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Abstrakt / Abstract

Táto práca zavádza klasifikátor
grafov založený na princípe podob-
nosti grafov založený na základe
princípov využívaných v statickej
analýze. Navrhnutý klasifikátor slúži
na interpretovateľnú klasifikáciu vzo-
riek pozostávajúcich z príznakov
definovaných na základe správania
užívateľa. Navrhnutý klasifikátor
je testovaný na reálnych dátach z
oblasti sieťovej bezpečnosti poskyt-
nutých firmou Cisco. Interpretova-
teľnosť klasifikátora je ukázaná na
grafe zostrojenom pre triedu advéru.
Výsledky klasifikácie sú porovnané s
výsledkami dosiahnutými algoritmom
náhodný les.

Kľúčové slová: klasifikácia, teória
grafov, podobnosť grafov, príznamy
správania, interpretovateľnosť mo-
delu

Inspired by concepts used in static
analysis, this thesis introduces a
graph classifier based on graph simi-
larity. The classifier aims to classify
samples consisting of high-level be-
havioural features in an interpretable
way, and is tested on real-world net-
work security dataset provided by
Cisco. The resulting model is demon-
strated on a graph built to represent
adware infection, showing promising
results in terms of readability and
interpretability. Classification per-
formance of the classifier is compared
to performance of a random forest
model.

Keywords: classification, graph
theory, graph similarity, behavioral
features, model interpretability
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Chapter 1
Introduction

Computer networks have become a necessary means of communication by enabling
global data transfer and international communication. However, these networks
can also be misused by malicious actors, allowing them to reach a high number of
targets. Malicious software, also called malware, can quickly spread using com-
puter networks, creating a communication channel between the infected machine
and malicious actor, which can result in stealing sensitive information, coordina-
tion of multiple malware instances, or malicious advertising distribution.
Since businesses rely on computer networks to operate, securing the networks

is one of their main concerns. Network security teams are therefore created to
protect critical networks, developing countermeasures against ever-evolving mal-
ware. One of such countermeasures is Intrusion Detection System (IDS). IDS is
a hardware or a software solution tasked to monitor network traffic and to warn
network administrator in case an intrusion is detected. Based on the detection
method, IDS can be categorised either as signature based, or anomaly based.
Signature-based IDS are excellent in detecting well-known attacks, but struggle
to identify either novel or modified, so-called zero-day attacks. Anomaly-based
IDS are developed to counter the unseen and zero-day attacks by using statistical
models and machine learning to detect network communication deviating from
regular traffic.
The application of machine learning helps to process large amounts of data,

helping human analysts to do their work much more efficiently. Unfortunately,
the scope of suitable machine learning algorithms is often limited by the fact,
that an explanation of algorithm’s decision is in many cases almost impossible.
An explanation of the algorithm’s choice, e.g., why an algorithm decided to label
a specific sample as positive, is necessary for reliable identification of the cause.
In network security, knowing there is an infected host in the network is beneficial,
but the contextual information is vital when deciding how to act against it, and
whether the detection is correct or a false positive. For example, algorithms like
neural networks are usually one of the most accurate classifiers, but their nature
makes the explanation of their choice almost impossible. Therefore, classification
based on decision trees or Bayesian classifiers suits the needs of network security
much better due to their interpretability.
Another inherently interpretable mean of modelling relations of network com-

munication is a graph structure. Graphs are already successfully used in static
analysis of executable binaries to classify malicious software. Code graphs, call
graphs and flow graphs built during static analysis are a decomposition of the
application’s structure. Such graphs are commonly used to determine the degree
of similarity between the decomposed binaries. In a similar vein, graph structure

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
can be utilized to model malware communication by processing information about
the presence of anomalous events in captured communication. Such graph mod-
els can be used to detect infection presence in an unknown communication using
graph similarity in an interpretable way.
This thesis proposes an interpretable graph-based classification model suitable

for malware communication detection similar to anomaly-based IDS approach.
The model can be used to classify anomalous communication detected in the
network flows of real network traffic and to detect infected entities on the network
in an interpretable and visualizable way.

1.1 Problem Outline
This thesis aims to create a classification system capable of identifying infected
hosts on the network, along with an interpretable graph model of the anomalous
communication of the host. An outline of the approach is given in the following
steps:

1. Data acquisition. Real network traffic data is collected in the form of network
flows.

2. Anomaly Detection. Flows are analysed for anomalies and tagged by the
Cognitive engine.

3. Feature Extraction. Flows known to be malicious are aggregated based on the
class tag from Cognitive. Flows are converted to sets of anomalous events
and aggregated for a given period.

4. Learning and Classification. Relations between anomalous communication
events and the target label are weighted, graphs are built separately for tagged
(malicious) and untagged aggregated event sets. Graphs are then classified
using Graph Edit Distance similarity measure.

5. Explanation. Graphs similar to the graphs of malicious communication can
be visually analysed due to the inherently interpretable nature of the graph
structure.

2



Chapter 2
Machine Learning: Classification

This chapter serves as an overview of basic concepts used in machine learning,
namely in classification. The first three sections establish machine learning ter-
minology and notation used in the thesis and describe the algorithms applied in
this thesis. The fourth section explains and gives solution to problems brought by
processing high-dimensional data. Finally, the last section describes explainability
as an essential concept in the context of malware detection.

2.1 Learning From Data
Machine learning is a field of research dealing with the automated analysis of data.
This field focuses on creating algorithms to analyse the data and also on building
models from the inferred information, using principles with a strong foundation
in mathematics and statistics. It is becoming more important with increasing
amounts of data, finding its use across many domains.
Each data sample processed by a machine learning algorithm is represented by

a vector x. An output y, also called a label, is assigned to each sample. If y ∈ Y ,
where Y is a finite set of labels, the problem of creating a model that accurately
assigns an output y to a sample x is called a classification problem. If the output
is continuous, this is called a regression problem. Unless stated otherwise, this
thesis focuses only on classification problems.

2.2 Supervised Learning
In supervised learning, the main task is to create a model from labelled data sam-
ples. This model serves to classify unseen data samples based on the knowledge
extracted from the labelled data. Source [1] defines supervised learning in the
following way:

Definition 2.1. (Supervised learning.)[1] Given a set of data D = {(xn, yn), n =
1, . . . , N}, supervised learning aims to learn a mapping from an input x to output
y such that, when given a novel input x∗ the predicted output y∗ is accurate. The
pair (x∗, y∗) is not in D, but we assume it to be generated by the same unknown
process that generated D. To specify what accuracy means one defines a loss
function L(ypred, ytrue) or, conversely, a utility function U = −L.
The utility, or the loss functions quantify how costly making a classification

error is. The classification algorithm provides a predictive probability distribution
p(c|x∗) for an unseen sample x∗. The distribution is, however, only approximate,

3



2. Machine Learning: Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
since the true class is not known to the classifier. If U(ctrue, cpred) represents the
utility of making a decision cpred, the expected utility for the decision function is

U(c(x∗)) =
∑
ctrue

U(ctrue, c(x∗))p(ctrue|x∗) (2.1)

and the optimal decision function c(x∗) maximizes the expected utility,

c(x∗) = argmax(U(cx)) (2.2)

as defined by [1].
A simple count of incorrect predictions is a zero-one loss function

L(ypred, ytrue) =
{

0 if ypred = ytrue

1 if ypred 6= ytrue
(2.3)

which can be interpreted as a count of incorrect predictions, or when converted
to a utility function, as a count of correct predictions [1]. In case of binary
classification, expected utility is given by

U(c(x∗)) =
{

p(ctrue = 0|x∗) for c(x∗) = 0
p(ctrue = 1|x∗) for c(x∗) = 1

(2.4)

This means the decision function should correspond to selecting the class with
the highest class probability

c(x∗) =
{

0 if p(c = 0|x∗) > 0.5
1 if p(c = 1|x∗) > 0.5

(2.5)

Source [1] also defines a general utility function, using which one can enforce a
particular class being preferable in terms of utility, which means misclassification
of the class is penalised more if the wrong guess is not acceptable. This charac-
teristic can also be ensured in a more straightforward way, using confusion matrix
metrics.

2.2.1 Confusion Matrix
Classification performance metrics taken from the confusion matrix are commonly
used in binary classification in case there are specific requirements for classifica-
tion. For instance, the classification of oncology patients in medicine requires the
classifier to make no false predictions, but at the same time to correctly classify
all patients who need treatment.
The confusion matrix metrics are more commonly used in the evaluation of

the models, not so often in training, when compared to the utility/loss approach.
When the model learning is formulated as an optimisation problem, having a
metric to optimise is necessary. The confusion matrix defines several metrics
suitable to the needs of different optimisation problems.
The confusion matrix consists of four types of predictions a classifier can make:

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Supervised Learning

. True Positive (TP). True Negative (TN). False Positive (FP). False Negative (FN)

Positive and Negative are the two classes present in binary classification. If the
classifier predicts a positive class for a sample that is positive, the classifier is
said to have made a True Positive prediction. On the other hand, if the classifier
marks a sample as positive, but the correct class is negative, the classifier made
a False Positive prediction. Counting all such cases gives the number of TP and
FP cases, respectively, or TPs and FPs. TNs and FNs are defined analogously.
The relation between classifiers predictions and true labels can be visualised on
Confusion Matrix on the picture 2.1, where TPs, FPs, TNs and FNs represent
the number of the respective cases.

TPs

TNs

FPs

FNsPr
ed

ic
te

d 
cl

as
s

True class
Positive

Po
si
tiv
e

N
eg
at
iv
e

Negative

Figure 2.1. Confusion matrix.

Classifier’s ability not to make false classifications in context of positive class
can be shown by calculating classifier’s Precision, also called Specificity depending
on the literature.

Precision = TPs

TPs + FPs

Another important measure used to evaluate classifier’s ability to correctly classify
all positive samples is Recall.

Recall = TPs

TPs + FNs

Recall is also often called Sensitivity in sources dealing with machine learning in
medicine.

2.2.2 Precision-Recall Curve
The Precision-Recall curve (PR curve) serves as a visual evaluation tool to show
the precision-recall tradeoff of the current setting of the classifier by changing the
classification probability threshold of the positive class and evaluating precision
and recall of the model for each threshold setting.
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2. Machine Learning: Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The PR curve is constructed in the following way. The decision function of the

classifier is defined similarly as the function (2.5), a difference being that only
the positive class is considered, meaning how likely is x∗ to belong to the positive
class:

c(x∗) =
{

1 if p(c = 1|x∗) > p′

0 otherwise

Here, threshold p′ is set to 1 in the beginning, and the performance of the classifier
is evaluated, noting the precision and recall of this setting. The threshold is
gradually decreased, for example by 0.05 in each step, noting the precision and
recall, until the threshold reaches 0.
Plotting the noted values with precision on axis y and recall on axis x results

in a PR curve, with an example on figure 2.2.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Precision-Recall curve: AUCPR = 0.33 kmeans k 3 topk 300

Figure 2.2. PR Curve with AUCP R of 0.33.

