Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Deep Learning Based Malware Detection
from Weakly Labeled URLs

Bc. Vit Zlamal

Supervisor: Ing. Jan Brabec
May 2020



ii



cvut ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

-

.

PFijmeni: Zlamal Jméno: Vit Osobni Cislo: 423305

Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl
Studijni program: Oteviena informatika

Specializace: Kyberneticka bezpeénost

UDAJE K DIPLOMOVE PRACI

G

Nazev diplomové prace:

Detekce malwaru ze slabé oznaéenych URL pomoci metod hlubokého uéeni

Nazev diplomové prace anglicky:

Deep learning based malware detection from weakly labeled URLs

Pokyny pro vypracovani:

The thesis addresses a problem of malicious communication detection from
URLSs extracted from network telemetry (proxy logs, enriched NetFlows). The
main objectives are to create representation of URLs with corresponding neural
network architecture and to utilize multiple sources of labels with varying
degree of certainty for training.

The concrete goals are:

1. Learn about Deep Learning from textbook [1]. Review the prior art in
classification of URLs (or similar problems) with neural networks and

select applicable and relevant methods based on the review.

2. At first, focus on a fully supervised problem with a single source of
labels. Use knowledge from the review to create a classifier for URLs

and evaluate it's efficacy on a dataset of sufficient size originating from

real network telemetry (dataset will be provided by supervisor).

3. Review the prior art in learning under weak supervision and select or
modify methods that can be used in conjunction with the classifier

created in step (2).

4. Design a scheme to combine multiple sources of ground truth (blacklists,
results of other algorithms, ...) with varying confidence into weak labels
and extend the classifier from step (2) to allow training in a weakly
supervised manner.

5. Evaluate the results on a representative real-world dataset (will be
provided by supervisor). Compare relevant alternatives and investigate

the difference in efficacy between the fully-supervised and weakly-
supervised approach.

Seznam doporucené literatury:

[1] Aston Zhang, Zachary C. Lipton, Mu Li, &amp; Alexander J. Smola (2020). Dive

into Deep Learning. (https://d2l.ai)

[2] Dehghani, M., Severyn, A., Rothe, S., &amp; Kamps, J. (2017). Avoiding your teacher&#39;s
mistakes: Training neural networks with controlled weak supervision. arXiv preprint
arXiv:1711.00313.

[3] Saxe, J., &amp; Berlin, K. (2017). eXpose: A character-level convolutional neural network
with embeddings for detecting malicious URLSs, file paths and registry keys. arXiv

preprint arXiv:1702.08568.

[4] Ishida, T., Niu, G., &amp; Sugiyama, M. (2018). Binary classification from positive-
confidence data. In Advances in Neural Information Processing Systems (pp. 5917-

5928).

[5] Franc, V., Sofka, M., &amp; Bartos, K. (2015, September). Learning detector of malicious
network traffic from weak labels. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases (pp. 85-99). Springer, Cham.

J

CVUT-CZ-ZDP-2015.1 Strana 1z 2

© CVUT v Praze, Design: CVUT v Praze, VIC



-
Jméno a pracovisté vedouci(ho) diplomové prace:

Ing. Jan Brabec, katedra pocitacd FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 05.02.2020 Termin odevzdani diplomové prace: 22.05.2020
Platnost zadani diplomové prace: 30.09.2021

Ing. Jan Brabec podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)

G

ll. PREVZETi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v diplomové praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 Strana2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC



Acknowledgements

I would like to thank the following peo-
ple who have helped me undertake this
research:

My supervisor Ing. Jan Brabec for his
guidance, the advice he provided me dur-
ing the last years and patience;

The whole Cognitive intelligence team
and Cisco systems for the opportunity to
work on this great project;

My family for providing me calm and
study enabling environment since my
childhood;

My loving girlfriend Ztza for her sup-
port.

And Martin R. with Karel B., who
brought me to the cybersecurity field.

Declaration

I declare that I have developed the pre-
sented work independently and that I have
listed all information sources used in ac-
cordance with the Methodical guidelines
on maintaining ethical principles during
the preparation of higher education theses.

In Prague, May 2020



Abstract

In recent years, machine learning-based
approaches are becoming a fundamental
part of cybersecurity products to keep up
with the growing number of cyber threats.
In this thesis, we present the pipeline for
large scale training and distributed eval-
uation of neural network models which
is suitable for industrial use in Cisco
Cognitive Intelligence production environ-
ment. We focused on the classification
of URLs on the real world positive un-
labeled dataset that originates in Cisco
network telemetry with ratio 1 to 1500
between 25 positive classes and one unla-
beled class. The whole model’s life cycle
can be managed by one task in the cloud
service.

The second part of the thesis intro-
duces a convolutional neural network ar-
chitecture which uses information from
untrusted sources as weak labels for iden-
tifying positive samples in the unlabeled
part of the dataset and thus bringing valu-
able information into the training process.

Keywords: neural networks,
convolution, imbalanced dataset, positive
unlabeled, MXNet, weak labels,
classification, malware
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Abstrakt

Strojové uceni se v poslednich letech stalo
nepostradatelnym néastrojem v boji s ros-
touci kyberkriminalitou. V rdmci této di-
plomové prace jsme implementovali struk-
turu na trénovani neuronovych siti s vel-
kym mnozstvim dat a distribuovany eva-
lua¢nim systém, ktery je mozné pouzit
v produkénim prostiedi produktu Cogni-
tive inteligence od firmy Cisco. Zamérili
jsme se predevsim na klasifikaci URL ad-
res, které jsme ziskali ze sifové telemet-
rie spolecnosti Cisco. Tento dataset z re-
alné praxe se vyznacuje tim, ze jedna jeho
¢ast je oznacena jako pozitivni, zatimco
ta druha obsahuje neoznacené zdznamy, a
také vysokou mérou imbalance v méritku
1500 ku 1 mezi 25 pozitivnimi t¥idami a
jednou neoznacenou tridou. Cely zivotni
cyklus modelu muze byt obstaran pomoci
jednoho prikazu v claudovém systému.

V druhé casti prace predstavujeme
architekturu konvoluéni neuronové site,
kterd vyuziva informace z neovéfenych
zdroju ve formé slabého oznaceni nasich
vzorkl. Toto oznaceni se nasledné vyuziva
pri tréninku klasifikdtoru k odhaleni po-
zitivnich vzorkd v neoznacené casti dat.
Tento proces nam umoznuje vnést vice
informace do trénovaciho procesu a tim
zlepsit jeho efektivitu.

Kli¢ova slova: neuronové site,
konvoluce, nevyvazeny dataset, pozitivni
a neoznacena data, MXNet, slabé signaly,
klasifikace, malware

Preklad nazvu: Detekce malwaru ze
slabé oznac¢enych URL pomoci metod

hlubokého uceni



Contents

1 Introduction

2 Supervised learning

2.1 Classification . ................
2.2 Positive unlabeled data ........
2.3 Overparametrized models . . .. ..

2.3.1 Double descent

2.4 Evaluation metrics . ...........

2.4.1 Recall
2.4.2 Specificity . .. ... L
2.4.3 Accuracy
2.4.4 Precision..................

3 Neural nets
3.1 Classification with neural
networks.......................
3.1.1 Softmax
3.1.2 Cross-Entropy loss
3.1.3 Adam
3.2 Deep neural networks
3.3 Convolution neural nets (CNN) .
3.3.1 Convolution layer
3.3.2 Pooling
3.4 Regularization................
3.4.1 L2 regularization...........
3.4.2 Dropout
3.4.3 Implicit regularization of
gradient descent
3.4.4 Batch normalization........
3.5 Sequence models..............
3.5.1 Recurrent neural networks ..
3.5.2 Long Short Term Memory'. . .
3.5.3 Transformer . ..............

4 Classification of URLs

4.1 Neural network models
411 URLnet...................

4.2 Other classification approaches .

5 Fully supervised model

5.1 Data prepossessing............
5.2 Architecture
5.3 Hyperparameters

6 Weakly labeled model
6.1 Model with weak labels........

7 Infrastructure
7.1 Frameworks . .................

7.1.1 PyTroch

1l

vii

7.3 Java part

8.2 Fully supervised model

8.3 Weakly labelled model

7.1.2 TensorFlow
7.1.3 MXNet

7.2 Pythonpart..................

7.2.1 Data loading
7.2.2 Data providing
7.2.3 Training loop .. ............

7.3.1 Inference and Evaluation. ...

8 Experiments
8.1 Dataset description

8.1.1 Malware classes............
8.2.1 Experiments with the number

of convolution filters
8.2.2 Double descent experiments .
8.2.3 Excluding the hostnames. . ..

8.3.1 Weighting of positive class ..
8.3.2 Semi-supervised scenario . . ..

9 Conclusion
Bibliography
A CD content

SEEE R EEEEEES

2R EEEBEEE



Figures
2.1 Double descent risk curve. Figure
adopted from [5]. ............ ..., (§

3.1 Linear neural network model with

4 inputs and 3 outputs. ..........
3.2 Neural network model with one
hidden layer. ...................

3.3 Cross-correlation operation with
input on the left, kernel in the middle

and output on the right. .........
3.4 Max-pooling operation example.
3.5 Neural network before dropout is

on the left and neural network after

applying dropout is on the right.. .

