for
all platforms that intend to be widely used. However, the key for a developer
is the computing engine, sometimes it is written in Python itself, but C++,
Java, or Scala are also possible alternatives.

29

4. Implementation

Although start contributing to an open-source platform is quite easy, im-
plementing a new algorithm and receiving approval is often a lengthy process,
no matter the size or complexity of the implementation. The thesis is a re-
sult of cooperation with the H2O.AI company, which agreed to implement
Extended Isolation Forest into their H2O-3 library as a complementary offer
to the original Isolation Forest that is already implemented.

4.1 H2O.AI

H2O.AI is an open-source software company that offers a variety of products
(platforms) and services for Machine Learning. The products help users to
build a model and run it on a production system. H2O.AI’s focus is providing
scalable Machine Learning solutions. The products are designed and prepared
not only to process small experimental data sets in a single file, but the same
products can also operate with big data technologies such as Hadoop, Spark,
and process terabytes of data without user intervention. After training is
done, the model can be serialized into a production-ready artifact. In the
Figure 4.1 is a portfolio of H2O.AI products. There are both open-source as
well as enterprise products in the portfolio, all of them with a possibility of
paid support. [31][32]

One of H2O.AI’s tools is AutoML technology. It is a tool that helps data
scientists with their tasks such as feature extraction, running through ML
algorithms and their hyperparameters, finding the best model, and last but
not least, deploying the model directly into a production environment. [33][34]

Figure 4.1: H2O.AI technology overview. [35]

30

4.2. H2O-3 Machine Learning platform

4.2 H2O-3 Machine Learning platform

”Most simply, H2O-3 is highly scalable, distributed, in-memory,
very fast open-source software technology for building AI and Ma-
chine Learning (ML) systems.“ [35]

H2O-3 is a computing engine written and run as a Java application. It
can be run on-premises or in the cloud. H2O-3 has an interface to Python,
R, JavaScript, and several more. Users write code in their preferred language,
the interface delegates creation of the model to the computing engine and the
desired model is returned back. The architecture is shown in Figure 4.2, and
the example of H2O-3 Python API is in Listing 4.1, where data is imported
from a CSV file and the model is trained. [36]

Figure 4.2: H2O-3 Architecture [36]

31

4. Implementation

1 import h2o
2 from h2o. estimators import

H2OExtendedIsolationForestEstimator
3
4 h2o_df = h2o. importFile ("hdfs :// path/to/data.csv")
5 eif = H2OExtendedIsolationForestEstimator (
6 model_id = "eif.hex",
7 ntrees = 100,
8 extension_level = 1)
9 eif.train(training_frame = hf)

10 eif_result = eif. predict (h2o_df)
11 eif_result [" anomaly_score "]
12 ...

Listing 4.1: Example of model creation with Python in H2O-3

The input file in the Listing 4.1 is imported from the Hadoop file system
and can be large. The platform needs to save it in the cluster memory for
computing. Usually the table is a 2-D array, but in this case, Java does not
allow an array of big data. To resolve this the Distributed Key-Value Store
(DKV) is used inside of H2O-3 data structure called Frame [36]. Practically,
Frame is a table; it means rows and columns. In H2O-3 terminology, columns
are Vectors, and row is an item of Vector. The Frame can be passed to the
Map/Reduce task. In such case the given Frame is separated into Chunks
(array of chunks). Size of the Chunk array is the same as the number of
Vectors. In the Chunks, parts of the rows are equally distributed around the

H2O Chunk

H2O Frame

H2O Chunk

H2O Chunk

H2O Vector

Figure 4.3: Frame

32

4.2. H2O-3 Machine Learning platform

cluster. In this phase the algorithms can change the data. In Figure 4.3 is a
diagram of the Frame.

H2O-3 platform also provides an API for the Map/Reduce framework, a
Java framework that allows programs to run on a distributed cluster. It is
designed to deal with connection and hardware issues without effecting the
completion of the calculation. The computing time is increased, but com-
pared to traditional OpenMP/MPI, the problems are handled automatically
without a programmer’s cooperation. In essence the core of the Map/Reduce
framework consists of two operations.

1. Map: distribute a part of the data and the corresponding operation that
is performed on this data to the nodes.

2. Reduce: reduce the computed values, e.g. add them and provide a single
algorithm output.

H2O.AI uses API for Map/Reduce framework to easily work with data
that is in a tabular format . Listing 4.2 shows part of the code responsible for
Matrix-Vector multiplication.