The PR curve is an alternative to the commonly used Receiver Operating Char-
acteristic curve (ROC curve), which plots the trade-off between recall and false
positive rate. This thesis utilises the PR curve because of its flexibility of evalua-
tion on datasets with imbalanced negative to positive class ratio, where the ROC
curve might not accurately represent the model’s performance, as noted by the
authors of source [2].
The area under the PR curve (AUCP R), also called Average Precision, can

also be used as a classification evaluation metric. AUCP R shows how well is the
classifier able to separate the two classes in an average case. The perfect classifier
would have the AUCP R of 1.0, which means all positive samples are marked as
positive with probability of 1.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Supervised Learning

2.2.3 Class Separation Histogram
Another useful visual tool for evaluating the classifier’s performance is plotting a
histogram per class of the data used in the evaluation. One histogram is created for
each class in the testing data. The histogram contains positive class probabilities
assigned to the samples of the given class. In the ideal case, the probabilities
for positive samples are close to 1, while samples from other classes are assigned
probability close to zero. Overlap of these histograms shows how well is the
classifier able to distinguish the positive class from other classes.
Figure 2.3 provides an example of the Class Separation Histogram.

Figure 2.3. Class Separation Histogram.

2.2.4 Decision Tree and Random Forest
Decision tree is a simple but effective model. The simplicity allows for easy
interpretation of the model’s decision, straightforward visualisation and excellent
performance on large datasets. Decision trees can be used for binary and also
for multi-class classification tasks. The trees work with discrete features, but also
with continuous features by performing implicit discretisation similar to binning.
Furthermore, the decision tree is a non-parametric model, which means it can
model arbitrarily complex relations of input and output. The decision tree model
is also robust to outliers and label errors. [3]
The source [4] describes the decision trees as a set of nodes and edges organized

into a hierarchical structure. The tree consists of internal nodes, also called split
nodes, and terminal nodes called leaf nodes1. Data is processed by decision tree in
two phases. The first phase called training phase consists of processing the dataset
1 The definitions of graph theory terminology is provided in section 3.1

7



2. Machine Learning: Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
by passing the dataset through the root node of the tree, splitting the dataset
based on a task-independent objective metric, such as commonly used Information
Gain. Feature importance of each feature can be quantified by calculating how
often a given feature is selected for a split, and how good the split was in terms
of Information Gain.

Let us say the dataset Xj considered for a split in the node j. The information
gain of the split is calculated by

Ij = h(Xj) −
∑

i∈{L,R}

|X i
j |

Xjh(X i
j)

(2.6)

where h(Xj) is the Shannon Entropy. The split of the labelled dataset Xj is made
by dividing the dataset into two parts based on the values of a single feature.
Ultimately, the split with the highest Information Gain is selected, the dataset is
divided into two parts, and each part is passed to the descendants of the node. The
splitting is done repeatedly, growing the tree, until a stopping criterion is reached,
which can be set as a maximum depth of the tree or a minimum information gain.
The resulting split of the whole dataset is contained within the tree leaves by
preserving the labels of the samples that made it to the leaf node. The ratio of
the class labels is used to create a probability distribution pl(c|Xj).

The testing phase consists of passing vectors of testing samples through the
tree. Node passes the sample x∗ further below based on the split learned in the
training phase until the sample reaches a leaf node. The class probability pl(c|x∗)
learned beforehand is then used in the decision function to classify the sample x∗.

However, the decision trees tend to overfit the data, mainly when the tree grows
to consist of many layers. One of the solutions is trimming the tree, which discards
some of the information to make the tree able to generalise better. Another
solution is creating an ensemble of trees, which is done by the Random Forest
algorithm.

Random Forest algorithm, initially proposed by Breiman in [5], is currently
one of the most popular machine learning algorithms. It serves as a great baseline
classifier because it requires almost no adjustment to the default parameters to
achieve good classification results. The resulting decision boundary of the ensem-
ble can be highly non-linear, which makes the Random Forest able to reach decent
results when the classes are not linearly separable.
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Figure 2.4. Random Forest structure [6].

The Random Forest T consists of several decision trees t. Each tree is built
on a randomly selected subset of features, creating multiple different splits of the
dataset. Each tree also learns only on a subset of the training data, created by
random sampling with or without replacement.
In the training phase, the leaf probability distributions are combined by aver-

aging the probability of all trees in the ensemble:

p(c|x∗) = 1
T

T∑
t=1

pt(c|x∗) (2.7)

Therefore, the resulting class assigned to the sample x∗ is the class with the
highest average probability. Alternatively, a majority vote determines the class –
the ensemble chooses the class assigned by the majority of the trees.

2.3 Unsupervised Learning
When the provided dataset X lacks the output information y, the algorithms
used in the supervised learning cannot be used. The lack of labels is widespread,
mainly when working with a novel data source. However, such data can still be
analysed by approaches that find structure, look for anomalous data, and find
data clusters.

Definition 2.2. (Unsupervised Learning.)[1] Unsupervised learning aims to find a
plausible compact description of the dataset D = {xn, n = 1, ..., N}. In contrast to
supervised learning, which intends to model a conditional probability distribution
pX(x|y), the output variable y is unknown. The unsupervised learning intends to
model a prior probability distribution pX(x).

2.3.1 Clustering
Clustering is an approach of finding groups of data instances that are highly
similar, lie in densely populated regions, fit into a specific statistical distribution,
or are close to pre-defined centroids.

9
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Algorithm k-means is made to group data instances x in the dataset D into k

clusters. Source [7] describes the algorithm in the following way. At the start of
the k-means algorithm, the means {m(k)} are initialised in some way, for example
to random values. The k-means is then an iterative two-step algorithm, for which
in the first step, also called assignment step, each data point x is assigned to the
nearest mean. In the update step, the means are moved to be located in the centre
of the data points to which they are assigned. These steps are repeated until the
algorithm converges. The K-means algorithm always converges to a fixed point,
when the means do not change their position after the update step.
Initial placement of the means and the number of means is variable. Either

domain knowledge is required to set the k, or an arbitrary number of the means
can be selected - k clusters will be found after the algorithm converges either way.
In terms of the initial mean placement, there are cases, when the resulting means
get stuck in a sub-optimal configuration. There are heuristics to deal with this
problem.

2.4 Dimensionality
Dimensionality refers to the dimension of the dataset or number of features in
the dataset. Various problems arise with high dimensionality. The problems with
their solutions are described in this section.

2.4.1 The Curse of Dimensionality
The curse of dimensionality is a term used to describe the problems caused by the
increasing number of dimensions in a Euclidean space, where the volume of the
space increases exponentially with an increasing number of dimensions. For the
nearest-neighbour search methods in high-dimensional spaces, this means that the
distances to all data points become almost identical for all samples. [8]
The possible solutions to the curse of dimensionality include using non-

Euclidean distance measures such as cosine distance where applicable, or using
methods of feature selection or dimensionality reduction, which some sources
call feature extraction. Feature selection keeps the actual meaning of each
selected feature, which makes it superior in terms of feature readability and
interpretability when compared to feature extraction. [9]

2.4.2 Dimensionality Reduction
Dimensionality reduction is a term covering methods that reduce the number of
features in the data by transforming the data into its lower-dimensional represen-
tation. The main goal is to reduce the dimensionality while preserving as much
information as possible. The resulting lower-dimensional embedding of the input
data can also be used to visualise the dataset.
The methods used in dimensionality reduction do not preserve original features

but create new features based on the original features, which might later pose a
problem for explaining the decision of the learning algorithm.
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One of the most commonly used algorithms used to reduce the dimensionality
is the Principal Component Analysis (PCA). It consists of creating a new dataset
consisting of features called principal components. These new features are created
to capture the variance of the data while being orthogonal to each other.
UMAP [10] is a novel approach to dimensionality reduction based on manifold

theory and topological data analysis. It is non-linear, supports a wide variety of
distance metrics and tries to preserve both local and global structure of the data
when creating its lower dimensional representation.

2.4.3 Feature Selection

Feature Selection is an approach of dimensionality reduction used to remove ir-
relevant features from the data. Features not useful for the learning task are
removed, which reduces the amount of data for the learning algorithm to process,
while not affecting the performance of the model. Feature selection often even
increases accuracy of the learned models.

The feature selection methods can be categorised into three groups:

. Filter – Features are ranked based on a specific criterion. Highest-ranked
features are chosen, and the rest are discarded. Commonly used criteria are
statistical dependence, correlation of features, mutual information.. Wrapper – The subset of features is evaluated based on the performance of a
learning model learned on the subset. The subset is changed iteratively until
the best subset of the features is found. Heuristics help to reduce the search
space of such a search.. Embedded – Feature selection is made during the creation of the learning
model. For example, Random Forest performs feature selection during tree
construction, which can be called embedded.

According to [9], the main benefit of filter methods is their efficiency, but since
these methods do not consider the learning algorithm used afterwards, they might
miss the combination of the features that might be relevant to the learning algo-
rithm.
As for wrapper methods, they perform much more thorough search of opti-

mal feature combinations, which in turn makes them much more computationally
expensive compared to filters, but generally achieving better results. [9]

Frequency-based feature selection is a simple method that can be used to rank
features based on how common a feature is for a class.

St =
∑

nt,c (2.8)

where nt,c is a number of occurrences of feature t for class c.
Mutual Information is a measure used in information theory, which is used

to show the degree of mutual dependence between two random variables, for
which probability distributions are known. Zero means the random variables are
independent.
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I(X; Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log2

(
p(X,Y )(x, y)
pX(x)py(y)

)
(2.9)

The output of mutual information can be used for feature selection. Each
feature is evaluated for its mutual information with the target class. In case
distribution of the features is not known, a nearest-neighbour-based method is
used for estimation, described in detail in [11].

Chi-square test is a statistical hypothesis test used for testing of independence
of two events or categorical random variables. Source [12] defines it for feature
selection as

X2(D, t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)2

Netec

(2.10)

where et is a value occurring in a feature t and ec is a possible class. N is an
observed frequency in D and E is the expected frequency. For example, E11 is the
expected frequency of t and c occurring together assuming the feature and class
are are independent.
Features can be ranked using the calculated value, with higher values meaning

the feature and class are less likely to be dependent.
Fisher Score is similar to the Chi-square test, usable also for continuous random

variables. The test consists of determining whether the variance between the
means of two random variables is significantly different. For feature selection, one
of the random variables is a feature, and the other one is a class vector.
Source [13] provides a formula for calculating a Fisher Score for feature t:

St =
∑

c∈C nc(µt,c − µt)2∑
c∈C ncσ2

t,c

(2.11)

where µt,c and σt,c are mean and variance of the feature t given class c, nc is the
number of instances of the class c and µt is mean of the feature t.

2.5 Explaining the Classifier’s Decision
When it comes to using machine learning models for making important decisions,
such as disease prediction in medicine, it is important to understand why the
model made a particular decision. In such cases, model accuracy is not a sufficient
metric when evaluating a model. Source [14] provides an example when a better
scoring classifier makes a prediction based on a set of features irrelevant to the
problem it was solving, while the lower-scoring model used relevant features and
its prediction made much more sense in the context. This shows that the resulting
models should not be trusted blindly when an important decision is being made.
In an ideal case, inherently interpretable models should be used to model such

problems, like decision trees or Bayesian classifier. Another solution to this prob-
lem is creating an interpretable model to approximate a model, which is the
primary goal of LIME [14].
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Chapter 3
Graph Theory

This chapter presents graph theory concepts used in this thesis, in regards to ter-
minology, graph similarity algorithms and their application on graph comparison.
Terminology in this chapter is defined according to source [1].