5.1 Encoding of the URL into 95 x 100
one-hot representation. ..........

5.2 The architecture of the neural
network. Whit two convolutional
layers one with the kernel width 4
and the second with kernel width 5.
The number of kernels is discussed in
Chapter 8. Convolution is followed
by max-pooling which outputs
100 — kernel _wodth + 1 values.
Outputs from each max-pooling are
concatenated and optionally dropout
is applied. Follows two dense layers
with ReLU nonlinearity which reduce
the dimension to 300 and 100
respectively. Last output layer maps
the input to our 26 classes one

negative and 25 positives. ........
7.1 List of p2 instances on AWS from
which we mostly used p2.8xlarge. .
7.2 Diagram of infrastructure for
training, testing and evaluation of
models in AWS cloud. ........... 34
8.1 Graphs from double descent
experiments. We can not observe
double descent in any graph.
Experiment with L2 regularization
and parameter A = 0.01 resulted in
accuracy and precision around 0. .

viii

8.2 Comparison of models with the
raised weight of negative class. On
the left is the model with negative
class weight set to 100 on which we
can not observe precision
improvement. On the right, we see
the model with negative class
weighted by 120, which improves
precision in later epochs..........

8.3 Results of Model 3 with negative
class weight set to 0.5 and positive
classes weights set to 20 on testing
dataset.



Tables

8.1 Datasets magnitudes. .........
8.2 Distribution of positive samples
between classes in training and
testing dataset. .................
8.3 In the table are results on our test
dataset with different amounts of

convolutional filters.............. 138
8.4 Results of experiment on data with
excluded hostnames. ............

8.5 Results of base model with
negative class weight set to 100. Left
on the Figure|8.2) ...............
8.6 Results of base model with
negative class weight set to 120.
Right on the Figure 8.2|..........
8.7 Results of semi-supervised training.
Model 1 has negative and positive
classes weights set to 1. In Model 2,
the negative class weight is 1, and
the positive classes have a weight set
to 20. Model 3 has positive classes
weights set to 20, and negative class
weights are set to 0.5. Numbers in
cells are amounts of weakly labelled
samples that have been predicted as
positive from total of 981 samples.

ix






Chapter 1

Introduction

The cybernetic security field is growing due to the inevitable transfer of
criminal activities from streets to the internet; the amount of attacks is
growing so fast that it is impossible to keep up without automatization.
Machine learning research in computer vision and natural language processing
gives us a foothold for creating malware classifiers. Unfortunately, we can
not adopt those algorithms fully while they are not counting with huge noise
in real world data and imbalance between classes.

The most of malware is delivered to victims through malicious web sites;
URLs leading to these sites are lurking in phishing emails, infected websites
and more. We noticed that malicious campaigns often use similar URL
patterns during the attack, which makes them a good match for convolutional
neural network classifiers, that have proven ability to recognize patterns and
generalize on them in computer vision classification tasks.

In this thesis, we aimed at three main goals:

8 Implementation of pipeline that would handle the training, deploying
and large scale inferencing of neural network models.

B8 Designing and implementing of the fully supervised model that would
be usable in our production environment.

® Adding weak signal sources to our training procedure, so we are able to
identify positive URLs in the unlabeled part of the dataset.

The next two Chapters 2| and |3| of this thesis are dedicated to explaining
the classification with neural networks. We covered there the state of the
art algorithms for creating neural network classification models as well as
metrics to evaluate their performance.

In Chapter 4], we discuss the state of the art solutions for URL classification
with a focus on those using neural networks.

Chapter 5| covers the data preprocessing and architecture of the fully
supervised model.

On the beginning of Chapter 6, we discuss the state of the art of semi-
supervised methods using weak labels during classification and methods for
obtaining weak labels. After that, we present our model enriched by the
weighting mechanism for weak labels support.



1. Introduction

In Chapter [7], we briefly introduce modern frameworks for neural networks
development and our solution for large scale model training and deploying.
We also define our best practices for training the classifiers, which are dealing
with imbalanced datasets.

We show the results of our experiments and detailed description of our
imbalanced positive unlabeled dataset in Chapter [§| followed by the conclusion
and ideas for future work.



Chapter 2

Supervised learning

Supervised learning is a subdiscipline in the general discipline of pattern
recognition, which solves a problem of predicting targets from input data.
Predicted targets can be of several kinds according to tasks we are solving:

B Classification, where we are predicting class from a given set of classes.
More about classification in Section [2.1l

® Regression, answers questions How many and How much. The output
is a scalar value. An example can be predicting of patients stay in
hospital in days from given diagnosis.

® Tagging refers to a problem where inputs do not fit nicely to a single
class. A common example is tagging objects in pictures.

® Ranking problem is closely related to searching engines where most
relevant items should be listed first. Also, personalized commercials and
other recommender systems belong to this group.

More groups of supervised learning can be found, but it is out of the scope
of this thesis to dive deep into these topics.

Tasks where we are dealing with data without prior knowledge of what,
we are supposed to predict, e.g. data clustering, are part of unsupervised
learning. We will not discuss these type of problems in this thesis.

. 2.1 Classification

In classification, we are predicting category of a given input. Examples are
diagnosis from patients symptoms, recognizing handwritten digits or spam
and ham email separation. Categories, often called labels or classes, are
usually denoted by y, we will use these terms interchangeably. The input
data regularly requires feature extraction, which is the process of obtaining a
scalar representation of the given sample. The example can be the number
of light and dark pixels on a CT image or more advanced like the ratio of
light pixels on each side of a brain, which refers to the domain knowledge.
(Light tumour in one brain hemisphere can shift the ratio from the healthy

3



2. Supervised learning

brain CT.) Each input is then represented by a vector composed from these
numbers called feature vector or tensor in a neural network context. All
the input tensors lies in feature space X € RY and are denoted by x. Pairs
(input, label) are called an ezamples, samples or an instances. We can also
address as examples inputs where labels are not known. Usual notation for a
dataset which consists of n samples is {z;,y;}I"1. Our classifier or model fy
is a function that maps any given input x; to a prediction fy(x;). Where 6
stands for chosen hyperparameters of the classifier in the opposite of trained
values that we address as parameters

Datasets are split in training datasets and testing datasets. In the cyber-
security context, it is a good habit to split datasets according to time and
make the testing dataset from examples following the training one. For the
sake of good performance of a classifier, training dataset should be a good
representative of a testing dataset and reality. We assume that the training
and testing inputs are i.i.d. Further, we expect that the distribution is not
changing in time when we use the classifier in production. Reality shows us
that these assumptions do not hold completely. Since we are dealing with
URL addresses which very likely do change their distribution in time and
random sampling rule is certainly broke due to the time split of our dataset
on training and testing. Thus we must compensate these violations in our
classifier design.

Training is mediated by a loss function which penalise models according to
errors made during the training phase. Classification problems commonly use
a cross-entropy loss function of some kind. We use the softmax cross-entropy
loss defined as:

p = softmaz(fo(z))

L=—> logpi,yi
7

Since we are focusing on adding information from weak labels to the classifi-
cation problem, we define the final loss as a product of softmax cross-entropy
loss and weight w.

L =wjx (=) logpi, y)

. 2.2 Positive unlabeled data

Supervised learning algorithms are most successful on large labelled datasets
such as image databases. However, there are a lot of real world tasks that
requires a vast amount of time and effort for obtaining labels. Good examples
can be found in medical diagnosing where some tests can be costly or as in
our case where labelling requires time from security analyst.

Our dataset is positive unlabeled, which means that our positive class is
checked by an expert and therefore is confirmed to be positive. On the other
hand, the negative class is mostly negative, but still contains positive samples
that have been missed during data preprocessing. A lot of recent works

4



2.3. Overparametrized models

is dealing with this kind of datasets [12), 2] and are covered by the term
PU-learning which originates in [3], 4].

One idea of PU-learning from above works is to sample 15% [3] of positive
data to the unlabeled dataset, we call them spies. These spies than should
act like positive samples in our unlabeled dataset. We can then filter out or
relabel samples that behave similarly like our spies. What we are left with
are real positives.

We deal with this task in Chapter [6| where we are proposing an experiment
that shares the idea that the neighbourhood of samples can define their label;
on the other hand, we do not inject spies to our negative class, but instead,
we are decreasing the importance of the samples about which we think might
be positive. Thus the samples around with higher importance can bring those
uncertain with them to the correct class. We approach like this while it is
more natural for neural network models.

We also wanted our training pipeline to be fully automated and as simple
as possible. Therefore we do not want to filter out or relabel any data from
the training dataset by hand or do manual checks on different stages of data
preprocessing.

B 23 Overparametrized models

The main goal of every classifier is to perform well on new unseen data.
Performance on new data is called generalization. Since our data are not
randomly sampled from a dataset, but rather they are time-dependent as in
reality, good generalization is one of the most important aspects of our model.
The usual approach is to configure function capacity denoted by ||H|| to fit
bias-variance trade-off. U-shape curve on the left in the Figure [2.1] visualizes
correlation of error and ||#H||. Models, with too little parameters, tends to
be under-fitted. On the other hand, if we introduce too many parameters,
we are running into the risk of over-fitting and poor generalization [7] [g].
It is a widely accepted idea that this sweet spot between under-fitting and
over-fitting is an optimal solution. Yet, many modern applications are
overparametrized and perform very well on testing data. Moreover, many of
them fit near perfectly on training data [6], which would be considered as
over-fitted according to [§]. Novel research on neural networks and decision
trees proposes an alternative to classical U-shape curve in the form of double
descent curve [5].