33

4. Implementation

1 /**
2 * Task for Matrix - Vector product .
3 * Vector is given as last column in task input.
4 */
5 class ProductMtv extends MRTask <ProductMtv > {
6
7 private double [] result ;
8
9 /**

10 * Map method . Partial sums are computed .
11 *
12 * @param cs array of chunks .
13 * Size of array is equal tu number of

Vectors .
14 * Last chunk is Vector
15 */
16 @Override
17 public void map(Chunk [] cs) {
18 final int columnLen = cs. length - 1;
19 final Chunk vector = cs[column];
20 result = new double [columnLen];
21 for (int j = 0; j < columnLen ; ++j) {
22 double sum = 0.0;
23 for (int i = 0; i < cs [0]. len; i++) {
24 sum += cs[j]. atd(i) * vector .atd(i);
25 }
26 result [j] = sum;
27 }
28 }
29
30 /**
31 * Reduce method . Partial sums are added together
32 *
33 * @param mrt any finished task from any other worker
34 * both result arrays contains partial
35 * sums for each row.
36 */
37 @Override
38 public void reduce (ProductMtv mrt) {
39 ArrayUtils .add(result , mrt. result);
40 }
41 }

Listing 4.2: Map/Reduce task example

34

4.3. Study of the Original Isolation Forest Code

4.3 Study of the Original Isolation Forest Code

As was already said, the IF is already implemented in the H2O-3 library [37].
Because the EIF algorithm only adjust IF’s branching and evaluation it would
theoretically be possible to adjust the existing IF implementation. This way
the existing API and performance test could be fully taken over. The EIF
improves the anomaly score and the paper [16] uses color maps to visualize
this. Therefore the same color maps were created. The Scikit-learn imple-
mentation of IF and paper implementation of EIF with extensionLevel = 0
was visualized together with H2O IF implementation. The Jupiter notebook
with the result can be found on the enclosed CD. The input was two blobs
of 2-D Gaussian N ((0, 0), (1, 1)) and N (10, 0), (1, 1). Figure 4.4 visualizes the
anomaly score color map outputted by each algorithm.

It is obvious that the H2O-3 color map in Figure 4.4 does not provide
accurate detection of the given data structure. The reason might be missing
estimation of possible unsuccessful searches in BST from Formula (2.1). The
core of H2O-3 IF is a distributed implementation of BST implemented for
the Random Forest algorithm, which does not work with the number of rows

−5 0 5 10 15
x

−5

0

5

10

15

y

H2O I olation Fore t

0.0
0.1
0.2
0.3
0.4
0.50.5
0.6
0.7
0.8
0.9
1.0

An
om

al
y
 c

or
e

−5 0 5 10 15
x

−5

0

5

10

15

y

Sklearn I olation Fore t

0.0
0.1
0.2
0.3
0.4
0.50.5
0.6
0.7
0.8
0.9
1.0

An
om

al
y
 c

or
e

−5 0 5 10 15
x

−5

0

5

10

15

y

Paper I olation Fore t

0.0
0.1
0.2
0.3
0.4
0.50.5
0.6
0.7
0.8
0.9
1.0

An
om

al
y
 c

or
e

−5 0 5 10 15
x

−5

0

5

10

15

y

Paper Extended I olation Fore t

0.0
0.1
0.2
0.3
0.4
0.50.5
0.6
0.7
0.8
0.9
1.0

An
om

al
y
 c

or
e

Figure 4.4: Isolation Forest Study

35

4. Implementation

in leaves. Taking into account the detection performance of current Isolation
Forest, the fact that the extended version loses interpretability, and last but
not least, capabilities, time, and platform knowledge of the author, it was
decided that the Extended Isolation Forest would be implemented as a brand
new model into H2O-3 platform.

4.4 Parallelization possibilities

The parallelization possibilities for both algorithms and both stages are the
same. This section defines the current capabilities of the implemented Isola-
tion Forest and discusses the algorithm’s potential. The ability to process big
data cannot be affected in any scenario because the H2O-3 data structures
are used.

4.4.1 Training Stage

The training stage process is shown in Figure 4.5 and described below. The
data are used in read-only mode. Race condition issues are avoided. Isolation
Forest builds independent trees with a random sub-sample of data. Each tree
can be built separately with reference to a small amount of data. The BST
building can also be parallelized. The current Isolation Forest implementa-
tion uses a structure called DTree developed for distributed Random Forest
algorithms. The DTree structure is responsible for computing performance in
current Isolation Forest implementation.

Data

P

N

Sub Sample

Sub-Sample

Sub-Sample

P

ψ Sub SampleSub-Sample Isolation Tree

Isolation Tree

Isolation Tree

Isolation Forest

Figure 4.5: Training Stage Diagram

4.4.2 Evaluation Stage

Input for the Forest are the rows of data. The row h(x) is computed in each
tree and the average h(x) is the input for the anomaly score formula (2.2). Fig-
ure 4.6 graphically depicts the evaluation stage. Path length in each tree can
be computed independently. Map/Reduce can be used for this. The Isolation
Tree can compute the h(x) in the Map method, and the Reduce method adds
the h(x) in the correct output row. Second Map/Reduce task computes the
average and anomaly score for each row in the output simultaneously. Cur-

36

4.5. Model Implementation

rent Isolation Forest implementation distributes only the input data and path
length counting in each tree. The ensemble of trees is sequentially iterated.

