
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 17, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Protein particles detection and analysis in images from optical microscopy

 Student: Bc. Petr Wudi

 Supervisor: Ing. Jakub Novák

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2019/20

Instructions

Get familiar with optical microscopy techniques called structured-illumination microscopy and the resulting
images. Create an algorithm that will be able to detect single particles (or particle clusters) using methods
of image processing and to analyze their distribution.

Goals:
1) Perform a search in the field of structured-illumination microscopy and usable image processing
methods.
2) Specify methods of image processing and design preprocessing algorithms that will lead to the detection
of single particles.
3) Choose a few methods for evaluating the distribution of particles in the image.
4) Implement algorithms using appropriate programming language.
5) Test the designed algorithms on real data.
6) Evaluate the results of a few algorithms and choose the best solution for the task.
7) Discuss the results.

References

Gustafsson M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically
unlimited resolution.
Gustafsson M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.
Gustafsson N. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial
fluctuations.
Harke B. Resolution scaling in STED microscopy.
Heilemann M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes.
Hofmann M. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly
photoswitchable proteins.
Khan A.O. CRISPR-Cas9 mediated labelling allows for single molecule imaging and resolution.
Klar T.a, Hell S.W. Subdiffraction resolution in far-field fluorescence microscopy.

Master’s thesis

Protein particles detection and analysis in
images from optical microscopy

Bc. Petr Wudi

Department of Applied Mathematics
Supervisor: Ing. Jakub Novák

May 28, 2020

Acknowledgements

I’d like to thank Ing. Jakub Novák for his helpful advices and Ayoub Ste-
late, M.Sc., for introduction to his research and providing the sample images.
I would also like to thank both of them for their time and patience.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 28, 2020 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Petr Wudi. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Wudi, Petr. Protein particles detection and analysis in images from optical
microscopy. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2020.

Abstrakt

Tato práce se zabývá automatizovanou detekcí částic proteinů na snímku
z mikroskopu, jejichž rozložení je následně analyzováno.

Práce obsahuje analýzu exisujících řešení zabývajících se podobnými prob-
lémy a podrobnější popis vybraných metod zpracování obrazu.

Tyto metody byly implementovány v jazyce Java a použity pro návrh
algoritmu schopného detekovat na snímku jednotlivé částice.

Různé kombinace metod byly testovány na reálných datech a porovnány
s manuálně anotovanými daty.

Pozice částic nalezené nejlepšími algoritmy sloužily jako vstup pro vybrané
metody prostorové analýzy.

Klíčová slova detekce, lokalizace molekul, protein, částice, rozložení, zpra-
cování obrazu

vii

Abstract

This thesis focuses on automated detection of protein particles on microscope
images. Distribution of the detected particles is analyzed.

The thesis contains an analysis of existing solutions to similar problems
and description of selected image processing methods.

These methods have been implemented in Java and used in the design of
a particle detection algorithm.

Several method combinations have been tested on real data and compared
to manually annotated data.

Particle positions detected by the best algorithms have been processed by
selected spatial analysis techniques.

Keywords detection, single-molecule localization, protein, particle, distri-
bution, image processing

viii

Contents

Introduction 1

1 Research 3

2 Terms and concepts 7
2.1 Fluorescence microscopy . 7
2.2 Structured Illumination Microscopy 8
2.3 Point spread function . 8

3 Input images 9

4 Chosen methods 13
4.1 Filters . 13
4.2 Thresholding . 18
4.3 Flat-field correction . 19
4.4 Region growing . 19
4.5 SRRF . 20
4.6 Morphological operators . 21

5 Design 23
5.1 Detection algorithm . 23
5.2 Preprocessing phase . 24
5.3 Detection phase . 34
5.4 Validation phase . 36
5.5 Selected combinations . 38
5.6 Distribution analysis . 40

6 Implementation 43
6.1 Particle detection program . 43
6.2 ImageJ plugin . 43

ix

6.3 Evaluation program . 45
6.4 Particle marking program . 46

7 Results 47
7.1 Particle detection . 47
7.2 Distribution analysis . 49

8 Testing 57
8.1 Assignment of particles . 57
8.2 Observed measures . 60
8.3 Results . 60

9 Discussion 63

Conclusion 65

Bibliography 67

A Notation 71

B Contents of enclosed CD 73

C ImageJ plugin user manual 75
C.1 Installation . 75
C.2 Usage . 76

x

List of Figures

2.1 Microscope type comparison . 7

3.1 Example of an input image . 9
3.2 Histogram of the input image . 10
3.3 Values of pixels in one row of the input image 10
3.4 Values of pixels in one row of the input image – selection 11
3.5 Selection of an input image . 11

4.1 Sharpening image using Laplace filter 14
4.2 Kernels of Prewitt filter . 14
4.3 Kernels of Sobel filter . 15
4.4 Visualization of a 2D Gaussian function and its discrete version . . 17
4.5 Bilateral filter . 18

5.1 Components and dataflow of the particle detection algorithm . . . 24
5.2 Thresholding and normalization using flatfield function 26
5.3 Images processed by the flat-field correction 27
5.4 Images after application of the Laplacian filter 29
5.5 Images after application of the Gaussian filter 30
5.6 Images after application of the Bilateral filter 30
5.7 Images after application of the Wiener filter 31
5.8 Thresholding with top hat transform and without it 32
5.9 Result of top hat transform with different kernel sizes. 32
5.10 Detector using gradient magnitude created by the Sobel operator . 33
5.11 Detector using gradient magnitude created by the Prewitt operator 33
5.12 Segmented 1D arrays using different types of local maximum algo-

rithm . 35
5.13 Example of H-maximum validation on a 1D image 37

6.1 ImageJ plugin . 44
6.2 Particle marking program . 46

xi

7.2 Number of particles per 1000 px in the input images 49

C.1 Usage of the ImageJ plugin . 77

xii

Introduction

Research of plant proteins is a very important field of biology with a significant
impact on several other fields like pharmacy, agriculture and many others.

Proteins often form “particles” – small clusters whose size often doesn’t
exceed tens of µm.

This thesis was created to facilitate research of Ayoub Stelate, M.Sc., from
the Department of Experimental Plant Biology of Charles University, who
studies behaviour of proteins.

One of the pieces of information useful in the research is distribution of
the particles. Knowing where does each particle lie would allow application
of several analytical methods.

However, getting exact information about the particle locations is diffi-
cult. Counting the particles manually would be very exhausting as there are
hundreds or even thousands of them in a sample.

The most suitable response to this task is to use a program that auto-
matically detects the particles. This thesis focuses on the creation of such
a program.

There are several challenges the program has to deal with.
The images have been created using a regular light microscope, which

allows examining the samples in vivo – living samples. The light microscopes
have several limitations coming from the nature of light, which lowers the
image quality.

The images are blurred and contain a lot of noise. It makes the protein
particles not easily separable from each other.

A program able to process these images is designed and implemented in
Java. Result of the program is compared to manually annotated data.

The resulting program is implemented as a plugin to an image process-
ing program ImageJ. This program is often used by biologists and therefore
integration to it would make detecting the particle positions more convenient.

Another part of the thesis is a basic analysis of the distribution of the
particles.

1

Chapter 1
Research

This chapter focuses on methods and approaches other authors use to solve
similar tasks.

Andersson et al [1] find centers of fluorescent particles and then tracks
them. Potential fluorescent points are placed in local maximums. Each po-
tential point should have width about the same as the diffraction limit.

Then center of the points are located by fitting Gaussian using least squares
method [1].

Single fluorophore detection algorithm (SFDA) [2] detects positions of flu-
orophores on an image series (video) obtained using TIRFM.

The first step of this algorithm is filtering out the noise by spatial and
temporal filtering [2].

SFDA relies on the assumption that emmitation of fluorophores is a tem-
porary action with an abrupt end [2]. Therefore the algorithm seeks significant
value change of large image areas across subsequent frames. This value change
is detected by an algorithm similar to edge detection with Laplace/Prewitt
filter – with the only exception that the algorithm does not find difference of
adjacent pixels in one image but in pixels with the same location on neighbour
frames [2].

A mask is created from areas with the value change. The part of the im-
ages inside a mask probably depicts a fluorophore. The fluorophore first starts
emitting the light (big positive value change) and after some time it imme-
diately darkens out (big negative value change). The potential fluorophores
with very short duration are probably false alarms and are filtered out [2].

The last step of SFDA is finding centers of the fluorophores using Gaussian
fitting [2].

SFDA is designed to be followed by a tracking algorithm, which assigns
detected points on subsequent images to each other using nearest-neighbour
approach [2].

An algorithm called fluoroBancroft [3] detects centers of protein particles.
It is inspired by the Bancroft method used to approximate the position of

3

1. Research

a GPS user.
The algorithm takes into effect two kinds of noises: background noise

and shot noise. The background noise is caused by phosphorescence of the
sample and unwanted excitation (illumination) of samples outside the region
of interest. The shot noise is caused by photons falling at different parts of
a camera inequally.

Distribution of PSF of a protein particle can be described by the Airy func-
tion. Andersson [3] simplifies it as a Gaussian and describes the distribution
of the two kinds of noises using another two Gauss functions. The function
of a pixel value can be estimated as sum of these three functions. In this
function, the pixel value depends on its distance from the particle center and
several constant variables of the system. This dependence is used to present
a function, which finds estimate of position of the center (and therefore also
distance from any pixel to it) using the pixel values.

The previously mentioned function is the cornerstone of the fluoroBancroft.
Computation of the function (and fluoroBancroft itself) has linear com-

plexity depending on the image size [3].
FluoroBancroft proved to reach almost the same precision as the Gaussian

fitting on simulated CCD1 images while being multiple times faster [3].
Parthasarathy [4] assumes that all protein particles are “radially symmet-

ric” in the image. Radial symmetry (also known as rotational symmetry)
is a feature of an object which means that the object looks the same after
rotation.

Therefore, locations of centers of particles lie in places with local maximum
of radial symmetry [4]. Such an approach is about 100 times faster than fitting
2D Gaussian functions to the captured image [4].

Yoshida [5] detects stars on astronomical images. The stars look like small
circular objects [5], similar to proteins particles analyzed in this thesis.

The image is split into a dark background and foreground containing the
stars by thresholding [5]. The images, however, have a brighter center than
the periphery [5] (probably vignetting caused by the camera). Global thresh-
olding2 can’t be used due to this limitation so the threshold must be different
for each image position.

Yoshida computes the threshold using a quadratic flatfield function.
First of all, parameters A–F of the flatfield function are computed. Then

the function is subtracted from the image and the standard deviation σ of the
pixel values is computed. Every pixel having value above 2σ is considered part
of a star, other pixels are suppressed [5]. Adjoining sets of pixels are grouped
together to form stars [5].

Hroch [6] also detects stars. The algorithm has to deal with several im-
perfections of the image caused either by the sensor (noise, hot pixels) or by

1Charge-Coupled Device – technology used in cameras to capture the images
2Thresholding algorithm using only one threshold for the whole image

4

presence of another astronomical object in the area of view (naebulæ, cosmic
ray events).

Stars can be distinguished from hot pixels by looking at their profile [6].
Intensities of star pixels have approximately Gaussian profile while hot pixels
are small dots with a sharp edge [6]. Hroch, therefore, introduces a new
parameter called sharp. This parameter is defined as I0/G0, where I0 is the
maximum pixel value of the object (with background subtracted) and G0 is
estimated maximum of the object using neighbourhood values, if the pixel
values had Gaussian distribution.

Cosmics and other objects often have elliptical shape, compared to almost
perfect circular stars [6]. This difference is captured in shape parameter, which
is used to filter out the non-star objects. Shape is defined as length of the line,
where centers of isophotes3 of the object lie [6].

Zheng et al. [7] detect astronomical objects of circular shape, probably
also stars.

The algorithm presented in their paper focuses on detection of both bright
and faint objects [7]. Especially the detection of a faint object lying next to
a very bright one is a very challenging task.

This task is achieved using two steps: “global” processing of the whole
image and “local” processing of irregular subregions.

The global part consists of smoothing using Gaussian filter, background
subtraction, histogram equalization and detection of the objects using the
Otsu method.

The local step begins with splitting the image into irregular regions using
Watershed. Each region contains at least one bright star. Then the image
is modified using various transforms to increase contrast and smoothed to
remove the noise.

In the preprocessed image, objects are found using “layered object de-
tection”. This algorithm detects stars in iterations – each iteration contains
preprocessing described above and then segmentation using the Otsu method.
Objects detected using the segmentation are saved outside the image and then
deleted from the image. Next iteration, therefore, can focus on fainter objects
without being distracted by the bright ones.

