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Abstract
Although two objects can appear the

same to the naked eye, they can have en-
tirely different properties. One way to
extract these properties is by using haptic
exploration. In this work, I focused on
soft materials and objects differing primar-
ily in their elasticity/stiffness. I studied
whether a multi-fingered hand with tactile
and force feedback can correctly classify
such objects and infer their elasticity/stiff-
ness and density. I also investigated which
finger configuration and speed of object
squeezing is best suited for the task.

The work setup consisted of a three-
finger robotic gripper Barrett Hand,
twenty polyurethane foams and nine ob-
jects. The gripper was equipped with
tactile matrices — both on the palm and
each fingertip, and a joint torque sensor
for each fingertip. An action primitive
was defined as a tuple of finger configu-
ration number and joint speed. A ROS
package for the automation of the measur-
ing process was implemented. Over 1000
measurements were collected, visualized
and active taxel detection was employed.
An LSTM neural network was created to
classify the data and measurements were
divided into datasets for the training of
extracting specific object properties.

In most cases, the network could cor-
rectly classify the specific objects or place
a foam into the correct elasticity/stiff-
ness/density interval based on its param-
eters. In an ablation study, when train-
ing on just the tactile or fingertip torque
data, I show that tactile sensors are more
important for correct classification. Fur-
thermore, the LSTM network trained on
measurements taken at lower speeds could
generalize and be utilized with similar ac-
curacy at higher speeds. In some cases,
the preference of action for a specific pur-
pose was established, such as lateral finger

configuration for density interval classifi-
cation or opposite finger configuration for
any object with the smallest dimension
larger than 70 mm.

Keywords: robotic grippers, tactile
sensors, model-free object classification,
object parameter extraction, LSTM
network
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Abstrakt
Přestože dva objekty mohou na pohled

vypadat stejně, mohou mít zcela odlišné
vlastnosti a nezbývá, než je zjistit použi-
tím hmatu. V této práci jsem se zaměřil
na měkké materiály a objekty s různou
mírou pružnosti/tuhosti a zkoumal, zda
může tříprstá robotická ruka se zpětnou
vazbou z taktilních senzorů a senzorů toči-
vého momentu tyto objekty správně klasi-
fikovat a zjistit jejich vlastnosti. Dále jsem
se pokoušel zjistit, které konfiguraci prstů
a rychlosti svírání jsou pro tyto úlohy nej-
vhodnější.

Kromě tříprstého robotického chapadla
Barrett Hand jsem měl k dispozici dvacet
polyuretanových pěn a devět předmětů.
Chapadlo bylo osazeno čtyřmi taktilními
ploškami – jedno na dlani a pak vždy
na posledním článku prstu, a senzorem
točivého momentu v posledním kloubu
každého prstu. Akční primitivum jsem
definoval jako uspořádanou dvojici čísel-
ného označení konfigurace prstů a klou-
bové rychlosti. Implementoval jsem ba-
líček zjednodušující měření objektů do
prostředí ROS. Celkem jsem provedl přes
1000 měření, která jsem následně vizua-
lizoval. Vytvořil jsem způsob pro detekci
aktivních taxelů. Pomocí LSTM neuro-
nové sítě jsem klasifikoval předměty nebo
zjišťoval konkrétní vlastnosti z měření roz-
dělených do datasetů.

Vě většině případů dokázala neuronová
síť správně klasifikovat jednotlivé před-
měty nebo je na základě jejich vlast-
ností správně zařadit do intervalů hodnot
těchto vlastností. Zkoumal jsem i případ,
kdy byly při trénování zcela vynechány
buď taktilní data nebo data ze senzorů
točivého momentu a zjistil jsem, že tak-
tilní data jsou pro správnou klasifikaci
důležitější. Dalším zjištěním bylo, že neu-
ronová síť, která byla učena na měřeních
pořízených při nižší rychlosti, dosahovala

podobných výsledků i pro měření poříze-
ných při vyšších rychlostech. Pro některé
úlohy jsem nalezl ideální akce, např. pro
zjištění intervalu hustoty předmětu jsou
lepší sdružené prsty, naopak k uchopení
předmětů s délkou nejkratší hrany více
než 70 mm je nutné použít protichůdné
uspořádání prstů.

