
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 16, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Coffee Time Mobile Application in Flutter

 Student: Bc. Petr Nymsa

 Supervisor: Ing. David Šenkýř

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

By the end of 2018, the first stable version 1.0 of Flutter was released. The current stable version is 1.12.13
and the technology is still developing. The goal of this thesis is to design, implement, and test a
multiplatform mobile application developed by this new technology. For this purpose, an example mobile
application focused on the search for cafes will be implemented.

Steps to follow:
1. Current Flutter provides different state management approaches. Compare 2 approaches and select the
one that you prefer.
2. Based on the previous decision, design the architecture of the application.
3. Implement the application that provides the following functionalities: search for a nearby café, details of
the café, add/remove tags of the café, e.g. pet-friendly, child-friendly, etc.
4. Provide user testing.
5. Summarize and evaluate the results you have achieved.

References

Will be provided by the supervisor.

Master’s thesis

Coffee Time Mobile Application in Flutter

Bc. Petr Nymsa

Department of Software Engineering
Supervisor: Ing. David Šenkýř

May 27, 2020

Acknowledgements

I would like to thank my supervisor Ing. David Šenkýř for his guidance
and valuable advices. Sincere gratitude belongs to my partner and family
for their support during work on this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This au-
thorization is not limited in terms of time, location and quantity. However, all
persons that makes use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Prague on May 27, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Petr Nymsa. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Nymsa, Petr. Coffee Time Mobile Application in Flutter. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2020.

Abstrakt

Práce se zabývá multiplatformńım frameworkem Flutter, a to nejen pro tvorbu
mobilńıch aplikaćı. V práci je popsán samotný framework, jeho použitelnost
a využit́ı při vývoj́ı aplikaćı. Následně je famework použit při návrhu a im-
plementaci aplikace Coffee Time pro operačńı systém Android. Aplikace vy-
hledává kavárny v bĺızkém okoĺı s možnost́ı filtrováńı dle r̊uzných kritéríı.
Uživatelé aplikace si mohou zobrazit detailńı informace, spustit navigaci nebo
přeč́ıst hodnoceńı. Aplikace byla navrhnnuta pomoćı prototypu uživatelského
rozhrańı a jeho postupném otestováńı. Nakonec byla aplikace zpř́ıstupněna
a nasazena ke stažeńı pro mobilńı telefony se systémem Android.

Kĺıčová slova Flutter framework, reaktivńı programováńı, Android apli-
kace, vyhledávač kaváren, serverless, Firebase.

vii

Abstract

This thesis is focused on multi-platform framework Flutter for creating not
only mobile applications. In the thesis, Flutter framework and its usability
during application development are described. Flutter is used to design and
implement the Coffee Time application for Android devices. This application
is able to search nearby cafes with options to filter them by different criteria.
Application users can display cafe details, launch navigation or read reviews.
The application was designed using a prototype user interface and its gradual
testing before the actual implementation. In the end, the application was
released for download to Android devices.

Keywords Flutter framework, reactive programming, Android application,
cafe search, serverless, Firebase.

viii

Contents

Introduction 1
Motivation . 1
Structure . 2

1 Flutter Foundations 3
1.1 Technical overview . 4

1.1.1 Reactive Programming 6
1.2 Everything Is a Widget . 7

1.2.1 Widgets Are Not Only Visible Parts 8
1.2.2 Stateless vs. Stateful Widget 9

1.3 State Management Approaches 14
1.3.1 Case Study Note . 14
1.3.2 Inherited Widget . 15
1.3.3 Provider Package . 17
1.3.4 Business Logic Component 19
1.3.5 Conclusion . 23

1.4 Flutter Internals . 23
1.4.1 RenderObject and RenderTree 23
1.4.2 Everything Is a Widget Revisited 24
1.4.3 Deciding What to Redraw 25
1.4.4 Notion of Keys . 26
1.4.5 Const Optimisation . 28

1.5 Conclusion . 29

2 Coffee Time Analysis 31
2.1 Considered Application . 31
2.2 Use Cases . 32

2.2.1 UC1: Display Nearby Cafes As a List 33
2.2.2 UC2: Display Nearby Cafes As a Map 33

ix

2.2.3 UC3: Start Navigation 34
2.2.4 UC4: Toggle Cafe As a Favourite 34
2.2.5 UC5: Setting the Filter 34
2.2.6 UC6: Display Favourite Cafes 35
2.2.7 UC7: Review the Cafe’s Tags 35
2.2.8 UC8: Suggest a New Tag 35

2.3 Existing Alternatives . 36
2.3.1 Gastromapa Lukáše Hejĺıka 36
2.3.2 Pivńı Deńıček . 37
2.3.3 Restu . 39
2.3.4 Zomato . 39
2.3.5 Google Maps . 40

2.4 Application Prototype . 41
2.4.1 Coffee Time Prototype 42
2.4.2 Nielsen Heuristic . 45
2.4.3 User Testing . 48

2.5 Back-end Analysis . 51
2.5.1 Google Places API . 52
2.5.2 Coffee Time API . 55
2.5.3 The Selection of the Right Technology 56

2.6 The Conclusion . 58

3 Implementation 59
3.1 Clean Architecture . 59
3.2 Coffee Time API . 61

3.2.1 The API Endpoints . 61
3.2.2 Express.js Pipeline . 62
3.2.3 Routing . 64
3.2.4 Integration with Firestore 65
3.2.5 Functions Deployment 65

3.3 Coffee Time . 66
3.3.1 Domain Layer . 66
3.3.2 Data Layer . 70
3.3.3 Representation Layer . 73

3.4 SOLID and Dependency Injection 76
3.5 Unit Testing . 78
3.6 Conclusion . 79

4 Application Release 81
4.1 Development Workflow . 81

4.1.1 Continuous Integration 83
4.2 Internal Testing . 83
4.3 Crashlytics . 84
4.4 User Testing Re-Evaluation . 84

x

4.5 Release . 85
4.5.1 Missing Feature from Prototype 87
4.5.2 Conclusion . 87

Conclusion 89
Next Steps . 89

Personal Author’s Note in the End 90

Bibliography 91

A Acronyms 97

B Content of Enclosed CD 99

xi

List of Figures

0.1 Flutter Trend Against Other Popular Frameworks [4]. 2

1.1 Widget Composition Example. 3
1.2 Dart Platforms [11]. 5
1.3 Flutter System Overview [8]. 5
1.4 Compose Widgets to Create Layout [16]. 8
1.5 Compose Widgets to Create Layout – Left Column [16]. 8
1.6 User Interface Formula [17]. 9
1.7 Counter Application. 11
1.8 Counter Application’s Widget Tree. 11
1.9 Expected Rebuilt vs. Actual Rebuilt. 13
1.10 InheritedWidget Approach and Its Widget Tree. 17
1.11 Provider Approach and Its Widget Tree. 20
1.12 A BLoC Pattern [18]. 20
1.13 BLoC Approach and Its Widget Tree. 21
1.14 Three Trees – Widget, Element and Render Tree [25]. 24
1.15 Square Widgets and Associated Elements with States. 26
1.16 Square Widgets After Swap and Associated Elements With Wrong

States. 26

2.1 Application Use Case Diagram. 32
2.2 Gastromapa L. Hejĺıka [26]. 37
2.3 Pivńı deńıček [27]. 38
2.4 Restu [28]. 38
2.5 Zomato [29]. 40
2.6 Google Maps [30]. 40
2.7 Coffee Time Task Graph. 43
2.8 Low Fidelity (Lo-Fi) Prototype. Cafe List (Left) and Detail Screen

(Right). 44

xiii

2.9 High Fidelity (Hi-Fi) Prototype. Cafe List (left) and Detail Screen
(right). 45

2.10 Client and API Communication Flow. 55
2.11 Cafe’s Tag and Cafe Relation. 56
2.12 Coffee Time Domain Model. 57

3.1 Clean Architecture Defined By B.C. Martin [47]. 60
3.2 API Components. 66
3.3 Cafe Repository Interface. 68
3.4 Tag Repository Interface. 69
3.5 Repositories and Services Association. 71
3.6 Presentation Layer Screens Organization. 73
3.7 Screens and Blocs Association. 78

4.1 Released Version – Cafe List and Detail Screens. 86
4.2 Coffee Time QR Code for Downloading the Application. 86

xiv

List of Tables

2.1 Analysed Applications User Interface Summarization. 41
2.2 Find Place Parameters. 52
2.3 Find Place Fields. 53
2.4 Nearby Search Parameters. 53
2.5 Place Details Parameters. 53
2.6 Place Details Fields. 53

3.1 Places Endpoints. 62
3.2 Nearby Parameters. 62
3.3 Find Parameters. 62
3.4 Tags Endpoints. 63

xv

Introduction

The mobile applications usage is growing. The native development of an ap-
plication for each, individual platform is well used across many companies.
However, many of them, predominantly smaller ones, concludes that develop-
ing application for each platform and maintenance is not cheap and comes with
much of work. On the other hand, there are technologies which offer cross-
platform development with one code-base. Every cross-platform technology
takes its own approach to how the code is compiled to the native platform.

Some of them use the concept of bridging the cross-platform user interface
primitives to its counterpart in the native platform. Well-known examples are
React Native [1] or Xamarin Forms [2]. The opposite approach is the form
of a progressive web application (PWA) where the application is written as
a web-based application with support of native features. This approach uses,
for example, Ionic framework [3].

During 2017, the concept of another approach was proposed, where the ap-
plication uses low-level platform API to draw over the whole screen with
keeping high performance and access to native features. Later on, from this
concept open-source framework Flutter, made by Google, was created [5].

Flutter for the last three years until now (first half of 2020) started to gain
developers attention, and it was highly promoted by Google. One indication
of its growing popularity is Stack Overflow Developer Survey 2019 [6] where
it took third place of “Most Loved” framework directly after .NET Core and
Torch/PyTorch and highly growing trend among questions created during the
last years (Figure 0.1). However, like with every new technology, the Flutter
can become well-known and well used or will be left as a dead-end.

Motivation

There are many reasons why the author chose this topic for the thesis. First of
all, his bachelor thesis [7] already focused on mobile application development,
although it used different cross-platform technology – Xamarin. During his

1

Introduction

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

%
o
f
S
ta
c
k
O
v
e
rfl

o
w

q
u
e
s
ti
o
n
s
th
a
t
m
o
n
th

Tag

flutter
react-native
xamarin
ionic

Figure 0.1: Flutter Trend Against Other Popular Frameworks [4].

ongoing studies, the author discovered and started to use new, by his opinion,
promising framework Flutter. So his first goal and motivation was to study
Flutter more in-depth and bring comprehensive study material of this frame-
work for others. The second reason was to conclude if Flutter can become
a framework which can be used to create production-ready applications or if
it is still an experimental framework. Last reason was motivation to create
complex, and yet, simple to use mobile application for everyone who seeks to
find new cafes to visit.

Structure

The thesis is divided to four chapters:

• Chapter 1 deals with introduction to Flutter framework, its concept and
internal functionality.

• Chapter 2 introduces proposed Coffee Time application. It describes
the created prototype and its user testing. The analysis of back-end
services is also described.

• Chapter 3 describes a process of back-end implementation as well as of
Coffee Time application implementation. In the chapter, details how its
implemented, which approaches was taken and how development process
was done.

• Chapter 4 describes final application release and its testing.

In conclusion, the results are compared with the goals of this thesis.

2

Chapter 1
Flutter Foundations

In the introduction, a new, promising, cross-platform framework was intro-
duced. The Flutter’s primary goal is to provide the ability to build high-
performance, high-fidelity apps for iOS, Android, web, and desktop systems
(Windows, MacOS) from a single code-base [8]. In this chapter, the frame-
work philosophy will be described. Used programming language and theory
of reactive programming is briefly introduced. The chapter describes the con-
cept of widgets as a base building block for every application. Later on, one
of the most critical topics – state management is discussed in the form of
existing approaches and recommendation which to prefer when building ap-
plications. At the end of this chapter, the brief look under the framework’s
hood is discussed.

Flutter includes a modern react-style framework, a 2D rendering engine,
predefined widgets and development tools. The primary premise is a motto
“everything is a widget”. A widget is an immutable building block of appli-
cation which is part of the user interface. Each widget can define structural
elements such as a button, stylistic elements such as colour or it can define
the interface’s layout, such as padding. Widgets are composed as a tree hi-
erarchy with a possibility of composing each widget to another. If any event
occurs (such as user interaction), the framework can rebuild part of this tree
to redraw the screen.

Container

Column

Text Icon

Hello Flutter

Figure 1.1: Widget Composition Example.

3

1. Flutter Foundations

Flutter encourages developers to create and use small, single-purpose wid-
gets and compose them to create complex interfaces and layouts. Take an ex-
ample from Listing 1, where the root widget, Container, is used to create
a rectangular visual element. The Container is something like a div element
in HTML. Under the Container there is Column widget which composes chil-
dren widgets into the vertical direction. Finally, Text widget displaying text
“Hello Flutter” and Icon widget showing star icon. The composition hierarchy
along with a result is shown in Figure 1.1.

Container(
padding: const EdgeInsets.all(5.0),
child: Column(

mainAxisAlignment: MainAxisAlignment.center,
children: [
Text('Hello Flutter'),
Icon(Icons.star),

]
),

)

Listing 1: Widget Composition Code Example.

1.1 Technical overview

Flutter uses programming language Dart (specification v2.0 [9]). It is also
made by Google and it is inspired by languages such as JavaScript. Dart
using statically typed system with runtime checks, but like many other lan-
guages highly use type inference [10]. Dart can be used from writing simple
scripts to full-featured applications. Dart has flexible compiler technology
where the compiler can decide running code in different ways, depending on
the targeted platform [11].

• Dart Native – For programs targeting devices (mobile, desktop, server,
and more), Dart Native includes both a Dart VM with Just-in-Time
(JIT) compilation and an Ahead-of-Time (AOT) compiler for producing
machine code.

• Dart Web – For programs targeting the web, Dart Web includes both
a development time compiler (dartdevc) and a production time compiler
(dart2js).

Flutter performs the use of both ways. If the targeted platform is web,
the Dart Web is used. For other platforms Dart Native is chosen. The Dart Na-
tive’s JIT compilation is highly used to support fast development process with

4

1.1. Technical overview

Figure 1.2: Dart Platforms [11].

“hot-reload” functionality. Then the AOT compilation is used for the best-
optimised production-ready result on the native platform.

Flutter framework is organised into several layers (Figure 1.3), where each
layer makes usage of the previous one. The upper layers are more frequently
used by developers on a daily basis, and lower layers are used only if the de-
velopers need to create particular customizations.

Figure 1.3: Flutter System Overview [8].

Unlike the other frameworks, Flutter uses high-performance 2D rendering
engine and draws everything onto the screen directly. That means pixel-
perfect control over what and how it is displayed. The most top layers, Mate-

5

1. Flutter Foundations

rial and Cupertino, are set of widgets which defines Material Design (Android
systems) and Apple Design components respectively. To highlight that, Flut-
ter does not use native components, but everything draws by itself. These two
layers support developers to bring the standardised look and feel to the tar-
geted platform.

1.1.1 Reactive Programming

Flutter makes significant usage from the concept of reactive programming.
There is nearly always a requirement to update data in response to user in-
teraction or any other event such as getting data from the server. More than
that, sometimes it is necessary to update different parts of the user interface
in response to these events.

Flutter creates user interface by composing immutable widgets. The im-
mutability is the key point here. Whenever user interface needs to “redraw”
screen, the part of the widget tree is replaced by new widget instances (in fact,
it is not simple as that, and this topic is more deeply discussed later in this
chapter). In many other User Interface (UI) frameworks, such as Xamarin,
is usually taken the approach of coupling UI components with view-models
through concepts such as data binding [12]. That means that whenever UI
needs to change, the components mutate application’s state. Flutter takes
an entirely different approach. It can be said “here is the current state of
the application, draw something on the screen accordingly” – there is no way
to state widget.property = new value as widgets are immutable.

1.1.1.1 The Notion of Streams

A Stream can be described as “A pipe with two ends, only one allowing to
insert something into it. When something is inserted into the pipe, it flows
inside the pipe and goes out by the other end” [13]. The Stream can convey
any data type, from simple values to events, complex object or even another
stream. The data can come to the Stream, for example, from an external
data source such as server connection or from events such as user interactions.
In Dart, the Streams support manipulating them, filtering, re-grouping, mod-
ify data before they are send and much more. This functionality can be used
to build reactive UI. Flutter has several widgets supporting streams to rebuild
part of the UI whenever new data arrived into the Stream.

The answer to the question “What is reactive programming?” could be
“Reactive programming is programming with asynchronous data streams“
[13][14]. Within Flutter framework, anything from an interaction event (a tap,
a gesture), changes of a variable, messages, everything that may change is con-
veyed and triggered by streams.

It means that with reactive programming, according to [13], the applica-
tion:

6

1.2. Everything Is a Widget

• becomes asynchronous,
• is architectured around the notion of Streams and their lis-

teners,
• when something happens somewhere (an event, a change of

a variable) a notification is sent to a Stream,
• if “somebody” listens to that Stream, it will be notified and

will take appropriate action(s), whatever its location in the ap-
plication.

From Widgets perspective – Widget does not longer need to know:

• what is going to happen next,
• who might use this information (no one, one or several Wid-

gets),
• where this information might be used (nowhere, same screen,

another one, several ones),
• when this information might be used (almost directly, after

several seconds, never).

Later on in this chapter, the Business Logic Component (BLoC) pattern
is introduced. This pattern uses Streams to manage application life-cycle and
they are used for state management.

