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Abstrakt

Prediktivni udrzba je strategie planovani udrzby, pti niz je idrzba napldnovana
pokud subjekt jevi znamky zavady nebo je pravdépodobné, ze brzy dojde k
poruse. Prediktivni idrzba snizuje naklady a zabranuje prostojim ve srovnani
s klasickymi strategiemi preventivni a reaktivni udrzby. Prediktivni udrzba
muze byt realizovana pouzitim technik umeélé inteligence k vytvoreni modelu,
ktery zdravotni stav subjektu na zakladé dat ziskanych monitorovanim jeho
stavu. Existuji vSak rizné pristupy k prediktivni udrzbé jako detekce zavady,
predikce poruch a predikce zbyvajici uzitné zivotnosti, z nichz kazdy ma
odlisné pozadavky na data a mé jiné cile. Kazdy z téchto pristupt vyuziva jiné
techniky umeélé inteligence a kvalita modelt vytvorenych dle téchto pristupt
by méla byt hodnocena dle jinych metrik. Tato diplomové prace poskytuje
prehled pristupt k prediktivni idrzbé a pomaha tak odborniktim zvolit vhodny
pristup, techniku umélé inteligence a spravnou hodnotici metriku pro jejich
problém.

Klicova slova prediktivni adrzba, uméld inteligence, detekce zavad, pre-
dikce poruch, predikce zbyvajici uzitné zivotnosti, monitorovani stavu
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Abstract

[Predictive maintenance| (PdM)) is a maintenance strategy where the main-
tenance actions are scheduled only when the subject is malfunctioning or is
likely to fail soon. reduces costs and prevents downtime in comparison
to classical preventive and reactive maintenance strategies. [PdM] can be re-
alized by using |artificial intelligence] techniques to build a model that
predicts health state of the subject based on its condition monitoring data.
However, there exist various approaches to including fault detection,
failure prediction and remaining useful life prediction, each having different
data requirements and goals. Each of the approaches utilizes different [AT]
techniques and should be evaluated using different evaluation metrics. This
thesis provides an overview of the approaches to [PdM] to help the practition-
ers choose a suitable approach, [A]] technique and evaluation metric for their
problem at hand.

Keywords predictive maintenance, artificial intelligence, fault detection,
anomaly detection, failure prediction, remaining useful life prediction, con-
dition monitoring
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Introduction

Motivation

IPredictive maintenance| (PdM)) is a maintenance strategy where the goal is
to monitor and analyze condition of a subject in order to plan maintenance
actions at times when the subject suffers from a fault or when there is an
increased probability that the subject will fail in near future. Such mainte-
nance strategy can significantly reduce costs and possible downtime caused by
failures in comparison with other strategies such as corrective or preventive
where the maintenance actions are scheduled only when the machinery fails,
and thus needs a correction, or are scheduled at regular intervals.

The condition monitoring is done by collecting various kinds of data that
can contain information about the health state of the subject. The analysis can
be then done by building a predictive model that is, given condition monitoring
data, capable of predicting whether the subject is faulty or estimating when a
failure will occur. Nowadays, such [PdM] models can be built utilizing
, more specifically [machine learning] (ML]), techniques where
the models are trained on condition monitoring and health data of multiple
subjects. Depending on what type of condition monitoring data is available,
various [MI] modeling techniques can be used.

A crucial part of [PdM]is a performance evaluation of the built model, i.e.
estimation how the model will perform in real-world. The performance eval-
uation has two major goals. The first goal is that it should serve as a way
how to choose the best performing model when building models with different
parameters or [ML] algorithms. The second goal is that the performance eval-
uation should be intuitively interpretable — e.g. how much in advance is the
model able to predict a failure or how often the model predicts false alarms.
As there exist various evaluation metrics which can be used for every modeling
approach a good overview of different evaluation metrics and their advantages
and disadvantages is crucial for a success of [PdM] project in industry.
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INTRODUCTION

Related Work

Predictive maintenance has drawn huge attention in both scientific and in-
dustrial research over the past two decades. Numerous scientific articles de-
scribing novel [Al] approaches to as well as many articles describing the
application of [PdM]in various domain such as predicting failures in wind tur-
bines, hard drives, high-speed trains or power plants has been published in past
years [17H23]. There have been published multiple reviews and surveys on pre-
dictive maintenance systems, purposes and different approaches [3,5,(24-26].
Some works specifically focus on the application of various approaches of ar-
tificial intelligence and machine learning in predictive maintenance [27-29]
while other works propose novel or adjusted evaluation metrics for the indi-
vidual approaches [12,|30-32]. However, to our knowledge, there is no work
that would provide an overview of multiple [ML}based modeling approaches
and would focus at the same time on comparison of the different evaluation
metrics.

Goals

The goals of this thesis are to:
e give an introduction to the problematics of [PdM}

e provide an overview of several different [ML}based modeling approaches
used for building [PdM| models;

e describe different evaluation metrics that can be used to assess the per-
formance of the models built by different modeling approaches;

e compare and discuss the practical application of the different evaluation
metrics by conducting experiments on real-world data sets.

Organization of the Thesis

This thesis is organized as follows. In Chapter [I] we provide a minimal theo-
retical background of [MI] including the classical machine learning tasks and
their evaluation metrics. In Chapter [2] we provide an introduction to in
context of different maintenance strategies and we describe typical condition
monitoring data used for building a [PdM] model. In Chapter [3] we review
different approaches to[PdM] utilizing [ML] techniques and we describe how the
built [PAM] models can be evaluated. Finally, in Chapter [4] we conduct ex-
periments where we demonstrate the modeling approaches on real-world data
sets, we compare their evaluation metrics and we discuss the metrics’ practical
application.



CHAPTER 1

Machine Learning Background

[Machine learning| (ML) is a an area of [Al] that studies computer algorithms
that improve through experience. In this chapter we provide a minimal the-
oretical background of machine learning necessary for the rest of this thesis.
The content of this chapter can be, with a few exceptions, considered as a
common knowledge. Therefore, we cite only where we deem it necessary or
where we use direct definitions from literature. As we provide only the mini-
mal theoretical background we refer to [33-35] for a comprehensive overview
of machine learning and related fields.

In Section we describe three different types of [ML] algorithms — su-
pervised, unsupervised and semi-supervised. In Section [I.2] we describe three
machine learning problems — classification, regression and anomaly detec-
tion. In Section we describe several models. Finally, in Section
we describe how to evaluate and select a machine learning model.

1.1 Types of Machine Learning Algorithms

There exist four main types of machine learning algorithms: supervised learn-
ing, unsupervised learning, semi-supervised learning and reinforcement-learning.
In this thesis, we use especially the first three of them and we describe them
below.

Supervised learning Supervised learning algorithm learns from a set of
labeled samples and builds models that can predict label for new unseen sam-
ples.

Unsupervised learning Unsupervised learning [MI] algorithms consists in
learning interesting or meaningful structures from a set of unlabeled samples.
They help to understand the data.



1. MACHINE LEARNING BACKGROUND

Semi-supervised learning Semi-supervised machine learning is a combi-
nation of supervised and unsupervised learning. It makes use of both labeled
and unlabeled samples to learn the relationship between the features and the
target variable. Having both labeled and unlabeled samples is a common
problem in practice — e.g. we can have medical data about lots of patients
but we might have only a small portion of them labeled (e.g. whether they
were sick or not).

1.2 Machine Learning Problems

1.2.1 Classification

Classification is a [ML] problem of where the labels, the target variables, of the
samples are categorical. A problem of diagnosing whether a patient suffers
from a disease based on its health condition is an example of a classification
problem. It is solved by supervised learning algorithms. Classification can be
divided into a binary and a multiclass, i.e. predicting two classes or multiple
classes, respectively. Many methods for classification are developed for binary
classification. Therefore, multiclass classification can be regarded as its exten-
sion. In case of binary classification, the two classes are commonly named as
positive and negative and the model’s predictions can be thus either positive,
i.e. belongs to a positive class, or negative, i.e. belongs to a negative class.

Though the target variable is a category, a class, the classification can be
done as predicting a probability of a sample belonging to the category. For
example the model can predict that a probability that a patient is sick is 0.8
(and thus the probability that he/she isn’t sick is 0.2 %). The final prediction
of the category then can be done by setting a decision threshold which defines
the minimal probability necessary for the sample to be considered positive. A
typical default threshold is 0.5.

1.2.2 Anomaly Detection

Anomaly detection is a machine learning problem where the goal is to iden-
tify the most anomalous samples. It is typically solved by unsupervised ml
algorithms. The detection of anomalies is typically done by predicting some
kind of anomaly score for each sample (e.g. distance from mean of the dis-
tribution of features in the training data) and setting a threshold that marks
the samples with higher score than the threshold as anomalous.

1.2.3 Regression

Regression is a problem of identifying a relationship between the features and
a continuous target variable. For example predicting price of houses based on
their features like location, size or number of rooms is a regression problem.

4



1.3. Machine Learning Models

1.3 Machine Learning Models

In this section, we describe three examples of [ML] models. We provide only
brief description that is essential for the rest of this thesis.

1.3.1 Decision Tree

Decision tree is a supervised learning algorithm which can be used for both
classification and regression problems. It consists in constructing a set of rules
in a form of a tree where the leaves of the tree are assigned the values of a
target variable (either class or a continuous variable). For example in case of
patients diagnosis, the rules can be "Has temperature higher than 37 degrees?”
or "Has difficult breathing?”. The classification of a sample is then done by
traversing through the tree, following the rules, and assigning it the value of
the leaf where the sample ends. The primary objective in constructing the
decision tree is that the rules should describe the data as best as possible —
that is done for example by finding such rules that minimize the entropy of
the data when the data are divided by the rule.

There exists plenty of variants of decision tree and their extensions. Ran-
dom forest is a decision tree based algorithm where multiple decision trees are
built and the output, the target variable, is then a mode or a mean of the
outputs of the trees. One of the currently best performing variant of decision
trees is an algorithm called extreme gradient boosted trees [36]. It consists in
building a large numbers of low complexity trees (weak learners) so that each
tree predicts a length of a move in a direction of a gradient of a predefined
loss function. Combining the predictions of these trees then leads to a single
continuous predicted target variable (can be in a form of class probability).

1.3.2 SVM

[Support-vector machine| (SVM)) is a supervised machine learning algorithm
introduced by Vapnik [37] that is used for binary classification problem and
can be extended to solve regression problem, in that case being called SVR]
The main idea of SVM is to transform the samples into a higher dimensional
space and find a hyperplane that best separates the two classes. The samples
on the margins of the hyperplane are called support vectors, hence the name.

1.3.3 Artificial neural networks

()s a computing system inspired by human brain and can be used to solve
classification, regression and anomaly detection problems. It consists of a set
of connected artificial neurons, cells, that can transmit information through
the connections. The transmitted information is in a form of a real number
whose is given by a sum of the neurons inputs, i.e. the information transmitted
to it by other neurons, and some non-linear function. The neurons are typically

5



1. MACHINE LEARNING BACKGROUND

structured in layers. The input, the features, are then typically given as an
input information to the neuron in a so called input layer while the output, the
target variable(s), is then an output of the so called output layer of neurons.
Each neuron can have a weight that increases or decreases the amount of
information transferred. The training of a then consists in adjusting
weights of the individual neurons so that the outputs of is closer to the
desired output. For more details work on how the [ANN] are trained we refer
to [34].

Each layer of [ANN] can perform different transformations and can have
different number of neurons. The way how the neurons are organized into the
layers and how they are connected to each other is called an architecture.
Below we provide an overview of common[ANN]architectures than we will refer
to in the the rest of this thesis.

Feedforward One of the basic architectures of is a feedforward [ANNL
A feedforward is such where the connections between the neurons
do not form a cycle, i.e. the information is transferred only in forward direction
from the input layer to the output layer.

Recurrent networks Recurrent neural networks are derived from feedfor-
ward networks where, however, the connections can be cyclic. Recurrent neu-
ral networks can learn not only on single points but also on a series of data such
as time series, sequences of words or videos. One of the most used recurrent
neural networks is an [long short-term memory| (LSTM)) network.

Convolutional networks Convolutional neural network are feedforward
neural network that consist of layers where the information passed to neurons
in next layer is modified by convolution operation with a filter composed of
weights. It is commonly applied in problems where the input is in a form of
an image. The filters then can have weights that for example detect edges
and, when multiple convolutional layers are employed, even complex patterns
can be recognized.

Autoencoders Autoencoders are type of which are trained to repro-
duce the input to the output while internally representing the input in some
compressed form, a code. One of the use cases for autoencoders is anomaly
detection where the anomalies fed to the autoencoder are supposed to have
a higher reconstruction error (difference between input and output) than the
normal samples. The reconstruction error can thus be taken as the anomaly
score.



1.4. Evaluation

1.4 Evaluation

Evaluation of a machine learning model consists in estimating how the model
will perform on a randomly selected data, independent from the training data.
Therefore, the evaluation typically consist in splitting the data set on a train-
ing and testing sets, using the training set to train the model and calculate
evaluation metrics on a testing data set.

The evaluation results have two major goals: to interpret the model’s per-
formance (e.g. what is a probability that a sick patient will be detected) and
to select the best performing model out of multiple different trained models.
The evaluation metrics used for the performance interpretation and model
selection can be different as for example some metrics might be difficult to
interpret in the domain.

In this section we describe the various evaluation metrics used for both
classification and regression problemﬂ and then we briefly describe the process
of model selection.

1.4.1 Evaluation Metrics for Classification

Predictions of a binary classification can be expressed by a confusion matrix:

Actual

neg pos

. neg | TN FN
Predicted pos | FP TP
N P

where TP, FP, TN and FN stand for true positive, false positive, true negative
and false negative, respectively. We also denote P and N as the number of
total actual positives and negatives, respectively.

Four commonly used metrics for evaluation of classification performance
are:

® accuracy = TgiiTNN — a probability of a prediction being correct;

e precision = %EFP — a probability that the actual label is positive when
predicted as positive, e.g. a probability that a patient is actually sick
when the model predicts he/she is sick;

e recall = % — a probability that an actual positive label is predicted as

positive, also called a [true positive rate] (TPR]), e.g. a probability that
a patient is predicted as sick given that he/she actually is sick;

Inote, that anomaly detection can be evaluated using classification metrics if we have a
labeled testing data set
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Figure 1.1: Predicting probabilities instead of classes

e |false positive rate (FPR|) = % — a probability of a negative sample
being predicted as positive, e.g. a probability that a healthy patient is

diagnosed as sick.

