FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF MASTER’S THESIS

Title: Cross-platform mobile application for safer drone operations
Student: Bc. Jan Matéjka

Supervisor: Ing. Luk&s Brchl

Study Programme: Informatics

Study Branch: Web and Software Engineering

Department: Department of Software Engineering

Validity: Until the end of winter semester 2021/22

Instructions

The thesis aims to analyze, design, and implement a mobile application for safer drone operation. Its
primary function is to provide the user with information about flight zones and other drones. The
application will also include user registration and login functionality, adding drones, flight planning, and
flight history. The application should be implemented in the Flutter framework for Android and iOS and will
integrate with the existing backend of Dronetag s.r.o. company.

- Do research about existing solutions for safe drone operation

- Study the existing Dronetag backend interface

- Analyze, design and describe the application architecture

- Use the existing Dronetag backend to implement the mobile app

- Implement a sufficient number of tests to cover key application functionalities
- Document the code

- Test the application from a user perspective

- Evaluate the resulting application and propose its future extension

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague February 17, 2020

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Master’s thesis

Cross-platform mobile application for safer
drone operations

Be. Jan Matéjka

Department of Software Engineering

Supervisor: Ing. Lukas Brchl

May 28, 2020

Acknowledgements

I would like to thank my family, my girlfriend and friends for support while
writing this thesis and all my studies. I also would like to thank my super-
visor Ing. Luk&as Brchl, for this chance to realize me in mobile application
development.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No.111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on May 28, 2020

Czech Technical University in Prague

Faculty of Information Technology

(© 2020 Jan Matéjka. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Matéjka, Jan. Cross-platform mobile application for safer drone operations.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.

Abstrakt

Tato diplomova prace se zabyva vyvojem multiplatformni mobilni aplikace ve
analyzu, ndvrh a samotnou implementaci aplikace, jejiz hlavni funkcionalitou
je sprava dront a identifikacnich zarizeni pripevnénych k drontim, zobrazovani
zakazanych zon pro lety a planovani a sledovani leti drond.

V analyze je kladen diraz na rozbor existujici webové platformy a celé
infrastruktury, ktera poskytuje data klientskym aplikacim a aplikacim tretich
stran. Navrh obsahuje popis struktury aplikace a pouzité architektonické vzory
frameworku Flutter. Implementace popisuje detaily o realizaci a obsahuje po-
drobny navod pro spusténi ve vyvojovém, testovacim a produkénim prostiedi.
Zaroven obsahuje popis dilezitych konfigura¢nich soubort, které se lisi napric¢
riznymi prostfedimi a maji bezpecnostni charakter.

Kli¢ova slova Multiplatformni, mobilni, aplikace, dron, fizeni, Flutter

vii

Abstract

This master’s thesis focuses on cross-platform mobile application development
in the Flutter framework for safer drone operations. This thesis contains a
full application analysis, design, and implementation. Its main functionality
is the managing drones and identification devices attached to drones, showing
restricted flight zones, and planning and watching drone flights.

The analysis emphasizes the analysis of the existing web platform and
all infrastructure, which provides data to the client and third-party appli-
cations. The design contains a description of the application structure and
uses architecture patterns of the Flutter framework. The implementation de-
scribes details about realization and contains detailed launch instructions in
the development, test, and production environments. In addition, it contains
a description of the necessary configuration files. These files differ across the
various environments and have a security disposition.

Keywords Cross-platform, mobile, application, drone, operation, Flutter

ix

Contents

Flutter Analysis|

13.1 Cross-platform Mobile Application Framework Comparison|

3.2 General Concept|
8.3 User Interface in Flutter

3.6 HydratedBlod|o oo
[3.7 Cupertino Library|
[3.8 Material Design|. 0 0o L.

Software Architecture and Design|

4.1 Software Architecturel

xi

11
12
12
13
13

19

20
20
21
23
24
25
26

29

4.2 Sottware Design|.o 0oL

[User Interface Design|

.1 Hi-Fi Prototypel.o
9.2 Usability Testing|

6 Deployment and Testing|

6.1 Build Instructionsl
6.2 Configuration Files|

6.3 Code Testing|

Conclusion|

|Bibliography|

|A Acronyms|

IB SD card contents|

xii

45
46
52

55
95
56
o7

61

63

69

73

List of Figures

3.1 Flutter demo app on iOS|. 21
3.2 Flutter demo app on Android [1]| 21
3.3 Bloc architecture [2]| 24
(I Dashboard oo oo oo 49
B2 Dronedetaill. oo oo 49
b3 Zonedetaillo 50
BA Profild 50
BE Deviced 52
56 FIERTS . « o o oo e e 52

xiii

Introduction

In 2012, drones began to spread around the world. At that time, they were
mainly toys built by hobby pilots in the home. Thus, there were technical
problems with them.

After a while, large companies began to see the commercial potential of
drones and started to incorporate them into their visions for the future. Ama-
zon introduced its autonomous drone concept to transport goods from logistics
warehouses directly to customers. [3] As customer satisfaction increases even
with small improvements to delivery time, Amazon has decided to produce its
drone products, including the Prime Air delivery drone.

To make the delivery process more convenient and minimize costs, Amazon
is developing an autonomous drone application. Hence, a significant increase
in the number of autonomous aircrafts can be expected. Potentially, drones
could be used to deliver medical materials in case of a major accident or dis-
asters such as a hurricane, military conflict, or even during a disease epidemic
like the current novel coronavirus pandemic.

With the increasing number of drone owners, problems have started to
arise. Many hobby pilots have broken the law and endangered aviation safety
when they were flying. Ignorance of laws was common because there had been
no need for drone pilots to know any of the rules of aviation that traditional
pilots must know. However, this problem has begun to be resolved. Some
laws for traditional pilots are applicable to the drone pilot. Drone pilots need
to know certain symbols and respect restricted areas, but they do not have to
complete a full course of instruction like traditional pilots. For example, it is
necessary for drone pilots to know the primary types and descriptions of zones
for safe operation. These zones can be separated into different types based on
their properties.

There are a variety of key parameters in the zones, for example, lower
and upper altitude level. These flight levels are further divided into groups
based on the altitude in feet. Furthermore, it is important to realize that the
given altitude can be one of two types: [AMSL| (Above Mean Sea Level|) and

1

INTRODUCTION

IAGL| (Above Ground Levell). This means it is necessary to be clear about the
type of given altitudes, and in the case of AMSL, to be aware of the current
altitude to avoid restricted areas.

Overall, airspace is divided into 7 classes, A—G. [4] There is an obligation
to announce a flight from through class A—E to the authorities, and the Air
Navigation Service of the Czech Republic approves the flight. The F and G
classes are lower flight levels, so it is not necessary to request an authorization
for them.

The Air Navigation Service of the Czech Republic hosts the website "Létejte
zodpovédné (Fly Carefully)” about drone problems and has written advisories
for hobby drone pilots using clear, understandable language. This website is
described in detail in the Related projects chapter

Motivation

One motivation for choosing this thesis was to gain experience with mobile
application development. I was interested in trying something new, and I had
previously only had experience with web development. The other reason was
the success in various competitions of both Dronetag’s company co-founders,
Lukas Brchl and Marian Hlava¢. They won the Space application hackathon
2018 [5], and they have won multiple competitions on the European and world
levels. Finally, I wanted to work with a product with a great deal of potential,
and drones are considered a product of the future; business with drones is
expected to experience exponential growth.

Objectives

The goal of this thesis is to develop a cross-platform mobile application for
safer drone operation. The application will be implemented the best-practice
principles using the Flutter framework. In addition, this thesis contains a
description of the basic Flutter framework concepts in the Flutter Analy-
sis chapter [3] The implementation contains both testing by unit tests and
deployment specifications, too. The application meets all functional require-
ments, specifically drawing flight zones on the map, showing real-time data
about flying drones with a Dronetag device attached, and flight planning and
management of aircrafts, devices and flight history.

CHAPTER 1

Related Projects

This chapter aims to related projects dealing with safe drone operations, espe-
cially web and mobile applications, to subscribe to current information about
flight restrictions. It involves showing a restricted area to flying, guide with
advisories, and terms that a pilot has to meet during his flight.

1.1 AirMap

AirMap is the main competition application comparable with the Dronetag
platform. [6] This application shows flight zones and restricted areas around
almost the whole of world. Besides, it allows for easy flight planning. Un-
fortunately, this planning has no central management. Thus this solution is
insufficient for ensuring aviation safety. AirMap ecosystem can divide into
some branches:

e AirMap UTM,
e AirMap Pilot,
e AirMap Enterprise,

e AirMap Developers.

1.1.1 AirMap UTM

AirMap [UTM]| (Unmanned Traffic Management|) is a web application used for
aviation flight dispatchers. It allows approving planned flights of users in re-
stricted areas by authorities - for example, [CTR] (Control zone|). The manager
of this zone can show a detail of the application form and request that he fill
out the information about a flight.

1. RELATED PROJECTS

Advantages:

e An operator can see active flight plans and other flight operations and
altitudes (airplanes and helicopters) simultaneously.

e An operator can see a DJI drone telemetry of a pilot in case that the
pilot is using AirMap mobile application in-flight mode.

e Whenever an operator create a restricted zone for flights, pilots will be
notified via [SMS]

e An operator can filter received application forms.

e It is used to using in the USA, the Czech Republic, Switzerland, Japan,
New Zealand, ...

Disadvantages:
e It offers no on-premise solution.

e [t is quite a trivial implementation so far.

1.1.2 AirMap Pilot

The main goal of this application is to force pilots to fly carefully according to
their location stringent rules. Concurrently, it provides official authorization
to the restricted airspace. Also, the application allows controlling DJI drones
instead of the official DJI GO mobile application.

After the launch of the application, the flight map is loaded with map
data from Mapbox [7], and a current user location is focused on the map with
available zones around. There are immediately seen labels of every zone and
advisories for flights in the given country on the map. The suggestion list
does not look intuitive. In the bottom panel with advisories is also visible a
temperature and wind speed in the location. Unfortunately, it misses various
values for arbitrary flight levels. That is it all the functionality for a user,
nothing else.

Advantages:

e [t is used to using in the USA, the Czech Republic, Switzerland, Japan,
New Zealand, ...

e The application shows flight zones of all countries. It loads data from
the EUROCONTROL EAD (European AIS Databasel). [8]

e Pilots can get authorization of airspace via the [LAANC] (Low Altitude|
[Authorization and Notification Capability|) system in real-time.

1.1. AirMap

Flights can also be planned in the future, and it is not allowed to change
them after that. It is allowed only to remove it.

In case of planning a mission in the web application, it is not able to see
it in the mobile application in a minute. However, the mission date does
not match. In the same case, when users cancel it in the mobile applica-
tion, it can be seen it will disappear in the mobile and web application
in a minute.

It contains geofencing alerts - it notifies a pilot about the entrance int
the managed flight zone.

Disadvantages:

In mobile application is missing the option to click on the requested zone
and do anything with it or get information. It is quite inconvenient in
the case of many intersected zones at one point. The web application
allows it.

Many times it has been got a timeout request, and sometimes something
was showing inconsistent. For example, it has not seen any rules in the
Flight Briefing section while planning the first flight mission. In another
attempt, it has been already seen the rules. Generally, all loading or
submitting takes a long time.

It can provide no flight log export nor other data.
It supports no flight plan storage for the future nor repeating.

It contains a few layperson bugs. For example, in the web application,
if users draw a trajectory and press ESC key on the keyboard, the users
will not be able to draw again without the need to choose a tool and
then the default again.

1.1.3 AirMap Enterprise

AirMap Enterprise is a dashboard similar to AirMap[UTM], but it is specialized
to the narrow group of users. It is not possible to see visible differences against
the AirMap[UTM] but the screen looks similar. For example, application form
approval, real-time telemetry, pilot contacting. It is mainly used as a fleet
management system.

1.1.4 AirMap Developers

a AirMap Developers is a portal offering documentation about AirMap [AP]|
and [SDK] that can use for integration of the AirMap services into individual
solutions. [9]

1. RELATED PROJECTS

1.2 Altitude Angel

Altitude Angel ecosystem can be divided into these three subsystems:
e GuardianUTM,
e Guardian Mobile,

e Drone Safety Map.

1.2.1 GuardianUTM

”GuardianUTM provides software developers and drone manufacturers with
the tools and data to access accurate, up-to-date and relevant aeronautical,
environmental, regulatory and drone-centric operational data.” [I0] This sys-
tem ensures the integration of flight aviation data in the airspace.

1.2.2 Drone Safety Map

It is a mobile and web application for drone pilots connected to GuardianUTM.
Its goal is to show zones and flight missions of all pilots.

Advantages:
e The application shows flight zones in all countries.

e Aside from zones, it also shows hazardous objects like high-voltage wires,
schools, police officers, and gas stations. There is much information and
it could be visualized more appropriate.

o It supports [CAA] UK (Civil Aviation Authority| of the United King-
dom) that integrates its solution into the application of NATS| Drone
Assist. [11]

Disadvantages:

e The registration is inconvenient with an additional password setting via
e-mail.

e The flight plan history contains unnecessary text fields (flight title, de-
scription, and timezone). The flight plan history does not exist.

e There is no chance to share telemetries in real-time (for example, con-
nection with DJI drones).

e It does not allow the planning of more complex zones than circles.

e It is difficult to determine a reserved zone for flight against restricted
zone by the authorities in the user interface.