1.2 Everything Is a Widget

In this section, we will discuss in more detail how the UI is built. Every UI con-
sists of the layout and individual components. The layout defines the screen’s
base structure, such as a menu on the top and subsequent actions on the bot-
tom. Then the layout is composed of individual components, such as a menu,
buttons or icons. Together they create a final interface.

These building blocks in Flutter are called “Widgets”. Whatever it is sim-
ple text, a button, or complex parts of the layout, such as a grid with multiple
columns and rows – everything is a widget. Widgets describe what their view
should look like given their current configuration and state. When a widget’s
state changes, the widget rebuilds its description, which the framework diffs
against the previous description in order to determine the minimal changes
needed in the underlying render tree to transition from one state to the next
one [15]. As the composition to the tree implies, each widget has at most one
parent and zero or more children widgets. This tree, called “widget tree”, is
in fact, one of the three trees involved. The framework has a sophisticated
way of decision about how the trees should be rebuilt and the screen updated.
This behaviour is in more detail described later in this chapter.

7

1. Flutter Foundations

The Flutter framework uses only one language to define both the user
interface and business logic as well. Widget is a Dart class which inherits from
some of the widget’s base class (typically StatelessWidget or StatefulWidget).
Each widget has a build() method which defines how the widget should be
built (and drawn on the screen).

1.2.1 Widgets Are Not Only Visible Parts

Widgets are not only visible parts of the UI such as clickable buttons, text or
icons. The widgets also define layouts such as columns, rows, grids, the margin
between other widgets, padding around them and more.

Figure 1.4: Compose Widgets to Create Layout [16].

Figure 1.5: Compose Widgets to Create Layout – Left Column [16].

An example of widget composition creating a layout is shown in Figure 1.4.
The root widget, a Row widget, contains two nested widgets. On the left there

8

1.2. Everything Is a Widget

is a Column which contains more nested widgets and on the right, Image
widget which displays a product image. The break-down of the left column
widget can be seen in Figure 1.5.

1.2.2 Stateless vs. Stateful Widget

In the introduction it was said that Flutter’s approach of displaying current
user interface is declarative – “here is the current state of the application,
draw something on the screen accordingly”. In Flutter, whenever application’s
state changes, the user interface is redrawn. There is no imperative way to
change the UI, such as textWidget.text = 'new text'. The advantage of
the declarative approach is that there is only one code path for any state
of the UI. Developers just describe how the screen should look for a given
state, and that is it [17]. The UI can be described as a formula where UI is
equal to function which takes a state and returns new UI (Figure 1.6).

Figure 1.6: User Interface Formula [17].

1.2.2.1 Build Context

An essential part of the widgets is BuildContext. A context is a reference to
the location of the widget within the part of the tree [18]. Each widget has its
own context. As widgets are composed to the tree, the contexts are as well.
The widget has access to its own context and its parent context.

The BuildContext is provided to each widget through the build() method
and is used to find the widget’s ancestors. This is commonly used to obtain
a defined application theme or get a reference to a navigator widget, which is
used to do navigation between screens.

1.2.2.2 Local vs. Application State

The state is anything that forms what should be displayed. The state is any
data what are needed in order to rebuild UI at the moment [19]. The state
can be separated into two concepts – local state and application state.

• Local state – Local state is which can be tied into one widget. It can be,
for example, current tab in the “tab selector” widget, current progress
of animation or state of checkbox (checked or unchecked).

9

1. Flutter Foundations

• Application state – Application State is which can not be local, when-
ever some information is needed to share across multiple widgets, the state
which should be kept during a user session. An example of application
state can be a logged user information, loaded articles from the server
or chat messages.

1.2.2.3 Stateless Widget

A Stateless Widget is a widget which does not manage its own state. Once it
gets its parameters, and it was built through the build() method, it cannot be
changed. Remember, that whenever Flutter decides to redraw the screen, part
of the tree is rebuilt, but with new instances of the widgets. Typical examples
of the Stateless Widget can be Container, Text or Icon. These widgets accept
many parameters which can alter their look (and behaviour), but they cannot
be changed later on by themselves.

1.2.2.4 Stateful Widget

Whenever widget needs to manage its state and wants to mutate it for ex-
ample, in case of an event, the widget should be stateful. The widget as
a Stateless accepts parameters which can be used to configure this widget but
also has an associated object, called state. This state object is an active part
of the widget and is used to change widget and force framework rebuiltUI.
An example of a Stateful Widget can be a checkbox with “checked” state.

Stateful Widget does not have only build() method but has associated
State object which defines several methods to support widget’s lifecycle. These
methods are initState() for any state initialisation and dispose() to clear
any allocated resources.

The state object is associated with widget’s BuildContext. This association
is permanent, and state object will never change it [18]. Even if the widget’s
BuildContext can be moved around the tree structure, the state will remain
associated with that context. This implies that the Stateful Widget can be
replaced during the tree rebuild with a new instance, but the state object is
persisted.

1.2.2.5 Force Rebuild with setState()

As was mentioned, Stateful Widget can tell the framework to rebuild, and
the widget can be redrawn based on the changed state. The Stateful Widget
has method setState(callback) which is used to do such rebuild. Inside
callback a developer should change the widget’s state to the new value and
framework will rebuild the widget based on that new state.

10

1.2. Everything Is a Widget

1.2.2.6 Case Study: Counter Application

Suppose application where are two buttons. One button increments a value
(counter) and other decrements. The counter value is displayed within two
Text widgets located on different places within the application. Whenever any
of the buttons are clicked, and the value is changed, all Text widgets should
reflect this change.

Figure 1.7: Counter Application.

App

MaterialApp

HomePage

Scaffold

AppBar Center

Text

Column

Button

Icon (+)

Button

Icon (-)Icon

CounterText
Container

TextIcon

CounterText
Container

Figure 1.8: Counter Application’s Widget Tree.

Application’s layout is shown in Figure 1.7 and the corresponding widget
tree in Figure 1.8 (shortened for brevity). In the AppBar and in the centre

11

1. Flutter Foundations

of the screen, there is Text widget which displays current value. On the bot-
tom of the screen there are FloatingActionButtons widgets, which increment
(decrement) counter value. The value needs to be accessible to the Text and to
the button as well. Hence, the state is declared within the whole application’s
widget HomePage.

class HomePage extends StatefulWidget {
@override
_HomePageState createState() => _HomePageState();

}

Listing 2: HomePage Widget Definition.

Listing 2 shows the definition of the HomePage widget. The widget inherits
from StatefulWidget and declares HomePageState which is an associated
state object.

class _HomePageState extends State<HomePage> {
int _counter = 0;
void _incrementCounter() => setState(() => _counter++);
void _decrementCounter() => setState(() => _counter--);

@override
Widget build(BuildContext context) {

return Scaffold(
appBar: AppBar(title: CounterTextContainer(_counter)),
body: Center(child: CounterTextContainer(_counter)),
floatingActionButton: Column(

children: <Widget>[
FloatingActionButton(

onPressed: _incrementCounter,
child: Icon(Icons.add),

),
FloatingActionButton(

onPressed: _decrementCounter,
child: Icon(Icons.remove),

)]));
}

}

Listing 3: HomePageState – setState() Example.

Listing 3 shows definition of HomePageState where state is represented
as int _counter = 0 variable. There are also two private methods for in-
crementing and decrementing _counter value. In each of the methods, the

12

1.2. Everything Is a Widget

class CounterTextContainer extends StatelessWidget {
final int count;
CounterTextContainer(this.count);

@override
Widget build(BuildContext context) {

return Row(
children: [

const Icon(Icons.computer),
const SizedBox(width: 5),
Text('Count: $ count')

],
);

}
}

Listing 4: CounterTextContainer – Accepting State As Parameter

Ideally should be rebuilt Also rebuilt

App

MaterialApp

HomePage

Scaffold

AppBar Center

Text

Column

Button

Icon (+)

Button

Icon (-)Icon

CounterText
Container

TextIcon

CounterText
Container

HomePage
State

setState()

Figure 1.9: Expected Rebuilt vs. Actual Rebuilt.

setState() is called with the appropriate state change. These two methods
are bound to onPressed() callback within FloatingActionButton. The state
(_counter variable) is passed down to CounterTextContainer Listing 4 where
the value is used to display within a Text widget.

The expectation is, that if the user pressed any of the buttons, the value is
incremented or decremented respectively and part of the UI which depends on
_counter value will be rebuilt. This part should be two Text widgets. In fact,

13

1. Flutter Foundations

the state is defined within the HomePage widget, and so, the whole HomePage
and its children are rebuilt (Figure 1.9). In this small example, it is not really
a problem and performance should not be affected. However, if the tree is
deeply nested with heavy performance widgets (for example animations), it
could lead to reduced performance and application can lags.

How to define the application-wide state and prevent the necessary re-
building part of the widget tree is a subject of “state management” section.

1.3 State Management Approaches

Using setState() method is the perfect solution (and recommended) for local
state. However, as soon as the state needs to be shared across multiple widgets,
the managing this state becomes cumbersome. If the state should be shared,
there is only one viable solution – lifting state up [20]. The state should reside
in the widget, which is the parent for all widgets that needs access to the state.
Such a solution can be used (and works) but creates a few problems.

The very first problem is if some of the interested widgets are kept in
deep layer of the tree and others are not, the necessary amount of widgets is
rebuilt whenever the state changes. The second issue is that the code of the
widgets becomes very quickly hard to manage due to its tight dependencies
with upper widgets. The only doable solution to provide access to the state is
through references or function callbacks. These callbacks have to be passed to
every widget down to the tree. This solution adds the necessary complexity to
maintenance and readability. Last but not least, the application state usually
has some business logic which should have been tested. However, if the state
(and its logic) is put directly into the widget, this logic is hard to test.

The “State Management” is a term for patterns and design solutions which
helps to prevent those issues – reducing necessary rebuilds, keeping code main-
tainable and testable.

1.3.1 Case Study Note

In our case study, there are two places where the state (counter value) is
needed – first place is in the AppBar’s text and the centre of the screen. Sec-
ondly, the buttons for incrementing and decrementing need access to the state
in order to modify it. The first version of counter application used solution
with setState() and made the HomePage (a root widget of the whole applica-
tion) as StatefulWidget. The state was then accessible from every HomePage’s
children. Although this code is straightforward, there is already an issue with
the testability of the business logic as it is tightly coupled to widget’s class.

Following lines in this section introduce some used patterns and solutions
for state management. Every solution will use the same case study but with
appropriate implementation. Each solution’s full code is available as an ap-
pendix. The design and functionality remain the same as introduced before.

14

1.3. State Management Approaches

1.3.2 Inherited Widget

One solution offered by Flutter framework is the concept of InheritedWid-
get [21] [18]. This concept is used across the framework – for example, obtain-
ing current Theme or screen device information through MediaQuery object.
Both can be accessed through convention “of” method – Theme.of(context)
returns Theme object. Internally these objects makes usage of an Inherited-
Widget. The InheritedWidget has two features:

• It can be accessed from any widget directly.

• Whenever the widget changes, the accessing widget is automatically
rebuilt.

The second implies that, for example, whenever widget access the Me-
diaQuery and it is changed (the device is rotated, resolution changed,. . .),
the widget is rebuilt to handle these changes.

class _CounterInherited extends InheritedWidget {
_CounterInherited({Widget child, this.data})

: super(child: child);

final CounterModel data;

@override
bool updateShouldNotify(_CounterInherited oldWidget) => true;

}

Listing 5: CounterInherited.

Listing 5 is implementation of InheritedWidget. It accepts child widget
and CounterModel which is state (and business logic) holding class (List-
ing 7). The CounterModelProvider (Listing 6) is a widget which provides
of(context, listen) method and should be called when widget needs ac-
cess to the model. The optional parameter listen controls if a widget is
automatically assigned to listening for changes or not. The of method make
usage of BuildContext and traverses from given widget up to the root until
it finds the widget searched for or fails.

The HomePage (Listing 8) is wrapped by CounterModelProvider to pro-
vide access to any its children. Within the HomePage’s build() method,
CounterModel is obtained without listening. It is used for button’s call-
backs to invoke increment() (decrement() respectively) method. Inside
CounterTextContainer (Listing 9) is used Text widget and CounterText
where the CounterModel is accessed to get current value. Note that every
widget is stateless. The most important thing is that only the CounterText

15

1. Flutter Foundations

class CounterModelProvider extends StatefulWidget {
CounterModelProvider({this.child});

final Widget child;

@override
CounterModel createState() => CounterModel();

static CounterModel of(BuildContext context,
{bool listen = true}) {

return (listen
? context.

dependOnInheritedWidgetOfExactType<_CounterInherited>()
: context.

findAncestorWidgetOfExactType<_CounterInherited>()
)
.data;

}
}

Listing 6: CounterModelProvider.

class CounterModel extends State<CounterModelProvider> {
int _count = 0;
int get count => _count;

void increment() => setState(() => _count++);
void decrement() => setState(() => _count--);

@override
Widget build(BuildContext context) {

return _CounterInherited(data: this, child: widget.child);
}

}

Listing 7: CounterModel.

is rebuilt when the state changes (Figure 1.10) in comparison with setState()
approach where the whole application was rebuilt.

Although InheritedWidget solves many issues, the amount of code needed
to achieve these results can be more unreadable and hard to maintain than
approach with plain setState() method. However, Flutter’s community cre-
ated package which abstracts InheritedWidget and simplify this process.

16

1.3. State Management Approaches

// MyApp - wraping HomePage with CounterModelProvider
home: CounterModelProvider(child: HomePage()),
// HomePage's build method
final model = CounterModelProvider.of(context, listen: false);
return Scaffold(

appBar: AppBar(title: CounterTextContainer()),
body: Center(child: CounterTextContainer()),
floatingActionButton: Column(

children: [
FloatingActionButton(

onPressed: model.increment,
child: Icon(Icons.add),

),
FloatingActionButton(

onPressed: model.decrement,
child: Icon(Icons.remove),

)
],

));

Listing 8: HomePage Implementation.

increment()

decrement()

access through 'of' method

lis
ten

 to
 ch

an
ges

App

CounterInherited

HomePage

Scaffold

AppBar Center

CounterText

Column

Button

Icon (+)

Button

Icon (-)Icon

CounterText
Container

CounterTextIcon

CounterText
Container

Figure 1.10: InheritedWidget Approach and Its Widget Tree.

1.3.3 Provider Package

Provider is a community package created by Remi Rousselet [22] as a sim-
plification over inherited widgets with abstraction and more flexibility. One
of the features is the concept of ChangeNotifier and its ChangeNotifier-

17

1. Flutter Foundations

// CounterTextContainer's build method
return Row(

children: [
const Icon(Icons.computer),
const SizedBox(width: 5),
CounterText()

]);
//CounterText's build method
final model = CounterModelProvider.of(context);
return Text('Count: ${ model.count} ');

Listing 9: CounterTextContainer and CounterText Widgets.

class CounterModel with ChangeNotifier {
int _count = 0;
int get count => _count;

void increment() {
_count++;
notifyListeners();

}

void decrement() {
_count--;
notifyListeners();

}
}

Listing 10: Provider’s CounterModel.

Provider. The concept behind is similar to the approach with the Inherited-
Widget. The state is represented by the model class CounterModel, which
uses mixin ChangeNotifier (Listing 10). This model contains only business
logic and associated data. There are no widgets involved. If any of value
is changed, the notifyListeners() method should be called to notify its
listeners to rebuilt.

The ChangeNotifierProvider wraps HomePage widget, where CounterModel
is created. Within HomePage’s build method, the CounterModel is accessed
through Provider.of<CounterModel>(context, listen: false);
(note the similarity with InheritedWidget) without listening to changes (List-
ing 11). The Consumer widget used within CounterTextContainer (List-
ing 12) allows to automatically listening to changes and re-run its builder
callback. If needed, the child argument can be used to construct widget
which can be part of the rebuilding widget without rebuilding itself.

18

1.3. State Management Approaches

// in MyApp: provides CounterModel to descendants
home: ChangeNotifierProvider(

create: (_) => CounterModel(),
child: HomePage(),

),
// HomePage's build method
final model = Provider.of<CounterModel>(context, listen: false);
// ... rest of the HomePage's build method
// ... which is same as within InheritedWidget approach

Listing 11: Provider’s HomePage.

//CounterTextContainer build method
return Consumer<CounterModel>(

builder: (context, model, child) {
return Row(

children: [
child,
const SizedBox(width: 5),
Text('Count: ${ model.count} ') // CounterText

]);
},
// child widget is not rebuilt when model changes
child: Container(

padding: const EdgeInsets.all(8.0),
child: Icon(Icons.computer),

),
);

Listing 12: CounterTextContainer with Consumer.

The result is the same as with InheritedWidget (Figure 1.11), but with
more readable code. The Provider package became very popular and encour-
aged by the Flutter team as a solution for state management [20]. Package
offers more than the ChangeNotifier – it can be used for dependency injec-
tion and it is used by many other packages such as flutter bloc [23].

1.3.4 Business Logic Component

Business Logic Component (BLoC) is a pattern originally introduced by Paolo
Soares and presented during DartConf 2018 conference [24]. The pattern was
popularized by Didier Boelens [13] and it was inspiration to Felix Angelov for
creation of flutter bloc package [23] – a popular BLoC based state management
solution.

19

1. Flutter Foundations

increment()

decrement()

lis
te

n
to

 c
ha

ng
es

access model through provider
App

ChangeNotifier
Provider

<CounterModel>

HomePage

Scaffold

AppBar Center

CounterText

Column

Button

Icon (+)

Button

Icon (-)

Icon

CounterText
Container

CounterText
Container

Consumer
<CounterModel>

CounterTextIcon

Consumer
<CounterModel>

Figure 1.11: Provider Approach and Its Widget Tree.

Figure 1.12: A BLoC Pattern [18].