3.1 Graph Theory Fundamentals
Graph theory is a study of graph structures, which are used to model and analyse
relations between pairs of entities.
Definition 3.1. (Graph)[1] A graph

G = {V, E}

consists of nodes V (also called vertices) and edges E (also called links) between
the nodes with associated weights w : E 7→ [0, 1], for each e ∈ E. Node labels
and edge weights are optional. Edges may be directed (can be traversed only in
a single direction) or undirected. Edges can also have associated weights. Graph
with all edges directed is called a directed graph, and one with all edges undirected
is called a undirected graph. |G| represents the size of the graph as a count of edges.
In case the edges are weighted, |G| represents the sum of all weights of the edges.
Directed edges are used to model concepts where the direction of the relation is

important; for example, call graphs used in dynamic malware analysis to model
which function called which.
All graphs in this thesis are labelled unless stated otherwise. Presence of weights

is always specified, and graph with weights is called a weighted graph.
Definition 3.2. (Subgraph) Graph G is a subgraph of graph H if all nodes and
edges of G are present in graph H.
Definition 3.3. (Path, ancestors, descendants)[1] A path AB from node A to node
B is a sequence of nodes that connects A to B. That is, a path is of the form
A0, A1, . . . , An−1, An, with A0 = A and An = B and each edge (Ak−1, Ak), k =
1, . . . , n being in the graph. A directed path is a sequence of nodes which when
we follow the direction of the arrows leads us from A to B. In directed graphs,
the nodes A such that A 7→ B and B 67→ A are the ancestors of B. The nodes B
such that A 7→ B and B 67→ A are the descendants of A.
Definition 3.4. (Directed Acyclic Graph (DAG)) A DAG is a graph G with
directed edges between the nodes such that by following a path of nodes from one
node to another along the direction of each edge no path will revisit a node. In
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a DAG, the ancestors of B are those nodes who have a direct path ending at B.
Conversely, the descendants of A are those nodes who have a directed path at A.
Definition 3.5. (Neighbour)[1] For an undirected graph G the neighbours of x,
N(x) are those nodes directly connected to x.
Definition 3.6. (Clique)[1] Given an undirected graph, a clique is a fully connected
subset of nodes. All the members of the clique are neighbours; for a maximal
clique, there is no larger clique that contains the clique.
Definition 3.7. (Connected Graph)[1] An undirected graph is connected if there
is a path between every pair of nodes (i.e. there are no isolated islands). For a
graph which is not connected, the connected components are the subgraphs that
are connected.
Definition 3.8. (Singly connected graph (tree))[1] A graph is singly connected if
there is only one path from any node A to any other node B. Otherwise, the
graph is multiply connected. This definition applies regardless of whether or not
the edges in the graph are directed.
Definition 3.9. (Graph Union) Graph union of graphs G and H is a graph K =
{VG ∪ VH , EG ∪ EH}. If an edge is present in both G and H and is weighted, an
average of weighs of the edges is carried over to the graph K.

3.1.1 Numerically Encoding Graphs
To represent graph structures on a computer, the numerical encoding of the graph
is necessary. Edge list lists which node-node pairs are in the graph.
An alternative is to use an adjacency matrix A, where Aij = 1 if there is an

edge from node i to node j in the graph. If the edges of the graph are weighted,
Aij = weight((i, j)).

2

1

3

0

Figure 3.1. Example of a graph, it’s adjacency matrix A and edge E list.

3.2 Graph Similarity
Graph similarity serves to quantify the degree of similarity of two graphs. De-
pending on the type of graphs, source [15] proposes two main categories of graph
similarity algorithms based on node correspondence: known node correspondence
and unknown node correspondence. Known node correspondence means that the
graphs being compared have the same set of nodes and associated node labels,
with a possible difference in edges. When nodes of the two graphs being compared
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are different (i.e. function call graphs), methods from unknown node correspon-
dence can be used, however, with more substantial performance cost compared to
the first class.

. Known Node Correspondence: Graph Edit Distance (GED), Maximum Com-
mon Subgraph (MCS), DeltaCon. Unknown Node Correspondence: Feature Extraction, Graph Kernels,
λ-distance

The similarity metrics and distance metrics are considered to be easily convert-
ible between each other. If the distance metric produces values between 0 and 1,
similarity = 1 − distance. If not, the outputs of the distance metric need to be
normalised (e.g. by min-max normalisation).

3.2.1 Graph Edit Distance
Graph Edit Distance (GED) is one of the most straightforward but efficient graph
similarity measures. The graph similarity is represented by an amount of graph
edit operations needed to make the graphs to consist of the same edges and nodes.
Source [16] provides an excellent and thorough definition of the method. Parts of
it relevant to this thesis are contained in the following paragraphs.
Given two graphs, the source graph G1 = {V1, E1} and the target graph G2 =

{V1, E2}, the basic idea is to transform G1 into G2 using some edit operations.
A standard set of operations consists of insertions, deletions and substitutions of
both nodes and edges. Substitution of two nodes u ∈ V1 and v ∈ V2 by (u → v),
the deletion of node u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by
(ε → v), where ε refers to the empty node. Similar notation is used for edge edit
operations. [16]
Definition 3.10. (Edit Path)[16] A set {κ1, . . . , κn} of n edit operations κi that
transform G1 completely into G2 is called a complete edit path λ(G1, G2). A partial
edit path, i.e. a subset of {κ1, . . . , κn}, edits proper subset of nodes and/or edges
of the underlying graphs.
Let υ(G1, G2) denote the set of all complete edit paths between the two graphs.

To find the most suitable edit path out of υ(G1, G2), one introduces cost c(κ)
for every edit operation κ, measuring the cost of the corresponding operation.
Clearly, between two similar graphs, there should exist an inexpensive edit path,
representing low-cost operations, while for different paths an edit path with high
cost is needed. Consequently, the edit distance of two graphs is defined as follows.
[16]
Definition 3.11. (Graph Edit Distance) [16] Let G1 = {V1, E1} be the source and
G2 = {V1, E2} the target graph. The graph edit distance dλmin(G1, G2) or dλmin

for short, between G1 and G2 is defined by

dλmin(G1, G2) = min
λ∈Υ(G1,G2)

∑
κi∈λ

c(κi) (3.1)

where Υ(G1, G2) denotes the set of all complete edit paths transforming G1 into
G2. c denotes the cost function measuring the strength c(κi) of node edit operation
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κi including the cost of all edge edits implied by the operations applied on the
adjacent nodes of the edges, and λmin refers to the minimal cost edit path found
in Υ(G1, G2).

2

1

3

0

2

1

3

0

Figure 3.2. Example of Graph Edit Distance between original graph G1 and modified G2,
dGED(G1, G2) = 3. Red dashed line means the edge or node is removed.

The cost function assigns a cost to all edit operations. [16] describes how to
assign a cost to the operations, so the resulting cost function had good properties.
Exact Edit Distance is computed by an A*-based search technique also described
by [16].
Depending on the problem being solved, simplifications of the GED are possible.

First, do not consider node edit operations, i.e. graphs being compared have the
same set of nodes V . This means only missing, or additional edges need to be
addressed, which hugely simplifies the algorithm. If both edge insertion and edge
deletion have the same cost, exact GED is given by the following.

dGED∗(G1, G2) =
∑

|A1 − A2| (3.2)

A1 and A2 are the adjacency matrices of graphs G1 and G2 respectively.

3.3 Edge Weighting
Edge weighting serves to encode the importance of an edge in the graph. The
importance is either defined by domain knowledge, or domain-independent metric
inspired by feature importance in feature selection.

1. Edge Frequency. Edges can be weighted with the number of times they occur.
Frequently occurring edges might be much more informative compared to rare
edges.

2. Edge Importance. Feature importance of a label can be calculated for edges
in the graph, examples of which are described in section 2.4.3.

3.4 Graph Density
Graph density is an important aspect to keep in mind when it comes to visual
interpretation of graphs. Authors of [17] define two graph density measures for, d
and dl.

d = m

n
(3.3)
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dl =
√

m

n2 (3.4)

Here, m represents the number of edges of the graph, and n represents the
number of nodes. Both measures can be used for graph with undirected edges
with no self-loop edges. Measure d represents the ratio of edges of the graph
compared to a complete graph given the number of nodes. dl is a number of edges
per node.
For a visual representation of the graphs, if the density is too high, it is impos-

sible to properly lay out a graph so it can be visually analysed, according to [17].
Generally, graphs with lower density are easier to comprehend.

3.5 Graph Partitions and Modularity
Graph analysis includes community detection algorithms, which find partitions in
the graph called communities. A community is a set of nodes that are densely
interconnected internally, but have only a few connections with nodes outside
of the community. Finding such communities helps with analysis of the graph
structure by dividing it into parts, for example in case the graph is too large to
be visualized whole.
There are multiple algorithms that are used to search for communities. One of

such algorithms is called modularity maximisation clustering. Blondel et al. [18]
describes an implementation of modularity clustering based on modularity gain
of moving a vertex to a different partition. Modularity is used in graph network
theory to measure quality of graph partitions, computed for a weighted graph as
defined in [19]

Q = 1
2m

∑
i,j

[
Ai,j − kikj

2m

]
δ(ci, cj) (3.5)

where Ai,j an element of the adjacency matrix A containing weight of the graph
edge from vertex i to j, ki =

∑
j Ai,j is the sum of the edge weights for edges

attached to vertex i, ci is the community to which the vertex i is assigned, the
δ-function δ(u, v) is 1 if u = v and 0 otherwise and m = 1

2
∑

i,j Ai,j .
The approach introduced by Blondel et al. [18] starts with all of the vertices

put into a different partition. Next, each vertex is passed iteratively, changing the
partition of the vertex to a partition of its neighbour in case the modularity gain
of performing the change is positive, repeated until no increase in modularity is
possible.
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Chapter 4
Graph-based Classification

This chapter establishes a graph-based classification method, which is the main
topic of the thesis. The first part of the chapter serves as an overview of be-
havioural graph-based methods used for malware detection in static and dynamic
analysis of malicious binaries. The second part describes the proposed graph
classification method in detail.

4.1 Basic Blocks as high-level actions
Many of the sources mentioned in the following sections utilise a Control Flow
Graph (CFG) structure for behavioural analysis. CFG is a directed graph in
which nodes represent basic blocks of code, and edges represent relations between
the basic blocks. A basic block is a part of the code with one entry point and
one exit point. The model of flow relations between the basic blocks is used to
simplify and optimise the high-level code structure. The concept of CFG was first
introduced by Allen in [20].

2

1

3

4

1

2

3

4

Figure 4.1. Basic block and Control Flow Graph construction. The image is based on
source [21].

Figure 4.1 shows an example of CFG construction from a simple code snippet.
Basic blocks are defined by their entry and exit points, with target of a jump
instruction being the entry point and the jump being an edge of the resulting
CFG.
Behavioural malware analysis often utilizes the concept of CFG to fight code

obfuscation and polymorphism in both static and dynamic analysis. The be-
havioural approach utilises executable’s characteristics like basic block structure,
system call relations and resource usage. These characteristics do not change

19



4. Graph-based Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
even if the executable’s code changes due to polymorphism. The unchanging as-
pects can be understood as high-level actions, representing nodes of a behavioural
graph, while relations between these actions represent edges of the graph.
The high-level action behavioural model serves as a basis for graph classifier

described later in this chapter.