The last step of the “local processing” is deblending – splitting of acciden-
tally merged objects and merging outlying objects to their nearest neighbours.

Schöfer et al. detect cellular compartments using an ellectron microscope
[8]. The compartments are represented by small point labels. The greatest
challenge [8] faces is finding borders of the compartments. A compartment
is represented by a set of points with no obvious border. There is also some
background noise which makes the task even more difficult.

The approach [8] uses to address this problem is finding areas with a high
density of particles.

3Isophote is a line (a loop) in the image where each pixel has the same value.

5

1. Research

Those areas are located using an approximation of the expected intensity
function. The expected intensity function is estimated by blurring a gray-level
image, where the labels have maximum possible value and the background
lowest possible.

The intensity function is thresholded to filter out the background and
segment the foreground cellular compartments.

Glasbey and Roberts [9] analyze spatial distribution of immunogold-la-
belled particles. For each particle, distance to the nearest neighbour is com-
puted. Two cummulative distribution functions are computed – CDF of the
expected distance to the nearest particle from a randomly selected particles
and CDF of the expected distance to the nearest distance from a randomly
selected point (not necessarily particle) on the image.

The CDFs were compared to CDF of a Poisson process (the same number
of particles scattered on the image with an uniform distribution of x and y)
to find out whether the spatial distribution is random.

6

Chapter 2
Terms and concepts

This chapter contains explanation of terms and concepts common in the area
of image microscope processing, which are used in this thesis.

2.1 Fluorescence microscopy
Fluorescense microscopy uses features of some objects called fluorescence or
phosphorescence to achieve images [10]. Both terms fluorescence and phos-
phorescence name ability of an object to absorb energy in for of light and heat
and then emit it [10, 11]. The emitted light is then captured by a camera in
the microscope.

Fluorescent objects emit light for a very short time, lower than 1 µm, while
phosphorescent objects glow longer [10].

camera

sample

light source

(a) Regular light microscope

camera

samplelight source

(b) Fluorescent microscope

Figure 2.1: Microscope type comparison

When capturing an image, it is necessary to send a light ray to the object
of interest (“excite” the object) [10]. The object then starts to emit the light,
which is captured by the microscope’s camera. Note that no external light is

7

2. Terms and concepts

needed on the exact moment when the image was taken (only before it). This
means, that the area of interest might remain completely dark, except for the
fluorescent object [11].

Fluorescence microscopy uses special fluorescent molecules called “probes”,
which are attached to other molecules. Probes mark positions of the other type
of molecules [11]. Therefore molecules of interest don’t have to be fluorescent
in order to be captured using fluorescent microscopy. There only must be an
appropriate molecule type to be bound to them.

2.2 Structured Illumination Microscopy
Input images used by this thesis were created by Structured Illumination Mi-
croscopy (SIM). This technique is able to capture objects smaller than regular
microscopy.

Regular light microscopes4 are “diffraction limited”. The diffraction limit
makes them unable to capture objects lower than half of wavelength of lights
they are using. Regular microscopes use human-visible light (wavelength
about 400–800 nm [12]) so objects smaller than 200–300 nm are invisible to
them [13].

SIM can bypass this limitation and photograph objects smaller than 50 nm
[14].

Other advantages of SIM are the possibility to capture live cells (in con-
trary to e.g. electron microscope, where the object must be dead), speed, price
and good contrast of the result [14].

2.3 Point spread function
Point spread function (PSF) is a function which maps a (infinitely small) point
from the object plane5 to the image plane.

In the ideal world, PSF would be another infinitely small spot [15]. Such
an ideal PSF would result in a perfectly sharp image.

Due to many features of microscope design and physical limitations, the
real PSF is never perfectly small.

Since the point is projected to an area, PSF of close points may overlap,
which makes retrieving of the original point challenging.

PSF of a perfect optical system is Airy’s function [15]. Airy’s function is
very similar to simpler Gaussian function. Therefore, the Gaussian function
can be used to approximate the PSF.

4microscopes which depicts an object by capturing light that the object reflected or
emitted

5real space that is being captured

8

Chapter 3
Input images

This chapter introduces the input microscope images.

Each sample is depicted in series of images. All of the images are grayscale
with a dark background and light protein particles.

Figure 3.1: Example of an input image. The red arrows signalize the line
visualized on figures 3.3 and 3.4.

The histogram of the pixel values (figure 3.2) signalizes that there is no
clear border between the background and foreground pixels.

9

3. Input images

Figure 3.2: Histogram of the input image. Zero value has benn trimmed in
the linear scale histogram for the sake of readability

The figure 3.3 displays values of the image on the line, that is marked by
the red arrows on the figure 3.1. The figure 3.4 displays a detail of the same
row.

Figure 3.3: Values of pixels in one row of the input image

The histogram crearly shows that the gradients are very abrupt and that
it is hard to distinguish a particle from noise based merely on the object’s size.

The image also shows that presumable protein particles have different value
across the image. Particles on the edges of the sample have lower value than
the background on the center of the sample.

10

Figure 3.4: Values of pixels in one row of the input image – selection

As the image 3.5 shows, it is not a trivial task to find the protein particles
on the image. The particles are blurred and the image contains a high amount
of noise.

Figure 3.5: Selection of an input image

11

Chapter 4
Chosen methods

This section describes already existing methods chosen to be implemented,
evaluated and used in the resulting algorithm.

4.1 Filters
A filter is an operation that aims to suppress low or high frequencies in the
image [16].

A filter is often a convolution of the original function with some filter
function. Such filters are called linear.

Equation 4.1 contains filtering of the original function f and the filter
function h resulting in the output function g. Operator ∗ marks convolution.

g(x, y) = f(x, y) ∗ h(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(t, u) h(x − t, y − u) dt du (4.1)

Computing the convolution of two discrete functions is very time-consuming.
There are two approaches solving this issue. One of them is transforming
the image to the frequency domain, multiplying both filters there and then
transforming it back to the spatial domain [16]. Multiplying of signals in the
frequency domain equals convolution in the spatial domain [16].

The other approach is estimating the filter function by a small matrix
called kernel [16].

Equation 4.1 defines computation of a pixel g(i, j) in a discrete linear filter
[16]. Size of the kernel h is M × M , where M is an odd number.

g(x, y) =
⌊ M

2 ⌋∑
t=−⌊ M

2 ⌋

⌊ M
2 ⌋∑

u=−⌊ M
2 ⌋

f(x − t, y − u) · h(t, u) (4.2)

13

4. Chosen methods

4.1.1 Laplacian filter
Laplacian filter approximates the second derivation of the image [17].

Discrete Laplacian filter uses eg. this 3 × 3 matrix as kernel [17]: 0 1 0
1 −4 1
0 1 0

A sharpened image can be obtained by subtracting the second derivation

from the original image [17]. Edges in the sharpened image are sharpened
because the second derivation suppresses the onset of the edge and elevates
the finish of the edge (see fig 4.1).

(a) Original edge (b) Second derivation (c) Sharpened edge

Figure 4.1: Sharpening image using Laplace filter

4.1.2 Prewitt and Sobel operator
Both Prewitt operator and Sobel operator find estimate gradient in each pixel
of the input image [18]. They use gradient to find edges in the image [18].

There are two variants of both operators, one detects horizontal gradients
and the other detects vertical gradients.

Both variants of both filters consist of a 3×3 matrix (kernel) which is
convolved with the image. Kernel for the horizontal filter is called Hx, the
vertical one is Hy.

Figure 4.2 displays kernels for Prewitt and 4.3 for Sobel operator.

Hx =

 1 0 −1
1 0 −1
1 0 −1

 Hy =

 1 1 1
0 0 0

−1 −1 −1

Figure 4.2: Kernels of Prewitt filter

A single image of gradient magnitude is computed as Euclidean distance
of both convolved images: |g(x, y)| =

√
(gx(x, y))2 + gy(x, y))2 [18].

This equation is often simplified to |g(x, y)| = gx(x, y) + gy(x, y) for sake
of performace [19].

14

4.1. Filters

Hx =

 −1 0 1
−2 0 2
−1 0 1

 Hy =

 1 2 1
0 0 0

−1 −2 −1

Figure 4.3: Kernels of Sobel filter

Prewitt and Sobel perform both smoothing and gradient estimation [18].
The gradient estimation is thus less influenced by noise.

Their only difference lies in the smoothing kernel. Prewitt uses simple
box smoothing

[
1 1 1

]
. Sobel’s kernel keeps higher weight on the center

image:
[

1 2 1
]
.

Those kernels are convolved with a gradient estimation kernel
[

1 0 −1
]ᵀ

(or functionally similar
[

−1 0 1
]ᵀ

for Sobel), which produces the kernels
Hx above [18]. Vertical kernels Hy are computed similarly.

4.1.3 Wiener deconvolution
Wiener filter removes noise and de-blurs the image.

Each photograph or microscope image was created as a convolution of the
original object with point spread function (PSF). Photographies also tend to
have noise in them.

Wiener filter relies on the assumption that creation of the image g can be
written as [20]:

g(x, y) = f(x, y) ∗ h(x, y) + w(x, y) (4.3)

where f is the original object, operator ∗ represents convolution, h is the
point spread function and w is level of the nose.

The goal of deconvolution is to find an estimate of the original object f̂
using a function r such as:

f̂(x, y) = g(x, y) ∗ r(x, y). (4.4)

Convolution in the spatial domain is equivalent to multiplication in the
frequency domain. Element-wise multiplication is much less complex opera-
tion than convolution. Therefore, all matrices are converted to the frequency
domain using Fourier transform. Equation 4.5 is the frequency equivalent of
the equation 4.4.

F̂ (u, v) = G(u, v)R(u, v) (4.5)

To solve this equation and equation 4.4, it is necessary to find the function
r or its frequency equivalent R.

15

4. Chosen methods

The function R(u, v) in the Wiener filter is defined using the power (ab-
solute value) of the original signal Pff (u, v) and power of the noise Pww(u, v)
[20].

R(u, v) = H∗(u, v)Pff (u, v)
|H(u, v)|2 Pff (u, v) + Pww(u, v)

(4.6)

The function H(u, v) is the frequency equivalent of the PSF.
The equation 4.6 contains the power Pff of the original signal, which is also

subject of the computation. This issue can be partly addressed by dividing
both numerator and denominator by Pff (u, v), which results in the equation
4.7.

R(u, v) = H∗(u, v)
|H(u, v)|2 + Pww(u,v)

Pff (u,v)

(4.7)

The only unknown part of the right side of the equation remains Pww(u,v)
Pff (u,v) .

This expression is division of the noise power by the power of the original
signal.

Let’s assume that the value of the expression doesn’t change too much
across the image – the ratio of noise to signal is always about the same.

The noise to signal ratio can be replaced by a constant α ∈ [0, 1].
The filter function is described in the equation 4.8.

R(u, v) = H∗(u, v)
|H(u, v)|2 + α

(4.8)

And finally, the estimation of the image in the frequency domain is:

F̂ (u, v) = H∗(u, v)G(u, v)
|H(u, v)|2 + α

. (4.9)

4.1.4 Gaussian filter
Gaussian filter is used to blur images [21]. It suppresses random noise but
also blends details (unlike bilateral filter in section 4.1.5). Gaussian filtering
is effective in removing Gaussian noise but not less effective in removing salt
and pepper noise [21].

The kernel of the Gaussian filter is computed by the 2D Gaussian function:

G(x, y) = 1
2πσ2 exp

(
−x2 + y2

2σ2

)
, (4.10)

where σ2 is the variance of the Gaussian function (assuming that there is
the same variance for the horizontal and vertical direction) and exp(x) is the
exponential function ex.

16

4.1. Filters

Figure 4.4: Visualization of a 2D Gaussian function and its discrete version

Value of each pixel in the blurred image is weighted average of other values
in the image [22]. The central pixels in the Gaussian function have a higher
value than the pixels on the periphery [21]. Therefore, value of each pixel in
the blurred image is mostly influenced by its direct neighbourhood.

The Gaussian function must be discretized to be used as a kernel in discrete
filter according to equation 4.2. The Gaussian function is never zero and thus
the kernel function would be infinite. Therefore, the peripheral area of the
function with low values has to be cut off [22].

It is also possible to speed up the calculation of the convolution by com-
puting the horizontal and vertical components independently [22]. First, the
image is convolved with a 1D Gaussian function in one direction and then the
result is convolved with a 1D Gaussian in the other direction.