The BLoC builds on the streams. The BLoC stands for class, holding
business logic where on one side accepts stream of events (event sink) and on
the other side provides stream of states (Figure 1.12). Through event sinks,
BLoC accepts events which are processed and based on them a new state
is put to the state stream. In terms of Flutter – widgets send events and
listens for new state coming from state stream. The business logic itself is
hidden from them and widgets (the UI) are concerned only about sending
event and rebuilding themselves based on coming state.

20

1.3. State Management Approaches

The BLoC solves the responsibility separation where the logic is centralised
within the BLoC class. This leads to better and easier testability. And third,
thanks to the independence of UI with business logic, changing and organizing
layouts can be done without changes within the application’s logic. The UI is
only concerned about building widgets based on the current state and even-
tually sending events if needed. This also imply that events can be sent from
any place within the application without any complexity.

increment

decrement

add new events

App

BlocProvider
<CounterBloc>

HomePage

Scaffold

AppBar Center

BlocBuilder
<CounterBloc>

Column

Button

Icon (+)

Button

Icon (-)Icon

CounterText
Container

Icon

CounterText
Container

Text

BlocBuilder
<CounterBloc>

Text

lis
ten

 fo
r n

ew
 st

ate

Figure 1.13: BLoC Approach and Its Widget Tree.

The BLoC also force centralized place where the particular state can be
changed. With other solutions such as setState() and eventual callback
passing, these changes can be spread across many places and it can be hard
to maintain and test them. On the other hand, the usage of streams adds
code complexity and robustness – a code boilerplate and the application has
to be designed with asynchronous execution in mind as the BLoC relies on
the streams. The mentioned package flutter bloc is BLoC pattern with ab-
straction over the stream’s complexity without downgrading their usefulness
and advantages.

1.3.4.1 flutter bloc Package

As before, the case study “counter application” was also written with
the BLoC approach. Widget tree and its rebuild (Figure 1.13) is practically
identical as with Provider. The difference lies in the how the code is organised,
how the state is managed and the whole philosophy of the application’s code.
With InheritedWidget the state was mutated and its listeners were notified.

21

1. Flutter Foundations

// CounterBloc's events
enum CounterEvent { increment, decrement }

class CounterBloc extends Bloc<CounterEvent, int> {
@override int get initialState => 0;

@override
Stream<int> mapEventToState(
CounterEvent event,

) async* {
if (event == CounterEvent.increment)

yield state + 1;
else if (event == CounterEvent.decrement) yield state - 1;

}
}

Listing 13: CounterBloc’s Implementation.

// App' build method -- providing CounterBloc
home: BlocProvider(

create: (_) => CounterBloc(),
child: HomePage()),

// inside onPressed() callback - add event to bloc
context.bloc<CounterBloc>().add(CounterEvent.increment),

Listing 14: BLoC Approach – Providing CounterBloc and Accessing Bloc.

Row(
children: <Widget>[

const Icon(Icons.computer),
const SizedBox(width: 5),
BlocBuilder<CounterBloc, int>(

builder: (context, state) => Text('Count: $ state'),
)]);

Listing 15: BLoC Approach – CounterTextContainer’s Implementation.

With BLoC approach, whenever new event arrives, new state is returned and
its listeners are rebuilt.

The flutter bloc has base Bloc<E,S> class where E is an “event type” and S
is a “state type”. Each BLoC class has to inherit this base class and overrides
mapEventToState() method in order to respond to any event and yield new
state. How the package works and how it can be used is more discussed

22

1.4. Flutter Internals

in Chapter 3. Listing 13 shows CounterBloc implementation. Events are
represented as enum CounterEvent with increment and decrement respec-
tively. The state is simple integer type. The flutter bloc package uses under
the hood Provider so it is very similar how the BLoC is provided to the widget
tree. The BLoC is accessed with context.bloc in order to add new events.
An example is shown in Listing 14. CounterTextContainer widget (List-
ing 15) uses BlocBuilder widget which rebuilds whenever new state arrives.

1.3.5 Conclusion

In this section, four approaches for state management was introduced. From
simple setState() approach to stream based BLoC. As the BLoC encapsu-
lates business logic into its own class and makes use of stream notion, this
approach was chosen as the state management approach for implementation
of our application due to convenient and straightforward way to usage, along
with easy testability.

1.4 Flutter Internals

In the last section of this chapter, some of the internal Flutter’s work is dis-
cussed. First of all, it is described more in-depth on how the framework is
able to build widgets and draw them on the screen. Then the notion of Keys
is introduced (an unique identification of widgets within widget tree). After
that, some optimisations such as const constructors which can give better
performance are discussed.

At the beginning of this chapter, Figure 1.3 shows how Flutter is made.
The middle layer – the engine is responsible for rendering and orchestrating
Flutter framework.

1.4.1 RenderObject and RenderTree

As was said earlier, Flutter uses pixel-perfect rendering – each widget is in
the end translated into several pixels drawn on the screen. In order to do that,
engine has a notion of the Render Tree.

The Render Tree is composed by objects called RenderObjects. These
RenderObjects are used to [25]:

• define some area of the screen in terms of dimensions, position, geometry
but also in terms of “rendered content”,

• identify zones of the screen potentially impacted by the gestures,

The root object of the tree is called RenderView.

23

1. Flutter Foundations

1.4.2 Everything Is a Widget Revisited

From a developer perspective, everything is a widget what is related to the UI
in terms of layout and interaction [25]. The widget is an immutable class,
where instances (or more precise its derivates) form the widget tree by com-
position. The widget itself, however, does not know how it can be rendered
to the screen.

MaterialApp

Scaffold

AppBar

Text

AppBar

Center

Text

MaterialApp

....

....

....

....

....

Scaffold

....

....

....

....

....

....
....
....
....

....
....

....
....
....

....

....

....

....

....

....

....

Widget Structure Elements Tree Render Tree

Figure 1.14: Three Trees – Widget, Element and Render Tree [25].

When Flutter needs to render the current state to the screen, the engine
will request to inflate all widgets [25]. This can be simplified as unpacking
the “box of boxes”. Each widget internally uses more granulated, and low-level
API’s widgets in order to precisely describe the layout. Furthermore, from
a developers perspective, the widgets create Widget Tree. In fact, internally
each widget has assigned Element object which forms the Element Tree.

Each Element points to widget which created it, parent and potentially

24

1.4. Flutter Internals

child Element and may also point to a RenderObject [25]. Figure 1.14 shows
notion of Widget Tree, Element Tree and Render Tree.

Every Widget can be assigned to one of the three categories [25]:

1. The proxies – these widgets hold information which needs to be avail-
able to other widgets – such as InheritedWidget.

2. The Renderers – These widgets define the layout of the screen, such
as Row, Column, Padding, . . .

3. The Components – These widgets provide final information related
to how the piece of UI should look. An example of such a Widget can
be Text or RaisedButton.

Depending on the widget category, a corresponding Element type is associ-
ated. There are two main Element types – ComponentElement and Render-
ObjectElement. The first one does not directly correspond to visual rendering.
The latter one has a connection to RenderObjects. Also, every widget has its
corresponding Element object, and speaking of StatefulWidgets, each widget
has corresponding StatefulElement where the state is associated. This state-
ment also implies that BuildContext is an Element itself.

1.4.3 Deciding What to Redraw

A redraw mechanic relies on invalidating either an Element or a RenderOb-
ject [25]. Whenever the widget should be rebuilt, the corresponding Element is
marked as dirty. Invalidation of RenderObject can happen, for example, when
changes to its dimension, position or geometry are made or when the asso-
ciated Element is marked as dirty. When engine decides that new repaint
should happen, it iterates over all invalidated (dirty) elements and request
them to rebuild. Internally the rebuild works as [25]:

1. The corresponding widget’s build() method is called which
returns a new widget.

2. If the Element has no child, the new widget is inflated.
3. Otherwise the new widget is compared to the one referenced

by the child Element and
• if they are same (same widget type and Key), the update

is made and the child Element in the Element Tree is
kept,

• if they are not same, the child Element is unmounted
(and discarded) and the new widget is inflated.

4. The inflating of the widget leads to creating a new Element,
which is inserted into the Element Tree as a new child of
the Element.

25

1. Flutter Foundations

After that, the Element Tree is considered as a stable and a similar process
is made with Render Tree – every RenderObject marked as dirty performs its
layout (calculating dimension and geometry), every RenderObject marked to
repaint is repainted. In the end, the device screen is redrawn.

1.4.4 Notion of Keys

When comparing new widget with current one within Element, the Element
decides to rebuild when the widget type and Key are different. A Key is an ob-
ject associated with a widget. In the simplest form, a Key can be considered
as the unique identification of the widget. In most cases, developers should
not need to work with the keys as Flutter manage them internally. However,
there are cases where the manual definition of the Key is necessary.

Row

Square

Square

RowElement

Stateful
Element

Stateful
Element

State

State

Figure 1.15: Square Widgets and Associated Elements with States.

Row

Square

Square

RowElement

Stateful
Element

Stateful
Element

State

State

Swap

State didn't swap

Figure 1.16: Square Widgets After Swap and Associated Elements With
Wrong States.

26

1.4. Flutter Internals

// SquarePage holds list of Square widgets
class _SquaresPageState extends State<SquaresPage> {

final squares = [Square(RandomColor.get()),
Square(RandomColor.get())];

void _shiftSquares() {
setState(() => squares.insert(1, squares.removeAt(0)));

}

@override
Widget build(BuildContext context) {

return Scaffold(
body: Row(children: squares),
floatingActionButton: FloatingActionButton(

onPressed: _shiftSquares,
//...

),
);

}
}

Listing 16: SquarePage Widget With Stateless Square Widgets.

class Square extends StatefulWidget {
Square({Key key}) : super(key: key);
@override
_SquareState createState() => _SquareState();

}

class _SquareState extends State<Square> {
Color color;
@override
void initState() {
color = RandomColor.get();

}

@override
Widget build(BuildContext context) {

return Container(color: color,width: 100,height: 100);
}

}

Listing 17: Square Widget as StatefulWidget.

27

1. Flutter Foundations

The problem can occur when some widget uses a collection of widgets of
the same type that holds some state. Consider a concrete example where
SquarePage holds a list of Square widgets (Listing 16). Each Square (as
a StatelessWidget) has defined random colour through a constructor. After
a button is clicked, the squares are swapped. With Square as StatelessWid-
gets, everything works as expected. However, if the Square becomes Stateful-
Widget (Listing 17) and the button is clicked, it seems like nothing happened
– squares stay on the same place. When the widget is marked to rebuilt, it
walks through Elements and if the widget type and the Key match, the El-
ement updates its reference to new Widget. In the case of StatefulWidget,
the associated state is linked to the Element object (Figure 1.15). When
squares are shifted, the Element is marked as dirty. It walks through square’s
StatefulElement and checks if the widget type and the Key match. They match
because no Keys are assigned to them. Hence, the Element updates its widget
reference, but the associated state remains the same (Figure 1.16). The key
is to add Key. There are several types of Keys such as ValueKey, where some
unique value can be assigned (for example article’s id). For Square exam-
ple, the UniqueKey which generates unique identification is enough for usage.
After the Keys are assigned,

final squares = [Square(key: UniqueKey()),Square(key: UniqueKey())]

the example works again as expected. The full example code is available
as before within appendix.

The keys should be put to the most top widget, which is used as a root
widget of collection. Otherwise, the rebuilding algorithm fails once again, and
wrong behaviour will occur. In practice, Key should be used when stateful
widgets are used within collections (such as ListView, Row or Column) and
they are manipulated – moved, removed and similar. Moreover, sometimes
the GlobalKey can be used to manage some widget’s state “outside”. This
approach is often used with managing text inputs.

1.4.5 Const Optimisation

On of the Dart’s features are const constructors which makes instance as
a compile-time constant. This feature can be used to optimise widget builds
and prevent unnecessary rebuilds. Most of the Widgets has const constructor,
and if possible, the const constructor should be used. Such as Icon widget
or Text widget if they accept non-changing values they can be made compile-
time constants and Flutter when rebuilding the tree will these Widget reuses
instead of creating a new one.

The problem of performance optimisation is a vast subject for discussion,
and it could have its own chapter. The const constructors are only “tip of
the iceberg”. In general, it is somewhat common sense to avoid unnecessary

28

1.5. Conclusion

UI rebuilds or avoid using animations carelessly such as animate each line of
Text within ListView whenever the list is updated.

1.5 Conclusion

The first chapter introduced Flutter framework and its philosophy “everything
is a widget” as a primary user interface building block. The notion of state
and several state management approaches were discussed, how they can be
implemented and how they affect the rebuilding of UI. In the end, part of
Flutter internals was uncovered and explained to grasp a better understanding
of how the framework works.

29

Chapter 2
Coffee Time Analysis

In this chapter, the specification of the implemented application is outlined.
The analysis of similar applications was made to obtain ideas. After analysis,
the low fidelity prototype was created to outline the first vision of the final
application. Next, the high-fidelity prototype, along with Nielsen’s heuristics
analysis and user testing, were made. At the end of the chapter, considered
tools and services which are used to implement the application are briefly
described.

2.1 Considered Application

Coffee Time is an application focused on searching nearby cafes. Users should
be able to search and find nearby cafes around them and decide which place to
visit. Each cafe is displayed with information such as distance, user’s reviews,
photos, opening hours and more.

Added value to this standard information is a feature so-called “the tags”.
These tags are user-added additional info which describes more precisely what
given cafe offer or for instance if that cafe allows pets inside.

The set of tags is defined, and users can add these tags to the cafe. Each
tag can be reviewed by other users. These reviews are done through “like” and
“dislike” functionality. The purpose of tag’s reviews is to prevent outdated or
misleading information. The example of such review can be “User visited cafe
which has tag ‘dog friendly’, but unfortunately this information was incorrect.
Consequently, the user decided to open the application and review the cafe’s
tag ‘dog friendly’ with dislike.”

Together with likes and dislikes, each tag has a computed score. Each
like gives to score plus one and as an opposite, dislike minus one. If any tags
reach the score to -4, the tag is removed from the cafe, more precisely is not
shown anymore to users. If such removed tag is proposed by any user again,
it obtains “like” review. Thus score is incremented to -3 and the tag is shown
again.

31

2. Coffee Time Analysis

The application is location-based and offers a map view to support the con-
venient user experience. Any cafe can be marked as user’s favourite to give
a faster way to find cafe whenever the user wants.

In conclusion, Coffee Time is application focused on one domain – search-
ing nearby cafes in order to know where to go to study, talk with friends
or for example have a great coffee. The application should be simple to use
with a clean user interface.

2.2 Use Cases

From the specification above, the use cases and use case scenarios were formed.
The use cases diagram is listed in Figure 2.1 and shows every use case from
the user perspective. Technically there is the role of application administrator
who can check control back-end or available application’s tags, but it is skipped
due to the lack of importance from application perspective.

Figure 2.1: Application Use Case Diagram.

As shown on diagram, the application has several use cases:

• UC1: Display nearby cafes as a list.

32

2.2. Use Cases

• UC2: Display nearby cafes as a map.

• UC3: Start navigation.

• UC4: Toggle cafe as a favourite.

• UC5: Setting the filter.

• UC6: Display favourite cafes.

• UC7: Review the cafe’s tags.

• UC8: Suggest a new tag.

2.2.1 UC1: Display Nearby Cafes As a List

An user can display nearby cafes in the form of the list view. The result is
filtered by setting a filter, which can be altered by UC5.

Pre-Conditions An user must be on the cafe list screen.

Basic Flow

1. An user launch Coffee Time and lands on cafe list.

2. Cafe list shows nearby cafes around him. Each cafe is displayed in
the form of a card.

3. An user can pull the list down to refresh results.

4. An user taps on cafe’s card and is redirected to the detail view.

Alternative Flow 1 An user launch navigation to the selected cafe.

2.2.2 UC2: Display Nearby Cafes As a Map

An user can display nearby cafes in the form of the map view. Each cafe is
shown as a map marker.

Pre-Conditions An user must be on the map screen.

Basic Flow

1. An user launch application and change screen to map view.

2. Nearby cafes are shown as markers.

3. An user taps on the marker and is redirected to the detail screen.

Alternative Flow 1 An user taps anywhere on the map to display nearby
cafes on the selected location.

33

2. Coffee Time Analysis

2.2.3 UC3: Start Navigation

This use case allows starting navigation to selected cafe through native navi-
gation applications.

Pre-Conditions The navigation services must be enabled.

Basic Flow

1. An user selects the cafe.

2. An user selects navigate action.

3. The system request to open navigation application is opened.

4. An user enables navigation and is redirected to navigation application.

Alternative Flow 1 An user dismisses navigation request and cancels navi-
gation.

2.2.4 UC4: Toggle Cafe As a Favourite

Each cafe can be marked as a favourite to faster future access.

Pre-Conditions The cafe must be loaded, so that it is visible to the user.
An user must be either on the cafe list screen, detail screen or favourite screen.

Basic Flow

1. An user has a cafe which wants to toggle as a favourite.

2. An user toggles cafe as a favourite.

2.2.5 UC5: Setting the Filter

An user changes the filter settings to filter out the cafe results.

Pre-Conditions There are results to filter.

Basic Flow

1. An user opens filter settings screen.

2. If it is suitable user changes results ordering from “by distance” (default)
to “by popularity”.

3. If it is suitable user changes opening hours filter.

34

2.2. Use Cases

4. Add tags to filter by, if any.

5. Returns back to the previous screen

6. The results are filtered with the chosen filter.

2.2.6 UC6: Display Favourite Cafes

Display every favourite cafe in the form of the list view.

Pre-Conditions An user must be on the map screen.

Basic Flow

1. An user displays favourite cafe list.

2. After the cafe is selected, the user is redirected to the cafe’s detail screen.

Alternative Flow 1 An user launches navigation to the selected cafe.
Alternative Flow 2 An user toggles cafe as not-favourite anymore.