1.3. MAIA

e The mobile and web application has less elaborate user interface beside
AirMap. For example, it shows terms & conditions before every flight.

e The mobile application contains bugs in the mission planning and search-
ing.

1.3 MAIA

MATA is an application by the UpVision company that is primarily used for
displaying understandable information about flight zones. [12]

The user interface is mostly consisted of the map that contains national
flight zones and restrictions. In case of sufficient data, it will display the
location of real-time drones on the map and their details about aircrafts in
the airspace.

The signed up users can have a summary of their drones, battery status and
flight history. Every user can contact any pilots via the Messenger function,
that are visible on the map.

A user can add an insurance confirmation, pilot certification and permis-
sion for flight operations in the application. Besides that, users can share their
favorite flight locations.

The application of the enterprise version promises functions for drone fleet
owners such as geofencing, central management, drone detection and collision
detection.

Advantages:
e The application shows positions of drones in real-time.
e The application shows national flight zones and restrictions.

e The application provides data about flight zones in the Czech Republic
and other countries.

Disadvantages:

e The web platform has just few functions. Users can be signed in, but it
contains no map layers.

e The application requires the MAIA tracker. Otherwise, it does not sup-
port another function. [12]

e The mobile application contains many bugs and is not up-to-date.

1. RELATED PROJECTS

1.4 Kittyhawk

Kittyhawk is a mobile and web application that has more functionalities than
MATA. All flight operations and rules are similar to AirMap. Also, it offers
the fleet management, checklists and battery management. [13]

Advantages:

e It allows limited manner support for DJI drones flights (for example,
live stream).

e There are many map data and user-friendly map layer filtering.

e Moving across the map and searching in zones is more user-friendly than
in other applications.

e It shows anonymous live traffic on the map.

e There are well-arranged reports, that can be exported.
Disadvantages:

e [t displays zones only in the USA, it shows no zones in the EU.

e It loads all data related to flights from AirMap (map data, weather,
authorization).

e The registration takes a long time and requires a phone number. It does
not support Google account login.

e Ul is not entirely intuitive. For example, if users want to plan a flight
and have not added a drone yet, they can see only a blank screen and
cannot add the flight plan.

1.5 AisView

AisView (or its simplified DroneView) is an application managed bye the
Air Navigation Service of the Czech Republic before starting flight purposes.
There are restrictions, map zones, [NOTAM (Notice To Airmen]), and planned
drone flights on the map. It has no real-time drone location data.

Users set flight a time range (from and to), and after they will be able to
see relevant information related to them in the map during the time range.
Besides, the users must manually click to shown zones to see more information.

The users can see a map covered with additional information about the
weather (especially a layer of data from radar [14]) or choose a type of

map data ({ICAO|[I5], orthographic, tourist).

8

1.6. Fly Carefully (Létejte zodpovédné)

The user interface is quite unfriendly and non-intuitive in some cases.
Abbreviations sometimes label the buttons, and, certainly, the application is
rather for professionals. A novice can have problems with this application and
does not have to understand its possibilities. The DronView does not support
such usable functionalities for users than the AisView.

After logging in, users can add registration numbers of their devices and
announce drone flight plans. Also, there are options to store various minor
showing map preferences and other details for the logged users.

AisView primarily provides especially a web variant, that can use on the
computer and mobile phones. There is a variant for mobile phones, too. How-
ever, it is quite limited and looks obsolete and does not include all system
functions.

Advantages:
e It provides data from the verified source.
e The application is used by pilots in the daily routine and is stable.
e A user can announce his flight plan to authorities from the application.

e It is the main source of the Air Navigation Service of the Czech Republic,
so it is always up-to-date.

Disadvantages:

e The application user interface looks obsolete, and the user experience is
often unsatisfactory for the public.

e [t can see planned drone flights, except real-time drone positions in the
application.

e The geographic range is only for the Czech Republic. The data of other
countries are not visible.

1.6 Fly Carefully (Létejte zodpovédné)

Fly Carefully is an educational website whose main purpose is to educate
hobby drone pilots and gets them to know with valid regulation. Rules for
flying with drones describe precisely and offer help to total beginners. This
website is managed by the Air Navigation Service of the Czech Republic what
is the state organization ensuring aviation safety. [16] It is divided into 7 basic
sections:

1. Introduction — it contains important advisories for flights,

2. My drone — it is a section about drone categories and types,

1.

RELATED PROJECTS

6.

7.

. Plan your flight — it gets to know readers about options to plan a

flight,

. Our application — it introduces a secondary product what a mobile

application is,

. Regulation — it informs readers about valid flight regulations and ad-

visories,
Actualities — it represents news feeds,

Registration — it provides a form to subscribe to newsletters.

This mobile application is similar to the AirMap application because it uses
the AirMap public and it offers nothing new against the AirMap mobile
application.

10

CHAPTER 2

Dronetag Web Infrastructure

This chapter describes the Dronetag web infrastructure and contains a detailed
description of the Dronetag web platform. It consists of the all technical
stack that ensures data providing and processing. It was needed to determine
a convenient and reliable way of how to construct a useful architecture of
infrastructure gradually. The Dronetag development lifecycle has started with
an module and frontend web client written in JavaScript. It continues
to implement Web Sockets in the Live Service implementation based on a
Kubernetes cluster and the cross-platform mobile application. Current parts
of the stack are the following:

e Load Balancer — it ensures load balancing of received requests (It
redirects the requests to an available node in cluster.),

e Backend — it ensures communication with Database storage of data and
provides API endpoints to allow drone security operation,

e Frontend — it ensures managing and watching drones activity via a web
browser,

e Private [AP]| endpoint — it ensures an [AP]] endpoint to give into or
get private data from Dronetag platform (It is a part of Backend.),

e Public [AP]] endpoint - it ensures an [AP]| endpoint to give into or get
public data from Dronetag platform (It is also a part of Backend.),

e Database Storage — it ensures persistent storing of data,

e Live Service — it ensures quick providing of live data from airspace by
the given viewport.

11

2. DRONETAG WEB INFRASTRUCTURE

It is needed to note the stack is still improved anytime when there is
found out a problem with the insufficient and complexity of the all system. It
is needed because the system complexity is still increasing. And in this case,
it is needed to determine the cause and ensure load balancing among the parts
of the stack.

2.1 API Separation

Due to security reasons, the web [API} divides itself into Private [AP]] and
Public [API]endpoints. Public[AP]is allowed to use by third-party consumers.
It can be anyone who would like using data from the Backend to ensure drone
operation security.

In further determination, this infrastructure is divided into the Staging and
Production environment. Staging is for development and testing purposes,
and it usually runs on the same version as Production. In the infrastructure
approach, Production is like a mirror of Staging. The difference is that the
Production environment contains a previous version of the application that is
released.

2.2 Docker Deployment

Every web application in the stack is deployed and managed by Docker. It
is the easiest way to develop and publish new version software. However, in
the beginning, let us clarify what the Docker is. "Docker is a tool designed
to make it easier to create, deploy, and run applications by using containers.
Containers allow a developer to package up an application with all of the
parts it needs, such as libraries and other dependencies, and deploy it as
one package. By doing so, thanks to the container, the developer can rest
assured that the application will run on any other Linux machine regardless
of any customized settings that machine might have that could differ from the
machine used for writing and testing the code.” [I7] To read about what a
Container is and how useful it can be for business, it is able to see on their
official websites [18] or here [17].

Thanks to the Docker Compose tool, it is able to separate the infrastruc-
ture into parts. In the case of more significant changes, it is needed to change
only one module, and others are without changes. In a summary, it deploys
more containers that each of them contains individual responsibility for their
processing, and Docker Compose joins them together. In abbreviation, Docker
Compose works like a composer that takes separate containers, where each of
them can launch different technologies and compose it together into one whole
infrastructure. [19]

12

2.3. Kubernetes

2.3 Kubernetes

TKubernetes| (K8s)) is an open-source system for automating deployment, scal-
ing, and management of containerized applications.” [20] It means that Kuber-
netes is a tool allowing a running cluster whose single nodes may be as Docker
containers. This approach ensures scalability, whereas the number of Docker
containers can be huge and can be created and disposed of dynamically based
on the loading. The advantage of Kubernetes is that it can detect a note out
of order and initialize and deploy a new one to stay the optimal performance

"It groups containers that make up an application into logical units for easy
management and discovery. Kubernetes builds upon 15 years of experience
of running production workloads at Google [21], combined with best-of-breed
ideas and practices from the community.” [20] Thanks to these experiences,
Kubernetes is a fine grain, and the cluster hierarchy is merely maintainable.

"Though widespread interest in software containers is a relatively recent
phenomenon, at Google we have been managing Linux containers at scale for
more than ten years and built three different container-management systems
in that time.” [2I] How you can see, the idea of containerization has a rich
history. However, there were Linux Containers before the Docker ones. That
is the reason why we use it for web development. It is easy to scale, maintain,
and able to deploy to Google Cloud Platform.

2.4 Database Model

There is a database model [22] to store data in Dronetag Backend. The
database model consists of followings entities:

e User,

e Aircraft,

e Device,

e Flight,

o Telemetry measurement,
e Organization,

e Fleet,

e Aircraft vendor,

e Aircraft model,

e Airspace zone,

e User preference.

13

2.

DRONETAG WEB INFRASTRUCTURE

2.4.1 User

This entity represents a user who signs up and logs in to the application. It
consists of user credentials and identification information. Attributes of this
entity are the following:

E-mail — represents the e-mail that the user will be log in to the system
and receive notifications,

Full name — represents optional full name of the user,
Password hash — represents a hashed password,

Phone number — represents a phone number that the user will be able
to contact in case of emergency,

Country — represents a country where the user is used to fly.

2.4.2 Aircraft

This entity represents an aircraft that is connected with a Dronetag device.
Attributes of this entity are the following:

e Name — represents the aircraft name for easier recognition in My aircraft

list,

e [UAS] Operator ID — represents a unique code identifying a pilot who

registered this aircraft in the [UAS| (Unmanned aircraft systems)) [23],

e Weight — represents the weight of the aircraft.

2.4.3 Device

This entity represents a physical device that sends live information to the
Dronetag platform. Attributes of this entity are the following:

14

Serial number — represents a serial number of the device,

Name — represents the device name for easier recognition in My aircraft
list,

Type — represents the model type of the device,

Last battery — represents the last battery value in Volts,

Last [RSRP| - represents the |[RSRP)| (Reference Signal Receive Power))

value.

2.4. Database Model

2.4.4 Flight

This entity represents it represents a flight that a user has created. Attributes
of this entity are the following;:

Date planned start — represents a start date of planned the flight,
Date planned finish — represents a finish data of planned the flight,
Date started — represents a real start date of the flight,

Date finished — represents a real finish date of the flight,

Status — represents a flight status - values can be planned, current,
finished and canceled,

Distance — represents a distance of the flight,

Duration — represents a duration of the flight,

Region — represents a reservation region in for-
mat [24],

Max flight altitude — represents a maximum flight altitude,
Takeoff latitude — represents a latitude of a taking off position,
Takeoff longitude — represents a longitude of a taking off position,

Takeoff (Geo altitude — represents a geological altitude of a taking off
position,

Takeoff pressure — represents a taking off pressure,

Public — represents a boolean flag if the flight is public (visible for
everyone).

2.4.5 Telemetry Measurement

This entity represents a telemetry measurement that the system receives and
thanks so that a flight trajectory can be drawn. Attributes of this entity are
the following:

Time — represents a date with the time of measurement,
Latitude — represents a measured latitude of a flying drone,
Longitude — represents a measured longitude of a flying drone,

Altitude — represents a measured altitude of a flying drone,

15

2. DRONETAG WEB INFRASTRUCTURE

Geo altitude — represents a measured geological altitude of a flying
drone,

Velocity X — represents a measured velocity in X-axis,

Velocity Y — represents a measured velocity in Y-axis,

Velocity Z — represents a measured velocity in Z-axis.

2.4.6 Organization

This entity represents an Organization for the fleet management functionality.
Attributes of this entity are the following:

e Name — represents the name of the organization,

e Description — represents a text description of the organization.

2.4.7 Fleet

This entity represents an organization’s fleet management properties. At-
tributes of this entity are the following:

e Name — represents a name of the fleet,
e Color — represents a shown color of the fleet,

e Deleted — represents a boolean flag if the fleet was deleted.

2.4.8 Aircraft Vendor

This entity represents an aircraft vendor who manufactures drones. It contains
only the one attribute name that represents the vendor name.

2.4.9 Aircraft Model

This entity represents an aircraft model that belongs to a vendor. Attributes
of this entity are the following:

e Name — represents the model name,
e Weight — represents the weight of the model,
e Vendor ID — represents a relationship to a Vendor.