B 2.3.1 Double descent

Neural networks are prone to over-fitting thanks to usually huge ||#||. As an
example, we refer to a paper where a capacity of neural network models is
shown by perfect interpolation of randomly labelled data [2I]. One way to
prevent over-fitting is by choosing a simpler model architecture, which reduces
||H]|. Another is regularization (see Section 3.4), which refer to techniques
preventing over-fitting (e.g. early stopping of a training). Researchers in [5]

5



2. Supervised learning

under-fitting over-fitting under-parameterized /\ over-parameterized

. Test risk Test risk
% . % “classical” “modern”
EE CE regime interpolating regime
N - .
> o Training risk ~ Training risk:
sweet spot\:. -~ _ >~ - . _interpolation threshold
Capacity of H Capacity of H

Figure 2.1: Double descent risk curve. Figure adopted from [5].

propose that with regularization techniques, bigger function capacity ||H||
leads to double descent curve, shown on right in the Figure 2.1 Functions
with more parameters can interpolate data smoother. The smoother solutions
are simpler than the rough ones. Thus by the Occam’s razor principle, they
should be a better reflection of reality. We decided to test this hypothesis in
our experiments.

. 2.4 Evaluation metrics

Earlier in this chapter, we determined our problem as a classification, described
what datasets we are using and defined some essential properties we seek
in classification models. But we did not specify any metrics that would
objectively measure classifiers performance. Perhaps the most intuitive one
is the accuracy, which is simply the number of correctly predicted samples
divided by the amount of all samples. Since we are dealing with imbalanced
datasets, accuracy can be misleading. Let us imagine the situation of a
deadly disease like the plague (30% - 100% death ratio), which is fairly rare
these days (A few thousands of cases per year). If it is diagnosed, the right
treatment with the antibiotics usually saves a life. We could see something
similar happening during the pandemic of COVID-19 in 2020 and the attempt
of the Czech government to take a random sample from the population to
estimate how many infected people there are in the country. The classifier
which would predict every time that the patient is negative (healthy) would
have very high accuracy. Still, somehow we feel that test like this is worthless
despite its accuracy. Our situation in network intrusion detection system
NIDS is identical; we have many negative samples and only a few positive.

On the way to improve evaluation, let us start with a definition of the
confusion matrix on the binary problem with the positive and negative class.
Our results in the confusion matrix can be of four types:

B TP: True positive. This is the number of correctly classified positive
samples.

® TN: True negative. This is the number of correctly classified negative
samples.

® FN: False negative: This is the number of incorrectly classified negative
samples.



2.4. Evaluation metrics

8 FP: False positive: This is the number of incorrectly classified positive
samples.

Now we can define four essential metrics that we will use to evaluate our
models.

B 2.4.1 Recall

Recall, sensitivity or true positive rate (TPR) gives us information about the
ability of our classifier to predict positive class correctly. It is defined like

this:
TP

TP+ FN

Back in our example with plague and classifier that always predicts negative,
the recall would be 0. Thus we get valuable information that the test is
unable to detect positive cases. But if we flip the result of the test to predict
always positive, we trivially achieved a 100% recall. Thus recall alone can
also be misleading.

Recall =

B 2.4.2 Specificity

Specificity or true negative rate (TNR) gives us the same information about
negative class as recall about positive class, which is how many percentages
of negative samples are correctly predicted as negative. It is defined like this:

TN

So the trivial plague test from our example has 100% specificity because
all the negative patients are correctly predicted as negative.

B 2.4.3 Accuracy

As we mentioned, earlier accuracy is defined as:

TP+TN
TP+TN+ FP+FN

Accuracy =

It is also called classification error and gives us information about how much
of the samples we misclassified. It works well on balanced datasets; for
imbalanced problems, we can define balanced accuracy like this:

TPR+TNR

Balanced__Accuracy = 5

In this thesis, we rather rely on recall and precision, which is our last metric.



2. Supervised learning

B 2.4.4 Precision

Precision or positive predictive value informs us about how many positive
predictions are genuinely positive. Its definition is:

TP

P .. _ .t
recision TP+ FP

It is the most important metric for us because it reflects the confidence of our
classifier in predicting positive samples. Again we can illustrate this on our
example. Precision is a percentage of treated patients that needs medication
to survive. Hence antibiotics can be expensive; we want to treat only sick
patients and not waste the resources on healthy ones. This corresponds with
our use case, where system admins have only limited time. Thus we want
to send them to fix only infected computers and not waste their time by
reinstalling the healthy machines.



Chapter 3

Neural nets

Neural networks are a far broader topic than we can cover in this thesis.
Further, in this chapter, we focus mainly on the classification problem and
techniques that we used in our models.

As the name suggests, neural networks are inspired by real neurons. Artifi-
cial neuron mimics the real one like so:

8 Dendrites which represent inputs
8 Nucleus which simulates the computation unit

® Axon which is an output of nucleus computation (axon terminals which
serve as a connection to other neurons)

Information x; begins journey at dendrites; it can be received from another
neuron or by an outer receptor, like hair cell (which is mechanical cell used to
transmit sound in ears of all vertebrates). The signal is activated or inhibited
in synapse x;w;, than the nucleus sums all the signals together y = > x;w; +b
and apply nonlinearity o(y). The final signal is sent to further processing by
next neuron or serves its purpose in the final destination (e.g. neuromuscular
junction).

This concept of learning and solving complex tasks by many "dummy"
neurons stand on research in biology. Although nowadays, progress in neural
networks is not much inspired by biology anymore but rather by mathematics.



3. Neural nets

. 3.1 Classification with neural networks

Classification in neural networks is the so-called soft classification. We are
assigning a probability to each class instead of returning just predicted label.
Let us demonstrate this on a classification problem of obtaining a diagnosis
from CT image. For simplicity, we are considering only 2 x 2 CT image,
and we want to predict if a patient is healthy, have tumour or infarction.
Thus we have feature vector = (1, x2, 3, z4) and one hot encoded classes
y=1{(1,0,0),(0,1,0),(0,0,1)} where:

® (1,0,0) = healthy
= (0,1,0) = tumor
® (0,0,1) =infarction

Linear model classification needs 3 equations, one for every class. In this
example, we need 3 x4 = 12 weights w and 3 biases b; for each class we
compute output like so:

01 = T1w11 + Towi2 + T3wiz + Tawia + by

02 = T1W21 + TaWag + T3wa3 + Tawaq + b
03 = T1W31 + Towss + x3wW33 + T4ws4 + b3

Above equations give us a neural net model (Figure 3.1) with one fully
connected layer, also called a dense layer. We can express this model in a
more compact way using linear algebra: o = Wx + b.

B 3.1.1 Softmax

We want our outputs to interpret probabilities of each class. We can not
use outputs o directly because nothing is restricting those values to be non-
negative or force them to sum up to 1, which violates fundamental rules of a
probability distribution. Hence we use softmaz function:

exp(0;)
2.7 exp(oj)

Values in ¢ are corresponding to the probability distribution while:

9 = softmaz(o) and §; =

y1+ye+ys=land 0 <y, <1,Vi

Predicted label is usually chosen as argmax(f), which is possible because
softmax is preserving the ordering of values in §.

10



3.1. Classification with neural networks

Input layer Output layer

Figure 3.1: Linear neural network model with 4 inputs and 3 outputs.

B 3.1.2 Cross-Entropy loss

Vector ¢ gives us a conditional probability estimate of each class from input
x, thus g1 = P(y = healthy|z). We can check our prediction with reality
using log-likelihood:

P(YIX) = [[ PG ]z) — —log P(Y[X) = 3" —log P(y)]2))
=1 =1

Thus minimizing — log P(Y|X) coincide with predicting the right label.
We can also derive loss function, which is called the cross-entropy loss from
this relationship.

loss(y,§) = — > yilog§i
7

At last we can chain softmax function with cross-entropy loss to obtain
softmazx cross-entropy loss.

exp(o;
loss(y,0) = — Zyz log Z’-A‘ex(p(f))
i J J

B 3.1.3 Adam

Since we usually can not solve our high dimensional models analytically, we
need to use some numeric method for solving them. Almost all optimizing
techniques used in deep learning are some form of gradient descent. If our loss
function surface is convex, it will eventually converge to a global minimum.
On nonconvex surfaces, we hope it converges to a local minimum that will be
good enough. In this thesis, we will cover only one advanced derivative of
gradient descent, which is Adam optimizer, first described in [22].

Adam combines several optimization techniques; nevertheless, it is still
reasonably robust. Thanks to its fast convergence, Adam becomes the
best practise optimizer for deep neural networks. Thus we are using it for
optimizing our models. Although it has been shown that Adam can diverge
in some cases due to issues with variance control [23].
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3. Neural nets

B Adam algorithm

The goal of our algorithm is to update the parameter vector w in the direction
of a local minimum. For understanding how Adam updates its values, we
briefly recap minibatch gradient descent and Leaky averages. Minibatch
gradient descent computes gradient for each sample from a small batch and
averages them.
1
gt = Op—— Z loss(x;, wy)
| Bl i€B
t
That has a positive side effect of decreasing variance, namely by a factor
1

|B; %|. Thus naively we should use as big batches as is the memory of the
device we compute on, more on this in Chapter [7.

Leaky averages take advantage of this variance reduction one step further
by introducing momentum v.

vy = o1+ g1

Momentum takes account of past gradients and moves forward with respect
to them.