Klíčová slova: robotická chapadla,
taktilní senzory, klasifikace objektů bez
modelu, zjišťování vlastností předmětu,
LSTM síť

Překlad názvu: Výběr průzkumných
akcí pro robotickou ruku za účelem
zjištění vlastností předmětů
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Chapter 1
Introduction

1.1 Motivation

In the past decade, machine vision experienced major improvements thanks
to deep learning and growing interest in autonomous vehicles. However,
when confronted with a problem of grasping an object with a robotic gripper,
which is common in areas such as manufacturing or assistive technologies,
it sometimes might not be capable of delivering satisfactory results. Two
objects, despite looking the same, can have completely different properties.
Furthermore, if the object is deformable and changes its shape after being
grasped based on visual information, it may not be fixated and fall out or the
application of too strong forces may damage it. To deal with issues similar
to the ones described, another method must be used to extract the missing
properties.

Haptic exploration is one of the possible methods. Inspiration can be
seen in the human hand, which is “equipped” with mechanoreceptors for
pressure, temperature or pain sensing. In robotics, tactile and torque sensors
are commonly employed to receive similar signals. By combining the a priori
information from vision and other sources about the object’s shape, size. . . and
processing the haptic signals from following exploratory actions, we can obtain
a comprehensive picture of the object. This allows us to, for example, select
whether grip applying kinematic constrain or force grip is more suitable for
the object and manipulate it without causing irreversible damage.

This work is part of a collaborative project Interactive Perception-Action-
Learning for Modelling Objects (IPALM) between five academic institutions in
Europe. The project’s purpose is to “develop methods for the automatic digi-
tization of objects and their physical properties by exploratory manipulations”
[1].
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1. Introduction .....................................
1.2 Goals

The goal of this project is to use a robotic gripper Barrett Hand to collect data
from tactile and joint torque sensors and use them to determine parameters
of grasped objects. A repertoire of actions will be introduced and collected
data will be visualized. Measurements will be visualized and organized into
datasets to enable the training of an LSTM neural network, which will then
be used to determine the parameters. Finally, actions will be organized in
a way that enables the selection of an individual action to extract specific
object property.

The path taken in this work presents a model-free approach. I am going to
focus on triparametric solid objects (i.e., none of the dimensions of the object
can be neglected) and their elastic deformation.

1.3 Related work

The most relevant research for this thesis comes from the classification of
materials and their properties. I am interested primarily in utilizing haptic
sensing in robotic grippers, but similarities can be found among articles about
terrain classification by legged robots as well. For a recent overview of the
state of the art methods used in robotic manipulation and sensing, see [2].

1.3.1 Terrain classification

Recently, [3] researched the classification of materials with the use of a
neural network. A 6-legged robot with accelerometers, pressure sensors, 3D
force and 6D force/torque sensors collected data during regular operation
on various terrain types. In contrast, a 3-axis optical force sensor was used
for material classification alone. In both cases, raw signals without any
additional processing were passed into a recurrent neural network architecture
able to reduce the length of the data by passing values of overlapping moving
windows into a convolutional network into a long short-term memory (LSTM)
network with the addition of the prior factor estimated before each iteration.
An accuracy of 97.96% was reached for the terrain classification and 100%
accuracy for material recognition.

Something similar was presented in [4]. This time, a quadruped robot
equipped with joint encoders, inertial and foot pressure sensors, gathered
measurements on different surfaces, which were then classified. In addition
to coordinated gaits, a random one was also studied. However, its accuracy
was significantly lower than that of the coordinated movements.
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.....................................1.3. Related work

1.3.2 Object manipulation divided to primitives

Manipulation primitives, their abstraction and execution on different robotic
setups were the main focus of [5]. First, an action is represented by a final state
machine (FSM), where the states are manipulation primitives. The transitions
between the states are triggered by abstract events, such as reaching a stable
grasp. The events are detected by the available sensor specific to each setup.
A mechanism to translate it to an embodiment specific FSM is proposed and
the whole process is successfully tested on two different setups.

1.3.3 Haptic sensing

In [6], model-free classification is carried on with a single grasp on a compliant
gripper with force sensors. Features are collected at two moments during the
grasping process: first when the gripper first touches the object; second, when
the actuators stop moving. Furthermore, they are able to achieve similar
accuracy using only 2 out of 8 force sensors on each of the fingers and thus
simplifying the hardware in the future.