2.2.7 UC7: Review the Cafe’s Tags

Use case allows users to review the cafe’s tags with likes and dislikes.

Pre-Conditions Cafe must have tags to review. User must be on the cafe’s
detail screen.

Basic Flow

1. An user wants to suggest a change to the selected cafe.

2. An user reviews each tag with “like”, “dislike” or skip review for the given
tag.

3. An user confirms review.

Alternative Flow 1 An user decides not to do the review and goes back to
the detail screen.

2.2.8 UC8: Suggest a New Tag

Use case allows users to suggest a new tag to the selected cafe.

Pre-Conditions Cafe must have tags to review. User must be on the cafe’s
detail screen.

Basic Flow

35

2. Coffee Time Analysis

1. An user wants to suggest a change to the selected cafe.

2. An user selects new tags for the suggestion.

3. An user confirms the suggestion.

Alternative Flow 1 An user decides not to make the suggestion and goes
back to the detail screen.

2.3 Existing Alternatives

The analysis of existing alternatives was made to research already created ap-
plications with similar features. Existing applications were searched through
Android’s official store. Applications with these functionalities were chosen
for the review:

• nearby place search,

• application’s theme should be cafes or similar.

For comparison the most five inspiring and distinguish applications were
chosen. The following lines briefly describe one of each, their target audience,
the advantages and drawbacks.

2.3.1 Gastromapa Lukáše Hejĺıka

Published in the first quarter of 2019 as a new application for exploring restau-
rants in the Czech Republic. The application’s speciality is that restaurants’
reviews are not done by users but by gastronomy specialist Lukáš Hejĺık.

As soon as the application launches, it displays nearby restaurants. Each
establishment is shown as a card with important information such as an ad-
dress, distance, and type of restaurant. The main card’s focus is a large photo
which should catch the user’s eye to take a look.

After the card is clicked, the user is presented with the restaurant’s detail,
where more information such as opening hours, map location and comprehen-
sive review by L. Hejĺık can be found. The navigation to the chosen restaurant
can be launched from this view as well. The target audience is anyone who
seeks to visit unknown places and possess the opportunity to taste great food.

2.3.1.1 The Advantages

• Design is fresh, clean and users can immediately see relevant content.

• Thanks to clean design the application is easy to use and understand.

• The whole application behaves smoothly without any noticeable freez-
ing.

36

2.3. Existing Alternatives

Figure 2.2: Gastromapa L. Hejĺıka [26].

2.3.1.2 The Drawbacks

• The navigation button has a blackish colour that after scrolling disap-
pears. If the restaurant has a darker photo, the button is hard to notice.

• When coming back to the main screen, loading of the list is started
again, and the previous search is lost.

• Detail screen on entry is fully covered with restaurant photo. From
a design point of view, it is a nice touch, but users must scroll to see
any information.

2.3.2 Pivńı Deńıček

Application Pivńı deńıček is used to search nearby pubs in the Czech Republic
and their beer offer. The content is created by the community, including served
beer and their prices. The application offers searching nearby restaurants
filtered by beer brands. Each user can view a history of places they have
visited. Furthermore they can mark any pub as their favourite and share
their experience.

2.3.2.1 The Advantages

• Pubs are displayed as a list or points on the map.

• The served brands are displayed directly within the list, so it is not
needed to visit details.

37

2. Coffee Time Analysis

Figure 2.3: Pivńı deńıček [27]. Figure 2.4: Restu [28].

• The registration is optional for searching. If users want to contribute,
they have to have an account.

2.3.2.2 The Drawbacks

• A registration can be done through Facebook or e-mail. With e-mail
registration, the user is forced to leave the application and is redirected
to the web page where registration is finished.

• As was said, content is created by the community. During the research,
it was clear that many information is outdated or misleading.

• Overall the application design looks outdated and does not meet current,
modern, trends.

• On the primary screen, there are displayed user’s stats and the most
three nearest pubs. The drawback is that on the larger screens, there is
plenty of unused space.

• Each restaurant displays only one brand of drafted beer. Nowadays,
many pubs offer more than one brand.

• The side menu can be opened only with the hamburger icon but not
with slide to the right gesture.

38

2.3. Existing Alternatives

2.3.3 Restu

Restu is another gastronomy guide focused on restaurants in the Czech Repub-
lic. Through this application reservations can be made. Application has many
unique functionalities. For example “discover” section which shows attractive
offers or the best cafe in the city. Another functionality is the “check-in”
button which gives credits to the users if they eat at the given restaurant.
Target audience is everyone who searches for new places where to eat and
make a reservation.

2.3.3.1 The Advantages

• Clean and well-structured layout.

• Opt-in registration.

2.3.3.2 The Drawbacks

• When a restaurant card is selected, window of the restaurant pops up
but at the bottom cannot be hidden again.

• To review the restaurant, the user has to be signed in and the restaurant
must be open. If the restaurant is closed, the review cannot be added.

2.3.4 Zomato

Zomato started as a web-based restaurant browser. Application has its own
database of establishments and its content is edited by users. On the primary
screen there are displayed “week hits”, top restaurants, or “happy hours”.
Restaurants are divided into categories such as “Nightlife” or “Daily menu”
which helps for navigation within the application. Target audience is anyone
who wants to try new restaurants or someone who is looking for action offers.

2.3.4.1 The Advantages

• Well solved filtering. The filter setting is intuitive and it displays the most
used filters.

• Advanced options for filtering with tags such as “dog friendly” or “Wi-Fi
free”.

• Friendships with other users. If another user added a review, a notifica-
tion is received.

39

2. Coffee Time Analysis

Figure 2.5: Zomato [29]. Figure 2.6: Google Maps [30].

2.3.4.2 The Drawbacks

• The primary screen is cluttered with many information at one place.

• Nearby restaurants list is hidden below “favourites restaurants” and
“month collections”.

• The full-text search in some circumstances behaves unexpectedly. For
example, to search for restaurants which offer “Asian food” user has to
type exactly “asian” but not “asia”.

• Readability of some text is worsened by light background and greyish
text colour. In some scenarios, it is hard to read the content.

2.3.5 Google Maps

Popular worldwide map service by Google. One of the world’s biggest database
of places, including restaurants. Google maps for each business, establishment
displays additional info such as user reviews, photos, prices. Within An-
droid system is already installed. Nearby places can be searched directly from
the map.

2.3.5.1 The Advantages

• Well known and tested user interface which is embedded often to another
application.

• No registration is required.

40

2.4. Application Prototype

• A place detail includes plenty of useful information.

• GPS navigation with one click.

2.3.5.2 The Drawbacks

• Not domain focused, that means it does not offer focused content on
particular businesses such as restaurants.

• No advanced filtering and result sorting.

In conclusion, five applications were analysed on the Android system.
Three apps are focused mainly on gastronomy. Another one specialises on
beer. Last one, Google maps is one of the most universal and robust. Each
application has its own unique UI and overall user experience differs. In Ta-
ble 2.1 the targeted audience and user interface usefulness is summarised.

Application Targeted audience Overall UI
Gastromapa Lukáše hejĺıka Everyone Great
Pivńı deńıček Beer drinkers Bad
Restu Everyone Bad
Zomato Everyone Good
Google Everyone Great but complex

Table 2.1: Analysed Applications User Interface Summarization.

2.4 Application Prototype

One crucial step during the creation of software product is prototyping. Proto-
types can help introduce different design ideas, can be easily tested, evaluated
and changed. Prototyping techniques differ, but the desired output is the
same – provide visually concept of the final product. Prototypes do not help
only visually, but they are part of user experience research and can find out
which parts of the user interface should be changed before it is implemented.

There is no correct definition of how prototypes should look like and how
they should be created. The prototype can be made from the form of a simple
sketch on paper to sophisticated pixel-perfect application [31]. Prototypes can
be created multiple times during the whole creation process.

In the early stages, Low Fidelity (Lo-Fi) prototype is typically created.
With Lo-Fi, the application can be evaluated and user-tested if desired de-
sign concept is usable and understandable for users. When Lo-Fi is finalised,
the next prototype – High Fidelity (Hi-Fi) is created. Hi-Fi comes out from
Lo-Fi and should behave as fully functional application on the target platform.
With Hi-Fi once again, the application is evaluated with users and tested.

41

2. Coffee Time Analysis

To be more precise, according to [31], Lo-Fi prototype is a way to translate
high-level concepts into tangible and testable artefacts. The most significant
functionality of Lo-Fi prototypes is to check and test the functionality of
the product before visual appearance. Advantage of Lo-Fi is that it is in-
expensive, fast way to propose prototype. On the other hand, Lo-Fi lacks
complexity and cannot supply advanced interactivity. Lo-Fi should be used
to quickly create a prototype and get user feedback in the early stages of
the creation process.

After the Lo-Fi prototype, the Hi-Fi is created. This prototype looks and
feels as similar as possible to the actually built application. Hi-Fi should be
created on the targeted platform and behave as it is the final product. The goal
is to have more complex UI interactivity and have better feedback from user
testing. Thanks to the fact that prototype looks like a real application, user
behaves more naturally and can give more precise, a meaningful feedback than
with Lo-Fi prototype.

In conclusion, Lo-Fi prototypes are tested only internally with a small
number of users and can be iterated more often and faster. The Hi-Fi should
be created and tested after Lo-Fi prototype was accepted, because the Hi-Fi
is more expensive to create. On the other hand, Hi-Fi gives better feedback
from user testing, thus provides more valuable information.

2.4.1 Coffee Time Prototype

After the specification was written, next step was to create a task list. The task
list is written from the user’s perspective – each task describe an user’s action.
It should tackle all important functionalities and even obvious one such as “add
record” or “remove record”.

Because the task list can become very long, it is usually transformed into
a task graph. The task graph does not have any specific definition, but it should
contain every task along with each available screen within the application.
Coffee Time’s task graph is listed in Figure 2.7. The blue rectangles are screens
and the yellow ones are any task what users can do. The application’s entry
point is highlighted with bold blue rectangle.

A note about User Interface Design (MI-NUR) subject which was held
during the winter semester of the academic year of 2019/2020. The Coffee
Time prototype was crate as a semester work. Sincere gratitude to classmates
Bc. Ondřej John and Bc. Vojtěch Polcar for their co-working on the proto-
type. Furthermore, much appreciation to Ing. Jiř́ı Hunka for feedback and
guidance during the work. The classmates helped during prototyping, propos-
ing functionalities, researching and testing. The High-Fidelity prototype was
implemented only by the thesis author.

42

2.4. Application Prototype

Figure 2.7: Coffee Time Task Graph.

2.4.1.1 Low Fidelity Prototype

As a task graph was defined, the Lo-Fi prototype could be made. Although
the application is considered as multi-platform application, the prototype was
focused on Android, and its Material design [32]. The inspiration was taken
from typical Material layouts, such as AppBar with title and subsequent ac-
tions or tabs the bottom of the screen.

First of all, the rough prototype was drawn on paper. Its purpose was to
come up with some ideas and considered layout. After that, the Balsamiq [33]
prototyping software was used. The Balsamiq tries to mimic pencil and paper.
The prototype is created with a set of components which looks like they are
drawn by hand. The most important feature was the ability to create deep
links between screens or components. With a few clicks, the prototype was
able to handle actions such as the open application menu or navigate to detail.
With that tool, the clickable prototype focused on essential app’s features was
created. As a result, the PDF was exported. The PDF is enclosed as part of
the thesis located at prototype/lofi.pdf. The portion of the result is shown
in Figure 2.8.

The result was tested with co-workers and closest author’s family members.
From the testing session, useful feedback was given, which is listed along with
short answers.

1. On the cafe list, what if the cafe has more tags than it can
display in the row. How to solve it?
The solution is to calculate free screen space and display portion of
available tags.

43

2. Coffee Time Analysis

Figure 2.8: Lo-Fi Prototype. Cafe List (Left) and Detail Screen (Right).

2. Research more on how to solve user’s reviews.
As a considered data source is Google Places API, it was acknowledged
that it is not possible to add custom reviews through their API.

3. Navigation and contact buttons are too small.
Taken into account during implementation.

4. If the tag in detail is clicked, the cafe list with the given tag is
shown.
Taken into account as a valuable tip.

5. Focus on usability with mobile devices, mainly when the user’s
walk or are in public transport.
The usability should be more tested.

6. Focus more to provide understandable information about what
tag is and how to use it.
Information and usability should be more revisited.

2.4.1.2 High Fidelity Prototype

The Hi-Fi prototype was created as Flutter application. Because of that, in
the future, the already written code could be reused. The aim was to create

44

2.4. Application Prototype

a fully functional prototype for Android devices. As was said earlier in this
chapter, the aim of Hi-Fi is to provide an application so it behaves as real
one, which is mainly focused on user interface interaction. That means that
the application does not have any real communication with back-end services.
For Coffee Time there was prepared local JSON data source with randomly
generated cafe names and their data. Besides that, a few, real one cafes were
added to be less general and more known for potential testers. The Hi-Fi
focused on all earlier described use cases. The cafe list screen and cafe’s de-
tail screen is shown in Figure 2.9. The prototype’s source code can be found at
https://github.com/petrnymsa/coffee-time/releases/tag/prototype [34].

Figure 2.9: Hi-Fi Prototype. Cafe List (left) and Detail Screen (right).

2.4.2 Nielsen Heuristic

Nielsen Heuristic [35] is a usability engineering method for finding the usabil-
ity problems in a user interface design so that they can be attended to as
a part of an iterative design process. The heuristic evaluation involves a small
set of rules and these rules should be judged by a small group of “evaluators”.

Following lines describe one of each of ten rules. Each description is taken
from article [35].

1. Visibility of system status – The system should always keep users
informed about what is going on through appropriate feedback within
a reasonable time.

45

2. Coffee Time Analysis

2. Match between system and the real world – The system should
speak the users’ language, with words, phrases and concepts familiar to
the user, rather than system-oriented terms. Follow real-world conven-
tions, making information appear in a natural and logical order.

3. User control and freedom – Users often choose system functions
by mistake and will need a clearly marked ”emergency exit” to leave
the unwanted state without having to go through an extended dialogue.
Support undo and redo.

4. Consistency and standards – Users should not have to wonder whether
different words, situations, or actions mean the same thing.

5. Error prevention – Even better than good error messages is a careful
design which prevents a problem from occurring in the first place. Either
eliminate error-prone conditions or check for them and present users with
a confirmation option before they commit to the action.

6. Recognition rather than recall – Minimize the user’s memory load
by making objects, actions, and options visible. The user should not
have to remember information from one part of the dialogue to another.
Instructions for the use of the system should be visible or easily retriev-
able whenever appropriate.

7. Flexibility and efficiency of use – Accelerators — unseen by the
novice user — may often speed up the interaction for the expert user
such that the system can cater to both inexperienced and experienced
users. Allow users to tailor frequent actions.

8. Aesthetic and minimalist design – Dialogues should not contain
information which is irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the relevant units of information
and diminishes their relative visibility.

9. Help users recognise, diagnose, and recover from errors – Error
messages should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.

10. Help and documentation – Even though it is better if the system can
be used without documentation, it may be necessary to provide help and
documentation. Any such information should be easy to search, focused
on the user’s task, list concrete steps to be carried out, and not be too
large.

46

2.4. Application Prototype

2.4.2.1 Coffee Time Evaluation

During MI-NUR lecture, the above-described heuristic was evaluated against
Hi-Fi prototype. Each screen was taken individually and judged with all rules.
Note that only found rule violations are described for each screen.

• Cafe list

– Rule #2: Some tags icons are hard to understand, and their mean-
ing can be easily misunderstood.

– Rule #8: When filtering is on, it occupies nearly one-third of the
screen.

– Rule #9: There is no visible error handling for missing internet
connection or location services.

• Favourites cafes

– Rule #2: Same as Cafe list.
– Rule #3: When a favourite cafe is set off, there is no indication

that action is permanent without the ability to undoing it.

• Detail screen

– Rule #2: Same as Cafe list.
– Rule #6: It is not clear how to start navigation. This functionality

is provided by the button to the right of the cafe’s address. There
should be a more visible indication that this action is possible.

• Map screen – No rules violation found.

• Filter screen – The only violation is the same as within Cafe list about
icons.

Once the violations are found, they should be prioritised. The priority in-
dicates how serious violation is. The more severe violation, the more unusable
is it for users. The priorities are:

• 1 – negligible,

• 2 – visible issue,

• 3 – the usability can suffer,

• 4 – frustrating experience,

• 5 – User is not able to use application at all.

47

2. Coffee Time Analysis

The most violated rule is number #2 with tag icons. With this issue
suffer most of the screen, because icons are used very often. This issue has
priority 3. The second issue with favourites cafes (priority 2) can be solved, for
example, with small notification with the undo button. The prototype does
not have implemented any kind of error handling regarding internet connection
or location services (priority 2).

2.4.3 User Testing

The prototype was tested with seven testers. An important note is that four
testers are people who have “IT knowledge” and are classmates from uni-
versity. It was assumed that their understanding could vary against other
testers.

The process of testing was as follows – application was launched on a real
device. Each testing was recorded. The recording was essential to know what
testers thought, how they used the application and behaved. Each user had
the same set of use case scenarios, and the supervisor did not interact with
tester either provide any advice to testers how to proceed. There was only
one exception when the supervisor was allowed to advise, and that was when
tester did not know how to proceed – he became “totally lost”. This situation
could indicate two different things. First, from the test case scenario, it was
not particularly evident what tester should do. Secondly, the test case was
understandable, but the application interface not. The second problem is
more important for the testing and the results. The test case scenario can be
rewritten or with the help of supervisor fully explained.