Adam uses, in addition to momentum, the second moment both in expo-
nential weighted form.

v = Proe—1 + (1 — B1) g

st = Basi—1+ (1 — B2)g}

£1 and (o are positive parameters that are usually set to 51 = 0.9 and
B2 = 0.999. Corresponding normalized variables are defined like so:

Now with all prerequisites set we can introduce update equation

Y

“= Tsive

where 7 is learning rate and € is constant usually € = 1075, which prevents
us from dividing by zero. Parameters updates are then computed like this:

Wt = Wg—1 — 92
B 32 Deep neural networks
On the beginning of this chapter, we defined a simple linear neural network

model Figure 3.1, Furthermore, we discussed how to convert outputs to a
probability distribution. We can also optimize models weights according to

12



3.2. Deep neural networks

the loss function. However, we are still able to solve only linear problems.
Let us recall the formula for single-layer linear model:

o=Wx+b

We can now think of tasks like predicting if a patient will die based on body
temperature. Patients with a body temperature above 36.6°C are running into
higher risk with further temperature growth. On the other hand patients with
body temperature under 36.6°C are getting better with rasing temperature.
Since linearity implies monotonicity and thus increase in the input must
always increase or always decrease output value, a linear function can not
fit those data well. However change in data representation can help us; for
example, we can measure the distance from optimal temperature. It this
easy example we can find out the correct data transformation. In the more
complicated ones, we use hidden layers to learn the right representation in
the training process.

The easiest way how to introduce hidden layers into a model is to stack
several linear layers on top of each other. We can see the neural net model
with the hidden layer in Figure 3.2. The output of this model is given as:

h=Wix+ b

o= Wah+ by
7 = softmax(o)

Unfortunately, (before we apply softmax) this is a linear function of linear
functions, which is in the end linear function. To break the chains of linearity,
we have to add nonlinear activation function o. In our models, we use the
rectified linear unit (ReLU) activation, but other functions exist such as
sigmoid, tanh, etc.

ReLU(xz) = max(zx,0)

. . 1
S'LngZd(.ﬁU) = m
1-— —2
tanh(z) = L= P20
1+ exp(—2x)

The modified equations for the model with the hidden layer and nonlinear
activation function are:

h=oc(Wiz+by)
o= Wsh+ by
9 = softmax(o)

Now we have everything to create deep models with multiple hidden layers
that can learn complex interactions between inputs. It is widely known that
even model with single hidden layer works as a universal approximator with
certain choices of the activation function. Although it is not wise to use such
architecture, because it is relatively hard to train it.

13



3. Neural nets

Input layer Hidden layer Output layer

Figure 3.2: Neural network model with one hidden layer.

B 3.3 Convolution neural nets (CNN)

Neural network models, composed of dense layers, are relevant for inputs
that can be characterized as vectors of features, where we do not assume any
structure or local interactions. Patients measurements like temperature and
blood pressure that can be given in random order are an example of data
that work well with models constructed from dense layers.

On the other hand, CT images where the position of each pixel matters
are not suitable for this architectures. For example, if we would like to make
a model with a hidden dense layer for a one-megapixel CT image that would
reduce it to 1000 dimensions, this dense layer would have 10? weights to train.
This is too much even for powerful GPU machines. For classification on CT
images, we would usually use convolution. More specifically, convolution is
relevant wherever:

® Respond to a pattern should be same without concern of position in an
input (tumour can be anywhere on image).

® First layers of the neural network should analyze local regions without
the influence of distant ones (detection of tumour in the top left corner
of an image should not be subject to an infarction in the bottom right).

URL addresses and text, in general, are subject to the above criteria. Hence
we decided to use CNN architecture for our classifier.

14



3.3. Convolution neural nets (CNN)
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Figure 3.3: Cross-correlation operation with input on the left, kernel in the
middle and output on the right.
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Figure 3.4: Max-pooling operation example.

B 3.3.1 Convolution layer

Convolution layers are more accurately cross-correlation layers, where we take
input tensor and correlation kernel tensor then we apply sliding dot product
operation to obtain cross-correlation. Let us illustrate it on an example with
3 x 3 input tensor and 2 x 2 kernel also called a filter.

The blue window on the input tensor in Figure [3.3| slides from left to right
and top to bottom in each step dot product with kernel tensor is placed to
output. After this process is done, we add bias.

To be complete, we have to mention hyperparameters that can change
convolution behaviour.

8 Padding is a technique where we pad input tensor, usually with zeros,
around edges. Thus we do not shrink our output tensor in comparison
to input.

B Stride is a parameter that defines the length of the slide. If we want to
downsample our data, we can use higher strides.

B 3.3.2 Pooling

With convolution is very often introduced pooling, which reduces hidden
dimension. Thus latter layers are sensitive to input as a whole. Another
purpose of pooling is to reduce the importance of patterns position in the
input.

Like in the convolution, pooling uses a sliding window of fixed size and
traverses across input in the same manner. But unlike the convolution pooling
is not learned operation, it usually extracts maximum or makes average from
values in the window. Other operations are also possible. Thus the main
difference lays in the lack of filters to be trained. Figure [3.4] demonstrate
max-pooling, which we use in our architecture.
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3. Neural nets

B 34 Regularization

In Chapter [2, we touched the topic of regularization. Let us quickly remind
that we stated that neural networks are prone to overfitting and have huge
variance. We also stated that our models should generalize well to obtain
good results in a production environment; we also suggest that using simple
models can improve generalization. Now we introduce it in the context of
neural networks, and we define several regularization techniques that we have
tested.

First, we have to mention that the size of dataset matters. Probably the
best way of generalization is to collect enough data to train a complex model
that will not overfit to them, the downside of this is the cost of obtaining
data and the cost of training. Another straightforward technique is to stop
training when we reach the sweet spot in bias-variance trade-off. Further, we
will assume that we did our best in data collecting and that we will pick our
best model from training epochs.

B 3.4.1 L2 regularization

L2 regularization or weight decay is motivated by the assumption that the
function f = 0 is the simplest one. Thus models that are closer to f are
better. How to measure this proximity between some function h and f is an
open question. One of the possible answers can be some norm, which we then
use as a penalization during minimization of h. Most common realization is
adding %||w||2 to the loss function. There A is a hyperparameter determining
penalty strength, and w is a vector of weights of a model. Thus we are adding
Aw to the computed gradient g. As a result, we are not taking a step in
direction —ng; but rather —n(g; + Aw) this effectively decreases w by nAw
at each backpropagation run of the learning process. Recall that 1 denotes
learning rate scalar. In other words, we are pushing the classifier to use more
and smaller weights, instead of depending on a few superior ones. From there
comes the name weight decay.

This is not the usual technique of regularization of complex neural net
models, but since it is proposed in [5] we did tests with it. Results of our
experiments are described in chapter 8.

B 3.4.2 Dropout

In the case of dropout, we examine smoothness as a measure of functions
simplicity. We can also interpret this as robustness against small changes in
the input (e.g. noise in the image). Christopher Bishop proved that training
with noise is equivalent to Tikhonov regularization [20], which is designed to
improve efficiency in parameter estimation in exchange for bias in problems
without unique solutions (ill-posed problems). Dropout, as stated in [I8] [I7],
is a way how to inject noise to the hidden layers in neural networks. We
borrow biological motivation for dropout, as presented in [I8], which comes
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3.4. Regularization

Figure 3.5: Neural network before dropout is on the left and neural network
after applying dropout is on the right.

from the evolutionary role of sex, described in [19].

For sexual reproduction, we usually take the first half of genes from one
parent and the second from another one, final offspring is a combination
of both of them with some minor mutations. Asexual reproduction skips
the combining part and produces offspring as a copy of a parent with minor
mutations. At first glance, it might seem that asexual strategy is better for
individuals fitness while optimized genes already can work together in the
form of co-adaption. Sexual reproduction would destroy all these fine-tuned
co-adaptions that evolved in the past. Nevertheless, sexual reproduction is
the one we see in the most advanced organisms. Proposed explanation of this
phenomena is that the ability of genes to work with other not co-adapted ones
is maybe more important. This enables the spreading of useful genes across
the population; it is also easier to pop up when they are not blocked by a
chance of breaking some sharply bounded co-adapted gene complex. Thus, in
the end, it is easier to improve individuals fitness, also when the environment
changes, organisms can adapt without breaking those co-adaptions. Hidden
layers in neural networks should follow the same principle and do not overfit
to exact patterns in the previous layer. Dropout prevents this by randomly
setting a value of a hidden node to 0 with a given probability (usually 0.5).
We predestine that dropout regularization works better for our setup; the
results of our experiments are in Chapter |8l

B 3.4.3 Implicit regularization of gradient descent

Recent papers [24] [25] are also talking about implicit regularization of gradient
descent algorithm. We are not going into depth in this topic, but it is good
to keep in mind that the optimization algorithm by itself can favour simple
solutions above others. Both papers are dealing with matrix completion
problem, where we have been given some entries X ; : (¢,7) € Q from the
matrix X. Our task is to recover missing values from the given entries. This
can be viewed as a regression problem where training points are given values
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3. Neural nets

from X, and the model is matrix W. The optimization of W can be done by:

loss = Z (Wi,j — Xi,j)2
(3,7)€Q

We can say that our model generalizes well when X is similar to M in
unobserved regions. Since loss function has multiple optimal solutions that
we can not compare, we have to add an assumption that the matrices with
lower ranks are preferable. Gunasekar et al. [24] stated that with low learning
rate and near-zero initialization linear neural networks of depth 2 find the
solution with the minimal nuclear norm. In [25] is proposed that deeper
linear neural networks have even better solutions. It is thanks to the gradient
descent tendency to improve singular values by little each step until a certain
threshold is reached after that singular values rise rapidly. Furthermore, the
rise of singular values is getting steeper with the growing depth of the linear
neural network. Thus gradient descent prefers solutions with lower ranks and
implicitly regularize the model.