16

2.4. Database Model

2.4.10 Airspace Zone

This entity represents an airspace zone. Attributes of this entity are the
following:

e Name — represents a name of the zone,

e Country — represents a country where the zone belongs,

e Region [GeoJSON| - represents a region in [GeoJSON| format [24].

2.4.11 User Preference

This entity represents a user preference that is needed to store and share
among various client applications. Attributes of this entity are the following:

e Property — represents an identification of the property,

e Value — represents the preference value.

2.4.12 Live Service Database Model

During the development, it had been found out the current Backend is not
sufficient for Dronetag needs. So it was decided to divide the backend model
into the Backend and Live Service model. The Live Service contains only live
real-time temporary data, so a Redis database was deployed.

"Redis is an open source (BSD licensed), in-memory data structure store,
used as a database, cache and message broker. It supports data structures
such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps,
hyperloglogs, geospatial indexes with radius queries and streams. Redis has
built-in replication, Lua scripting, LRU eviction, transactions and different
levels of on-disk persistence, and provides high availability via Redis Sentinel
and automatic partitioning with Redis Cluster.” [25] It means that the Redis
is real-time storage that persists data only for a short time. That is the reason
why it is suitable for this purpose. The Live Service database model consists
of a Device and Telemetry entity.

17

CHAPTER 3

Flutter Analysis

This chapter describes the key reasons why Dronetag chose Flutter for mobile
application development.

Nowadays, many companies have more teams to maintain their application
that ensure the business of these companies. Thanks to that, the costs are
higher than could be, and that is the reason why cross-platform frameworks
were created. There are many cross-platform mobile application platforms to
develop an application like this. The name of the leading used frameworks
are:

e Flutter,
e React Native,
e Jonic,

e Xamarin.

3.1 Cross-platform Mobile Application Framework
Comparison

This section describes a comparison of cross-platform mobile application frame-
works. These frameworks are Flutter, React Native, lonic and Xamarin.

Flutter is a framework and was established by Google Inc., in 2017, and
since that time, its popularity is still increasing. React Native looks like the
leading competitor and is based on JavaScript. [26] It means, React Native
is widespread and most popular. Ionic has not such excellent performance as
Flutter and React Native. [27] Xamarin is based on C# with .NET extension
from Microsoft. But since there is a lack of experienced Xamarin developers in
the developer community, it was omitted in the Dronetag’s decision making.
Flutter is based on Dart, which was introduced by Google Inc., in 2011. It is
a type-safe and object-oriented programming language similar to Java. [28]

19

3. FLUTTER ANALYSIS

Among the advantages of Flutter [29] belongs:

e Hot Reload, i.e., allows fast coding,

One codebase: Development for two mobile platforms,

Up to 50 % less testing,

Faster app development,

User-friendly designs,

Perfect for [MVPE,

o Less Code.

There is a comparison summary:

e Flutter has the best performance and uses proprietary Widgets to create
a user interface instead of [HTMI] [CSS| and JavaScript.

e React Native is the most popular because it is based on JavaScript.
e 98 % of code in Ionic is reusable.

e Xamarin allows reusing code in Xamarin.Forms, but requires a paid
development environment for business purposes.

3.2 (General Concept

"Flutter is an app [SDK]| for building high-performance, high-fidelity apps for
iOS, Android, web (beta), and desktop (technical preview) from a single code-
base.” [1] It means you need only one development team to reach an application
for all platforms in a single codebase.

"The goal is to enable developers to deliver high-performance apps that feel
natural on different platforms. We embrace differences in scrolling behaviors,
typography, icons, and more.” [I]

Thanks to this, it is able to style the application user interface on demand,
and the application looks similar to both platforms.

3.3 User Interface in Flutter

"Flutter includes a modern react-style framework, a 2D rendering engine,
ready-made widgets, and development tools. These components work together
to help you design, build, test, and debug apps. Everything is organized
around a few core principles.” [I] Flutter has a widget tree that renders widget

20

3.4. Widgets

-

= Bscautiful
little teapot

—_—

Figure 3.1: Flutter demo app
on iOS [1]

<« SHRINE w i
$70
-
{
eautiful little
‘ teapol

$300 $20

Figure 3.2: Flutter demo app
on Android [I]

into a nested tree, and these widgets are covering themselves. It does not
matter if a widget from the widget tree is:

Container,
List View,
Image,
Text,
Animation,

or anything else.

A widget or its descendants represent everything in the user interface in Flut-
ter. Additional important classes for user interface are Material App and Scaf-
fold. [30] Material App and Scaffold, it will be described in the Material Design
section [3.8

3.4

Widgets

How the founders of Flutter say: ”"Everything is a Widget”. In the following

part, this statement will be clarified.

21

3. FLUTTER ANALYSIS

"Widgets are the basic building blocks of a Flutter app’s user interface.
Each widget is an immutable declaration of part of the user interface. Un-
like other frameworks that separate views, view controllers, layouts, and other
properties, Flutter has a consistent, unified object model: the widget. A wid-
get can define:

e A structural element (like a button or menu),

A stylistic element (like a font or color scheme),
e An aspect of layout (like padding),
e Andsoon...” [1]

So each component of Ul in Flutter is a descendent of the widget. There are
many classes that inherit from a widget. The essential descendants are the
following;:

o StatelessWidget,
e StatefulWidget,

o InheritedWidget.

3.4.1 StatelessWidget

”A widget that does not require mutable state. A stateless widget is a widget
that describes part of the user interface by building a constellation of other
widgets that describe the user interface more concretely. The building process
continues recursively until the description of the user interface is fully concrete
(e.g., consists entirely of RenderObjectWidgets [31], which describe concrete
RenderObjects [32]). [33] It means that StatelessWidget is a useful component
to render graphics elements that do not change during their lives. Stateless-
Widget is class with Constructor and build method. When the widget tree is
built, it calls the build method.

"Stateless widget are useful when the part of the user interface you are
describing does not depend on anything other than the configuration informa-
tion in the object itself and the BuildContext in which the widget is inflated.
For compositions that can change dynamically, e.g. due to having an internal
clock-driven state, or depending on some system state, consider using State-
fulWidget.” [33]

3.4.2 StatefulWidget

”A widget that has mutable state. State is information that (1) can be read
synchronously when the widget is built and (2) might change during the life-
time of the widget. It is the responsibility of the widget implementer to

22

3.5. Bloc

ensure that the State [34] is promptly notified when such state changes, using
State.setState [35].” [36] It means that StatefulWidget is a useful component
to render graphics elements that change until they are disposed of. Stateful-
Widget initializes its state, which represents a space for storing data. The
State is class with constructor, initState and build method. The constructor
is called when the State is created. The initState method is called before the
widget tree is rendered, and the build method is called when the tree renders
itself.

Due to this fact, the Stateful widget has worse performance than Stateless-
Widget, and often it is difficult to keep a sustainable design of a component.
On the other hand, it offers a convenient way to create a widget with few
states that will not be changed in the future development cycle.

"Stateful widgets are useful when the part of the user interface you are
describing can change dynamically, e.g. due to having an internal clock-driven
state, or depending on some system state. For compositions that depend only
on the configuration information in the object itself and the BuildContext in
which the widget is inflated, consider using StatelessWidget.” [36]

3.4.3 InheritedWidget

”Base class for widgets that efficiently propagate information down the tree.
To obtain the nearest instance of a particular type of inherited widget from
a build context, use BuildContext.dependOnlInherited WidgetOf Exact Type [37].
Inherited widgets, when referenced in this way, will cause the consumer
to rebuild when the inherited widget itself changes state.” [38] It means that
InheritedWidget is a useful component to pass data and offer to reduce boil-
erplate if there are many widgets nested in themselves. Thanks to the Build-
Context class and of a method, you can easily get the value you add as an
input variable. So it means the widget is suitable for passing a huge amount
of data. It loses a need to copy many parameters in a large tree structure.

3.5 Bloc

Bloc is an abbreviation of [Business Logic Component| (BLoC)) and allows sep-
arating an application into separate layers. [2] "The @ Pattern has been
designed by Paolo Soares and Cong Hui, from Google and first presented dur-
ing the DartConf 2018 (January 23-24, 2018).” [39]

"The goal of this package is to make it easy to implement the [BLoC|Design
Pattern.

This design pattern helps to separate presentation from business logic.
Following the pattern facilitates testability and reusability. This pack-
age abstracts reactive aspects of the pattern allowing developers to focus on
converting events into states.” [2]

23

3. FLUTTER ANALYSIS

States Async Request
ul Bloc . Dbata |

Events Async Response

Figure 3.3: Bloc architecture [2]

BLoC] is a library written by Felix Angelov and the concept bases on
Reactive Programming. [2] represents a control unit that is responsible
for passing data from state into [Ull When a user clicks on a button, it throws
an event action that detects and generates a new state. [2] In a summary,
a structure of the concept consists of the following parts in Bloc:

3.6

Events are the input to a They are commonly [Ul] events such as
button presses. Events are added to the and then converted to
States.

States are the output of a Presentation components can listen
to the stream of states and redraw portions of themselves based on the
given state (see BlocBuilder for more details).

Transitions occur when an Event is added after mapEventToState has
been called but before the [BLoC[s state has been updated. A Transi-
tion consists of the currentState, the event which was added, and the
nextState.

BlocSupervisor oversees and delegates to BlocDelegate.

BlocDelegate handles events from all which are delegated by
the BlocSupervisor. Can be used to intercept all events, transi-
tions, and errors. It is a great way to handle logging/analytics as well
as error handling universally.

HydratedBloc

"hydrated_bloc [40] is an extension to the bloc state management library [2]
which automatically persists and restores bloc states.

hydrated_bloc exports a HydratedStorage interface which means it can
work with any storage provider. Out of the box, it comes with its own imple-
mentation: HydratedBlocStorage.

24

3.7. Cupertino Library

HydratedBlocStorage is built on top of path_provider [41] for a platform-
agnostic storage layer. The out-of-the-box storage implementation reads/writes
to file using the toJson/fromJson methods on HydratedBloc and should
perform very well for most use-cases (performance reports coming soon). Hy-
dratedBlocStorage is supported for desktop (example [42]).” [43]

HydratedBloc works as well as common Bloc. The difference is in data
storage. Hydrated Bloc allows us to store data through a [JSON] object. So,
whenever an application loads data, it is necessary to wait and show the user
progress indicator, but it can show stored data immediately. When it receives
data, it will simply render it into a screen.

"HydratedBlocStorage is an implementation of HydratedStorage which uses
PathProvider and dart.io to persist and retrieve state changes from the local
device.” [44] So, it is a part of Hydrated Bloc implementation.

3.7 Cupertino Library

The Flutter developers have decided to incorporate familiar elements from
the i0S platform into the library for using these elements in the Flutter user
interface. The reason is that it would be easy to use for development, focusing
on iOS devices. This library calls Cupertino and the name was established by
the Apple company headquarters building in Silicon Valley, California, in the
United States of America. Familiar elements from iOS devices are part of the
library because the iOS users are using them. [45] This library contains the
following elements:

e Cupertino Action Sheet,

e Cupertino Activity Indicator,
e Cupertino Alert Dialog,

e Cupertino Button,

e Cupertino Context Menu,
e Cupertino Date Picker,

e Cupertino Dialog,

e Cupertino Navigation Bar,
e Cupertino Page Scaffold,

e Cupertino Picker,

e Cupertino Slider,

e Cupertino Switch,

e Cupertino Tab Scaffold.

25

3. FLUTTER ANALYSIS

3.8 Material Design

Material Design is a concept that was introduced by Google company in
2014. [46] All Flutter user interface is built on this concept. Material De-
sign contains components that interactively build blocks for creating a user
interface. [47] The components are the following:

e App bar,

e Bottom navigation,
e Buttons,

e Floating Action button,
e Cards,

e Chips,

e Dialogs,

e Lists,

e Pickers,

e Progress indicators,
e Sliders,

e Tabs.

3.8.1 Scaffold

Scaffold represents a new rendered screen that allows placing various elements.
The Scaffold is possibly fully customized and change by the requirements. If
developers emphasize simplicity, it is able to use the current interface and

define:
e AppBar,
e FloatingActionButton,
e BottomNavigationBar.

AppBar represents the header of the screen and usually contains a title and
action buttons. FloatingActionButton is a concept of buttons that users use
the most time, and thus these buttons are in the thumb zone. BottomNavi-
gationBar is a concept of a horizontal menu in the thumb zone in the footer
of the screen, and it allows the creation of the main well-arranged menu. [30]

26

3.8. Material Design

These two libraries are interesting for this mobile application. So, these
elements are being used from these libraries in the user interface by the plat-
form on the phone, where the application is running. The reason for using is
simplicity. The users should get what they like and are used to use.

27

CHAPTER 4

Software Architecture and
Design

This chapter describes the software architecture and design of the mobile ap-
plication. In the beginning, it will be clarified the difference between software
architecture and design.

In software development, software architecture means the design of ap-
plication from a higher perspective than software design. [48] In opposite,
software design means the division of the code into parts that describe im-
plementation details accurately. [49] It means that when anyone starts with a
new application project, it is essential to arrange the project into small parts.
These parts should meet the encapsulation and comprehensive rules.