4.2 Malware detection and usage of the graph
structure

This section serves as an overview of works dealing with behavioural malware
analysis.

4.2.1 Static Malware Analysis and Graph Methods
Static analysis is an approach to code analysis, where an executable file is anal-
ysed to detect malicious code without executing the binary. It is performed by
disassembling an executable binary into its components, which is either done by
a malware specialists or by an automated processes tailored to detect malicious
code. The disassembly uncovers structural and functional information needed to
determine whether the binary is malicious or benign. Reverse engineering is often
applied to convert the machine code into assembly, which allows to construct a
CFG.
Schultz et al. [22] introduce one of the first works utilising machine learning

techniques to make malware detection more efficient. They utilise the Portable
Executable (PE) structure to extract features such as a list of imported libraries
or a number of library function calls. Additionally, they use strings of print-
able characters and byte sequences to produce more features later processed by a
classification approach inspired by a Naive Bayes-based algorithm.
Malicious actors implement countermeasures against static analysis in a form

of code obfuscation. Obfuscation makes the code hard to disassemble by both
automated processes and human analysts by employing ambiguous language con-
structs without changing the intended functionality.
As an effort against code obfuscation, source [23] proposes a method of be-

havioural analysis based on CFG. The graphs are built for each executable sample
and processed by a state automaton based on domain knowledge, modelled to be
immune to code obfuscation.

4.2.2 Dynamic Malware Analysis and Graph Methods
Malicious actors employ polymorphism to change the characteristics of the mal-
ware. Polymorphism includes modifying process and file names, encrypting parts
of the code to avoid static analysis and swapping the encryption keys period-
ically, which result in a change of the executable’s signature without changing
the intended functionality. As a result, the signature-based detection is rendered
ineffective. However, even if the signature changes, what does not change is the
behaviour of the malware.
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With ever improving sophistication of code polymorphism, executable analysis
independent of the way the executable is built is necessary. One of such methods
is dynamic analysis. Unlike in the static analysis, the executable is executed in
a controlled sandbox environment, while all of its actions like system calls, in-
put/output events, and registry modifications are closely monitored and analysed
to specify executable’s behaviour. Even if the code of the executable changes to
avoid detection, the behaviour cannot change easily without changing the func-
tionality, which is what makes the dynamic analysis more flexible when compared
to static analysis.
Dynamic analysis often utilises the graph structure to encode the behaviour of

the analysed executable. Authors of [24] propose a behavioural analysis of data
flows. A data flow is a transfer of any amount of data between two system entities,
which are the nodes of the data flow graph. Directional edges encode the transfer
direction. The graph is evaluated by applying high-level behaviour heuristics,
which are built based on domain knowledge.
The authors of [25] utilise function calls of the executable to build a function

call graph, an alternative type of CFG where functions instead of basic blocks are
represented as graph nodes. Nodes of the graph represent function calls and their
arguments, and directional edges encode function call relations. A labelling func-
tion is established to describe properties of the nodes. When measuring pairwise
graph similarity, the labels are used to determine node correspondence between
two graphs. Pairwise graph similarity is finally computed based on vertex over-
lap ratio, which in the author’s claim is much more time efficient compared to
commonly used graph edit distance.
A similar approach is used by Park et al. [26], with the main difference being

that the system call relations of a process are modelled in a form of a kernel object
behavioural graph. The distance between graphs is calculated by a maximum
common subgraph-based distance algorithm. In their following work, Park et al.
[27] improve on their idea by weighting the directed call graph and combining
the call graphs in a same malware family into a single supergraph to represent
the behaviour of the malware family. A subgraph of the common supergraph is
used to represent the malware family. Any sample similar to the subgraph can be
considered to belong to the family with high confidence.

4.2.3 Network Malware Analysis and Graph Methods
Some malware families utilise computer networks in a way that makes them stand
out from the regular network traffic. Network malware analysis is very similar
to static and dynamic is this regard. Signature-based detection is by far the
most efficient approach to detect malware, even in network malware analysis.
However, malware polymorphism hinders signature-based network analysis in the
same vein, e.g. the malware can reconfigure itself to connect to different hosts
periodically. Such behaviour is known for Domain Generation Algorithm (DGA)
utilising malware.
Nari et al. [28] analyse network flows to extract information regarding network

protocols used by a network host. The network hosts are represented by a node,
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and the source host is connected to the target host by a directional edge. The
graphs are not compared directly. Features are extracted first, such as graph size,
average node degree, maximum node degree, root out-degree, and the number of
nodes using a specific protocol. The extracted features are then used to train a
decision tree model.
Besides this source, there is not much research on the application of graph

structure for network-based behavioural malware classification.

4.3 Graph-based Classification
This section proposes a classification model based on graph similarity, inspired
by concepts used in the static and dynamic analysis. As proposed in the source
[27], a behaviour graph represents the behaviour of a malware sample, and for
the malware samples in the same family, a combination of individual behavioural
graphs represents the behaviour of the whole family. This can be viewed as a
simplification of clustering – the family graph is essentially a cluster centroid, so
only the distance to the centroid needs to be measured to determine the cluster
for a new sample. For example, in k-nn classification, the distance to all samples
needs to be measured to determine the nearest neighbours, which is significantly
more computationally and time intensive.
The idea of a cluster centroid can be used generally as a basis of a classifier,

which can consist of one or multiple such centroids. When working with graphs,
a centroid graph, also called a reference graph, can be built to represent a be-
havioural class. Graph with an unknown class can be assigned a class by measur-
ing its graph similarity to the reference, utilizing an adjustable decision function
based on utility/loss or similarity threshold. Extension to multi-class classification
is straightforward by creating multiple reference graphs for each class.

4.3.1 Terminology: Events and Transactions
An entity u is an object for which a behaviour can be observed, e.g. an executable
in dynamic analysis, or a user in network analysis. High-level actions carried out
by the user are called events e. Definition of events is domain-specific. Each
event represents a unique behaviour presented by the user. Events can be defined
with varying granularity, meaning a single event generally does not necessarily
represent malicious behaviour. The succession of events, or a combination of
events is what is essential. The act of an event causing the other to happen or
two events happening at the same time means there is an event relation e.

Transactions t = {E , R, l, u, τ} are made up of events and event relations
produced by observing the entity u during a time period τ , where E is a set
of events of entity u. The event relations contained within a set of relations
R = {r(e) = e′|e, e′ ∈ E}. Additionally, transactions are labelled by a class label
l.
In the context of dynamic analysis, executable to be analysed is an entity.

Executing the executable is performing a transaction. The execution causes a
chain of function calls. Each unique function call represents an event. A function
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calling the other one is captured as an event relation. Transaction label originates
from an anti-malware software, which if the executable is detected to be malicious
either assigns a positive label in a binary classification case, or a malware family-
specific label in case of multi-class.

4.3.2 From Transactions to Graphs

Concepts defined in the previous paragraphs are used as building blocks of a graph
structure. Creation of a graph G = {V, E} from a transaction t ∈ T , where T is
a set of transactions, in done the following steps.

1. Use events E as graph nodes V : V = E
2. Use event relations R as graph edges E: E = R

In case there are event relations r(u) = v and p(v) = u for p, r ∈ R and events
u, v ∈ E , the edge between the nodes of events u and v is bidirectional.
Defining how to construct a graph from one transaction allows to define graph

construction for a set of transactions. One graph per transaction in a set is
constructed, and the graphs are unified using graph union to create a single graph.
For example a user graph Gk can be created from a set of transactions Tk = {t ∈
T |u = k} for a user k, or a class reference graph Gc from a set of transactions
Tc = {t ∈ T |l = c} for class c. The idea of the reference graph is analogous to the
malware family graph proposed by Park et al. in the source [27].

4.4 The Graph Classifier

The graph classifier is a supervised learning algorithm made to classify user trans-
actions. The classification is done by measuring similarity of a user graph Gu to
a reference graph Gc. The reference graph is built to represent a particular class
c produced by a supervised labelling process.
The classifier operates in two phases: training phase and testing phase. The

reference graph Gc is created in the training phase as a core of the classifier the
training dataset Dtrain. The training phase continues by calculating edge weights
for the reference graph based on edge relevance to the class label.
The testing phase consists of building user graphs from the testing dataset Dtest,

trimming each user graph and reference graph according to a trimming strategy,
measuring the pairwise similarity between each user graph and reference graph,
and evaluating the performance of the classifier. The whole process is illustrated
on figure 4.2.
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Figure 4.2. Graph classifier diagram.

4.4.1 Training Phase: Reference Graph
Construction of a reference graph is done in the following steps.

1. Filter Dtrain to keep transactions labelled c: Dtrain
c = {t ∈ Dtrain|l = c}

2. For each transaction tc ∈ Dtrain
c , create a graph Gt,c.

3. Combine graphs Gc =
⋃

Gt,c by performing a graph union.

The reference graph Gc is assumed to contain only relevant edges. The relevancy
is achieved by graph trimming performed in the testing phase.

4.4.2 Training Phase: Weighting
Edge weight is used to determine importance of an edge, for example in case
edge trimming is necessary. Edge weights are calculated from the training data.
The primary component of the training data are transactions consisting of events.
The events are defined to cover a broad range of actions an entity can carry out,
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from benign to malicious. The granular definition of events means a single event
may not be indicative of a class, so using the event importance of a sigle event
to determine edge weight is not viable. A combination of two or more events is
much more informative. Finding such combinations is a goal of associative rule
mining, which is studied by Kopp et al. in [29].
The definition of a transaction includes a definition of event relation. Event

relations encode pairwise event relation in a transaction and are ultimately used
to build the graph structure as edges of the graph. The importance score of the
event relations can be used straightforwardly as an edge weight. However, the
event relation-based weights only encode importance of two-event combinations.
Calculating weights for a combination of multiple events could be studied in the
future work.
The calculation of the edge weights is done for each reference graph Gc sepa-

rately. The labels l assigned to the transactions in Dtrain are converted to a binary
case beforehand, meaning the transactions with l = c are considered positive and
the remaining labels are considered negative. The binary labels are required by
the algorithms that later calculate the importance score.
The importance score can be computed in the following steps.

1. Transform Dtrain into Dtrain
u′ , which consists of tu′ =

⋃
{t ∈ Dtrain|u = u′, τ =

τ ′} for time τ ′ and for each user u′.
2. Transform Dtrain

u′ into an event relation matrix X and class label vector y.
3. Calculate an importance score for each column of X according to label y.
4. Use the importance score as a score for corresponding event relation, therefore

as an edge weight.

In the first step, a dataset Dtrain
u′ is created, containing transactions tu′ , which

are a union of transactions t ∈ Dtrain for each unique user u given time τ ′. This
is done to ensure the weights are calculated for event relations occurring for the
user, since the user graph built from multiple transactions is what is classified,
not single transactions.
In the second step, event relations of transactions tu ∈ Dtrain

u′ are transformed
into a feature vector x with label l. X is a (sparse) matrix containing feature
vectors x in rows, and y is a label vector, containing a class label l for each row of
the matrix X. Transforming the transactions into a sparse event relation matrix
allows the usage of standard feature selection algorithms described in section 2.4.3.
Those algorithms output a feature importance score for each feature, meaning each
event relation is assigned a score usable as an edge weight for the corresponding
edge in the graph.