The description of test case scenarios, along with established issues, fol-
lows. Each test case has an introduction for users in which situation they are.
Next contains test case goal, expected user behaviour and actual behaviour.
Note that, the actual behaviour is not part of this summarization. Instead of,
the found issues are summarised.

2.4.3.1 Test Case 1: Favourite Cafe

An user visits his favourite cafe and he would like to add this Cafe to his
favourite list.

• Goal – Add Cafe to favourites.

• Expected Behaviour

1. An user is located on the cafe list screen. The targeted cafe is
displayed.

2. An user clicks on the heart icon located in top right corner of the
cafe’s tile.

48

2.4. Application Prototype

3. Alternative flow: An user is located on detail screen and taps heart
icon located on the top of the screen.

• Found Issues – The testers went through a test case without any issues.

2.4.3.2 Test Case 2: Start Navigation to Selected Cafe

An user has selected cafe and wants to navigation to the cafe’s location.

• Goal – Start navigation.

• Expected Behaviour

1. An user is located on the cafe list screen. The targeted cafe is
displayed.

2. An user clicks on the navigation icon located in top left corner of
the cafe’s tile.

3. Alternative flow: An user is located on the detail screen and taps
navigation icon located to the right of address.

• Found Issues

1. Three different icons used to start navigation. Icon is different on
the cafe list from icon within detail screen.

2. In the detail screen, it is not clear that icon can start navigation.

• Proposed Solution

1. Use same icon everywhere.
2. The same problem stated in the Nielsen heuristic evaluation. The icon

should be highlighted. Can be added “elevation” [36] – shadow un-
der the component to provide depth.

2.4.3.3 Test Case 3: Filter Cafes with Tags

An user is interested in cafes where they offer beside the coffee has also beer.

• Goal – Filter Cafes that has “beer” tag.

• Expected Behaviour

1. On the cafe list screen, an user selects filter icon to open filter
screen.

2. Within filter screen, an user selects to filter by tags and choose
“beer”.

3. User confirms the filter.

49

2. Coffee Time Analysis

• Found Issues

1. “Filter screen is confusing. Confirmation is useless.”
2. “Do not open filter screen, just open some modal window to selects

tags”.
3. The filter icon is unclear.
4. “If the user is located on the detail screen, clicking on the tag icon

should set the filter.”

• Proposed Solution

1. The filter icon is standardised icon.
2. Clicking on tag should set the filter.

2.4.3.4 Test Case 4: Suggest New Tag

An user visits regularly cafe which is friendly to dog owners. The user found
out that this information is missing in the application.

• Goal – The user suggests tag “dog friendly” or similar for the cafe.

• Expected Behaviour

1. An user selects cafe and opens detail screen.
2. An user clicks on “suggest change”.
3. An user adds tag “dog friendly” and confirms suggestion.

• Found Issues – No issues found.

2.4.3.5 Test Case 5: Tag review

An user visits regularly cafe which has mistaken information about “available
parking”. He would like to inform about this wrong tag.

• Goal – The user should review “parking” with dislike.

• Expected Behaviour

1. An user selects cafe and opens detail screen.
2. An user clicks on “suggest change”.
3. An user reviews “parking” with dislikes and confirms suggestion.

• Found Issues – No issues found.

50

2.5. Back-end Analysis

2.4.3.6 Test Case 6: Most popular nearby cafe

An user wants find the most popular cafe around him.

• Goal – The user change ordering from “by distance” to “by popularity”.

• Expected Behaviour

1. An user opens filter screen.
2. An user changes to ordering by popularity.
3. An user confirms filter.

• Found Issues – No issues found.

From testers was obtained beneficial feedback which helps to tune user
interface for better usability. Besides feedback from individual test cases,
a few additional tips were given.

• Cafe’s name on tile can be harder to read with the contrasting back-
ground image. Can be solved with making photo darker.

• Landscape mode is not working. During prototype it wasn’t considered.

• The map marker could contain more information than cafe’s name.

All feedback was gathered and was taken into account during the next
phase of implementation.

2.5 Back-end Analysis

In this section, the technical analysis of available technologies for back-end
services is discussed. The focus is only on the back-end part. The technical
detail of the mobile application is covered in the next Chapter 3.

One vital part of the whole architecture is Google Places API (GPA) [37].
This API offers access to Google Maps services, searching places, place details,
place photos and more. The API has five services [37].

• Place search – a list of places based on the user’s location or search
query.

• Place details – returns more detail information about a specific place.

• Place photos – provides access to place-related photos.

• Place autocomplete – automatically fills in the name or address of a place.

• Query autocomplete – provides a query prediction service for text-based
geographic searches.

To access these services, the Google API Key must be obtained [38].

51

2. Coffee Time Analysis

2.5.1 Google Places API

The Google Places API returns plenty of information about each place, but
the application uses an only subset of available information. The application
makes usage of four available services – Find a place, Nearby search, Place
detail and Place photos. Some parameters are the same for each service, and
the output of each service is similar. Each place has several fields such as name,
address, location, rating and much more. However, not every field is used
in the application, and it is not necessary to obtain these fields in the response.
On top of that, each field is included in the pricing category. That means
that some of the fields are more expensive to obtain than others [39]. It was
important to analyse which fields are essential to get before the API model
could be created. Following lines summarise each API usage, its parameters,
fields and expected output.

2.5.1.1 Find Place

The purpose of this service is to find places based on the text-based query or
custom location. Table 2.2 describes each used parameter. Table 2.3 describes
each expected field in the response.

Parameter Usage
key API key
input search query
inputtype set to textquery
language language code
locationbias set to circle:radius@lat,lng.

Table 2.2: Find Place Parameters.

2.5.1.2 Nearby Search

Nearby Search allows finding nearby places around the given location. In con-
trast with Find place, the Nearby Search returns all fields available to place
and can return up to 60 places. The result is paginated up to three pages
with 20 places in each page. If the result has another page, the pagetoken is
included in the response. As before Table 2.4 shows service parameters.

2.5.1.3 Place Details

Each place has additional information accessible through place details. Ta-
ble 2.5 describes each parameter used, and Table 2.3 describes fields which
should be returned in the response.

52

2.5. Back-end Analysis

Field Description
place id unique place identification
name place’s name
icon place’s icon
geometry geolocated latitude,longitude
formatted address human-readable address
types list of place categories such as “cafe”
photos contains photo width, height and photo reference
opening hours contains only open now. For full information, detail

request is required
price level value from 0 to 4
rating value from 1.0 to 5.0

Table 2.3: Find Place Fields.

Parameter Usage
key API key
location latitude, longtitude
radius circular radius in meters, max 50 000 m
language language code
opennow place is currently open; if place does not have this field, it is

omitted from results
type place type, always set to cafe
pagetoken token for next page

Table 2.4: Nearby Search Parameters.

Parameter Usage
key API key
place id place’s id
language language code

Table 2.5: Place Details Parameters.

Parameter Usage
international phone number phone number in international format
opening hours opening times and if is currently open
photos additional up to ten photos
review up to five user reviews
utc offset offset in minutes from UTC
website place’s website

Table 2.6: Place Details Fields.

53

2. Coffee Time Analysis

Note that opening hours contains localised weekday text. If a place is al-
ways open, the close field within opening hours is missing and open field has
day equal to zero and time equal to “0000”.

2.5.1.4 The API Response Format

The GPA can respond with JSON or XML format. The JSON format was
chosen as a more typically used and standard format for REST API and mobile
communication [40].

{
"html_attributions": [],
"results": [

{
"business_status": "OPERATIONAL",
"id": "0c19db184d6705e945686f3d83ae02a3fbf23068",
"name": "JS Café",
"opening_hours": {

"open_now": true
},

}
],
"status": "OK"

}

Listing 18: Nearby Search Example Output (Shortened).

The Find Place, Nearby Search and Place Details has similar response for-
mat where <status> indicates response code because GPA for each request
always responds with HTTP status code 200 OK. The status field can have sev-
eral values such as OK for successful request, ZERO_RESULTS for empty results
or INVALID_REQUEST for general invalid request. Each service has different
result field name – candidates for Find Place, results for Nearby Search
and result for Place Details. An example output is shown in Listing 18.

2.5.1.5 Place Photos

Each place can have photos. The response from Find Place or Nearby Search
contains photo_reference along with width and height of the photo. For ob-
taining actual photo itself, the Place Photos endpoint must be called. The end-
point accepts as always the key (API key) and photo_reference. The re-
sult can be altered with parameters for maximal width or height. Returns
byte-encoded image if the request was successful otherwise HTTP status code
400 Bad Request or 403 Forbidden if the quota limit was reached.

54

2.5. Back-end Analysis

Although Google Places API returns plenty of information about each
place, one added benefit of the Coffee Time application is tags suggested bu
the users. This requirement cannot be fulfilled only with Places API, so there
is a requirement for another, custom, API.

2.5.2 Coffee Time API

The Coffee Time API (CTA) will be used for two main functionalities. First of
all, it will provide access to Google Places API and secondly, it will be used for
getting assigned tags for cafes. While it is possible to use GPA directly from
the mobile application (client), it would lead to the need for another request
to obtain the cafe’s tags and another possible required custom information.
Hence, if custom API is used as a proxy to GPA, with one request to this
API, the response can be modified with additional data and returned at once.
Figure 2.10 shows such a communication.

Storage
Coffee Time API

Google
Places
API

Mobile Client

1.

2.
3.

4.

5.

Figure 2.10: Client and API Communication Flow.

1. HTTP request made by client to Coffee Time API.

2. The request is processed and redirected to Google Places API.

3. The response from Google Places API is obtained.

4. If appropriate the query to storage is issued, and response is enhanced
with obtained data.

5. The final result is returned to the client.

55

2. Coffee Time Analysis

Figure 2.11: Cafe’s Tag and Cafe Relation.

2.5.2.1 The Cafe Tags

The set of available tags is predefined, with the requirement to be able to
change it any time without changes within the client or in the API. Each tag
has a title and an icon and can be translated into another language. This
definition and requirement for no changes within the client imply that used
icon has to be part of tag’s definition in the CTA. To sum up, each tag is
an entity with a unique title, icon and translation.

As was said earlier in this chapter, each cafe can have assigned tags. Each
assigned tag is reviewed by users with the concept of “likes” and “dislikes”.
This requirement implies that for each cafe is needed to be known assigned
tags and their reviews. This relation is shown in Figure 2.11.

2.5.2.2 Domain Model

Within detail screen, additional information is displayed, which can be ob-
tained from the Place Details call. This concludes that the application’s cafe
domain entity is split into two entities - Cafe and Cafe Detail entities. The do-
main entity graph is listed in Figure 2.12 showing all entities related to CTA
response.

2.5.3 The Selection of the Right Technology

The technology which will be used to build the API should fulfil the following
requirements:

• The access to API should be secured,

• The back-end service should be simply scaled up when needed,

• The maintenance cost should be kept low.

There are many technologies which can be used to achieve this require-
ments. One of the ways is implementing API from the ground with tech-
nologies such as .NET Core and its ASP .NET Core API. Then the API can

56

2.5. Back-end Analysis

Figure 2.12: Coffee Time Domain Model.

be deployed to service hosting providers such as Microsoft Azure or through
technologies such as Docker containers and Kubernetes [41] as container or-
chestration.

Another way is to use serverless services. The serverless is approach where
“The cloud provider is responsible for executing a piece of code by dynamically
allocating the resources. And only charging for the amount of resources used
to run the code. The code is typically run inside stateless containers that can
be triggered by a variety of events including http requests, database events,
queuing services, monitoring alerts, file uploads, scheduled events (cron jobs),
etc.” [42]. This approach is sometimes called as Functions as a Service (FaaS
in short). The major providers are Amazon Web Services and its Lambda
Functions, Microsoft Azure Functions or Cloud Functions (Firebase Functions)
by Google.

The Firebase by Google is collection of services which helps to build mobile
application faster, improve application quality and grow business. The Fire-
base offer services as real-time NoSQL database, application usage analytics,
A/B user testing, cloud web hosting or Cloud Functions and much more.
Within one service, the storage for data, the API as functions and security
can be made.

2.5.3.1 Cloud Firestore

Cloud Firestore is a flexible, scalable database for mobile, web, and server de-
velopment. It keeps data in sync across client apps through realtime listeners
and offers offline support for mobile and web. The Cloud Firestore uses NoSQL
data model. The data are stored in documents that contain fields mapping

57

2. Coffee Time Analysis

to values. These documents are stored in collections, which are containers for
documents that are used to organize data. Documents support many differ-
ent data types, from simple strings and numbers, to complex, nested objects.
Documents can include subcollections and build hierarchical data structures
that scale as database grows [43].

2.5.3.2 Cloud Functions

Cloud Functions for Firebase is a serverless framework that lets automatically
run backend code in response to events triggered by Firebase and HTTPS
requests. After function is deployed, Google’s servers begin to manage the
function immediately. The function can be used directly with an HTTP re-
quest. Each function runs in isolation, in its own environment with its own
configuration and are scaled accordingly to usage load [44].

2.5.3.3 Firebase Authentication

Firebase Auth offers service to secure application with OAuth 2.0 standard [45].
It automatically integrates with identity providers such as Google, Microsoft,
Facebook and more. Besides that it offers standard authentication through
user’s email or phone [46] and anonymous authentication where for each user
randomly generated identifier is used. The service guarantees that for each
user, as long they use the same device, the identifier stays the same.

The Cloud Functions can be used to build Coffee Time API. The Cloud Fire-
store as a database (storage) and API can be secured through Firebase Au-
thentication. On top of that, Firebase offers services for analysis, logging and
user testing. The Firebase has “pay as you go” model and offers a free plan
(Spark plan). The Spark plan offers up to 1 GiB data storage, 20 thousands
of writes and 50 thousand of document reads per day. The Cloud Functions
can be invoked 125 thousand times per month. This pricing perfectly suits
the requirements and can be used freely to build Coffee Time application.
If the application becomes popular and frequently used, the actual price of
Firebase services is calculated by current usage and services can be scaled up
accordingly. How the Firebase services are used in detail is more described
in Chapter 3.

2.6 The Conclusion

In this chapter, the considered application Coffee Time was introduced.
The analysis of existing alternatives was made to obtain inspiration for how
each application behaves. The prototype was created to propose user interface
and tested it with users. In the end, the analysis of Coffee Time API was made
along with analysis of chosen technology to build this API.

58

Chapter 3
Implementation

When the Coffee Time specification was created and the prototype was tested,
the implementation itself could begin. In this chapter, the implementation de-
tails are covered. In the beginning, the proposed architecture of the applica-
tion is introduced and explained. Next section describes how the Coffee Time
API is designed and implemented. This section also covers which framework
for creating REST API was chosen and how it can be connected to Firebase
services. Detailed section of the mobile application implementation follows.
In this section, used techniques and packages are described to achieve desired
functionality.

3.1 Clean Architecture

In order to have easy to write, maintainable and testable code, some overall
architecture should be considered. The architecture should follow these rules:

1. Independence of UI from application business logic.

2. The business logic has to be testable without any dependent require-
ments such as server connections.

3. Interchangeable UI. The UI part can be changed without affecting the rest
of the system.

4. Independence of business logic from the infrastructure – the data source
can be changed without affecting business logic.

There are several attempts and approaches on how to design such archi-
tecture [47]. The inspiration for chosen architecture comes from Clean Archi-
tecture, initially proposed by Bob C. Martin [48]. In the basic form the Clean
Architecture (fig. 3.1) consists of four layers organised as circles. Architec-
ture defines dependency rule where each layer should be dependent only on

59

3. Implementation

Figure 3.1: Clean Architecture Defined By B.C. Martin [47].

the inner circles. Accordingly to Bob C. Martin [47], layers can be described
as:

Entities encapsulate Enterprise-wide business rules. These enti-
ties, which can be simple objects or hierarchical structure of objects
are the least likely to change when something external changes.
Use Cases are application-specific business rules. They encapsu-
late all of the use cases of the system. These use cases orchestrate
the flow of data to and from the entities and direct those entities
to use their enterprise-wide business rules to achieve the goals of
the use case. Changes within the use case do not affect entities and
similarly, changes of outer layers (such as interchanging database
provider) do not affect the use cases.
Interface Adapters converts data from the format most conve-
nient for the use cases and entities to the format most convenient
for some external agency such as database or API. The applica-
tion presentation (UI) should be here. Data models in this layer
most likely consist only of data that are passed down to the use
cases and then back from use cases to the view. This layer is also
responsible for converting any data from external forms into an
internal form used by the use cases.
Frameworks and Driver contain any external frameworks and
tools. This layer typically exposes interfaces to glue the external
framework wit the rest of the application.

60

3.2. Coffee Time API

This architecture was chosen for its simplicity of dependencies, easy
testability and extendability.

3.2 Coffee Time API

The Coffee Time API is served through Firebase Cloud Functions services.
Each function can run the backend code in response to events triggered by
Firebase features and HTTPS requests. Functions can be written with
JavaScript or Typescript language. For implementation, the Typescript was
chosen due to the safer typing system, and due to the fact, that author has
more experience with Typescript than with plain JavaScript.

Functions are written under Node.js [49], and every function that is ex-
ported is considered as “Cloud function” and can be accessed through HTTPS
request. This can be used to build fully functional REST API. For the im-
plementation, Express.js framework [50] was selected as popular and easy to
use solution. Developers define routes, which HTTP method can be used and
how the request should be processed. Express.js has a simple yet powerful
mechanism of middlewares, where each request can be pre-processed before
sending to the next processing. For example, it can be used to check if the user
is authorised to make the request. With this setup, nothing prevented to cre-
ate Coffee Time API. Furthermore, as Express.js allows to define REST API,
only one cloud function can be exported – “the API” function. All requests
are processed through this function. However, before implementation itself, it
had to be defined what API will offer and how it can be consumed.