The software engineering approach Simple and Clean Code vs. Perfor-
mance, also called Code clean, performance after [38][39][40], will be followed
during the implementation of the Extended Isolation Forest. A clean and
readable code will be implemented first, followed by implementation of all
APIs required for the model and last but not least, the model will be tested
for anomaly detection and for computing performance. As H2O-3’s tools are
built for high scalability, further parallelization will have to be implemented.
Scalability for big data input/output is possible as long as the correct data
structures are used. If the length of an array depends on the number of rows,
then the Map/Reduce task must be implemented. If the length depends on a
number of features, then simple array operations are used. Nevertheless, the
first implementation will be based on sequential Isolation Tree structure and
sequential evaluation stage.

Data

P

N Isolation Forest anomaly
score

Isolation Tree

Isolation Tree

Isolation Tree

avg

anomaly_score

anomaly_score

anomaly_score
avg

avg

Figure 4.6: Evaluation Stage Diagram

4.5 Model Implementation

The task of implementing a model into the existing H2O-3 platform does not
differ from other usual software developer tasks. The status of EIF imple-
mentation is tracked in the issue ticket task PUBDEV-7138 [41]. The task
included standard activities, such as understanding the code base, understand-
ing the interface, following the given code convention, feature merging process
and many more. According to the work log the implementation took approxi-
mately 200MH - a short section below describes the main activities that have
been done.

The Extended Isolation Forest model has following hyperparameters:

ntrees = number of trees in ensemble.

sample size = size of sub-sample

extension level = level of extension

37

4. Implementation

The implemented Java/Python classes and R files are listed below together
with a short description. All the implemented files are provided on the en-
closed CD and they are also available in the Pull Request [42].

• ExtendedIsolationForest.java

Contains the training stage of EIF.

• ExtendedIsolationForestTest.java

Contains automatic tests for EIF, including basic tests for the training stage
as well as helper methods.

• ExtendedIsolationForestModel.java

Contains the evaluation stage of EIF and holds the trained trees.

• ExtendedIsolationForestMojoWriter.java

Classes used to save the model in the cluster.

• FilterGteTask.java and FilterLtTask.java

Map/Reduce tasks for filtering the data by given ~n and ~p. See Algorithm 5
line 7 and 8 for more information.

• SubSampleTask.java

Map/Reduce task for sub-sampling of the given data.

• ExtendedIsolationForest.IsolationTree

Whole implementation of Algorithm 5. Recursion is replaced with an array
implementation of BST, which is more suitable for use in distributed comput-
ing.

• gen {alogrithm}.py (e.g. gen python.py and gen R.py)

The reflection ability is used to generate APIs for various programming lan-
guages. Individual files are the API generation codes for each language.

• extended isolation forest.py and extendedisolationforest.R

Automatically generated Python and R files for the Extended Isolation Forest
algorithm.

38

4.6. Model Testing

4.6 Model Testing

Testing can be divided into three processes. First is Unit testing of the im-
plemented class and of the helper methods. Unit testing has been carried out
as it is a project policy to provide automatic tests for the new code. The pro-
cess of unit testing will not be described in this section. Second is testing of
anomaly detection performance on toy data. Third is testing of the algorithm
scalability.

4.6.1 Anomaly detection performance

The performance is tested on 2-D toy data sets. The paper [16] evaluates the
anomaly detection performance by comparing mean and variance of the given
anomaly score. The same method is used in this section. Eight data sets were
generated, with each data set subsequently trained on ten models of H2O EIF
and one model by the paper implementation of EIF (because of computing
time). The results are in Figure 4.10. The means of both algorithms are
similar, but the variance for H2O EIF is about 0.004 higher than the paper
implementation. According to the results in [16] it should mean that the
paper implementation provides a more accurate detection of the structure
of the given data. This is especially true on data sets 6 (Figure 4.8) and
7 (Figure 4.9). The reason for the higher variance in H2O model could be
insufficient robustness of the sub-sampling method of H2O’s implementation.
It is possible that the method suffers from bias and prefers the point that is
selected as first in the addition test. The enclosed CD contains the Jupyter
notebook with other tested data sets.