4.4.3 Testing phase: User graph
The ultimate goal of the classifier is to assign class c to transactions of a user u′,
which is achieved by classifying the user graph Gu′ built from those transactions.
The user graph can be built from one or multiple transactions produced by one
user over time τ ′. Compared to the reference graph, user graphs are usually much
smaller in size.
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User graph is constructed analogously to the reference graph:

1. Transform testing dataset Dtest into Dtrain
U which consists of Tu′ = {t ∈

Dtest|u = u′, τ = τ ′} ∀u′ ∈ U where U is a set of unique users in transactions
from Dtest captured during time τ ′.

2. For each set Tu′ ∈ Dtrain
U and for each transaction t ∈ Tu′ create a graph Gu′,t

using events as nodes and event relations as edges.
3. For each user u′ ∈ U , combine graphs Gu′ =

⋃
Gu′,t by performing a graph

union, producing one user graph Gu′ for each user.
The class labels present in the transactions the user graph was built from

are used as true labels for the evaluation.

4.4.4 Testing Phase: Graph Pairs and Trimming
In this stage, graph trimming is applied to remove irrelevant edges based on edge
weights. First, pairs of Gu and Gc are created so special trimming methods which
trim Gc based on characteristics Gu can be used. Each user graph is paired with
each reference graph. The trimming is performed on a pairwise basis.
There are multiple approaches to graph trimming. Based on the effect of trim-

ming, approaches are divided into two categories:

. top k – top k weighted edges in a graph are kept, the rest is trimmed. Alter-
natively, a threshold is introduced. Edges weighted below the threshold are
trimmed.. top k% – top k% edges are kept, main difference from top k is graph size
dependence. The number of trimmed edges is proportional to the graph size.

Resulting graphs contain only the edges kept after trimming, reducing sizes and
density of individual graphs by removing irrelevant edges. Graph density is the
first problem graph trimming aims to solve.
The second problem emerges when two graphs, user graphs, and reference graph,

are to be measured for their similarity. The size difference between user graphs
results in larger entity graphs being more similar to the reference by default in
case of Graph Edit Distance. This problem is present in the dataset used in
experiments.
The problem can be partially solved by trimming the user graph first and keep-

ing top k edges for the reference, where k is the user graph size after trimming.
In other words, the size of the reference graph is reduced to match the size of
the user graph. This can, however, result in the user graph being compared to a
wrong part of the reference, as the part of the reference the user was matching
could have been trimmed, falsely decreasing the similarity.
Following trimming method categories are created with the assumption that

the reference graph is larger compared to user graph. If this is not the case, the
larger graph is the one being reduced to match the smaller one.

. Equal trimming – Both user graph and reference graph are trimmed by the
same transformation.
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. Adjust-to-user trimming – User graph is trimmed first and the reference graph
is top k trimmed to match the user graph size k.

Top k trimming is the simplest equal trimming method. There is a fixed
parameter k. Both graphs in the pair are trimmed to keep at most top k edges
by weight.

Weight threshold trimming sets a weight threshold for all graphs. Each graph
has its edges below the weight threshold removed. The size of the user graphs
varies from user to user, which might cause problems with distance comparability.

Adjust-to-user: top k% is based on trimming the reference graph to the size
of the user graph. First, each user graph is trimmed to keep top k% of the edges.
The trimmed user graph is then matched with a reference graph which is trimmed
to match the size of the user graph.

Adjust-to-user: weight threshold works almost the same as the previous
method, but instead of top k% trimming, weight threshold trimming is performed
on the entity graph, and the reference is trimmed to match the entity in size.
Doing this should eliminate the comparability problem of the weight threshold
trimming.

Adjust-to-user-minmax: top k% extends the adjust to user: top k% trimming
by setting minimal and maximal weight threshold for the reference graph, based on
minimal a maximal weight in the entity graph after performing top k% trimming.
This is inspired by a distance measure called maximal common subgraph.

Average user reference: weight threshold trims user graphs according to a
weight threshold t, measures an average number of edges across resulting user
graphs and trims the reference to match the average size.

4.4.5 Testing phase: Graph Similarity Measurement
The simplified Graph Edit Distance introduced in the end of the section 3.2 is used
to calculate the distance between the graphs. Pure distance dGED∗ outputted from
the algorithm is not used. First, it is normalised to counteract the influence of
graph size bias by performing user size normalisation, and converted into similarity
S:

S(Gu, Gc) = 1 − dGED∗(Gu, Gc)
|Gu|

(4.1)

where |Gu| denotes the size of the user graph Gu in terms of edge count, which
in case of a weighted graph means the sum of edge weights. Performing this
normalisation redefines the similarity as a ratio of the user graph edges matching
the reference edges out of all user edges. Reference graph is considered pure,
i.e., all edges of reference graph are relevant, ensured by prior application of
weight-based trimming. The user graph is therefore penalised for both missing
and redundant edges compared to the reference.

4.4.6 Testing phase: Evaluation
The classification performance is visualised on a class-separation histogram and
a precision-recall curve per class. In case there are multiple reference graphs, the
similarity of each user graph to each reference graph is evaluated, assigning a class
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of the reference graph to which the entity graph is the most similar. A similarity
threshold can be set to assign a label only in case when the similarity exceeds the
threshold.
Along with the classification performance, visual comprehensibility of the ref-

erence graph needs to be evaluated. Graph density defined in section 3.4 is used
to represent the comprehensibility.
Area under the precision-recall curve is used to evaluate the classification per-

formance, and graph density d to evaluate the comprehensibility. When selecting
the best set of classifier’s parameters, one metric is necessary to find which setting
performs better. However, neither AUCP R nor graph density alone is sufficient.
First, the AUCP R needs to be adjusted to take the graphs discarded by trim-

ming into account. The adjustment consists of multiplying the AUCP R by the
ratio of the number of remaining graphs to the number of graphs before trimming.
The resulting value is called Absolute AUCP R (AUCa

P R).
For the graph classifier, a combination of AUCa

P R and graph density d is used
to score the result of the classification.

s = w1AUCa
P R − w2d (4.2)

where w1 = w2 = 1 are weights, AUCa
P R is a area under PR curve and d is the

graph density as defined in section 3.4. Density d is selected instead of dl mainly
because d is a number between 0 and 1 so it can be used to represent the graph
density without modifications. However, dl could be considered in the future work,
since it corresponds to the same visual density for different graph sizes unlike d.
The dl would require tuning before it could be used for evaluation. The pros and
cons of using dl or d to represent visual graph density are discussed in detail by
the authors of [17].
The weights w1 and w2 can be adjusted to change the influence of the metrics

on the overall score.
The visual evaluation of the graphs can follow, aided by colouring the graph

nodes based on a modularity partition they fall into. This allows the analyst to
see groups of events that are related as sharing the same colour and also to see
the corresponding parts of the user graph that match the reference.
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Chapter 5
Problem Outline and Implementation

This chapter describes how can the graph classifier be used in the domain of
network traffic analysis, namely for processing network event-based data. The
Cognitive malware detection system is described as a source of the event-based
data used to train the graph classifier. The implementation of the graph classifier
used to conduct the experiments in the next chapter is described in the last section.

5.1 Cognitive – Network-based Malware
Detection

Cognitive Intelligence is a product of Cisco Systems aimed at enterprise use cases,
focused mainly on network-based detection of malware and malicious communi-
cation. Cognitive processes input telemetry to discern normal network behaviour
from malicious, utilising multiple layers of preprocessing, anomaly detection and
classification. In case a malicious activity is detected, Cognitive creates an inci-
dent, based on which a network administrator can act to deal with the infection.
Cognitive can process different types of network communication captured, cat-

egorised into two main groups: web proxy logs and NetFlows. The web proxy logs
contain information regarding the outgoing and incoming web-based traffic, i.e.
communication of the local network hosts with hosts located in external networks.
The collected input telemetry is proxy log-based (webflow) or NetFlow based.

Figure 5.1. Diagram of Cognitive data processing pipeline. Data in this thesis originates
from Event classification in the second layer. Source: [30].

The processes used by Cognitive to process the input data are visualised on
picture 5.1. First, the data is analysed by the Anomaly detection layer. This
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layer is made to pre-process the input telemetry by filtering samples that are
anomalous from amounts of data exceeding 10 billion samples per day. The filtered
samples are enriched with additional information from the Trust modelling and
the anomaly detectors.
The second layer starts with Event classification, where the output of the

anomaly detection is processed to create network events by a set of classifiers.
Each event can be viewed as a type of a weak label, the presence of which is not
sufficient evidence of an infection, even though the event usually stands for highly
anomalous activity. The combination of these events can be viewed as a high-
level behavioural indicator, which is suitable to represent a behavioural profile of
a malware family. Cognitive uses approximately 350 events divided into four main
categories:

. Signature-Based – events produced by behavioural signatures made by a
domain expert. Classifier-Based – events created by classifiers trained on historical data. Anomaly-Based – events produced from the output of anomaly detection,
consisting of more than 70 detectors. Contextual – events describing activities of a host, such as a file download
or access to raw IP

The Event classification outputs a set of events created by processing a set of
flows collected for a network host during 24 hours. This set of events is referred
to as a transaction.
After the Event classification step, further classification is performed, the re-

sult of which are class labels assigned to the transaction. Cognitive defines several
high-level class labels, such as Malicious Content Distribution, Information Stealer
or Trojan. These classes are not meant to represent specific malware families. In-
stead, they may stand for multiple malware families, each having behaviour char-
acteristic for the class, i.e. class Malicious Content Distribution covers malware
and malware families distributing potentially malicious adware.

5.2 Problem Outline
As stated previously, sets of events originating from processed network commu-
nication logs can be used to create a behavioural profile for a malware family.
One of the approaches of creating the behavioural profile is known as rule mining,
described in detail and evaluated on an event-based dataset by Kopp et al. in [29].
When applied to the event-based dataset produced by Cognitive, rule mining aims
to find sets of events that occur together frequently in transactions labelled as ma-
licious. The resulting sets of events can be used to describe malicious behaviour.
The graph structure, as proposed in the previous chapter of this thesis, can be

used to model the behaviour of a malware family such as adware by processing
the labelled event-based transactions. Given that a graph is built for multiple
transactions of a malware family, there should be parts of the graph consisting of
events which together are indicative of the behaviour presented by the malware
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family. The resulting graph can be visualised, the essential parts emphasised
by edge weight and coloured by graph modularity partition. Furthermore, the
malware family graph can be used to classify unlabelled graphs built for network
hosts by calculating the graph similarity.
In the terminology of the graph classifier, the output of Cognitive utilized in

the graph classifier consists of transactions t = {E , R, l, u, τ}, where τ is the day
when the event set E of the user u was captured with class label l. Event relations
R need to be artificially created, because there are no relations between events
in the provided dataset. The relations are therefore created for each transaction
t using the event set E by adding a relation r(e) = e′ for each e, e′ ∈ E into R,
which means an event relation is added for each pair of events that occurred in
the transaction.
However, the unlabelled transactions make up the largest portion of the dataset,

as noted in table 6.1. There are several reasons as for why the label is missing,
such as missing data or a new infection, which the classifiers are not yet trained
to detect.
Among the labelled transactions, the majority are labelled with Malicious Con-

tent Distribution (MCD), Malicious Advertising (MA) and Ad Injector. These
three labels represent a low severity infection such as adware or a fake search
engine. The rest of the labels are severe infections.
Among the events defined by Cognitive, there is a set of more severe events.