A human-like robot hand with artificial muscles and soft skin with tactile
receptors was used in [7]. The grasping process had three stages. First, the
object was handed to the gripper and after a fixed time grasp was pronounced
stabilized. Then the grip could be adjusted two times, each time with different
two fingers. With shapes cylinder, prism and ball considered classes, a Jordan-
type recurrent neural network with context nodes classified each object. After
350 000 learning steps, cylinders reached the lowest accuracy of 80% on never
before seen evaluation objects. Furthermore, different classes could be reliably
recognized at different times, even during the grasping process.

A robotic manipulator Cody with a forearm covered with force-sensitive
skin was used to conduct experiments in [8]. Data were sampled at a fixed
speed, then truncated to begin in the moment of contact between the forearm
and the object. Next, low dimensional representation was computed using
principal component analysis (PCA). Finally, the k-nearest neighbor classifier
(k-NN) was used to distinguish between fixed and movable objects, then
rigid-fixed, rigid-movable, soft-fixed, soft-movable and finally the specific
objects. The article also investigates the effects of specific features, their
scaling or the time window length on the performance.

1.3.4 Extracting properties

A reinforcement learning algorithm was used in [9] to learn an arbitrary
object’s center of mass in simulation. Their learned locations were used to
stack the objects on top of each other and in different orders. The stacking
was successful both in simulation and with a real robot and 3D printed objects.
What yet remains is to test the algorithm directly with a real setup.

3



1. Introduction .....................................
1.3.5 Thesis contribution

The most relevant work is [6], where model-free classification using force
sensors is described. The key differences are that the robotic gripper I use
has more possible configurations and a richer sensor repertoire. This gives
my setup the ability to use different action for each task, which can lead to
better accuracy.

Bednarek et al. [3] propose a way to preprocess the input time-series and
then use an LSTM neural network for the classification of the terrains and
materials. This is one of the few articles where elastic and deformable objects
are also considered. In my case, the objects will be exclusively elastic ones
and the LSTM neural network will be used to classify them.

A bionic hand from [7] equipped with tactile receptors has multiple motors
and multiple DOF, similar to the Barrett Hand. However, I will not be using
dynamic interaction or readjusting the grip in any way.

With the exception of [9], where finding the object’s center of mass is the
primary goal, none of the articles I encountered tried to determine the exact
properties of the materials, but rather classified materials or objects. This is
one of the main contributions I am going to bring to the field, as I will try to
extract specific values of elasticity/stiffness and density.

1.4 Outline

First, I am going to present my experimental setup, define actions, give an
overview of grasped objects and introduce the neural network used for data
processing (Chapter 2).

In Chapter 3, the process of grasping the items and measuring of the data
will be described. Their visualization and division into datasets for training
the neural network will also be presented.

Next, the obtained results will be shown and analyzed in Chapter 4. The
summary of preferred actions for extracting specific parameters of an object
will be given.

Finally, in Chapter 5, I am going to discuss the results, identify the
limitations and suggest possible improvements that could be made in the
future.

4



Chapter 2
Materials and methods

All the code used in this thesis is available at this online repository [10].
Specifically, my work is in the BarrettHand/ folder.

2.1 Barrett Hand

Robotic gripper used for all of the experiments is Barrett Hand (model
BH8-282) from Barrett Technologies, supplied to us by Robotnik (https:
//www.robotnik.eu/). It has three fingers, of which two can rotate around
the base. This design allows numerous configurations of the three fingers, as
described in Section 2.2, with the only restriction that the spread joints of
Finger 1 and 2 are mimicking each other.

Figure 2.1: Barrett Hand.

Numerous sensors are available on the gripper. There are matrices of tactile
sensors on the palm and each finger, a torque sensor in each fingertip and a
6-axis torque/force sensor in the base (not used in this work).

It is completely self-contained, meaning all the hardware necessary for

5
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2. Materials and methods ................................
it’s operation is enclosed in the Barrett Hand itself. The low-level messages
communicate via the CAN bus protocol. To control it, I will be using Robot
Operating System (ROS), specifically packages supplied to us by Robotnik
barrett_hand [11], bhand_controller [12] and rqt_bhand [13].

2.1.1 Joint states and torque sensors

There are eight joints in total on the Barrett Hand. They can be seen in
Figure 2.2; those marked red are controllable while the white ones are not.
I am going to refer to the bh_j11_joint and bh_j21_joint as F1-Spread
and F2-Spread joints; then, first joint in each finger chain as Fi-Base joint
and the last one as Fi-Tip joint, where i stands for finger number. The joint
coordinates are published to the /joint_states ROS topic.