A model having a high recall might have a low precision (e.g. a model
that predicts only positive predictions) and vice versa. Therefore, precision
and recall are commonly expressed by calculating their harmonic mean. Such
constructed metric is called an F1 score and is formally defined as

2 x precision * recall

F1 score = — .
precision + recall

Most of machine learning (ML)| binary classification and anomaly detec-
tion algorithms are capable of predicting a score — a continuous variable like
probability of belonging to the positive class or e.g. some measure of distance
from the normal points in case of anomaly detectors. A classifier that predicts
probabilities is commonly called probabilistic classifier. The actual classifica-
tion (anomaly detection) is then done by setting a decision threshold — if the
score is equal or greater than the decision threshold the prediction is positive
and vice versa (as illustrated in Figure [L.1]).

A common decision threshold for supervised (binary) classification algo-
rithms that predict probability is 0.5 [38] which is typically where the F1 score
is the highest. In anomaly detection, on the other hand, there is no universal
threshold that can be set as the scores do not have the intuitive probabilistic
interpretations. Moreover, it might happen, that FPs and FNs have each dif-
ferent severity. For example in a medical screening test it is wanted to have
as few FN&H as possible even though that might yield many FPs. In other
words, the medical screening tests should have a high recall and low precision

Zsick patients diagnosed as healthy
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is tolerated. On the other hand, for example anti-virus systems shouldn’t raise
too many false alarms, i.e. when they identify something as a positive they
should be certain about it. In other words, anti-virus systems should have a
high precision while lower recall might be tolerated. Setting a higher decision
threshold typically leads to higher precision (though not necessarily) whereas
setting a lower decision leads to higher recall. Therefore, selecting a decision
threshold should be made with a good domain knowledge.

One possible way how to analyze the models performance on various de-
cision thresholds is visualizing precision, recall and FPR metrics over various

decision thresholds as illustrated in Figure 1.2 However, such visualization

9



1. MACHINE LEARNING BACKGROUND

is dependent on the actual range of decision thresholds which does not have
to be in range [0,1]. Therefore, freceiver operating characteristic (ROC]) and
[precision-recalll curves are commonly used to visualize the performance
over various thresholds. curve is a plot of (recall) over as
illustrated in the left part of Figure [I.3] [PR] curve is then a plot of precision
against recall as illustrated in the right part of Figure[1.3

ROC curve is non-decreasing — when increasing the threshold, both TPR
and FPR either stay the same or increase. Moreover, ROC has an important
property that it is possible to construct a model at any point on a line con-
necting two points on an ROC curve. This can be achieved by combining the
predictions from the models corresponding to the two points, e.g. selecting
half of the predictions from a model A and half of the predictions from a
model B results in a model that has performance corresponding exactly to the
point in the middle of the line connecting the two models points on an ROC
curve. This results in an existence of a universal baseline in an ROC curve —
a line connecting left lower and right upper corners which correspond to an
always-negative model and an always-positive model.

PR curve, on the other hand, does not have any universal baseline. Instead,
the baseline is different for every data set and corresponds to a horizontal line
at precision equal to prevalence () — the ratio of positive samples in the data
set. This baseline then corresponds to a performance of a random classifier.
Moreover, the [PR] curve does not have the property of linear interpolation as
ROC curve does. This is mainly caused by the fact that PR curve is neither
(non-)decreasing nor (non-)increasing. That is because increasing the decision
threshold might decrease precision (as seen in Figure where the precision
decreased with increasing threshold from 0.3 to 0.4). However, PR curve does
have one big advantage over ROC — it is suitable for evaluating imbalanced
data sets (data sets with low prevalence) as neither precision nor recall depend
on the amount of true negatives.

A domain knowledge is required to select the right decision threshold. If
the domain knowledge is not available though, it might be desirable to select
a model that performs best at regardless of the chosen decision threshold
and leave the decision threshold selection for later. For that an area under
curve [ROC| (AUROC) € [0,1] is typically used. AUROC has even a natural
explanation — it estimates the probability that a randomly chosen positive is
ranked higher by the model than a randomly chosen negative [39].

Maybe inspired by the AUROC, some researchers started using area under
PR curve (AUPR) to evaluate models on imbalanced data sets. However,
calculation of AUPR done via trapezodial rule (a common way how area under
curve is calculated) is wrong as the points on the PR curve should not be
linearly interpolated and selecting a model by AUPR might thus result in
selecting a worse performing model [1]. To mitigate this problem, Flach et
al. introduced [precision-recall-gain| (PRG]) curve [1]. The main idea of PRG
curves is to express the precision and recall in terms of gain over a baseline

10
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Figure 1.4: PR curve and a corresponding PRG curve [1]. The dotted lines
represent F'1 and F1l-gain isometrics, respectively.

model — a model that predicts always positive predictions. By using harmonic
scaling:

1/x —1/min  max(z — min)

1/max—1/min  (max — min)z

and taking min = 7 and max = 1 precision-gain and recall-gain are defined

as [I):

precision-gain = precision — 7 1" E
(1 — 7)precision 1—nTP’

Loai recall — 7 7~ FN

recall-gain = ——— ©  — 1~ ~

& (1 — 7)recall 1—7TP

A PRG curve is then a plot of precision-gain over recall-gain. Figure [T.4]
illustrates a PR curve and a corresponding PRG curve. Calculating area

under curve (AUPRG]) is then possible with a linear interpolation and

is related to an expected F1 score [1].

1.4.2 Evaluation Metrics for Regression

Prediction made by a regression model is a continuous variable. Let us denote
N the number of samples we are evaluating and y; and ¢; the actual and pre-
dicted value of the i-th sample. A standard metrics for evaluating regression

11
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include

mean absolute error (MAE) =

Z(fy' —9i),

Z\H

N
1
root mean squared error (RMSE) = N; yr — 9i)?,

i:\f: A

_

mean absolute percentage error (MAPE) = Ll

= \

[MAE] is metric that gives the same weight to all errors. [RMSE] gives more
weight to high errors. [MAPE] on the other hand, gives more weight to errors
at low values as e.g. an error with y = 100 and y = 150 is equivalent to error
y =1and y = 1.5 — the error is 0.5 (or 50 %).

1.4.3 Model Selection

Model selection is a process of selecting between either different machine learn-
ing algorithms (e.g. whether to use a decision tree or SVM) or selection of
the best hyperparameters for a given model. The hyperparameters can be for
example a maximal depth of a decision tree or a number of layers in an [ANN]

The model selection then typically consists in training multiple models,
evaluating them and choosing the one that performs the best. In order to avoid
selecting a model that is overfitted to a certain kind of data cross-validation
is often used.

1.4.4 Cross-validation

|Cross-validation| is a technique used to evaluate how a model will perform
on an independent data set. In its basic form, [CV] consists in splitting a data
set into multiple sets of same size called folds and performing multiple training
and testing phases. In each phase one fold is selected as testing and the rest as
training. The model is then build using the training folds and evaluated using
the testing fold. A [CV] using K folds is commonly called a K-fold [CV] The
output of the [CV]are then K scores where K is the amount of folds and each
score corresponds to a testing score of one fold. A mean of the scores over
the testing folds is then commonly calculated and it can serve as a primary
metric for model selection.

12



CHAPTER 2

Introduction to Predictive
Maintenance

In this chapter we provide an introduction to the problematic of [PdM] In
Section [2.1] we explain the motivation in context of other maintenance strate-
gies. In Section [2.2] we describe condition monitoring, a fundamental process
of [PAM], which consists in gathering data that can help reveal the condition
of the subject. Finally, in Section [2.3] we provide an introduction to different
approaches to i.e. how can be condition monitoring data used to predict
the condition of the subject.

2.1 Motivation

A life-cycle of industrial machinery consists of several stages with the oper-
ation stage usually being the longest stage of all [2], as illustrated in Figure
During this stage the machinery might develop a fault or may naturally
degrade. Both a fault and a degradation have a negative effect on its health,
i.e. its ability to operate. Moreover, the fault or the degradation can grow
in severity over time and may lead to a failure [3,/4]. Figure illustrates a
difference between a fault and a failure. A failure may be either an inability
of the subject to operate at all which causes downtime or it might be consid-
ered as reaching some threshold of permissible degradation, commonly called
a failure threshold [3]. In both the cases the failure is a highly unwanted

design  produc- |assemb- operation
tion ling
i i
1-3 years 14-1 year months  1-2 months 25 years or more

Figure 2.1: Machinery life stages [2].
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2. INTRODUCTION TO PREDICTIVE MAINTENANCE

9 Ball fault

Inner race fault

(a) fault (b) failure

Figure 2.2: The difference between a fault and a failure: (a) a fault of a
bearing ; (b) a failure of a wind turbine [4].

event which decreases reliability and may costs a high amount of resources,
both human and financial, to fix [40].

The industrial machinery is a typical example where faults, degradation
and failures occur. However, it is definitely not limited to the industrial ma-
chinery. Hard drive can fail [20], network faults can occur and, with a bit
of exaggeration, even humans can suffer from a fault, can degrade and even-
tually fail, e.g. a hearth failures [42,[43]. Therefore, to express this generality
we will stick to the term subject.

To preserve the health of the subject maintenance actions are performed
during which an action that mitigates the fault or the degradation is executed,
e.g. a replacement of a faulty part such as a bearing [40]. There exist two
classical maintenance strategies: reactive (also called corrective) and preven-
tive [5].

Reactive Maintenance Reactive maintenance strategy is performed as a
reaction to a failure. It is sometimes also referred to as a corrective mainte-
nance as a failed component/part is typically repaired or corrected . Reac-
tive maintenance strategy reduces the amount of maintenance actions (they
are done only when absolutely needed). However, reactive maintenance re-
quires high availability of the personnel responsible for the maintenance ac-
tions as the failure might happen e.g. in the middle of the night and, most
importantly, and, most importantly, it does not prevent a failure — so there
is either a downtime or unsafe operation.

Preventive Maintenance The second strategy called preventive mainte-
nance is based on scheduling the maintenance actions at predefined intervals
such as twice a year [5]. Preventive maintenance can significantly reduce the

14



2.1. Motivation

COSTS

Reactive
Maintenance

Preventive
Maintenance

Predictive
Maintenance

Conduct maintenance after
/ failures occurred
Failure

Conduct maintenance
regularly

Failure

Predict the failure and conduct
maintenance in advance

Time

Figure 2.3: Maintenance plans of RM, PM and PdM .

A preventive
Maintenance [PM)

Predictive Corrective/Heactive
Maintenance [PdM]) Maintenance [CM)

Optimum

4

= Total Cost

NUMBER OF FAILURES

= Prevention Cost Repair Cost

Figure 2.4: Costs of maintenance strategies [@]

risk of failures as the subject is regularly checked, but may schedule main-
tenance actions even when it is not necessary which increases maintenance

Predictive Maintenance Predictive maintenance strategy aims for a com-
promise between the two classical strategies mentioned above by scheduling
the maintenance only when the subject exhibits signs of a fault or degrada-
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2. INTRODUCTION TO PREDICTIVE MAINTENANCE

tion [5]. Figure illustrates planning of maintenance actions according to
a reactive, preventive and predictive strategies. Figure illustrates the re-
duction of costs predictive maintenance brings. The main goal of predictive
maintenance is to monitor and analyze the condition of the subject and pro-
vide the personnel responsible for the maintenance scheduling the information
about the subject’s condition so that a maintenance action can be scheduled
when needed [5,40].

2.2 Condition Monitoring

Condition monitoring is a process of collecting information that might re-
veal the health state of a subject [44]. The health state of the subject can
be observed directly, e.g. the amount of wear of a cutting machine [10], or
indirectly such as measuring operating conditions of a subject (e.g. outside
temperature) or calculating time from last maintenance action [45]. In this
section we describe various sources of the condition monitoring data.

2.2.1 Operational Settings

Operational settings are any subject specific settings such as load, speed,
cycle number or current firmware version and may change over time [46).
Operational settings might affect how fast the subject degrades, e.g. a subject
operating under higher loads than the rest of the subjects is likely to degrade
sooner.

2.2.2 Environment data

Environment data include any information about the environment where the
subject operates, the external factors. Common environment data include
outside temperature, geolocation or season of the year. Environment data
might be important predictors of health as they might have effect on how the
subject operates. For example a compressor might have a higher energy con-
sumption during winter than during summer, during which such high energy
consumption might be considered as anomalous and thus might signify a fault.
The outside temperature of the environment can also have significant effect
on how fast the capacity of a lithium-ion battery degrade [47].

2.2.3 Sensor Data

Sensor data such as pressure, vibration or acoustic noise are one of the most
commonly measured condition monitoring data [5]. The sensors can measure
directly the subject, e.g. vibrations of rotating machinery such as pressure in
a compressor, or they might measure the environment where the subject is
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Figure 2.5: Four frequency spectra of rotating machinery vibration signals
each representing different health state. On the x-axes are frequencies while
on the y-axes are amplitudes. F is a driving frequency — the frequency
equivalent to the speed of rotating.

operating, thus being basically source of environment data mentioned above
2].

The sensor data are typically in a form of time series, sampled at periodic
intervals. For sensor where the observed variable doesn’t change as frequently
(e.g. temperature) the sampling frequency can be relatively low such as one
sample per hour. However, in case of e.g. vibration or acoustic signals mea-
sured on fast rotating machinery the sampling frequency is commonly in KHz,
i.e. thousands of samples per second [48].

Sensor data can be used in their natural time representation, i.e. a wave-
form. However, there exist several preprocessing techniques that can trans-
form the data into different representation where faults can be more easily
revealed such as Fourier or Wavelet transforms which transform the data to
frequency or time-frequency representations, respectively. These transforma-
tions are especially suitable for revealing faults in rotating machinery where an
increase of amplitude at certain frequencies can signify a fault 7]. Figure
shows frequency spectra of vibration data of rotating machinery in different
health states. Figure [2.6] shows time-frequency spectrograms of healthy and a
faulty gearbox obtained by a wavelet transform and a photo of the fault.

2.2.4 Static Data

Static data include data associated with the subject that do not change over
time such as installation date or model type. Installation date might be used
to calculate an age of the subject — usually the higher the age the higher the
probability of a failure [40]. Similarly the model type can be indicative of how
likely is an occurrence of a failure [45] — e.g. a fault might frequently occur
after around two years of operation for for some model types.
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(b) wavelet spectrogram of
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Figure 2.6: Wavelet spectrograms of vibration data from a healthy and a faulty
gearbox where the dashed vertical line separates individual rotation cycles [7]
and a photo of the fault in the gearbox . The faulty gearbox had a broken
tooth and an increase in amplitude (darker color) once per revolution can be
seen in the spectrogram.
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- N

(a) healthy (b) moderate fault (c) severe fault

Figure 2.7: X-ray images carbon fiber reinforced polymer panels degradation

[9).