For example, event ECWDGA1 means there was communication with a generated
domain. Such activity is seldom deliberately done by a human user and is known
for many different types of malware. The presence of the DGA event warrants a
review, which needs to be done as soon as possible in case the infection is severe.
The unlabelled DGA-containing transactions are particularly interesting in this

case. Assuming the distribution of infections in similar in labelled and unlabelled
transactions, a large part of the unlabelled transactions is caused by adware.
Filtering the unlabelled transactions by removing the ones most likely caused
adware means transactions that remain fall into two categories. Either they are
caused by a severe infection, or caused by an entirely new behaviour profile worth
investigating. The review of remaining transactions should be prioritised in both
cases. There is also a possibility that some of them are a false alarm, but the
preprocessing the transactions went through along with the presence of DGA
should mean the false alarm is unlikely.
Therefore, the goal is to identify and remove adware transactions from the

unlabelled transaction set, so the malware analyst can focus on potentially more
severe cases.

5.3 Implementation
Implementation of the graph classifier and experiments were done utilising the
research infrastructure of Cognitive Intelligence within AWS. Code of the imple-
mentation was written in Python 3.7 in conjunction with PySpark for distributed
parallel computing, Scikit-learn for implementation of machine learning tooling,
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and NetworkX for implementation of the graph structure. Gephi was used for
visualisation of resulting graphs. Development was done mainly using Jupyter
notebook web interface.

5.3.1 Python
Python1 is currently one of the most popular programming languages in the world
due to its ease of use and a wide array of libraries. Python is known for its whites-
pace indentation to separate blocks of code and naming philosophy which makes
Python code easy to read. Memory management is done with garbage collec-
tion, which further simplifies programming in this language. It is an interpreted
language with interpreters available for many operating systems.
Since Python is an interpreted language with garbage collection, it is often

associated with lower performance compared to languages such as C or Java.
However, there are many libraries, notably NumPy and SciPy, which use vec-
torized implementations of functions written in C to make the computation very
efficient. Because of this, Python is also very popular in the fields of data science
and machine learning with a well-known library called Scikit-learn.
In this thesis, Python version 3.7 was used to implement the graph classifier

and to carry out experiments. The most important libraries are described next.

5.3.2 Jupyter Notebook
Jupyter Notebook2 is a web-based open-source web application made for interac-
tive programming, data science, data visualisation, text annotation with Mark-
down support, Latex-like math notation and cell-based execution. Jupyter Note-
book currently supports languages like Python, Julia, Java and JavaScript, with
full kernel support listed in [31].
Jupyter Notebook was used in this thesis in conjunction with Python kernel

to run the experiments and visualise the results. It was used mainly due to its
cell-based execution, which allows to pre-compute computationally intensive tasks
and work gradually with the result without re-running the computation.

5.3.3 SciPy
SciPy3 is a Python ecosystem consisting of open-source libraries with a focus
on mathematics. It consists of libraries like NumPy, Matplotlib, IPython and
SciPy library. NumPy implements fast and efficient linear algebra operations and
vectorised computation implemented for N-dimensional array objects.
Implementation in this thesis utilises a sparse matrix structure provided by

SciPy sparse package, Matplotlib for plotting.

5.3.4 Scikit-learn
Scikit-learn4 is a machine learning library implemented for use in Python, provid-
ing an implementation of commonly used machine learning algorithms for classi-
1 https://www.python.org/about/
2 https://jupyter.org/
3 https://www.scipy.org
4 https://scikit-learn.org/stable/
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fication, regression and clustering, along with tooling for evaluation and visuali-
sation. Scikit-learn is built supporting SciPy and NumPy libraries.
This thesis uses an implementation of random forest and k-means algorithms,

cross-validation and PR-curve visualisation provided by Scikit-learn.

5.3.5 PySpark
Apache Spark1 is a large-scale data processing engine. Spark provides high-level
APIs in Scala, Java, Python and R, Spark SQL and Dataframes for data querying
and analysis, MLlib package for machine learning and GraphX for large-scale
graph processing. Spark utilizes Apache Hadoop to provide scalable distributed
computing. PySpark is a Python implementation of Spark API running on a Java
Virtual Machine.
PySpark was used in conjunction with Hadoop to access the data on AWS S3

and to perform parallel computation where applicable. It makes the implementa-
tion scalable for bigger volumes of data and runnable on computer clusters.

5.3.6 NetworkX
NetworkX2 is a Python package for the creation and manipulation of graph-based
networks. Graphs are implemented as objects with extensive API. Nodes and
edges of graphs can represent even structured data such as images or XML records,
which makes this implementation very flexible.
NetworkX is used to operate with graph structure and save and load graphs in

a format supported by Gephi.

5.3.7 Gephi
Gephi is an open-source graph visualisation software. It implements graph layout
algorithms along with comprehensive tools for graph formatting, editing, and fil-
tering. Gephi is utilised to layout and visualise graphs created by graph classifier.

5.3.8 Amazon Web Services
Amazon Web Services (AWS) is a cloud-based computing platform offering ser-
vices such as virtual servers (EC2), distributed computing clusters (EMR), web-
based storage of big data (S3), database, developer tools, and deployment among
many others. Provided services are paid based on usage time, redundancy, the
volume of stored and transferred data, and availability. These services are run on
infrastructure located in server farms around the world.
For experiments in this thesis, the computation was done on a m4.4xlarge

EC2 general-purpose virtual machine instance with 2.4 GHz Intel Xeon E5-2676
v3 processor, with 16 CPU cores, 64 GB of memory, and running CentOS, a
Linux-based operating system. S3 was used to store the provided dataset and to
store backups of developed code.

1 https://spark.apache.org
2 https://networkx.github.io
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5.3.9 Overall Implementation

Figure 5.2 shows how above-described software interconnects for implementation
of the graph classifier. A virtual machine instance in EC2 serves as a Jupyter
notebook server, running an interactive Python session. Inside of this session,
Spark with Hadoop is initialised. Using Spark RDD API, data stored in S3 is
accessed and loaded and processed utilising parallel data computation capabili-
ties of RDD. The web-based interface of the Jupyter notebook server is accessed
remotely through an SSH tunnel.

EC2

S3

Jupyter Notebook Server

Python + PySpark
SSH

Jupyter
Notebook Gephi AWS

Figure 5.2. Diagram of the implementation’s part interconnection
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Chapter 6
Experiments

This chapter consists of dataset analysis and experiments conducted to improve
the initial performance of the graph classifier measured in the second section. The
best performing weighting method is selected and used in experiments with graph
trimming. Afterwards, two graph pairs are visualized and analysed. The following
section consist of alternative approach to build the reference graph. The last two
sections contain comparison of classification performance between random forest
and the graph classifier.

6.1 Dataset Analysis
The dataset used in experiments is a network security dataset produced by Cogni-
tive by the process described in the previous chapter. It consists of flow sequences
with a set of events and a cluster label, captured during January 2019. It contains
6.5 billion flow sequences, converted into day-long transactions for each user.
The dataset is split into two parts, training data and testing data. Training

data consists of data captured during the first three weeks of January, and the
testing dataset contains data for the remaining days of the month.
The training dataset is used to build the reference graphs and calculate the

edge weights. The testing dataset is used to build user graphs. It is first filtered
to only include transactions containing event ECWDGA1, because this event means
there was a communication with a generated domain. Such activity is rarely
carried out deliberately by a human user. DGA domains are known to be utilised
by many different types of malware, visible in table 6.1.

class train train DGA test test DGA
no label 27 566 264 37 337 10 422 678 15 688
Adware 33 926 12 824 13 113 5 434
Ad Injector 100 839 1 036 37 772 444
Info Stealer 3 708 484 1 319 174
Ransomware 187 186 98 98
Malware Distr. 164 85 65 43
Trojan 162 23 66 8

Table 6.1. Number of class labels in the transactions of the training dataset.

The amounts of labelled transactions containing communication to a DGA do-
main are in table 6.1. Notably, a more substantial portion of Ad Injector and
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Information Stealer is filtered out by keeping transactions with DGA. On the
other hand, almost no Ransomware is filtered out, which means it almost always
uses DGA to connect.
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Figure 6.1. Distribution of event counts per transaction containing the DGA event.
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Figure 6.2. Distribution of graph sizes per class with adware as positive class.

A transaction can contain a subset of approximately 350 unique events. Usually,
the transaction only consists of several events, which is visualised on figure 6.1.
The low count of events per transaction means the dataset is rather sparse.
Next, the user graph size distribution should be worth investigating, mainly

when it comes to the relation of user graph size of graphs with adware class label.
Figure 6.2 shows there is almost no difference in the distribution of user graph
sizes for positive and negative classes, which means the graph classifier should be
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able to discern the adware from the rest regardless of the user graph size in order
to be accurate.

6.2 Single Reference – Adware
The first experiment serves to set a performance baseline for the graph classifier.
To begin with, a reference graph is built for adware. The graph is neither weighted
nor trimmed to set a classification performance baseline. Figure 6.4 contains a
visualization of the resulting reference graph, which is visually incomprehensible
due to high edge density.
The testing phase consists of building user graphs using the training dataset,

which is pre-filtered to consist of DGA-containing transactions. The user graphs
are neither weighted nor trimmed.
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Figure 6.3. Similarity distribution of graph classifier with initial settings.

Each pair containing unweighted reference and user graph is evaluated for graph
similarity. In terms of classification performance, the class separation histogram
depicted in figure 6.3 shows the classes are almost entirely overlapping, which
means they are not separable with the current setting. This is possibly caused
by the fact that all edges are weighted equally – only the number of edges of
the user graph matching the reference graph is used to determine the distance
by the Graph Edit Distance. Edges missing in terms of edge importance are not
accounted for, since there are no edge weights.
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Figure 6.4. Reference graph built for adware without weighting and trimming.

6.3 Weighting

Weighting aims to resolve problems with overlapping classes and graph density by
utilising edge weights in conjunction with edge weight-aware Graph Edit Distance.
The tested weighting approaches are listed in table 6.2.
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After building the reference graph, the edge weights are calculated as explained
in section 4.4.2. These weights are used to weight the reference graph and later
also to weight the user graphs.
Next, the user graphs are built and weighted, the pairwise similarity with the

reference graph is calculated, and the classification performance is evaluated.
Evaluation includes computing area under Precision-Recall curve (AUCP R), area
under PR curve penalized by the number of graphs removed after trimming as
AUCa

P R, which is computed as AUCa
P R = rAUCP R, where r is a ratio of remain-

ing graphs compared to the number of graphs before trimming.
Evaluation also includes calculation of d as an average graph density of the

user graphs, and dl as an average number of edges per node of the user graphs.
Resulting score is a combination of the AUCa

P R and density d, as defined in
section 4.4.6. Density d is used mainly for computation of the evaluation score,
while dl is easier to intuitively interpret, but not usable for score computation,
because it is not directly suitable for score computation as described in section
3.4. As per source [17], values of dl above 4 are considered too dense to be visually
comprehensible. As a rule of thumb, dl < 2 can be considered good density.
Table 6.2 contains the classification performance of the graph classifier with

different weighting approaches without trimming. In terms of pure classification
performance, the improvement of AUCP R is only slight even for the best perform-
ing weighting method. However, there is a considerable drop in graph density
compared to the unweighted graph, visible in the column dl, where the density
drops by almost a half. A significant amount of edges was removed after the intro-
duction of the edge weights, caused by weighting methods valuing the irrelevant
edges with zero weight.