B 3.4.4 Batch normalization

It is known that the data preprocessing can impact models performance
profoundly. Often we have features of different scales. For example, one
feature can be expressed in percentages and take values from 0 to 1 another
one can be real value ranges from 0 to 1000. It is a good idea to standardize
the inputs, so they have the same mean and variance. This helps the optimizer
to converge in the right direction based equally on all features in the input
since the small difference in the magnitude of values does not make the
gradient to act hectically. Thanks to smaller but more accurate gradients, we
can use higher learning rates and converge faster.

The motivation for batch normalization comes from the fact that nothing
restricts hidden layers from taking on values of varying magnitudes. Thus
it makes sense to standardize them as well as inputs. When we apply batch
normalization on a layer we first compute activations as usual, then we
normalize them on each node. By normalizing, we mean subtracting its mean
and dividing it by standard deviation, which we both obtain from the current
minibatch.

/lB:"aZxandfr%:’;‘
z€eB

Z(x_ﬂB)2+€

zeB

The € constant is added for ensuring that we never divide by zero. Now we
can formally define batch normalization like so:

1 .
Batch normalization = Bl Z 240, TR B

zeB o

Here 7 is scaling coefficient and  is offset, together they ensure that layer
will not diverge, because we are actively centring and rescaling p with o to
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3.5. Sequence models

given values. By using an estimated ji and & we bring in the noise, which
can be beneficial for robustness as we described in the dropout section.

Once training is complete, we compute mean and variance from the whole
dataset and use them for the inference. Like this, we will have consistent
predictions during inference, not depending on batch.

B 35 Sequence models

Neural networks can have many more specialized layers and optimizations
than we described in this chapter. Sequence models are one of those that
are used in URL classification. In this section, we will briefly introduce
popular architectures for handling sequential data. We will not go deep into
implementations and math since it is out of the scope of this thesis.

Previous models expected independent data from the same distribution.
This assumption is violated in many real-world tasks. Namely, natural
language processing (NLP) is one of those tasks. State of the art in NLP
is driven by sequential models that deal with dependencies between inputs.
URL addresses are indeed texts of varying length and can be processed by
NLP classifiers.

B 3.5.1 Recurrent neural networks

Recurrent neural networks (RNN) introduce hidden-sate h, which acts as a
memory of previous data. We can say that h stores sequence information.
To obtain h; we use information from current input z; and previous hidden
state h;_1 in our activation function f.

hy = f(x¢, he—1)

For the better understanding let us assume the input sequence X; € R™"*¢
where t € T denotes position of input in the sequence. First, we need to
compute H; € R™" which stands for the hidden state for input ¢ from
the sequence. For that, we also need state H;,_; € R™" from the previous
timestep. Unlike from the dense layer, we use two parameter matrices
Wan € R¥" which serves the same purpose as in the dense layer, and
Whi € RPP which is used to determine how to handle the previous hidden
state.
Ht = U(XtW:ph + Ht_1Whh + bh)

After obtaining H; the output is given by:
Ot == Htth + bq

Here, Wy, € R"*4 contains the weights of the output layer and by with by, are
corresponding biases. RNN uses the same parameters for all the timesteps
in T'; hence the number of parameters stays the same for the sequence of
arbitrary length.
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3. Neural nets

B 3.5.2 Long Short Term Memory

Long Short Term Memory (LSTM) architectures belong to recurrent models
family. These type of neural networks are designed to preserve long-term
information and skip short-term input. One of the first publication on this
topic is [27]. The motivation for those models can be found in logic gates.
Namely, we need a representation of the output gate, the input gate and
forgot gate. Gates together create a memory cell. This mechanism serves the
purpose of deciding when to ignore the input and when to remember it. We
skip the realization of the memory cell and gates while it is out of the scope
of this thesis.

B 3.5.3 Transformer

In 2017 Google researchers introduced the new architecture for processing the
sequential data and called it Transformer [26]. It improves the state of the
art models of encoder-decoder that used two RNNs connected through hidden
dense layers. Transformer proposes a multi-head attention mechanism that
uses the input sequence and the so far obtained output sequence together
for predicting the next output in the sequence; for capturing the position in
the sequence, positional embedding is used. After each multi-head attention
layer is placed normalization, which helps with the training process. At the
end of the Transformer lays a linear layer which outputs the same number
of outputs as is possible outcomes after that softmax is applied, and the
maximal argument is selected as a result. The attention formula from [26] is:

QK"
e

The @ stands for the query, the K stands for keys, and the V' contains values.
Multi-head attention layer, in which most of the mapping from one sequence
to another happens, takes the K and V from the input sequence and @ from
the so far build output sequence, dj, is a dimension of keys and queries from
the input. Thus we use keys and values from our input to obtain the output
which we query by so far obtained tokens in sequence.

The whole process can be parallelized in several places (e.g. multi-head
attention can happen parallelly); thus, the whole training process is faster
than the RNN solution. According to [26] Transformers are becoming the
current state of the art solutions for language translation.

Attention(Q, K, V') = softmax(

4
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Chapter 4
Classification of URLs

In recent years deep learning has experienced a boom. That can be beside
other credited to a number of public datasets [41] that allowed researchers
to compete, benchmark and innovate under the same conditions. Unlike
in computer vision or natural language processing, cybersecurity is lagging
behind in this regard. Public datasets are of poor quality, mostly due to the
preservation of privacy; moreover, we did not found anyone who would deal
with the multiclass classification of URLs. Therefore it is tough to compare
the state of the art solutions.

. 4.1 Neural network models

There are two general approaches to handle URLs with neural network
classifiers. The first one is to use a sequential model such as a recurrent
neural network or long short term memory model both described in Chapter [3.
In [31] are researchers testing several sequential models on binary URL
classification problem with promising results of accuracy precision and recall
above 95%. Unfortunately, their datasets are rather small (tens of thousands)
and balanced. Vinayakumar et al. [30] made a similar comparison on an
even smaller dataset. To obtain metrics for the distribution in our data, we
would have to rescale them according to our imbalance ratio for example by
methods described in [39], which would lead to a drop in precision.

The second approach is to use the CNN model. Data entering the con-
volution layer must be of uniform dimension, which unfortunately rises a
requirement to threshold on maximum URL length. Luckily the majority of
URLSs have no more than tens maximally hundreds of characters. Thus we
are able to fit URLs to tensors that can be convoluted in a reasonable time.

Compared to sequential models CNN are much faster and less prone to
vanishing gradient. CNN also showed that they are capable of handling
sequential data [32]. Joshua Saxe and Konstantin Berlin [29] proposed a
method for classification file path, registry keys and URLs based on CNN over
matrix with embedded characters. According to [31] their solution performed
better than sequential models. Their architecture was followed by URLNet
project to which we dedicate the next section.
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4. Classification of URLs

B 4.1.1 URLnet

Perhaps closest to our task are researchers from Singapore Management
University with their URLNet [28]. They solve the binary classification
problem on URLs with the usage of convolution layers. Unlike us, they are
embedding characters and words into matrices. The unique word dictionary
is made from whole training dataset before training the model. Because the
dictionary can grow with each new URL in the dataset paper also proposes
character-level word embedding, which saves memory at the expense of
computational complexity. Convolution is than made over those matrices.
Overall, URLNet is more complicated, and thus we expect it to be slower
than our model.

The most significant difference lies in the dataset on which URLNet is
trained. Malicious samples were obtained from VirusTotal. In [28] is written:
"Given an input URL, VirusTotal scans through 64 different blacklists (e.g.
CyberCrime, FraudSense, BitDefender, Google Safebrowsing, etc.), and reports
how many of these blacklists contain the input URL." URL that appeared in
more than 4 blacklists was declared malicious. Benign URLs were those that
appeared in none of the blacklists, rest of the URLs were discarded. This is a
significant difference from our positive unlabeled dataset. Also, the ratio of
the positive to negative samples is different URLNet has roughly 15 times
more negative samples, while we have 1500 times more unlabeled samples
than positive.

B 4.2 Other classification approaches

We discussed neural net classifiers while they are related to our work, but
there are many more options on how to approach the URL classification task.
Namely, we can make future extraction and use some standard algorithm
e.g. SVM. Or we could use other machine learning approaches like random
forests in [33]. Further research of those alternatives is out of the scope of
this thesis.
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Chapter 5

Fully supervised model

Malicious campaigns often use patterns in URLs that distinguish them from
legitimate traffic. We designed our fully supervised model to find these
patterns and generalize on them. We use one negative label which covers
unlabeled part of the dataset and 25 positive labels for malware classes. More
about labels and our dataset can be found in Chapter [8.

. 5.1 Data prepossessing

Before we push our data into the first layer, we limit each URL to a maxi-
mum length of 100 characters; then we apply one-hot encoding. Individual
characters are encoded by number 1..94 which covers all allowed symbols in
URL; 0 is used as a padding for URLs shorter than 100 characters. Thus
we have 95 x 100 tensor representation of URL that enters the first layer
(Figure 5.1).

