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Instructions

Regression modelling of counts generally relies on the generalized linear models (GLMs), particularly on the
Poisson regression model with the logarithmic link function. In the Bayesian realm, such models are
estimated via convenient prior distributions. However, regardless of the functional form of the prior, the
posterior distributions are neither standard nor analytically tractable. In his 1973 paper, G.M. El-Sayyad
suggests circumventing the intractability issue by means of normal approximations of the Poisson
likelihood.
The main points of the thesis are:
1. Overview of the GLMs and the Poisson regression model, focus on El-Sayyad's approach to its Bayesian
estimation. Propose a sequential variant.
2. Propose methods for stabilization of the estimation procedure and study their behaviour on convenient
examples.
3. If possible, suggest a use case of the proposed modelling approach in the signal processing domain.
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Abstrakt

Poissonovská regrese je populární zobecněný lineární model používaný k mo-
delování diskrétních náhodných veličin, typicky počtů. Tato práce je zaměřena
na problematiku jejího sekvenčního odhadování s regresními koeficienty poten-
ciálně pomalu proměnnými v čase. Je použita vhodná aproximace normálním
rozdělením, aby tak bylo možné učinit v Bayesovském kontextu. Rovněž je dis-
kutována kalibrační technika pro zvýšení kvality odhadů. Na závěr je navržen
případ použití představeného přístupu v doméně zpracování signálu, zejména
jeho použití v difuzních sítích (diffusion networks) pro realizaci distribuova-
ného kolaborativního odhadování.

Klíčová slova Poissonovská regrese, Bayesovská inference, distribuované
odhadování, kolaborativní odhadování
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Abstract

The Poisson regression is a popular generalized linear model used to model
discrete count variables. This thesis is focused on the problem of its sequen-
tial estimation under potentially slowly time-varying regression coefficients.
A convenient approximation by normal distribution is used to do so in the
Bayesian setting. Also, a calibration technique is discussed to enhance the
estimation quality. Finally, a use case of the proposed approach in the sig-
nal processing domain is suggested, in particular, its application in diffusion
networks to perform distributed collaborative estimation.

Keywords Poisson regression, Bayesian inference, distributed estimation,
collaborative estimation
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Introduction

This thesis is focused on models of discrete counts used, e.g., to describe epi-
demiological data, the number of stock market transactions in finance, traffic
intensities in networks and transportation, the number of particle arrivals in
physics, or phenomena in social networks [1, 2]. High counts can be gener-
ally approximated by continuous data models, but those can fail if the counts
are small and include many zeros [3]. The thesis is specifically focused on
the Poisson regression model. At first, its low-cost real-time sequential es-
timation is proposed to deal with streaming data. Then a method for its
distributed inference in networks of collaborating agents (sensors) is devised
as an application in the signal processing domain. The author is not aware of
any existing sequential distributed or non-distributed alternative. The known
non-distributed Poisson models rely on computationally intensive optimiza-
tion techniques [4, 5], making their usage in online tasks, such as dealing with
streaming data or effective processing of big data, difficult.

Distributed inference of unknown variables in networks of collaborating
agents has become an established discipline in the signal processing domain.
Its applications may be found in sensor networks, smart grids and microgrids,
IoT (Internet of Things), big data, social networks, and other types of net-
worked systems [6, 7, 8, 9].

Generally, three communication and information processing strategies can
be distinguished: the incremental strategy, consensus, and diffusion [10, 11].
In this thesis, the point of interest is the diffusion strategy, where the informa-
tion exchange runs on a single time scale and within one network hop distance
[12]. Many popular sequential inference algorithms have found their more or
less modified diffusion counterparts. To name only a few: the LMS (least
mean squares) [13, 14, 15, 16, 7], RLS (recursive least squares) [12], Kalman
filters [17, 18], Bernoulli filters [19], particle filters [20, 21, 22], or the quasi-
Bayesian mixture estimation algorithm [23]. A unifying Bayesian framework
for diffusion inference of a wide class of models was designed in [24] and [25].

There are several major difficulties. First, the sequential estimation of the
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Introduction

Poisson model is generally impossible due to its functional form and the static
estimation requires a numerical optimization method to be used (as described
in Section 1.1.1). It is shown that a way towards the solution provides the
Bayesian paradigm along with a couple of approximations providing stable and
analytically tractable results. There are several novel points in the proposed
algorithm. Firstly, the static Bayesian Poisson regression [26] is recasted into
an algorithm for online estimation of potentially slowly time-varying regression
coefficients. Secondly, a rule for the combination of these estimates in diffusion
networks is shown.

Some of the key aspects of this thesis, along with the results of a simu-
lated example, have already been presented in [27]. However, in this thesis,
the theoretical background is further explored, along with the detailed discus-
sion of alternative methods. The effects of different hyperparameter values
and different network configurations on the accuracy of estimation depend-
ing on the nature of the data are also examined. Finally, some other topics
are mentioned that can be researched in the future as part of the author’s
postgraduate studies.

The thesis is structured as follows: The problem is described in Chapter 1,
where an algorithm for the sequential estimation is also shown. The following
Chapter 2 sheds light on the usage of the proposed modeling approach in the
signal processing domain, specifically the distributed estimation. In Chapter 3,
several sets of simulated examples are presented to demonstrate the efficiency
of the proposed method. Finally, Chapter 4 summarizes topics that can be
further explored in the future.
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Chapter 1
Sequential Inference of the

Poisson Model

We consider a discrete-time modeling of a stochastic process {Yt; t = 0, 1, . . .}
with mutually independent observations yt ∈ N. Let Yt be a random variable
that is determined by a known regressor xt ∈ Rn, and an unknown vector of
possibly slowly time-varying regression coefficients βt ∈ Rn. The relationship
characterizes the GLM (generalized linear model) [4]

E[Yt|xt, βt] = g−1(β⊺
t xt), (1.1)

where g(·) is a known link function. The product β⊺
t xt is called the linear

predictor. It is useful to note that the identity function g(·) provides the
ordinary linear regression model [28]. In the case of yt ∈ N, the natural
logarithm plays the role of the link function,

g(E[Yt|xt, βt]) = log(E[Yt|xt, βt]) = β⊺
t xt, (1.2)

resulting in the Poisson regression model

Yt ∼ Po(λt) = Po
(
g−1(β⊺

t xt)
)

= Po (exp (β⊺
t xt)) . (1.3)

The expected value and the variance are

E[Yt|xt, βt] = var(Yt|xt, βt) = λt = exp(β⊺
t xt), (1.4)

and the pdf (probability density function) of the model reads

f(yt|xt, βt) = λyt
t e−λt

yt!
= eβ⊺

t xtyte− exp(β⊺
t xt)

yt!
. (1.5)

Generally, direct Bayesian inference of GLMs is analytically intractable
(except for the linear regression model) due to the lack of convenient con-
jugate prior distributions. Therefore, the inference mostly relies on MCMC
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1. Sequential Inference of the Poisson Model

(Markov chain Monte Carlo) methods [5], which are not suitable for real-time
sequential analyses. Some GLM-specific lower-complexity workarounds were
proposed, e.g., the normal Laplacian approximation of the posterior pdf in lo-
gistic regression [29], or the three-stage approximation Poisson → log-gamma
→ normal pdf in the static Poisson model [26]. The later will be adopted
below to propose the sequential Bayesian estimator.

1.1 Statical approach to estimation
As stated earlier, direct sequential inference of the Poisson model is analyti-
cally intractable, hence a different approach must be chosen. There are several
ways to work around this problem. This section focuses mainly on MLE (maxi-
mum likelihood estimation) [30] and Bayesian estimation using approximation
of the posterior distribution [26].

1.1.1 Maximum likelihood estimation
From the statistical point of view, a given set of data y = [y0, y1, . . . , ym−1] is
a random sample from an unknown population. The aim of maximum like-
lihood estimation is to find a specific population from which the sample has
most likely been drawn. More precisely, every population is mathematically
described by a corresponding probability distribution. Every probability dis-
tribution is associated with a specific model and its parameters. Our goal
is to find a unique vector β = [β0, β1, . . . , βn−1]⊺ containing values of the
parameters [30].

Let f(yt|β) be the pdf that specifies the probability of an observation yt

depending on the parameters β. Given a specific vector of parameters, the
corresponding pdf will show that some observations are more probable than
others. If all individual observations yt are statistically independent, then the
pdf of the joint distribution is just a simple multiplication of individual pdfs,
meaning

f(y|β) = f(y0, y1, . . . , ym−1|β) =
m−1∏
t=0

f(yt|β). (1.6)

However, we usually do not know the actual values of the parameters, hence we
have to find them. To solve this, we need to define the likelihood function by
reversing the roles of the observations y and the parameter vector β, resulting
in

L(β|y) = f(y|β). (1.7)

The value of the function represents a likelihood of the parameter vector β
given the observations y. It is also important to note that there is a significant
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1.1. Statical approach to estimation

difference between the two functions f(y|β) and L(β|y), as they are both
defined on different variables [30].