AUCP R d dl Score
no weights 0.353 0.671 9.637 0.340
frequency 0.299 0.484 4.827 0.407
chi2 0.372 0.487 4.891 0.442
mutual information 0.320 0.487 4.891 0.416
Fisher Score 0.374 0.487 4.891 0.443

Table 6.2. Comparison of weighting methods.

The Fisher Score-based weighting performs the best both in terms of AUCP R

and graph density. Because of that, it will be used in the following experiments.
Looking at the density dl, the weighting reduced the density considerably,

caused by the fact that some of the edges were weighted as zero and such edges are
removed by default. Still, having almost five edges per node means the weighted
graph is not much more comprehensible when visualised compared to figure 6.4.
Further reduction in graph density is necessary, which is achievable by performing
the graph trimming.
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Because the improvement in classification performance after introducing weight
was negligible and the graphs were still too dense, trimming is tested as a next step
for improvement in classification performance and reduction of the graph density.
The best performing weighting method, the Fisher Score is used for weighting.
Experiments with parameter tuning are done on a 10% subsample of the user

graphs (1670 user graphs) to speed up the trimming, distance measurement
and evaluation process. After selecting the best performing parameter for each
method, the evaluation is done on the whole testing dataset.

6.4.1 Equal Trimming Approach
Section 4.4.4 introduced the distinction of the trimming methods by the approach
of trimming. Trimming is performed for pairs of graphs, one reference and one
user graph. The first approach of trimming is equal trimming, which consists of
methods that trim both reference and user graph by applying the same transfor-
mation, resulting in two graphs with different sizes. Distance algorithms must
take this into account not to skew the similarity by the size difference.
Two methods utilize the equal trimming approach. The first one is constant

trimming with parameter k. This method is straightforward: top k weighted
edges are kept for the user and reference graph. The influence of the value of k
can be seen in table 6.3.

k AUCP R AUCa
P R d dl Score

2 0.375 0.374 0.374 0.259 0.499
6 0.345 0.341 0.270 0.660 0.535
8 0.338 0.334 0.259 0.728 0.537
10 0.310 0.307 0.254 0.793 0.526
16 0.273 0.269 0.254 0.983 0.507
30 0.272 0.268 0.280 1.415 0.494

Table 6.3. Constant trimming: parameter tuning.

The constant method does not discard many user graphs, which is reflected in
a small difference between AUCP R and the absolute AUCa

P R values. Notably,
the value of AUCP R drops with increasing k. The drop probably means a small
number of edges bring the most information while adding lower-weighted edges
introduces noise.
The second method is min. weight threshold trimming. A weight threshold is

set, and all edges weighted below the threshold are removed. This is done for both
user and reference graph, resulting in graph pairs where the user and reference
are generally not sized equally.
Parameter t is used to adjust the threshold. It determines the minimum weight

used as a threshold similar to the top-k trimming. Weights for all possible edges
given the set of all events are sorted in descending order, and t-th weight is used

40



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Trimming

t AUCP R AUCa
P R d dl Score

100 0.282 0.119 0.295 0.550 0.411
500 0.258 0.200 0.254 0.724 0.473
700 0.265 0.223 0.245 0.807 0.489
1100 0.262 0.234 0.261 1.077 0.486
1500 0.260 0.247 0.278 1.340 0.484
1900 0.270 0.264 0.299 1.612 0.482

Table 6.4. Min. threshold trimming: parameter tuning.

as a threshold. The influence of adjusting the value of t can be seen in the table
6.4.
The best performance is achieved by setting the value of t to 700. The AUCP R

is lower compared to the constant method. The drop in AUCa
P R means the min.

threshold method discards a larger amount of user graphs. The value of dl remains
in a reasonable range. The best score achieved by this method is, however, worse
compared to the constant method. The significant amount of discarded graphs
shows this method is not suitable for trimming, at least not without adjustment.

6.4.2 Adjust-to-user Trimming Approach
Next trimming approach to be tested is adjust-to-user trimming approach. The
user graph is trimmed first with a transformation depending on the trimming
method. The edges of the reference graph are removed, the lowest weighted first,
until its size matches the size of the user graph.

Adjust-to-user trimming method keeps top k% of edges in the user graph or
at least n edges as specified by the minimal edge count parameter n. As a result,
both graphs have the same size. This can be seen as similar to the constant
trimming, with the difference being that the number of edges kept also depends
on the size of the user graph.

k AUCP R AUCa
P R d dl Score

0.01 0.370 0.369 0.371 0.530 0.498
0.03 0.350 0.349 0.316 0.562 0.516
0.04 0.337 0.336 0.296 0.593 0.520
0.05 0.321 0.320 0.284 0.628 0.518
0.40 0.272 0.271 0.330 2.065 0.470

Table 6.5. Adjust-to-user trimming: parameter k tuning.

The best score is achieved with k = 0.04 and n = 8 according to tables 6.5
and 6.6. Parameter k was tested first, with n = 2. After determining the best
performing k, n was adjusted. According to the result, keeping more edges causes
the classification performance to improve, and increasing the n brings further
improvement, which starts to diminish around n = 10, probably due to uninfor-
mative edges being kept more often. The low value of k being the best performing
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n AUCP R AUCa

P R d dl Score
2 0.337 0.336 0.296 0.573 0.520
6 0.325 0.317 0.262 0.671 0.527
8 0.322 0.310 0.254 0.732 0.528
10 0.299 0.284 0.249 0.795 0.517
14 0.273 0.248 0.246 0.923 0.501

Table 6.6. Adjust-to-user trimming: minimal edge count n tuning.

hints at the fact, that in the big user graphs, most of the edges are not useful for
the classification.

Adjust-to-user: weight threshold is a combination of the two trimming meth-
ods. First, the user graph is trimmed in the same way as in the min. weight
threshold method, but the reference is trimmed to the match user graph size.

t AUCP R AUCa
P R d dl Score

200 0.273 0.138 0.286 0.584 0.426
600 0.255 0.204 0.251 0.745 0.476
1000 0.264 0.234 0.257 1.025 0.488
1400 0.263 0.244 0.274 1.310 0.485
2000 0.271 0.265 0.268 1.657 0.480
4000 0.271 0.268 0.372 2.489 0.456

Table 6.7. Min. threshold adj-to-user trimming: parameter tuning.

Table 6.7 shows the best score is achieved for t = 1000, performing slightly
better compared to min. threshold trimming, but still worse than adjust-to-user.
The worse performance is mainly caused by discarding user graphs with all edges
below the threshold.

k AUCP R AUCa
P R d dl Score

0.01 0.303 0.302 0.371 0.530 0.465
0.05 0.274 0.273 0.284 0.628 0.494
0.1 0.271 0.270 0.260 0.807 0.505
0.15 0.272 0.271 0.265 1.008 0.502
0.2 0.272 0.271 0.275 1.210 0.498
0.4 0.272 0.271 0.330 2.065 0.470
0.6 0.272 0.271 0.383 2.937 0.444

Table 6.8. Adjust-to-user-minmax trimming: parameter tuning.

Adjust-to-user-minmax trimming is an alternative to adj-to-user. The user is
trimmed in the same way (top k%), but the reference is trimmed depending on
two weight thresholds, min. weight and max. weight, set by values of weights in
the user graph. Edges weighted above max. threshold are removed, as well as
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edges below the min. threshold. Table 6.8 shows score of the graph classifier with
changing value of k. Setting k = 0.1 results in the best performance.

Finally, average user reference: weight threshold method is tested. This
method results in the same reference for all user graphs. The reference is top-
k trimmed to contain the same number of edges as the user graphs contain on
average. Table 6.9 shows the influence of changing threshold t.

t AUCP R AUCa
P R d dl Score

200 0.446 0.226 0.286 0.584 0.470
400 0.354 0.250 0.262 0.659 0.493
600 0.308 0.247 0.251 0.745 0.498
1000 0.269 0.238 0.257 1.025 0.490
1400 0.265 0.246 0.274 1.310 0.486
1800 0.270 0.263 0.297 1.580 0.482

Table 6.9. Min. threshold adj-to-average-user trimming: parameter tuning.

6.4.3 Comparison of the Best Performing Parameters

Table 6.10 provides a comparison of trimming methods with best-performing pa-
rameters, computed for the whole testing dataset without subsampling. Out of the
tested trimming methods, the constant method scored the highest, with the clas-
sification performance visualised on a PR curve in figure 6.5. The adjust-to-user
method reaches the second highest score.

The PR curve at the top right of the figure 6.5 shows that several positive
graphs are classified with high precision, with few negatives before a large drop.
These negatives are very likely new findings belonging to the adware class, which
was one of the goals described in the problem outline.

trimming AUCP R AUCa
P R d dl Score

constant: k = 8 0.342 0.338 0.261 0.731 0.538
th: t = 700 0.267 0.225 0.247 0.821 0.489
adj k = 0.04 n = 8 0.328 0.314 0.255 0.739 0.529
adj-th: t = 1000 0.272 0.240 0.258 1.042 0.490
adj-minmax: k = 0.1 0.280 0.280 0.262 0.823 0.508
avg-user-ref: t = 600 0.296 0.237 0.252 0.757 0.492

Table 6.10. Comparison of trimming methods.
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Figure 6.5. PR curve for constant trimming method with k = 8.

As for the similarity distribution, figure 6.6 shows that there is a slight improve-
ment in the class separation compared to the separation of the initial setting in
figure 6.3.
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Figure 6.6. Similarity distribution of graph classifier with the best performing constant
trimming setting k = 8
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6.5 Analysis of the Trimmed Graphs

Graphs in figure 6.7 and figure 6.8 show a visualized pair of reference and user
graph respectively after being processed by adjust-to-user set to parameters k =
0.09 n = 6. Both graphs are significantly smaller compared to the graph built
with the initial setting depicted in figure 6.4.

EAVLFT1

EAVGSD1

EAVSRI1
ECONCH1

EHPCMCD14

EAVHUD2

EAVTST1

Figure 6.7. Visualization of a reference graph trimmed with adjust-to-user method with
parameters k = 0.09 n = 6.

The thickness of edges represents associated edge weight. The reason the edges
of the user are thin is that those edges are not relevant in the context of adware
according to the edge weight originating from Fisher score. Furthermore, the user
graph does not share even one node or edge with the reference, which results in
zero similarity between the graphs. The graphs have become disconnected as a
result of trimming.
Node colour represents modularity-based partition. For the user graph, the

nodes are coloured according to the colour they have in the reference. If missing
in the reference, their colour is left grey.
The reference graph in figure 6.7 is built for adware. It consists of three dis-

connected components. The biggest component contains nodes of three events:
EAVGSD1 meaning anomalous destination, EHPCMCD14 meaning the communication
was similar to Malicious Content Distribution-labeled malware. EAVLFT1 stands
for an abnormally long URL being used to access a webpage that was not accessed
by the user before, meaning the access was most likely not done by the user but
by an automated process.
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ESUDOM1

EWRDPR1

EAVSSR1

EAVHUD1

EAVDUA1

Figure 6.8. Visualization of a user graph trimmed with adjust-to-user with with parame-
ters k = 0.09 n = 6.