The 1D Gaussian is computed as:

G(x) = 1√
2πσ2

exp

(
− x2

2σ2

)
. (4.11)

4.1.5 Bilateral filter
The bilateral filter is the only non-linear filter described in this chapter. It
means that the filter can’t be described as a convolution of some kernel with
the image because the kernel is unique for each pixel [16].

Bilateral filter smooths images while preserving edges [23].
Blurring filters often compute the value of a pixel from its neighbours. Such

filters rely on the assumption that the pixels around the currently computed
pixel are similar because they depict the same object.

It s often true but this assumption fails if there is a sharp edge in the
image. Gauss filter and other similar filters blur the edges.

Bilateral filter introduces a different definition of similarity of the pixels.
It uses a combination of “closeness similarity” and “range similarity” [23] –
a pixel is similar to another pixel if they are located close to each other and
if they have similar values.

The most often way to compute closeness similarity in the bilateral filter
is the Gaussian function but it is possible to use other functions [23].

17

4. Chosen methods

(a) Input image
(b) Kernel for the center
pixel (c) Filtered image

Figure 4.5: Bilateral filter. Image source: [23].

Kernel of the bilateral filter is computed for each pixel independently as
multiplication of the Gaussian (or another) function and difference of the
center pixel to the other pixels (see equation 4.12). Figure 4.5b shows an
example of such kernel.

Equation 4.12 describes computation of discrete kernel hb for pixel (x, y)
using the closeness similarity function hc and the range similarity hr.

hb(t, u) = hc(t − x, u − y) · hr (f(x, y) − f(t, u))∑width
r=1

∑height
s=1 hc(r − x, s − y) · hr (f(x, y) − f(r, s))

(4.12)

A common closeness similairity function is the Gaussian function [24]. The
range similarity often is the absolute value [23]. In such case, the kernel would
look like this [24]:

hb(t, u) = G(t − x, u − y) · |f(x, y) − f(t, u)|∑width
r=1

∑height
s=1 G(r − x, s − y) · |f(x, y) − f(r, s)|

. (4.13)

4.2 Thresholding
Thresholding is a segmentation technique where pixels with value higher or
equal specified parameter τ are considered to be part of the foreground and
pixels with the value lower than τ are part of the background [25]. The input
image is segmented into several foreground blobs divided from each other by
the background.

There are three common types of thresholding which treat the parameter
τ differently – global, adaptive and local.

Global thresholding uses the same value of τ across the whole image [25].
Adaptive thresholding computes the value of τ using the position of the pixel
[25]. In the local thresholding, τ depends on the neighbourhood of the pixel
[25].

18

4.3. Flat-field correction

4.3 Flat-field correction
Flat-field correction fixes effects of non-uniform illumination of a photograph
[26].

Pixels in the center of a photograph tend to be lighter than those on the
margin even when capturing the same object. This phenomenon is called
vignetting and is caused by physical limitations of the lens and the aperture
[27].

There is plenty of imperfections in camera sensor illumination beside vi-
gnetting. A large variety of approaches were created to eliminate them.

As Kask et al [26] point out, those approaches assume that there is a func-
tion with the pixel location as input, that influences the value of the pixel
in the processed image. This function can be called shading function [26] or
flat-field function [5].

Generally, there are two types of the flat-field function – additive func-
tions whose values are added to the original image (added background) and
multiplicative whose value is multiplied with the pixel values (vignetting or
another illumination imperfection) [26].

Construction of the distorted image I using the true object image U is
described in the function 4.14. SM and SA are multiplicative and additive
flat-field functions.

I(x, y) = U(x, y) · SM (x, y) + SA(x, y) (4.14)

The true function can be estimated using estimations of the functions ŜM

and ŜA:

Û(x, y) = I(x, y) − ŜA(x, y)
SM (x, y)

. (4.15)

A flat-field correction technique can use both of the flat-field functions or
just one of them [26].

Yoshida [5], mentioned in the Research chapter, uses the additive flat-field
function in equation 4.16 to estimate the background of an image depicting
stars.

ŜA(x, y) = a + bx + cy + dx2 + ey2 + fxy (4.16)

4.4 Region growing
Region growing is a segmentation technique that finds regions that satisfy
some predefined similarity criterion [28].

The algorithm needs a set of starting pixels (seeds) which are then ex-
panded.

The algorithm consists of three simple steps:

19

4. Chosen methods

1. Choose one seed pixel. Insert the seed pixel into an empty set called
“region”.

2. Find all pixels neighbouring to any pixels from the region. Add them
into the region if they are similar to the seed pixel. The similarity of the
pixels is checked using the similarity criterion.

3. Repeat step 2 until there are no pixels to add.

4. Repeat step 1 with another pixel until there are no unprocessed seed
pixels.

4.5 SRRF
Super-Resolution Radial Fluctuations (SRRF) is a purely analytical approach
for increasing image resolution [29].

“Purely analytical” means that it can increase the resolution of already
existing microscope images and doesn’t require a specific process during ob-
taining the image – unlike methods like PALM, STORM and STED to which
it is often compared [13, 29, 30].

The input of the algorithm is a series of images of point sources, not neces-
sarily fluorescing protein [29]. The image recorded by a microscope resulted as
convolution of two functions: original point sources and point spread function
[29] (PSF, function describing how does the microscope record point source).
The goal of the algorithm is to obtain an image as close as possible to the
original point sources.

The algorithm relies on the assumption that the image of a particle con-
volved with the PSF is radially symmetric with center in the original position
of the particles.

The word symmetry in image processing means invariance of the image to
some transformation. Radial symmetry is invariance to rotation around the
center.

Common approximations of the PSF like Airy’s function or Gaussian func-
tion are invariant to rotation.

SRRF breaks every pixel in the image into subpixels.
A special transform called “radiality” is applied to each subpixel in the

image. Radiality is computed inside a fixed-size window around the subpixel.
This transform highlights subpixels with high radial symmetry inside the win-
dow [30].

To suppress the influence of noise, SRRF multiplies the radiality by the
input intensity [29]. Noise in the image might be radially symmetric but it
often has a low intensity.

If there are more input images in the input series, one single radiality
image is created from them, which also decreases the level of noise [29, 30].

20

4.6. Morphological operators

4.6 Morphological operators
Morphological operators is a set of image analysis techniques [31]. They
extract image components such as boundaries, skeletons, convex hulls [31].
Those components can be used to analyze the shape of objects in the image
[32].

Morphological operators are designed to process binary images but they
were generalized to be used for grayscale or colour images too [31].

The image is analyzed using a matrix called “structuring element”. The
structuring element has only binary values (can be also perceived as a set of
points).

Most of the structuring elements are squares or circles. One point, mostly
the center, of the structuring element is called the origin.

Each pixel of the output image is computed using the original input im-
age and the structuring element with origin placed on the currently computed
point. Pixels of the input image that are below positive pixels of the structur-
ing element serve as an input of some operation – the operations are different
for different morphological operators.

4.6.1 Basic operators
The operator called dilation expands the original object in the image.

Value of a pixel in dilated image is 1 if any of the input values (below the
structuring element) are 1. The pixel value is 0 only if all of the values are
also 0.

The operator called erosion reduces dimensions of the object in the image.
Value of a pixel in an eroded image is 1 if all the values below the struc-

turing element are also 1.
Those two operators are combined to create another, more complex mor-

phological operators.

4.6.2 Opening and closing
Operations called opening and closing are composed using dilation and erosion.
Assuming I is the input image, they are defined as:

opening(I) = dilation(erosion(I)), (4.17)

closing(I) = erosion(dilation(I)). (4.18)

4.6.3 Top hat transform
Top hat transform suppresses slow trends in the image, while it lefts abrupt
changes of values untouched [33]. For example, it deletes gradual changes of

21

4. Chosen methods

the background caused by vignetting. Objects smaller than the structuring
element won’t be affected by the transform [33].

Top hat enhances image contrast [33].
The top hat transform is obtained as [33]:

tophat(I) = I − opening(I). (4.19)

A similar operation called bottom hat [33] is described by this formula:

tophat∗(I) = closing(I) − I. (4.20)

While top hat retrieves light objects on a dark background, the bottom
hat detects dark objects on a light background [34].

4.6.4 Reconstruction by dilation
The reconstruction by dilation operator removes objects smaller than the
structuring element but doesn’t (significantly) affect the bigger objects [35].

This operator doesn’t use a structuring element but rather another image
called a mask with equal size to the input image.

Morphological reconstruction can be understood as repeating of some op-
eration (in this case dilation) until the output does not change.

The resulting image must “fit under” the mask. No pixel of the output
image can have the value higher than the corresponding pixel in the mask. If
it does, its value is lowered during every step to satisfy this constraint.

4.6.5 H-maxima
H-maxima transform suppresses all “domes”, whose height is lower or equal
a threshold h [35]. It also lowers the value of all pixels by h.

It is defined in equation 4.21, where Rδ
I(f) is reconstruction by dilation of

f using the mask I.

HMAXh(I) = Rδ
I(I − h) (4.21)

22

Chapter 5
Design

This chapter presents the algorithm used to detect and analyze the protein
particles. The chapter describes the approach to the problem and how several
types of algorithms were used to solve it. It also describes the measures used
to describe distribution of the particles.

There are two possible design approaches: detecting particles on the image
to be used as an input for further analysis or to estimate number of particles or
other statistics measure using the raw image. Example of the measure using
the raw image is estimation the number of particles using number of pixels
above some threshold.

This thesis focuses on the protein particle detection approach.
The particle position data can be used to easily compute serveral statistical

measures. Estimation using the raw image can provide only those measures,
that have been previously implemented. For example, if the number of parti-
cles have been estimated, there is no easy way to use it to tell how close the
particles tend to be to each other.

There are several downsides of the chosen approach too. It is more difficult
to implement compared to estimation of several simple measures. There are
also several features of the image that make the task challenging – like very
close particles that are hard to distinguish from each other in the image.

5.1 Detection algorithm
The detection algorithms detects the particles in the image. The particles are
represented by one pixel signalling their location and also by the areas they
covers.

The algorithm for particle detection presented in this thesis consists of
three phases: Preprocessing, Detection and Validation.

The algorithm uses simple image processing methods rather than meth-
ods of machine learning. Although machine learning algorithms (like neural

23

5. Design

Preprocessing Detection Validation

Image Point coords,
Image masks

Point coords,
Image masksImage

Figure 5.1: Components and dataflow of the particle detection algorithm

network) might be better for the task, they usually need a big data set to be
evaluated.

The input dataset contains a limited set of images with thousands of par-
ticles in them. Using a machine learning technique would probably result in
overfitting and inability to process other images of a different type of pro-
tein (maybe even different image of the same protein types). Furthermore,
annotation of all the particles on those images would be a very challenging
issue.

5.2 Preprocessing phase
The preprocessing phase modifies the image to increase the detection perfor-
mance. This phase is optional.

Both the input and output of the preprocessing phase is an image.
There can be more than one algorithm in the preprocessing phase. The

output image of one algorithm is the input of another.
These preprocessing methods were used:

• SRRF

• Correction using flatfield function

• Background suppression using flatfield function

• Laplacian filter

• Gaussian filter

• Bilateral filter

• Wiener deconvolution

• Top hat

• Image gradient detection

– Prewitt operator
– Sobel operator

24

5.2. Preprocessing phase

5.2.1 SRRF

SRRF (section 4.5) is an image upsampling technique. It highlights the local
maximums and deepens ridges between them.

Therefore, this approach can be combined with all detection algorithms
mentioned in section 5.3.

SRRF also improves the performance of the preprocessing methods.
SRRF can be added before other algorithms or after them. Putting it be-

fore is generally a better approach because the other preprocessing algorithms
might use the upsampled image (while SRRF wouldn’t utilize preprocessed
image too much).

SRRF also has several drawbacks.
An expected particle size (window radius) must be set before the algo-

rithm runs. Choosing a wrong parameter decreases performance of the whole
particle-detection process.

SRRF is also more time-consuming than other algorithms, although the
parallel computation of radiality makes this disadvantage less significant.

5.2.2 Flat-field correction

In this method, the background of the image is detected and subtracted using
the flatfield function.

This method is inspired by Yoshida [5], who uses the flatfield function in
this form:

SA(x, y) = a + bx + cy + dx2 + ey2 + fxy, (5.1)

where x and y are coordinates of the pixel in the image and a–f are
coefficients computed before the first run of the algorithm.

There are two possible usages of the flatfield function.
Yoshida erases every value lower than SA(x, y) + kσ.
Constant k must be set manually (Yoshida uses k = 2) and σ is the

standard deviation of pixel values. The standard deviation is approximated
as the average of |I(x, y) − SA(x, y)|.

The second possible usage is to subtract the background estimation SA(x, y)
from the image.