Now, using the previously defined function, our goal is to find a vector β̂
for which the likelihood function value is the highest,

β̂ = arg max
∀β

L(β|y). (1.8)

To do this, we can use a variety of numerical optimization methods. In some
cases, it is possible to find the maximum analytically using the derivation of
the likelihood function (if it exists). Working with this type of formula is
generally difficult. However, it is possible to work with the logarithm of the
likelihood function,

ℓ(β|y) = log L(β|y). (1.9)

Finally, to find the maximum of the function, we need to solve an equation

∂ℓ(β|y)
∂β

= 0, (1.10)

and identify its critical points. Since logarithm is a monotonic function, the
maximum of ℓ(β|y) occurs at the same point as does the maximum of L(β|y)
[30].

Now, let us again get back to the Poisson regression. Suppose that we
have a set of m vectors

xt ∈ Rn, t = 0, . . . , m− 1, (1.11)

along with a set of m values

yt ∼ Po
(
eβ⊺xt

)
. (1.12)

First, we need to define the pdf of the joint distribution of all observations.
The observations are independent, therefore using the Equation (1.6), the pdf
for all k values yt can be written as

f(y0, . . . , ym−1|x0, . . . , xm−1, β) =
m−1∏
t=0

eβ⊺xtyte− exp(β⊺xt)

yt!
. (1.13)

Then, to perform MLE and find the values of the vector β, we need to define
a likelihood function as shown in the Equation (1.7), resulting in

L(β|X, Y ) =
m−1∏
t=0

eβ⊺xtyte− exp(β⊺xt)

yt!
. (1.14)
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1. Sequential Inference of the Poisson Model

As described earlier, it is easier to work with the log-likelihood rather than
with the original form (1.14). We can transform the Equation (1.14) using
the principle presented in the Equation (1.9), leading us to

ℓ(β|X, Y ) =
m−1∑
t=0

(
β⊺xtyt − eβ⊺xt − log(yt!)

)
. (1.15)

Finally, to find a maximum of (1.15), we need to solve the equation

∂ℓ(β|X, Y )
∂β

= 0. (1.16)

The main problem is that the equation has no closed-form solution. However,
the negative log-likelihood, −ℓ(β|X, Y ), is a convex function, therefore a con-
vex optimization approach, such as gradient descent, can be used to find the
optimal value of β̂.

1.1.2 Bayesian estimation
There is also a different approach that does not rely on iterative optimization
algorithms. In [26], G. M. El-Sayyad describes a method to analytically es-
timate parameters β in a Bayesian setting using an approximation based on
the work of M. S. Bartlett and D. G. Kendall [31].

Let y and β be random variables with pdfs f(y|β) and π(β), respectively.
Then, according to Bayes’ theorem

π(β|y) = f(y|β)π(β)
f(y)

, (1.17)

where π(β|y) is a posterior density of β, π(β) is a prior density of β, f(y|β)
is a likelihood of observations, and f(y) is a marginal density of observations.
The marginal density serves as a normalizing constant and due to this fact we
often write only a proportionality

π(β|y) ∝ f(y|β)π(β). (1.18)

As a result of this we get a posterior distribution of β.
We can now now apply Bayes’ theorem to the Poisson regression problem.

As already mentioned in the previous section, the likelihood of observations
can be written as

f(y0, . . . , ym−1|x0, . . . , xm−1, β) =
m−1∏
t=0

eβ⊺xtyte− exp(β⊺xt)

yt!
. (1.19)

Choosing a reasonably vague prior [26], the posterior distribution reads as

π(β|y0, . . . , ym−1, x0, . . . , xm−1) ∝ f(y0, . . . , ym−1|x0, . . . , xm−1, β). (1.20)

6



1.1. Statical approach to estimation

If both the posterior distribution π(β|y) and the prior distribution π(β) are
from the same probability distribution family, then they are called conjugate
distributions [32]. Unfortunately, there is no conjugate prior for β due to the
functional form of the likelihood function of the Poisson GLM. This, how-
ever, can be solved if we apply an approximation to the distribution of our
observations.

Suppose that we have a random variable

Z ∼ Γ(k, θ), (1.21)

where a corresponding pdf reads

f(z|k, θ) = 1
Γ(k)θk

zk−1e− z
θ . (1.22)

If we transform the said random variable in the sense

Z̃ = log Z ∼ log Γ(k, θ), (1.23)

we get a distribution whose pdf reads

f(z̃|k, θ) = 1
Γ(k)θk

ez̃ke− exp(z̃)
θ . (1.24)

According to [26] and [31], if the value of k is large and θ = 1, then the
distribution of Z̃ can be approximated as

Z̃ ∼ N (log k, k−1). (1.25)

If we take a closer look at Equation (1.19), we can see a familiar pattern in
the formula. By using the previously described approximation, we can rewrite
the pdf of the observations as

f(y0, . . . , ym−1|x0, . . . , xm−1, β) =
m−1∏
t=0

eβ⊺
t xtyte− exp(β⊺

t xt)

yt!
(1.26)

=
m−1∏
t=0

1
yt

1
Γ(yt)1yt

eβ⊺
t xtyte−

exp(β
⊺
t

xt)
1 (1.27)

≈
m−1∏
t=0

1
yt
N (β⊺

t xt| log yt, y−1
t ) (1.28)

∝ exp
(
−1

2

m−1∑
t=0

yt(β⊺xt − log yt)2
)

. (1.29)

The pdf of the posterior distribution of β can be then approximated as

π(β|y0, . . . , ym−1, x0, . . . , xm−1) ∝ exp
(
−1

2

m−1∑
t=0

yt(β⊺xt − log yt)2
)

. (1.30)

7



1. Sequential Inference of the Poisson Model

Finally, we need to find the expected value of the posterior distribution. Ac-
cording to [26], by setting a vector

t =
[√

y0 log y0 · · · √ym−1 log ym−1
]⊺

, (1.31)

and a matrix

U =

 x0,0
√

y0 · · · x0,n−1
√

y0
... . . .

xm−1,0
√

ym−1 xm−1,n−1
√

ym−1

 , (1.32)

we can obtain the posterior expected value of β as

E(β) = (U⊺U)−1U⊺t. (1.33)

As we can see in Equation (1.33), the expected value is obtained using
only a simple formula, which is computationally more efficient than numeri-
cal methods used with MLE. That, however, can have a negative impact on
accuracy of resulting estimates.

To compare both methods, MLE and Bayesian estimation using the pre-
viously described approximation, in terms of accuracy of their estimates, we
can use a simple simulation where we incrementally increase the data size.
Fig. 1.1 shows estimates of parameters β for different data sizes. In both
cases, the size was incrementally increased by 10. Real value of the parame-
ters β = [0.9, 0.6, 0.3, 0.1]⊺. Fig. 1.2 shows evolution of the RMSE (root mean
square error)

RMSEt(βi) =

√√√√ 1
t + 1

t∑
τ=0

(β̂i,τ − βi)2

i = 0, . . . , n− 1,

t = 0, . . . , m− 1, (1.34)

for both methods. As we can see, the second method is less accurate.

1.2 Stabilization of variance
A commonly encountered problem of the Poisson models evident from (1.4)
is that the variance is equal to the expected value. Suppose that we have
a Poisson variable

Yt ∼ Po(λt). (1.35)

It is generally known that for large values of λt, it approaches the normal
distribution with both the expected value and the variance equal to λt [33].
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Figure 1.1: Real and estimated values of β for different sizes of data. The solid
line depicts the real value of parameters, the dashed line represents estimates
of MLE, and the dotted line represents estimates of the Bayesian method using
the approximation presented by El-Sayyad [26].

Hence, a convenient function h(·), serving as a variance-stabilizing transfor-
mation, may be used to improve the estimation quality. This function can
take many forms with varying accuracy and ease of implementation. Lists of
these transformations are summarized, e.g., in [4] or [33].

As shown in [34] and [33], if we standardize the Poisson variable, meaning

g(yt) = yt − λt√
λt

, (1.36)

then for large λt, it has approximately standard normal distribution with mean
E(Ỹt) = 0 and variance var(Ỹt) = 1.