−8 −6 −4 −2 0 2 4 6 8
x

−8

−6

−4

−2

0

2

4

6

8

y

Dataset 2 - Paper

0.0

0.1

0.2

0.3

0.4

0.50.5

0.6

0.7

0.8

0.9

1.0

An
om

al
y
sc
or
e

−8 −6 −4 −2 0 2 4 6 8
x

−8

−6

−4

−2

0

2

4

6

8

y

Dataset 2 - H2O.AI

0.0

0.1

0.2

0.3

0.4

0.50.5

0.6

0.7

0.8

0.9

1.0

An
om

al
y
sc
or
e

Figure 4.7: Anomaly score map - dense and sparse blob

39

4. Implementation

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

Dataset 6 - Paper

0.0

0.1

0.2

0.3

0.4

0.50.5

0.6

0.7

0.8

0.9

1.0

An
om

al
y
sc
or
e

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

Dataset 6 - H2O.AI

0.0

0.1

0.2

0.3

0.4

0.50.5

0.6

0.7

0.8

0.9

1.0

An
om

al
y
sc
or
e

Figure 4.8: Anomaly score map - data circle

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

y

Dataset 7 - Paper

0.0

0.1

0.2

0.3

0.4

0.50.5

0.6

0.7

0.8

0.9

1.0

An
om

al
y
sc
or
e

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3
y

Dataset 7 - H2O.AI

0.0

0.1

0.2

0.3

0.4

0.50.5

0.6

0.7

0.8

0.9

1.0

An
om

al
y
sc
or
e

Figure 4.9: Anomaly score map - data S

4.6.2 Scalability

Scalability of the training and evaluation stages are tested separately. Scal-
ability performance is compared to H2O-3’s implementation of IF. The tests
are done on laptop hardware:

• Lenovo ThinkPad P53,

• MS Windows 10 Pro x64,

• Intel Core i7-9850H CPU @ 2.60GHz,

• 6 cores and 12 threads,

• 96.0 GB RAM.

Ten models are trained with the same settings:

• ntrees = 100,

• seed = 1234.

The Jupyter notebook is available on the enclosed CD.

40

4.6. Model Testing

0 1 2 3 4 5 6 7
Dataset number

0.50

0.55

0.60

0.65

0.70

M
ea

n
H2O.AI
Paper

0 1 2 3 4 5 6 7
Dataset number

0.002

0.004

0.006

0.008

Va
ria

nc
e

H2O.AI
Paper

Figure 4.10: Anomaly detection performance

4.6.2.1 Training stage

Since parallelization is only relevant for big data input, the scalability depends
on the sample size parameter. For small values, e.g. the recommended 256,
the computing is sequential except for sub-sampling. For the sample size
values where Map/Reduce helps, the performance significantly depends on
the number of threads. For a large sample size DTree works well and it was
worth implementing BST as a distributed version. If the sample size is small
then the DTree slows down the computing. In Figure 4.11 Extended Isolation

41

4. Implementation

Forest performs better on large data when sample size is kept small. In this
case computing time is lower even with fewer threads. Isolation Forest per-
forms worse with a small sample size most probably because of the DTree
structure. On the other hand, IF performs significantly better with a large
sample size. The number of iT ree nodes in EIF depends on sample size de-
fined in Equation (4.1). In IF the same function is provided by the max depth
attribute.

height = ceiling(log2(sample size))
#nodes = 2height − 1

(4.1)

Suppose data with 1 500 000 rows and sample size = 15 000, which is 1%
of the data. It means #nodes ≈ 214 − 1 = 16 383. In this case, DTree or any
distributed BST is suitable as Figure 4.12 shows. The reason why computing
time increase for Extended Isolation Forest, is the required communication
between threads when data is distributed but the computing is running in
only one thread.

4.6.2.2 Evaluation stage

The evaluation stage performs similarly for both implementations. The loga-
rithmic dependence on number of threads is clearly visible in Figure 4.13 and
Figure 4.14. In this case it does not matter if the iT ree is distributed, nor
does it matter what value the sample size has.

4.6.2.3 Scalability Test Outcome

The evaluation stage has good performance for both algorithms. Computing
time is logarithmic smaller with the number of threads. There are options to
be more scalable in section 4.4.2, but from the software engineering point of
view, there is no significant added value that would justify the effort. The
added value lies in the training stage. Since the sample size is small, the
sequential algorithm performs better as Figure 4.11 shows. When sample size
increases, the IF computing time is logarithmically smaller with the number
of threads, but the computing time of EIF is increasing with the number of
threads because of the communication between threads with no added value
in computing time. To fix this EIF issue, both scalability options presented
in section 4.4.2 are equally acceptable for model users. If the data is large
and sample size kept small, then the number of trees will most probably
increase, and in that case, each tree can be built independently with the
sequential algorithm. If the sample size increases, then the number of trees
is most likely kept small and distributed BST helps more than the sequential
algorithm.

42

4.6. Model Testing

2 4 6 8 10 12
Number of threads

10

20

30

40

50

60

70

Co
m

pu
tin

g
tim

e
(s

)

(Extended) Isolation Forest - training scalability
Model: N = 1500000; P = 2; ntrees = 100; sample_size = 256; max_depth = 8

EIF
IF

Figure 4.11: Scalability - training stage with sample size = 256

43

4. Implementation

2 4 6 8 10 12
Number of threads

30

40

50

60

70

80

90

Co
m
pu

tin
g
tim

e
(s
)

(Extended) Isolation Forest - training scalability
Model: N = 1500000; P = 2; ntrees = 100; sample_size = 15000; max_depth = 13