Architecture usually means a division into more significant self-driven
parts. There are typical concepts, MVC]| (Model-View-Controller]), and their
extended descendants, [MVP)| (Model-View-Presenter) and
[View-ViewModel)). [50] The newer great concept in Flutter is It has
been already explained what the Bloc is in the Flutter Analysis chapter [3] so
it will not be clarified anymore.

4.1 Software Architecture

This section focuses on the architecture of this application implementation.
Because the definition of software architecture has been already clarified, it will
be emphasized to certain components that were used in the implementation.

In software architecture, there has been verified a pattern of using libraries
that offers using of generic classes. These classes include already implemented
logic that is based on standards, and thus it helps to simplify development and
maintain code more readable. For better understanding, Bloc and Hydrated
Bloc classes will be described in the section of this chapter.

29

4. SOFTWARE ARCHITECTURE AND DESIGN

There would be useful to discuss the difference between common Bloc and
its extended class Hydrated Bloc. Both of them use the sink and stream con-
cept that works on the stream subscription principle. The Hydrated Bloc offers
persistent storage storing and loading with fromJson and toJson methods.
It helps to have an application working more smoothly due to storing of data
in the phone. Only continuous loading data via the network whenever a user
needs them has significant impact to the response time in the application.

4.1.1 Dependencies

Flutter has a vast database of dependencies that are maintained by various
developers. The database is called pub.dev [51] and offers a summary of every
dependency on the score analysis to their users. This analysis consists of
popularity, health, maintenance and overall.

The advantage of these dependencies is that they can be easily integrated.
Developers can place their definition into pubspec.yaml file that describes
the dependency configuration. The file is placed in the root directory of every
Flutter project. The definition consists of name and specific version.

The dependencies that are used in this mobile application are separated
into the following categories:

e Icons,

e State management,
e Tools,

e Firebase,

« APL

. storage,

. 1

e Map,

e Generator.

Icons contain cupertino_icons library that provides iOS Cupertino Icons
by Apple Inc. Material Design icons are already part of the Flutter [SDK]
library.

State management consists of flutter_bloc and hydrated_bloc. These
dependencies contain the Bloc and Hydrated Bloc implementation. The imple-
mentation is described in the Bloc section [3.5] of the Flutter Analysis chapter.
The usage of the implementation is described in the Bloc and Hydrated Bloc
section of this chapter.

30

4.1. Software Architecture

Tools consist of:

intl — it ensures internationalization,

equatable — it ensures that object extending it can be easily comparable
by properties of that object,

flutter_svg — it ensures drawing [SVG]image as a widget,
flutter_i18n — it ensures internationalization user phone settings,

path_provider — it ensures finding commonly used locations the filesys-
tem,

print_lumberdash — it ensures a convenient debug printing of an error
message,

get_it — it allows using of [DI| (Dependency Injection]) in code - it supports
foC] principle, [52]

dartz — it allows using functional programming in Dart,

url_launcher — it ensures launching a URL in the mobile platform,

Firebase contains firebase_core and firebase_messaging. These depende-
cies ensure connecting to Firebase Cloud and allow push notification function-

ality.

API consists of:

http — it ensures making [HTTD] requests,

json_annotation — it ensures the definition of annotations used by
[JSON] serialization and deserialization,

data_connection_checker — it checks for an internet connection by
opening a socket,

dio — it offers support of Interceptors, Global configuration, FormData,
Request Cancellation, File downloading, Timeout, etc.,

retrofit - it ensures type conversion dio client generator to create HTTD]
requests,

pretty_dio_logger — it ensures a convenient debug printing of [HT TP
requests and responses,

flutter_screenutil — it ensures adapting screen and font size.

31

4. SOFTWARE ARCHITECTURE AND DESIGN

storage contains hive and hive_flutter. These dependencies ensure
[NoSQT] storage that is for storing persistent data in the offline mode, [JWT]
token and user preferences. [53]

[UT] consists of:
e sliding_up_panel — it offers using done Sliding up panel,

e animations — it contains pre-canned animations for commonly-desired
effects,

e flutter_sfsymbols — it supports all iOS and Android devices.
Map consists of:

e google_maps_flutter — it provides a Google Maps widget,

e location — it handles getting a location on Android and iOS,

e google_maps_webservice — it offers using Google Web Service [AP]]
that including Geocoding, Places, Directions, and so on.

Generator consists of:
e hive_generator — it generates storable object by Hive annotations,

e retrofit_generator — it generates an implementation of [HTTP|requests
due to set annotations,

e bloc_test — it generates testing blocs for unit testing,
e mockito — it generates Mocks for unit testing,
e pedantic — it ensures a linter that is looking after to meet best practices,

e build_runner — it provides a concrete way of generating files using Dart
code,

e json_ serializable — it generates a serializable object by [JSON] annota-
tion.

4.1.2 Bloc and Hydrated Bloc

In the beginning of the development, all BLoC| (Business Logic Component|)s
were the descendants of the Bloc class. After a short time, it has been found
out that the Hydrated Bloc pattern is more convenient for this purpose. There-
fore, some Bloc classes were changed to descendants of HydratedBloc. This is
a list of classes that has been created:

e User Profile Bloc,

32

4.1.

Software Architecture

Authentication Bloc,
Aircraft Operation Bloc,
Device Operation Bloc,
Flight Operation Bloc,
Device Detail Bloc,
Location Bloc,

Map Bloc,

Map Zone Bloc,

Map Drone Bloc,

Map Place Bloc.

In the beginning, User Profile Bloc extended common Bloc, but after in-
creasing data traffic, it has changed to Hydrated Bloc. The reason is simple.
User properties are not changed so often. Due to it is better to store the data
on the phone and update them when it changes. User Profile bloc ensures
loading and updating user data.

Authentication Bloc extends Bloc and ensures:

Logging in a user,
Logging out user,

Finding out if a user is logged in.

Aircraft Operation Bloc extends Hydrated Bloc and ensures:

Loading aircraft data,
Adding new aircraft,
Updating an aircraft,

Deleting an aircraft.

Device Operation Bloc extends Hydrated Bloc and ensures:

Loading device data,
Registration of a device to a user,
Updating a device,

Deleting a device.

33

4. SOFTWARE ARCHITECTURE AND DESIGN

Flight Operation Bloc extends Hydrated Bloc and ensures:

Loading flight statistics data,
Loading flights data,
Loading flight data,
Updating a flight,

Deleting a flight.

Device Detail Bloc extends Bloc and ensures:

Switching from a Battery icon to a value in Volts, and vice versa,
Switching from a LTE icon to a RSRP value id [dBk, and vice versa,

Switching from a Bluetooth icon to a RSRP value in[dBf, and vice versa.

This Bloc is used for switching of icons in the Device detail screen.
Location Bloc extends Hydrated Bloc and ensures focusing to a user
location by [GPS| coordinates in the Dashboard map.

Map Bloc extends Bloc. Map Bloc is the most complex component in
the whole project. It looks after all user interaction with the Dashboard map.
Map Bloc mediates:

34

Loading zones,

Finding all zones covering a given point,

Showing and closing zone selection,

Showing and closing zone detail,

Loading flying drones,

Showing and closing drone detail,

Focusing on a drone location,

Showing and closing place detail,

Focusing to a place location,

Pinning and unpinning place marker into the map,

Storing map object like Markers, Circles, Polygons and Polylines.

4.1. Software Architecture

In addition, it has nested Blocs that listen the State changes. These Blocs
are the following:

e Map Zone Bloc,
e Map Drone Bloc,
e Map Place Bloc.

These Blocs react on the Map Bloc State changes, which means when a new
State is created, a nested Bloc catches it and generates a new Event. The
Event ensures the real action on the level of the nested Bloc thanks to map-
ping methods.

Map Zone Bloc extends Bloc and ensures:

Loading zones,

Finding all zones covering a given point,

Showing and closing zone selection,
e Showing and closing zone detail.

Map Drone Bloc extends Bloc and ensures:
e Loading flying drones,
e Showing and closing drone detail,
e Focusing on a drone location.

Map Place Bloc extends Bloc and ensures:
e Showing and closing place detail,
e Focusing on a place location,

e Pinning and unpinning place marker into the map.

4.1.3 JsonSerializable

Json Serializable interface offers generating methods for serialization and dese-
rialization classes. Json Annotation annotates these classes. These classes are
converted, and the process creates the methods via the build runner library.
The advantage is that developers have not to code these methods by hand.
They can re-generated every time it is needed to change the class structure.

Request classes are used for store and serialization of data before the
Rest client will send it. This directory contains only Login Request and Reg-
ister Request classes.

35

4. SOFTWARE ARCHITECTURE AND DESIGN

Response classes are used for store and deserialization of data after the

Rest client has received it. This directory contains:

36

Aircraft Detail Response — is used for passing aircraft data in Air-
craft Repository,

Aircraft Overview Response — is used for a nested object in Flight
Info Response in Flight Repository,

Api Error — is used for processing of error message in each of
Repositories,

Device Detail Response — is used for passing device data in Device
Repository,

Device Live Response — is used for passing device live data in Device
Repository,

Device Telemetry Response — is used for passing device telemetry
live data in Device Repository,

Dronetag Overview Response — is used for a nested object in Flight
Info Response in Flight Repository,

Flight Info Response - is used for passing flight data in Flight Repos-
itory,

Flight Statistics Response — is used for flight statistics data in Flight
Repository,

Location — is used for passing latitude and longitude data in almost
each of Repositories,

Region Response — is used for a nested object in Zone Response and
Flight Info Response,

Take Off Response — is used for a nested object in Flight Info Response
in Flight Repository,

Telemetry Response — is used for passing telemetry data in Device
Repository,

User Profile Response — is used for passing user data in User Repos-
itory,

Zone Response — is used for passing zone data in Zone Repository.

4.2. Software Design

4.1.4 Dio

Due to the need to use Interception and fill prepared requests with Au-
thentication Bearer, it was defined the custom Dronetag Dio class. It initializes
Pretty Dio Logger to make a clear debug printing and Token Interceptor that
extends Interceptors Wrapper.

4.2 Software Design

This section contains the implementation of mobile application design. Be-
cause we have already clarified what software design is, this section contains
only the list of components that were designed in the mobile application.

4.2.1 Common

This directory is used to maintain smaller parts in the codebase, that are
usually shared among many other components. The components that the
common directory uses are the elements of the user interface. The directory
contains:

e Common dialog — it represents an abstraction of Dialog, that receives
a template of arbitrary content, that will show as a part of the dialog,

e Fade In Transition — it represents a transition when a user goes
through among screens in the application,

e Colors — it contains named colors for better work and comfort improve-
ment in development,

e Constants — it contains named constants that are used for the config-
uration,

e Keys — it contains keys that are needed for a widget identification when
an animation runs,

e Padding — it contains named sizes of padding for better work and com-
fort improvement in development,

e Pair — it is a class for passing two different objects - it used for returning
different data from methods,

e Size — it contains named sizes for better work and comfort improvement
in development,

e Theme — it contains a theme definition via Theme Data class from
Material Design.

37

4. SOFTWARE ARCHITECTURE AND DESIGN

4.2.2 10

IO directory contains components that ensure loading data from remote sources.
Here it is emphasized to the encapsulation and comprehension. Thus, it has
been created a single directory that is divided into, Model, Repositories and
Services directories. These nested directories are described in more detail in
the following paragraphs.

Model directory contains objects that are produced by [AP]| endpoint of
Dronetag backend. It is divided into request and response classes. Model con-
tains entities that are used for data objects So, their primary purpose is to keep
data consistently. Serialization ensures the facility mapping data to objects
that the application gets from the remote data sources. Serialization ensures
the interface JsonSerialization that generates serialized objects by the given
configuration. This configuration is processed via JsonAnnotation interface in
the library with the same name.

Repositories directory consists of a repository for each functional part.
Every part contains methods for laboring with individual entities and mediates
passing data from remote sources. The part of every repository is a service
that ensures proper operations that will process with the given entity from
the Model directory. The services are closely described in the next paragraph
in this section. The Repositories directory contains the following classes:

e User Repository,

Aircraft Repository,

Device Repository,

Flight Repository,
e Search Repository,
e Zone Repository.

Services directory contains a subdirectory api. This subdirectory con-
tains classes that ensure receiving from and sending data to [AP]] endpoints
that are part of the Dronetag infrastructure. The Backend instance and Live
Service ensure the [AP]] interface in this infrastructure. Thus, api directory is
divided into:-

e Dronetag Web Rest Client,

Dronetag Live Service Client,
e Auth Config,
Google [AP] Key Reader,

Dronetag Dio.