Events Various events such as alarms, maintenance actions or failures can
happen during operation of the subject . Information about past events
such as number of recent alarms in past month or time from last maintenance
might be indicative of how likely is the subject to fail, e.g. the longer the time
from last maintenance the more likely is that it will fail in near future.

2.2.5 Health Label

Health label is a direct representation of a subject’s health state. The health
label can be either binary, e.g. healthy or faulty/failed, or multiclass where the
different values might represent for example either a healthy state, different
fault modes or different severity of faults. The health labels are typically
acquired by diagnostic methods which are often performed during corrective
or preventive maintenance actions . In machinery, a common diagnostic
method is disassembling and inspection [3] as for example shown in the Figure
[2:6] which shows a fault revealed in a gearbox. The health labels might be
acquired also via non intrusive methods such as X-ray imaging as shown in

Figure 2.7

2.2.6 Health Index and Failure Threshold

Health index, also called as a health indicator or a degradation level , repre-
sents a health state of a subject as a continuous variable. Examples of Health
index are crack size, tool wear, capacity of a battery or root mean square
value of vibration data. The root mean square value of vibration data is a
good example of health index that is relatively easy to obtain via non-intrusive
method — an accelerometer is used for measuring vibrations. However, intru-
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Figure 2.8: Degradation index (flank wear) of a milling machines through
time. The flank wear was measured with a microscope .

sive methods must be sometimes used to measure the health index — Figure
shows development of a flank wear of milling machines which was mea-
sured by disassembling the milling machine and measuring the size of the wear
with a use of a microscope.

A subject may be considered as failed when its health index reaches a so
called failure threshold. The value of the failure threshold and can be obtained
via various ways:

e by domain requirements, e.g. a minimal needed capacity of battery ;

e by ISO norms — e.g. ISO standard 10816-3 defines permissible velocity
vibration levels for machines that may be used as a failure threshold

[51}52];

e by inferring from historical data containing failures of subjects [53}[54].

2.3 Approaches to Predictive Maintenance

The goal of [PdM] is to monitor and analyze the condition of a subject in
order to plan maintenance action when a fault is present or when a failure
is likely to occur soon. In the previous section, we described the condition
monitoring, i.e. the process of collecting the data that can reveal the health
state of a subject. In this section we provide an introduction to approaches

20



2.3. Approaches to Predictive Maintenance

Severe fault

08 D oo /\ Wﬁq FoL
i No fault ‘

Flank face of insert
12} .
0.6 S o™ 1 \m'
™
™
o ] (&

04

QW

L

¢t 06}

02 E FPT
FPT A A A AN A

Flank wear (mm)
RMS (g)

) ! L L L I 0 Heualthy stage | Unhealthy stage
0 20 40 60 80 100 120 0 15 3
Time (cycle) Time (h)
(a) (b)
08
Severe fault N
0.7 ; 10 EoL
Incipient fault /
0.6 a0
0% No fault / Uy 4
o) 4 l:'# ’
12 04 / ‘) W 2
é 03 y
) FPT
02
01p Q_.___,h_,—-f’—'*-‘*"l
Healthy stage Degradation stage (! l,[.l:"l
0 1 S L . ' stage
0 L 2 3 4 3 6

Time (day)
(©)

Figure 2.9: Illustration of different operational profiles of subjects ||

how to use the condition monitoring data to build a model — a model
that is capable of analyzing the condition and predicting a health state of the
subject.

There exist multiple typical operational profiles that might precede a fail-
ure. The common operational profiles (illustrated in Figure include [3]:

e a continuous degradation — the subjects continuously degrades over the
whole time of its operation;

e two-stage profile — a subject is healthy and operates under stable con-
ditions until a fault occurs which starts the degradation process and
potentially ends with a failure;

e multi-stage profile — similar as two-stage but the unhealthy stage can
be divided into multiple stages.

Moreover, there can be available only limited data about the failures or faults
— e.g. there can be only information when the subject failed, only information
about the subject being faulty at some specific time point or there
might be even no health labels available at all or of insufficient quality .
The existence of the different operational profiles and of the different types of
available data gives rise to multiple approaches to
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Figure 2.10: Different m modeling approaches from our point of view.

We identified three main approaches (illustrated in Figure [2.10)):

e fault detection — detecting whether a fault (or some kind of anomaly)
is present, i.e. detecting whether a subject is malfunctioning;

e failure prediction — identifying whether a failure will happen in near
future;

e remaining useful life (RUL)| prediction — predicting the exact amount
of time that is left until a failure occurs.

The approaches differ in what operational profiles they are suitable for, e.g.
in case of a continuous degradation there is no point in detecting fault but
rather should be predicted, and also in what data are required (e.g. a
failure prediction model can be built only when there are available data about
failures).

Aside the three main approaches we can see also one specific approach:
fault (or failure) diagnosis — identifying which specific type of fault is present
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(or which specific failure will happen) if more than one type can occur. In
some literature the diagnosis is considered as part of a[PdM| modeling process,
where the whole process consist of detecting a fault, diagnosing the exact type
of the fault and making prognosis about remaining useful life (illustrated
in Figure . However, from the perspective, we consider diagnosis as
a task independent of fault detection, failure prediction or remaining useful
life. That is because if there exist several fault/failure a separate model can
be built for each of them . Therefore, we consider fault diagnosis as an
extension of the approaches we describe here and we consider it as out of scope
of this thesis.

In the next chapter, we describe the three main approaches mentioned
above in detail.
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CHAPTER 3

Approaches to Predictive
Maintenance

The goal of is to monitor and analyze condition of a subject in order
to plan a maintenance action when the subject is faulty or a failure is likely
to occur soon. This can be achieved by using algorithms and historical
condition monitoring data to build a model that predicts the condition —
a model. In this chapter we describe three main approaches how to
build a[PdM]model — fault detection (Section [3.1)), failure prediction (Section
and remaining useful life (Section . We put an emphasis on the
techniques used in the individual approaches and the evaluation of the built
models.

3.1 Fault Detection

Fault detection is an approach where the goal is to detect whether a subject
suffers from a fault or a malfunction [26]. It is thus a classification problem
where the features are known condition monitoring data and the target vari-
able is a binary health label — healthy (no fault) or faulty. When a fault is
detected a maintenance action can be immediately scheduled so that a poten-
tial failure of the subject (and thus its downtime) is avoided.

From the approaches we describe in this chapter, fault detection approach
is the least restrictive regarding data requirements — it does not require any
data about the actual failures of the subjects.. Moreover, fault detection model
can be build even when there are no health labels available at all. In that case,
the faults can be considered as anomalies?] and thus the fault detection can be
formulated as an anomaly detection problem.

3as the fault indeed should be rare and out of distribution of the regular behaviour
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Table 3.1: Example data for fault detection: (a) point-based faults, (b) range-
based faults.

(a) point-based faults

features fault

1.2 31 --- 4.1 0

21 42 --- 8.0 1

20 24 - 2.2 0

1.9 14 --- 9.2 1

1.0 27 --- 2.3 0

(b) range-based faults

subject id time features fault
subject A | 2020-01-01 | 0.1 0.05 34.1 0
subject A | 2020-01-02 | 0.3 0.12 34.2 0
subject A | 2020-01-03 | 1.1 3.2 37.5 1
subject A | 2020-01-04 | 1.2 3.1 37.9 1
subject A | 2020-01-05 | 0.2 0.02 33.1 1
subject A | 2020-01-07 | 2.5 0.21 35.9 0
subject A | 2020-01-08 | 2.2 0.2 36.1 0

3.1.1 Data Specifications

Fault detection approach expects condition monitoring data as the features
and optionally a binary label (healthy / faulty) as the target variable. The
health labels are not required as the faults can be regarded as the most
anomalous samples. Based on several real-world data sets for fault detec-
tion [48,/55,[57H59] we identified two types of data for fault detection — data
with range-based faults and data with point-based faults.

Range-based faults The data for fault detection can consist of time series
where at each time point there is one sample that has condition monitoring
data and a separate health label. The faults are thus located in time and they
can last over multiple time points — consecutive samples with positive health
labels (fault present) can be considered as one fault. Inspired by an article
by Tatbul et al. [12] where the object of study are range-based anomalies, i.e.
anomalies lasting in time, we call such faults range-based faults. Figure (3.1
shows an example of range-based faults from a real-world data set containing
faults in power plants [57]. Table then show an example of the format of
the data with range-based faults.
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Figure 3.1: Example of range-based faults in a power plant

Point-based faults Data with point-based faults are data where each sam-
ple that contains condition monitoring data and a health label is considered as
time-independent to all the other samples. Each fault can be then considered
as a single point — we thus call such faults point-based. Such data set is for
example a Seeded Bearing Fault Test data set from Case Western University
Bearing Data Center [48] where various faults were seeded in bearings and
their vibration data were measured on a test apparatus. Note, that as the
vibration data are collected as signals, the data set consists of time series.
However, in contrast to data with range-based fault, here each time series cor-
responds to one sample and thus one health label. An example of the format
of the data with point-based faults is shown in Table

The range-based faults are commonly more realistic — in real-world the
faults typically do last in time. On the other hand, the data with point-based
faults can be much easier to collect — a set of healthy and faulty subjects are
inspected, e.g. in a laboratory conditions or at a workshop, as for example in
case of seeded bearing fault test data set mentioned above.

The range-based faults are often converted into the point-based faults be-
fore modeling as it is easier to build a fault detection model on the point-based
data than on the time-series data. In the conversion, each range-based fault is
split into multiple point-based ones (accordingly to the length of the range).
It is important to note, though, that the range-based and point-based faults
should be evaluated differently as the classical metrics for classification are
not suitable for evaluation of range-based faults — they would highly favor
faults with long ranges (more in Section .

The faults are typically rare as the subjects are most of the time healthyﬂ
Therefore, real-world data sets for fault detection are commonly highly imbal-

“hopefully
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3. APPROACHES TO PREDICTIVE MAINTENANCE

anced with the samples having a positive label (faulty) being the minority. An
exception can be data collected in laboratory conditions where for example
the number of healthy and faulty samples can be the same. Such example
is a condition monitoring of hydraulic systems data set [59] where multiple
operation modes including a healthy mode and multiple faulty modes were
simulated on a testing rig of a hydraulic system where the same amount of
data was collected for every operation mode.

Another important aspect of data for fault detection is the availability
of health labels. As mentioned in previous chapter (Section the labels
are typically obtained manually during e.g. corrective maintenances or by
expensive methods such as disassembling of a machinery or an X-ray imaging.
Therefore, it might happen that there are either no health labels available or
they are not in a sufficient quantity or even quality.

3.1.2 Modeling

Fault detection is a binary classification problem — the goal is to build a
model that predicts a binary class where the negative class corresponds to a
healthy state and the positive class to a faulty state. The choice of the specific
[MT] algorithm is affected by four aspects: format of the condition monitoring
data (e.g. time series, spectra or simple features), type of faults (point-based
faults vs range-based faults), the class imbalance and the (un)availability of
the health labels.

As shown in Figure an observatiorﬁ of a subject can consist of a simple
feature vector, one dimensional structures such as a time series or frequency
spectra, images such as spectrograms or even an arbitrary combination of the
mentioned. In case of a simple feature vector, classical ML algorithms such
as SVM or decision trees are commonly used [60-62]. On the other hand,
deep learning algorithms such as recurrent or convolutional neural networks
are used as the state-of-the-art methods for fault detection with condition
monitoring data containing time series or images [17,[63H65].

As the data sets for fault detection are commonly highly imbalanced (as
described in techniques to increase the capability of the supervised
classification algorithms to classify the minority class are commonly used.
Such techniques include data set balancing before the training phase or a
modification of the algorithm itself [66].

In case there are only few labels available or there are no labels available at
all, semi-supervised and unsupervised techniques such as anomaly detection
with autoencoders can be used [17,/67].

Sone sample in the data set that containing condition monitoring data and for which we
predict the label

28



3.1. Fault Detection
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Figure 3.2: Point-based vs range-based faults (anomalies) [12].

3.1.3 Evaluation

In this section we describe how to evaluate a performance of a fault detection
model. The questions that the evaluation of a fault detection model should
answer are:

e What is the probability that the model will detect a fault?
e What is the probability that the model will predict a false alarm?

The questions above are in [MI]commonly answered by precision and recall
metrics. The evaluation of point-based faults follows classical definition of
precision and recall as described in Section [1.4] as it is a standard binary
classification. Regarding the range-based faults, we can convert them into
point-based faults, and thus we can use the same classical evaluation metrics.
However, the classical evaluation metrics might lead to misleading results for
range-based faults.

In case of range-based faults the predictions are located in time, i.e. they
have a start time and end time. However, the predictions are made point-wise,
i.e. each time point is assigned either positive or negative label. Therefore, it
might happen that a range-fault is only partially predicted (i.e. there are both
positive and negative predictions during the fault). Figure illustrates such
problem where the range-based faults (in the figure named anomaly ranges)
are only partially predicted. The notation used in the above mentioned figure
and in the rest of this section will be as follows:

e R and R; — the set of real fault ranges and the i*" real fault range,
respectively;

e P and P; — the set of predicted fault range and the § predicted fault
range, respectively.

Below we define range-based recall and range-based precision metrics, for time
series, respectively, as introduced by Tatbul et al. |[12]. If not mentioned oth-
erwise, all the definitions and statements below are taken and paraphrased
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3. APPROACHES TO PREDICTIVE MAINTENANCE

R function §(i, AnomalyLength) > Flat bias
function w(AnomalyRange, OverlapSet, &) return 1

MyValue < 0
MaxValue < 0
AnomalyLength < length(AnomalyRange)

function §(i, AnomalyLength) > Front-end bias
return AnomalyLength -1+ 1

for i « 1, AnomalyLength do function §(i, AnomalyLength) > Back-end bias
Bias < (i, AnomalyLength) return i
MaxValue < MaxValue + Bias function §(i, AnomalyLength) > Middle bias
if AnomalyRangeli] in OverlapSet then if i < AnomalyLength/2 then
MyValue < MyValue + Bias return i
return MyValue /MaxValue else

return AnomalyLength-i +1

(a) Overlap size
(b) Positional bias

Figure 3.3: Example definitions of an overlap size function and a positional
bias function [12].

from [12]. The authors of the article define the metrics on range-based anoma-
lies instead of range-based faults. As we use several figures from the article
for illustration we stick to the term anomaly, i.e. from now on an anomaly
(range) stands for a fault (range).