Both approaches were tested in this thesis but none of them noticeably
improved the detection.

Yoshida doesn’t explicitly mention how the coefficients a–f are computed.
Therefore, an approach for their computation was created using the least
squares method.

25

5. Design

(a) Thresholding of the image using flatfield function. The solid line visualizes the
flatfield function, red dotted line is Flat(x, y) + cσ. Pixels below the dotted line are
suppressed.

(b) Normalization using flatfield function. The red line visualizes flatfield function
multiplied by -1. The flatfield function is subtracted from the image (red line is
added).

Figure 5.2: Thresholding and normalization using flatfield function. The blue
pixels visualizes protein particles, gray pixels are background.

5.2.2.1 Computation of the flatfield function

The flatfield function contains coefficients a–f , which have to set before pro-
gram run. They can be set either manually by the user or calculated from the
image. The automatical calculation allows processing of very diverse images
and doesn’t confuse the user with various parameters to be set.

The coefficients are computed using a reference image. If there is just one
input image, it is also used as the reference image. This approach is called
retrospective flat-field correction.

If the input is a series of images, a “median image” is computed – see
section 5.2.2.2. This series of images is specified before the algorithm runs.
Such correction is called prospective.

Such coefficients are chosen, that minimize difference (error E) between
the flat-field function and actual numbers of a reference image:

E =
width∑
x=1

height∑
y=1

(I(x, y) − SA(x, y))2. (5.2)

The lowest possible error is computed using the least squares method. The

26

5.2. Preprocessing phase

(a) Original image (b) Retrospective flat-field
correction

(c) Prospective flat-field
correction

Figure 5.3: Images processed by the flat-field correction. The image has been
zommed in to the top left edge of the image so the difference is more visible.
Nevertheless, the correction is very subtle.

aim is to find the minimum of this function:

E =
width∑
x=1

height∑
y=1

(I(x, y) − (a + bx + cy + dx2 + ey2 + fxy))2. (5.3)

Gradient of a function should equal zero vector in the minimum. It means
that partial derivation of the function by each coefficient should equal 0.
Therefore partial derivation for each coefficient is created, like this one for
C:

∂E

∂c
=

∂
∑width

x=1
∑height

y=1 I(x, y)2 − 2I(x, y) + SA(x, y)
∂c

(5.4)

∂E

∂c
=

width∑
x=1

height∑
y=1

−2yI(x, y) + 2cy + 2y(a + bx + dx2 + ey2 + fxy) (5.5)

Setting the partial derivation expression to 0 and moving the image-related
member to the another side of the equation will result in:

width∑
x=1

height∑
y=1

ay + bxy + cy + dx2y + ey3 + fxy2 =
width∑
x=1

height∑
y=1

yI(x, y) (5.6)

The coefficients can be distributed outside the sum, which will lead in
a equation of 6 variables.

a
∑

y + b
∑

xy + c
∑

y + d
∑

x2y + e
∑

y3 + f
∑

xy2 =
∑

yI(x, y) (5.7)

27

5. Design

The previous equation contains simple sums instead of ∑width
x=1

∑height
y=1 for

the sake of readability.
Similar equations are computed for remaining coefficient resulting in 6

equations of 6 variables, which can be wrote in matrix form and solved using
Gaussian elimination method.

5.2.2.2 Computing reference image

A reference image is computed if there are more input images specified.
Every pixel in the reference image is computed as median (or similar mea-

sure, see below) of the particular pixel across all the images.
Using the median helps to reduce the influence of the proteins on the flat-

field function so it only describes the background. Mean (or another similar
measure) of the pixels might be influenced by very high pixels of the fore-
ground.

However, using the median might fail if the pixel very often contains a pro-
tein particle. Median is a value that splits a sorted array of values into two
halves, each containing 50% of values. If the appearance of a protein is very
often (more than 50% of the frames), then the median will be influenced by
the foreground, not background.

A new measure was introduced (called “generalized median”), which splits
the sorted array into first half containing k% of values and the second one
containing the rest. The parameter k can be any real number between 0 and
1 (including).

The purpose of the generalized median was to find a spot where the pixel
is influenced only by the background but not by outlier values caused by the
noise.

The tests have shown that the performance of the algorithm doesn’t de-
pend on the value of k. It means that the generalized reference image didn’t
bring any advantage over the regular median.

5.2.3 Laplacian filter
Laplacian filter is described in section 4.1.1.

The Laplacian filter is approximation of the second derivation of the image.
The approximated second derivation is multiplied by a parameter k and then
subtracted from the original image.

The parameter k ∈ R controls intensity of sharpening. Too big k causes
the image to be noisy. Too low k makes the image blurry. A common value
for k lies between 0 (equals to the original image) and 1 but it is possible to
have k higher than 1 or even negative. A negative k blurs the image instead
of sharpening.

Another parameter of the algorithm is the size of the kernel. The default
Laplacian filter has kernel of size 3.

28

5.2. Preprocessing phase

(a) Original image (b) Image after applying
Laplacian filter, k = 0.02,
kernel size=5

(c) Image after applying
Laplacian filter, k = 0.3,
kernel size=5

Figure 5.4: Images after application of the Laplacian filter

Laplacian filter was intended to be used together with region growing algo-
rithm and with combination of local maximum and h-maximum. The sharper
edges and a bit deeper “valley” between the protein particles were supposed
to stop the growing algorithm or to prevent h-maximum to accidentally merge
two particles. It may (in theory) help the thresholding detector for the same
reason.

The greatest disadvantage of the algorithm is that it intensifies noise in
the image. It showed up that this disadvantage surpassed its possible advan-
tages. Alorithms containing Laplacian filter achieved worse results than those
without it.

5.2.4 Gaussian filter

Gaussian filter smoothens the image, which prevents false detections for al-
gorithms based on local maximums (region growing, local maximums) and
preprocessing methods that search for gradients (Prewitt operator, Sobel op-
erator, Top hat).

Its disadvantage is that it also deletes some features. It might erase ridges
between protein particles and even blend the particles together.

5.2.5 Bilateral filter

Bilateral filter smoothens the image and therefore it has the same advantages
as Gaussian filter described above.

When comparing to the Gaussian filter, the main advantage of the bilateral
filter is its ability to preserve sharp edges. This means that the ridges between
the particles have a bigger chance to remain in the image.

29

5. Design

(a) Original image (b) Image after applying
Gaussian filter, σ = 0.5,
kernel size=5

(c) Image after applying
Gaussian filter, σ = 2, ker-
nel size=5

(d) Original SRRF prepro-
cessed image

(e) SRRF preprocessed im-
age after applying Gaus-
sian filter, σ = 2, kernel
size=15

(f) SRRF preprocessed im-
age after applying Gaus-
sian filter, σ = 10, kernel
size=15

Figure 5.5: Images after application of the Gaussian filter

(a) Original image (b) σspace = 100, σcolor =
50

(c) σspace = 2, σcolor = 100

Figure 5.6: Images after application of the Bilateral filter

30

5.2. Preprocessing phase

(a) Original image (b) Image after applying
Wiener filter, σ2 = 0.1

(c) Image after applying
Wiener filter, σ2 = 10

Figure 5.7: Images after application of the Wiener filter, α = 0.95

5.2.6 Wiener filter
The Wiener filter (described in section 4.1.3) removes noise and estimates the
original image before application of the PSF.

The Wiener filter was intended to sharpen the image and remove noise.
Local maximum detection algorithms often struggle with noise which is

falsely detected as a local maximum. Problem of the thresholding algorithm
is insufficient segmentation due to very shallow ridges between the particles.
This issue is caussed by convolution of the original perfectly segmented par-
ticles with the PSF, which blurred the image.

Gausian function was asumed to be the PSF. The Gaussian funciton has
a parameter σ (see equation 4.10), which has to be estimated.

Another parameter of the algorithm is the noise to signal ratio, noted α
in equation 4.9.

Testing of the Wiener filter revealed that it doesn’t enhance performance
of the local maximum algorithm. It also didn’t enlarge the ridges between
particles.

Resolution of the input image is probably too low to capture the particles
in more than few pixels. When transformed to the frequency domain, the fre-
quencies describing the particles are very high ones – as well as the frequencies
describing the noise. The algorithm, therefore, can’t differentiate noise from
the particles.

5.2.7 Top hat
The top hat transform (section 4.6.3) removes low frequencies and keeps only
objects smaller than the structuring element. Therefore, it is able to remove
gradual background change.

The structuring element of top hat is a circle with the diameter of the
biggest expected particle size. Top hat with this structuring element removes

31

5. Design

(a) Original image, none of the two
threshold segments the image per-
fectly

(b) One threshold detects all the
particles after applying top hat

Figure 5.8: Thresholding with top hat transform and without it

(a) Original (b) Kernel width = 11 px (c) Kernel width = 61 px

Figure 5.9: Result of top hat transform with different kernel sizes.

everything except for the protein particles.
Top hat also eliminates one problem of thresholding, which is uneven

brightness of the particles and clusters of very close particles that might par-
tially overlap (see Figure 5.8). This feature of top hat allows one threshold to
segment the whole image.

The greatest disadvantage of top hat is its inability to process clusters of
very close particles. Such a clusters might be completely erased.

If there are not enough ridges between the particles, top hat detects them
as one big object. This object doesn’t fit inside the structuring element so it
is removed.

5.2.8 Prewitt and Sobel operators
Both Prewitt and Sobel operators (section 4.1.2) estimate gradient magnitude
in the image and thus may find edges of the protein particles.

Three modifications of both operators were created:

1. pure Prewitt/Sobel operator estimating the first derivation of the image,

2. double Prewitt Sobel operator using the second derivation of the image
(repeated operator two times).

32

5.2. Preprocessing phase

SRRF Sobel op. Threshold

Figure 5.10: Detector using gradient magnitude created by the Sobel operator

SRRF Prewitt op. Threshold

Figure 5.11: Detector using gradient magnitude created by the Prewitt oper-
ator

3. Original image with the first derivation subtracted from it.
This method helps to segment pixels because it highlights the “ridges”
between protein particles.

Kernels of the operators were modified to detect slowly graduing edges.
The kernel size was increased to n × n where n is any odd number greater or
equal 3. For Hx, every first and n-th column contains −1 for Prewitt operator
and 1-D gaussian for Sobel operator.

The first derivation of both operators was intended to be used with thresh-
olding as a single detector.

33

5. Design

5.3 Detection phase
During the detection phase, particles are located in the image. A particle
could be represented either by its position (one point) or as a set of adjacent
pixels represented by an image mask. This phase consists of only one detection
algorithm.

The input of the detection phase is an image and the output is a list of
points and/or list of image masks.

These detection methods were used:

• Local maximums (non-maximum suppression)

• Region growing

• Thresholding

5.3.1 Local maximums
The local maximum algorithm detects points that are local maximums in
their neighbourhood. The detection algorithm is also supposed to be able to
segment the image for further processing, therefore the basic non-maximum
suppression algorithm was modified to accomplish it.

Two slightly different approaches were tested.
The first approach suppresses all values in the image that are not maxi-

mums in their 4-neighbourhood6. Each group of adjacent pixels (in 4-neigh-
bourhood) covers one detected particle.

The second approach uses a circle mask of diameter r, where r is an odd
number specified as a parameter. The mask is moved across the image. The
pixel in the center of the image is considered local maximum if there is no
other pixel covered by the circle mask with the value greater than the center
pixel.

If the pixel is a local maximum, it is marked as the center of a particle.
All pixels inside the circle are considered to be part of the particles and are
removed from teh image.

The second approach is able to segment big clusters of particles. Particles
detected by the second approach have greater areas – more points are detected
as local maximums and appended to a particle because the actual adjacent
local maximums have been erased.

The first approach focuses only on the actual local maximums and the
rest of the image is left unsegmented. See Figure 5.12 where the Plateau
approach detects only “plateaus” of local maximums while the deep algorithm
also segments non-maximum pixels.

6direct left, right, bottom and top neighbours of the pixel

34

5.3. Detection phase

(a) 1st approach (b) 2nd approach

Figure 5.12: Segmented 1D arrays using different types of local maximum
algorithm. Colour of the pixel denotes particle to which the pixel belongs.
Height of the bar signalizes pixel value.

The red pixel on the red-green border in the image might also belong to the
green particle and its colour depends only on the order of processing. Same
applies to the green pixel on the green-blue border.

5.3.2 Region growing
Region growing algorithm, described in section 4.4, finds regions that satisfy
some similarity criterion.

The region growing algorithm doesn’t specifically describe the similarity
criterion or the seed selection approach. Those parts of the algorithm depend
on its application.