One of the simplest of these transformations is the square-root transfor-
mation h(yt) = √yt [35, 31]. When we apply the transformation to the said
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Figure 1.2: Evolution of the RMSE. The dashed line represents RMSE of MLE
estimates, and the dotted line represents RMSE of estimates of the El-Sayyad’s
method [26].

variable, then the transformed variable is approximately normally distributed
[4],

Ỹt =
√

Yt ∼ N
(√

λt,
1
4

)
, (1.37)

and the error term is O(λ−1
t ). As also stated in [4], the variance is only approx-

imately constant. To be more precise, examining the asymptotic expansion,
the subsequent terms actually read as

E(Ỹt) ≈
√

λt

(
1− 1

8λt

)
, (1.38)

var(Ỹt) ≈
1 + 3

8λt

4
. (1.39)
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1.2. Stabilization of variance

There is another power transformation, Y
2
3 , meaning h(yt) = y

2
3
t . As

stated in [4], the transformed variable is more symmetric than the previous
one, with the skewness being O(λ− 3

2
t ). The important feature of both this and

the previous transformation is that none of them requires any direct knowledge
about the actual value of λt.

In [4], there is another alternative transformation that provides approxi-
mate symmetry and also stability of variance. It requires knowledge about λt

and is described as

h(yt) =

3y
1
2
t − 3y

1
6
t λ

1
3
t + 1

6λ
− 1

2
t if yt ̸= 0,

−(2λt)
1
2 + 1

6λ
− 1

2
t if yt = 0.

(1.40)

The resulting transformed variable is standard normal for large values of λt.
In [36], Bartlett also discusses a logarithmic transformation for specific

cases where, even after applying the square-root transformation, the variance
is still slightly correlated to the mean. The transformation reads

h(yt) = λ−1
t sinh−1 (λt

√
yt) , (1.41)

or equivalently

h(yt) = λ−1
t log

(√
1 + λ2

t yt + λt
√

yt

)
. (1.42)

The transformation is more exact due to the fact that it requires a good
estimation of λt. For cases, where this is not possible, it is suggested to use
a transformation

h(yt) = log(yt + 1), (1.43)

which can deal with zeros and also provides good results [36].
Figure 1.3 shows a comparison of different transformations (namely h(y) =

√
y and h(y) = y

2
3 ) and their convergence to the normal distribution. Each row

shows a histogram of a random sample generated from the Poisson distribution
for a specific values of λ. Shown is also a density estimated using the Gaussian
KDE (kernel density estimation) [37] method along with the approximated
normal distribution. Table 1.1 then shows a comparison of the real mean and
variance and the sample mean and variance. As we can see from both the plots
and the table, the square-root transform deviates only slightly and converges
relatively fast.

A convenient transformation of the Poisson variable can improve the mod-
eling quality. We will stick with the square-root transformations for its general
simplicity and effectiveness.
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h(y)=
y

h(y)=
√

y
h(y)=

y
23

E(Y
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))
v
a
r(h(Y

))
E(h(Y

))
v
a
r(h(Y

))
ȳ

s 2
h(y)

s 2
h(y)

s 2

λ
=

1
1
.0000

1.0000
1
.0000

0.2500
1
.0000

0
.4444

1
.0006

0.9999
0
.7735

0.4024
0
.8374

0
.5266

λ
=

2
2
.0000

2.0000
1
.4142

0.2500
1
.5874

0
.5600

1
.9945

2.0038
1
.2652

0.3937
1
.4612

0
.6675

λ
=

3
3
.0000

3.0000
1
.7321

0.2500
2
.0801

0
.6410

2
.9981

3.0113
1
.6301

0.3408
1
.9829

0
.7218

λ
=

4
4
.0000

4.0000
2
.0000

0.2500
2
.5198

0
.7055

4
.0073

4.0006
1
.9237

0.3065
2
.4417

0
.7627

λ
=

5
5
.0000

5.0000
2
.2361

0.2500
2
.9240

0
.7600

5
.0030

5.0049
2
.1718

0.2863
2
.8531

0
.8021

λ
=

10
10.0000

10.0000
3
.1623

0.2500
4
.6416

0
.9575

10.0113
10.0212

3
.1224
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.5914
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.9788

λ
=
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19.8296

4
.4436
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λ
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5
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0.2500
9
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1
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29.9809
30.0480

5
.4522
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9
.6145

1
.3930

λ
=
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40.0000

40.0000
6
.3246

0.2500
11.6961

1
.5200

40.0256
39.8460

6
.3067

0.2513
11.6684

1
.5199

λ
=

50
50.0000

50.0000
7
.0711

0.2500
13.5721

1
.6373

50.0033
50.1447

7
.0534

0.2524
13.5423

1
.6467

Table
1.1:

C
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parison
ofm

eans
and

variances
ofdifferent

transform
ations

for
specific

values
of

λ.
Show

n
are

the
realm

ean
(E(Y

))
and

the
realvariance

(v
a
r(Y

))
along

w
ith

the
sam

pled
m

ean
(ȳ)

and
the

sam
pled

variance
(s 2).
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1.2. Stabilization of variance

Due to the change of variables theorem, the pdf of Ỹt is

f(ỹt|xt, βt) = f
(
h−1(ỹt)

) ∣∣∣∣∣dh−1(ỹt)
dỹt

∣∣∣∣∣ (1.44)

= λ
ỹ2

t
t e−λt

ỹ2
t !

· 2ỹt (1.45)

= eβ⊺
t xtỹ2

t e− exp(β⊺
t xt)

ỹ2
t !

· 2ỹt (1.46)

= 2
Γ(ỹ2

t )
eβ⊺

t xtỹ2
t e− exp(β⊺

t xt) · 1
ỹt

, (1.47)

where the gamma function follows from z! = zΓ(z).
Although the square-root transformations stabilizes the properties of the

modeled random variable, the problem of nonexistent conjugate prior still
persists. Therefore, instead of using the normal pdf, we will stick with the
functional form (1.47) in the following steps.
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0 5 10
0.00

0.05

0.10

0.15

0.20

f(y
|

=
3)

h(y) = y

0 2
0.0

0.2

0.4

0.6

0.8
h(y) = y

0 2 4 6
0.0

0.2

0.4

h(y) = y2/3

0 10 20
0.00

0.05

0.10

0.15

f(y
|

=
5)

0 2 4
0.0

0.2

0.4

0.6

0.8

0 2 4 6
0.0

0.2

0.4

0 10 20
0.00

0.05

0.10

f(y
|

=
10

)

0 2 4
0.0

0.2

0.4

0.6

0.8

0 5
0.0

0.1

0.2

0.3

0.4

20 40
y

0.00

0.02

0.04

0.06

0.08

f(y
|

=
20

)

2 4 6
y

0.0

0.2

0.4

0.6

0.8

5 10
y

0.0

0.1

0.2

0.3

0.4

Figure 1.3: Comparison of different transformations and their convergence
to the normal distribution for different values of λ. The first column shows
a histogram of a sample generated from the Poisson distribution along with
the real density of the Poisson distribution and KDE of the sample. The
second column shows the transformation h(y) = √y along with KDE and pdf
of the corresponding normal distribution. The third column shows the same
for the transformation h(y) = y

2
3 . Grey bars represent a histogram of the

random sample. Dotted lines represent a KDE density. Dashed lines in the
first column represent the density of the Poisson distribution, while in the
second and third columns they represent the pdf of the corresponding normal
distribution.
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1.3. Approximate sequential estimation of β

1.3 Approximate sequential estimation of β

Let us introduce the notation:

x0:t−1 = [x0, . . . , xt−1], (1.48)
ỹ0:t−1 = [ỹ0, . . . , ỹt−1]. (1.49)

The prior pdf π(βt|x0:t−1, ỹ0:t−1) contains all available statistical information
about the past observations and regressors necessary for the estimation of
βt. The initial variables ỹ0 and x0 represent the prior knowledge (pseudo-
observations) available at the very beginning of the modeling, e.g., given by
an expert, or obtained from historical observations.

The update of the prior distribution of βt by recently observed yt and xt

provides the Bayes’ theorem

π(βt|x0:t, ỹ0:t) = f(ỹt|xt, βt)π(βt|x0:t−1, ỹ0:t−1)
f(x0:t, ỹ0:t)

= f(ỹt|xt, βt)π(βt|x0:t−1, ỹ0:t−1)∫
Rn f(ỹt|xt, βt)π(βt|x0:t−1, ỹ0:t−1)dβt

, (1.50)

where the integral in the denominator serves as the normalizing constant,
ensuring that the resulting posterior function is a pdf that integrates to one.