3.1.3.1 Range-based Recall

Detection of a anomaly ranges can be broken down into four aspects: existence,
size, position and cardinality. We define the four aspects below and then we
describe how a range-based recall can be defined with respect to these four
aspects of interest.

Existence Detecting the existence of an anomaly (even by predicting only
a single point in R;) itself, might be valuable [12]. We define an existence
reward function as follows:

1, if Y0 RN P > 1,

ExistenceReward(R;, P) =
0, otherwise

Size and Position The larger the size of the correctly predicted portion of
R; the better. Moreover, in some cases, not only size, but also the relative
position of the correctly predicted portion of R; might matter to the applica-
tion — e.g. we might want to detect the anomaly as soon as possible. For
the representation of the size and position of the overlap we use a positional
bias function () and an overlap size function w(). The w() function should
return a value in range [0, 1] where 0 is no overlap and 1 is perfect overlap
(the whole real range is predicted). The §() function is be used by the w()
function to assign weights to individual positions in the real range, i.e. 4() is a
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Figure 3.4: Illustration of the effect of position bias function () in the overlap
size function w().

parameter of w(). The simplest d() is a flat bias — it returns the same weight
for all samples. However, if for example an early prediction is more valuable,
then the samples in the front of the real range can be assigned higher weight.
Both of these functions can be set based on the needs of the applications.
Figure shows an example of definition of the overlap size function w() and
several examples of positional bias functions — flat, front-end and back-end.
Figure then illustrates how choice of a positional bias function d() affects
the value of w() function. Using the w() and () we define the size and the
position of the overlap as

Np
ZW(RZ‘, R; N Pj, (5) S [0, 1].
j=1

Cardinality Detecting R; with a single continuous prediction range P; € P
may be more valuable than doing so with multiple different predicted ranges
in a fragmented manner. Therefore, we use a cardinality factor € (0,1] that
expresses how many predicted ranges overlap with the real range. Cardinality
factor equal to 1 is the best value, i.e. the real range overlaps with at most
one predicted range, and the closer to zero the more predicted ranges overlap
with it:

1, if R; overlaps with at most one P; € P

CardinalityFactor, (R;, P) =
~v(R;, P) € (0, 1], otherwise.

The value ~ (overlap cardinality function) can be set for example to 1/n where
n is the number of predicted fault ranges that overlap with the real fault range
(R;). Figure[3.5]illustrates examples of cardinality values for two different sets
of predictions.
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Figure 3.5: Illustration of the effect of the cardinality function (y()) in range-
based recall.

Overlap Combining the overlap size function w() and the cardinality factor
we define an overlap reward as:

Np
OverlapReward,, 5 ,(R;, P) = CardinalityFactor, (R;, P) x Z w(R;, Ry N Py, 9).
j=1

The overlap reward is in range [0,1] and expresses the amount of overlap
including the size, position and cardinality.

Detection Score Taking the existence and overlap rewards we can quantify
the amount how much each fault range is predicted by a detection score € [0, 1]:

DetectionScore, ., 5~ (Ri, P) =a x ExistenceReward(R;, P)
+ (1 — ) x OverlapReward,, 5, (R;, P)

where « € [0, 1] is a parameter defining relative weight between the existence
and the overlap reward. Setting o = 1 represents a situation when we are
only interested in whether there is at least one positive prediction in the fault
range whereas o = 0 represents a situation when we are rather interested in
the amount of true predictions within the fault range.

Range-based Recall Taking the detection score we can then define the
range recall as

R.P)— >_; DetectionScoreq 4, 5.~ (Ri, P).

11-
recall-range N,

oc,w,(s,w(

where N, is the amount of fault ranges.

3.1.3.2 Range-Based Precision

Range-based precision can be then defined similarly as recall with swapping
real and predicted fault ranges:
>_; DetectionScore, , 5.~ (F;, R)

(R, P) = N .

precision-range,, ,, 5 -
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Figure 3.6: Illustration of failure prediction: (a) general concept; (b) exam-
ple of negative prediction, i.e. failure won’t occur; (c) example of positive
prediction, i.e. failure will occur.
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Figure 3.7: Illustration of monitoring, prediction and warning windows.

The range-based precision thus basically represents how much the predicted
ranges overlap with the real ranges.

3.2 Failure Prediction

Failure prediction is an approach where the goal is to make a binary prediction
whether a failure will happen in near future — in a monitoring window. The
concept of failure prediction is illustrated in the Figure|3.6] Failure prediction
approach is suitable in cases when there are available data about failures and
when there are some patterns that precede the failure — e.g. when an air
compressor raises low pressure alarms before it fails.

When predicting a failure, the domain problem might require the predic-
tions to be made at least some time prior to the failure, e.g. the technicians
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3. APPROACHES TO PREDICTIVE MAINTENANCE

subject id time features failure event
subject 1 | 2020-01-01 | 0.1 0.05 34.1 none
subject 1 | 2020-01-02 | 0.3 0.12 34.2 none
subject 1 | 2020-05-06 | 1.1 3.2 37.5 none
subject 1 | 2020-05-07 | 1.2 3.1 37.9 failure A
subject 1 | 2020-05-08 | 0.2 0.02 33.1 none
subject 1 | 2020-05-09 | 0.3 0.05 33.5 none
subject 1 | 2020-07-29 | 2.5 0.21 35.9 none
subject 1 | 2020-07-30 | 2.2 0.2 36.1 failure B

Table 3.2: A example of run-to-failure data set for failure prediction.

have to be informed at least two days ahead in order to be able to sched-
ule and perform the maintenance. Therefore, a warning window might be
specified which marks the minimal time prior to the failure in order for the
prediction to be considered useful. The time period of useful predictions is
then called a prediction window and is defined as the time period between
tp — M and tp — W, where tp is a time stamp of the failure, M is the size of
the monitoring window and W is the size of the warning window. Figure 3.7
illustrates prediction and warning windows.

Failure prediction can be seen as a special case of fault detection where
the prediction window are range-based faults. However, failure prediction has
some specifications in modeling and evaluation that differ from the range-
based faults detection and thus we describe it as a special approach.

The concept of failure prediction is also used in many other domains such
as healthcare, where heart failures are predicted, and it can also be found
under name of early fault detection, early prediction of rare event, rare events
prediction or rare events classification [32,42,43,68]. In this thesis we will
stick to the name failure prediction.

3.2.1 Data Specifications

Data for training a failure prediction model must contain information about
failures. The data typically consist a condition monitoring data that are con-
tinuously collected during time and a failure log — information when failures
happened. Such data are often called run-to-failure. An example of run-to-
failure data is illustrated in Table Moreover, it is necessary to have moni-
toring and warning windows. However, it is good to note that the monitoring
time does not have to be fixed. Multiple models with different monitoring
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windows can be built and the choice of the final monitoring window can be
made based on how the individual models perform.

Training Data
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Figure 3.8: Diagram of modeling failure detection as time series point-based
classification.

3.2.2 Modeling

A failure prediction model can be built using a supervised classification al-
gorithm where the samples in the training data are artificially labelled prior
to the failure as positive. Moreover, the predictions can be smoothed. The
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3. APPROACHES TO PREDICTIVE MAINTENANCE

whole modeling process is visualized in Figure [3.8] and described below.

3.2.2.1 Artificial Labeling

The classifier should learn to predict positive samples prior to failures. There-
fore, samples up to M time steps prior to a failure are labeled as positive. An
example of artificial labeling with monitoring window of size 6 is illustrated
in the upper part of Figure [3.8

3.2.2.2 Prediction

The predictions are made point-wise by the trained classifier. However, it
might happen that there occur a single positive prediction among negative
predictions due to a noise. Therefore, the predictions can be smoothed us-
ing a rolling window and a positive prediction is assigned at time point ¢
when the ratio of positive predictions in the last n predictions is higher or
equal than a given threshold. We call the two parameters mentioned above a
smoothing window and a smoothing threshold. In case the classifier is capa-
ble of predicting probabilities of classes, the smoothing can be performed on
the probabilities before the decision threshold is applied to avoid having two
thresholds.

3.2.3 Evaluation

In this section we describe how to evaluate the performance of a failure pre-
diction model. During evaluation we will aim to answer following questions:

e What is the probability that the model will detect a failure?

e What is the probability that the model will make a false alarm? Il.e.
makes positive prediction but the failure won’t occur in the monitoring
window.

These questions are in[MI]commonly answered by precision and recall metrics.
However, since we have more positive labels than failures due to artificial
labeling, it is not straightforward how to use these metrics. Below, we describe
how to use classical precision and recall (described in Section and range-
based precision and recall (described in Section to evaluate a failure
prediction model. Next, we describe a modification of precision and recall,
reduced precision and recall, introduced by Weiss et al. [32]. Finally, we
propose new precision and recall metrics, a combination of the range-based
metrics and the reduced metrics, that we call event-based precision and recall.

3.2.3.1 Classical Precision and Recall

This section describes how to use precision and recall using their standard
definition (Section [1.4)) for failure prediction.
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FP TN FN TP not taken

into account

Figure 3.9: Illustration of true labels and predictions in failure prediction.

As we use artificially created positive labels, we define following:

1. Actual positive samples are samples in the prediction windows, i.e. be-
tween tp — M and tp — W.

2. Actual negative samples are samples before tp — M.

3. Samples in the warning window, i.e. between tp — W and tp, are not
omitted from evaluation as they do not represent useful predictions.

Figure illustrates what time points are considered as positive and neg-
ative and which predictions are considered as[TP} [TN] [FP]and [FN] Recall and
precision metrics are then used by their standard definition as:

recallz?,
. TP
recision = ————.
P TP + FP
te-M te-W  tr te - M te- W tr
000000001227 time 000000111p227 tme
[ [ [ ' [ [ [ '
000000001P?227 0000000002227
[ [ [ ” [ [ [ ”
000000001227 0000000002227
[ ' [ '

Figure 3.10: Different predictions for the same data having the same recall
score: (left) all of the three failures predicted (right) only one failure pre-
dicted.

The classical metrics have two major issues:

e Recall doesn’t reflect how many failures were predicted. Figure [3.10
shows examples of two models whose predictions have same recall score
but they successfully predicted different number of failures.
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Figure 3.11: Different positions of two FPs having different severity: (top) far
from each other — such FPs can be considered as independent; (middle) close
to each other — the second FP is less serious and the two FPs can be almost
considered as one; (bottom) close to each other and close to the monitoring
period — probably not so serious FPs as it might happen that the failure was
predicted a bit sooner than at tp — M.

e Precision doesn’t reflect how close FPs are to each other. Figure 3.11
shows examples of three series all having two but possibly hav-
ing different importance in practice, e.g. two consecutive FPs may be
treated as one FP whereas two FPs far from each other should count as
two FPs.

Below, we describe three other types of precision and recall metrics that might
mitigate these issues.

3.2.3.2 Range-based Precision and Recall

Failure prediction can be evaluated using range-based precision and recall
as described in Section by taking the prediction windows as real fault
(anomaly) ranges and consecutive positive predictions as predicted ranges.
Setting a non-zero existence weight o to the detection score of the range-
based metrics solves the first issue mentioned above — recall not reflecting
how many failures were predicted.

3.2.3.3 Reduced Precision and Recall

Weiss et al. introduced in 1998 evaluation metrics called reduced precision
and recall for prediction of rare events in time series [32] which is a problem
identical to failure prediction. The main idea of the reduced metrics is to use
the number of events (failures) instead of positive samples, use the number of
predicted events instead of TP and use discounted FP instead of FP.

P — TotalEvents The total number of events (failures) is used instead of
positive samples. This means that for every prediction window consisting of
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Figure 3.12: Tllustrations of events (failures) being and not being predicted
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Figure 3.13: Illustration of calculating DiscountedFP.

M — W samples there is one even, i.e. total number of events is equal to
dividing the number of positives by the size of a prediction window.

TP — EventsPredicted The true positives are replaced by the number of
predicted events. The event is considered as predicted when there is at least
one positive prediction in its prediction window, i.e. at least W and at most
M time steps prior to the event. Figures [3.12a] and [3.12D] illustrate examples
of events being predicted and not being predicted, respectively.

FP — DiscountedFP Every positive prediction has a meaning that an
event (failure) will happen in the monitoring window. If there are two consec-
utive positive predictions, the latter prediction can be considered as having
lesser severity as the two consecutive predictions can be regarded as one false
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alarm. Therefore, Weiss et al. define calculate as the number of complete,
non-overlapping, monitoring windows associated with a false positive [32]. For
example when having monitoring window of size 10, two consecutive false pos-
itives will produce a discounted FP of 1.1, i.e. 1 for the first prediction plus
0.1 for the second. If the there is a false positive at time point ¢ and a false
positive at time point ¢ + 5, then the discounted FP for these two false posi-
tives will be equal 1.5. Figure [3.13]illustrates how discounted FP is calculated
in three different scenarios.
The reduced precision and recall metrics are then defined as:

EventsPredicted

TotalEvents
EventsPredicted

EventsPredicted + DiscountedFP"

reduced recall =

reduced precision =

Reduced recall is then identical to range-based precision when setting o =
1, i.e. taking into account only the existence of a positive prediction in the
prediction window.

3.2.3.4 Event-based Precision and Recall

Above, we described how range-based and reduced metrics can be used for
failure prediction. In this section, we propose a combination of the range-based
and the reduced metrics. The combination consists in taking the reduced
metrics replacing the number of events predicted by a sum of detection scores
from the range-based metrics. We call such metrics event-based precision and
recall and define it as follows:

>~ DetectionScore

Events
>~ DetectionScore

3" DetectionScore + DiscountedFP

event-based recall =

)

event-based precision =

where Y DetectionScore is a sum of detection scores for all the prediction
windows.

3.3 Remaining Useful Life Prediction

[Remaining useful lifel (RUL) prediction is a m approach where the goal is
to predict the time left until the subject is still able to perform its intended
function, i.e. until a failure occurs. This section is structured as follows. In
Section [3.3.1] we give a motivation why and when to predict [RUL] instead of
using fault detection or failure prediction approaches. In Section [3.3.2] we
describe and compare two different modeling approaches to [RUT] prediction
— [HI}based [RUT] prediction and direct [RUL] prediction. The two approaches
fundamentally differ in how [RUL] is predicted. However, they still provide
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the same output — the [RUL] of the subject — and thus can be evaluated the
same way. Therefore, in the Section [3.3.3] we describe how to evaluate the
[RUT] prediction independently on the chosen modeling approach.