The protein particles are local maximums. Therefore, a very simple local
maximum algorithm was created to find the seeds: a pixel is selected if it
is a local maximum in its 4-neighbourhood. The seeds also must have value
higher than a constant τ1. This local maximum algorithm is simpler than
the two local maximum algorithms introduced in the section 5.3.1 but it is
sufficient.

The similarity criterion involves both spatial and color similarity.
Two pixels are similar if their Eucleidian distance is not higher than the

expected maximum particle size and the difference of their values is not higher
than a constant τ2.

All overlapping regions are merged together because they probably contain
the same particle.

Lowering the constant τ2 makes the algorithm more sensible to local maxi-
mums but there’s a risk that one point will be detected twice. Higher τ2 might
result in an accidental merge of two particles.

5.3.3 Thresholding
This algorithm applies global thresholding, described in section 4.2, on the
image and groups together adjacent pixels above the threshold. Each group
of pixels covers one protein particle.

Only the global thresholding was implemented. It means that the thresh-
olding parameter τ is the same for the whole image. This approach is simpler

35

5. Design

than the others but it is possible to simulate more advanced types of thresh-
olding using preprocessing. For example, flatffield correction applied before
thresholding is similar to thresholding with the variable parameter τ depend-
ing on the image position.

Experimenting with the flatfield function showed that the input images
don’t suffer from significant vignetting and thus global thresholding is suffi-
cient.

There are several downsides to the thresholding algorithm. If the threshold
is too high, some valid points are not included in the result. If the threshold
is low, adjacent proteins might not be segmented (the rigde between them has
too big values).

This issue was addressed by various preprocessing and validation tech-
niques:

• Top hat transform extracts small objects from the image. It suppresses
ridges between the particles, which allows to segment the particles. The
top hat transform also reduces the effect of non-uniform illumination
[34].
On the other hand, it removes big objects from the image. If there is
a big cluster of particles with no significant ridges between them, top
hat transform completely clears it.

• Laplacian filter and top hat – Laplacian filter highlights edges but might
also bring more noise to the image. Laplacian filter was supposed to
magnify ridges in big clusters, which is the biggest weakness of the top
hat transform.

• Flatfield correction suppresses vignetting and transforms the global thresh-
olding to de facto adaptive thresholding.

Otsu method for estimation of the parameter τ was also tested. It was
supposed to find the spot between the foreground and background but it
didn’t perform well.

5.4 Validation phase
The validation phase filters out false detections and merges particles that were
accidentally split by the detector. Like preprocessing, the validation phase is
optional and it could consist of a series of validation algorithms.

Both input and output of the validation phase is a list of points and/or
list of image masks.

These validation methods were used:

• H-maximum

• Protein size validator

36

5.4. Validation phase

5.4.1 H-maximum
H-maximum validation method is inpired by the h-maxima morphology op-
erator (section 4.6.5). H-maxima removes all “domes” (objects that are local
maximums) with height lower than a threshold h.

The morphological operator might be used in the preprocessing phase but
it would be time-consuming. Therefore, a simple validation approach with
similar function was created.

The validation algorithm removes objects that are not local maximums or
are not delimited by a deep ridge from the rest of image.

It also serves as a segmentation algorithm.
It is defined by the following steps:

1. Select a particle p = (x, y) from the set of particles detected by the
Detection phase.

2. Remove the particle if I(x, y) < h.

3. Let S be set of pixels that have value higher than I(x, y) − h. All pixels
in S form one segment of adjacent pixels. (It can be visualized using the
green/red areas in figure 5.13.)

4. Check whether there are any another particles detected inside S.

a) If not, continue to 5.
b) If yes and p is the highest of them, removed those particles and

continue.
c) If yes and there is a particle whose value is higher than p, removed

p.

h

h
h

Figure 5.13: Example of H-maximum validation on a 1D image. Two objects
identified by local maximums were detected in the previous step. The green
objects are higher than h. The red object is not separated from the center
object by a ridge of depth at least h. The green objects are perserved, the red
one will be filtered out (merged to the center object). Image from [36].

37

5. Design

5. Proceed to 1 and select another particle until there are no unprocessed
particles.

6. All particles that weren’t removed are the result of the algorithm.

The h-maximum algorithm doesn’t only filter out the particles but it also
segments the image. All pixels in set S belong to the particle p.

5.4.2 Protein size validator
Validator of protein size counts all pixels that have been assigned to the par-
ticles in the detection step.

The validator aims to delete noisy pixels that have been accidentally de-
tected as proteins. If the detected area is too small, there is a big chance that
the detected object is not protein particle.

The size validator relies on the quality of the segmentation algorithm. This
turned out to be the greatest weakness of the algorithm.

The size validator didn’t bring additional performance even on sole detec-
tion algorithms without preprocessing. Region growing and threshold algo-
rithms were tested because the local maximum algorithm finds particle centers
only.

5.5 Selected combinations
These sequences of image processing methods proved to be succesful for pro-
tein particle detection. Two combinations with SRRF and two without it were
chosen. Their results can be found in chapter 7.

The first algorithm performed best during testing and therefore it was
chosen as the definite result of the detector design task.

SRRF Local
maximums

H-maximum

38

5.5. Selected combinations

SRRF Gaussian blur Threshold

Top hat Threshold

Subtract
Prewitt

Region
growing

39

5. Design

5.6 Distribution analysis
The goal of the thesis is to support biologists in finding differences in images
of (presumably) two different types of proteins.

This thesis focuses only on very generic techniques. It is not possible to
know which features of the distribution to focus on without good knowledge
of proteins.

Therefore, a very important part of the distribution analysis is creation of
a visual representation of the distribution. A person trained in the field can
use the representation to find some important features in it.

Another part of the distribution analysis is answering these three questions:

1. How many particles are in 1 mm2 of the sample?

2. Do the particles tend to form clusters or are they spaced evenly?

3. Is the density of the particles evenly distributed across the image?

5.6.1 Particle count
Answering the first question, although simple, might be very useful. For this
reason, number of the particles in each image is counted.

The images often have a different size so the number of particles must be
divided by number of pixels in the image and then multiplied by the pixel-to-
mm conversion ratio.

5.6.2 Expected intensity function
Estimation of the expected intensity function visualizes the density of particles
in the image and highlights the areas, where the density is high.

This method is inspired by Schöfer et al. [8], who use the intensity function
to find borders between cellular compartments.

The visualisation algorithm consists of the following steps:

1. Positions of the protein particles are drawn to a blank image. Each
particle is a small white circle.

2. The image is blurred. Schöfer et al. [8] use a cone as the blur filter
kernel. In this thesis, the Gaussian function is used.

3. Areas with high density are highlighted using the thresholding algorithm
(the threshold obtained by the Otsu method). The edge between back-
ground and foreground is marked in the image.

Unlike Schöcher et al. [8], the thresholding in this thesis only highlights
the densest areas and doesn’t demarcate any object.

40

5.6. Distribution analysis

5.6.3 Nearest neighbour analysis

The nearest neighbour analysis provides a numerical value that describes
whether the particles are clustered or uniformly spaced.

The nearest distance uses distances between each point and its closest
neighbour [37]. The mean of those distances is computed to obtain a single
value [37]. This value is supposed to be compared with the expected mean
distances [37].

It is also possible to use the data differently than just computing the mean
value. Glasbey and Roberts [9] use the cumulative distribution function of
the distances.

In this thesis, the distances were visualized in a box plot. The box plot
contains more information than a single value and offer a wider possibility of
comparison – including the common mean, which is marked on the box plot.

The plots are compared to similar plots of a randomly generated image
with the same size and the same number of particles (similarly to Glasbey and
Roberts [9]).

If the particles tend to form clusters, the distances to the closest particle
will be lower than distances between more evenly distributed particles [9].

5.6.4 Ripley’s K–function

Ripley’s K-function is a tool for analyzing samples of spatial random processes
[38].

If K(r) is the K-function in a Poisson process with density λ, then λK(r)
refers to the expected number of points in a ball with radius r around a ran-
domly chosen point of the point process [39]. The center point itself is not
counted [39].

The particles located in the image can be interpreted as a random process.
The value of K-function of a particle is the number of particles with distance
up to r from the currently processed particle.

This metric can be used to answer both questions 2 (clustering) and 3
(density).

If the particles tend to create clusters, the number of the neighbouring
particles is high. If the particles are distributed unevenly across the image,
variance of the particle counts is high.

Unlike the nearest neighbour analysis, Ripley’s K-function can describe
characteristics of particles at several different scales [38]. However, this ad-
vantage also brings the necessity to choose a value of the radius r.

The value of r was chosen to fit (on average) 5 particles in it according to
equation 5.8.

Of course, this value is different for images with a different density. Radius
in very images with big particle density will be smaller than radius in images

41

5. Design

where the particles are sparse. This feature eliminates the necessity to divide
the number of particles by the density λ.

Let |I| be number of pixels in the image, |T | number of detected particles
and k the desired mean number of particles in the circle (set to be 5, as
mentioned previously). Then, the radius is computed as follows:

r =
√

k|I|
π|T |

. (5.8)

This equation is based on the fact that there are πr2 pixels in each circle
so there are approximately λπr2 particles in the circle.

However, the radius is unknown while number of the particles in the circle
k has been established before. Therefore, the expression has to be modified:

r2 = k

λπ
. (5.9)

Replacing density λ by |T |/|I| and finding the square root of the expression
results in the equation 5.8.

Box plots of the Ripley’s K-function have been created to allow visual
comparison of the distribution of particles in different images.

The data for the box plots were computed by this algorithm:

1. Compute radius r for the image using equation 5.8.

2. Select a particle p.

3. Create a circle with the radius r around the particle p.

4. Count the particles inside the circle (excluding the particle p).

5. If there are any unprocessed particles left, proceed to 2 and select an-
other particle.

6. Result of the algorithm is a list of particle counts, which can serve as
the input of a histogram or a box plot.

42

Chapter 6
Implementation

This chapter describes all programs that were created to achieve the goal of
this thesis.

The most important of them is the particle detection program that detects
locations, areas and distribution of particles.

Another program is a plugin to image processing program ImageJ7. The
plugin uses outputs of the detection program and makes its usage more user
friendly.

Two support programs were created: one for assignment of the particles
during testing and one for creating the reference data.

6.1 Particle detection program
The particle detection program contains all methods used for detection. It
also contains methods for computation of the spatial analytic measures.

It was written in Java using the OpenCV framework. It can be used as a
standalone program with a command line interface or as a library containing
one class for each preprocessing, detection or validation method described in
the chapter Design.

The only method not bundled inside the program is SRRF, which is im-
plemented in an ImageJ plugin called NanoJ8.

6.2 ImageJ plugin
ImageJ is an image processing program, which can be extended using plugins.

The plugin created in this thesis enhances ImageJ by a user interface for
controlling the library described in the previous section. It allows the user to

7https://imagej.net
8https://github.com/HenriquesLab/NanoJ-SRRF

43

https://imagej.net
https://github.com/HenriquesLab/NanoJ-SRRF

6. Implementation

(a) Method selection screen

(b) Parameter selection screen

Figure 6.1: ImageJ plugin

44

6.3. Evaluation program

choose a detection method, tweak its parameters, run the configured algorithm
and visualize its result.

The plugin contains the four preconfigured combinations of methods intro-
duced in section 5.5. It is also possible to create own combination of methods
and set their parameters manually.

6.3 Evaluation program
The evaluation program pairs detected points in an image with reference points
manually annotated by a human. The points are then counted to evaluate the
performance of the detection algorithm.

The program is written in Java. It is controlled by a command line inter-
face.

Design of the program is described in section 8.1. It uses Hungarian algo-
rithm [40] to map detected points to the manually annotated reference points.
All unmapped points are marked as a false positive or a false negative.

It turned out that the Hungarian algorithm was very slow and consumed a
lot of memory for big data sets. It allocates matrix of size9 |F | × |T | in the
memory, which might even cause running out of heap space.

On the other hand, number of the reference particles is always reasonable
(if the image isn’t too big) and the only problematic part is the number of test-
ing points. There were several algorithms that (with a bad set of parameters)
annotated a very high number of pixels. To evaluate even those algorithms, a
modified testing program had to be created.

A simple preprocessing algorithm runs before creation of the assignment
matrix:

1. A testing point is deleted if there is no reference point in distance of
dmax or closer (and vice versa).

2. A testing point Ti is mapped to a reference point Fj if their distance
is lower than dmax and there is no another reference point in distance
of dmax from Ti (and vice versa). This step might change the resulting
mapping of the points and increase the total cost because Fj could be
mapped to some closer point Tk. But it can’t change number of total
particles mapped – existence of the mapping between Fj and Tk would
inevitably result in abandoning Fi.