1.3.1 Sequential estimation with conjugate prior
The Bayesian update (1.50) does not generally yield posterior distributions in
closed forms. An important exception is the case of models that belong to
the exponential family of distributions estimated with conjugate prior distri-
butions [32].

Definition 1.1. (Exponential family): Let Ỹt be a random variable with
a parameter βt. The distribution of Ỹt belongs to the exponential family if its
pdf has a form

f(ỹt|xt, βt) = k(xt, ỹt)l(βt)eη(βt)⊺T (xt,ỹt), (1.51)

where η(βt) is the natural parameter, i.e., a function of the original parameter
βt, and T (xt, ỹt) is a sufficient statistic that comprises all information neces-
sary for the estimation of βt. The functions k(xt, ỹt) and l(βt) are the base
measure and the normalizing function, respectively.

Definition 1.2. (Conjugate prior distribution): The prior distribution for the
estimation of βt conjugate to the model (1.51) is characterized by the prior
hyperparameters Ξt of the same size as T (xt, ỹt), and a scalar positive νt that
is dropped if l(βt) = 1 for all βt. Its pdf has the form

π(βt|Ξt−1, νt−1) = m(Ξt−1, νt−1)l(βt)νt−1eη(βt)⊺Ξt−1 , (1.52)
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1. Sequential Inference of the Poisson Model

where m(Ξt−1, νt−1) is a known function, and l(βt) is the same function as in
(1.51).

Lemma 1.3. The Bayesian update (1.50) multiplying the model (1.51) with
the prior pdf (1.52) results in the posterior pdf of the same functional type as
the prior, characterized by the posterior hyperparameters

Ξt = Ξt−1 + T (xt, ỹt),
νt = νt−1 + 1. (1.53)

Proof. The proof is straightforward.

In cases where we have multiple data, the Bayesian update (1.50) has
a form of

π(βk|ỹ0:k, x0:k) ∝ π(βτ |ỹ0:τ−1, x0:τ−1)
k∏

τ̃=τ

f(ỹτ̃ |xτ̃ , βτ̃ ). (1.54)

The pdf of the posterior distribution is therefore characterized by the posterior
hyperparameters

Ξk = Ξτ−1 +
k∑

τ̃=τ

T (xτ̃ , ỹτ̃ ),

νk = ντ−1 + k − τ + 1. (1.55)

This result allows for efficient sequential estimation of βt, given that the
Bayesian update (1.50) is equivalent to simple summations, and the functional
form of the posterior density is the same as that of the prior density. Due to
this fact, the posterior pdf can serve as the prior pdf for the next time instant.

To demonstrate the described principle, we can perform Bayesian estima-
tion of the parameter λ of the Poisson distribution. Suppose that we have
a Poisson variable

Y ∼ Po(λ). (1.56)

Then the conjugate prior (see Definition 1.2) of the parameter λ is the gamma
distribution [38], meaning

λ ∼ Γ(a, b), (1.57)

where a is a shape parameter and b is an inverse scale parameter. The like-
lihood of observations yt, according to Equation (1.51) (see Definition 1.1),
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1.3. Approximate sequential estimation of β

reads

f(yt|λt) = 1
yt!

λyt
t e−λt (1.58)

= 1
yt!

exp
{

ln
(
λyt

t e−λt

)}
(1.59)

= 1
yt!

exp {yt ln λt − λt} (1.60)

= 1
yt!︸︷︷︸

k(yt)

· 1︸︷︷︸
l(λt)

· exp


[
ln λt

−λt

]⊺
︸ ︷︷ ︸

η(λt)

[
yt

1

]
︸︷︷︸
T (yt)


. (1.61)

The pdf of the conjugate prior distribution, according to Equation (1.52),
reads

π(λt|at−1, bt−1) =
b

at−1
t−1

Γ(at−1)
λ

at−1−1
t e−bt−1λt (1.62)

=
b

at−1
t−1

Γ(at−1)
exp

{
ln
(
λ

at−1−1
t e−bt−1λt

)}
(1.63)

=
b

at−1
t−1

Γ(at−1)
exp {(at−1 − 1) ln λt − bt−1λt} (1.64)

=
b

at−1
t−1

Γ(at−1)︸ ︷︷ ︸
m(Ξt−1,νt−1)

· 1︸︷︷︸
l(λt)νt−1

· exp


[
ln λt

−λt

]⊺
︸ ︷︷ ︸

η(λt)

[
at−1 − 1

bt−1

]
︸ ︷︷ ︸

Ξt−1


. (1.65)

If we now perform the Bayesian update (1.50), then the posterior pdf is of the
same functional type as the prior and is characterized by hyperparameters Ξt

and νt (see Equation (1.53)). Furthermore, if we take the individual compo-
nents of the hyperparameter Ξt, we can obtain the actual parameters at and
bt of the posterior gamma distribution, leaving us with

at = Ξt,0 + 1, (1.66)
bt = Ξt,1. (1.67)

Figure 1.4 shows results of a simulated Bayesian estimation of the parame-
ter λ. In this case λ = 40 and the prior parameters of the gamma distribution
a = 0.001, b = 0.001. The estimates converge to the actual value after around
1000 time steps. Figure 1.5 shows an evolution of the RMSE of estimates. As
we can see, the RMSE systematically decreases with time.
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Figure 1.4: Evolution of the Bayesian estimation of parameter λ of a Poisson
random variable. Solid line represents the actual value of the parameter λ.
Dashed line represents the Bayesian estimates.
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of a Poisson random variable.
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1. Sequential Inference of the Poisson Model

1.3.2 Guassian approximation of the likelihood of β in the
posterior distribution

When comparing the true data model (1.47) with the exponential family form
(1.51), it is obvious that there cannot exist a convenient conjugate prior dis-
tribution of the form (1.52). For the one-shot static Poisson regression with
no variance stabilization, a workaround is suggested in [26]. It consists of ap-
proximating the likelihood of the (time-invariant) β for all the observed data
x1:t,

f(y1:t|β, x1:t) =
∏
τ

f(yτ |β, xτ ) (1.68)

in the posterior distribution by a normal distribution. The approximation
was originally proposed by Bartlett and Kendall [31]. Even though our aim
is to update the estimate of βt sequentially with the incoming observations
(and additionally we deal with the transformed variable ỹt = √yt), a similar
philosophy can be adopted.

Let us once again get back to the Bayesian update (1.50). In the posterior
pdf, the model (1.47) acts as a function of βt, while xt and ỹt are fixed. Figure
1.6 depicts this (renormalized) function for four selected values of ỹt. Suppose
that we have a real random variable u whose density function is proportional
to exp(uz) exp(− exp(u)) where z stands for a parameter. Then the density
function can be approximated by a normal distributionN (log z, z−1), provided
that z is a large number [31]. In Equation (1.47) with xt and ỹt fixed, this
leads to the approximation by N (log ỹ2

t , ỹ−2
t ). However, the approximation is

crude if ỹt is low. The mean values differ even by 0.58 if ỹt = 1.
In order to compensate the approximation error under low values of ỹt,

the following moment matching-based calibration is suggested: the bias of
both the approximating mean value and the standard deviation can be pre-
dicted and suppressed (with sufficient accuracy) using the regression models
with ỹt in the role of the regressand. The calibrated approximative normal
distribution with the bias removed has the mean and standard deviation

µc = log ỹ2
t −

0.5574
ỹ2

t

,

σc = 1
ỹt

+ 0.0724
ỹ2

t

+ 0.2121
ỹ4

t

. (1.69)

The coefficients were obtained from the OLS (ordinary least squares) over the
values ỹ2

t = 1, . . . , 100. Figures 1.7 and 1.8 depict the compensated approxi-
mation error and the related prediction error due to the model for the mean
value and the standard deviation, respectively. Fig. 1.9 compares the true
distribution of ỹt, the calibrated, and the noncalibrated normal approxima-
tions. It is also important to note that since yt ∈ N, it is possible to use a table
of precomputed values of µc and σ2

c for low values of yt (see Table 1.2).
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1. Sequential Inference of the Poisson Model
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Figure 1.6: Shape of renormalized function (1.47) for different fixed observa-
tion value ỹt, regressor xt, and variable β.
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Figure 1.7: Calibration of the mean value. Top: The true value of the ap-
proximation error under N (log ỹ2

t , ỹ−2
t ) and its regression-based prediction.

Bottom: Evolution of the prediction error.
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Figure 1.8: Calibration of the standard deviation. Top: The true value of the
approximation error under N (log ỹ2

t , ỹ−2
t ) and its regression-based prediction.