38

4.2. Software Design

Dronetag Web Rest Client is used for loading and sending data o the
web platform, specifically the backend. This client contains methods:

fetchMyUserProfile() — it returns a user profile data,

authorize(String email, String password) — it authorizes a user via

a token endpoint,

registerUser(RegisterRequest request) — it registers a new user,
fetchFlightInfo(String id) — it returns a flight data by the given id,

fetch Aircrafts() — it returns all aircrafts that a user has granted access
to see them,

fetchAircraft(String uuid) — it returns an aircraft detail by the given
id,

addAircraft(String name, String uasOperatorID, String mod-
elID, double weight) — it adds a new aircraft by the given parameters,

updateAircraft(String uuid, String name, String modelID, dou-
ble weight) — it updates an aircraft detail by the given uuid,

deleteAircraft(String uuid) — it deletes an aircraft by the given uuid,

fetchDevices() — it returns all devices that a user has granted access
to see them,

fetchDevice(String uuid) — it returns a device detail by the given
uuid,

addDevice(String name, String serialNumber) — it adds a new
device with the given parameters,

deleteDevice(String uuid) — it deletes a device by the given uuid,

updateUserProfile(String uuid, UserProfile user) — it updates a
user detail by the given uuid with the user parameter,

fetchMyFlightStat() — it returns user’s flight statistics,
deleteFlight(String uuid) — it deletes a flight by the given uuid,

fetchZones(String viewport) — it returns all zones by the given view-
port,

fetchZone(String uuid) — it returns a zone detail by the given uuid,

passwordReset(String email) — it resets a user’s password by the
given e-mail address.

39

4. SOFTWARE ARCHITECTURE AND DESIGN

Dronetag Live Service Client is used for loading live data from Live
Service. The reason to divide the Rest client into two clients is well-arrangement.
The reason is that the web infrastructure is separated into these two services,
as described in the Dronetag web infrastructure chapter[2l This client contains
methods:

o fetchAllTelemetries() — it returns all last live telemetries about all
Drones in the airspace,

e fetchDeviceDetail(String serialNumber) — it returns a device detail
by a given serial number,

e fetchTelemetryDetail(String serialNumber) — it returns all live
telemetries about a drone by a given serial number.

Auth Config, Google [AP]] Key Reader and Dronetag Dio ensure
another mechanism and are used to provide data from the remote sources
directly. However, it was suitable to keep these classes together with the Rest
clients, because they are closely related to each other. Auth config contains
methods:

e initialize() — it loads auth_config.json configuration file and stores the
values from it by the clientld and clientSecret keys in the Map (data
container as similar as List),

e getClientId() — it returns a value from the Map container by the cli-
entld key,

e getClientSecret() — it returns a value from the Map container by the
clientSecret key.

Google API Key Reader contains methods initialize() and getApiKey().
initialize() loads auth_config.json configuration file and store the values from
it by the clientld and clientSecret keys in the Map (data container as similar
as List). getApiKey() returns a value from the Map container by the apiKey
key.

4.2.3 Ul

This directory is very extensive and every subdirectory contains other subdi-
rectories. Hence, this part describes only a brief description.

Aircrafts directory consists of Aircrafts screen and Aircraft Detail screen.
Besides, Aircraft Operation Bloc and Aircraft Form Bloc are placed for serving
data in a form.

Common directory consists of shareable elements in the user interface.
For example, they are dialogs, tile dividers, navigation bars and progress in-
dicators.

40

4.2. Software Design

Dashboard directory consists of Location Bloc, Map Bloc and the nested
Blocs described in the Software Architecture section[d.1.2] Also, it contains all
graphic elements that are able to see in the Dashboard screen, including the
Search screen with the managing Blocs. The Dashboard is the most complex
part of this application. It assembles data about zones, drones, and places
and placing them into the map.

Devices directory consists of Devices screen and Device Detail screen.
Besides, there is placed Device Operation Bloc, Device Detail Bloc, for control
the switching elements in Device Detail Screen and Device Form Bloc for
serving data in a form.

Flights directory consists of Flights screen, Flight Detail screen, In-flight
screen and Plan a flight screens. Also, Flight Operation Bloc and Flight Form
Bloc are placed for serving data in a form.

Intro directory consists of Login and Registration subdirectories. Both of
them contain [UI| components and their logic. It is arranged for self-organized
directories because of encapsulation.

Profile directory consists of the Profile screen and Profile Detail screen.
Besides, there is placed Profile User Bloc and Profile Detail Form Bloc for
serving data in a form.

4.2.4 Util

This part contains utilities that facilitate work in the codebase. It is separated
into:

e Error directory,
e Extensions directory,
e Preferences directory,

e Bloc Delegate class — it extends generic Bloc Delegate, and it logs all
actions on every Bloc and Hydrated Bloc,

e Network Info class — it checks internet connection (it uses DataCon-
nectionChecker class),

e Validator class — it defines validation rules for e-mail address, password
and full name.

4.2.4.1 Error

This directory contains classes:
e Error_handling — it contains a method that maps an error to action,

e Server Exception — it extends the general exception,

41

4. SOFTWARE ARCHITECTURE AND DESIGN

e Server Failure — it represents a returned fail message with the
status code.

4.2.4.2 Extensions

The Extension is a feature that can add functionality without the base class
changes. Besides, it helps the codebase facilitation and Extension can use
even in cases where it is needed. The Extensions directory contains:

e Polygon Extension,
e Circle Extension,
e Number Extension,
e String Extension.

Polygon Extension offers to find out if a point consisted of latitude and
longitude is lying in the given Polygon [54]. It is based on the mathematical
problem when it is being looked for the result if y-axis of the given point goes
through an even number of borderlines of the given Polygon. To solve how
to find out if the y-axis goes through is based on the problem which deals
with two lines go through each other. All the problem is described in this
paper [55].

Circle Extension offers to find out if a point consisted of latitude and
longitude is lying in the given Circle [56]. It is based on the Pythagorean
theorem [57] that solves a computation of the longest line in a right triangle
consisting of the spoken line and x and y-axis lines.

Viewport Extension contains isOQutOf(Viewport viewport) method, that
extends the base interface of LatLngBounds class [58] for the comparison if
this viewport is out of the bounds of the given viewport. The implementation
is simple. It compares all coordinates of these viewports each other. If this
viewport is out of the bounds of the given, it returns true. Otherwise, it
returns false.

String Extension contains methods for simplified work with Strings.
These methods are:

e isValidEmail() — it checks if a given e-mail meets set Regular Expres-
sion [59],

e isValidPassword() — it checks if a given password meets set Regular
Expression,

e isBlank() — it checks if a given string is empty or equal to an empty
string,

e isValidFullName() - it checks if a given full name meets set Regular
Expression.

42

4.2. Software Design

Number Extension contains methods for the precision setting. The
methods are:

e halfSize() — returns half of this number,

e toLatLonPrecision() — returns string of this number with precision
on 6 decimal digits,

e toAltitudePrecision() — returns string of this number with precision
on 4 decimal digits,

e addLatitudeDistance(double distance) — adds a given distance to
this in latitude axis,

e addLongitudeDistance(double distance, double latitude) — adds
a given distance to this in longitude axis.

Date Extension extends the base interface of the Date class and contains
the get method suffiz, which returns a suffix in English for the number of the
day of the given date.

Translation Extension extends the base interface of the BuildContext
class and contains translate(String key) method that mediates call of Flut-
teri18n.translate(key) method with key parameter. It returns a translation
by phone setting properties, where the application is running, by the key in
en.json and cs.json file in assets/i18n directory.

4.2.4.3 Preferences

This directory contains AppPreferences class that encapsulates Box class from
Hive library, which provides persistent data storage. The Hive library
has a simple interface for work with the nested Box class. Further, it al-
lows using Hive Annotations and define the objects for storing via an entity.
AppPreferences class contains public methods:

e saveTokens(String apiToken, String refreshToken) — it calls
_putToken(String token) and _putRefreshToken(String token) methods,

e destroyTokens() — it calls _deleteToken() and _deleteRefreshToken()
methods,

e getToken() — it gets a value by API. TOKEN constant,

e getRefreshToken() — it gets a value by AP REFRESH_TOKEN con-
stant,

e isUserLoggedIn() — it checks if getToken() and getRefreshToken() re-
turn not empty string (If so, user is still logged in, otherwise logged
out.),

43

4. SOFTWARE ARCHITECTURE AND DESIGN

getRecentSearchResult() — it returns stored user search recent re-
sults,

updateRecentSearchResult(SearchObject currentSearchedResult)
— it updates stored user search recent results.

AppPreferences class contains private methods:

44

_put(String key, value) — it puts a value by the given key into Box
object storage,

_putToken(String token) — it calls _put(String key, value) where the
key is API. TOKEN constant,

_putRefreshToken(String token) — it calls _put(String key, value)
where the key is API_ REFRESH_TOKEN constant,

_deleteToken() — it deletes a value by API. TOKEN constant,

deleteRefreshToken() — it deletes a value by API. REFRESH_TOKEN
constant.

CHAPTER 5

User Interface Design

This chapter is focused on the user interface design of the Dronetag mobile
application. It starts with an explanation of difference between

IInterface) and [UX| (User Experience]), and continues with a description about

the user interface structure of the application. So, it contains a list of screens

that are shown to users when they go through the application.

The main difference between [UT and is in the approach. approach
emphasizes a combination of visual elements such that the final concept of
visualization fits together. approach emphasizes an arrangement of these
visual elements such that their arrangement was logical, and it was close to
human thinking. [60] There are many visual elements that can interact with

users. They can be:

e A text label,

A text field,
A button,
A checkbox,
A List view,
A menu,
An icon,
An image,

And others.

approach deals with their skin - for example, a color, size, shadow, border,
shape, and others. [UX]approach focuses on the size and position on the screen.
The arrangement of elements in screens should be comprehensive and should

make sense to users.

5. USER INTERFACE DESIGN

The user interface design phase usually includes [Lo-Fi| (Low Fidelity| and
[Hi-Fi| (High Fidelity]) prototyping. [61] how the name hints, is a sim-
plified sketch without colors with a purpose to incorporate the elements on a
screen together. It is cheaper than and takes only a few hours to finish.
The benefits are:

e Focus on design and concepts,
e Focus on design and concepts,
e Accessible to everyone. [62]

In opposite, how the name hints, includes a fidelity design that should
correspond to the final product. It is more expensive than and usually
takes a few days. The benefits are:

e More familiar to users,
e Pinpoint specific components to test,
e More presentable to stakeholders. [62]

To more information about fidelity, anyone can read this article [62].
[Co-Fi prototype has not been created because Dronetag is Start-up, a com-

pany with a limited budget, so there is only the prototype. When
was being made, it was inspired by a few competitor applications, which show

permitted flight zones and danger areas. These applications are described in
the Related projects chapter [T} so they will not be discussed anymore.

5.1 Hi-Fi Prototype

This section consists of screens in the application with a detailed description
of their elements. The prototype was made by Marian Hlava¢ in Adobe
XD [63] and is available online [64]. It was emphasized to the simplicity
and briefness and kept the focus on the essential [U]] and [UX] design rules.
These rules are based on ”Jakob Nielsen’s 10 general principles for interaction
design”. [65] It describes key aspects of User Interface Design. The heuristics
by Jakob Nielsen are the following:

1. Visibility of system status,

2. Match between system and the real world,
3. User control and freedom,

4. Consistency and standards,

5. Error prevention,

46

5.1. Hi-Fi Prototype

6. Recognition rather than recall,

7. Flexibility and efficiency of use,

8. Aesthetic and minimalist design,

9. Help users recognize, diagnose, and recover from errors,
10. Help and documentation.

Applications built on these heuristics will be successful and useful because
these heuristics are based on various psychological researches and usability
testing with ordinary users.

5.1.1 Dashboard

The Dashboard screen is immediately after the Splash screen. It is counted
on the fact users will spend most of the time on the Dashboard screen, and so
it contains the main functionalities. This screen is divided into Top panel and
Map controls. These elements are in the higher stack layer above the map
where are placed flying drones, place pins and restricted areas. Besides, it
allows displaying without wasteful [POIs (Point of Interest|) [66], satellite map
or standard map, which contains[POIE, precisely like Google Maps application.
The Top panel is consists of:

e Device status — it contains current information about default device,

e Search button — it opens the Search screen for searching of places,
devices, aircrafts and zones,

e Profile button — it open the Profile screen that represents the main
menu of the whole application.

If a user has already logged in and planned a flight, Profile button contains
a light blue circle with the number of planned flights in the top right on the
circuit of that circle button. It is able to see on the picture [5.1

The Map controls are consists of:

e My location button — it redirects to his position due to his location
by [GPS| coordinates,

e Map layers button — it is an offer allowing users to choose a map style,

e Fly now button — this button shows drop down menu with Fly now
and Plan a flight options for already logged in users, and Log in and
sign up button for unauthorized users.

47

5. USER INTERFACE DESIGN

These are additional elements that are shown on the Dashboard screen:
e Drone detail panel, (Figure

e Place detail panel,

Zone detail panel, (Figure

Zone selection panel,
e Map layer panel.

The Drone detail panel is for showing necessary information and a flying
drone and its flight parameters. Besides, it contains the button to redirect
to the full drone detail screen, where users can see all information about live
flight immediately.

The Place detail panel contains necessary information about the place.
Also, if users want to plan a flight from this place, it allows them to pin this
place on the map until they unpins it and Plan a flight button. Place pinning
into the map is demonstrated by a color change of the pin on the map and
icon in the panel.

The Zone detail panel contains necessary information about the given zone,
such as a lower altitude level, upper altitude level, name of the zone, and
validation from and zone status.