3.2.1 The API Endpoints

The API has endpoints divided into three categories – places, tags and photos.
As a client is considered to be multilingual, the API is too. The Places API
accepts, as was described earlier, language parameter to specify how the re-
sponse should be localised. The API is designed with language parameter as
a mandatory part of the URL for places related requests. The tags category
has endpoints for obtaining and manipulating tags. Lastly, photo category
gives access to downloading the place’s photo. Every response coming from
GPA which returns places are modified such that each “place” entry contains
additional tags field which is an array of the tag model.

Table 3.1 describes each API endpoint and its usage. Mandatory parame-
ters within the URL are highlighted as <param>. Each URL is shown without
prefix http[s]://domain/api (the hosting URL and /api suffix).

Table 3.2 describes nearby parameter. Note that, if radius is omitted, the
results are sorted by Google’s ranking – “Ranking will favor prominent places
within the specified area. Prominence can be affected by a place’s ranking in
Google’s index, global popularity, and other factors” [51] otherwise the results
are sorted by distance.

61

3. Implementation

URL HTTP Method Description
<language>/nearby?parameters GET Get nearby cafes
<language>/find?parameters GET Find cafes within

area based on text
query

<language>/detail/<place_id> GET Place’s details of
given place_id

<language>/basic/<place_id> GET Returns basic
place information

Table 3.1: Places Endpoints.

Parameter Required Description
location=lat,lng Yes Location to search, where lat=latitude,

lng=longitude
radius No If omitted, the results is sorted by

prominence (see below), otherwise by
distance

opennow No If present returns only opened cafes
pagetoken No If present, next page returned

Table 3.2: Nearby Parameters.

Parameter Required Description
input Yes Search query to use
location=lat,lng No Search within circular area defined by

radius
radius No Circular radius in meters

Table 3.3: Find Parameters.

Table 3.3 describes find parameters. The location=lan,lng and radius
must be provided both if used.

Table 3.4 describes all endpoints related to tags. The POST request
to /tags/<place_id> should have a body with array of TagUpdate model.
The example is listed in listing 19 where id contains tag id and change con-
tains value of like or dislike which corresponds with increasing (decreasing)
tag’s score.

3.2.2 Express.js Pipeline

Express.js framework has a powerful and configurable way how to process
incoming request. Every request can be processed through functions, called

62

3.2. Coffee Time API

URL HTTP Method Description
/tags GET Get all defined tags
/tags/<place_id> GET Get all assigned tags to given

place_id
/tags/<place_id> POST Updates tag’s review for given

place_id

Table 3.4: Tags Endpoints.

[
{

"id": "tag",
"change": "like|dislike"

}
]

Listing 19: Tag Update Content Example.

middlewares, before sent to a router. The router is a set of functions which
maps part of URL with HTTP method to trigger response to the incoming
request. Together it creates a flexible way of developing any form of a web-
server or in case of Coffee Time API a REST API.

Middleware functions can execute any code, make changes to the request
(or to the response), end the request-response cycle or call next middle-
ware [52]. The function accepts three parameters – req, res and next. Req
is a request object containing all information related to the incoming request.
The res is a response object which can be used to alter the response, and next
is the callback function to trigger next middleware. In case of the Coffee Time
API, three middlewares are used to process every incoming request.

First middleware checks and parses request body (if any provided) in JSON
format. JSON format was chosen as a primary format for communication
with Google Places API, the CTA forces JSON format to every request which
contains the body. Next middleware logs each incoming request to the cloud
functions. Each log message contains issued HTTP method, requested URL
and sent body if present. Last middleware authorises incoming request against
Firebase Authentication Service.

3.2.2.1 Authorisation Middleware

Each request to the API has to be authorised against Firebase Authentication
services. The authorisation process uses a JSON Web Token (JWT) open
standard [53]. Each request has to include Authorisation header with “Bearer
token” obtained earlier from Firebase Authentication.

63

3. Implementation

If authorisation header is missing, the request is ended, and response with
status code HTTP 403 Forbidden is sent back. In case the token is provided,
it is checked against Firebase Authentication service. If the token is valid, the
user information is obtained, and the request is sent to next middleware. If
token validation failed, response with status code HTTP 401 Unauthorized is
sent. The implementation of this middleware is shown at Listing 20.

app.use(async (req, res, next) => {
if (!req.headers.authorization ||
!req.headers.authorization.startsWith('Bearer ')) {
res.status(403).send('Unauthorized - No token provided');
return;

}
const idToken = req.headers.authorization.split('Bearer ')[1];
try {
const decodedIdToken = await admin.auth().verifyIdToken(idToken);
req.user = decodedIdToken;
next();

} catch (e) {
res.status(401).send('Unauthorized - Invalid token');

}
});

Listing 20: Authorisation Middleware.

3.2.3 Routing

When every middleware processed a request, the routing takes its place. Rout-
ing defines which function should be called to a particular URL along with
the HTTP method. For example

app.get('/', (req,res) => res.send('Hello world'));

will respond with “Hello World” to every GET request made to the home-
page. The router mechanism supports dynamic parameters – part of URL can
be dynamically matched to parameters. Moreover, each route can be divided
to sub-routers. This helps for code readability.

The dynamic parts are used for <language> parameter within places end-
points and for <id> whenever tag id, place id or photo id (reference) is needed.
CTA uses three sub-routers. One for places related requests, second for tag
related requests and third for all photo related requests.

64

3.2. Coffee Time API

3.2.3.1 Routing Implementation

The index.ts file contains initialisation of API, the definition of all middle-
wares and routing setup (Listing 21). For example, the places router uses
a dynamic parameter <language> which is parsed beforehand and added as
part of the request object.

// initialize app
app = express();
// ... configuration

// middlewares - skipped

// add language parameter to request
app.param('language', (req, res, next, value) => {
req.language = value;
next();

});
// Find places routes
app.use('/:language', placesRoute(tagsRepository));
// Tags routes
app.use('/tags', tagsRoute(tagsRepository));
// Photo
app.use('/photo', photosRoute());
// export api as cloud function
export const api = firebase.region('europe-west1')

.https.onRequest(app);

Listing 21: API Definition.

3.2.4 Integration with Firestore

In order to have access to Firestore storage and to authorise tokens, a Fire-
base Admin SDK is used to communicate with Firebase services. To be able
to use SDK, a google-services.json file has to be provided. This file con-
tains all required information to have access to the Firebase. Note that, this
file contains sensitive information and should not be committed to the ver-
sion control. Figure 3.2 shows how the request is processed and the relation
between Express.js modules with Firebase Admin SDK.

3.2.5 Functions Deployment

A developer can run functions locally and they can be served through localhost
while he or she developing them. Once the code is ready, it has to be deployed

65

3. Implementation

Figure 3.2: API Components.

to the Firebase Cloud Functions service. In order to do that, Firebase CLI
tooling and its deploy command have to be used. If any version exists already
in the Firebase, it is replaced by a new one.

Firebase Cloud Functions can be deployed to different physical areas such
as West Europe or US East. While the Coffee Time application is mainly
tested in the Czech Republic, West Europe was selected as the best option
because of its closest availability. One downside is that each location is part
of the API URL. This can add complexity to the client side if more locations
are used in case of globally available application.

3.3 Coffee Time

For Coffee Time purposes, the architecture was slightly simplified and is made
from three layers – domain, data and presentation. The domain layer encap-
sulates all domain entities and defines contracts for repositories. This layer
corresponds with “Entity” layer from Clean Architecture. Next, the Data
layer encapsulates all external communication such as API requests or loca-
tion services. This layer also defines data models which are passed down to
the repositories where data are processed and transformed to domain entities.
Data layer corresponds with Interface Adapters. The presentation layer is
responsible for describing the user interface and interacts with BLoC objects
where the business logic is encapsulated.

This section describes each layer – its implementation details and how it
is used with other layers.

3.3.1 Domain Layer

Domain Layer defines every entity used by the application, definition of repos-
itory contracts – repository interface definitions and application-wide excep-

66

3.3. Coffee Time

tions. Repository implementation resides in Data layer.
One of important requirements of the Presentation layer and overall Flut-

ter’s philosophy is immutability. Hence, the domain entities are designed as
immutable objects. Another requirement is object equality. By default, Dart
compare objects by identity – two objects are same instance, they are con-
sidered as identical (equal). In order to have fully functional application, it
is necessary to override default equality behaviour to comparison by object
properties.

3.3.1.1 Equatable Package

If the default equality behaviour has to be changed, the == operator
and hashCode getter have to be overridden [54]. Even with small classes, this
work becomes quickly tedious and can leads to unnecessary bugs for example
when some property is added and developer forgot to update these overrides.
Therefore in case of complex classes the amount of bugs only increases.

Equatable package [55] (developed by F. Angelov) was created to simplify
creating immutable classes with proper equality implementation. Class which
needs to implement equality has to extend Equatable base class provided
by the package. Then it is needed to override props getter where all class
properties are listed. With that setup, equatable package internally provides
proper equality comparison. This package is used to for all entities and classes
which needed proper equality implementation. An example of its usage is
shown in Listing 22, which is OpeningHours entity implementation.

3.3.1.2 Repositories Contracts

Domain Layer also defines repository contracts. The repository is used to as
connection between presentation layer and data layer. Coffee Time applica-
tion defines two repositories – CafeRepository and TagRepository. Within
domain layer, repositories are defined as abstract classes which define required
interface. The implementation itself, as was said earlier, is in the data layer.
The CafeRepository (Figure 3.3) has methods related to cafe places such as
finding nearby cafes or user’s favorited cafes.

TagRepository (Figure 3.4) has methods related to tags such as getting
all available tags or tags assigned to specific cafe.

In order to have convenient approach of handling exceptions raised within
repository (or from layers above) in repository layer, each method of repository
returns type Either<L,R>. Either is functional concept [56] of returning two
distinct values from one method. It is used to return desired return type in
case of success or error in case of exception. This approach helps to avoid
try - catch clauses in presentation layer and the code is more readable in
functional way.

67

3. Implementation

class OpeningHours extends Equatable {
final bool openNow;
final List<Period> periods;
final List<String> weekdayText;

OpeningHours({this.openNow,
this.periods, this.weekdayText});

OpeningHours copyWith(
{bool openNow,
List<Period> periods,
List<String> weekdayText}) {

return OpeningHours(
openNow: openNow ?? this.openNow,
periods: periods ?? this.periods,
weekdayText: weekdayText ?? this.weekdayText);

}
@override
List<Object> get props => [openNow, periods, weekdayText];

}

Listing 22: OpeningHour Entity with Equality.

Figure 3.3: Cafe Repository Interface.

The Either<L,R> is generic class, where L is left type and R is right type.
The returned value from such method can be used with when() or map()
methods to access actual returned value. Internally the Either<L,R> is im-
plemented with freezed package [57]. This package and its usage is more pre-
cisely described later, in the presentation layer. In this way, Either is strongly
typed. Similar approach could be use for example Tuple<T1,T2> type, but
losing strongly typed solution.

Listing 23 shows how Either<L,R> is used within TagRepository. In case

68

3.3. Coffee Time

Figure 3.4: Tag Repository Interface.

@override
Future<Either<List<Tag>, Failure>> getAll() async {

try {
final tags = await _getAllTags();
return Left(tags); // Return Left type - List<Tag>

} on ApiException catch (e) {
// Return Right type - Failure
return Right(ServiceFailure(errorMsg, inner: e));

} catch (e) {
// Return Right type - Failure
return Right(CommonFailure(e));

}
}

Listing 23: Returning Value as Either within Tag Repository.

of successful operation, Left type is returned, in this case the list of tags. If
any exception occurs, the Right type – Failure is returned instead. The usage
of such returned value is shown in Listing 24, where either a List<Tag> is
returned or a Failure object instead.

// ... call to TagRepository
final result = await repository.getAll();
final allTags = result.when(

// successful call - get tags
left: (tags) => tags,
// failure - return empty array in this case
// ... and for example log the failure to logger
right: (failure) => <Tag>[],

);

Listing 24: Usage of Either Returned Value.

69

3. Implementation

3.3.2 Data Layer

Purpose of layer service is to implement repositories, add services which com-
municates with the Coffee Time API and define a models which are mapped to
the responses from API. As with the repositories, the services are implemented
against interfaces. This approach helps to write testable code. Repositories
which use these services depend on interfaces and not on the concrete im-
plementations. Figure 3.5 shows association between repositories and those
services.

Each service communicates with a concrete part of the Coffee Time API.
The CafeService has methods related to obtaining nearby cafes or getting cafe
detail, FavoriteService has methods to obtain favorited cafes, PhotoService
gives access to downloading cafe’s photos and TagService serves for manipu-
lation with tags.

70

3.3. Coffee Time

Fi
gu

re
3.

5:
R

ep
os

ito
rie

s
an

d
Se

rv
ic

es
A

ss
oc

ia
tio

n.

71

3. Implementation

3.3.2.1 Favorite Local Service

Current application version uses for saving user’s favorite cafes only local
storage. Thanks to implementation against interface, in the future, the syn-
chronization of favorited cafes over API can be added without breaking other
parts of the application.

3.3.2.2 Cached Tag Service

To prevent unnecessary amount of calls to API when obtaining all tags,
a caching mechanism was implemented for Tag Service. When all tags are
returned from the API, they are cached for future calls. As a whole imple-
mentation is focused on clean code implementation, maintainability and testa-
bility, a generic CachedValue<T> class was implemented as wrapper around
cachable values.

typedef ExpirationCallBack<T> = Future<T> Function();

class CachedValue<T> {
T _value;
DateTime _timeStored;
final Duration durability;
final ExpirationCallBack<T> onExpire;
final TimeProvider timeProvider;
// ... constructor ommitted
Future<T> get() async {

if (_value == null ||
timeProvider.now()

.difference(_timeStored)

.inMilliseconds
> durability.inMilliseconds) {

_value = await onExpire();
_timeStored = timeProvider.now();

}
return _value;

}
}

Listing 25: Cached Value.

The CachedValue accepts TimeProvider which provides current time, du-
ration for how long value should be cached and ExpirationCallback<T>
which is called whenever cached value has to be re-assigned. TimeProvider
class is abstraction of DateTime.now(). This abstraction was necessary for
unit testing.

72

3.3. Coffee Time

3.3.2.3 Entity Models

Every response from API which contains data is mapped to model. Model is
a immutable class, similar to entity classes except that model includes pars-
ing from (and to) JSON format. These models are returned by services to
repositories, where models are transformed into entities and returned further.
Subset of models correspond with entities in one to one relationship, some
other models have logic for mapping its values to the corresponding entity.

3.3.3 Representation Layer

The responsibility of representation layer is to define user interface, connect it
with a BLoC objects which communicate with repositories. How to properly
organize and architect user interface within Flutter, mainly how to separate
responsibilities between BLoC classes is still very subjective opinion and there
is no “best practice” yet. However, commonly used approach is divide BLoC
responsibility per “big enough feature”. That means, identify feature of the ap-
plication and separate BLoC responsibilities appropriately. Another approach
is “BLoC per screen”. This approach is well suited for smaller application.
As the Coffee Time is still relatively small application, second approach was
chosen for its simplicity. Each screen has its own, separated BLoC class and
each BLoC define states for given screen and set of events which can accept.

core ...shared BLoCs
screens

cafe list ..Cafe List Screen
bloc ...Cafe List’s BLoC

bloc.dartBLoC implementation
state.dartBLoC’s states
event.dartBLoC’s events

widgetsSpecific screen widgets
screen.dartMain screen widget

detail ...Next screen
..

sharedShared widgets and theming
app.dartMain application widget

Figure 3.6: Presentation Layer Screens Organization.

Figure 3.6 shows overall presentation code organisation. Each screen has
defined entry file screen.dart where screen’s widget is defined. Widgets
folder contains all screen specific widgets. Bloc folder contains BLoC imple-
mentation along with states and events. Shared folder contains shared widget
and application theming related settings. This organization helps to keep or-

73

3. Implementation

ganized code with strictly defined where particular BLoC can be found for
given screen.

3.3.3.1 Flutter bloc Package

As was pointed out in the first chapter, flutter bloc is a package developed
to help implement a BLoC pattern with a simplified manner. Each BLoC
class has to extend BLoC<TEvent,TState> class. Its simple usage was shown
in Listing 13 in the first chapter. Each BLoC class has to override
mapEventToState(TEvent) method. In this method, BLoC should decide
which state to yield based on the event. When state is yielded, it is compared
to current BLoC’s state and if they are different, widgets listening for changes
are rebuilt. This implies important requirement for state class – it has to have
overridden equality comparison.

To connect BLoC with other widgets, flutter bloc offer several widgets to
help that:

• BlocProvider – Provides BLoC instance down to the tree. Internally
it is using Provider package.

• BlocBuilder<Bloc, State> – Listen for changes from given Bloc and its
state, which has to be provided somewhere in the parent widgets. It has
builder callback, where a new widget based on obtained state is re-
turned.

• BlocListener<Bloc, State> – In order to do side effects, such as
display notification, BlocListener can be used. As BlocBuilder it is
listening for changes from Bloc and its new state.

• BlocConsumer<Bloc,State> – Combines functionality of BlocBuilder
and BlocListener together.

3.3.3.2 State and Events Implementation

Each BLoC has typically more than one state and event. To do that, the sim-
plest approach is to define abstract class for state (event) and every spe-
cific state (event) extends this abstract class. This works well, however in
the mapEventToState() method with this approach has to be distinguished
between specific types. Only one possible option is to use is operator. Such
example is shown in Listing 26.

This approach has several issues, mainly:

• Repetitive code with “event is” and,

• no compile time control. When new event is added, there is no way
to force add new “else if” branch. Options such as default else with
throwing exception is not viable solution, as it does not add any benefit.