Bottom: Evolution of the prediction error.
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approximations for the values 1 (top), 3 (middle), and 6 (bottom), i.e., yt = 1,
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1. Sequential Inference of the Poisson Model

1.4 The posterior distribution
The posterior distribution π(βt|x0:t, ỹ0:t), as specified in Equation (1.50), now
consists of the normal distribution N (µc, σ2

c ) defined by the moments (1.69)
and a prior distribution π(βt|x0:t−1, ỹ0:t−1). The normal distribution belongs
to the exponential family (see Definition 1.1) and its pdf can be written in the
form (1.51),

f(yt|xt, βt) = 1√
2πσ2

c,t

exp
{
− 1

2σ2
c,t

||µc,t − β⊺
t xt||2

}

∝ exp
{
− 1

2
Tr
([
−1
βt

] [
−1
βt

]⊺
︸ ︷︷ ︸

η≡η(βt)

[
µc,t

xt

] [
µc,t

xt

]⊺
σ−2

c,t︸ ︷︷ ︸
T (xt,ỹt)

)}
, (1.70)

where, to avoid vectorizations, a slight simplification of the notation is used.
Due to this, the appropriate conjugate prior distribution is the normal distri-
bution with the mean vector bt−1 and the covariance matrix Pt−1. The pdf of
the prior distribution in the compatible form is

π(β|bt−1, Pt−1) ∝ exp
{
− 1

2
Tr
([
−1
β

] [
−1
β

]⊺
︸ ︷︷ ︸

η≡η(β)

[
b⊺t−1

I

]
P −1

t−1

[
b⊺t−1

I

]⊺
︸ ︷︷ ︸

Ξt−1

)}
, (1.71)

where I is the n × n identity matrix. Then, the posterior distribution fol-
lowing from the Bayes’ rule (1.50) is (in terms of the update of the prior
hyperparameters (1.53)) given by

Ξt = Ξt−1 + T (xt, ỹt). (1.72)

If we take a closer look at the matrix Ξt−1 in Equation (1.71), it can be
expanded as

Ξt−1 =
[
b⊺t−1

I

]
P −1

t−1

[
b⊺t−1

I

]⊺
(1.73)

=


b⊺t−1P −1

t−1bt−1︸ ︷︷ ︸
1×1

b⊺t−1P −1
t−1︸ ︷︷ ︸

1×n

P −1
t−1bt−1︸ ︷︷ ︸

n×1

P −1
t−1︸ ︷︷ ︸

n×n

 . (1.74)

Analogically

Ξt =


b⊺t P −1

t bt︸ ︷︷ ︸
1×1

b⊺t P −1
t︸ ︷︷ ︸

1×n

P −1
t bt︸ ︷︷ ︸
n×1

P −1
t︸︷︷︸

n×n

 . (1.75)
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1.5. Time-varying βt

Similarly, the matrix T (xt, ỹt) in Equation (1.70) can be expanded as

T (xt, ỹt) =
[
µc,t

xt

] [
µc,t

xt

]⊺
σ−2

c,t (1.76)

=


σ−2

c,t µ2
c,t︸ ︷︷ ︸

1×1

σ−2
c,t µc,tx

⊺
t︸ ︷︷ ︸

1×n

σ−2
c,t xtµc,t︸ ︷︷ ︸

n×1

σ−2
c,t xtx

⊺
t︸ ︷︷ ︸

n×n

 . (1.77)

Finally, a little algebra reveals that the ‘conventional’ normal hyperparameters
of the posterior distribution are

Pt = Ξ−1
t,1:n,1:n

= (Ξt−1,1:n,1:n + T (xt, ỹt)1:n,1:n)−1

=
(
P −1

t−1 + σ−2
c,t xtx

⊺
t

)−1
, (1.78)

and

bt = PtP
−1
t bt

= Ξ−1
t,1:n,1:nΞt,1:n,0

= (Ξt−1,1:n,1:n + T (xt, ỹt)1:n,1:n)−1 (Ξt−1,1:n,0 + T (xt, ỹt)1:n,0)

=
(
P −1

t−1 + σ−2
c,t xtx

⊺
t

)−1 (
P −1

t−1bt−1 + σ−2
c,t xtµc,t

)
. (1.79)

1.5 Time-varying βt

Having constant model parameters is rather an exception than a rule. The
usual problem is that no explicit model for the evolution βt−1 → βt exists.
However, if the variations are slow, we may proceed by means of forgetting,
which means heuristic discounting of possibly outdated information about βt

from the posterior distribution. The most basic yet one of the most used
approaches to this problem is the exponential forgetting, flattening the prior
pdf by its exponentiation [39],

π(βt|x0:t−1, y0:t−1) = [π(βt−1|x0:t−1, y0:t−1)]α, α ∈ [0, 1]. (1.80)

In conjugate priors (see Definition 1.2) this amounts to

νt−1 ← ανt−1,

Ξt−1 ← αΞt−1. (1.81)

For summary of other (more elaborate) forgetting methods, see, e.g., [40] and
the references therein.
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1. Sequential Inference of the Poisson Model

Algorithm 1 Sequential Poisson Regression
Set the prior distribution N (b0, P0). Set the forgetting factor α. For t =
1, 2, . . . do:

1. Gather observations xt, yt.

2. Flatten the prior distribution, Eq. (1.81).

3. Update the prior hyperparameter, Eq. (1.72)

4. Evaluate the point estimate b̄t and the covariance matrix P̄t from Ξ̄t,
Equations (1.78) and (1.79).
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Chapter 2
Signal Processing Domain

Application

As already stated, distributed inference of unknown variables is an established
discipline in the signal processing domain. Assume that we have a network
consisting of a set I of agents that independently observe the processes

Y
(i)

t ∼ Po(exp(β⊺
t x

(i)
t )), (2.1)

with the observations y
(i)
t being local, regressors x

(i)
t being potentially local,

and βt being global (i.e., identical for all i ∈ I). These types of situations may
occur, e.g., in particle detection, where each agent observes different number
y

(i)
t of particles generated by a single underlying process, and employs a time-

series model with x
(i)
t consisting of past observations. Let I(i) denote the set

of adjacent neighbors of agent i, and let i ∈ I(i) too. Now, suppose that at
each time instant t, every agent i may perform one mutual exchange of the
posterior pdfs with all its adjacent neighbors j ∈ I(i) withing 1 network hop
distance. Note that the pdfs are fully represented by Ξ(i)

t .
Looking closely at the Bayesian update (1.53), we can see that Ξ(i)

t summa-
rizes the information contained in the past sufficient statistics T (x(i)

τ , ỹ
(i)
τ ), τ =

0, . . . , t where T (x(i)
0 , ỹ

(i)
0 ) represent the initial pseudo-observations (see Sec-

tion 1.3). Therefore, the combination of the posterior pdfs in terms of the
hyperparameter averaging

Ξ̄(i)
t = 1

card(I(i))
∑

j∈I(i)

Ξ(j)
t , (2.2)

where card(I(i)) denotes the cardinality of I(i), amounts to the uniformly
weighted Bayesian update by observations of adjacent neighbors. Analogi-
cally to Equation (1.75), the matrix Ξ(i)

t actually consists of the ‘conventional’
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2. Signal Processing Domain Application

hyperparameters, meaning

Ξ(i)
t =


b
⊺,(i)
t P

−1,(i)
t b

(i)
t︸ ︷︷ ︸

1×1

b
⊺,(i)
t P

−1,(i)
t︸ ︷︷ ︸

1×n

P
−1,(i)
t b

(i)
t︸ ︷︷ ︸

n×1

P
−1,(i)
t︸ ︷︷ ︸
n×n

 . (2.3)

Thus, from a little algebra (similarly to Equations (1.78) and (1.79)) it follows
that

P̄
(i)
t =

 1
card(I(i))

∑
j∈I(i)

P
−1,(j)
t

−1

, (2.4)

b̄
(i)
t = P̄

(i)
t

 1
card(I(i))

∑
j∈I(i)

P
−1,(j)
t b

(j)
t

 , (2.5)

which is known as the covariance intersection. In [24], K. Dedecius shows
that this result is Kullback-Leibler-optimal. A careful inspection of Equation
(2.2) shows that it actually corresponds to uniformly weighted averaging of
neighbors’ knowledge about βt. That is, however, not a problem, since the
covariance matrices P

(j)
t (see Equation (2.4)) effectively reflect the uncertainty

about the individual estimates. More elaborate combination strategies are
proposed, e.g., in [41].
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Algorithm 2 Diffusion Poisson Regression
For each agent i ∈ I set the prior distribution N (b(i)

0 , P
(i)
0 ). Set the forgetting

factor α. For t = 1, 2, . . . and each node i ∈ I do:
Local estimation:

1. Gather observations x
(i)
t , y

(i)
t .