All points satisfying the rule 1 are deleted, then all points are mapped
according to the rule 2 and then also deleted. This process is repeated until
there were no deleted or mapped points in the last step.

The simple preprocessing algorithm significantly sped up evaluation of very
large testing data sets.

9|F | = number of reference points, |T | = number of testing points

45

6. Implementation

Figure 6.2: Particle marking program

The implementation of Hungarian algorithm was copied from Kevin Stern’s
Github repository [41], who published it under the MIT license.

6.4 Particle marking program
A web application was made to ease the dataset creation.

The application can display an image, allows the user to select positions
of particles and save them to the server. The particles can be then re-loaded
from the server again to continue marking the particles or to download the
particle positions in JSON format.

The client side of the application, written in JavaScript, is responsible for
visualization of the particle positions and handling selection of the particles
by the user.

The server side saves the particle positions on a server in the JSON format.
It was also written in JavaScript for Node.js environment. The application
uses Express10 web application framework to handle HTTP requests.

The user must enter a valid password as a URL parameter. It serves as
very basic prevention against uninvited visitors.

10https://expressjs.com

46

Chapter 7
Results

This chapter displays results of the detection and density estimation methods.
There are several input images with two types of samples. Each image

contains only one type of the sample.
Regions of interest were selected in the input images. All the regions of

interest contain only dense parts of the image and not edges of the sample.
There are 10 input (ROI) images, each of them belongs to one sample type

(marked A and B). Size of the images is 100×100 px or lower if the sample is
not big enough.

7.1 Particle detection
The following images contain positions of particled detected by the algorithms.
The original input image (image 7.1a) was cropped to make the results more
visible. The rectangle in the image 7.1b shows where the image was cropped.

(a) Image B3, ROI 1
Original image

(b) Image B3, ROI 1
SRRF aplied

47

7. Results

(c) Image B3, ROI 1
SRRF, Local max., H-maxima

(d) Image B3, ROI 1
SRRF, Gauss b., Threshold

(e) Image B3, ROI 1
Top hat, Threshold

(f) Image B3, ROI 1
Subtract prewitt, Region growing

48

7.2. Distribution analysis

7.2 Distribution analysis
This section displays an example of the distribution analysis techniques ap-
plied to the ROI images mentined above.

7.2.1 Number of particles
The following methods were applied to the particles:

1. SRRF + Local maximum + H-maxima,

2. SRRF + Gaussian blur + Threshold,

3. Top hat + Threhsold,

4. Subtract Prewitt + Region growing.

Table 7.1: Number of particles in the image

Image Method 1 Method 2 Method 3 Method 4 Image size [px]
A1-1 1511 1466 771 1293 100×100
A2-1 1187 1247 924 699 100×100
A2-2 335 343 250 75 60×60
A7-1 1185 1244 1078 1610 100×100
A7-2 666 635 516 420 80×80
B1-1 647 684 178 569 100×100
B1-2 731 850 179 778 100×100
B3-1 1207 1260 771 1198 100×100
B3-2 735 804 434 607 80×80
B4-1 431 469 30 96 60×60

A1-1 A2-1 A2-2 A7-1 A7-2 B1-1 B1-2 B3-1 B3-2 B4-1
0

50

100

150

#
pa

rt
ic

le
s

pe
r

10
00

px

Figure 7.2: Number or particles per px in the input images, method 1

49

7. Results

7.2.2 Particle density

In this section, density maps (described in section 5.6.2) of the image B3-1
are presented.

(a) Image B3, ROI 1
SRRF, Local max., H-maxima

(b) Image B3, ROI 1
SRRF, Local max., H-maxima

(c) Image B3, ROI 1
SRRF, Gauss b., Threshold

(d) Image B3, ROI 1
SRRF, Gauss b., Threshold

50

7.2. Distribution analysis

(e) Image B3, ROI 1
Top hat, Threshold

(f) Image B3, ROI 1
Top hat, Threshold

(g) Image B3, ROI 1
Subtract Prewitt, Region growing

(h) Image B3, ROI 1
Subtract Prewitt, Region growing

51

7. Results

7.2.3 Nearest neighbour analysis

The following plots display distribution of distances to the nearest neighbour.
They are described in section 5.6.3.

(a) SRRF, Local max., H-maxima

(b) SRRF, Gauss b., Threshold

52

7.2. Distribution analysis

(c) SRRF, Gauss b., Threshold

(d) SRRF, Gauss b., Threshold

53

7. Results

7.2.4 Number of particles in the radius
The following plots display distribution of number of the particles within a
variable radius – a measure derived from Ripley’s K-function. Details of this
measure are described in section 5.6.4.

(a) SRRF, Local max., H-maxima

(b) SRRF, Gauss b., Threshold

54

7.2. Distribution analysis

(c) Top hat, Threshold

(d) Subtraction Prewitt, Region growing

55

Chapter 8
Testing

This chapter describes methods used to evaluate the single-particle detection
methods.

The evaluation algorithm uses two input data sets: protein positions man-
ually annotated by a human (called “reference”) and positions detected by the
evaluated algorithm (called “testing”).

The test data are compared to the reference data.
A particle is often marked by some reference point and some testing point

that are very close to each other but not exactly on the same pixel. Therefore,
it is necessary to assign the particles marking the same protein to each other.
The assignment algorithm is further described in the section 8.1.

Precision, recall and f-measure are computed to evaluate the performance
of the particle detection methods.

Several interesting measures (like ROC curve and AUC that describe the
whole method and not just its one configuration) can’t be computed because
those measures need the number of true negative samples. There is an infinite
number of points with no protein particle where no particle has been detected
– hence the number of true negative would be infinite. It is possible to compute
true negative pixels. It is a finite number but it is very high for all reasonable
algorithms (so the ROC curves would look almost the same) and it changes
when the image resolution changes.

8.1 Assignment of particles
The mapping algorithm pairs particles in the reference set with particles de-
tected in the testing set.

Mapping of the particles is considered an assignment problem.

57

8. Testing

There are three possible types of assignment to make:

• a reference point to a testing point – means that the reference point and
the testing point lie on the same particle

• a reference point to nothing – means that reference point was not de-
tected

• a testing point to nothing – means that the testing point is a false
positive

Each of the assignments described above has defined “cost” which denotes
how unlikely is the occurrence to happen.

The assignment problem is defined as finding such assignment function fA,
for which the expression:

n∑
m=1

n∑
n=1

fA(i, j)c(i, j) (8.1)

is as minimal as possible [42]. Function c(i, j) in the equation 8.1 is the
cost of the assignment of i to j.

Values of the function fA can be 1 (the objects i and j are assigned to
each other) or 0 (the objects are not assigned). Exactly one i can be assigned
to one j.

In the case of this thesis, the cost c is defined as:

• for assignment of two points: square distance of those two points,

• for assignment of point to noting (and vice versa): constant of 50 px.
Particles with the distance greater than 50 px could be never assigned
to each other. The constant is further noted as dmax.

There are two possible ways to understand the assignment problem – as a
pairing in a bipartite graph or using a matrix.

8.1.1 Matching in a bipartite graph
Assignment problem can be understood as finding a matching11 in a bipartite
graph12.

Nodes in the graph would represent reference and testing points. Edges
between such two nodes would represent assigning the two points to each
other. Only points representing points from different sets could be connected,

11Set of edges with no common vertex.
12Graph whose nodes form two disjoint sets. The graph may contain edges between nodes

from different sets but there can be no edges between nodes from the same set.

58

8.1. Assignment of particles

therefore the graph is bipartite (having two sets of nodes where there could
be no edge between nodes in the same set).

There is another restriction of this graph: each node could only have one
edge (each point could be assigned to only one point).

The goal of the task is to find such a graph with maximal possible number
of edges.

Though this algorithm might be much simpler, it can’t utilize distance
between two points. Two points very close to each other are equally likely to
be assigned to each other than two points with the distance just slightly below
dmax. The matrix solution was chosen for this reason.

8.1.2 Assignment matrix
Assignment matrix A is a square matrix, in which each element Ai,j is equal
to the cost function c(i, j) [42].

The following text describes creation of such a matrix.
Let Fi be the i-th reference point, Ti be the i-th testing point, k be number

of the reference points, l be number of the testing point and d(a, b) be the
(square Euclidean) distance between a and b.

The assignments matrix is defined as follows:

T1 . . . Tl X1 . . . Xn−l

F1 d(F1, T1) . . . d(F1, Tl) dmax dmax dmax
...

... dmax dmax dmax

Fk d(Fk, T1) . . . d(Fk, Tl) dmax dmax dmax

X1 dmax dmax dmax dmax dmax dmax
... dmax dmax dmax dmax dmax dmax

Xn−k dmax dmax dmax dmax dmax dmax

This matrix serves as an input of Hungarian algorithm [40], which creates
the assignment function.

Assigning a column to a row in the matrix is interpreted this way:

• Assignment between Fi and Tj – true positive – The testing point Tj is
assigned to the reference point Fi.

• Assignment between Xi and Tj – false positive – The testing point Tj

has no counterpart in the reference set.

• Assignment between Fi and Xj – false negative – The reference point Fi

has no counterpart in the testing set.

• Assignment between Xi and Xj – no meaning (necessary for technical
reasons).

59

8. Testing

8.2 Observed measures
Simple measures as true positive, false positive and false negative defined in
the section 8.1.2 are not sufficient to be used to compare detection methods.
Therefore, derived measures have to be computed.

Precision, recall and F-measure were selected.
Precision (defined in the equation 8.2 [43]) captures algorithm’s ability to

avoid false detections.

precision = |true positive|
|true positive| + |false positive|

(8.2)

Recall (defined in the equation 8.3 [43]) captures algorithm’s ability to
detect particles.

recall = |true positive|
|true positive| + |false negative|

(8.3)

F-measure combines both those measures into one number [43]:

F = 2 · precision · recall
precision + recall

(8.4)

F-measure captures not only algorithm’s precision or recall but also their
balance [43]. If one of those measures is very high and the second one very
low, F-measure will be low.

8.3 Results
The following section contains the result of the tested methods. Measures
described in the previous section were used.

The tables below contain selected combinations of algorithms. The com-
binations were selected manually – preprocessing or validation phases were
added to the existing set of algorithms to address some of their weakness.

Different parameters of the methods were tried to obtain the best possi-
ble combination of the parameters. Then the algorithm’s performance was
evaluated on the testing data.

60

8.3. Results

8.3.1 Local maximum

First approach (4-neighbourhood):

Preprocessing/postprocessing method Precision Recall F-measure
No preprocessing/postprocessing 38.5 % 53.9 % 0.450
H-maximum 80.4 % 79.2 % 0.798
Bilateral filter + H-maximum 75.0 % 83.2 % 0.789
Laplace operator + H-maximum 84.2 % 32.1 % 0.465
SRRF 71.3 % 76.2 % 0.737
SRRF + H-maximum 91.0 % 82.0 % 0.862
SRRF + Gaussian filter
+ H-maximum 91.5 % 82.2 % 0.866

SRRF + Bilateral filter + H-maximum 91.2 % 82.0 % 0.863
SRRF + Wiener filter + H-maximum 99.7 % 29.8 % 0.459

Second approach (sliding window):

Preprocessing/postprocessing method Precision Recall F-measure
No preprocessing/postprocessing 63.5 % 65.5 % 0.645
H-maximum 73.5 % 80.9 % 0.771
SRRF 72.0 % 76.0 % 0.739

The sliding window local maximum algorithm is more complex than the
4-neighbourhood one but it didn’t bring almost any advantage in the per-
formance. Therefore, this algorithm was abandoned and all preprocessing
methods were tested only for the first one.