In some experiments, we removed the hostnames from URLs to prevent
over-fitting to them. The side effect of cutting out hostnames is that we can
end with the same examples in the positive and the negative class. While
precision is critical for us, we decided to place those samples only in the
negative class.

. 5.2 Architecture

Our pattern recognition mechanism is built on two convolutional layers with
different kernel sizes followed by 1D max-pooling. They can be seen as a form
of n-gram pattern-finding layers. Outputs from pooling are concatenated into
a single tensor, and optionally dropout is applied here. At last, two dense
layers, one with 300 hidden neurons and second with 100 hidden neurons
followed by output layer are connected to the model. Both dense layers use
ReLU nonlinearity. The whole architecture is shown in Figure 5.2l We did
not use batch normalization because our convergence during epochs is fast
enough, and we were adding new epochs mostly due to the introduction of
new negative samples. But we plan to experiment with batch normalization in
the future because it seems like it can only improve the model’s performance.
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Figure 5.1: Encoding of the URL into 95 x 100 one-hot representation.

B 53 Hyperparameters

In our experiments, we did not modify the parameters of the Adam optimizer
as the best practice is to use predefined ones in [22]. We also did not evaluate
deeply batch sizes and stick to best practise from [40], although theory says it
is optimal to have batches of the same size as the memory on the computing
device (see Section 3.1.3 to find out how bigger batches increase variance).

We did investigate sizes of convolutional kernels as they are a crucial
component of our pattern recognizing mechanism, and find out that small
numbers around 5 work best for us. We attribute the lack of difference in
behaviour between similarly sized kernels to the fact that small or zero values
in convolution filters act in the same manner like a choice of a narrower filter;
also dependency between two filters can result in recognition of n-gram wider
than the filter width. We also tuned the number of kernels in the convolution.
We aimed for the lowest amount that does not hurt the performance of the
model because convolution is the most time complex part of the model. We
found out that higher tens of kernels are the sweet spot where the performance
of the model does not improve with further kernel increase.

We were also investigating different architecture setups from the optimal
number of dense layers with the number of hidden neurons in them to
convolution layers stacking setup. In this thesis, we present the final most
successful architecture that we come up with.
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Figure 5.2: The architecture of the neural network. Whit two convolutional
layers one with the kernel width 4 and the second with kernel width 5. The
number of kernels is discussed in Chapter [8l Convolution is followed by max-
pooling which outputs 100 — kernel_wodth + 1 values. Outputs from each
max-pooling are concatenated and optionally dropout is applied. Follows two
dense layers with ReLLU nonlinearity which reduce the dimension to 300 and 100
respectively. Last output layer maps the input to our 26 classes one negative
and 25 positives.
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Chapter 6
Weakly labeled model

Modern supervised learning methods depend on large labelled training
datasets. Labelling the data is often a key bottleneck of the machine learning
pipeline. In cybersecurity is this task especially expensive due to the need
of domain experts for correct labelling; that does not scale with continually
evolving malware. With just a restricted amount of labelled data, weak
signals can significantly increase information gained from the training dataset.
Hence semi-supervised models are arising.

The basic semi-supervised approach is to pre-train model on weakly labelled
data and then make final tuning on the data with true labels [I6]. According
to [10] this is not an optimal approach due to lack of control how much
information from each source we gain since some sources can be more reliable
than others. One possible answer to this problem can be found in [36], 37]
where noisy label sources are combined together. Significant progress in this
field has been made by researchers from Stanford University who designed a
framework that can combine multiple weak labelled sources with contradicting
overlaps and assign the correct label to each sample based on weak label
source reliability [34, [35].

In the URL classification task, we can obtain weak labels as outputs of
different classifiers or from publicly available blacklists, which from practice
rarely overlap. At the time of writing this thesis, popular rule based network
intrusion detection system Snort [15] has on its official sites listed nine sources
from Cisco and fifteen third party sources. There is also a semi-supervised
classifier on proxy logs from V. Franc et al. [13], that uses domain blacklists
from [I4] and multiple instance learning.

Both the above works [13] [10] show the usefulness of using weak signals
in the training of classifiers on noisy datasets; also thanks to blacklists and
already working classifiers it is far cheaper to obtain weak labels than true
labels. Thus our neural net classifier uses weak signals during training, which
is recommended in [10], as weights for the loss function defined in Section 2.1
like this:

p = softmax(fp(x))
L=wjx (- Zlogpi, Yi)

We describe our semi-supervised experiment with weak labels in Chapter (8|
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where is also the description of our dataset.

. 6.1 Model with weak labels

Our model with weak labels is identical to the fully supervised one (Fig-
ure 5.2)). Simple multiplication of loss function by weight scalar is sufficient
for introducing weak labels. This favours neural nets models, for example
before forest models, where weighting can be trickier.

We use the weights to decrease training loss of the samples from the
unlabeled part of the dataset that might be malicious, but we do not have
that information from a reliable source. Hence we effectively say to the neural
network to take the sample less seriously, and thus the sample can be classified
according to samples that contain similar patterns, and we are confident with
their labels.
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Chapter 7

Infrastructure

One of the biggest challenges of the whole project was building an infras-
tructure that would fit all our needs. Key aspects are speed, comparability
with our current models and scaling in our production environment, which
is running under Java. This brings up several challenges from which the
most influencing is choosing the right framework. Almost all state of the art
libraries uses Python as the language for training models, and only a few have
support for Java. Thus transferring the trained model into the production
environment can cause us a problem. In our first attempt, we implemented
the whole inference part in Java by our selves while using a framework for
training in Python. This solution was fast enough for production while it
was optimized for the current architecture, but model retraining was hard to
automatize. Every modification in the training part must have been replicated
in the inference part, which is prone to mistakes and took twice as much time.
So our next steps aimed for better infrastructure with easier maintenance.

. 7.1 Frameworks

It is just now when we start seeing mature frameworks for deep learning, that
are meant to work on industrial level. They also take into account training on
multiple GPUs, which speeds up the training process significantly. Further,
we will focus on three main frameworks; each represented by one company
giant. The competition between Facebook and Google brought us a lot of
improvement and easy baselining of deep learning frameworks; also, excellent
documentation helps the community to proliferate. Recently Amazon joined
two giants, took the good things from both Google and Facebook and added
multiple platform solution.

Bl 7.1.1 PyTroch

PyTorch is a pythonic deep learning framework mostly developed by Facebook.
API is flexible and straightforward, which is good for fast learning with no
restrictions on how complex models can be. Even with a high level of
abstraction, one can build any neural net model from scratch and add unique
features. Another defining aspect of PyTorch is a dynamic computational
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graph representation of models. The computational graph is a representation
of the model by a directed graph where edges show data flow. PyTorch allows
modifications of this graph during runtime. The latest version also supports
TorchScript, which is meant to be a production environment.

B 7.1.2 TensorFlow

TensorFlow from Google provides multiple levels of abstraction as PyTorch,
although the learning curve of PyTorch seems steeper to us, at least on the
beginning. The user must understand more of how the TensorFlow works
(sessions, placeholders, etc.) to start using it. Also, models are represented
by static computational graphs; hence sequential data are harder to process
since we must know their size in advice. TensorFlow is more production-ready
than PyTorch; in the latest version, we can find unstable java API, which is a
big step forward for plugging neural networks into production. It is also more
prepared for distributed training [38]. Last but not least, TensorBoard is a
brilliant tool that visualizes models in the browser, which we miss in other
frameworks.

B 7.1.3 MXNet

Finally, we introduce our choice MXNet from Amazon. MXNet is a framework
build on Gluon API, which is a collection of machine learning algorithms
written in C+4. We prioritized MXNet before others mostly because of
the strong support of languages like Scala and Java, which we use in our
production environment, while we can still comfortably train our models
in Python. Another advantage is native support of Amazon Web Services
(AWS), which we use for training and where was recently transferred our
production environment. MXNet is also capable of mixing symbolic and
imperative programming, which allows easier debugging without sacrificing
performance. We also can not omit excellent documentation and a book
[9] with examples. All mentioned above makes MXNet most suitable choice
for our projects. Further, we will look at two parts of our infrastructure
developed with the use of MXNet. First one is a training part in Python
followed by inference and evaluation written in Java/Scala.

B 72 Python part

Python part can be divided into several sections.
® Data loading
® Data providing
® Training loop

In our training codebase, we use Python 3.6 with MXNet 1.5.1, which is not
the latest one. On February 21. 2020 was released version 1.6.0 with focus
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Name GPUs vCPUs RAM (GiB) Network Price/Hour* Ri Price /
Bandwidth Hour®*
p2.xlarge 1 4 61 High $0.900 $0.425
p2.8xlarge 8 32 488 10 Gbps §7.200 $3.400
p2.16xlarge 16 64 732 20 Gbps $14.400 $6.800

Figure 7.1: List of p2 instances on AWS from which we mostly used p2.8xlarge.

on NumPy compatibility (version 1.5.1 used NumPy 1.16.2 which was not
the major version at the time of release) and also resolved some issues that
we had to hotfix in our code. Whole training loop is running under AWS
Batch, which is capable of starting and allocating resources for docker images
with our experiments. We store our images in Amazon Elastic Container
Service (ECS) and data on Amazon simple storage service (S3). Code is then
physically running on one of the p2 Amazon FElastic Compute Cloud (EC2)
instances (Figure [7.1). The whole pipeline of retraining model in production
can be done by one job under AWS Batch, which was our desired idea when
we were switching from our first implementation; trained in PyTorch and
than manually transferred to hard-coded Java environment.