2. Flatten the prior distribution, Eq. (1.81).

3. Update the prior hyperparameter, Eq. (1.72)

Combination:

1. Get posterior pdfs π(βt|b(j)
t , P

(j)
t ) of neighbors j ∈ I(i).

2. Combine the posterior hyperparameters, Eq. (2.2), or in terms of b
(j)
t

and P
(j)
t , Equations (2.4) and (2.5).

3. Evaluate the point estimate b̄
(i)
t and the covariance matrix P̄

(i)
t from

Ξ̄(i)
t .
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Chapter 3
Simulation Examples

3.1 Single-node estimation with static parameters
The first set of examples demonstrates the efficiency of using the calibration
described in Section 1.3.2, based on the range of values of observations yt. In
all simulations, two models are compared: (i) the ‘calibrated’ model using the
mean and variance defined in Equation (1.69), and (ii) the ‘non-calibrated’
model using the original mean and variance. Results of all simulations were
averaged over 30 independent runs. The forgetting factor was not used, mean-
ing α = 1. Both models observe the same independently generated outcomes
of a Poisson regression process. The initial prior distribution is the normal
distribution with b0 = [0, 0, 0, 0]⊺ and P0 = 100 · I where I is the identity 4×4
matrix.

The first simulation was run with a vector of static regression coefficients
β = [0.9, 0.5, 0.2, 0.1]⊺, and randomly generated regressors

xt,0 = 1, (3.1)
xt,1 ∼ U(0.3, 2.1), (3.2)
xt,1 ∼ U(0.5, 2.2), (3.3)
xt,1 ∼ U(0.9, 1.5). (3.4)

Values of observations yt ranged from 2 to 33 with a mean of 8. Fig. 3.1 shows
the evolution of RMSE for both models. As we can see, the calibrated model
clearly outperforms the non-calibrated model. Fig.3.2 then shows the stability
of estimates for one randomly selected run of the algorithm.

The second simulation was run with a vector of regression coefficients
β = [0.8, 0.9, 1.1, 1.3]⊺, and randomly generated regressors

xt,0 = 1, (3.5)
xt,1 ∼ U(0.2, 1.1), (3.6)
xt,1 ∼ U(0.1, 0.9), (3.7)
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Figure 3.1: Evolution of the RMSE for low values of yt.

xt,1 ∼ U(0.3, 0.8). (3.8)

Values of observations yt ranged from 2 to 101 with a mean of 23. Fig. 3.3
shows the evolution of RMSE and Fig. 3.4 show the stability of estimates for
one randomly selected run. As we can see, the calibrated model still dominates
the non-calibrated one, although the difference is not as noticable as in the
previous simulation.

The last simulation in this set was run with a vector of regression coeffi-
cients β = [1.05, 2.41, 3.27, 3.87]⊺, and randomly generated regressors

xt,0 = 1, (3.9)
xt,1 ∼ U(0.06, 0.1), (3.10)
xt,1 ∼ U(0.1, 0.5), (3.11)
xt,1 ∼ U(0.1, 0.7). (3.12)

Values of observations yt ranged from 2 to 666 with a mean of 99. Fig. 3.5
shows the evolution of RMSE and Fig. 3.6 show the stability of estimates for
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Figure 3.2: Real and estimated values of β in time for low values of yt.

one randomly selected run. It is clear that with such large values it is no
longer possible to observe a noticeable difference in the quality of estimates.
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Figure 3.3: Evolution of the RMSE for slightly larger values of yt.

36



3.1. Single-node estimation with static parameters

0 250 500 750 1000 1250 1500 1750 2000
Time t

0.6

0.8

1.0

1.2

1.4

1.6

Va
lu

es
 o

f 
 a

nd
 

real value
non-calibrated model
calibrated model

Figure 3.4: Real and estimated values of β in time for slightly larger values of
yt.
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Figure 3.5: Evolution of the RMSE for large values of yt.
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Figure 3.6: Real and estimated values of β in time for large values of yt.
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3.2 Single-node estimation with time-varying
parameters

The following set of examples demonstrates the accuracy of the sequential
estimation for different frequencies of parameters and different values of the
forgetting factor α (within a reasonable range from 0.95 to 1), as specified in
Section 1.5. Results of all simulations were averaged over 30 independent runs.
All models observe the same independently generated outcomes of a Poisson
regression process. The initial prior distribution is the normal distribution
with b0 = [0, 0, 0, 0]⊺ and P0 = 100 · I where I is the identity 4× 4 matrix.

The first simulation was run with a vector of time-varying regression co-
efficients

βt =


0.8 + 0.08 · sin

(
4π · t

500
)

0.4 + 0.07 · cos
(
2π · t

500
)

0.05 · cos
(
π · t

500
)

−0.25 + 0.1 · sin
(
3π · t

500
)
 , t = 1, . . . , 500, (3.13)

and randomly generated regressors xt ∼ U (0, 5)4. Fig. 3.7 shows the evolu-
tion of RMSE of all models and Fig. 3.8 shows the stability of their estimates
from one randomly selected run. As we can see, the parameters vary rela-
tively quickly, therefore the model with the forgetting factor α = 0.95 clearly
outperforms other models in terms of accuracy.

The second simulation was run with a vector of time-varying regression
coefficients

βt =


0.7 + 0.02 · sin

(
π · t

500
)

0.5 + 0.018 · cos
(
2π · t

500
)

0.017 · cos
(
π · t

500
)

−0.11 + 0.007 · sin
(
π · t

500
)
 , t = 1, . . . , 500, (3.14)

and randomly generated regressors xt ∼ U (0, 5)4. Fig. 3.9 shows the evolution
of RMSE of all models and Fig. 3.10 shows the stability of their estimates from
one randomly selected run. In this case, the parameters are more stable and
vary relatively slowly. It is clear that the models with the forgetting factor
close to 1 perform better, especially the model with α = 0.995, while the usage
of lower values results in overall worse quality of estimation.

The last simulation was run with a vector of constant regression coefficients

βt =


0.9
0.4
0.1
−0.2

 , t = 1, . . . , 500, (3.15)

and randomly generated regressors xt ∼ U (0, 5)4. Fig. 3.11 shows the evolu-
tion of RMSE of all models and Fig. 3.12 shows the stability of their estimates
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Figure 3.7: Evolution of the RMSE for high frequencies of time-varying pa-
rameters.

from one randomly selected run. Naturally, the model with α = 1 has the
best performance in this case. It is clear that lower values of the forgetting
factor have considerably negative impact on both the stability of estimates
and their accuracy.
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Figure 3.8: Real and estimated values of β in time for high frequencies of
time-varying parameters.
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3.2. Single-node estimation with time-varying parameters
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Figure 3.9: Evolution of the RMSE for low frequencies of time-varying pa-
rameters.
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Figure 3.10: Real and estimated values of β in time for low frequencies of
time-varying parameters.
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3.2. Single-node estimation with time-varying parameters

100 200 300 400 500

10 1

3 × 10 2

4 × 10 2

6 × 10 2

lo
g(

RM
SE

)

0

= 1
= 0.995
= 0.975
= 0.95

100 200 300 400 500

10 1

3 × 10 2

4 × 10 2

6 × 10 2

1

= 1
= 0.995
= 0.975
= 0.95

100 200 300 400 500
Time t

10 1

3 × 10 2

4 × 10 2

6 × 10 2

lo
g(

RM
SE

)

2

= 1
= 0.995
= 0.975
= 0.95

100 200 300 400 500
Time t

10 1

3 × 10 2

4 × 10 2

6 × 10 2

3

= 1
= 0.995
= 0.975
= 0.95

Figure 3.11: Evolution of the RMSE for constant parameters.
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Figure 3.12: Real and estimated values of β in time for constant parameters.
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3.3. Diffusion estimation with time-varying parameters

Figure 3.13: Network topology used in the first simulation.

3.3 Diffusion estimation with time-varying
parameters

The final set of examples demonstrates the performance of the method pro-
posed in Chapter 2. As the author is not aware of any alternative method for
sequential modeling of counts in diffusion networks, two scenarios are com-
pared: (i) the ‘combination’ scenario using Algorithm 2, and (ii) the isolated
‘no combination’ scenario.