Figure 2.2: Joint types, taken from the official documentation [12].

Each of the fingers has only one motor between the palm and the base link,
which drives both joints in the finger – the mechanism is called TorqueSwitch.
In addition to having only one motor, which results in much lighter fingertips,
a complex mechanism also determines the appropriate where to direct the
torque. For a full description, see [14].

In reality, we can observe the mechanism in the following situation. When
the base finger link can not move any further (for example, it came into contact
with a rigid object), the torque of the motor transforms to the fingertip link.
It encloses the object securing Barrett Hand’s grip.

In addition to the tactile sensors, the hand possesses fingertip joint torque
sensors. These readings are published in the effort field of the /joint_states

6
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.................................... 2.1. Barrett Hand

topic in N/m and, unlike tactile sensors, refresh the value at the set 200 Hz
frequency, see Section 2.1.4. Although the array published to the topic gives
an idea of torque sensors being present in each joint, in reality they are not.
Values for spread joints are always zero, and each finger’s base joints only
mimic values from the fingertip.

2.1.2 Control modes

The package bhand_controller [12] has two control modes, position and
velocity. The user can switch from one to the other by calling a ROS service
/bhand_node/set_control_mode/ and specify the desired mode.

In position control, the user specifies the joint coordinates of each of the
actuated joints in radians, that is F3-Base, F1-Spread, F1-Base, F2-Spread
and F2-Base (F1-Spread and F2-Spread set the same motor as mentioned
before) in a predefined message and publishes it to /bhand_node/command
topic. The gripper then uses its PID regulator to get to the desired position.

The second mode is velocity control. The process is similar to the position
control only the values passed in the message represent speed in rad/s for
each actuated joint this time around.

During the experiments, I will be using velocity control because it enables
fingers to move at a constant speed, which is beneficial for my goal.

2.1.3 State

Topic /bhand_node/state publishes information regarding the Barrett Hand
operations. It includes sate value and its description, from which the user
can read, for example, failure states. Furthermore, it includes current control
mode, boolean whether the hand is initialized or not, and the temperature of
motors.

2.1.4 Tactile sensors

What makes Barrett Hand unique are tactile sensors located underneath the
blue plastic covers. Each of the tactile pads includes 24 capacitive cells of
various surface areas, as seen in figure 2.3. Values from sensors are computed
directly on the hardware and are then published in an array on ROS topic
/bhand_node/tactile_array in N/cm2.

Although the topic publishes at 200 Hz, values are always constant for
some time. From my calculations, the value changes approximately every
eight messages, which means the effective frequency is around 25 Hz. This
information might be useful to take into account later on.

7

bhand_controller
/bhand_node/set_control_mode/
/bhand_node/command
/bhand_node/state
/bhand_node/tactile_array


2. Materials and methods ................................

Figure 2.3: Sensor specification, taken from the official documentation [12].

ROS topic Frequency [Hz]
/bhand_node/force_torque 200
/bhand_node/tact_array 200
/bhand_node/state 1
/joint_states 200

Table 2.1: ROS topics and their publishing frequency.

2.1.5 Force/torque sensor at the base

Attached to the gripper’s wrist is a 6-axis force/torque sensor. Because this
thesis focuses on the gripper-object interaction only, and this sensor is mostly
useful when attached to a robot arm, I am not going to use it during the
experiments.

2.1.6 Forward kinematics

The forward kinematics is taken from [14]. Transformation matrix i−1Ti from
the coordinate system i− 1 to i is equal to


cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) −di sin(αi−1)
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) di cos(αi−1)

0 0 0 1

 , (2.1)

where:. ai−1 is the distance from zi−1 to zi measured along xi−1,. αi−1 is the angle between zi−1 to zi measured about xi−1,. di is the distance from xi−1 to xi measured along zi,. θi is the angle between xi−1 to xi measured along zi.

8



.................................... 2.1. Barrett Hand

Figure 2.4: DH frame assignment for generalized finger from [14].

Joint ai−1 αi−1 di θi
1 r ·AW 0 DW r ·Θk1 − j π2
2 A1

π
2 0 Θk2 + Φ2

3 A2 0 0 Θk3 + Φ3
4 A3 −π

2 D3 0

Table 2.2: Variables of the transformation matrix for each joint.