EIF
IF

Figure 4.12: Scalability - training stage with sample size = 15 000

44

4.6. Model Testing

2 4 6 8 10 12
Number of threads

5

10

15

20

25

30

Co
m
pu

tin
g
tim

e
(s

)

(Extended) Isolation Forest - evaluation scalability
Model: N = 1500000; P = 2; ntrees = 100; sample_size = 256; max_depth = 8

Evaluation Frame: N = 1500000; P = 2
EIF
IF

Figure 4.13: Scalability - evaluation stage with sample size = 256

45

4. Implementation

2 4 6 8 10 12
Number of threads

10

20

30

40

50

60

Co
m
pu

tin
g
tim

e
(s

)

(Extended) Isolation Forest - evaluation scalability
Model: N = 1500000; P = 2; ntrees = 100; sample_size = 15000; max_depth = 13

Evaluation Frame: N = 1500000; P = 2
EIF
IF

Figure 4.14: Scalability - evaluation stage with sample size = 15 000

46

Conclusion

The thesis dealt with the implementation of the Extended Isolation Forest
algorithm into the H2O-3 Machine Learning open-source platform. In the
first part, the Anomaly Detection algorithms were introduced - both from the
field of Machine Learning (K-means, DBSCAN, SVM) as well as from the
Deep Learning branch (Robust Deep Autoencoder).

The second part presented the idea of Isolation Forest, the rationale of
Extended Isolation Forest, and continued with the third part, Extended Isola-
tion Forest implementation. It was decided to implement a brand new model
and leave the currently implemented Isolation Forest model untouched. The
implementation was successful and the current status is Pull Request waiting
for review. The test results showed that the Extended Isolation Forest Model
needs to be adjusted. Anomaly detection performance tests revealed a slight
imperfection in the detection of the data structure when compared to the only
available Python implementation of the algorithm. The issue could be fixed
with a better sub-sampling or in the iT ree branching, where the algorithm
could avoid split points with an empty ancestor.

Scalability tests were done and results compared to the current H2O-3
Isolation Forest implementation. The tests for evaluation stage passed. The
computing time is logarithmically smaller with the number of threads. On
the other hand, a performance gap was found in the Training stage. For
the Extended Isolation Forest, the computing time does not change when the
sample size value is kept small. However, with a larger sample size, the
computing time requirements for Extended Isolation Forest increase, whereas
computing time for Isolation Forest gets logarithmically smaller with the num-
ber of threads in all cases. The training performance can be increased by
building the trees in parallel. It could even outperform the current Isolation
Forest. Another possibility to improve performance is to do the tree branching
process in parallel.

47

https://github.com/h2oai/h2o-3/pull/4319

Conclusion

I will continue to develop the Extended Isolation Forest implementation
in close cooperation with H2O - not only to resolve the mentioned issues but
to further improve it. The status of the production-ready deployment is in
the issue tracking system ticket. As mentioned in the Extended Isolation
Forest paper, the algorithm could be further improved by scaling the anomaly
detection for high-dimension data. This could be implemented by adding
another parameter that would allow for a feature selection method in the
computation.

48

https://0xdata.atlassian.net/browse/PUBDEV-7138

Bibliography

[1] Chandola, V.; Banerjee, A.; et al. Anomaly Detection: A Survey. ACM
Comput. Surv., volume 41, 07 2009, doi:10.1145/1541880.1541882.

[2] Zimek, A.; Filzmoser, P. There and back again: Outlier detection between
statistical reasoning and data mining algorithms. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, volume 8, no. 6, Nov.
2018, ISSN 1942-4787, doi:10.1002/widm.1280.

[3] Chalapathy, R.; Chawla, S. Deep Learning for Anomaly Detection:
A Survey. CoRR, volume abs/1901.03407, 2019, 1901.03407. Available
from: http://arxiv.org/abs/1901.03407

[4] Liu, F. T.; Ting, K.; et al. Isolation Forest. 01 2009, doi:10.1109/
ICDM.2008.17.

[5] Scikit-learn. IsolationForest. Scikit-learn, [cit. 2020-04-17]. Avail-
able from: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.IsolationForest.html

[6] Adnan, R.; Mohamad, M. N.; et al. Multiple Outliers Detection Proce-
dures in Linear Regression. Matematika, volume 19, 01 2003.

[7] Mishra, A. Swamping and Masking in Anomaly detection: How Subsam-
pling in Isolation Forests helps mitigate this? Medium, [cit. 2020-04-17].
Available from: https://medium.com/walmartlabs/swamping-and-
masking-in-anomaly-detection-how-subsampling-in-isolation-
forests-helps-mitigate-bb192a8f8dd5

[8] Münz, G.; Li, S.; et al. Traffic anomaly detection using k-means cluster-
ing. In GI/ITG Workshop MMBnet, 2007, pp. 13–14.