3.3.1 Motivation

An accurate long term [RUL] prediction can significantly help in scheduling the
maintenance actions in comparison with fault detection or failure prediction
approaches. Imagine a situation of having a large amount of subjects which
started operating at the same time — for example a fleet of one hundred
wind turbines. If the turbines were operating under similar conditions it
might happen that they will all tend to fail after similar amount of time of
operation — e.g. after two years. Both fault detection and failure prediction
approaches would then notify that all the wind turbines are faulty (or are
going to fail soon) at a similar time shortly before the failures, let’s say one
week ahead. However it might be impossible to schedule maintenance actions
for all the wind turbines at that time point because only two wind turbines
can be maintained per day and there is one hundred of wind turbines about to
fail in one week. With an accurate[RUL|prediction, on the other hand, one can
continuously have information about when each individual subject is going to
fail. If the [RUL] is then similar for many subjects the maintenance actions
can be scheduled more in advance so that all the subjects are maintained in
advance. However, an accurate [RUL] prediction is typically possible only in
certain domains and only when having the right type of data.

[RUL] prediction is typically done on subjects which have an ongoing contin-
uous degradation that can be well quantified — for example a turbine bearing
deterioration. The failure then can be either a complete inability of the sub-
ject to operate (e.g. the wind turbine shuts down) or it can be a state when
the subject is no longer capable of safe operation or of operation at enough
quality — e.g. a maximum capacity of a battery reaches 40 % of the designed
capacityP} In such cases it is common to predict during the whole life-
time of the subject (e.g. every day or week) [15]. In other cases, however, the
subject might operate under stable, healthy, conditions without any sings of
wear until a fault occurs which triggers the degradation process — the fault
grows in severity (as illustrated in the beginning of this chapter in Figure .
In such cases the [RUL] can be predicted over the whole lifetime as well but it
might happen that the prediction would be highly inaccurate until the fault
occurs. Therefore, the prediction can start after the fault (or anomaly)
is detectedm [3] and thus providing an estimation of the fault’s severity.

In such cases the failure is often rather called an end of life (EoL). However, as it
principally represents the same thing we will stick to the naming convention of failure.
Tassuming the fault is detected early enough so that the prediction is useful
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subject id time features failure | RUL
subject A | 2020-01-01 | 0.1 34.1 0 127
subject A | 2020-01-02 | 0.3 34.2 0 126
subject A | 2020-05-05 | 1.1 37.5 0 2
subject A | 2020-05-06 | 1.1 37.5 0 1
| subject A | 2020-05-07 | 1.2 --- 319 | L 0

subject B | 2020-01-01 | 0.2 33.1 0 89
subject B | 2020-01-02 | 0.3 33.5 0 88
subject B | 2020-03-29 | 2.5 35.9 0 1
subject B | 2020-03-30 | 2.2 36.1 1 0

Table 3.3: Example of calculating the values from the run-to-failure data.

3.3.2 Approaches

We identified two different modeling approaches to [RUL] prediction — direct
RUL prediction and HI-based RUL predictionﬂ In this section we describe
and compare the two approaches.

3.3.2.1 Direct [RULl Prediction

Direct [RUL] prediction is suitable when there are available run-to-failure data
for at least several subjects. The approach consists in training a regression
model on the run-to-failure data where the regressands (features) can be any
known data about the subject at the time of the prediction and the regressor
(the predicted value) is the retrospectively calculated from the run-to-
failure data. The calculation of the RUL is typically done as follows — at the
time of the failure, T', the RUL is equal to 0, at time T — 1 the RUL is equal
to 1, at T'— 2 the RUL is equal to 2 and so on. Table shows an example
of run-to-failure data set and calculating of the RUL.

As described in the previous section, the subjects might operate under sta-
ble and healthy conditions until a fault occurs which triggers the degradation
process. In that case the RUL prediction might be very inaccurate at the
early stage of the subject’s operation where it might be hard to distinguish
between e.g. RUL of 200 days and 170 days. Therefore in some works limiting
of the values with an upper bound is suggested [13] — e.g. all the RUL
values above 130 are set to 130 see Figure for illustration). The authors
in [13] conclude that such clipping might result in better performance in terms
of root mean squared error metric. However, as will be discussed in Section
the RMSE metric might be unsuitable for evaluation of RUL prediction

8HI — health indicator
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performance and thus it is questionable whether this RUL clipping helps the
overall performance of the model.

Promising results of direct RUL prediction have been achieved with re-
current and convolutional neural networks in various domains such as wind
turbines or bearings . In recent years, Bayesian neural networks are

gaining on interest in direct RUL prediction as they can predict a
[density function (PDF)|instead of single value predictions [14}71]. The mean
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Figure 3.16: Illustration of based prediction. The red dashed line
represents a failure threshold (FT), the blue line represents a health indicator
up to a current time point (green dot), the green line shows a prediction of
the health indicator in the future and the red line represents the actual future
values of the health indicator. .

of the [PDF] can then be used as the predicted RUL and a confidence inter-
val can be calculated and used as a form of uncertainty — which might be
very valuable for the end users as a supportive information about the predic-
tion. Figure [3.15] illustrates prediction of [RUL] with a Bayesian LSTM neural
network.

In some literature, the direct [RUL] prediction approach is considered as
having relatively low capability of predicting the [RUL] since a linear relation-
ship between the and the condition monitoring data is established .

3.3.2.2 [HIlbased [RUTL Prediction

The [HI}based [RUL] prediction approach is suitable in cases when there is
available a [health indicator| that directly represents the subject’s health
state and a predefined failure threshold. The failure of the subject is then
considered as the time point when the [HI| crosses the failure threshold. A
typical example of such case are batteries where the health indicator can
be their current maximal capacity and the failure threshold can be a ratio
of the designed maximal capacity (e.g. 30 %). The prediction then
consists in building a model that forecasts future values of the [HI| and in
identifying the time point when the HI crosses the failure threshold. The RUL
is then calculated as the time difference between the identified time point of
the crossing and the current time point.

The forecasted [HI|is commonly in a form of a [probability density function|
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Figure 3.17: Finding an empirical model for degradation of battery capacity

[15).

which tends to have higher variance the farther to the future the
is predicted . In case of predicting the of the HI the failure can
be defined as the time point when the mean of the [PDF]| crosses the failure
threshold. Figure illustrates the forecasting of the [HI with a [PDF}

The HI forecasting techniques can be divided into two categories:

e model-based techniques;

e machine learning techniques;

Model-based Techniques The model-based techniques are based on the
existence of an underlying physical or statistical model that describes the
degradation process of the subject. Such physical or statistical models can be
either apriori known or empirically observed from the available data. For ex-
ample the capacity of the batteries can be commonly fitted by an exponential
model — see Figurefor illustration. The physical and statistical mod-
els have typically parameters which are estimated from the currently available
HI data of the subject (the parameters are estimated for each subject sepa-
rately). In other words the forecasting at time point ¢ is done by a model with
parameters estimated based on the HI data up to time point ¢.

ML Techniques The Al techniques, on the other hand, do not require any
domain knowledge about the degradation process but rather build a model
that learns the degradation patterns from the previous HI data points by itself.
A simple technique can be using a regression model that takes time as the
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regressand and the HI as the regressor [73]. More advanced techniques include
for example a recurrent neural networks which can be trained to time series
prediction, i.e. output future values of the HI based on previous values [74].

A big benefit of HI-based RUL prediction over the direct RUL prediction
is that there is no need for run-to-failure data. The unavailability of run-to-
failure data is common in many domains such as aviation where the subjects
simply cannot operate until a failure mostly from safety reasons [30]. On the
other hand, the downside of the HI-based RUL prediction is that there has to
be a well defined health indicator and failure threshold.

3.3.3 Evaluation

In this section, we describe how to evaluate the performance of a RUL pre-
diction model. We will use the following notation:

e N — number of subjects;

e n € [1, N] — index of a n-th subject;

t € [1,T,] — time index of n-th subject’s observations, where ¢t = 1 is
the first observation and ¢t = T,, is the time stamp of the failure;

RUL,,(t) — actual of n-th subject at time ¢;

. ﬁn(t) — predicted of n-th subject at time ¢;

o W — warning time;

EoUP,, = T,, — W — |end of useful predictions| (EoUPJ), the last time
stamp of useful predictions, i.e. not yet in the warning window.

The warning time has the same meaning as in failure prediction — some lead
time before the failure of the subject might be necessary so that the mainte-
nance action can be scheduled and performed. Therefore, we will exclude the
time points between T'— W and T from the evaluation.

3.3.3.1 Classical Metrics

[RUL] prediction is in context of a regression task — the goal is to predict
a continuous variable. Thus, classical regression metrics such as MAE, RMSE
or MAPE can be used. However, it is not straightforward how to use them
from two reasons. First, we should omit the predictions made in the warning
window, the predictions after [EOUP} Second, we can calculate the mean error
either over subjects or over individual samples.
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An absolute error, squared error and absolute percentage error for n-th
subject can be calculated as:

EoUP,, o
AbsoluteError,, = Z RUL,(t) — RUL,(?)|,
t=1
EoUP,, -
SquaredError,, = Z (RUL,(t) — RUL,(#))?,
t=1
EoUP =TT
" L,(t) — RUL,(¢
AbsolutePercentageError,, = ; RU I(H)ILnI({tI)J ®)

In general, we will denote the error of the n-th subject as Error,,. The mean
of the errors can be then calculated either over subjects or over samples:

1 Error,
b' t = -7 )
mean error over subjects N Z EoUP,

mean error over samples = Z Errory,.
N EOUPn 1

Mean absolute percentage error (MAPE) over samples can be then calcu-
lated as:

N EoUP e
"| RUL, (t) — RULn (¢)
MAPE =
lEdUPn;% ;; RUL()

The metrics such as MAE and RMSE are then calculated analogically.

3.3.3.2 Prognostic Horizon

Prognostic horizon is an evaluation metric specifically tailored for RUL] predic-
tion proposed by Saxena et al. [30]. It aims to answer the following question:
What time ahead of the failure are the predictions within a prespecified bound
around the actual [RUL] for one specific subject? The prognostic horizon is de-
fined as the time difference between the time of failure (7},) and the first time
index from which all the future predictions are within the boundaries speci-
fied by parameter o. For the n-th subject the prognostic horizon (PH) with
parameter « is defined as:

me:T—mmMWthﬁﬁﬂwemm%@—mRmMﬂ+M}

Figure [3.18] illustrates the calculation of prognostic horizon on predictions for
one subJect.
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Figure 3.18: Illustration of prognostic horizon.

For evaluation of multiple subjects, j[mean prognostic horizon| (MPH]), can
be used as:

1
MPH, = > PHop
n

3.3.3.3 Metrics Relative to RUL

It might happen that the RUL prediction model has relatively high errors at
high RUL values compared to the errors at low RUL values. Therefore, we
can calculate the errors only for RUL values lower than a certain fixed value,
for example calculate MAPE only for RUL values lesser than 40. We define a
mean absolute percentage error up to RUL values equal to & (MAPEQX) as:

<

Eo

" |RULy(t) — RUL,(¢)
RUL, (%)

1 N
MAPE@k =
SN (EoUP, —k—1) z::

||M

Metrics such as MAE@k, RMSE@k can be then defined analogically.

In RUL prediction, we might be interested in how the model performs at
relatively to the actual RUL values, i.e. we might want to obtain one score for
every actual RUL value. Therefore, instead of calculating a mean score over
all the samples, we can calculate a mean score over all subjects at a various
RUL values. MAPE at different RUL values is defined as follows:

> RUL — RUL, (T}, — RUL)

MAPE(RUL) = BT

n
The metrics MAE, RMSE and others can be then defined analogically.
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Figure 3.20: Asymmetric weighting function for late and early predictions .

3.3.3.4 Asymmetric Weighting

When the prediction is not perfect, i.e. RUL # m, it can be either late
(optimistic) if RUL > RUL or early (pessimistic) if RUL < RUL. Figure
illustrates RUL predictions for one subject and highlights what predictions
are late and which are early. The late predictions might bring a risk that the
subject fails before the maintenance is performed. Therefore, the early pre-
dictions are typically better since the subject is in the worst case maintained
earlier than it would have to be.
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In [75] and [16] the authors suggest using an asymmetric weighting function
for weighting the prediction errors. The main idea is to give higher weight
to the late predictions in comparison with the early ones. The asymmetric
weighting function ¢ can be for example defined as

~d ifd<0
d) =
#ld) {2d ifd>0

where d is the difference between the predicted RUL and actual RUL, i.e. d =
RUL — RUL. Figure illustrates the above defined asymmetric weighting
function.

The weighting function ¢ can be then used in the classical regression met-
rics. We define a mean asymmetrically weighted percentage error (MAWPE)
with an asymmetric scoring function ¢ as:

1 N EoUP,

SN EoUP, ; 2

t=1

MAWPE, = . (RULn(t) - RULn(t)> ‘

RUL, (%)

The usage of the asymmetric weighting function in other metrics is then ana-
logical.

The asymmetry can be also applied in prognostic horizon where instead of
a single parameter « (defining the width of the bound) two parameters a™ and
a~ can be used which define the lower and the upper boundary, respectively.
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CHAPTER 4

Experiments

In this chapter we describe experiments conducted on real-world publicly avail-
able [PdM] data sets. There are two main goals of the experiments:

e demonstrate the approaches to [PdM] utilizing [MIL] techniques;

e compare the different evaluation metrics that can be used within each
approach.

For each of the approaches we conduct one experiment — totaling in three
experiments.

Though there is not enough publicly available data sets to make a robust
comparison of the metrics, we can conduct each experiment on one carefully
selected data set, suitable for the given approach, and compare the metrics
from two aspects:

e model selection — Do evaluation metrics differ in how they rank different
models for the task related to the data set?

e interpretability and practical value — How can the evaluation metrics
be interpreted by a domain expert? Does the evaluation bring practical
value for the task related to the data set? For example do the metrics
clearly express what the probability of predicting a failure or detecting
a fault is?

As the approaches and the evaluation metrics are different, every exper-
iment has slightly different experiment design. The general design of the
experiments can be, however, summarized as follows:

1. candidate models selection — use multiple evaluation metrics to select a
set of candidate models from a larger amount of built models, e.g. select
best ranked model by every metric, and discuss how the models agree
in models’ ranking;
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2. candidate models comparison — compare the candidate models, e.g.
using PR analysis, and discuss which model might be the most suitable
model for the given task;

3. performance interpretability — discuss what will the model’s perfor-
mance in practice be.

This chapter is organized as follows. In Section we describe implemen-
tation of the experiments including chosen technologies and the experiments’
reproducibility. In Sections and [£.4) we describe the three conducted
experiments, respectively. Each experiment consists of sections:

e data set description,
e task definition,

e design of experiment,
e results and

e discussion.