The Zone selection is used to select a zone if a user clicks to a place in
the map where is an intersection of more zones. Simultaneously, when this
selection is shown, the selected zones are highlighted. If a user chooses a
zone, the zone will show Zone detail panel and it will be highlighted only the
particular zone instead of the intersection.

It was focused on the primary purpose of informing users about drones
and restricted areas around them. So, it was decided to keep a minimalistic
design because the users needs to emphasize to important elements to them.

5.1.2 Login and Registration Screens

The Login screen contains buttons for logging in and signing up to the system.
Login buttons allow logging in via e-mail, Google account, and it is going to
add logging in via Apple account. Sign up button allows signing in only via
e-mail.

The Log in Screen consists of two text fields. The first is for typing an
e-mail and the other is for typing a password. After success logging in, the
users are redirected to the Dashboard screen.

48

5.1. Hi-Fi Prototype

§ B
® Marian’s Dronetag o
® A @l Gl

v v
v
° °
o V' 1506F162599051555733
e DJI Mavic Air XYZ-1337-12
19.2342, 49.1231 92°, 2.6 m/s
Figure 5.1: Dashboard Figure 5.2: Drone detail

The Sign up screen is consist of the following three text fields:

e The first is for typing an e-mail address through the user will log in to
the system,

e The second is for typing a password,
e The third is for typing an optional full name.

The users have to agree with terms of using before they finish the regis-
tration. After successful signing up, the users are logged in and redirected to
the Dashboard screen.

5.1.3 Profile Screens

The Profile screen (Figure represents the main menu of the application.
Users have granted access to their profile detail, My management container,
and the users can see the set default aircraft and device. Besides, if they belong
to an organization, it shows them the organization name and the button to
switch the fleet mode. My management container contains My Flights, My
Devices and My Aircrafts buttons.

The Profile detail screen contains the user properties like the full name,
phone number and country. Also, it allows changing the user’s contact e-mail
and password.

49

5. USER INTERFACE DESIGN

<{ Map

Profile

Marian Hlavaé

My flights [1]
My devices

My aircrafts

Marian’s Dronetag

DJI Mavic Air

Change your defaults

CTRRUZYNE
5000ft AMSL 2019/10/10

1200ft AMSL Unknown
Join an organization

Figure 5.3: Zone detail Figure 5.4: Profile

5.1.4 Device Screens

The Devices screen (Figure will be showed after users click on My Devices
button in the Profile screen. This screen contains a list of registered Dronetag
devices and Add button. The Add button redirects the users to the Device
registration screen.

The Device screen contains all information about the given device, includ-
ing the real-time data. Users can set the device as default or set the device
preferences by their own needs.

The Device registration screen is for registration of a new device that the
users bought. It contains two text fields for typing - a serial number, and an
optional name for better identification. After successful registration, the users
are redirected to the Devices screen.

5.1.5 Aircraft Screens

The Aircrafts screen contains a list of added aircrafts. Besides, users can add
a new drone via the Add button. This button redirects users to the Aircraft
screen with blank text fields and selection elements that are set to initial
value. Users will get to this screen from Profile screen after the click to the
My Aircrafts button.

20

5.1. Hi-Fi Prototype

The Aircraft screen is to display the detail of an aircraft. Simultaneously,
it is used for adding new aircraft. A user will get to it after choose a one from
the list in Aircrafts screen. This screen contains a form with three text fields:

e The first is for type name,

e The second is for type |[UAS| (Unmanned aircraft systems]) [23] Operator
ID what identify a person that has permission to flight with drones and
passed the pilot exams,

e The third is for setting the weight of aircraft.

Also, this screen contains two selection elements for choosing the vendor
and its model.

5.1.6 Flight Screens

The Flights screen (Figure is for displaying a list of the flights. This screen
contains flight statistics and allows finding certain flights by chosen filters. By
every flight, it shows its state if it is planned and current flight, planned start
and finish dates, and a map with the flight telemetry. Besides, it contains
the button for exporting the whole flight history. If users choose a planned
flight, it shows the Flight plan screen, which is a planned flight summary and
consists of various parameters. It is possible to show the Flight detail screen
for finished flights, and the In-flight detail screen for current flights.

The Flight detail screen contains all information about a flight, including
the option to replay flight trajectory from start to the end. The In-flight
detail screen contains information about the flight in real-time. Thanks to
the Sliding up panel the user is able to see more information and still check if
a drone did not escape the reservation area.

The Plan a flight is a group of three screens that represent a wizard for
flight plan. In the first screen, the users set identification properties and
planned time of the flight. In the second screen, the users set a polygon or
circle for the planned flight and its maximum altitude. In the last screen, the
users confirm set parameters of the planned flight - it is like a summary.

5.1.7 Search Screen

The Opened Search screen is the first what users see when they click on the
Search button in the Dashboard. It shows recent results that the users have
searched in the last time. The result can be a drone, aircraft, place or zone.
If users use the Search text field and types a text string, it will show them
a result with an icon for better identification. If users choose an item in the
list of results, it will redirect them to any of the Detail screens. The screen
can be either the Aircraft detail screen, the Device detail screen, or a place

51

5. USER INTERFACE DESIGN

< profile + < Profile o
My Devices My Flights
12 4.2km
total flights total distance
Marian’s Dronetag
w
@ Setas de o &

@D Thursday's Evening Flight
my smol dronetag

Wednesday’s Flight

ztraceny procko />
/ =
3 A —

O Dronetag Meteo Sensor ()

muj pojmenovany flight v lese

——

Figure 5.5: Devices Figure 5.6: Flights

on the map in the Dashboard. After choosing that item, it will appear in the
list of the Recent results.

5.2 Usability Testing

This section talks about usability testing what is a phase in the user interface
design cycle. This phase involves testing with users who get instruction by
a scenario, and the task that they get they should do in their natural way. The
primary purpose of this testing is the detection of harmful design elements,
and the determination of the arrangement mistakes. The elements can be
arranged in a screen, part of a screen, menu or drop-down menu. It depends
on the purpose of the concrete application.

At first, the prototype was designed and inspired by the competitor
applications. In the design was effort to learn from design mistakes of the
competitor applications and solve their flaws. It had to be decided if it is
better to place a sliding panel with advisories on Dashboard or an animated
button for a flight planning, how should look the profile screen and its icon,
or if it is useful to pin a place into the map. After that, it has been organized
the usability testing with ordinary people who could be Dronetag’s potential
customers.

During the testing, it was detected a few crucial mistakes in the design.
They are accurately described in the following part of this section.

02

5.2. Usability Testing

5.2.1 Results

This part contains feedback from usability testing. There has been organized
two usability tests. The first was at the beginning of mobile application de-
velopment before the implementing of the essential application functions was
started. The other was before the release of the alpha version of this applica-
tion. The following paragraphs relate to the usability testing before the alpha
version.

It has been tested with six users. One of them was from the Faculty of
transportation sciences of Czech Technical University in Prague. The others
were colleagues from the Faculty of information technology of the same uni-
versity. Many of them were bachelor students, so it means they are between
20 and 25 of age. The student of the Faculty of transportation sciences gave
an insight into what would expect users with flight knowledge. He describes
how the Dashboard map should behave and how to understand various map
layers and flight levels. My Faculty’s colleagues were in the role of typical
users and helped to understand what they expect of the used elements in the
screens. For the briefness, there were chosen and cited three of them. Due to
[GDPR] their names were anonymized.

Person One:

e "I would like to see separated groups in the Search screen with Headline
text to distinguish what the searched thing is.”

e "I like the Full drone detail screen. It contains everything that I want
to know. The map is impressive.”

Person Two:

e ”It would be nice to have a list of pinned places on the Dashboard map.
If I pin many places, I will get lost between them.”

e "I like the Country list selection with the Search bar in the Profile screen.
It is good-looking and useful.”

e "The application is stable in the Alpha version. I like the simplicity of
the Dashboard screen.”

Person Three:
e "The place pin in the Dashboard map is too small, and I cannot see it.”

e "The zone colors with opacity are too light for sunlight. I would not
have to see them outside.”

e "I like the tiles in My Aircrafts and My Devices screens. The swiping for
delete looks excellent. However, I am missing an option to select these
objects and their actions (For example, delete, share, or change order).”

93

5. USER INTERFACE DESIGN

5.2.2 Main Mistakes in User Interface Design

During the usability testing, there were discovered the critical findings that

are described in this part. Some of them were expected. Some of them were

not expected and forced to change the future goals in the user interface design.
For example, the following flaws were found:

1. It is not so intuitive to expect the searching drones and devices from the
Search button in the Dashboard. The users expect only searching places,
whereas it is a part of the Dashboard, where the map is the essential
element.

2. It is not obvious that the bottom panel is possible to pull up. So, it is
the first of the reasons to decide to omit the bottom sliding up panel
with advisories. The other is that it is not known and approved the final
legislation so far, and it is still in progress.

3. The assigning of the drone to the device is not useful. It is better to
allow users to set a default device and default drone, and allow the users
to change them when they are planning a flight.

4. Users appreciate an option to move with the map in the In-flight screen.

This knowledge has had a significant impact on changing screens to reach
a better attention of users.

o4

CHAPTER 6

Deployment and Testing

This chapter describes the required steps for setting the development environ-
ment and describes the configuration files. Besides, it describes automation
testing methods, and a summary of verified functions in the application by
these testing methods.

6.1 Build Instructions

The build is divided into main 4 steps:
1. downloading dependencies via flutter pub get command,

2. launching generating of the classes that creates themselves by the anno-
tation settings via flutter pub run build _runner command

3. launching generating [APK] file for Android via flutter build apk
--release command and

4. launching generating APP file for iOS in ios/Runner bundle.

The last two steps can be run concurrently because they are independent of
each other. All this build process allows to be fully autonomous and connected
to (Continuous Integration|) and (Continuous Delivery]). Thanks to
this fact, the development speed up the whole software process, and it does
not need any information technology operators. This kind of development
is called (abbreviation of development and information technology
operations), and now its popularity is increasing because of saving time and
money.

95

6. DEPLOYMENT AND TESTING

6.2 Configuration Files

For using Continuous Integration and Continuous Delivery is needed to set the
right configuration. Therefore, there is a need to create single configuration
files for every environment. For this purpose, we used the environment_config
library that allows easy management and provides the generator. This gen-
erator allows to use these settings in the codebase by the given parameters.
The configuration YAML [67] file keeps the setting of these variables, where
we choose the required configuration, and the generator makes available it
via an interface in the codebase. There is needed to notice that the cross-
platform frameworks like Flutter allow to set the separate configuration for
every platform on iOS and Android. Unfortunately, there are even cases when
the setting applies as similar as on both of the platforms. For example, it can
be a[URL] (Uniform Resource Locator) addresses, client ID, client secrets, and
a path to a log file. This change will be performed in the specific bundle if
it is needed to distinguish a configuration for each of the platforms alone. A
typical example could be differentiated setting of Google Maps widget, where
it is needed to set activated Google Maps [AP]| key. Although these platforms
have different architecture, so its configuration is different.

Immediately at the beginning of the development phase, when new mem-
bers join the team, they must clone mobile-app folder from the git repository
on BitBucket server. After that, they must add files auth_config.json and
google_map_api_key.json in directory assets/config.

auth_config.json file in the format:

{
"clientId": "...",
"clientSecret": "..."

}

This file is used for the security of the client access and in case it would be
stolen from one environment, it will not be applicable in another environment.

google_map_api_key.json file is in the format:

{
"apiKey": "...
X

This file is for access to the information, which are provided by Google Cloud
Platform [AP]] In our project, we use Google Maps [AP]] for downloading map
styles, data about a searching place, and the Autocomplete function that
suggests accurate and close results by the given substring. All mentioned files
meet the [JSON] format standard specification.

o6

6.3. Code Testing

6.2.1 Develop Environment

The configuration files in this project contain setting for the local running
platform launched as the Kubernetes cluster. The part of the cluster is a
docker container with the backend implementation. More information about
the platform is available in the Dronetag web infrastructure chapter

6.2.2 Test Environment (Staging)

The test environment is called Staging and is used for testing and debugging
new functionalities, features, and software quality assurance.[68] In this envi-
ronment, is possible to simulate the arbitrary model situation and check how
the application behaves in these edge case situations and if it is stable in each
scenario. Also, it is possible to verify the fact if a fault occurs, that the clients
can adequately respond to this situation and catch thrown exceptions.

6.2.3 Production Environment

The production environment is used for real application operations, and it
should contain no errors created during the development phase. This environ-
ment is crucial for the Dronetag company business, and the customers who
use the product must have a feeling about the flawless application whenever
they use it. Configuration files in this environment contain the connection set-
tings to the production server, where is being run the cluster with the backend
instance.