8.3.2 Region growing

Preprocessing/postprocessing method Precision Recall F-measure
No preprocessing/postprocessing 65.2 % 73.1 % 0.690
Gaussian blur 64.6 % 72.8 % 0.622
Prewitt subtraction 69.9 % 73.2 % 0.715
Prewitt subtraction + Gaussian filter 75.3 % 60.9 % 0.673
Sobel subtraction 62.5 % 74.7 % 0.681
SRRF 53.9 % 58.8 % 0.562
SRRF + Prewitt subtraction 96.9 % 58.2 % 0.727
SRRF + Gaussian filter
+ Prewitt subtraction 99.4 % 34.3 % 0.510

61

8. Testing

8.3.3 Thresholding
Preprocessing/postprocessing method Precision Recall F-measure
No preprocessing/postprocessing 52.5 % 65.0 % 0.580
Top hat 68.6 % 77.6 % 0.729
Laplacian filter + Top hat 55.6 % 78.5 % 0.651
Flatfield correction (subtract) 76.3 % 45.5 % 0.570
Flatfield correction (image
normalization) 79.3 % 50.3 % 0.616

Prewitt subtraction 59.2 % 82.3 % 0.689
Flatfield (normalisation)
+ Prewitt subtraction 59.7 % 79.1 % 0.680

SRRF 80.3 % 79.1 % 0.797
Gaussian filter 90.3 % 80.2 % 0.850
Bilateral filter 78.9 % 80.3 % 0.796
SRRF + Prewitt 87.9 % 80.1 % 0.838
SRRF + Prewitt subtraction 80.7 % 80.5 % 0.806
SRRF + Gaussian filter + Prewitt 89.9 % 78.3 % 0.837
SRRF + Bilateral filter + Prewitt 87.6 % 79.7 % 0.834
SRRF + Top hat 80.2 % 79.1 % 0.797
SRRF + Gaussian filter + Top hat 90.4 % 72.3 % 0.804
SRRF + Flatfield correction (subtract) 78.7 % 80.3 % 0.795
SRRF + Flatfield correction
(image normalization) 79.5 % 79.0 % 0.794

Thresholding with the Otsu method was also tested:
Preprocessing/postprocessing method Precision Recall F-measure
No preprocessing/postprocessing 69.6 % 27.4 % 0.393
SRRF 94.8 % 48.0 % 0.637

62

Chapter 9
Discussion

This section evaluates the previous work and outlines possible future work on
the task.

The design part describes several methods, from which many of them
proved not very useful for the task. However, combination of SRRF, local
maximum detector and h-maximum proved to be sufficient for particle detec-
tion.

The four most promising algorithms were selected to create input set of
particles for analysis – the best combination was one of them. The reason for
selecting more methods than just one was possibility of their comparison.

The analysis aimed to find some differences in spatial distribution of the
particles among two different kinds of images. Four analytic methods were
chosen to fulfill this task.

The differences in the spatial distribution weren’t found. It is possible that
the wrong measures were chosen to evaluate the spatial distribution. Another
conceivable explanation is that the spatial distributions of both kinds of images
don’t differ.

When comes to method detection, there is still plenty of unused methods.
The protein particles have approximately circular shape. This feature

could be used to detect them – for example by the combination of the first
derivation (eg. by already implemented Prewitt or Sobel operator) and Hough
transform detecting circular shapes. Such detector would have to deal with
several particles that have blend in.

Another not used algorithm is mean shift. It could find local maximums
in the image, which could be used for localizing particle centers. This method
might be useful for detection of particles on a preprocessed image using seeds
that were spread across the image. However, it would be better to use the
algorithm in the validation phase to merge double detection of one particle
(so the previous detection method is used to obtain the seeds).

Watershed algorithm might be also used in the validation phase. It might
help to segment the image once particle positions were obtained. Some algo-

63

9. Discussion

rithms have problems when segmenting the image – for example thresholding:
when the value of the particle pixels is very low, the algorithm detects its peak
but the bottom part of the particle is considered background. Local maximum
doesn’t even try to segment the image.

The segmented image created by watershed or another algorithm might
serve as the input of another validation algorithms (like already existing par-
ticle size). Segmented areas merged, split or filtered out.

All the used methods are prone to some specific failure the other meth-
ods are resistant to. In machine learning, this issue can be addressed by an
ensemble of the methods.

Creating an ensemble of localisation algorithms is a more difficult task
than creating an ensemble of classifiers. Two algorithms might find the same
particle on slightly different locations.

One possible solution might be assigning the particles detected by various
algorithms to each other by the algorithm described in the Testing chapter,
section 8.1.

There is a space to improvement in the implementation too. When in-
stalling the ImageJ plugin, the user has to install OpenCV, add its location
to the Java library path and manually move the plugin and detection library
to the plugins directory. The OpenCV could be distributed together with the
library. The most convenient way for the user is to use a plugin update site13.

The particle marking program (section 6.4) was created as a temporary
solution. Therefore, it lacks a lot of features that would make its use more
pleasant. It can’t move the particle on the image or delete it there – the only
way to delete a particle is to delete it on a list (where it is hard to find). If
someone would like to use the program, those features are recommended to
be added.

The problem with not enough data might be solved using Generative ad-
versarial network (GAN). Many authors solving similar issues mentioned that
they use a generated datasets to tests their algorithms. Protein particles, rep-
resented by Gaussian functions (their PSF) are scattered around the image.
Then a noise or a background illumination is added. This approach provides
input images with already known particle locations but it may significantly
differ from the real data. GAN might generate the images using parameters
of the Gaussian function, parameters of noise and particle density. On the
other hand, training GAN for this purpose would be a challenging task with
an uncertain result.

13https://imagej.net/How_to_set_up_and_populate_an_update_site

64

https://imagej.net/How_to_set_up_and_populate_an_update_site

Conclusion

This thesis focuses on detection of proteins in an image from a microscope
and analysis of their distribution.

Existing methods focusing on microscope image processing were explored,
primarily those focusing on protein detection. The protein particle detection
task is similar to detection of stars on astronomical images. Research in this
field has been also performed.

Methods discovered during the research part have been further described
in the thesis. They have been implemented in Java using the OpenCV library.

The implemented methods are available as a plugin to popular image pro-
cessing program ImageJ. The plugin contains a graphical user interface to
make the methods accessible even to non-programmers.

The image processing methods have been combined together resulting in
several particle detection algorithms.

Particles detected by these algorithms have been compared to a human-
annotated data. A labelling program was created to make the annotation
more convenient.

To evaluate a particle detection algorithm, it is necessary to know which
protein has been detected, which ones have been missed and which detections
are superfluous. Therefore, a method of linking the detected points to the
manually annotated data had to be created.

The most suitable algorithm for particle detection has been chosen ac-
cording to its f-measure in the test. The chosen algorithm consists of SRRF
upsampling, local maximum detection and “h-maximum” validation.

The data were evaluated using four spatial analysis techniques.
The task of this thesis has been accomplished but there is still a wide field

of unused approaches that might improve both single particle detection and
analysis. Possible enhancement has been outlined together with the discussion
of the results.

65

Bibliography

1. ANDERSON, C.M. et al. Tracking of cell surface receptors by fluores-
cence digital imaging microscopy using a charge-coupled device camera.
Low-density lipoprotein and influenza virus receptor mobility at 4 de-
grees C. Journal of Cell Science. 1992, vol. 101, no. 2, pp. 415–425.
issn 0021-9533. Available from eprint: https://jcs.biologists.org/
content/101/2/415.full.pdf.

2. MASHANOV, G; MOLLOY, J. Automatic Detection of Single Fluo-
rophores in Live Cells. Biophysical journal. 2007, vol. 92, pp. 2199–211.
Available from doi: 10.1529/biophysj.106.081117.

3. ANDERSSON, S. B. Precise localization of fluorescent probes without
numerical fitting. In: 2007 4th IEEE International Symposium on Biomed-
ical Imaging: From Nano to Macro. 2007, pp. 252–255. Available from
doi: 10.1109/ISBI.2007.356836.

4. PARTHASARATHY, Raghuveer. Rapid, accurate particle tracking by
calculation of radial symmetry centers. Nature methods. 2012, vol. 9,
pp. 724–6. Available from doi: 10.1038/nmeth.2071.

5. YOSHIDA, Seiichi. Star detection from an image. MISAO project. 1997.
Available also from: http://www.aerith.net/misao/report/seiichi/
master/970917-english/node3.html.

6. HROCH, Filip. The robust detection of stars on CCD images. Exper-
imental Astronomy. 1999, vol. 9, no. 4, pp. 251–259. issn 1572-9508.
Available from doi: 10.1023/A:1008195518637.

7. ZHENG, Caixia et al. An improved method for object detection in as-
tronomical images. Monthly Notices of the Royal Astronomical Society.
2015, vol. 451, no. 4, pp. 4445–4459. Available from doi: 10.1093/mnras/
stv1237.

67

https://jcs.biologists.org/content/101/2/415.full.pdf
https://jcs.biologists.org/content/101/2/415.full.pdf
https://doi.org/10.1529/biophysj.106.081117
https://doi.org/10.1109/ISBI.2007.356836
https://doi.org/10.1038/nmeth.2071
http://www.aerith.net/misao/report/seiichi/master/970917-english/node3.html
http://www.aerith.net/misao/report/seiichi/master/970917-english/node3.html
https://doi.org/10.1023/A:1008195518637
https://doi.org/10.1093/mnras/stv1237
https://doi.org/10.1093/mnras/stv1237

Bibliography

8. SCHÖFER, Christian et al. Mapping of cellular compartments based on
ultrastructural immunogold labeling. Journal of structural biology. 2004,
vol. 147, pp. 128–35. Available from doi: 10.1016/j.jsb.2004.01.014.

9. GLASBEY, C. A.; ROBERTS, I. M. Statistical analysis of the distri-
bution of gold particles over antigen sites after immunogold labelling.
Journal of Microscopy. 1997, vol. 186, no. 3, pp. 258–262. Available from
doi: 10.1046/j.1365-2818.1997.2050767.x.

10. SPRING, Kenneth R.; DAVIDSON, Michael W. Introduction to Fluo-
rescence Microscopy [online]. Nikon MicroscopyU, [n.d.] [visited on 2019-
08-29]. Available from: https://www.microscopyu.com/techniques/
fluorescence/introduction-to-fluorescence-microscopy.

11. WU, Qiang et al. Microscope Image Processing. 1st. Orlando, FL, USA:
Academic Press, Inc., 2008. isbn 012372578X, isbn 9780123725783.

12. WEISENBURGER, Siegfried; SANDOGHDAR, Vahid. Light microscopy:
an ongoing contemporary revolution. Contemporary Physics. 2015, vol. 56,
no. 2, pp. 123–143. Available from doi: 10 . 1080 / 00107514 . 2015 .
1026557.

13. CULLEY, Siân et al. SRRF: Universal Live-cell Super-Resolution Mi-
croscopy. The International Journal of Biochemistry & Cell Biology.
2018, vol. 101. Available from doi: 10.1016/j.biocel.2018.05.014.

14. GUSTAFSSON, Mats G. L. Nonlinear structured-illumination microscopy:
Wide-field fluorescence imaging with theoretically unlimited resolution.
Proceedings of the National Academy of Sciences. 2005, vol. 102, no. 37,
pp. 13081–13086. issn 0027-8424. Available from doi: 10.1073/pnas.
0406877102.

15. ROTTENFUSSER, Rudi et al. The Point Spread Function [online]. Zeiss.com,
[n.d.] [visited on 2020-05-19]. Available from: https://www.zeiss.com/
microscopy / int / solutions / reference / basic - microscopy / the -
point-spread-function.html.

16. FISHER, Robert et al. Digital Filters. The University of Edinburgh, 2003.
Available also from: https://homepages.inf.ed.ac.uk/rbf/HIPR2/
filtops.htm. [Online; cited 07-May-2020].

17. LEVENTHAL, Daniel. Image Processing [university lecture]. Univer-
sity of Washington, 2011. Available also from: https://courses.cs.
washington.edu/courses/cse457/11au/lectures/image-processing.
pdf. [Online; cited 07-May-2020].

18. BURGER, Wilhelm; BURGE, Mark J. Digital Image Processing - An
Algorithmic Introduction using Java. In: Springer, 2008, pp. 120–123.
Texts in Computer Science. isbn 978-1-84628-968-2.

68

https://doi.org/10.1016/j.jsb.2004.01.014
https://doi.org/10.1046/j.1365-2818.1997.2050767.x
https://www.microscopyu.com/techniques/fluorescence/introduction-to-fluorescence-microscopy
https://www.microscopyu.com/techniques/fluorescence/introduction-to-fluorescence-microscopy
https://doi.org/10.1080/00107514.2015.1026557
https://doi.org/10.1080/00107514.2015.1026557
https://doi.org/10.1016/j.biocel.2018.05.014
https://doi.org/10.1073/pnas.0406877102
https://doi.org/10.1073/pnas.0406877102
https://www.zeiss.com/microscopy/int/solutions/reference/basic-microscopy/the-point-spread-function.html
https://www.zeiss.com/microscopy/int/solutions/reference/basic-microscopy/the-point-spread-function.html
https://www.zeiss.com/microscopy/int/solutions/reference/basic-microscopy/the-point-spread-function.html
https://homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm
https://courses.cs.washington.edu/courses/cse457/11au/lectures/image-processing.pdf
https://courses.cs.washington.edu/courses/cse457/11au/lectures/image-processing.pdf
https://courses.cs.washington.edu/courses/cse457/11au/lectures/image-processing.pdf

Bibliography

19. FISHER, Robert et al. Feature Detectors – Sobel Edge Detector. The
University of Edinburgh, 2003. Available also from: http://homepages.
inf.ed.ac.uk/rbf/HIPR2/sobel.htm. [Online; cited 05-May-2020].