4.1 Implementation

The full implementation of the experiments is available as a GitHub reposi-
toryﬂ In this section, we provide a brief overview about the implementation
details.

4.1.1 Technologies

We implemented the experiments as Jupyter notebooks [76] in Python using
standard Python libraries for machine learning, scientific computations, and
visualizations including Scikit-learn [77], NumPy [78|, SciPy [79], Matplotlib
[80], Seaborn [81], XGBoost [36] and Pandas [82]. For the calculation of
range-based precision and recall metrics we used a python implementation
the authors of [12] provide at GitHub [83]. Moreover, for the calculation of

AUPRG]| we used pyprg package [84].

4.1.2 Hardware

We ran the experiments on a computational cluster using 256 GB of RAM
and 32 CPU cores of AMD Opteron 6344 CPU units provided by Datamolelﬂ

%https://github.com/datamole-ai/predictivemaintenancethesis
10yww.datamole.cz
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4.2. Experiment — Fault Detection in Scania Trucks

4.1.3 Reproducibility

Each experiment is completely reproducible. We use Poetry package man-
ager [85] to ensure that the same versions of Python libraries we used can be
installed for reproducing the experiments. Our GitHub repository thus con-
tains a pyproject.toml and poetry.lock files which can be used to install
all the Python packages at the same version we used. We used a fixed ran-
dom seed in all parts of code that depend on randomness so that reproducing
the experiments always yields the same results. Reproducing each experiment
then consist in running a Jupyter notebook which contain code for download-
ing the publicly available data set, preprocessing of the data and all the other
steps of the experiments such as modeling and visualizing the results.

4.2 Experiment — Fault Detection in Scania
Trucks

Fault detection is an approach where the goal is to build a model that detects
faulty behaviour, malfunction, of the subject. It can be modeled as a binary
classification or an anomaly detection — depending on whether health labels
are available or not. It is suitable in cases when there are no or insufficient
data about actual failures, i.e. breakdowns, of the subjects. In this section we
describe an experiment where we demonstrate this approach and compare its
evaluation metrics on one real-world data set.

The data used for building a fault detection model can contain either point-
based or range-based faults, i.e. faults with no temporal location or faults
located in time and lasting for a certain period of time (for more details see
Section . Since detection of range-based faults is partly similar to failure
prediction approach, which we demonstrate in the following experiment, we
focus in this experiment on fault detection of point-based faults.

For the purpose of our experiment we choose a data set containing point-
based faults in air pressurized system of Scania trucks [49]. We choose this
data set because its authors clearly define an objective function — a cost
function assigning costs to false alarms and missed faults (FPs and FNs)
expressed in the amount of dollars. The authors then clearly define the task
as to build a model that minimize this cost function. The cost function allows
us to demonstrate how decision threshold of the built classifier can be selected
in practice.

4.2.1 Data Set Description

The data set we use in this experiment contains condition monitoring data
and point-based faults in an air pressure system of heavy Scania trucks [49).
It comnsists of 76000 records and 171 columns where each row represents one
truck with the first column containing a binary health label (positive class
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represents a fault) and the next 170 columns containing anonymized features.
The provided data are already split into training and testing set where the
training set contains 60000 records and the testing set contains 16000 records.
Both the sets are highly imbalanced — the ratio of positive classes to the total
amount of records is approximately 1.67 % in the training set and 2.34 % in
the testing set.

Preprocessing The data set is provided partially preprocessed in a form of
two CSV files, one for training set and one for testing set. All the features
are numerical of which some of them are provided already binned — i.e. split
to a finite number of intervals. There are some missing values in multiple
feature columns which we impute by a mean of each column in the training
dataE Otherwise, we consider the data set as preprocessed and suitable for
the classification algorithm we chose (described later below).

4.2.2 Task Definition

The authors of the data set define a cost function assigning costs in dollars
for the false predictions:

e $ 10 per FP — cost of unnecessary check needed to be done by a me-
chanic at workshop;

e $ 500 per FN — missing a faulty truck that may cause a breakdown.

The task the authors set is to thus build a fault detection model using the
training set that predicts whether a fault is present in the truck and to mini-
mize total cost of the false predictions in the testing set.

4.2.3 Design of Experiment

Our data set contains enough labels for both positive and negative samples
and thus we can approach the fault detection as a supervised classification.
For the purpose of our experiment, we choose only one type of classification
algorithm — gradient boosted trees, more specifically its Python implemen-
tation XGBoost [36]. XGBoost has several hyperparameters that should be
tuned such as number of trees (estimators), max depth of the trees or minimal
number of samples to perform a further split (min_child_weight). Moreover,
the XGBoost is a probabilistic classifier, i.e. it can predict probabilities in-
stead of the binary classes themselves. A decision threshold that optimizes
minimizes the total costs can be thus tuned.

"Note that it is very important not to impute missing values by a mean values of the
whole data set as that would contaminate the data training data with the information from
the testing data.
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Experiment — Fault Detection in Scania Trucks
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hyperparameter values
max_depth 2,3,4,5,6,7
n_estimators 4,8,16,32,64,128
learning_rate 0.05,0.1,0.15,0.2
booster gbtree, dart
min_child_weight 1,4,16,64
subsample 0.6,0.7,0.8,0.9,1
colsample_bytree 0.6,0.7,0.8,0.9,1

Table 4.1: Fault detection in Scania trucks: Set of tuned hyperparameters for
the XGBoost

We train and evaluate a large amount of XGBoost models with different
hyperparameters on a subset of the training data using various metrics and a
cross-validation. We compare how the metrics rank the different models and
we select a set of candidate models — the models that are ranked as best by
at least one metric. Afterwards we compare the candidate models in terms
of precision and recall over various thresholds on rest of the training set —
a validation set. Since we have a clearly defined cost function, we select as
the best model (out of the candidate models) the one that achieves minimal
total cost and we set it the corresponding decision threshold. Once we select
the final model we evaluate it using the testing set and discuss its real-world
performance.

The individual steps of the experiment are described in details below and
illustrated in Figure 4.1

4.2.3.1 Data Splitting

The data set is provided already split into a training and testing set, as de-
scribed above. For our experiment we need one more set — a validation set —
which we will use for selecting the best decision threshold. Therefore we split
the original training set into new training set and a validation set with a ratio
4:1 (i.e. the new training set thus contains 48000 records and the validation
set 12000 records). We perform the split in a stratified way so that the ratio
of positive and negative samples remains the same in the new training and
the validation sets. When speaking about a training set we will from now on
refer to this new training set.

4.2.3.2 Candidate Models Selection

We use the training set and a random search algorithm with cross-validation to
train and evaluate multiple XGBoost models with different hyperparameters.
Table shows the set of hyperparameters we select from. For evaluation we
use 10-fold cross-validation and we evaluate each model with four metrics —
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AUROC, AUPRG, F1 score and accuracy — and we calculate a mean score of
the respective metrics over the testing folds. F1 score and accuracy are both
calculated on the predictions made by using the decision threshold equal to
0.5.

Training and evaluation of one model takes approximately one minute
— the cross-validation (10 folds) for one set of hyperparameters thus takes
approximately 10 minutes. As we have available 32 CPU cores we run 160
iterations of the random search (5 for each CPU) so that it takes approximately
50 minutes. As a result we obtain a list of 160 models each assigned four scores
and four ranks (each rank in range [1, 160] with rank 1 being the best).

To compare the rankings of the models by the evaluation metrics we visu-
alize a pairplot of the models’ ranks.

Finally, from the trained models we select a set of candidate models. A
candidate model is a model that is ranked as the best model by at least one
of the evaluation metrics.

4.2.3.3 Final Model and Decision Threshold Selection

We retrain every candidate model using the whole training set and we use
the validation set to calculate and visualize precision, recall and total cost
(calculated as $ 10 for FP and $ 500 for FN) over various decision thresholds.
As the final model we select the model with the lowest total cost and we set
it the corresponding decision threshold.

4.2.3.4 Evaluation and Performance Interpretation

We use the testing set to calculate accuracy, precision, recall and total cost.
We interpret the metrics and discuss how the model performs in real-world.

4.2.4 Results

Figure[d.2]shows a pair plot of rankings of all the XGBoost models. We can see
that F1 and accuracy agree on the ranking of the models as well as AUROC
and AUPRG do. However, the two pairs disagree with each other, i.e. both
AUROC and AUPRG disagree with both F1 and accuracy. This is not very
surprising as the F1 and accuracy are based only on predictions at threshold
0.5 whereas AUROC and AUPRG evaluate the model over all the thresholds.

We identify two candidate models, i.e. models that are ranked by at least
one metric as the best model Table 4.2 shows their ranks and evaluation scores
and the XGBoost’s hyperparameters. As expected, one of the models, model
A, is selected by AUROC and AUPRG while the other, model B, is selected
by F1 and accuracy. Based on the XGBoost’s hyperparameters we can see
that the model A has lower complexity than the model B. The model A has
the same number of estimators (trees) but it has lower maximum depth and
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Figure 4.2: Fault detection in Scania Trucks: Pair plot of the evaluation
metrics obtained from the random search.

higher minimal child Weighﬂ The lower complexity models are always more
preferable as they have a lower risk of being overfitted. Therefore, from the
current view we assume the model A as better so far.

Figure [£.3] shows plots of costs and precision and recall scores over various
decision thresholds for both of the candidate models. We can see that the
optimal threshold, i.e. the threshold where the cost is minimal, is very low
and thus the recall is significantly higher than the precision. This is because
the cost of the FNs is much higher than of the FPs and thus it is better to
have as few FNs as possible, i.e. having a high recall. The lowest costs per
model (annotated in the figure) are as follows:

12the minimal child weight defines the minimal number of samples in the node so that
the node can be further split
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Figure 4.3: Fault detection in Scania trucks: Precision-recall-cost plot for the

candidate models.
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candidate model

A B
rank by AUPRG 1 33
rank by F1 23 1
rank by ACCURACY 23 1
rank by AUROC 1 49
AUPRG score 0.999812  0.999767
F1 score 0.808412 0.831349
ACCURACY score 0.994146 0.994875
AUROC score 0.990641 0.988216
XGBoost param:subsample 0.9 0.8
XGBoost param:n_estimators 256 256
XGBoost param:min_child_weight 16 1
XGBoost param:max_depth 5 7
XGBoost param:learning_rate 0.1 0.2
XGBoost param:colsample_bytree 0.7 0.9
XGBoost param:booster dart dart

Table 4.2: Fault detection in Scania trucks: Ranks, scores and parameters of
the candidate models

e model A: $ 5210 at decision threshold 2.4e~2;

e model B: $ 7290 at decision threshold 1.3e73.

The results thus confirm that the model having the lower complexity, the
model A, selected by AUPRG and AUROC, is better. Therefore, we select
the model A as our final model and we set its decision threshold to 2.4e~2.

The evaluation of the final model (model A) on the testing set and using
the decision threshold 2.4e~2 gives following results:

e Recall: 0.99
e Precision: 0.17
e Cost: 18950

The recall can be translated as that the model will detect 99 % of faults.
The precision can be translated as that only 17 % of positive predictions will
actually correspond to a faulty truck, or in other words 83 % of the predictions
will be false alarms.
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4.2.5 Discussion

In this experiment we demonstrated how to build a binary classification model
for detection of point-based faults of Scania trucks. The results of the exper-
iment show that AUPRG and AUROC metrics were better choice for model
selection than F1 and accuracy metrics this data set and the XGBoost model.
That is because there might be different importance of FP and FN (in our ex-
periment we needed to have fewer amount of FN than FP) and thus it might
be better to select a model that performs well at all thresholds and leave
the decision threshold selection for later, when the specific domain needs are
known.

Regarding evaluation of the model’s performance in practice, we demon-
strated that precision and recall can nicely interpret the model’s performance,
i.e. the probability that a fault will be detected and how often will the model
predict a false alarm. It is good to note though, that the metrics cannot take
into account any time information, e.g. how early will be the faults detected,
as the point-based data do not contain any time information. To include the
temporal information in evaluation, one has to use either data with range-
based faults or another [PdM] approach.

4.3 Experiment — Failure Prediction in Azure
Telemetry Data Set

This section describes an experiment where we demonstrate failure prediction
approach and we compare its evaluation metrics. Failure prediction is an
approach where the goal is to build a model that predicts whether a failure
will happen in near future — in the monitoring window. This approach is
suitable in cases when there are available data about failures and when the
failures are expected to be preceded by a faulty behaviour of the subject.

The modeling typically consist of formulating the problem as a binary
classification where before training the classifier, the samples prior to the
failure are artificially labeled as positive. This, however, introduces challenge
in the model’s evaluation as there are more positive samples than failures.
In Section we described how classical precision and recall metrics can
be modified so that they provide more realistic scores. We call the modified
metric event-based precision and event-based recall. In this experiment, our
goal is to compare the classical and event-based metrics in terms of model
selection, the model’s decision threshold selection and interpretability.

As said, failure prediction consists in predicting whether a failure will
happen in the monitoring window. The size of the monitoring window can
be either predefined by the domain (e.g. it might be known that the faulty
behaviour of the subjects lasts no longer than 7 days before the failure) or
it can be tuned as a hyperparameter. For the purpose of this experiment,
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Figure 4.4: Failure prediction in Azure data set: Example of one machine’s
data. The vertical dotted lines represent the failure events.

we choose a data set that has the size of the monitoring window already
predefined by the domain experts. The data set we chose is a publicly available
Azure AT Gallery data set [45] which contains multiple data sources like sensor
measurements and failure logs about 100 machines and the authors of the data
set clearly define the task: predict whether a failure will happen in next 24
hours.

4.3.1 Data Set Description

The data set we use in this experiment is an Azure Al Gallery Predictive
Maintenance data set [45] which contains continuously collected condition
monitoring data and failure labels of an unspecified machinery. The data
consist of telemetry data, error logs, maintenance logs and failure logs for 100
machines collected during whole year of 2015. The telemetry data include
voltage, rotation, pressure and vibration measurements and are collected on
an hourly basis — one value per hour. The error log contains time stamped
information about non-breaking errors. The maintenance log contain time
stamped events of both scheduled maintenance actions (regular inspection)
and unscheduled maintenance actions (failures) . The failure logs contain time
stamped information when the failures happened. When a failure happens on
the machinery the failure is repaired and the machinery is put to operation
again.

Preprocessing The data are available as separate CSV files for teleme-
try data and error, maintenance and failure logs. As the telemetry data are
available on an hourly basis we round the time stamps of all the events, i.e.
maintenance actions, errors and failures, to the closest hour and join the data
on time stamps and machine identifications. To help the classifier identify
temporal patterns in the data we create following time-based features (for
every time point):

e mean, variance and sum of the telemetry data for the past 7 days;
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e time from the last maintenance action, from the last error and from the
last failure.