74

3.3. Coffee Time

Stream<CafeListState> mapEventToState(CafeListEvent event) async* {
if (event is LoadNext) {

yield* _mapLoadNext(event);
} else if (event is Refresh) {

yield* _mapRefresh(event);
} else if (event is SetFavorite) {

yield* _mapSetFavorite(event);
} else if (event is UpdateTags) {

yield* _mapUpdateTags(event);
}

Listing 26: Abstract Class Approach – State Mapping to Events.

Same issue is with mapping states within widgets. There is better solution
with “union types” and functional way of “map” method.

3.3.3.3 Union Types to the Rescue

Union is an object containing value of different types, but allows manipulating
that value with type-safety and compile time check. In fact, earlier introduced
Either<L,R> is a such union type. Package Freezed [57], by the same author
of the Provider, helps to do such implementation.

One popular functionality within Dart ecosystem is code-generation and
Freezed package is no difference. In order to implement union type, devel-
oper has to define abstract class with all possible sub-values and package will
generate rest of the code. The generated class is immutable and has:

• overridden equality operators,

• copyWith() method to copy object with altered properties,

• map() method to map from one possible sub-class,

• when() method to map from one possible value. Difference with map() is
that when() returns values of the sub-class, but map() returns sub-class
instance,

• and has maybeMap() and maybeWhen() which do not force include all
possible values.

Union type forces compile-time check in case of map() usage. This elim-
inate issue with is operator. Listing 27 shows CafeListEvent definition as
a union type. In Listing 28 is shown same events mapping to state but with
union approach. Whenever new event is added, the compile-time error will
occur as the map() forces it.

Similarly state mapping within CafeList Screen (Listing 29) is simplified
and compile-time safe.

75

3. Implementation

@freezed
abstract class CafeListEvent with _$CafeListEvent {

const factory CafeListEvent.loadNext(
{String pageToken,
@Default(Filter()) Filter filter}) = LoadNext;

const factory CafeListEvent.refresh(
{@Default(Filter()) Filter filter}) = Refresh;

const factory CafeListEvent.setFavorite(
{@required String cafeId,
@required bool isFavorite}) = SetFavorite;

const factory CafeListEvent.updateTags(
{@required String cafeId,
@required List<TagReputation> tags}) = UpdateTags;

}

Listing 27: Union Class Approach – CafeList Event Definition.

@override
Stream<CafeListState> mapEventToState(CafeListEvent event) async* {

yield* event.map(
loadNext: _mapLoadNext,
refresh: _mapRefresh,
setFavorite: _mapSetFavorite,
updateTags: _mapUpdateTags,

);
}

Listing 28: Union Class Approach – Events Mapping To State.

3.3.3.4 BLoC to BLoC Communication

Each screen has its own assigned BLoC, however some communication be-
tween BLoCs is also needed. For example in case of updating favorite cafe,
the FavoriteBloc is updated. The CafeListBloc and DetailBloc listen to such
changes and updates appropriately. Figure 3.7 shows associations between
screens, blocs and, bloc to bloc communication.

3.4 SOLID and Dependency Injection

One important part of maintainable and testable code are SOLID principles,
originally designed by Bob C. Martin [58]. Each letter stands for one principle:

1. Single Responsibility Principle – a class should only have on responsi-
bility. That class should have one reason to change.

76

3.4. SOLID and Dependency Injection

return BlocBuilder<CafeListBloc, CafeListState>(
builder: (context, state) {

return state.map(
loading: (_) => const CircularLoader(),
loaded: (loaded) {

if (loaded.cafes.length == 0) {
return const NoData();

}
return CafeList(state: loaded);

},
failure: (failure) => FailureContainer(

message: failure.message,
onRefresh: () => context

.bloc<CafeListBloc>()

.add(Refresh(filter: failure.filter)),
),
// shortened for brevity

);
},

);

Listing 29: CafeListState Mapping within CafeList Screen Build Method.

2. Open Closed Principle – a class should be open for extension, but closed
for modification.

3. Liskov Substitution Principle – if class A is a subtype of class B, then it
should be possible to replace B with A without disrupting the behaviour
of the program.

4. Interface Segregation – many specific interfaces are better than one
general-purpose interface. In other words, split larger interfaces to
smaller ones.

5. Dependency Inversion – high-level modules should not depend on low-
level modules. Both should depend on abstractions.

Dependency Injection mechanism is used to provide concrete implementa-
tions of each required abstraction to classes which depends on it.

Dart (and Flutter) does not provide such Dependency Injection mechanism
out of the box. However, get it is a package, which helps with that. In fact,
get it works more as Service Locator. Every concrete implementation has to be
registered and paired with its abstraction counterpart within GetIt container.
When those implementation are registered, container can be accessed through
singleton instance and obtain concrete implementation.

77

3. Implementation

Cafe List
Screen

Favorites
Screen

Map
Screen

Detail
Screen

Filter
Screen

Tags Choose
Screen

Tags Review
Screen

Screen Dependency
«Bloc»

Tags Choose
«Bloc»

Tags Review

«Bloc»
Filter

«Bloc»
Cafe List

Screen - Bloc association

«Bloc»
Detail

«Bloc»
Map

«Bloc»
Favorites

listen to changes listen to changes

Bloc - Bloc communication

notify tags chnages

Figure 3.7: Screens and Blocs Association.

However, such Service Locator is usually considered as anti-pattern if used
careless. If such container is accessed everywhere, it can hides dependencies
and it is highly coupled to every module. On the other hand, if each module
lists its dependencies within constructor, such modules can be constructed
at one place. In this place, usually called “composition root”, this issue can
be avoided. Thus, in the Coffee Time implementation, every dependency is
registered within GetIt container (see di_container.dart file). Then con-
crete implementations are created through GetIt locator mainly in App.dart
or when doing navigation between screens.

3.5 Unit Testing

Properly written project should have tested code. Coffee Time application has
written unit tests for each layer. Domain entities has unit tests for their logic,
service has unit tests for proper handling of API communication, repositories
has tests for business logic and, BLoCs are tested that emits proper state
based on received events.

In order to have independent, isolated unit tests, some class dependencies
are mocked to provides desired behaviour. To create mocks, a mockito pack-

78

3.6. Conclusion

age [59] is used. Package offers flexible of mocking parts of the class. Devel-
opers can define what mocked method for given parameters should respond.
Another package, bloc test [60] (same author of Equatable and flutter bloc
packages) is used to test implementation of BLoCs.

An example of unit test is shown in Listing 30. Unit tests use both men-
tioned packages. FilterBloc has dependency on TagRepository which is
mocked in order to return faked values. Method blocTest() comes from
second packages and offer convenient way for BLoC testing.

3.6 Conclusion

This chapter described important parts of the implementation. In the begin-
ning, the design and the used framework for Coffee Time API implementation
along with the deployment to Cloud Functions were represented. Further-
more the architecture of the application, each architecture’s layer and used
techniques were discussed. In the following chapter, a development process
with continuous integration is described along with internal testing and final
user testing before release.

79

3. Implementation

// creates mocked TagRepository
class MockTagRepository extends Mock

implements TagRepository {}

void main() {
MockTagRepository tagRepository;
final allTags = [
Tag(id: '1', icon: Icons.filter, title: '1'),
Tag(id: '2', icon: Icons.filter, title: '2'),

];

setUp(() {
tagRepository = MockTagRepository();
// when getAll called on repository
// then answer with defined allTags array
when(tagRepository.getAll())

.thenAnswer((_) async => Left(allTags));
});

FilterBloc createBloc(Filter filter) =>
FilterBloc(tagRepository: tagRepository,

initialFilter: filter);

blocTest(
'Remove tag and should be empty',
build: () async => createBloc(Filter(tagIds: ['1'])),
act: (bloc) async {
bloc.add(Init());
bloc.add(RemoveTag(tagId: '1'));

},
expect: [
isA<FilterBlocState>(),
FilterBlocState(

filter: Filter(tagIds: []),
addedTags: [],
notAddedTags: allTags

),
],

);
// ...

}

Listing 30: FilterBloc Unit Tests.

80

Chapter 4
Application Release

Before application can be released to production, it should be properly tested.
In this last chapter, the development process, automated unit testing and
pull-request approach of development even as a single developer are outlined.
Later on, the process of incrementally tested application though internal a
beta testing channels on the Android devices is explained. In the end, released
version of the application is shown along with link to Google Play Store.

4.1 Development Workflow

Coffee Time was developed as fully open-sourced (MIT licensed) application
available at GitHub. Even as a single developer, author wanted to have full
control over development process. The development workflow was setup ac-
cordingly:

• Master branch is production code. Code within master has to be fully
tested, working code. Each commit within master branch has to have
own tag – version number.

• Dev branch is for active development.

• Each feature or bug has assigned GitHub issue.

• Each feature is developed within its own feature branch, branched from
dev branch. The feature branch has to be named as feature/X where
X is the issue number.

• Each bug has its own fix branch and is named as fix/X where X is
an issue number.

• Every feature and bug fix has to be merged to dev branch through
GitHub Pull Request.

81

4. Application Release

• Each Pull Request can be completed only if automated build with unit
tests is successful.

• Each commit contains reference to an issue number.

Moreover, created issues has assigned labels, such as architecture, design
or bug, for higher clarity and each issue is assigned to the milestone. This
helped to organize remaining work and stick to the plan.

name: 'Mobile - Build and test'
on:

push:
paths: mobile/**
branches: [feature/**, fix/**, dev]

jobs:
build-and-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- uses: actions/setup-java@v1

with:
java-version: '12.x'

- uses: subosito/flutter-action@v1
with:

channel: 'stable'
Get flutter packages
- name: 'pub get'

working-directory: mobile
run: flutter pub get

Build runner
- name: 'pub runner'

working-directory: mobile
run: flutter pub run build_runner \

build --delete-conflicting-outputs
Build
- name: 'build'

working-directory: mobile
run: flutter build aot

- name: 'test'
if: always() && !cancelled()
working-directory: mobile
run: flutter test

Listing 31: Configured GitHub Action.

82

4.2. Internal Testing

4.1.1 Continuous Integration

GitHub has a feature called GitHub Actions – automation of the development
workflow. Whenever pull request is created or new commits are pushed to
created pull requests or dev branch, an automated action is run. This action
checkouts current code, build it with Flutter tools and run unit tests. If any
of those action fails, build is marked as failed and in case of a pull request,
pull request can not be closed.

Configuration of GitHub Actions are done through configuration files within
YAML format. Coffee Time build action configuration is shown in Listing 31.
Action is triggered on push to feature, fix or dev branch and only if change set
contains any file within mobile folder. Java and Flutter tools are installed in
order to build Flutter application. Before building application, Dart packages
has to be downloaded. Finally after the application is built, unit tests are
started. If any of tests failed, whole action is marked as failed.

4.2 Internal Testing

In the moment, when application had minimal working feature, internal test-
ing channel on Google Play Services was created in order to have early feedback
from internal testers. Internal Channel provides access to applications in early
stages to selected users. In case of Coffee Time application, internal testers
were author’s closest persons and family members. A number of testers were
up to ten people and during development, they gave valuable feedback. An ex-
ample of such feedback was not working navigation action on some Android
versions.

During development, several versions were published for internal testing:

• v0.0.1 – First internal test flight. Implemented nearby search without
filter functionality. Other features were not available.

• v0.1.0 – Added filter functionality, multi language support, fixed several
bugs. Design improvement.

• v0.2.0 – Added map functionality. Fixed several issues with API com-
munication. Filtering changes and bug fixes.

• v0.2.1 – Hotfix version. Fixed bug when application crashed in case of
GPS was turned off.

• v0.3.0 – Performance and stability fixes.

After internal testing, application was opened up for beta testers within
Beta Channel with version v0.3.0. With that version more users tried appli-
cation and gave more feedback. Based on the feedback, more bugs were fixed
and last beta version v0.3.1 were deployed for test.

83

4. Application Release

All versions were merged to master branch and properly tagged, so each
version can be found on GitHub project.

4.3 Crashlytics

When the application was ready to release another Firebase service was added
to the application – Crashlytics [61]. Crashlytics is a realtime crash reporter
that helps track, prioritize and fix stability issues. The official plugin for
Crashlytics was used to enable this service. In the application only a two lines
of code had to be added to enable reporting (Listing 32).

// ... within main() method
Crashlytics.instance.enableInDevMode = kDebugMode;
// pass all uncaught errors from the framework to Crashlytics.
FlutterError.onError = Crashlytics.instance.recordFlutterError;

Listing 32: Enable Crashlytics.

4.4 User Testing Re-Evaluation

When the release candidate version was prepared, same user testing as was
done with the prototype version was evaluated. Five users were involved in
this tests. User profiles varied from their overall mobile application skills to
their personal preferences over cafes.

Test was evaluated in the same manner as before, with same test cases to
know, if found issues within prototype were fixed or not. To remind, found
issues were:

1. Filter screen is confusing. Confirmation is useless.
Confirmation within filter screen was removed. When an user press
a back button, selected filters are applied.

2. Do not open filter screen, just open some modal window to
selects tags.
Filter screen remained the same as a more feasible solution by author
opinion.

3. The filter icon is unclear.
Icon remained the same as it is standard icon used across different appli-
cations. However, two new testers confirmed once again this confusion.

4. If an user is located on the detail screen, clicking on a tag icon
should set filter.

84

4.5. Release

For now not implemented.

5. Three different icons are used to start navigation. Icon is dif-
ferent on the cafe list from icon within detail screen.
Icons were consolidated into one icon.

6. Cafe’s name on tile can be hard to read with the contrasting
background image.
Solved with darker photo overlay.

7. Landscape mode is not working.
Landscape mode was disabled.

8. The map marker could contain more information than the cafe’s
name only.
Currently it is not doable due to a limitation of the maps plugin.

New testers encountered old issue only with “unclear filter icon”. The more
serious issue was found within the tag review screen. On some screen resolu-
tions, a confirm button to submit review can be “hidden” and the user has to
scroll down a little bit to see a button. One user was confused as it looked
like no button is not visible and pressed back button to confirm review. Such
action did not submit review and test case failed. A solution to prevent this is-
sue could be to use FloatingActionButton which is still visible on the screen.
Same approach is used for “favorite” button within detail screen.

As the test results did not find any serious issues which could prevent
release the application, final steps were taken to deploy the application to
the production.

4.5 Release

Coffee Time was released as version 1.0.0 to the Google Play Store for Android
devices. In order to publish a release, a proper name and description in all
available languages had to be filled before the application could be accepted.
Moreover, the store displays application photo, logo and a cover image. These
fields were necessary to fill as well. After the release, two minor versions 1.0.1
and 1.0.2 were released as hotfixes to prevent application crashes on some
devices.

Figure 4.1 shows the released version. In contrast with prototype version
(Figure 2.9), there are no significant graphical changes other than

• changed font typeface,

• moved favourite button from header to FloatingActionButton,

85

4. Application Release

• slightly different color pallete.

Figure 4.1: Released Version – Cafe List and Detail Screens.

Figure 4.2: Coffee Time QR Code for Downloading the Application.

86

4.5. Release

4.5.1 Missing Feature from Prototype

One feature from prototype did not make it to first released version and that
is custom search location. In the current version, custom location can be
set through map view but not from cafe list. The implementation with this
feature is partially done, as the API back-end already partially support it
and in the application, the data layer has already methods for that feature.
However, during implementation was acknowledged that fully functional text
search should include autocomplete services from Google Places API. Unfor-
tunately, the current design of API and application did not count with such
requirements. Feedback from users includes also a requirement for such fea-
tures. Thus this feature is considered as the most wanted feature in future
development.

4.5.2 Conclusion

Coffee Time was successful implemented and released to production for An-
droid devices. A QR code for downloading is displayed in Figure 4.2. As
Flutter is multi-platform, iOS could be deployed too. However there were
a few “obstacles” that prevented to do that:

• Application design was inspired from Material Design and this design
do not correspond with Apple Deisgn,

• iOS development requires MacOS device in order to build iOS applica-
tion,

• and finally, goal was to provide fully functional application at least for
Android. In the future development, the iOS version is planned as well.

87

Conclusion

In the first chapter, Flutter framework as a new promising cross-platform
framework was introduced. How the framework works, its philosophy “every-
thing is a widget” was explained and different approaches of state management
were covered.

Next chapter was focused on introducing proposed application, its design-
ing process, prototyping and user testing. Low-Fidelity and High-Fidelity
prototypes were created to verify proposed design. Both prototypes are also
included along with final implementation in the appendix.

In the implementation chapter, more details were covered and also several
popular packages and solutions within Flutter community were introduced. In
the end, the Android version of the Coffee Time application was successfully
tested and it was released for download.

Next Steps

Coffee Time is for sure not “feature-complete” and there is plenty of space
for improvements. Ongoing future development is planned to obtain more
experience with Flutter framework and bring an even better, feature “rich”,
application.

Next possible features and steps are:

• Add missing feature “searching cafes in custom location”.

• To synchronize favourite cafes.

• A better map view with more information in it.

• Optimise application performance, responsivity and adaptability to dif-
ferent form factors (mobile phones, tablets, . . .), screen sizes and reso-
lutions.

89

Conclusion

• Add full iOS support. This includes redesign of the application to more
modern cross-platform look.

• As an experiment, build application also for web and desktop platform.

Personal Author’s Note in the End

I really believe that Flutter is a promising framework which in-
creasingly gains on popularity and in the closest future there will
be more opportunities as the framework will get adopted by larger
companies. In the contrast with Xamarin, my subjective opinion is
that the Flutter development workflow is faster, more convenient
and easier to use. Of course, as with every new popular framework,
there is no guarantee that Flutter will be truly the right solution
in the future. But I am convinced that, at this moment, Flutter is
stable to use as a production-ready framework. If the application
does not use very specific platform features, Flutter can be used
without any hesitation.