Fig. 3.13 depicts the randomly generated diffusion network of 20 nodes
with degree 3. They observe independently generated outcomes of a Poisson
regression process simulated with a vector of time-varying regression coeffi-
cients

βt =


0.7 + 0.075 · sin

(
3π · t

500
)

0.5 + 0.05 · cos
(
2π · t

500
)

−0.2
0.05 · cos

(
π · t

500
)

 , t = 1, . . . , 500, (3.16)

and randomly generated regressors x
(i)
t ∼ U (0, 5)4. For all the nodes i ∈

{1, . . . , 20}, the initial prior distribution is the normal distribution with b
(i)
0 =

[0, 0, 0, 0]⊺ and P
(i)
0 = 100·I where I is the identity 4×4 matrix. The forgetting

factor α = 0.95. The results are averaged over 100 independent runs.
Fig. 3.14 depicts the evolution of the RMSE averaged over all nodes. The

distributed estimation clearly improves the estimation quality, especially in
terms of the convergence rate. Note that when the estimates stabilize, the
RMSE may slightly vary due to the time-varying nature of βt. Fig. 3.15 shows
a comparison of the stability of estimates at one randomly selected node of the
network. The results show that the estimation performance of the proposed
method is generally good. It can also be concluded that the estimates of the
time-varying βt are more stable in terms of smoothness, naturally at the cost
of the communication overhead.

The second simulation demonstrates the effect of increasing the number of
nodes in the network while maintaining the same degree of nodes. Fig. 3.16
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3. Simulation Examples

depicts the randomly generated network of 50 nodes with degree 3. Fig. 3.17
depicts the RMSE evolution averaged over all nodes and Fig. 3.18 shows a com-
parison of the stability of estimates at one randomly selected node of the net-
work. The results show no noticeable improvement over the smaller network.

The third simulation demonstrates the effect of increasing the degree of
nodes. Fig. 3.19 depicts the randomly generated network of 20 nodes with
degree 6. Fig. 3.20 depicts the RMSE evolution averaged over all nodes and
Fig. 3.21 shows a comparison of the stability of estimates at one randomly
selected node of the network. In this case, the improvement in terms of both
the RMSE and the smoothness of estimates is obvious.

The last simulation shows similar results. Fig. 3.22 depicts the randomly
generated network of 50 nodes with degree 6. Fig. 3.23 depicts the RMSE
evolution averaged over all nodes and Fig. 3.24 shows a comparison of the
stability of estimates at one randomly selected node of the network. From
these observations, it can be concluded that with the increasing degree of
nodes, the accuracy of estimates also increases.
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Figure 3.14: Evolution of the RMSE averaged over all 20 network nodes with
degree 3.
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Figure 3.15: Real and estimated values of β in time in a single node of the
network of 20 nodes with degree 3.

Figure 3.16: Network topology used in the second simulation.
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Figure 3.17: Evolution of the RMSE averaged over all 50 network nodes with
degree 3.

51



3. Simulation Examples

0 100 200 300 400 500
Time t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 o

f 
 a

nd
 

real value
no combination
combination

Figure 3.18: Real and estimated values of β in time in a single node of the
network of 50 nodes with degree 3.
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Figure 3.19: Network topology used in the third simulation.
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Figure 3.20: Evolution of the RMSE averaged over all 20 network nodes with
degree 6.
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Figure 3.21: Real and estimated values of β in time in a single node of the
network of 20 nodes with degree 6.
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Figure 3.22: Network topology used in the fourth simulation.
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Figure 3.23: Evolution of the RMSE averaged over all 50 network nodes with
degree 6.
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Figure 3.24: Real and estimated values of β in time in a single node of the
network of 50 nodes with degree 6.
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Chapter 4
Future Work

This thesis focuses on the sequential inference of the standard Poisson model
and its application in a distributed environment. However, there are several
topics that can be discussed in future work.

4.1 Models of counts
One of the topics is the zero-inflated Poisson regression, which is used for
modeling count data with excess zeros, e.g., number of defects in cases where
the manufacturing equipment is misaligned. It assumes that with probability
p the only possible observation is 0, and with probability 1 − p, a standard
Poisson random variable is observed [42, 43]. Let Y = [Y1, . . . , Yn]⊺ be a vector
of independent responses. Then

Yi ∼ 0 with probability pi,
Yi ∼ Poisson(λi) with probability 1− pi,

(4.1)

so that

Yi =

0 with probability pi + (1− pi)e−λi ,

k with probability (1− pi)e−λi
λk

i
k! , k = 1, 2, . . .

(4.2)

Another topic which can be discussed is overdispersion [5]. The Poisson
model is equidispersed, meaning the mean and the variance have the same
value. In many cases this is very limiting, as the actual random variable is
overdispersed and the variance may differ from the mean. One of the models
that solve this problem is the negative binomial model. The most common
implementation is the NB2 model [44]. Its pdf reads as

f(y|µ, α) = Γ(y + α−1)
Γ(y + 1)Γ(α−1)

(
α−1

α−1 + µ

)α−1 (
µ

α−1 + µ

)y

, (4.3)
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where α ≥ 0 and y = 0, 1, 2, . . . Note that the negative binomial distribution
reduces to the Poisson distribution if α = 0.

4.2 Distributed estimation
In Chapter 2, an algorithm for diffusion Poisson regression was presented.
However, it only utilizes the combination phase of the estimation by diffusion
presented in [24], and skips the adaptation phase. During the adaptation
phase, every node in the network gathers observations from all of its neighbors
and performs the Bayesian update similar to Equation (1.72),

Ξ(i)
t = Ξ(i)

t−1 +
∑

j∈I(i)

ci,jT (x(i)
t , ỹ

(i)
t ), (4.4)

where ci,j are adaptation weights assigned to neighbors of the node i. If the
observation is considered to be an outlier, then ci,j = 0. Otherwise ci,j = 1.
An algorithm which makes use of the adaptation phase, resulting in the full
ATC (adapt-then-combine) scenario, can be devised in the future [10, 11].

Another interesting topic is the estimation of heterogeneous parameters,
meaning every node observes slightly (or completely) different process. In an
isolated scenario, this is naturally not a problem. However, in the case of
cooperation, the complexity is significantly high under the lack of knowledge
which parameters are shared and among which agents. In [25], a framework
for estimation of heterogeneous parameters in diffusion networks is presented,
and a simulated example shows that the collaboration improves estimation
performance of both the shared and strictly local parameters.
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Conclusion

The aim of this thesis was to compile an overview of the GLMs and the Pois-
son regression model, focus on El-Sayyad’s approach to its Bayesian estimation
and propose a sequential variant. Another objective was to propose methods
for stabilization of the estimation procedure and study their behavior on con-
venient examples, and, if possible, suggest a use case of the proposed modeling
approach in the signal processing domain.

In Chapter 1, an overview of GLMs and the Poisson regression model was
elaborated and a method for stabilization of the estimation was proposed.
Then, an algorithm for the sequential estimation was devised. In Chapter 2,
a method for sequential distributed modeling of counts using the Poisson
model was proposed. The parameters are locally estimated using a calibrated
stabilized estimation procedure. Then, the posterior pdfs are combined in the
network. In Chapter 3, several sets of simulation examples were presented to
demonstrate the efficiency of the proposed methods and the effect of different
hyperparameter values and network configurations on the estimation quality.
Finally, Chapter 4 discusses a few interesting topics that can be explored in
the future, such as the zero inflation or overdispersion [43, 5] and the full ATC
diffusion strategy [10, 11].

61





Bibliography

[1] Bosowski, N.; Ingle, V.; et al. Generalized Linear Models for count time
series. In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017, pp. 4272–4276.

[2] Wang, L.; Chi, Y. Stochastic Approximation and Memory-Limited Sub-
space Tracking for Poisson Streaming Data. IEEE Transactions on Signal
Processing, volume 66, no. 4, 2018: pp. 1051–1064.

[3] Manolakis, D.; Bosowski, N.; et al. Count Time-Series Analysis: A Signal
Processing Perspective. IEEE Signal Processing Magazine, volume 36,
no. 3, 2019: pp. 64–81.

[4] McCullagh, P.; Nelder, J. A. Generalized Linear Models, Second Edition
(Monographs on Statistics & Applied Probability). Chapman and Hall,
second edition, Aug. 1989, ISBN 0412317605.

[5] Myers, R. H.; Montgomery, D. C.; et al. Generalized linear models (Wiley
Series in Probability and Statistics). John Wiley & Sons, Mar. 2010, ISBN
9780470454633.

[6] Cintuglu, M. H.; Ishchenko, D. Secure Distributed State Estimation for
Networked Microgrids. IEEE Internet of Things Journal, volume 6, no. 5,
2019: pp. 8046–8055.

[7] Ghazanfari-Rad, S.; Labeau, F. Formulation and analysis of LMS adap-
tive networks for distributed estimation in the presence of transmission
errors. IEEE Internet of Things Journal, volume 3, no. 2, 2015: pp.
146–160.