[9] DataScience.com. Introduction to Anomaly Detection. KDnuggets, [cit.
2020-04-17]. Available from: https://www.kdnuggets.com/2017/04/
datascience-introduction-anomaly-detection.html

49

1901.03407
http://arxiv.org/abs/1901.03407
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://medium.com/walmartlabs/swamping-and-masking-in-anomaly-detection-how-subsampling-in-isolation-forests-helps-mitigate-bb192a8f8dd5
https://medium.com/walmartlabs/swamping-and-masking-in-anomaly-detection-how-subsampling-in-isolation-forests-helps-mitigate-bb192a8f8dd5
https://medium.com/walmartlabs/swamping-and-masking-in-anomaly-detection-how-subsampling-in-isolation-forests-helps-mitigate-bb192a8f8dd5
https://www.kdnuggets.com/2017/04/datascience-introduction-anomaly-detection.html
https://www.kdnuggets.com/2017/04/datascience-introduction-anomaly-detection.html

Bibliography

[10] Ahmed, M.; Mahmood, A. N.; et al. A survey of network anomaly de-
tection techniques. Journal of Network and Computer Applications, vol-
ume 60, 2016.

[11] Gumbao, M. G. Best clustering algorithms for anomaly detec-
tion. Towards Data Science, [cit. 2020-04-17]. Available from:
https://towardsdatascience.com/best-clustering-algorithms-
for-anomaly-detection-d5b7412537c8

[12] Schubert, E.; Sander, J.; et al. DBSCAN Revisited, Revisited: Why and
How You Should (Still) Use DBSCAN. ACM Trans. Database Syst., vol-
ume 42, no. 3, July 2017, ISSN 0362-5915, doi:10.1145/3068335. Available
from: https://doi.org/10.1145/3068335

[13] Ester, M.; Kriegel, H.-P.; et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. AAAI Press, 1996, pp. 226–
231.

[14] Li, X.; Lu, Y.; et al. Out-of-Distribution Detection for Skin Lesion Images
with Deep Isolation Forest. 2020, 2003.09365.

[15] Ding, Z.; Fei, M. An Anomaly Detection Approach Based on Isolation
Forest Algorithm for Streaming Data using Sliding Window. IFAC Pro-
ceedings Volumes, volume 46, no. 20, 2013: pp. 12 – 17, ISSN 1474-
6670, doi:https://doi.org/10.3182/20130902-3-CN-3020.00044, 3rd IFAC
Conference on Intelligent Control and Automation Science ICONS 2013.
Available from: http://www.sciencedirect.com/science/article/
pii/S1474667016314999

[16] Hariri, S.; Carrasco Kind, M.; et al. Extended Isolation Forest. IEEE
Transactions on Knowledge and Data Engineering, 2019: p. 1–1,
ISSN 2326-3865, doi:10.1109/tkde.2019.2947676. Available from: http:
//dx.doi.org/10.1109/TKDE.2019.2947676

[17] Lutins, E. DBSCAN: What is it? When to Use it? How
to use it. Medium, [cit. 2020-04-17]. Available from: https:
//medium.com/@elutins/dbscan-what-is-it-when-to-use-it-
how-to-use-it-8bd506293818

[18] Zhang, X.; Gu, C.; et al. Support Vector Machines for Anomaly Detec-
tion. 01 2006, pp. 2594 – 2598, doi:10.1109/WCICA.2006.1712831.

[19] Zhou, C.; Paffenroth, R. C. Anomaly Detection with Robust Deep
Autoencoders. In Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’17,
New York, NY, USA: Association for Computing Machinery, 2017,
ISBN 9781450348874, p. 665–674, doi:10.1145/3097983.3098052. Avail-
able from: https://doi.org/10.1145/3097983.3098052

50

https://towardsdatascience.com/best-clustering-algorithms-for-anomaly-detection-d5b7412537c8
https://towardsdatascience.com/best-clustering-algorithms-for-anomaly-detection-d5b7412537c8
https://doi.org/10.1145/3068335
2003.09365
http://www.sciencedirect.com/science/article/pii/S1474667016314999
http://www.sciencedirect.com/science/article/pii/S1474667016314999
http://dx.doi.org/10.1109/TKDE.2019.2947676
http://dx.doi.org/10.1109/TKDE.2019.2947676
https://medium.com/@elutins/dbscan-what-is-it-when-to-use-it-how-to-use-it-8bd506293818
https://medium.com/@elutins/dbscan-what-is-it-when-to-use-it-how-to-use-it-8bd506293818
https://medium.com/@elutins/dbscan-what-is-it-when-to-use-it-how-to-use-it-8bd506293818
https://doi.org/10.1145/3097983.3098052

Bibliography

[20] Wikipedia contributors. Euler–Mascheroni constant — Wikipedia, The
Free Encyclopedia. 2020, [Online; accessed 8-May-2020]. Available
from: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%
93Mascheroni_constant&oldid=954141487

[21] Hariri, S.; Carrasco Kind, M.; et al. Extended Isolation Forest. IEEE
Transactions on Knowledge and Data Engineering, 2019: pp. 1–1,
doi:10.1109/TKDE.2019.2947676. Available from: https://github.com/
sahandha/eif