B 7.2.1 Data loading

Our data are stored on AWS S3 in Optimized Row Columnar (ORC) files
format, which enables to work with the desired column without need of reading
the whole row. We used PyArrow library to read ORC files, which sadly
support ORC parsing futures only in the older release that ultimately depends
on the older version of NumPy than we needed for MXNet. When we stitched
all libraries together, something went wrong, and we were downloading whole
rows instead of the desired column with URLs. Thus we made a Spark job
to extract only labels with URLSs in the form of tab-separated values (tsv)
file, which as the name indicates is a simple text file where on each line is
label and URL separated by the tabulator. During training, we are directly
downloading these tsv files into memory. In future, we want to remove the
extra step of converting ORC to tsv and optimize this process to run on
CPUs while training will be in progress on GPUs.

B 7.2.2 Data providing

On the beginning of this chapter, we mentioned that we had to hotfix some
imperfections of older MXNet release. Data loader was one of those. Since we
have enough negative data samples, we decide to load a large amount of them
and then randomly pick from these for a mini-batch instead of reusing them
each epoch. This raised problem because C implementation had allocated
32-bit address space for items in one data loader. When we were optimizing
the amount of data with the size of RAM on AWS instances, we overflow this
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restriction. As a solution, we created class superior to the data loader, which
stores an array of data loaders and iterates through them.

B Epochs dataset composition

Our dataset is highly imbalanced in one month of traffic we observe tens of
millions of negative samples. Yet, many positive classes do not exceed ten
occurrences (the most "talkative" ones have tens of thousands of samples).
The general approach that we know from many image recognition datasets,
where we go once through each sample during one epoch is predestined to end
up with model that always predicts negative and have almost 100% accuracy
with zero recall. Thus before each epoch, we compose our data into equal
bags for each class we have. This profoundly impacts data distribution and
can hurt precision at the expense of recall. We use the number of epochs
alongside with loss weighting to find the optimal model and thus compensate
the distribution shift. As mentioned before we have much more negative
samples than we can process, so we pick randomly corresponding amount for
each epoch.

To recap; first, we make bags of equal size for each class. The bag has
a size based on the biggest positive class (like that we use all our positive
samples). Smaller positive classes have duplicates in them. After that, we
add a bag of the desired size from the negative class, and we declare these
bags to be dataset for the current epoch.

B 7.2.3 Training loop

When we built epoch’s dataset, our training loop is pretty standard. We
create data loader from it and add weights in this part of the algorithm like
this we can change weights between epochs. We also declare our mini-batches
to be n times larger than we want them to be in the end, because when data
loader provide us with mini-batch, we immediately split it by the number
of GPUs that we have on the EC2 instance. Thus n denotes the number of
available GPUs. We also followed the recommended size for mini-batches in
[40] and set it to 32, although we can probably go higher, this is something
to be tested in the future.

For optimization, we used the cross-entropy loss as described in Chapter |3
and Adam optimizer with recommended hyperparameters from [22], also
described in Chapter |3.

B 73 Java part

Our production environment is running under Java and Scala. Thus models
must adapt to this environment. MXNet provides native support for inference
in Java which is one of the reasons we are using it. Nevertheless, we encounter
several interesting obstacles on the way to the production-ready pipeline.
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Right on the beginning, we had to resolve maven dependencies based on
the operating system. MXNet requires different dependencies for macOS,
Linux CPU and Linux GPU. Maven profiles can partially resolve library
differences, but they can not solve the situation when we need to build on our
local machine that is running on macOS and then push the fat JAR to AWS
where is running Linux. This situation must be specified by a parameter, so
maven uses the right dependency.

I 7.3.1 Inference and Evaluation

For inference and evaluation, we use java API, which right now lacks the
support for training. MXNet provides NDArray infrastructure for handling
tensors alongside with standard Java float lists. We tried both and adopted
the NDArray one, while it performed better in our pipeline.

One particularly exciting task was making the whole process to work in a
distributed way on Spark. When we created the model on the driver, Scala
serialized the object and pushed it to workers. This raised segmentation fault
exception deep down in C++ library because of C++ implementation have
stored pointers to virtual memory on the driver, which was not present on
workers. We solved this issue by creating the lazy implementation in Scala
which initialize the predictor at the time of first use which is on workers, at
the same time object can be serialized and pushed to individual workers. The
only requirement is to copy model definitions to all workers. The last piece
of code to implement was a wrapper that took the model and compared it
with our other classifiers.
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Figure 7.2: Diagram of infrastructure for training, testing and evaluation of

models in AWS cloud.
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Chapter 8

Experiments

We divide our experiments into two sections. In the first one, we aimed
for the model that can run in our production environment. That mainly
includes optimization of precision so that the users are not overwhelmed by
false positive alarms. Although we expect that our negative data contains
some percentage of positive samples; thus, 100% precision is also not desired
outcome.

In the second section, we focus on weak labels that would help us extract
positive samples from negative data. This model aims to enrich our malware
class definitions, based on the similarity with already known ones.

B 8.1 Dataset description

Our training dataset is obtained from Cisco network telemetry. We use
NetFlows that are enriched by information from the initial data packet (IDP),
which contains the URLs in unencrypted traffic. All NetFlows go through
anomaly layer which filters out 90% of all samples before we save them.

For our negative class, we use unique samples from one month. For the
positive class, we doubled the time window to two months and obtained 25
different classes of malware, which we are using only to deliver information
about the attack. Thus we are not particularly interested in misclassifications
between malicious classes. Labels origins in nonpublic definitions of malware
created by our colleagues focused on thread research.

Our testing dataset consists of one week of network telemetry, which follows
the training period. This reflects our use-case where we can decide how much
samples we use for training, but metrics are correctly computed on data with
the real-world distribution. We did not filter or modified datasets in a way
that would require human interaction. This creates a situation that we are
not used to in the standard datasets; for example, some classes that we train
on are not present in the testing dataset. The final ratio of samples is roughly
1500 negative samples to 1 positive.

In Table 8.1 we provide precise information about datasets magnitudes.
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8. Experiments

Positive negative
Train 45894 20844523
Test 3643 5460031
Total 49537 26304554

Table 8.1: Datasets magnitudes.

B 8.1.1 Malware classes

Our positive samples are made up of all the high-risk malware that has
appeared in two months period of our traffic data and have been confirmed
by our threat researchers. By high-risk, we mean that all samples are of
the same severity and requires fast reaction in the infected system. But
their behaviour can be very different from one to another. In our dataset,
we see this especially on the frequency of communication. Sality malware
dominates in communication frequency. It is a malware distributor that attack
windows machines and establish command-and-control through HTTP. Thus
we see much communication. In the middle on the scale of communication
frequency are trojans and click frauds, that use peer to peer communication
for establishing command-and-control or mine bitcoins in the browser. Due to
peer to peer communication, we see only hundreds of URLs. Last part of our
spectrum is occupied by threats that do not need much of the communication
like ransomware which gets into the computer and silently encrypts data and
information stealers that do not communicate over the HTTP. More detailed
description of malware classes is in Table [8.2.
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Train Test
malware distribution 1 21818 1516
malware distribution 2 14739 962
trojan 1 7918 971
malware distribution 3 427 52
click fraud 1 199 32
information stealer 1 169 33
malware distribution 4 137 0
click fraud 2 124 10
information stealer 2 97 )
malware distribution 5 87 16
information stealer 3 30 15
banking trojan 1 26 0
trojan 2 18 0
information stealer 4 15 6
click fraud 3 14 3
click fraud 4 12 0
malware distribution 6 10 6
malicious content distribution 1 10 0
trojan 3 8 4
malicious content distribution 2 7 0
banking trojan 2 7 6
ransomware 6 3
information stealer 5 6 3
information stealer 6 6 0
information stealer 7 4 0
Total 45894 3643

Table 8.2: Distribution of positive samples between classes in training and
testing dataset.

B 8.2 Fully supervised model

we present our experiments made with the fully supervised model without
any weighting of the loss function. Usage of this model was meant for our
production environment with the demand for acceptable precision and high
speed.

B 8.2.1 Experiments with the number of convolution filters

After defining the architecture first hyperparameter to tune was the number
of filters of convolution layers. We kept the same amount of filters for both
layers for all our experiments. We iterate through 1, 50, 100 and 400 kernels
in 250 epochs for each convolution layer. We aimed for identifying the model
that has enough capacity for our data. Results of our tests are in Table [8.3.
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Epoch 50 Precision Accuracy Recall
1 kernel 0.003 0.828 0.979
50 kernel 0.422 0.999 0.998
100 kernel 0.629 0.999 0.968
400 kernel 0.583 0.999 0.998
Epoch 100 Precision Accuracy Recall
1 kernel 0.004 0.865 0.975
50 kernel 0.565 0.999 0.993
100_kernel 0.637 0.999 0.970
400 kernel 0.673 0.999 0.997
Epoch 150 Precision Accuracy Recall
1 kernel 0.005 0.876 0.988
50 kernel 0.594 0.999 0.997
100 _kernel 0.510 0.999 0.996
400 kernel 0.573 0.999 0.998
Epoch 200 Precision Accuracy Recall
1 kernel 0.005 0.888% 0.980
50 kernel 0.601 0.999 0.996
100 kernel 0.437 0.999 0.990
400 kernel 0.509 0.999 0.997
Epoch 250 Precision Accuracy Recall
1 kernel 0.006 0.902 0.974
50 kernel 0.572 0.999 0.997
100 kernel 0.651 0.999 0.996
400 _kernel 0.646 0.999 0.995

Table 8.3: In the table are results on our test dataset with different amounts of
convolutional filters.