[8] Ratner, B. Statistical and Machine-Learning Data Mining, Third Edi-
tion: Techniques for Better Predictive Modeling and Analysis of Big
Data, Third Edition. Chapman & Hall/CRC, third edition, 2017, ISBN
1498797601.

63



Bibliography

[9] Chen, Y.; Kar, S.; et al. The internet of things: Secure distributed in-
ference. IEEE Signal Processing Magazine, volume 35, no. 5, 2018: pp.
64–75.

[10] Sayed, A. H. Diffusion adaptation over networks. In Academic Press Li-
brary in Signal Processing, volume 3, Elsevier, 2014, pp. 323–453.

[11] Sayed, A. H.; et al. Adaptation, learning, and optimization over networks.
Foundations and Trends® in Machine Learning, volume 7, no. 4-5, 2014:
pp. 311–801.

[12] Cattivelli, F. S.; Lopes, C. G.; et al. Diffusion recursive least-squares
for distributed estimation over adaptive networks. IEEE Transactions on
Signal Processing, volume 56, no. 5, 2008: pp. 1865–1877.

[13] Cattivelli, F. S.; Sayed, A. H. Diffusion LMS Strategies for Distributed
Estimation. IEEE Transactions on Signal Processing, volume 58, no. 3,
2010: pp. 1035–1048.

[14] Plata-Chaves, J.; Bogdanović, N.; et al. Distributed Diffusion-Based LMS
for Node-Specific Adaptive Parameter Estimation. IEEE Transactions on
Signal Processing, volume 63, no. 13, 2015: pp. 3448–3460.

[15] Plata-Chaves, J.; Bahari, M. H.; et al. Unsupervised diffusion-based LMS
for node-specific parameter estimation over wireless sensor networks. In
2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2016, pp. 4159–4163.

[16] Huang, W.; Yang, X.; et al. Diffusion LMS with component-wise variable
step-size over sensor networks. IET Signal Processing, volume 10, no. 1,
2016: pp. 37–45.

[17] Cattivelli, F. S.; Sayed, A. H. Diffusion Strategies for Distributed Kalman
Filtering and Smoothing. IEEE Transactions on Automatic Control, vol-
ume 55, no. 9, 2010: pp. 2069–2084.

[18] Hu, J.; Xie, L.; et al. Diffusion Kalman Filtering Based on Covariance
Intersection. IEEE Transactions on Signal Processing, volume 60, no. 2,
2012: pp. 891–902.

[19] Dias, S. S.; Bruno, M. G. S. Distributed Bernoulli Filters for Joint De-
tection and Tracking in Sensor Networks. IEEE Transactions on Signal
and Information Processing over Networks, volume 2, no. 3, 2016: pp.
260–275.

[20] Bruno, M. G.; Dias, S. S. Collaborative emitter tracking using Rao-
Blackwellized random exchange diffusion particle filtering. Eurasip Jour-
nal on Advances in Signal Processing, volume 2014, no. 1, 2014: p. 19.

64



Bibliography

[21] Dedecius, K.; Djurić, P. M. Diffusion filtration with approximate
Bayesian computation. In 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2015, pp. 3207–3211.

[22] Li, W.; Wang, Z.; et al. Particle filtering with applications in networked
systems: a survey. Complex & Intelligent Systems, volume 2, no. 4, 2016:
pp. 293–315.

[23] Dedecius, K.; Reichl, J.; et al. Sequential Estimation of Mixtures in Dif-
fusion Networks. IEEE Signal Processing Letters, volume 22, no. 2, 2015:
pp. 197–201.

[24] Dedecius, K.; Djurić, P. M. Sequential Estimation and Diffusion of Infor-
mation Over Networks: A Bayesian Approach With Exponential Family
of Distributions. IEEE Transactions on Signal Processing, volume 65,
no. 7, 2017: pp. 1795–1809.

[25] Dedecius, K.; Sečkárová, V. Factorized Estimation of Partially Shared Pa-
rameters in Diffusion Networks. IEEE Transactions on Signal Processing,
volume 65, no. 19, 2017: pp. 5153–5163.

[26] El-Sayyad, G. Bayesian and classical analysis of Poisson regression. Jour-
nal of the Royal Statistical Society: Series B (Methodological), volume 35,
no. 3, 1973: pp. 445–451.

[27] Dedecius, R., Kamil; Žemlička. Sequential Poisson Regression in Diffusion
Networks. IEEE Signal Processing Letters, volume 27, no. 1, 2020: pp.
625–629.

[28] Montgomery, D. Introduction to linear regression analysis. Hoboken, NJ:
Wiley A John Wiley & Sons, Inc, 2012, ISBN 0470542810.

[29] Tierney, L.; Kadane, J. B. Accurate approximations for posterior mo-
ments and marginal densities. Journal of the american statistical associ-
ation, volume 81, no. 393, 1986: pp. 82–86.

[30] Myung, I. J. Tutorial on maximum likelihood estimation. Journal of
mathematical Psychology, volume 47, no. 1, 2003: pp. 90–100.

[31] Bartlett, M. S.; Kendall, D. G. The statistical analysis of variance-
heterogeneity and the logarithmic transformation. Supplement to the
Journal of the Royal Statistical Society, volume 8, no. 1, 1946: pp. 128–
138.

[32] Raiffa, H.; Schlaifer, R. Applied statistical decision theory. Harvard Uni-
versity Press, 1961.

[33] Haight, F. A. Handbook of the Poisson distribution. Wiley, 1967.

65



Bibliography

[34] Cramér, H. Mathematical Methods of Statistics. Princeton University
Press., Princeton, N.J., 1946.

[35] Curtiss, J. H. On transformations used in the analysis of variance. The
Annals of Mathematical Statistics, volume 14, no. 2, 1943: pp. 107–122.

[36] Bartlett, M. S. The Use of Transformations. Biometrics, volume 3, no. 1,
1947: pp. 39–52, ISSN 0006341X, 15410420. Available from: http://
www.jstor.org/stable/3001536

[37] Silverman, B. W. Density estimation for statistics and data analysis.
London New York: Chapman and Hall, 1986, ISBN 9780412246203.

[38] Fink, D. A Compendium of Conjugate Priors. 1997. Available from:
https://www.johndcook.com/CompendiumOfConjugatePriors.pdf

[39] Peterka, V. Chapter 8 - BAYESIAN APPROACH TO SYSTEM
IDENTIFICATION. In Trends and Progress in System Identification,
edited by P. EYKHOFF, Pergamon, 1981, ISBN 978-0-08-025683-2,
pp. 239 – 304, doi:https://doi.org/10.1016/B978-0-08-025683-2.50013-
2. Available from: http://www.sciencedirect.com/science/article/
pii/B9780080256832500132

[40] Dedecius, K.; Nagy, I.; et al. Parameter tracking with partial forgetting
method. International Journal of Adaptive Control and Signal Processing,
volume 26, no. 1, 2012: pp. 1–12.

[41] Jin, D.; Chen, J.; et al. Affine Combination of Diffusion Strategies Over
Networks. IEEE Transactions on Signal Processing, volume 68, 2020: pp.
2087–2104.

[42] Lambert, D. Zero-inflated Poisson regression, with an application to de-
fects in manufacturing. Technometrics, volume 34, no. 1, 1992: pp. 1–14.

[43] Hall, D. B. Zero-inflated Poisson and binomial regression with random
effects: a case study. Biometrics, volume 56, no. 4, 2000: pp. 1030–1039.

[44] Cameron, A. C.; Trivedi, P. K. Regression Analysis of Count Data. Econo-
metric Society Monographs, Cambridge University Press, second edition,
2013, doi:10.1017/CBO9781139013567.

66

http://www.jstor.org/stable/3001536
http://www.jstor.org/stable/3001536
https://www.johndcook.com/CompendiumOfConjugatePriors.pdf
http://www.sciencedirect.com/science/article/pii/B9780080256832500132
http://www.sciencedirect.com/science/article/pii/B9780080256832500132


Appendix A
Acronyms

ATC adapt-then-combine.

GLM generalized linear model.

IoT Internet of Things.

KDE kernel density estimation.

LMS least mean squares.

MCMC Markov chain Monte Carlo.

MLE maximum likelihood estimation.

OLS ordinary least squares.

pdf probability density function.

RLS recursive least squares.

RMSE root mean square error.
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Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src.........................................the directory of source codes

implementation............... implementation sources of simulations
thesis...............the directory of LATEX source codes of the thesis

text............................................ the thesis text directory
thesis.pdf............................the thesis text in PDF format
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