The second connected component highlighted by orange colour consists of
EAVSRI1 meaning raw IP address was a target of the communication and
ECONCH1 means there was a connection check. A combination of these events, a
connection check on a raw IP, shows a behaviour that is very unlikely to be caused
by an average user. The third component is EAVTST1 and EAVHUD2, meaning the
user accessed the target at an unusual time, and the target was unusual for the
user, respectively.
Due to being kept after adjust-to-user trimming, edges of the resulting reference

are the highest weighted edges in the reference graph, which means they should
connect events which are the most characteristic of adware. Disconnectedness
might be caused by diversity in adware infection, meaning different types of adware
trigger specific sets of events. In the case of 6.7, the components are not entirely
convincing to be specific for adware.
The second pair of graphs is visualized on figures 6.9, and 6.10 is a result of the

user graph having more edges before trimming, causing the reference to keeping
more edges.
There are multiple coloured parts coloured by modularity in the reference graph

on picture 6.9. The pale green part is centred on ESUDOM1 which stands for a
suspicious domain. It connects with EAVDSU1 which means the user accessed many
pages that are not normally accessed, EAVDUA1 meaning an unexpected application
based on user agent was detected and EANEXF1 meaning an anomalous executable
file was downloaded. This group of events can be interpreted as a download of a
malicious executable from a suspicious domain by an application that was likely
already compromised, due to the user agent inconsistency. In other words, this
might mean the beginning of an adware infection.
Next, the pink partition centres on a very anomalous HTTP traffic describing

event EVAHTR2 through an encrypted connection EENCON1, a non-user activity
EAVDPC1, EDIMGS1 meaning a download of a picture and EHPCADI03 standing for
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a Ad Injector-like behaviour. This group of events might likely show an already
established adware infection with multiple anomalous events and a download of
one or multiple images, which are likely ads.
The pale blue partition consists of before mentioned ECWDGA1 and EAVLFT1,

meaning access to a generated domain with a long URL probably not caused
by deliberate user activity. The part also includes a time of day inconsistency
EAVUEH1 and EDATUP1 standing for data upload. Together, this can be interpreted
as a data upload to a generated domain which the user did not access before, all
during an unusual time for the user. Such behaviour is not exactly characteristic
for adware, but more severe exfiltration infections. Furthermore, adware is often
considered as a gateway for more severe infections.
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Figure 6.9. Visualization of a reference graph trimmed with adjust-to-user.
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The red part contains EFILED1 connected to ETGLEV1 and EAVGAS1, meaning

a malicious executable was downloaded based on Threat Grid intelligence1 and
that the destination was anomalous, respectively.
The orange partition consists of the usage of a self-signed certificate EAVSSC1

in conjunction with an anomalous destination EAVHDU2 and a Wordpress content
management system EWRDPR1.
The set of events in the dark colour correspond to two TLS certificate verifica-

tion inconsistency events EAVTCL1 and EAVTVC1 connected to a security software
ESESOF1. This likely means adware compromises security software to use a fabri-
cated certificate.
The last interesting part has teal colour and consists of two events. EAVDST1

means access to an advertisement site and ECRPMN1 stands for crypto mining. This
might mean an ad was modified to mine cryptocurrency, which is rather common
in recent time.
Above described reference graph partitions consist of activities that can be

attributed to an adware infection. Such reference graph is a good representation
and user graphs that are similar to it can safely be classified as adware.
As for the user graph on the picture 6.10, this time the user matches a big

portion of the reference and is very likely infected by adware, if not by a more
severe infection. Namely, the user matches a part of pale blue, pink, green and
orange partitions of the reference. Additionally, the user graph contains events
for raw IP access, suspicious HTTPS and other anomaly-based events.
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Figure 6.10. Visualization of a user graph trimmed with adjust-to-user.

1 A threat intelligence product by Cisco. https://www.cisco.com/c/en/us/products/secu-
rity/threat-grid/index.html
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6.6 K-means Cluster Reference

Previous experiments improved the classification performance slightly, but there
is still a lot room for improvement. The adware is still hard to separate from the
rest of the data.
One of the possible causes of the inseparability might be there is too much

variety in the adware class, i.e. the sets of events that make up transactions
are not similar. Possibly, the labels assigned by Cognitive cover many types of
adware, each presenting a different behaviour, therefore causing different sets of
events to be triggered. If that is the case, using a clustering algorithm to separate
the adware into clusters of similar transactions and building one reference graph
per cluster might improve the classification performance considerably.
The training dataset is first transformed into vectors of event relations using the

process described in section 4.4.2. Because this dataset consists of approximately
20000 features, a number which might pose a problem for Euclidean distance-
based k-means due to the curse of dimensionality, a subset of top k features is
selected before the clustering is performed. As an initial parameter of the k-means
algorithm, k is set to 3, which means the algorithm will attempt to find three
clusters of data within the training dataset.

top k features AUCP R AUCa
P R

20 0.333 0.330
70 0.331 0.327
150 0.332 0.329
300 0.345 0.341

Table 6.11. K-means-based reference: classification performance.

The clustering algorithm outputs a cluster label for each sample. Vectors of
event relations are converted back to transactions so they can be used to train
the graph classifier, and the cluster label from k-means is used as a class label
for the transaction. Transactions with cluster labels are processed by the graph
classifier, creating one reference graph per label. Graph weighting and trimming
settings are set according to previous experiments.
An implementation of k-means from Scikit-learn is used. The rest of the pa-

rameters of k-means are set to default values.
Table 6.11 shows the classification performance of the graph classifier trained on

data clustered by k-means with k = 3. The best performing constant method with
its parameter kconstant = 8 was used to trim the graphs. In terms of AUCa

P R, this
method reaches slightly better performance compared to the best score of 0.342
as listed in table 6.10. However, preparation of the dataset and processing of the
k-means took significantly more time compared to the single reference method.
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Precision-Recall curve: AUCPR = 0.33 kmeans k 3 topk 300

Figure 6.11. PR curve of the best performing k-means setting. k = 3, constant trimming
kconstant = 8

6.7 Random Forest Classification Experiment
To compare how the graph classification method performs compared to a con-
ventional classifier, the classification performance of random forest is measured.
The random forest is trained on the same dataset used in the k-means experi-
ments. Training is done for adware. The training data is a 10% sub-sample of
the original dataset to speed up the training, which, without feature selection, is
computationally expensive.
For the experiment, an implementation of a random forest was provided by

Scikit-learn. A small adjustment to the default parameters of the random forest
was made:

. number of estimators: 10. max tree depth: 5. max features: 0.7

These parameters were chosen mainly to reduce training time while keeping the
estimators diverse and not too deep to prevent over-fitting.
The Fisher score from graph classification was used as a top-k feature selection.

The cross-validation performance of different number of features is recorded in
table 6.12. As expected, random forest performs the best without feature selection
but takes significantly more time to train.
As for the performance on the testing dataset, the random forest reaches

AUCP R of 0.600 without feature selection.
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Features Fit time Score time tr. AUCP R test AUCP R

top 10 11.4 1.4 0.422 0.420
top 20 11.1 1.4 0.436 0.434
top 40 11.3 1.3 0.484 0.483
top 60 11.4 1.3 0.485 0.484
top 100 11.4 1.3 0.505 0.504
all features 339.6 3.6 0.532 0.529

Table 6.12. Cross-validation score of random forest.

6.8 Experiment Result Summary
The random forest beats the highest AUCP R = 0.342 reached by the graph classi-
fier by almost 0.26. Figure 6.12 contains PR curves of the best performing graph
classifier setting compared to the random forest. The graph classifier has better
performance in the beginning of the curve, but the random forest keeps decent
performance and drops off later. While the graph classifier looks for the root cause
of the adware infection as a whole, the random forest generalizes, which better
captures the diversity of the malware.
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Figure 6.12. PR curve of best performing graph classifier setting compared to random
forest.

The unsatisfactory classification performance of the graph classifier on the pro-
vided dataset might have many causes. As the user graphs turned out to be
much smaller compared to the reference graph, the reference had to be trimmed
extensively to eliminate bias towards classifying bigger user graphs as positive
more often. The user graphs had to be trimmed as well to remove irrelevant
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edges, which in many cases resulted in discarding too many edges and making the
classification difficult.
The problems with classification might also be caused by dataset characteristics.

The task was to assign a label to the unlabelled DGA containing samples, based on
how much they resemble labelled samples. Specifying truly negative samples for
training instead of using unlabelled samples as negative could positively impact
the classification performance.
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Chapter 7
Conclusion

This thesis introduced a graph-based classifier based on graph similarity. This
approach was inspired by static analysis. The main aim of the graph classifier is
to introduce visually comprehensible classification. The classifier was tested on a
labelled network security dataset consisting of sets of high-level actions originating
from network logs. Both the dataset and infrastructure for experiments were
provided by Cisco Systems.
In the proposed approach, users are represented by graphs of their actions and

can be classified based on their similarity to a reference graph. The immedi-
ate comprehensibility of the model is guaranteed by its graph-based nature and
demonstrated on real cases throughout the thesis.
Experiments with the classifier on the dataset provided showed the impact of

weighting and trimming techniques on classification performance, but more impor-
tantly they showed how they affect the intrinsic interpretability and readability of
the graph. An example graph built for adware was analysed. After proper weight-
ing and after trimming the unimportant edges, the graph was split into multiple
partitions. Each partition characterises a core behaviour of adware, ranging from
infection vector to monetisation.
Classification performance of the graph classifier was compared to the perfor-

mance of the random forest algorithm on the same dataset. The random forest
generalises better, which is reflected in higher classification performance compared
to the graph classifier. However, the graph classifier achieves better precision at
the beginning of the PR curve, showing that it can find root causes of the malware
infection. The classifier can be considered a success as finding the root cause was
one of the main goals. Generalisation improvement can be studied in future work.
Reference graph creation process has areas for improvement as well. Tested

approaches include clustering transactions before building the reference, building
one reference for multiple labels in data, and building one reference per label.
Building a reference based on one or multiple selected user graphs could be tested.
Additionally, more sophisticated wrapper or embedded feature selection methods
could be introduced to improve the performance. Calculation of edge weights for
a combination of multiple events could be studied in the future work as well.
In conclusion, working on this thesis has been an immense learning experience

for me, as the challenges I encountered while working on the graph classifier were
unlike anything I dealt with during my studies.
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Appendix A
Glossary

AUCa
P R . Absolute AUCP R

AUCP R . Area Under Precision-Recall curve
API . Application Programming Interface
AWS . Amazon Web Services
CFG . Control Flow Graph
CPU . Central Procession Unit
DAG . Directed Acyclic Graph
DGA . Domain Generating Algorithm
EC2 . AWS Elastic Compute Cloud
EMR . Elastic MapReduce
FN . False Negative
FP . False Positive
GED . Graph Edit Distance
IDS . Intrusion Detection System
MCS . Maximal Common Subgraph
PCA . Principal Component Analysis
PE . Portable Executable
PR . Precision-Recall
RDD . Resilient Distributed Dataset
ROC . Receiver Operating Characteristic
SSH . Secure Shell
S3 . AWS Simple Storage Service
TN . True Negative
TP . True Positive
XML . Extensible Markup Language
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