6.3 Code Testing

The testing has in the software development the critical usage if the devel-
opment runs according to an agile methodology. It means that it is about
small regular deliveries of software pieces that include certain functionality or
bug fixing. These interferences in the already deployed application are needed
to test its correct functionality to prevent potential problems in the future.
The biggest problem occurs where dependencies create. So, if a functional-
ity breaks down at the beginning, the functionalities depending on that root
functionality will return bad results or causing instability of the application.
The advantage is that the tests can be repeatedly run, and if it is needed, they
can be changed easily. So, the testing is a phase in the software development
that allows the automation in the [CIl and

Besides, this chapter describes types of tests and functionalities in the
application, which are covered by these tests. It includes a description of how
the given functions should behave in certain situations.

o7

6. DEPLOYMENT AND TESTING

6.3.1 Unit Testing

This section emphasizes to unit tests. In Flutter, unit tests run with flutter
test command from the console prompt. Thanks to this, it is easy to incorpo-
rate them into [CI] and [CD| phase, where the test can run automatically. There
are libraries used for unit testing in Flutter:

e test,

o flutter_test,
e Mockito,

e Bloc_test,
e And others.

It was emphasized to functionalities that ensure to get data from remote
sources. The correctness of these functionalities is necessary because the ap-
plication must be stable even when the backend is out-of-service. Thus, these
classes are tested to the three essential situations:

e Success - when the data are successfully received,
e Failure - when a failure occurs during loading,
e Disconnected - when a phone is in an out-of-service area.

So, Unit tests in the application cover the following repositories that are serv-
ing data from the remote sources:

e User Repository,
e Device Repository,

e Aircraft Repository,

Flight Repository,

Zone Repository,

Search Repository.

6.3.2 Integration Testing

This section clarifies what Integration tests are. These tests verify whether the
individual parts tested by unit tests can cooperate and work well as a whole.
For example, if an application has a multi-layer architecture, it is needed
to verify if these layers passing data through by the expectation. So, an
integration test consists of smaller parts tested by unit tests. The ntegration
tests have not been implemented in the mobile application because there was
no time to deal with this type of the tests.

o8

6.3. Code Testing

6.3.3 Mocker

Mocker is used for flight drone simulations. Mocker is written in Python [69]
and sends messages to backend endpoint for the testing purpose. It expects
a serial number parameter and allows to specify an optional take-off position
parameter. It allows mocking more drones concurrently. The advantage of
this Mocker is that it is not needed to have a flying physical drone with an
attached Dronetag device in the air during the development. It is useful to
run this Mocker for a simulated behavior because there is not needed anything
else.

99

Conclusion

In this thesis, the problem of lawbreaking by flight drones was discussed.
Also, zone types which the pilots have to avoid were described, as well as the
flight levels. Besides, there were clarified the differences among these zone
types. An analysis of related solutions for drone pilot support was conducted,
and the key differences among them were described in the Related projects
chapter There was introduced the technology stack which provides data,
data modelling, and connectivity for these technologies in the Backend infras-
tructure chapter 2 The basics of Flutter and the reasons why it was chosen
for cross-platform mobile application development were discussed, including
a brief comparison of the competing cross-platform frameworks. In addition,
the Bloc pattern was clarified and compared with its extended class, Hydrated
Bloc.

There was described the difference between software architecture and de-
sign. Then, it was emphasized the designed code structure of mobile ap-
plication implementation that was divided into the software architecture and
design components, according to the concept appproach. Further, it was found
that the design initially had some flaws, which was revealed during
the usability testing. Hence, it is still improving and changing, based on the
results from the usability testing of the first version of the mobile application.
There was described how to realize the implementation of this thesis, including
the necessary steps to run the project in the development environment. The
implementation meets all functional requirements, specifically drawing flight
zones on the map, showing real-time data about flying drones with a Drone-
tag device attached, and flight planning and management of aircrafts, devices
and flight history. The environment description also contains the configura-
tion files which should not be versioned with the version systems for security
reasons. It was also discussed software quality assurance and which methods
are used in the mobile application. There were clarified the advantages and
use cases of automated tests and chosen functions tested by Unit tests.

61

CONCLUSION

There was mentioned that one of the Dronetag products is a mobile ap-
plication that will ensure safer drone operations; this application is used as
a client. Thus, it is directly dependent on the entire platform, especially on
the Backend and Live Service. Hence, the development was divided into two
main phases, called Alpha and Beta.

For the Alpha release was set the date to May 31st, 2020. This version
contains essential functionality like watching zones, drones, devices, and flight
management, including searching and flight planning in two modes. The first
mode is "Fly now,” which allows users to record his flight quickly. The other is
”Plan a flight,” which allows users to plan a flight for a specific time and place.
As such, the Alpha version will provide the main application functionality.

Over the coming months, there will being prepared the second version
called Beta. This version will emphasize performance optimization and use
some data in an offline mode as there is required to ensure full application
functionality even in places without service. In addition, it includes the com-
plete functionality realization of the fleet management for organizations. This
functionality would be suitable for industrial purposes and ensure the safety
of a larger group of drones in the reserved area. Most of the customers would
be companies delivering goods, monitoring airports, and transferring medical
materials to inaccessible places. Overall, the Beta version will focus on the
optimization and improvement of any problems that have arisen in the Alpha
version.

In conclusion, it is important to emphasize the fact that the mobile ap-
plication structure is still growing. This fact means there are still to be im-
plemented new functions that will contribute to more widespread use of the
application. In addition, there will be a need to stay up-to-date with new
developments in the use of drones in business, always improving and adapting
these technologies to the customers’ requirements. The Dronetag company is
reactive to these requirements, so it offers a product that satisfies them and
can be used worldwide.

62

Bibliography

flutter-dev. Technical overview - Flutter [online]. [Accessed: 2020-05-16].
Available from: https://flutter.dev/docs/resources/technical-
overview

(felangel), F. A. Bloc, a Dart package [online]. [Accessed: 2020-04-26].
Available from: https://github.com/felangel/bloc/blob/master/
packages/bloc/README.md

D’Onfro, J. Amazon’s New Delivery Drone Will Start Ship-
ping Packages 'In A Matter Of Months’ Forbes Media LLC,
June 2019, [Accessed: 2020-05-09]. Available from: https:
//www.forbes.com/sites/jilliandonfro/2019/06/05/amazon-new—
delivery-drone-remars-warehouse-robots-alexa-prediction/

of the Czech Republic, A. N. S. Airspace of the Czech republic.
online, [Accessed: 2020-05-21]. Available from: https://aim.rlp.cz/
vfrmanual/actual/enr 1 en.html

Investment; Czechlnvest, B. D. A. Results from the Space Applica-
tion Hackathon - CSW 2020. online, [Accessed: 2020-05-27]. Avail-
able from: |http://www.czechspaceyear.com/results-from-space-
application-hackathon/

AIRMAP, 1. AirMap websites. online, [Accessed: 2020-04-08]. Available
from: https://www.airmap.com

Mapbox. Mapbox. online, [Accessed: 2020-05-22]. Available from: https:
//www.mapbox.com

for the Safety of Air Navigation, T. E. O. EUROCONTROL — Support-
ing European Aviation — EUROCONTROL. online, [Accessed: 2020-05-
22]. Available from: https://www.eurocontrol.int

63

https://flutter.dev/docs/resources/technical-overview
https://flutter.dev/docs/resources/technical-overview
https://github.com/felangel/bloc/blob/master/packages/bloc/README.md
https://github.com/felangel/bloc/blob/master/packages/bloc/README.md
https://www.forbes.com/sites/jilliandonfro/2019/06/05/amazon-new-delivery-drone-remars-warehouse-robots-alexa-prediction/
https://www.forbes.com/sites/jilliandonfro/2019/06/05/amazon-new-delivery-drone-remars-warehouse-robots-alexa-prediction/
https://www.forbes.com/sites/jilliandonfro/2019/06/05/amazon-new-delivery-drone-remars-warehouse-robots-alexa-prediction/
https://aim.rlp.cz/vfrmanual/actual/enr_1_en.html
https://aim.rlp.cz/vfrmanual/actual/enr_1_en.html
http://www.czechspaceyear.com/results-from-space-application-hackathon/
http://www.czechspaceyear.com/results-from-space-application-hackathon/
https://www.airmap.com
https://www.mapbox.com
https://www.mapbox.com
https://www.eurocontrol.int

BIBLIOGRAPHY

[9]

[10]

[11]

[16]

[17]

64

AirMap Inc. AirMap Developers [online]. [Accessed: 2020-05-22]. Avail-
able from: https://developers.airmap.com

Angel, A. GuardianUTM. online, [Accessed: 2020-05-22]. Available from:
https://docs.altitudeangel.com/docs

Services, N. A. T. Safety Apps - Dronesafe. online, [Accessed: 2020-05-
25]. Available from: https://dronesafe.uk/safety-apps/

s.r.o., U. MATA - Mobile Aircraft Identification Application — MATA.
online, [Accessed: 2020-05-22]. Available from: https://flymaia.com

Kittyhawk.io, I. Kittyhawk - Safety Apps - Drone Fleet Manage-
ment System. online, [Accessed: 2020-05-25]. Available from: https:
//kittyhawk.io

Institute, C. H. CHMI Portal : Home. online, [Accessed: 2020-05-26].
Available from: http://portal.chmi.cz/71l=en

Organization, I. C. A. Home — International Civil Aviation Organization.
online, [Accessed: 2020-05-26]. Available from: https://www.icao.int/
Pages/default.aspx

Air Navigation Services of the Czech Republic. Létejte zod-
povédné [online]. [Accessed: 2020-05-21]. Available from: https://
letejtezodpovedne.cz

Red Hat, Inc. What is Docker? — Opensource.com [online]. [Accessed:
2020-05-10]. Available from: https://opensource.com/resources/
what-docker

Docker Inc. What is a Container? — App Containerization —
Docker [online]. [Accessed: 2020-05-10]. Available from: https://

www.docker.com/resources/what-container

Docker Inc. Quverview of Docker Compose — Docker Documentation [on-
line]. [Accessed: 2020-05-10]. Available from: https://docs.docker.com/
compose/

The Kubernetes Authors. Production-Grade Container Orchestration -
Kubernetes [online]. [Accessed: 2020-05-10]. Available from: https://
kubernetes.io

Inc., G. Borg, Omega, and Kubernetes. acmqueue, March 2016,
[Accessed: 2020-05-17]. Available from: https://queue.acm.org/
detail.ctm?i1d=2898444

https://developers.airmap.com
https://docs.altitudeangel.com/docs
https://dronesafe.uk/safety-apps/
https://flymaia.com
https://kittyhawk.io
https://kittyhawk.io
http://portal.chmi.cz/?l=en
https://www.icao.int/Pages/default.aspx
https://www.icao.int/Pages/default.aspx
https://letejtezodpovedne.cz
https://letejtezodpovedne.cz
https://opensource.com/resources/what-docker
https://opensource.com/resources/what-docker
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://kubernetes.io
https://kubernetes.io
https://queue.acm.org/detail.cfm?id=2898444
https://queue.acm.org/detail.cfm?id=2898444

Bibliography

[22]

[27]

Dronetag s.r.o. Datovyj model webové platformy :: Dokumentacni web
Dronetag [online]. [Accessed: 2020-04-19]. Available from: https://
docs.dronetag.cz/kbase/platform/datamodel.html

EUROCONTROL. Unmanned aircraft systems — EURO-
CONTROL. online, [Accessed: 2020-05-27]. Available from:

https://www.eurocontrol.int/unmanned-aircraft-systems

The Internet Engineering Task Force (IETF). GeoJSON [online]. [Ac-
cessed: 2020-05-17]. Available from: https://geojson.org

Redis labs. Redis [online]. [Accessed: 2020-05-09]. Available from: https:

//redis.io

Jagtap, S. Flutter vs React Native: A Developer’s Perspec-
tive. nevercode.io Blog, April 2020, [Accessed: 2020-05-16]. Avail-
able from: https://nevercode.io/blog/flutter-vs-react-native-
a-developers-perspective/

Sharma, N. React Native vs. Xamarin vs. Ionic vs. Flutter: Which
is better? Apptuniz, September 2018, [Accessed: 2020-05-21].
Available from: https://www.apptunix.com/blog/frameworks-cross-
platform-mobile-app-development/

Dart Community. The Dart type system — Dart [online]. [Accessed:
2020-05-16]. Available from: https://dart.dev/guides/language/
sound-dart

Nader, Y. React Native vs Flutter. hackr.io Blog, April 2020, [Accessed:
2020-05-16]. Available from: https://hackr.io/blog/react-native-
vs—-flutter

Alessandria, S. Flutter Projects: A practical, project-based guide to build-
ing real-world cross-platform mobile applications and games. Packt Pub-
lishing Ltd, first edition, ISBN 9781838642532.