[22] PoradaKev. Error while installing eif. GitHub, [cit. 2020-04-17]. Available
from: https://github.com/sahandha/eif/issues/14

[23] joelbarmettlerUZH. How to upload your python package to PyPi.
Medium, [cit. 2020-04-17]. Available from: https://medium.com/
@joel.barmettler/how-to-upload-your-python-package-to-pypi-
65edc5fe9c56

[24] GitHub. GitHub. GitHub, [cit. 2020-04-17]. Available from: https://
github.com/

[25] Foundation, T. A. S. Guide to uploading artifacts to the Central
Repository. The Apache Software Foundation, [cit. 2020-04-17]. Avail-
able from: https://maven.apache.org/repository/guide-central-
repository-upload.html

[26] Scikit-learn. Contributing. Scikit-learn, [cit. 2020-04-17]. Available from:
https://scikit-learn.org/stable/developers/contributing.html

[27] Roy, S. 13 Open-Source Artificial Intelligence and Machine Learning
Tools to Watch in 2019. DEV, [cit. 2020-04-17]. Available from: https:
//dev.to/promozseo/13-open-source-artificial-intelligence-
and-machine-learning-tools-to-watch-in-2019-1hmc

[28] TensorFlow. Contribute to TensorFlow. TensorFlow, [cit. 2020-04-17].
Available from: https://www.tensorflow.org/community/contribute

[29] Caffe. Development and Contributing. Caffe, [cit. 2020-04-17]. Available
from: https://caffe.berkeleyvision.org/development.html

[30] MAHOUT. How to contribute. MAHOUT, [cit. 2020-04-17]. Available
from: https://mahout.apache.org/developers/how-to-contribute

[31] H2O.AI. H2O.ai is Democratizing Artificial Intelligence. H2O.AI, [cit.
2020-04-17]. Available from: https://www.h2o.ai/company/

[32] H2O.AI. H2O.ai Products and Solutions. H2O.AI, [cit. 2020-04-17]. Avail-
able from: https://www.h2o.ai/products/

51

https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Mascheroni_constant&oldid=954141487
https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Mascheroni_constant&oldid=954141487
https://github.com/sahandha/eif
https://github.com/sahandha/eif
https://github.com/sahandha/eif/issues/14
https://medium.com/@joel.barmettler/how-to-upload-your-python-package-to-pypi-65edc5fe9c56
https://medium.com/@joel.barmettler/how-to-upload-your-python-package-to-pypi-65edc5fe9c56
https://medium.com/@joel.barmettler/how-to-upload-your-python-package-to-pypi-65edc5fe9c56
https://github.com/
https://github.com/
https://maven.apache.org/repository/guide-central-repository-upload.html
https://maven.apache.org/repository/guide-central-repository-upload.html
https://scikit-learn.org/stable/developers/contributing.html
https://dev.to/promozseo/13-open-source-artificial-intelligence-and-machine-learning-tools-to-watch-in-2019-1hmc
https://dev.to/promozseo/13-open-source-artificial-intelligence-and-machine-learning-tools-to-watch-in-2019-1hmc
https://dev.to/promozseo/13-open-source-artificial-intelligence-and-machine-learning-tools-to-watch-in-2019-1hmc
https://www.tensorflow.org/community/contribute
https://caffe.berkeleyvision.org/development.html
https://mahout.apache.org/developers/how-to-contribute
https://www.h2o.ai/company/
https://www.h2o.ai/products/

Bibliography

[33] H2O.AI. AutoML: Automatic Machine Learning. H2O.AI, [cit. 2020-
04-17]. Available from: http://docs.h2o.ai/h2o/latest-stable/h2o-
docs/automl.html

[34] Matoušek, J. AutoML - NAHRADÍ ROBOTI ANALYTIKY? Data Mind,
[cit. 2020-04-21]. Available from: http://docs.h2o.ai/h2o/latest-
stable/h2o-docs/automl.html

[35] Ellen Friedman, P. AI & ML Platforms: My Fresh Look at H2O.ai Tech-
nology. H2O.AI, [cit. 2020-04-17]. Available from: https://www.h2o.ai/
blog/ai-ml-platforms-my-fresh-look-at-h2o-ai-technology/

[36] H2O.AI. H2O Architecture. H2O.AI, [cit. 2020-04-17]. Avail-
able from: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/
architecture.html

[37] H2O.AI. Isolation Forest. H2O.AI, [cit. 2020-05-17]. Available from:
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/
if.html

[38] simon. Should a developer aim for readability or performance
first? [closed]. Stack Overflow, [cit. 2020-04-17]. Available
from: https://stackoverflow.com/questions/183201/should-a-
developer-aim-for-readability-or-performance-first

[39] akmad. Performance vs Readability. Stack Overflow, [cit. 2020-04-
17]. Available from: https://stackoverflow.com/questions/30754/
performance-vs-readability