20. KATSAGGELOS, Aggelos. Image Recovery – part II. Fundamentals of
Digital Image and Video Processing [online course]. Northwestern Uni-
versity, [n.d.].

21. DELMAS, Patrice. Gaussian Filtering [unversity lecture]. The University
of Auckland, 2010. Available also from: https://www.cs.auckland.ac.
nz/courses/compsci373s1c/PatricesLectures/Gaussian%20Filtering_
1up.pdf.

22. FISHER, Robert et al. Gaussian Smoothing. The University of Edin-
burgh, 2003. Available also from: https://homepages.inf.ed.ac.uk/
rbf/HIPR2/gsmooth.htm. [Online; cited 09-May-2020].

23. TOMASI, C.; MANDUCHI, R. Bilateral filtering for gray and color im-
ages. In: Sixth International Conference on Computer Vision (IEEE
Cat. No.98CH36271). 1998, pp. 839–846. Available also from: https:
//www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Tomasi98.pdf.

24. SÝKORA, Daniel. Non-Linear Filtering [university lecture]. Czech Tech-
nical University in Prague, 2018. Available also from: https://courses.
fit.cvut.cz/MI-DZO/media/lectures/05/dzo-l05.pdf.

25. ANJNA, Er. Anjna; KAUR, Er.Rajandeep. Review of Image Segmenta-
tion Technique. In: International Journal of Advanced Research in Com-
puter Science. 2017, vol. 8.

26. KASK, Peet et al. Flat field correction for high-throughput imaging of
fluorescent samples. Journal of Microscopy. 2016, vol. 263, no. 3, pp. 328–
340. Available from doi: 10.1111/jmi.12404.

27. RAY, Sidney. Applied Photographic Optics. In: 2nd ed. Woburn: Focal
press, 2002, chap. 14, pp. 120–123. isbn 0-240-51540-4.

28. BEBIS, George. Region Growing [university lecture]. University of Nevada,
2004. Available also from: https://www.cse.unr.edu/~bebis/CS791E/
Notes/RegionGrowing.pdf.

29. GUSTAFSSON, Nils et al. Fast live-cell conventional fluorophore nanoscopy
with ImageJ through super-resolution radial fluctuations. Nature Com-
munications. 2016, vol. 7. issn 2041-1723. Available from doi: 10.1038/
ncomms12471.

30. HENRIQUES, Ricardo. High-speed super-resolution data analysis in Im-
ageJ: from QuickPALM to NanoJ [presentation]. Single Molecule Lo-
calization Microscopy Symposium, 2016. Available also from: https :
//www.youtube.com/watch?v=HjrcM8NfWJE.

69

http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm
https://www.cs.auckland.ac.nz/courses/compsci373s1c/PatricesLectures/Gaussian%20Filtering_1up.pdf
https://www.cs.auckland.ac.nz/courses/compsci373s1c/PatricesLectures/Gaussian%20Filtering_1up.pdf
https://www.cs.auckland.ac.nz/courses/compsci373s1c/PatricesLectures/Gaussian%20Filtering_1up.pdf
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
https://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Tomasi98.pdf
https://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Tomasi98.pdf
https://courses.fit.cvut.cz/MI-DZO/media/lectures/05/dzo-l05.pdf
https://courses.fit.cvut.cz/MI-DZO/media/lectures/05/dzo-l05.pdf
https://doi.org/10.1111/jmi.12404
https://www.cse.unr.edu/~bebis/CS791E/Notes/RegionGrowing.pdf
https://www.cse.unr.edu/~bebis/CS791E/Notes/RegionGrowing.pdf
https://doi.org/10.1038/ncomms12471
https://doi.org/10.1038/ncomms12471
https://www.youtube.com/watch?v=HjrcM8NfWJE
https://www.youtube.com/watch?v=HjrcM8NfWJE

Bibliography

31. OWENS, Robyn. Mathematical Morphology [university lecture]. Univer-
sity of Edinburgh, 1997. Available also from: http://homepages.inf.
ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT3/node3.html.

32. HLAVÁČ, Václav. Matematická morfologie [university lecture]. Czech
Technical University in Prague, [n.d.]. Available also from: http : / /
people.ciirc.cvut.cz/~hlavac/TeachPresCz/11DigZprObr/71-
3MatMorpholBinCz.pdf.

33. SERRA, Jean. Opening, Closing [unversity lecture]. Ecole des Mines de
Paris, 2000. Available also from: http://www.cmm.mines-paristech.
fr/~serra/cours/pdf/en/ch3en.pdf.

34. TCHESLAVSKI, Gleb. Morphological Image Processing: Gray‐scale mor-
phology [online]. Lamar University, 2010 [visited on 2020-04-29]. Avail-
able from: http://liulong.site/opencv/doc/Gray%20Morphological%
20Image%20Processing.pdf.

35. CLOUARD, Régis. Tutorial: Mathematical Morphology. University of
Caen, 2012. Available also from: https://clouard.users.greyc.fr/
Pantheon/experiments/morphology/index-en.html.

36. WUDI, Petr. Detekce a sledování pohybu osob na základě záznamu z kamerového
systému. 2017. Bachelor’s Thesis. Czech Technical University in Prague,
Faculty of Information Technology.

37. CLARKE, Keith. Applications of Feature Measurements [university lec-
ture]. University of California, Santa Barbara, 2011. Available also from:
http://www.geog.ucsb.edu/~kclarke/Geography12/Lecture19.pdf.

38. DIXON, Philip M. Ripley’s K function. In: Chichester: John Wiley &
Sons, Ltd, 2002, vol. 3, pp. 1796–1803. Encyclopedia of Environmetrics.
An optional note.

39. ECKEL, Stefanie Martina. Statistical Analysis of Spatial Point Patterns.
Ulm, 2008. PhD thesis. Universität Ulm.

40. KUHN, Harold. The Hungarian Method for the Assignment Problem.
Naval Research Logistic Quarterly. 1955, vol. 2, pp. 83–97.

41. STERN, Kevin. HungarianAlgorithm [online]. [N.d.]. Available also from:
https : / / github . com / KevinStern / software - and - algorithms /
blob/master/src/main/java/blogspot/software_and_algorithms/
stern_library/optimization/HungarianAlgorithm.java.

42. BASIRZADEH, Hadi. Ones assignment method for solving assignment
problems. Applied Mathematical Sciences (Ruse). 2012, vol. 6.

43. BROWNLEE, Jason. How to Calculate Precision, Recall, and F-Measure
for Imbalanced Classification [online]. Machine Learning Mastery, 2020
[visited on 2020-05-22]. Available from: https://machinelearningmastery.
com/precision-recall-and-f-measure-for-imbalanced-classification/.

70

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT3/node3.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT3/node3.html
http://people.ciirc.cvut.cz/~hlavac/TeachPresCz/11DigZprObr/71-3MatMorpholBinCz.pdf
http://people.ciirc.cvut.cz/~hlavac/TeachPresCz/11DigZprObr/71-3MatMorpholBinCz.pdf
http://people.ciirc.cvut.cz/~hlavac/TeachPresCz/11DigZprObr/71-3MatMorpholBinCz.pdf
http://www.cmm.mines-paristech.fr/~serra/cours/pdf/en/ch3en.pdf
http://www.cmm.mines-paristech.fr/~serra/cours/pdf/en/ch3en.pdf
http://liulong.site/opencv/doc/Gray%20Morphological%20Image%20Processing.pdf
http://liulong.site/opencv/doc/Gray%20Morphological%20Image%20Processing.pdf
https://clouard.users.greyc.fr/Pantheon/experiments/morphology/index-en.html
https://clouard.users.greyc.fr/Pantheon/experiments/morphology/index-en.html
http://www.geog.ucsb.edu/~kclarke/Geography12/Lecture19.pdf
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/optimization/HungarianAlgorithm.java
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/optimization/HungarianAlgorithm.java
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/optimization/HungarianAlgorithm.java
https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/
https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/

Appendix A
Notation

The following list contains meaning of variables and operations used in this
theis if they are not explicitly defined differently in the scope.

I Input image – either a function or a matrix

x, y Image coordinates

p Protein particle

τ A threshold

h A threshold, usually refers to height of some object

d Distance (Eucleidian) between two points in the image

a ∗ b Convolution of a and b

f Original function – in a filter

g Filtered function – in a filter

h Filter kernel function – in a filter

F, G, H Frequency equivalents of the previous

G Gaussian function (collides with the previous but it is commonly used)

f̂ Estimate of the function f

S Shading function

σ Standard deviation

F Set of the manually annotated reference points

T Set of “testing” points detected by the algorithm

c(·, ·) Cost function

71

Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
jar.....................................the directory with Java packages
src...the directory of source codes

core......................detector and analysis library source sources
imagej-plugin......................... ImageJ plugin source sources
evaluation........................evaluation program source sources
marker.................................particle marker source sources
thesis................the directory of LATEX source code of the thesis

thesis.pdf...............................the thesis text in PDF format
dependencies libraries used by the programs

opencv-build OpenCV library build
opencv-4.0.0...........................OpenCV library source code

73

Appendix C
ImageJ plugin user manual

The plugin enhances ImageJ image processing program. It is recommended to
use the Fiji distribution available at https://imagej.net/Fiji/Downloads.

C.1 Installation
The plugin depends on the OpenCV library to work. The library must be
delivered to ImageJ/Fiji by the user.

There are two ways to obtain OpenCV:

• Use the precompiled files available at the disc attached to this thesis.
This is a more user-friendly way but there is no guarantee the program
will work on each combination of software and hardware. The files were
compiled for Windows and Linux operation systems for AMD64 archi-
tecture.

• Use the OpenCV source code available on the attached disc or down-
load Opencv 4.0.0 from https://opencv.org/opencv-4-0/. Compile
the source code or install OpenCV on your system using the installa-
tion program. The necessary files are available in the installation at
java/opencv-400 and java/x64/opencv_java400.(so|dll).

Another files necessary for installation are the plugin itself and the detec-
tion library. They are located in the jar directory.

To install the program, copy (relative to the ImageJ root directory):

• protein-detection-1.0-SNAPSHOT.jar to lib

• protein-detection-imagej-1.0-SNAPSHOT.jar to plugins

• opencv-400.jar to jars

75

https://imagej.net/Fiji/Downloads
https://opencv.org/opencv-4-0/

C. ImageJ plugin user manual

• opencv_java400.dll (Windows) or opencv_java400.so (Mac, Linux)
to lib

C.2 Usage
To detect locations of particles on an image, follow those steps:

1. start ImageJ/Fiji,

2. choose the image to be processed using File → Open,

3. click Plugins button on the menu bar,

4. click PW Particle detection in the menu (Figure C.1a),

5. a window should appear (Figure C.1b),

6. select detection, preprocessing and validation method,

7. click Proceed to parameter setting,

8. select parameters of methods selected on during previous steps,

9. click Detect Particles,

10. processing of the image takes mostly up to few seconds to regular images,

11. an image with detected protein particles marked by points appears (Fig-
ure C.1e).

Manual configuration of the methods is also available. Its configuration
appears after clicking on the ”Advanced” tab on top of the window. The
manual configuration consists of two screens displayed on figures C.1c and
C.1d.

76

C.2. Usage

(a) Menu item selection
(b) Preconfigured method selec-
tion

(c) Manual method selection (d) Parameter selection

(e) The output.

Figure C.1: Usage of the ImageJ plugin

77

	Introduction
	Research
	Terms and concepts
	Fluorescence microscopy
	Structured Illumination Microscopy
	Point spread function

	Input images
	Chosen methods
	Filters
	Thresholding
	Flat-field correction
	Region growing
	SRRF
	Morphological operators

	Design
	Detection algorithm
	Preprocessing phase
	Detection phase
	Validation phase
	Selected combinations
	Distribution analysis

	Implementation
	Particle detection program
	ImageJ plugin
	Evaluation program
	Particle marking program

	Results
	Particle detection
	Distribution analysis

	Testing
	Assignment of particles
	Observed measures
	Results

	Discussion
	Conclusion
	Bibliography
	Notation
	Contents of enclosed CD
	ImageJ plugin user manual
	Installation
	Usage