We decided that the model with 100 kernels have with reserve enough
capacity and is reasonably fast. We kept it as our baseline for further testing.

B 8.2.2 Double descent experiments

In Chapter [2| we discussed double descent phenomena and decided to test it
on our data. First, we tried L2 regularization with ¢ = 0.05 and o = 0.005.
Then we moved on dropout regularization. We also increased the number
of epochs so we could observe double descent behaviour as stated in [42].
Witnessing double descent in under parameterized models (models where
the number of parameters is smaller than the number of training samples) is
harder [5]. To be sure that we achieve interpolation in our model, we would
theoretically need as many parameters as the number of classes multiplied by
the number of training samples, which is far more than our biggest model
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Figure 8.1: Graphs from double descent experiments. We can not observe
double descent in any graph. Experiment with L2 regularization and parameter
A = 0.01 resulted in accuracy and precision around 0.

which consist of (400 % 5% 96) + (400 x 4% 97) 4+ 300 + 100 = 347600 parameters.
We did not observe double descent behaviour in any of the tests, but we
also do not have relevant sources on how to proceed with highly imbalanced
datasets like ours, where we achieve accuracy of 0.99 right after the start
of training. However, we find out that L2 regularization mostly hurt our
performance while dropout does not. Thus we kept dropout as a form of
regularization in our model. Summarized results are in the Figure 8.1

Bl 8.2.3 Excluding the hostnames

In the experiments in Table we excluded hostnames from URL samples.
We did these tests because we did not want the model to fit on hostnames but
rather to find out patterns of malicious campaigns and prevent them in future
when attackers change the server but leave the same attack pattern. Although
the performance of our model gets worse, we believe that this approach has
its use.

B 8.3 Weakly labelled model

Our semi-supervised model aims to identify more true positives from the
unlabeled part of the dataset. We present experiments that bring more control
over precision in imbalanced datasets and an artificially designed scenario
on real-world data that shows the value of bringing weak signals into the
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Epoch Precision Accuracy Recall
Epoch 50 0.121 0.994 0.996
Epoch 100 0.175 0.996 0.996
Epoch 150 0.117 0.994 0.996
Epoch 200 0.263 0.997 0.995
Epoch 250 0.332 0.998 0.984

Table 8.4: Results of experiment on data with excluded hostnames.
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Figure 8.2: Comparison of models with the raised weight of negative class. On
the left is the model with negative class weight set to 100 on which we can not
observe precision improvement. On the right, we see the model with negative
class weighted by 120, which improves precision in later epochs.

training process.

B 8.3.1 Weighting of positive class

In our fully supervised model, we lack the ability to control the amount of
false positive alarms. Simple threshold on positive class did not work for us
because the model’s confidence during all predictions achieves near 100%.
Hence when we prepared weighting for our semi-supervised experiments, we
first tried to reduce false positives by raising the weights of all negative
samples in our dataset. With big enough values, we were able to control the
boundary between false negative and false positive. In the experiment where
we multiplied the weight of negative samples by 100, we can not see much
difference from the unweighted one (Table [8.5). The situation changes when
we set the weight to 120; in Table 8.6, we can see how precision improves in
later epochs. The course of both experiments is shown in Figure 8.2l

B 8.3.2 Semi-supervised scenario

To prove the usefulness of weak labels, we created a regular expression that
describes one of our malicious classes. The regular expression looks like this:
*/images/logofa-20-9]?\.gif. Then we assigned a weak negative label to those
URLs, which effectively decreased their weight during training to ¢ = 1075,
This simulates the situation when we get unverified information about some
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Epoch Precision Accuracy Recall
Epoch 50 0.423 0.999 0.999
Epoch 100 0.447 0.999 0.999
Epoch 150 0.533 0.999 0.999
Epoch 200 0.504 0.999 0.999
Epoch 250 0.212 0.998 0.997
Epoch 300 0.178 0.996 0.998
Epoch 350 0.148 0.996 1.0
Epoch 400 0.255 0.998 0.994
Epoch 450 0.206 0.997 1.0
Epoch 500 0.240 0.997 0.995
Epoch 550 0.133 0.995 0.999
Epoch 600 0.131 0.995 0.999
Epoch 700 0.227 0.997 1.0
Epoch 800 0.232 0.997  0.99972707

Table 8.5: Results of base model with negative class weight set to 100. Left on
the Figure 8.2

Epoch Precision Accuracy Recall
Epoch 50 0.500 0.999 0.927
Epoch 100 0.440 0.999 0.953
Epoch 150 0.551 0.999 0.946
Epoch 200 0.588 0.999 0.950
Epoch 250 0.676 0.999 0.918
Epoch 300 0.718 0.999 0.840
Epoch 350 0.798 0.999 0.685
Epoch 400 0.908 0.999 0.254
Epoch 450 0.824 0.999 0.739

Table 8.6: Results of base model with negative class weight set to 120. Right
on the Figure 8.2

malware that we might have in unlabeled data. We decrease the weights of
all matching records and let the training run. If the information was wrong
and we do not have any malicious URLs that would match the pattern, we
should observe no weakly labelled data with positive prediction, on the other
hand, if the malicious pattern is present in our positive data, we should see
that weakly labelled records has been soaked up by positive classes. Hence
we were checking if the extracted data were classified as malicious or benign
when we found the model that successfully predicted the weakly labelled
samples as malicious, we tested the model on our test dataset. We also did
similar experiments on a small (thousands of samples) subset of the data. In
this pre-experiment, we split one of our malware classes and placed one part
to unlabeled data. When we trained the model without the second part in
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positive classes, weakly labelled data stayed in the negative class, and when
we returned the second part to the positive dataset, weakly labelled records
fall back to the positive class. In this small scale experiment, we achieved
perfect results. Thus we know that theoretically, this approach should work.

In Table 8.7, we show how our models were predicting 981 samples that fit
the regular expression above during training. The first model had positive
and negative class weights set both to 1. In the second model, we raised
weights for positive classes to 20. And in the third model, we additionally
lower the negative class weights to 0.5.

Results of the third model on the testing dataset are shown in Figure [8.3|
We achieved best results in epoch 200 where precision is 0.137, accuracy is
0.996 and recall is 0.971.

Epoch Model 1 Model 2 Model 3
50 161 259 349
100 232 278 399
150 133 230 407
200 140 299 273
250 131 223 416

Table 8.7: Results of semi-supervised training. Model 1 has negative and positive
classes weights set to 1. In Model 2, the negative class weight is 1, and the
positive classes have a weight set to 20. Model 3 has positive classes weights set
to 20, and negative class weights are set to 0.5. Numbers in cells are amounts of
weakly labelled samples that have been predicted as positive from total of 981
samples.
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Figure 8.3: Results of Model 3 with negative class weight set to 0.5 and positive
classes weights set to 20 on testing dataset.
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Chapter 9

Conclusion

The cybersecurity field is still lagging behind the fields like computer vision
in various aspects (e.g. good quality public datasets); This can be due to it is
an inherently more difficult task and lack of interest; this is slowly changing
due to the connection of critical systems to the internet e.g. cars or hospitals.
Also, the neural network usually not outperform by huge margin significantly
simpler models like random forests which are in contrast to neural networks
very fast in inference and easy to scale with industry demands.

In this thesis, we presented a successful pipeline that can be used in the
production environment for deploying large scale neural network models in a
distributed manner, which partially solves the speed problem and also opens
the space for future experiments with different architectures or on different
data. We summarized the approach on how to prepare and mix data for
training when dealing with an imbalanced dataset. We also implemented
code for comparison between neural networks and already used random forest
models, which give us the ability to benchmark us with the current state of
the art solutions.

On top of the pipeline, we tested our classifier on a real-world positive
unlabeled dataset with promising results, which in contrast to solutions on
small binary datasets proves our model to be usable in industry. With the
usage of class weighting, we can control the amount of false positive alarms,
which is a critical aspect for users, so they do not become overwhelmed.
We also examined basic generalization techniques and tested double descent
hypothesis.

Last but not least, we indicated the possible direction in the use of weak
signals during training, that thanks to many available untrusted sources bring
valuable information into the training process. We also demonstrated the
smooth and straight forward method on how to incorporate weighting to
neural network models.

In future research, we would like to focus on testing different architectures
of our classifier; namely sequential models, multiple instance learning archi-
tectures and batch normalization layers. We would also like to investigate
how often is necessary to retrain our model on new data and schedule this
retrain to be automatic.

It is also necessary to make further investigation in the are of weak labels
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before we can use it in our production environment. We want to design a
system for combining multiple weak sources that would give us weights for
each sample, as outlined in Chapter |6l
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Appendix A
CD content

The root directory of the CD contains:
® [Thesis.pdf], which is this thesis.

® [source code] folder which contains an implementation of our classifier
with a training loop code.

® [Dockerfile] which prepares the environment for running the code.
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