Google, Inc. RenderObjectWidget class [online]. [Accessed: 2020-
04-27]. Available from: https://api.flutter.dev/flutter/widgets/
RenderUbjectWidget-class.html

Google, 1Inc. RenderObject class [online]. [Accessed: 2020-04-
27]. Available from: https://api.flutter.dev/flutter/rendering/
RenderObject-class.html

Google, Inc. StatelessWidget class [online]. [Accessed: 2020-04-
08]. Available from: https://api.flutter.dev/flutter/widgets/
StatelessWidget-class.html

65

https://docs.dronetag.cz/kbase/platform/datamodel.html
https://docs.dronetag.cz/kbase/platform/datamodel.html
https://www.eurocontrol.int/unmanned-aircraft-systems
https://geojson.org
https://redis.io
https://redis.io
https://nevercode.io/blog/flutter-vs-react-native-a-developers-perspective/
https://nevercode.io/blog/flutter-vs-react-native-a-developers-perspective/
https://www.apptunix.com/blog/frameworks-cross-platform-mobile-app-development/
https://www.apptunix.com/blog/frameworks-cross-platform-mobile-app-development/
https://dart.dev/guides/language/sound-dart
https://dart.dev/guides/language/sound-dart
https://hackr.io/blog/react-native-vs-flutter
https://hackr.io/blog/react-native-vs-flutter
https://api.flutter.dev/flutter/widgets/RenderObjectWidget-class.html
https://api.flutter.dev/flutter/widgets/RenderObjectWidget-class.html
https://api.flutter.dev/flutter/rendering/RenderObject-class.html
https://api.flutter.dev/flutter/rendering/RenderObject-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html

BIBLIOGRAPHY

[34]

[35]

66

Google, Inc. State class [online]. [Accessed: 2020-04-27]. Available from:
https://api.flutter.dev/flutter/widgets/State-class.html

Google, Inc. setState method [online]. [Accessed: — 2020-04-27].
Available from: https://api.flutter.dev/flutter/widgets/State/
setState.html

Google, Inc. StatefulWidget class [online]. [Accessed: — 2020-04-
08]. Available from: https://api.flutter.dev/flutter/widgets/
StatefulWidget-class.html

Google, 1. BuildContext class, dependOnlInheritedWidgetOfExact-
Type;T extends Inherited Widgets; method [online]. [Accessed: 2020-
04-26]. Available from: https://api.flutter.dev/flutter/widgets/
BuildContext/dependOnInheritedWidgetOfExactType.html

Google, Inc. InheritedWidget class [online]. [Accessed: — 2020-04-
08]. Available from: https://api.flutter.dev/flutter/widgets/
InheritedWidget-class.html

Boelens, D. Reactive Programming - Streams - BLoC. Didier Boe-
lens Blog, August 2018, [Accessed: 2020-05-10]. Available from:
https://www.didierboelens.com/2018/08/reactive-programming-
streams-bloc/

(felangel), F. A. Hydrated Bloc, a Dart package [online]. [Accessed: 2020-
05-16]. Available from: https://pub.dev/packages/hydrated_bloc

Community, F. Path Provider, a Dart package [online]. [Accessed: 2020-
05-16]. Available from: https://pub.dev/packages/path_provider

(felangel), F. A. Example - Hydrated Bloc, a Dart package [online]. [Ac-
cessed: 2020-05-16]. Available from: https://github.com/felangel/
hydrated_bloc/tree/master/example

Angelov, F. Caching Bloc State with “Hydrated Bloc” - Flut-
ter Community. Medium, June 2019, [Accessed: 2020-05-16]. Avail-
able from: https://medium.com/flutter-community/caching-bloc-
state-with-hydrated-bloc-e565f81520a4

(felangel), F. A. Hydrated Bloc Storage, a Dart package [online]. [Ac-
cessed: 2020-05-16]. Available from: https://github.com/felangel/
hydrated_bloc/blob/master/lib/src/hydrated_bloc_storage.dart

Google Inc. Cupertino (iOS-style) widgets - Flutter [online]. [Accessed:
2020-05-20]. Available from: https://flutter.dev/docs/development/
ui/widgets/cupertino

https://api.flutter.dev/flutter/widgets/State-class.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/BuildContext/dependOnInheritedWidgetOfExactType.html
https://api.flutter.dev/flutter/widgets/BuildContext/dependOnInheritedWidgetOfExactType.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc/
https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc/
https://pub.dev/packages/hydrated_bloc
https://pub.dev/packages/path_provider
https://github.com/felangel/hydrated_bloc/tree/master/example
https://github.com/felangel/hydrated_bloc/tree/master/example
https://medium.com/flutter-community/caching-bloc-state-with-hydrated-bloc-e565f81520a4
https://medium.com/flutter-community/caching-bloc-state-with-hydrated-bloc-e565f81520a4
https://github.com/felangel/hydrated_bloc/blob/master/lib/src/hydrated_bloc_storage.dart
https://github.com/felangel/hydrated_bloc/blob/master/lib/src/hydrated_bloc_storage.dart
https://flutter.dev/docs/development/ui/widgets/cupertino
https://flutter.dev/docs/development/ui/widgets/cupertino

Bibliography

[46]

[57]

[58]

Bohn, D. Google’s software design is having a reformation.
The Verge, May 2018, [Accessed: 2020-05-20]. Available from:
https://www.theverge.com/2018/5/10/17339230/google-material-
design-theme-update-new-tools—-matias—duarte

Google Inc. Components - Material Design [online]. [Accessed: 2020-05-
20]. Available from: https://material.io/components

Muhammad Ali Babar, I. M., Alan W. Brown. Agile Software Architec-
ture. Elsevier Science and Technology, first edition, ISBN 9780124078857.

Robinson, J. A. Software Design for Engineers and Scientists. Elsevier
Science and Technology, first edition, ISBN 9780080474403.

Edward Curry, P. G. Flexible Self-Management Using the Model-View-
Controller Pattern. IEEE Software, April 2008, [Accessed: 2020-05-25].
Available from: https://ieeexplore.ieee.org/document /4497770

Dart Community. Dart packages [online]. [Accessed: 2020-05-10]. Avail-
able from: https://pub.dev

Fowler, M. Inversion of Control Containers and the Dependency Injection
pattern. martinfowler.com, January 2004, [Accessed: 2020-05-18]. Avail-
able from: https://martinfowler.com/articles/injection.html

Auth0. JSON Web Tokens - jwt.io [online]. [Accessed: 2020-05-18]. Avail-
able from: https://jwt.io

Google Inc. Simple Polygon — Maps JavaScript API — Google
Developers [online]. [Accessed: 2020-05-21]. Available from:
https://developers.google.com/maps/documentation/javascript/
examples/polygon-simple

Prosser, P. Geometric Algorithms. Glasgow University, March 2000, [Ac-
cessed: 2020-05-21]. Available from: http://www.dcs.gla.ac.uk/~pat/
52233/slides/Geometrylx1l.pdf

Google Inc. Clircles — Maps JavaScript API — Google Devel-
opers [online]. [Accessed: 2020-05-21]. Available from: https:
//developers.google.com/maps/documentation/javascript/
examples/circle-simple

Hahn, R. The Metaphysics of the Pythagorean Theorem. SUNY Press,
first edition, ISBN 9781438464893.

Google Inc. LatLngBounds — Google API for Android — Google
Developers [online]. [Accessed: 2020-05-22]. Available from:
https://developers.google.com/android/reference/com/google/
android/gms/maps/model/LatLngBounds

67

https://www.theverge.com/2018/5/10/17339230/google-material-design-theme-update-new-tools-matias-duarte
https://www.theverge.com/2018/5/10/17339230/google-material-design-theme-update-new-tools-matias-duarte
https://material.io/components
https://ieeexplore.ieee.org/document/4497770
https://pub.dev
https://martinfowler.com/articles/injection.html
https://jwt.io
https://developers.google.com/maps/documentation/javascript/examples/polygon-simple
https://developers.google.com/maps/documentation/javascript/examples/polygon-simple
http://www.dcs.gla.ac.uk/~pat/52233/slides/Geometry1x1.pdf
http://www.dcs.gla.ac.uk/~pat/52233/slides/Geometry1x1.pdf
https://developers.google.com/maps/documentation/javascript/examples/circle-simple
https://developers.google.com/maps/documentation/javascript/examples/circle-simple
https://developers.google.com/maps/documentation/javascript/examples/circle-simple
https://developers.google.com/android/reference/com/google/android/gms/maps/model/LatLngBounds
https://developers.google.com/android/reference/com/google/android/gms/maps/model/LatLngBounds

BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[67]

[68]

[69]

68

Tourlakis, G. Theory of Computation. John Wiley and Sons, Incorpo-
rated, first edition, ISBN 9781118315330.

Ben Coleman, D. G. Designing UX: prototyping. SitePoint, 2017, ISBN
9780994347084, [Accessed: 2020-05-25].

Jonathan Arnowitz, N. B., Michael Arent. Effective Prototyping for
Software Makers. Elsevier Science and Technology, first edition, ISBN
9780080468969.

Esposito, E. Low-fidelity wvs. high-fidelity prototyping. Inwvi-
sion Design, May 2018, [Accessed: 2020-05-17]. Available from:
https://www.invisionapp.com/inside-design/low-fi-vs-hi-fi-
prototyping/

Inc., A. UI/UX design and collaboration tool — Adobe XD. online, [Ac-
cessed: 2020-05-25]. Available from: https://www.adobe.com/products/
xd.html

Inc., A. PHI-MVP. online, [Accessed: 2020-05-28]. Available
from: https://xd.adobe.com/view/cOace277-443a-49d6-5eaa-
7c3f3951fdc3-b69d/

Nielsen, J. 10 Usability Heuristics for User Interface Design. nngroup.com,
April 1994, [Accessed: 2020-05-17]. Available from: https://
www.nngroup.com/articles/ten-usability-heuristics/

Google Inc. Businesses and Other Points of Interest [online]. [Accessed:
2020-05-19]. Available from: https://developers.google.com/maps/
documentation/android-sdk/poi

The YAML Project. The Offical YAML Web Site [online]. [Accessed:
2020-05-27]. Available from: https://yaml.org

Chemuturi, M. Mastering Software Quality Assurance. J. Ross Publish-
ing, first edition, ISBN 978-1-60427-032-7.

Python Software Foundation. Our Documentation — Python.org [online].
[Accessed: 2020-05-27]. Available from: https://www.python.org/doc/

https://www.invisionapp.com/inside-design/low-fi-vs-hi-fi-prototyping/
https://www.invisionapp.com/inside-design/low-fi-vs-hi-fi-prototyping/
https://www.adobe.com/products/xd.html
https://www.adobe.com/products/xd.html
https://xd.adobe.com/view/c0ace277-443a-49d6-5eaa-7c3f3951fdc3-b69d/
https://xd.adobe.com/view/c0ace277-443a-49d6-5eaa-7c3f3951fdc3-b69d/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://developers.google.com/maps/documentation/android-sdk/poi
https://developers.google.com/maps/documentation/android-sdk/poi
https://yaml.org
https://www.python.org/doc/

APPENDIX A

Acronyms

AGL Above Ground Level.
AMSL Above Mean Sea Level. [I]

API Application Programming Interface. [40]
APK Android Package.

BLoC Business Logic Component.

CAA Civil Aviation Authority. [0]
CD Continuous Delivery. [55] 7] 58]

CHMI Czech Hydrometeorological Institute. [§]

CI Continuous Integration.
CSS Cascade Style Sheet.

CTR Control zone. 3l

dB Decibel. B4l
DevOps Development and Operations.

DI Dependency Injection.
EAD European AIS Database. [4]

GDPR General Data Protection Regulation.

GeoJSON Geographical JSON.

69

A. ACRONYMS

GPS Global Positioning System. [34] [A7]

Hi-Fi High Fidelity. [46] [52]

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.
ICAO International Civil Aviation Organization.

IoC Inversion of Control. B1]

IoT Internet of Things. [I]

JSON Java Script Object Notation. [25] 31] 32} 6]
JWT JSON Web Token.

K8s Kubernetes.

LAANC Low Altitude Authorization and Notification Capability. [4]

Lo-Fi Low Fidelity. [46]

MVC Model-View-Controller.
MVP Model-View-Presenter. 29]
MVP Most Value Product.

MVVM Model-View-ViewModel.

NATS National Air Traffic Services.

NoSQL Not only Structure Query Language.
NOTAM Notice To Airmen.

POI Point of Interest.
RSRP Reference Signal Receive Power.

SDK Software Development Kit. [5], 20} [30]
SMS Short Message Service. []

SVG Scalable Vector Graphics.

70

UAS Unmanned aircraft systems. [14]
UI User Interface. [0
URL Uniform Resource Locator. [56l

UTM Unmanned Traffic Management.
UX User Experience. [48],

71

APPENDIX B

SD card contents

readme.txXtiiiinnnn.. the file with SD card contents description
< ol o2 the directory of source codes
| thesis.............. the directory of IXTEX source codes of the thesis
L= v PO the thesis text directory
| DP_Mat&jka_Jan 2020.pdf............. the thesis text in PDF format

	Introduction
	Motivation
	Objectives

	Related Projects
	AirMap
	Altitude Angel
	MAIA
	Kittyhawk
	AisView
	Fly Carefully (Létejte zodpovědně)

	Dronetag Web Infrastructure
	API Separation
	Docker Deployment
	Kubernetes
	Database Model

	Flutter Analysis
	Cross-platform Mobile Application Framework Comparison
	General Concept
	User Interface in Flutter
	Widgets
	Bloc
	HydratedBloc
	Cupertino Library
	Material Design

	Software Architecture and Design
	Software Architecture
	Software Design

	User Interface Design
	Hi-Fi Prototype
	Usability Testing

	Deployment and Testing
	Build Instructions
	Configuration Files
	Code Testing

	Conclusion
	Bibliography
	Acronyms
	SD card contents