Figure shows an example of the telemetry data for one machine.

4.3.2 Task Definition

The task, defined by the authors of the data set, is to predict whether a failure
will happen in next 24 hours. The authors do not mention any warning window
necessary for the predictions to be useful (e.g. so that there is enough time for
the maintenance to be scheduled). Though it might be that there is no warning
window necessary, we assume that is highly unlikely in practice and we assume
the authors of the data set probably have not thought about the possibility of
defining a warning window. Therefore, we set the warning window ourselves
to 8 hours, i.e. one third of the monitoring window. This means that during
the evaluation, all the predictions made less than or equal to 8 hours prior to
the failure will be ignored. The size of our prediction window, i.e. the size of
an interval prior to the failure where the training samples are considered as
positive, is thus 16 (monitoring window minus warning window).

4.3.3 Design of Experiment

We approach the task as a supervised binary classification problem where we
artificially label all the samples 24 hours (size of monitoring window) prior
to each failure as positive to train the model. Regarding evaluation of the
model, we are mainly interested in precision and recall, i.e. a probability that
a true prediction actually predicts the failure and a probability of predicting a
failure. However, as there are more true positive samples than the amount of
failures it is not straightforward way how to use these metrics. In Section [3.9
we described a concept of event-based precision and recall where the TPs are
replaced by detection scores and FP are replaced by discounted FP. Therefore,
we design our experiment as to compare how these event-based metrics affect
the model selection and decision threshold selection in comparison with the
classical precision and recall.

The event-based metrics use detection score which has four parameters
that can be set based on the domain specific needs. The parameters are
a weight between existence and overlap (a), a cardinality function (v), an
overlap function (w) and a positional bias function (¢). For more details
about the parameters see Section[3.1.3] For our task, we set a = 0.8 as we are
rather interested in the existence of a true prediction in the prediction window
than the amount of overlap. The cardinality, i.e. whether the predictions are
fragmented, does not matter in failure prediction that much and thus we set it
to be always equal to one. As an overlap function we use standard suggested
definition in Section and we set the positional bias to flat — i.e. we do
not distinguish whether the prediction is at the beginning of the prediction
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window or at the end. As result, the detection score of every even is thus
either equal to 0 (when there are no predicted positive samples) or is in range
[0.8125, I]E, depending on the amount of positive predictions in the prediction
window.

As the classification algorithm we choose gradient boosted trees, more
specifically XGBoost [36], which is capable of predicting probabilities of classes
and thus the decision threshold can be tuned.

Compared to classical binary classification, in failure prediction the predic-
tions can be smoothed. It can for example happen that the model will predict
a lone positive prediction among negative predictions which can be caused
for example by a noise in the data. Therefore, the predictions are typically
smoothed e.g. using a rolling mean where the predicted probability of each
samples is calculated as the mean of several past predictions (including the
current). For more details about prediction smoothing see Section In this
experiment, we use the rolling mean for smoothing of predicted probabilities
and we tune the smoothing window size as a hyperparameter.

We design the experiment to consist of three steps (illustrated in Figure

1):

e data splitting — split the data into training and testing set;

e candidate models selection — use the training set and cross-validation
to train and evaluate XGBoost model with different hyperparameters
and smoothing window sizes, compare how the metrics rank the trained
models and select a set of candidate models, i.e. models that are ranked
at least by one metric as best;

e PR analysis — analyze candidate the models on the testing set using
both classical and event-based precision and recall, discuss which model
is the most suitable for the given task and compare the metrics’ inter-
pretability;

The individual steps of the experiment are in detail described below.

130.8 for the existence of a positive prediction in the prediction window plus 0.2times1/16
(0.0125) for every positive prediction
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Figure 4.5: Failure prediction in Azure data set: Design of experiment
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4.3.3.1 Data Splitting

We split the data into training and testing set. We identified two plausible
splitting strategies: split by time and split by subject. The former consists in
selecting the newest data (e.g. last two months, November and December) as
the testing and the older data as the training. However, such splitting strategy
might make the model to learn some subject specific patterns. Therefore, we
adopt the latter splitting strategy: split by subject. We split the data set as
follows:

e training set: 80 subjects

e testing set: 20 subjects

4.3.3.2 Candidate Models Selection

We use the training set to train and evaluate a large amount of XGBoost
models with different XGBoost’s hyperparameters and smoothing windows
and we select a set of candidate models — models ranked as best by at least
one metric.

As the evaluation metrics we use AUPRG, F1 score and event-based F1
score. The event-based F1 score is calculated based on event-based preci-
sion and recall metrics with the parameters as described above. The AUPRG
(area under precision-recall-gain curve) is calculated based on classical preci-
sion and recall. We do not use the event-based metrics to calculate the area
under event-based PR curve as the calculation of it is extremely computation-
ally expensive. The regular AUPRG is calculated by sorting the samples by
predicted score and the amount of true positive and false positive predictions
can be then calculated using a cumulative sum operations [86]. Regarding the
event-based metrics, however, the precision and recall have to be calculated
separately for each threshold. The calculation of e.g. hundreds of thresh-
olds then can take tens of minutes which is more than the amount of time
for training the model itself. Therefore, we do not calculate the area under
event-based precision-recall(-gain) curve and we use only the event-based F1
score calculated based on predictions made by the default decision threshold
0.5.

We run a random search algorithm with three-fold cross validation to train
and evaluate the models. The average training time of one fold is 10 minutes.
Since we have 32 CPU cores available we run 64 random search iterations
so that the total computation time is approximately one hour. The models
are then assigned an average score over the testing folds and are assigned a
corresponding rank for every metric. Every trained model has thus assigned
ranks per each metric in range [1,64] where rank 1 stands for the model with
best score and rank 64 stands for the model with worst score.
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hyperparameter values

smoothing window {1,3,5,7}

XGBoost: max_depth {2,3,4,5,6,7}
XGBoost: n_estimators {4,8,16,32,64, 128,256}
XGBoost: learning_rate {0.05,0.1,0.15,0.2}
XGBoost: booster {"gbtree’, ’dart’}
XGBoost: min_child weight {1,4, 16,64}

XGBoost: subsample {0.6,0.7,0.8,0.9,1}

XGBoost: colsample_bytree {0.6,0.7,0.8,0.9, }

Table 4.3: Failure prediction in Azure data set: Set of tuned parameters.

The hyperparameters we optimize are hyperparameters of the XGBoost
algorithm and a size of the smoothing window. Table summarizes all the
tuned hyperparameters and the set of values we select from.

Once we have all the models evaluated we visualize a pairplot to compare
ranks of the individual models for every pair of the four evaluation metrics.
Afterwards, we select a set of candidate models from the best ranked models,
i.e. models ranked high by at least one metric.

4.3.3.3 PR Analysis

We use testing set to perform PR analysis of the candidate models selected
in previous step. For every candidate model we calculate both classical and
event-based precision and recall over different thresholds and visualize them.
We then discuss whether and how the candidate models differ and whether
the classical and event-based metrics differ in decision threshold selection.
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Figure 4.6: Failure prediction in Azure data set: Rankings of the models

by various metrics based on the mean metrics’ values on the testing cross-
validation folds.
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candidate model

A B C
rank by AUPRG 1 16 44
rank by classical F1 24 9 1
rank by event-based F'1 9 1 10
AUPRG score 0.999997 0.999991 0.999954
classical F1 score 0.95681  0.964553 0.969436
event-based F1 score 0.955075 0.961267 0.953946
param_smoothing_window 1 7 1
param_estimator__subsample 0.7 0.7 0.9
param_estimator__n_estimators 64 64 256
param_estimator__min_child_weight 16 16 1
param_estimator__max_depth 7 5 4
param_estimator__learning rate 0.15 0.2 0.2
param_estimator__colsample_bytree 0.6 0.6 0.9
param_estimator__booster dart dart dart

Table 4.4: Failure prediction in Azure data set: Ranks and parameters of the
candidate models.

4.3.4 Results

Figure [4.6] shows a pair plot of the rankings of the 64 trained models. We can
see that F'1 and event-based F1 relatively agree in the ranking though they
select slightly different model as best. AUPRG, on the other hand, highly
disagrees with both F1 and event-based F1. For example the best model
selected by F1 has rank between 40 and 50 (with 64 being the worst) by
AUPRG.

Table shows scores, ranks and hyperparameters of the models ranked
as best by at least one metric. We can see that the models chosen by F1
and AUPRG have both smoothing window of size 1 while the model chosen
by event-based F1 has smoothing window of size 7. This might be caused by
the low amount of lone FP, i.e. the smoothing only unnecessarily delays the
positive predictions and thus causes the precision and recall scores to be. As
both the classical and event-based F1 scores are very high — above 95 % — we
can assume that most of the failures were predicted and that the predictions
are made in the most of the prediction windows.

Figure 4.7 shows both the classical and event-based PR, curves for all the
three candidate models. We can see that the models selected by classical F1
score (green curve) and AUPRG (blue curve) are comparable in terms of clas-
sical PR curve. However, the model selected by classical F1 has significantly
better event-based PR curve than the model selected by AUPRG. This is sur-
prising as the model selected by F1 score was scored very low by the AUPRG
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metric (rank 44 out of 64). It therefore suggests that a model that has good
AUPRG score does not have to perform well regarding event-based metrics.
Regarding the model selected by event-based F1 score, we can clearly see that
it has significantly worse classical PR curve than the other two models. This
is most probably caused by the smoothing — the predictions at the beginning
of the prediction window might have low probabilities. Regarding event-based
PR curve, however, we see that the model selected by event-based F1 score
is slightly better at high event-based precision values than the model selected
by classical F1 score. This suggests that the smoothing might help achieve
better results when high precision is important, i.e. when the false alarms are
costly.

If precision would be of high importance, we would choose the model
selected by the event-based F1 score that smooths the predictions. However,
since we do not know the exact costs of FP and FN, we choose the best
performing model in overall. That is the model selected by classical F1 score
as it has superior both classical PR and event-based PR curves over the other
two models. Therefore, we use this model to compare how the classical and
event-based differ in the decision threshold selection.

Figure shows classical and event-based precision, recall and F1 scores
over various decision thresholds for the model selected by classical F1 score.
We can see that the event-based precision is significantly lower than the clas-
sical precision. That is caused by using the detection score instead of true
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positives and by using the discounted FP instead of standard FP. The size
of the difference between the classical and event-based precision provides an
insight into how are the FP close together — the higher the difference the
more distant are the FP from each other. The event-based recall, on the other
hand, is higher than the classical recall. That is caused by using the detection
score with an existence reward, i.e. having only a single prediction in the
prediction window causes the detection score to be > «, i.e. at least as big
as the existence weight. In our case o = 0.8, as mentioned in the experiment
design. This then leads to the highest value of event-based F1 score being at
higher decision threshold (approx. 0.8) than the highest value of classical F1
score (approx. 0.4). In other words, the event-based metrics suggests that
predicting only the samples that the model is more confident about as posi-
tive, i.e. selecting higher decision threshold, is likely to bring better precision
without much of a decrease in recall.

4.3.5 Discussion

In this experiment we demonstrated failure prediction approach where we
formulated the problem as a binary classification with an artificial labeling
and we compared classical and event-based precision and recall metrics.

Regarding model selection, the results show that using event-based F1
score as a metric for model selection can select a model that has better recall
at high precision values than models selected by classical F1 score or AUPRG.
However, in other cases the model selected by classical F1 score was better.
The results of model selection also suggest that when using event-based met-
rics it might be worth trying different sizes of artificial labeling, i.e. try to
artificially label either less than or more than ]\4@ samples prior to the failure.
In other words, the amount of artificial labeling might be another hyperpa-
rameter to tune.

Regarding decision threshold selection and interpretability, our results
show that event-based precision and recall might provide more realistic es-
timates of the model’s precision and recall. Moreover, using the event-based
metrics for decision threshold selection might advise to select a higher decision
threshold than when the classical metrics are used. This implies that accord-
ing to event-based metrics, better precision can be achieved without much of a
loss in recall. This can be especially useful information when the false alarms
are costly and thus precision should be high.

Event-based metrics have several parameters that can be tuned such as the
existence weight « or the positional bias function. It might be interesting to
compare how the choice of these parameters affect the selection of the model.
We consider this, however, as out of scope of this thesis.

Ygize of the monitoring window
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4.4 Experiment — RUL Prediction of Turbofan
Engines

This section describes an experiment where we demonstrate [RUL] prediction
approach and we compare its evaluation metrics. [RUL] prediction is a [PdM]
approach where the goal is to predict the exact time that remains until a
failure occurs — the [remaining useful life] (RUL)). This approach is suitable in
cases when there is a continuous degradation process of the subject.

There exist two main approaches to[RUL]prediction: direct RUL prediction
and HI-based RUL prediction. The first approach, the direct [RUL] prediction,
consists in training a regression model to predict [RUL] values retrospectively
calculated from run-to-failure data. The second approach, HI-based RUL pre-
diction, consists in building a time series prediction model that predicts when
a |health indicator] of the subject crosses a predefined failure threshold.
The two approaches differ in what data are required for the model to be build
(the necessity of run-to-failure data versus the necessity of a single HI and
failure threshold) and in what models they use (classical regression vs time
series prediction). In this experiment we choose to demonstrate the direct
RUL prediction approach.

For the purpose of our experiment we choose a data set containing run-
to-failure data of turbofan engines [46] which has already been used in many
works regarding RUL prediction [70}/71,87,|88] and is thus well known in the
community of predictive maintenance and related fields. In contrast with the
existing works, where the best performing model is selected based on one
specific metric, most commonly RMSE, we evaluate the built models using
multiple metrics and we analyze how do the models selected by various metrics
differ.

4.4.1 Data Set Description

The data set used in this experiment is turbofan engine degradation data set
that contains run-to-failure data of hundreds of turbofan engines of the same
fleet. The data of each engine consist of multivariate time series containing
measurements from 26 sensors and 3 operational settings. The time axis is
the current number of an engine’s operation cycle.

Each engine starts with different degree of initial wear and manufacturing
variation which is unknown. This wear and variation is considered normal, i.e.
it is not considered a fault condition. A fault develops at some point during
the engine’s operation and grows in magnitude until a failure occurs. The end
of each time series thus marks the engine’s failure. The average length of an
engine’s operation is approximately 200 cycles. Figure shows an example
of data of one engine.