90

Bibliography

[1] Facebook Inc. React Native. [online] [accessed: 10. 4. 2020]. Available
from: https://reactnative.dev

[2] Microsoft. What is Xamarin Forms. [online] [accessed: 10. 4. 2020].
Available from: https://docs.microsoft.com/en-us/xamarin/get-
started/what-is-xamarin-forms

[3] Ionic. Ionic framework. [online] [accessed: 10. 4. 2020]. Available from:
https://ionicframework.com

[4] Stack Overflow. Stack Overflow Flutter trends statistics.
[online] [accessed: 28. 4. 2020]. Available from: https:
//insights.stackoverflow.com/trends?tags=flutter%2Cxamarin%
2Creact-native%2Cionic

[5] Google LLC. Flutter framework. [online] [accessed: 10. 4. 2020]. Available
from: https://flutter.dev

[6] Stackoverflow. Stack Overflow Developer Survey 2019. [online] [accessed:
28. 4. 2020]. Available from: https://insights.stackoverflow.com/
survey/2019#technology-_-most-loved-dreaded-and-wanted-
other-frameworks-libraries-and-tools

[7] Nymsa, P. Mobile Enterprise Architecture Process Analytic Tool Based on
the DEMO Methodology. Bachelor’s thesis, Czech Technical University in
Prague, Faculty of Information Technology, May 2018.

[8] Google LLC. Technical overview - Flutter. [online] [accessed: 28. 4. 2020].
Available from: https://flutter.dev/docs/resources/technical-
overview

[9] Google LLC. Dart Programming Language Specification. Fifth edition,
2019, version 2.2. Available from: https://dart.dev/guides/language/
specifications/DartLangSpec-v2.2.pdf

91

https://reactnative.dev
https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin-forms
https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin-forms
https://ionicframework.com
https://insights.stackoverflow.com/trends?tags=flutter%2Cxamarin%2Creact-native%2Cionic
https://insights.stackoverflow.com/trends?tags=flutter%2Cxamarin%2Creact-native%2Cionic
https://insights.stackoverflow.com/trends?tags=flutter%2Cxamarin%2Creact-native%2Cionic
https://flutter.dev
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-other-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-other-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-other-frameworks-libraries-and-tools
https://flutter.dev/docs/resources/technical-overview
https://flutter.dev/docs/resources/technical-overview
https://dart.dev/guides/language/specifications/DartLangSpec-v2.2.pdf
https://dart.dev/guides/language/specifications/DartLangSpec-v2.2.pdf

Bibliography

[10] Google LLC. The Dart type system. [online] [accessed: 28. 4. 2020]. Avail-
able from: https://dart.dev/guides/language/sound-dart

[11] Google LLC. Dart – Platforms. [online] [accessed: 28. 4. 2020]. Available
from: https://dart.dev/platforms

[12] Microsoft. Xamarin.Forms Data Binding. [online] [accessed: 29. 4.
2020]. Available from: https://docs.microsoft.com/en-us/xamarin/
xamarin-forms/app-fundamentals/data-binding/

[13] Boelens, D. Reactive Programming Streams Bloc. [online] [accessed: 29.
4. 2020]. Available from: https://www.didierboelens.com/2018/08/
reactive-programming-streams-bloc

[14] Escoffier, C. 5 Things to Know About Reactive Programming. [online] [ac-
cessed: 29. 4. 2020]. Available from: https://developers.redhat.com/
blog/2017/06/30/5-things-to-know-about-reactive-programming

[15] Google LLC. Introcution to widgets. [online] [accessed: 29. 4.
2020]. Available from: https://flutter.dev/docs/development/ui/
widgets-intro

[16] Google LLC. Layouts in Flutter. [online] [accessed: 29. 4. 2020]. Available
from: https://flutter.dev/docs/development/ui/layout

[17] Google LLC. Start thinking declaratively. [online] [accessed: 30. 4. 2020].
Available from: https://flutter.dev/docs/development/data-and-
backend/state-mgmt/declarative

[18] Boelens, D. Flutter–Widget–State–Context. [online] [accessed: 29.
4. 2020]. Available from: https://www.didierboelens.com/2018/06/
widget-state-context-inheritedwidget

[19] Google LLC. Differentiate between ephemeral state and app state. [on-
line] [accessed: 30. 4. 2020]. Available from: https://flutter.dev/docs/
development/data-and-backend/state-mgmt/ephemeral-vs-app

[20] Google LLC. Simple app state management. [online] [accessed: 3. 5.
2020]. Available from: https://flutter.dev/docs/development/data-
and-backend/state-mgmt/simple

[21] Google LLC. InheritedWidget. [online] [accessed: 3. 5. 2020].
Available from: https://api.flutter.dev/flutter/widgets/
InheritedWidget-class.html

[22] Rousselet, R. InheritedWidget, but simple. [online] [accessed: 3. 5. 2020].
Available from: https://github.com/rrousselGit/provider

92

https://dart.dev/guides/language/sound-dart
https://dart.dev/platforms
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/data-binding/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/data-binding/
https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc
https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming
https://flutter.dev/docs/development/ui/widgets-intro
https://flutter.dev/docs/development/ui/widgets-intro
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/data-and-backend/state-mgmt/declarative
https://flutter.dev/docs/development/data-and-backend/state-mgmt/declarative
https://www.didierboelens.com/2018/06/widget-state-context-inheritedwidget
https://www.didierboelens.com/2018/06/widget-state-context-inheritedwidget
https://flutter.dev/docs/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://flutter.dev/docs/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://flutter.dev/docs/development/data-and-backend/state-mgmt/simple
https://flutter.dev/docs/development/data-and-backend/state-mgmt/simple
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://github.com/rrousselGit/provider

Bibliography

[23] Angelov, F. Bloc. [online] [accessed: 3. 5. 2020]. Available from: https:
//bloclibrary.dev

[24] Soares, P. Flutter / AngularDart — Code sharing, better together (Dart-
Conf 2018). [online] [accessed: 29. 4. 2020]. Available from: https:
//youtu.be/PLHln7wHgPE?t=1326

[25] Boelens, D. Flutter internals. [online] [accessed: 5. 5. 2020].
Available from: https://www.didierboelens.com/2019/09/flutter-
internals/

[26] Futured. Gastromapa Lukáše Hejĺıka. [online] [accessed: 12. 4. 2020].
Available from: https://play.google.com/store/apps/details?id=
com.thefuntasty.gmlh

[27] Zeman, L. Pivńı deńıček. [online] [accessed: 12. 4. 2020]. Avail-
able from: https://play.google.com/store/apps/details?id=
cz.proteus.pivnidenicek

[28] Restu devs. Restu. [online] [accessed: 12. 4. 2020]. Available from: https:
//play.google.com/store/apps/details?id=com.thefuntasty.restu

[29] Zomato. Zomato. [online] [accessed: 12. 4. 2020]. Available from: https:
//play.google.com/store/apps/details?id=com.application.zomato

[30] Google LLC. Google Maps. [online] [accessed: 12. 4. 2020].
Available from: https://play.google.com/store/apps/details?id=
com.google.android.apps.maps

[31] Babich, N. Prototyping 101: The Difference between Low-Fidelity and
High-Fidelity Prototypes and When to Use Each. [online] [accessed: 12.
4. 2020]. Available from: https://theblog.adobe.com/prototyping-
difference-low-fidelity-high-fidelity-prototypes-use

[32] Google LLC. Material Design. [online] [accessed: 12. 4. 2020]. Available
from: https://material.io/design

[33] Balsamiq Studios, LLC. Balsamiq, version 3.5.17. [online] [accessed: 1.
10. 2019]. Available from: https://balsamiq.com

[34] Nymsa, P. Hi-Fi prototype. Available from: https://github.com/
petrnymsa/coffee-time/releases/tag/prototype

[35] Nielsen Norman Group. 10 Usability Heuristics for User Interface
Design. [online] [accessed: 12. 4. 2020]. Available from: https://
www.nngroup.com/articles/ten-usability-heuristics/

93

https://bloclibrary.dev
https://bloclibrary.dev
https://youtu.be/PLHln7wHgPE?t=1326
https://youtu.be/PLHln7wHgPE?t=1326
https://www.didierboelens.com/2019/09/flutter-internals/
https://www.didierboelens.com/2019/09/flutter-internals/
https://play.google.com/store/apps/details?id=com.thefuntasty.gmlh
https://play.google.com/store/apps/details?id=com.thefuntasty.gmlh
https://play.google.com/store/apps/details?id=cz.proteus.pivnidenicek
https://play.google.com/store/apps/details?id=cz.proteus.pivnidenicek
https://play.google.com/store/apps/details?id=com.thefuntasty.restu
https://play.google.com/store/apps/details?id=com.thefuntasty.restu
https://play.google.com/store/apps/details?id=com.application.zomato
https://play.google.com/store/apps/details?id=com.application.zomato
https://play.google.com/store/apps/details?id=com.google.android.apps.maps
https://play.google.com/store/apps/details?id=com.google.android.apps.maps
https://theblog.adobe.com/prototyping-difference-low-fidelity-high-fidelity-prototypes-use
https://theblog.adobe.com/prototyping-difference-low-fidelity-high-fidelity-prototypes-use
https://material.io/design
https://balsamiq.com
https://github.com/petrnymsa/coffee-time/releases/tag/prototype
https://github.com/petrnymsa/coffee-time/releases/tag/prototype
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

Bibliography

[36] Google LLC. Elevation – Material Design. [online] [accessed: 12. 4.
2020]. Available from: https://material.io/design/environment/
elevation.html#elevation-in-material-design

[37] Google LLC. Places API Overview. [online] [accessed: 14. 4. 2020]. Avail-
able from: https://developers.google.com/places/web-service/
intro

[38] Google LLC. Get an API Key. [online] [accessed: 14. 4. 2020]. Avail-
able from: https://developers.google.com/places/web-service/
get-api-key

[39] Google LLC. Places API Usage and Billing. [online] [accessed: 14. 4.
2020]. Available from: https://developers.google.com/places/web-
service/usage-and-billing

[40] Strassner, T. XML vs JSON. [online] [accessed: 14. 4. 2020]. Avail-
able from: https://www.cs.tufts.edu/comp/150IDS/final_papers/
tstras01.1/FinalReport/FinalReport.html

[41] Kubernetes. Production-Grade Container Orchestration. [online] [ac-
cessed: 14. 4. 2020]. Available from: https://kubernetes.io

[42] Anomaly Innovations, Serverless Stack. What is serverless. [online] [ac-
cessed: 14. 4. 2020]. Available from: https://serverless-stack.com/
chapters/what-is-serverless.html

[43] Google LLC. Cloud Firestore — Firebase. [online] [accessed: 14. 4. 2020].
Available from: https://firebase.google.com/docs/firestore

[44] Google LLC. Cloud Functions for Firebase. [online] [accessed: 14. 4. 2020].
Available from: https://firebase.google.com/docs/functions

[45] Okta. OAuth 2.0. [online] [accessed: 14. 4. 2020]. Available from: https:
//www.oauth.com

[46] Google LLC. Firebase Authentication. [online] [accessed: 14. 4. 2020].
Available from: https://firebase.google.com/docs/auth

[47] Martin, R. Clean Architecture. [online] [accessed: 5. 5. 2020]. Avail-
able from: https://blog.cleancoder.com/uncle-bob/2012/08/13/
the-clean-architecture.html

[48] Martin, R. Clean Architecture: A Craftsman’s Guide to Software Struc-
ture and Design. London, England: Prentice Hall, 2018, ISBN 978-
0134494166.

[49] OpenJS Foundation. Node.js. [online] [accessed: 10. 5. 2020]. Available
from: https://nodejs.org/en

94

https://material.io/design/environment/elevation.html#elevation-in-material-design
https://material.io/design/environment/elevation.html#elevation-in-material-design
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/intro
https://developers.google.com/places/web-service/get-api-key
https://developers.google.com/places/web-service/get-api-key
https://developers.google.com/places/web-service/usage-and-billing
https://developers.google.com/places/web-service/usage-and-billing
https://www.cs.tufts.edu/comp/150IDS/final_papers/tstras01.1/FinalReport/FinalReport.html
https://www.cs.tufts.edu/comp/150IDS/final_papers/tstras01.1/FinalReport/FinalReport.html
https://kubernetes.io
https://serverless-stack.com/chapters/what-is-serverless.html
https://serverless-stack.com/chapters/what-is-serverless.html
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/functions
https://www.oauth.com
https://www.oauth.com
https://firebase.google.com/docs/auth
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://nodejs.org/en

Bibliography

[50] Node.js Foundation. Express – Node.js web application framework. [on-
line] [accessed: 10. 5. 2020]. Available from: https://expressjs.com

[51] Google LLC. Place Search. [online] [accessed: 14. 4. 2020]. Avail-
able from: https://developers.google.com/places/web-service/
search#PlaceSearchRequests

[52] Node.js Foundation. Writing middleware for use in Express.js. [online] [ac-
cessed: 10. 5. 2020]. Available from: https://expressjs.com/en/guide/
writing-middleware.html

[53] Auth0. JSON Web Token Introduction. [online] [accessed: 10. 5. 2020].
Available from: https://jwt.io/introduction

[54] Google LLC. Effective Dart: Design – Equality. [online] [accessed:
17. 5. 2020]. Available from: https://dart.dev/guides/language/
effective-dart/design#equality

[55] Angelov, F. Equatable. [online] [accessed: 17. 5. 2020]. Available from:
https://pub.dev/packages/equatable

[56] Neal Ford, I. Functional error handling with Either and Option. [on-
line] [accessed: 17. 5. 2020]. Available from: https://www.ibm.com/
developerworks/library/j-ft13/index.html

[57] Rousselet, R. Freezed. [online] [accessed: 17. 5. 2020]. Available from:
https://pub.dev/packages/freezed

[58] Robert, M. Design Principles and Design Patterns. [online] [ac-
cessed: 17. 5. 2020]. Available from: https://web.archive.org/
web/20150906155800/http://www.objectmentor.com/resources/
articles/Principles_and_Patterns.pdf

[59] Dart Lang team. Mockito. [online] [accessed: 17. 5. 2020]. Available from:
https://pub.dev/packages/mockito

[60] Angelov, F. bloc test. [online] [accessed: 17. 5. 2020]. Available from:
https://pub.dev/packages/bloc_test

[61] Google LLC. Firebase Crashlytics. [online] [accessed: 17. 5. 2020]. Avail-
able from: https://firebase.google.com/docs/crashlytics

95

https://expressjs.com
https://developers.google.com/places/web-service/search#PlaceSearchRequests
https://developers.google.com/places/web-service/search#PlaceSearchRequests
https://expressjs.com/en/guide/writing-middleware.html
https://expressjs.com/en/guide/writing-middleware.html
https://jwt.io/introduction
https://dart.dev/guides/language/effective-dart/design#equality
https://dart.dev/guides/language/effective-dart/design#equality
https://pub.dev/packages/equatable
https://www.ibm.com/developerworks/library/j-ft13/index.html
https://www.ibm.com/developerworks/library/j-ft13/index.html
https://pub.dev/packages/freezed
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://pub.dev/packages/mockito
https://pub.dev/packages/bloc_test
https://firebase.google.com/docs/crashlytics

Appendix A
Acronyms

AOT Ahead-of-Time.

BLoC Business Logic Component.

CTA Coffee Time API.

GPA Google Places API.

Hi-Fi High Fidelity.

JIT Just-in-Time.

JWT JSON Web Token.

Lo-Fi Low Fidelity.

UI User Interface.

97

Appendix B
Content of Enclosed CD

README.txt...................................Brief content description
src

app..Coffee Time source code
examples.....................................Examples source code
thesis...............................Thesis text LATEX source code

text
thesis.pdf..............................Thesis text in PDF format

prototype
lofi.pdf...........................Low Fidelity clickable prototype

99

	Introduction
	Motivation
	Structure

	Flutter Foundations
	Technical overview
	Reactive Programming

	Everything Is a Widget
	Widgets Are Not Only Visible Parts
	Stateless vs. Stateful Widget

	State Management Approaches
	Case Study Note
	Inherited Widget
	Provider Package
	Business Logic Component
	Conclusion

	Flutter Internals
	RenderObject and RenderTree
	Everything Is a Widget Revisited
	Deciding What to Redraw
	Notion of Keys
	Const Optimisation

	Conclusion

	Coffee Time Analysis
	Considered Application
	Use Cases
	UC1: Display Nearby Cafes As a List
	UC2: Display Nearby Cafes As a Map
	UC3: Start Navigation
	UC4: Toggle Cafe As a Favourite
	UC5: Setting the Filter
	UC6: Display Favourite Cafes
	UC7: Review the Cafe's Tags
	UC8: Suggest a New Tag

	Existing Alternatives
	Gastromapa Lukáše Hejlíka
	Pivní Deníček
	Restu
	Zomato
	Google Maps

	Application Prototype
	Coffee Time Prototype
	Nielsen Heuristic
	User Testing

	Back-end Analysis
	Google Places API
	Coffee Time API
	The Selection of the Right Technology

	The Conclusion

	Implementation
	Clean Architecture
	Coffee Time API
	The API Endpoints
	Express.js Pipeline
	Routing
	Integration with Firestore
	Functions Deployment

	Coffee Time
	Domain Layer
	Data Layer
	Representation Layer

	SOLID and Dependency Injection
	Unit Testing
	Conclusion

	Application Release
	Development Workflow
	Continuous Integration

	Internal Testing
	Crashlytics
	User Testing Re-Evaluation
	Release
	Missing Feature from Prototype
	Conclusion

	Conclusion
	Next Steps
	Personal Author's Note in the End

	Bibliography
	Acronyms
	Content of Enclosed CD