[40] Mertz, A. Simple and Clean Code vs. Performance. Simplify C++!,
[cit. 2020-04-17]. Available from: https://docs.h2o.ai/h2o/latest-
stable/h2o-docs/architecture.html

[41] Maurerová, V. Implement Extended Isolation Forest. H2O.AI, [cit.
2020-05-25]. Available from: https://0xdata.atlassian.net/browse/
PUBDEV-7138

[42] Valenta, A. PUBDEV-7138 Extended Isolation Forest. H2O.AI, [cit. 2020-
05-25]. Available from: https://github.com/h2oai/h2o-3/pull/4319

52

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://www.h2o.ai/blog/ai-ml-platforms-my-fresh-look-at-h2o-ai-technology/
https://www.h2o.ai/blog/ai-ml-platforms-my-fresh-look-at-h2o-ai-technology/
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/architecture.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/architecture.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/if.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/if.html
https://stackoverflow.com/questions/183201/should-a-developer-aim-for-readability-or-performance-first
https://stackoverflow.com/questions/183201/should-a-developer-aim-for-readability-or-performance-first
https://stackoverflow.com/questions/30754/performance-vs-readability
https://stackoverflow.com/questions/30754/performance-vs-readability
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/architecture.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/architecture.html
https://0xdata.atlassian.net/browse/PUBDEV-7138
https://0xdata.atlassian.net/browse/PUBDEV-7138
https://github.com/h2oai/h2o-3/pull/4319

Appendix A
Acronyms

AI Artificial Intelligence. 31

BDT Binary Decision Tree. 15

BST Binary Search Tree. 17, 19, 20, 23, 25, 28, 35, 36, 41, 42

DBSCAN . 9, 11, 21, 47

DeepIF Deep Isolation Fores. 11

DKV Distributed Key-Value Store. 32

DL Deep Learning. 7, 8, 47

DTree Distributed Tree. 36

EIF Extended Isolation Forest. 2, 8, 23, 26, 28, 30, 35, 37–39, 42, 47, 48

GPU Graphics Processing Unit. 29

HDBSCAN* Hierarchical Density-Based Spatial Clustering. 11

IF Isolation Forest. 2, 8, 13, 15–18, 20, 21, 23, 25–28, 30, 35, 36, 40, 42, 47

iForestASD Isolation Forest Adapted Streaming Data. 11

iTree Isolation Tree. 15

LSDBC Locally Scaled Density Based Clustering. 11

LSTM Long short-term memory. 12

MH Man Hour. 37

53

Acronyms

ML Machine Learning. 8, 28–31, 47

NN Neural Networks. 7–9, 12

OPTICS Ordering Points To Identify the Clustering Structure. 11

PCA Principal component analysis. 12

R The R Project for Statistical Computing. 29

RDA Robust Deep Autoencoder. 12, 13

RNN Replicator Neural Networks. 12

SVM Support Vector Machine. 8, 9, 12, 47

54

Appendix B
Contents of enclosed CD

eif-anomaly-perf.ipynb.....EIF anomaly detection performance study
eif-scalability-train.ipynb.....EIF training stage scalability study
eif-scalability-eval.ipynb....EIF evaluation stage scalability study
h2o-3 ... Implementation sources

h2o-algos................................Folder with all algorithms
src/main/java/hex/tree/isofor.............IF implementation
src/main/java/hex/tree/isoforextended..EIF implementation

h2o-py
demos/extisofor..............................Helper notebooks

text
src...Thesis text source code
thesis.pdf..............................Thesis text in PDF format

55

	Introduction
	Goal and Motivation

	Anomaly detection
	Types of Anomalies
	Data for Anomaly Detection
	Output of the Anomaly Detection
	Task for Anomaly Detection
	Types of Anomaly Detection Techniques
	By the input
	By the nature of used algorithm

	Anomaly Detection Algorithms
	K-means
	DBSCAN
	Support Vector Machine Extension For Anomaly Detection
	Autoencoders

	Isolation Forest
	Concept of Isolation
	Concept of sub-sampling
	Anomaly score computing
	Isolation Forest Algorithm
	Training stage
	Evaluation stage

	Solution to high dimensions
	Advantages and Disadvantages of the Isolation Forest Algorithm

	Extended Isolation Forest
	Generalization of Isolation Forest
	Rotated Trees
	Branching adjustment

	Extended Isolation Forest Algorithm
	Training stage
	Evaluation stage

	Comparison with Isolation Forest
	Current implementation of the Extended Isolation Forest

	Implementation
	H2O.AI
	H2O-3 Machine Learning platform
	Study of the Original Isolation Forest Code
	Parallelization possibilities
	Training Stage
	Evaluation Stage

	Model Implementation
	Model Testing
	Anomaly detection performance
	Scalability
	Training stage
	Evaluation stage
	Scalability Test Outcome

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