Four different training data sets are provided with different operating con-
ditions and different failure modes. Each training data set consists of the
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Figure 4.9: RUL prediction of turbofan engines: Sensor data for one engine.
The failure of the engines occurred after the last operation cycle. We can see

that a fault has developed somewhere between 50th and 100th cycle and it
grows in magnitude until a failure.

multivariate time series (as described above) for hundreds of engines. There
are four testing sets corresponding to the four training sets, respectively. Each
testing set consists of two files. The first contains data from tens of engines
in the same format as the training data but the data are randomly trimmed
from the right side, i.e. the end of the time series does not mark the engines
failure. The second file contains one RUL value for each of the engine in the
first file corresponding to the length of the data trimmed from the right, i.e.
the RUL at the end of each time series.

The data are provided as CSV files with the time series being in the long
format, i.e. each row represents data for one operational cycle of one engine.

Target variable The data are run-to-failure with last record being the last
measurement before the We failure occurred. We thus calculate the RUL
retrospectively from the data such as for every subject the last record has
RUL 1, second from the last record RUL 2 and so on.

Features As the features we use the sensor measurements, operational set-
tings and current cycle number. Seven sensor features and one operational
setting feature contain constant values. Therefore, we remove these features
as they do not bring any information. The sensor measurements contain a
lot of noise (see Figure for illustration). Therefore we perform smoothing
of the sensor values by a rolling mean of size 11 where each sensor value is
replaced by the mean value of the past three values (including the current)El

15Note, that is is extremely important that the smoothing (or any other kind of rolling
operation) must be done by assigning the aggregated value to the most-right element of the
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At last, we normalize all the features using the values from the training data
set.
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Figure 4.10: RUL prediction of turbofan engines: Design of experiment.

window. A centered window for example would use data from the future.
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4.4.2 Task Definition

The task defined by the authors of the data set is to build a RUL prediction
model using the training set and evaluate it using the testing set — i.e. to
predict one RUL value for each engine in the testing set. However, we consider
such evaluation as not being appropriate as a RUL prediction model deployed
in production will most probably continuously predict RUL values at each op-
erational cycle. We think a RUL prediction model should be rather evaluated
by RUL predictions from the whole life cycles of the testing subjects rather
than by only one randomly selected RUL. Therefore, we redefine the task as
to:

e split the original training set (containing the condition monitoring data
for each engine’s whole life cycle) into new training and testing setﬂ

e use the newly created training set for building the model;
e use the newly created testing set for the model evaluation.

For the purpose of our experiment we use the first of the four provided training
sets that contain data from exactly 100 engines that operate under stable
conditions and develop a fault in the high pressure compressor.

Moreover, we set a warning window (V) so that the predictions close to the
failures are excluded from the evaluation, i.e. all predictions made for actual
RUL lesser than W are excluded from evaluation. There are two reasons for
using the warning window. The first is that the predictions of RUL very near
to 0 are likely to have high error (e.g. predicted RUL being 2 at actual RUL
1 is equal to error 200 %). The second reason is that predictions such close to
the failure are commonly of low value in practice as the maintenance action
can for example be already be scheduled when predicted RUL is for example
10 (rather than 1 or Q)E As an average life cycle of the engines is about
200 cycles, we set the warning window to 5 cycles (2.25 % of the average life
cycle).

4.4.3 Design of Experiment

The goals of this experiment are to demonstrate RUL]| prediction and compare
its evaluation metrics. Commonly, there is a need for the RUL prediction
models to have better performance with RUL reaching zero as the maintenance
actions are typically performed when the subject’s RUL is low (but not yet in
the warning window). Therefore, we design the experiment so that the model
selection is done in two steps. The first step consists in selecting a set of
candidate models from a large set of trained models using various evaluation

185plitting should be then made per subject to avoid overfitting
7though this of course depends on the specific use case
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metrics which provide a single score. The second step then consists in more
an analysis of the candidate models in terms of how they perform relatively
to RUL, i.e. whether for example some model predicts RUL accurately most
of the time (thus having good overall performance) but has poor predictions
near the failure. The individual steps of the experiment design (illustrated in
Figure are described below.

4.4.3.1 Data Splitting

Split the data into training and testing sets with ratio 4:1. Perform the split
per subject, i.e. all data from one subject are either in the training or the
testing set. We consider the split per subject is crucial so that the model does
not learn some subject-specific patterns and so that we do not obtain overly
optimistic evaluation results. The training and testing sets thus contain data
about 80 and 20 subjects, respectively.

4.4.3.2 Candidate Models Selection

We use the training set to train the following regression models:

e XGBoost (regression version) with n_estimators € [3,4,5,7,8,9] and
max_depth € [16,32, 64,128, 256];

e SVR with gamma € [0.01,0.1,0.5,1] and C € [0.1,1, 10, 100];

and evaluate them using 4-fold cross validation™] We decide to evaluate each
model using multiple metrics and later analyze whether they differ in what
model they select as the best.

As described in the theoretical part of this thesis in Section there
exist many metrics and their variants how to evaluate a RUL prediction model.
Therefore, we use only a small representative subset of the described metrics:

e root mean squared error (RMSE);
e mean absolute percentage error (MAPE);

e MAPE®@40, i.e. MAPE calculated only on RUL values lower or equal to
40;

e MPH,, i.e. mean prognostic horizon with a bound 10 — a mean time
prior to a failure so that all the predictions differs from actual RUL by
10 at maximum.

We choose RMSE because it is one of the most commonly used metric in
scientific articles [70,[71,87,88] and it gives the highest weight to the errors at

85plit the data again per subject, i.e. each testing (training) fold contains 20 (60) subjects
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high RUL values. Next, we choose MAPE as it should give more weight on
the errors near the failure. At last, we choose metrics MAPEQ40 and MPH;
which should select models only by their performance at low RUL values.
We try all the combinations of the above mentioned hyperparameters of
the models totalling in 46 models (30 XGBoost models and 16 SVR models).
We rank the models by mean score across the testing folds for each of the
evaluation metrics so that trained model thus obtains 4 ranks all being €
[1,47]. The lower the rank the better the model by the corresponding metric.
To compare how the evaluation metrics rank the models we visualize a pair
plot of the rankings of the models. As the set of candidate models we then
select the models that are ranked as the best by at least one of the metrics.

4.4.3.3 Candidate Models Comparison

We use the testing set to calculate MAPE relative to RUL for every candidate
model, i.e. MAPE at RUL 50 is calculated from all the predictions made for
samples with an actual RUL 50. We plot the errors, visually compare whether
and how the candidate models differ and discuss which model may be more
suitable for the given task and why.

4.4.4 Results

Figure [4.11] shows a pair plot of the ranks of the 46 trained models by the
evaluation metrics. We can see that only pair of metrics that roughly agrees
on the ranking is MAPE@40 and MPH;g, although MPH;( ranks several SVR
models very high and MAPE@40 ranks them low. RMSE, MAPE and MPH
agree on the best model, but highly disagree at the lower ranked models.
MAPE@40, on the other hand, completely disagrees with RMSE and MAPE.

Table[1.5]shows parameters and evaluation results of the candidate models,
i.e. models selected as best by at least one metric. We can see that there are
two candidate models — the first, model A, selected by MAPE@40 and the
second, model B, selected by the other three metrics. The first model has
very low rank by MAPE and RMSE which is most probably caused by having
very high errors at the RUL values higher than 40. From these single scores
themselves, however, we can hardly interpret the models’ performance as we
do not know how it performs with respect to actual RUL values. Therefore, we
perform the further analysis of the two models by plotting the errors relative
to RUL.

Figure shows MAPE metric relative to RUL values calculated using
the testing set. Figure [£.13] then shows the candidate models’ predictions for
four random subjects. We can see that the SVR model (model B, selected by
RMSE, MAPE and MPH) has consistently low MAPE at RUL values higher
than 40 but the error then significantly rises with the RUL reaching 0. The
XGBoost model (model A, selected by MAPE@40), on the other hand, has
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Figure 4.11: RUL prediction of turbofan engines: Pair plot of the ranks of the
tested models.

higher errors at RULs higher than 40 but is much more accurate at lower
values. However, we see that the standard deviation of the errors of the
XGBoost model is significantly higher than of the SVR model. From the
predictions on the four subjects, we can see that the predictions of XGBoost
indeed are very unstable over various RUL values. Therefore, we consider
the SVR model to be better, even though it has slightly worse predictions
at low RUL values, as we consider the variance of the XGBoost model to be
unsuitable for a practical application.
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candidate model

A B
rank by RMSE 24 1
rank by MAPE 14 1
rank by MAPE@Q40 1 20
rank by MPH_10 3 1
RMSE 42.9 37.6
MAPE 30.3 27.5
MAPEQ40 38.4 42.3
MPH_10 29.8 32.8
regressor XGBoost SVR

n_estimators: 16 C: 100

hyperparameters max_depth: 7 gamma: 0.1

Table 4.5: RUL prediction of turbofan engines: the candidate models.
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Figure 4.12: RUL prediction of turbofan engines: MAPE over various RUL
values on the testing data set.
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Figure 4.13: RUL prediction of turbofan engines: examples of predictions for
multiple subjects

4.4.5 Discussion

In this experiment we demonstrated RUL prediction on a run-to-failure data
set of turbofan engines using a direct RUL prediction, i.e. regression-based,
approach. Our results show that RMSE and MAPE might highly disagree
in model ranking. This suggests RMSE being unsuitable for RUL prediction
model selection as the RUL prediction model is typically required to be more
precise with RUL reaching lower values. Moreover, we demonstrated that us-
ing a single score to evaluate the whole model does not give necessary insight
to evaluate its real-world performance. Rather, the errors should be plotted
against actual RUL values as this might reveal that e.g. the model has very
high variance of predictions over actual RUL values. That might for example
reveal that the prediction has high variance over time which might make the
model untrustable in practice — a model that at one cycle predicts RUL 80
cycles and the second cycle predicts RUL 40 cycles (XGBoost model predic-
tions for subject 11 at actual RUL 65 in Figure is very likely not to be
trusted by the users.
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Conclusion

[PdM] can utilize [A]] techniques to build a model that predicts condition of a
subject. Depending on the available data and the degradation profile of the
subject, various approaches how to predict the condition, i.e. approaches to
[PAM] can be used. In this thesis, we provided an overview of three differ-
ent approaches — fault detection, failure prediction and remaining useful life
prediction. In the theoretical part of this thesis, we theoretically described
the approaches including their use case, data specifications, modeling tech-
niques and evaluation metrics. In the practical part of the thesis, we conducted
experiments on real-world publicly available data sets where we demonstrated
all the approaches and compared their evaluation metrics.

The first approach, fault detection, is an approach suitable when there
are no information about the actual failures of the subjects. It can be mod-
elled as a binary classification or an anomaly detection. We identified two
types of data for fault detection — data with point-based faults and data
with range-based faults. Moreover, we described that for each of the types
of data different evaluation metrics should be used, namely classical preci-
sion and recall and range-based precision and recall. In the experiments, we
demonstrated detection of point-based faults in air-pressurized systems of Sca-
nia trucks. The authors of the data set defined a cost function for false alarms
and missed faults where the cost of missing a fault was significantly higher.
The results of the experiment showed that AUROC and AUPRG were more
suitable for model selection than accuracy or F1 score calculated at a fixed
decision threshold. Moreover, the results show that precision and recall can
be nicely translated into a real-world performance.

The second approach, failure prediction, is an approach where the goal
is to predict whether a failure will happen in near future — in a monitoring
window. In the theoretical part, we described how it can be formulated as a
binary classification problem and that it can be modeled by artificially label-
ing the samples in the training data prior to the failure as positive. Regarding
evaluation, we explained why classical classification metrics might be unsuit-
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able for evaluation of failure prediction. We described how two other types of
precision and recall metrics used in literature, reduced and range-based, can
be used to mitigate the issues of classical precision and recall. We proposed
a new definitions of precision and recall, which we call event-based, as a com-
bination of the two former mentioned. In the practical part, we conducted
an experiment demonstrating failure prediction in Azure telemetry data set
where the task was to predict whether a failure will happen in next 24 hours.
We compared classical and event-based precision and recall metrics in terms of
model selection, decision threshold selection and interpretability. The results
show, that the classical metrics might be sufficient for model selection but the
event-based metrics may provide more realistic interpretation of the model’s
performance and they advise to select higher decision threshold, i.e. higher
recall can be achieved with low or none decrease in precision. The event-based
metrics have several parameters that they inherit from range-based metrics
such as weight of existence reward or a positional bias function. Moreover,
the amount of artificial labeling can be taken as a hyperparameter in model
selection. Therefore, we see a space for future research in comparing how
the choice of the event-based metrics’ parameters affects model choice and
whether choosing the amount of artificial labeling higher or lower than the
monitoring window size might result in better model’s performance.

The last approach we cover, RUL prediction, is an approach where the goal
is to predict the exact time left until the subject fails. In the theoretical part,
we described two modeling approaches to [RUL] prediction, direct RUL predic-
tion and HI-based RUL prediction, and we described various metrics how can
be a RUL prediction model evaluated. In the practical part, we demonstrated
direct RUL prediction approach on a turbofan engine degradation data set.
We compared several metrics in terms of model selection and interpretability.
The results show that RMSE and MAPE disagree in ranking of the models.
This might be crucial for the practical application as it might be required for
a RUL model to be more accurate as the time of a failure approaches. More-
over, we demonstrated that it might be essential for the practical evaluation
of a RUL model to not only calculate one score but also to calculate the errors
relative to RUL, e.g. visualize the errors relatively to how soon a failure will
occur.

It would be interesting to extend the scope of our experiments by using
more data sets and more [ML] models, preferably of different families. We
assume that both the data sets and the models might have effect on the
behaviour of the evaluation metrics. However, we consider this as beyond the
scope of this thesis.
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APPENDIX A

AT artificial intelligence.

ANN artificial neural network.

AUPRG area under precision-recall-gain curve.

AUROC area under receiver operating characteristic curve.

CV cross-validation.
EoUP end of useful predictions.

FN false negative.
FP false positive.

FPR false positive rate.
HI health indicator.
LSTM long short-term memory.

MAE mean absolute error.

MAPE mean absolute percentage error.

ML machine learning.

MPH mean prognostic horizon.

PDF probability density function.

PdM predictive maintenance.
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Acronyms



ACRONYMS

PR precision-recall.

PRG precision-recall-gain.

RMSE root mean squared error.
ROC receiver operating characteristic.

RUL remaining useful life.

SVM support-vector machine.

SVR support-vector regression.

TN true negative.
TP true positive.

TPR true positive rate.
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APPENDIX B

Contents of CD

text/ ...a directory with the thesis in PDF format and IXTEXsource code
L experiments/ ....... ... it a directory with experiments
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