Θk1, Θk2, Θk3 are the values read from the gripper’s encoders from the
/joint_states topic. Values of the rest of the variables are in Table 2.2.
Parameters used are in Table 2.3 and 2.4. I did not find an option to figure
out Φ2 initialization offset, so I am going to assume it is 0◦, which may cause
slight inaccuracy. In Figure 2.4 the kinematic chain is annotated.

If we choose the base of the Barrett Hand as the origin and compute the
transformation matrices and then multiply them:

WT1
1T2

2T3
3T4


0
0
0
1

 , (2.2)

Then, the resulting vector (without the fourth coordinate) is the fingertip’s
position in Cartesian coordinates.

The python script to compute forward kinematics is located in [10] at
path BarrettHand/preprocessing/fwd_kinematics.py. I will use it while
plotting measurement to compute the displacement of fingers from the palm.

9
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2. Materials and methods ................................

Parameter AW A1 A2 A3
Value 25 mm 50 mm 70 mm 50 mm

Parameter DW D3 Φ2 Φ3
Value 84 mm 9.5 mm 0◦ to 0.4◦ 42◦

Table 2.3: BH-282 parameters.

F1 F2 F3
k 1 2 3
r -1 1 0
j 1 1 -1

Table 2.4: Constants values for each finger for forward kinematic.

Figure 2.5: Barrett Hand axis, [14].

10



................................... 2.2. Action primitives

2.2 Action primitives

The gripper allows numerous configurations of the three fingers. However, I
will define three I am going to use during the experiments for my purposes...1. configuration 1 — opposite finger configuration, Fig. 2.6a..2. configuration 2 — opposite finger configuration without the utilization

of the palm tactile array1, not shown..3. configuration 3 — lateral finger configuration, Fig. 2.6b

(a) : Finger configuration 1 (oppos-
ing fingers).

(b) : Finger configuration 3 (lateral
fingers).

Figure 2.6: Used finger configurations.

The two configurations I am going to use can be seen in Figure 2.6. Con-
figuration 2 was also specified during the pilot data collection, representing a
top grasp with opposing finger with the Barrett Hand attached to the KUKA
arm. However, due to time limitations, this configuration will not appear in
the rest of the work.

Not all the configurations are suitable for all the objects. For example, the
“blue die” (introduced later in Table 2.5) can not be squeezed in configurations
with lateral fingers as it will not fit under the fingers. Video of such attempt
can be seen in [15] objects_180320/video/bbdie_a3_s0.3_t10_n1.mov.
Other items, where the lateral finger configuration can not be used, are
marked in Table 2.5.

The configuration alone is not enough to define an action, as the speed can
prove just as important. Therefore I propose the action is defined as a tuple,
where the first value denotes the configuration ID and the second one speed,
for example:

(1, 0.6)
1Intended for the use when attached to the robot arm and performing a top grasp on an

object lying on the table.
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2. Materials and methods ................................
would mean configuration with opposing fingers at speed 0.6 rad/s. For
a complex grasp, a list of tuples could describe the speed of each of the
controllable joints from a specified initial state, but I am going to focus on
the mentioned simplified actions.

2.3 Objects and materials

As mentioned previously, I am going to focus on soft objects. Furthermore,
the objects should be homogeneous and of a simple shape, such as cubes
or rectangular prisms. This requirement is essential, so the surface area in
contact with the gripper will not change dramatically. For example, if the
object would be a sphere, the closer the gripper gets to the center, the bigger
the contact area is, which will affect the values measured. Overall, at my
disposal were numerous ordinary objects, the whole YCB objects set and 20
polyurethane foams.

The first set used are objects mainly bought in stores and one objects from
the YCB dataset [16] — the rectangular prism with three holes in it, which
is also the only significantly non-homogeneous object in my experiments.
The objects’ dimensions are in Table 2.5 and their appearance in Figure 2.7.
During the pilot grasping experiments, my colleagues and I noticed that the
Kinova cube is an appropriate size for all of the grippers in our laboratory.
Because of that, I cut two more cubes of the same dimensions from different
materials. Therefore the “blue cube” is the same material as the “blue die”
and “yellow cube” is the same material as the “yellow sponge”.

Description Label Dimensions [mm]
Kinova cube kinova 56x56x56
Blue cube bdiecube 56x56x56
Yellow cube yspongecube 56x56x56
Blue die2 bbdie 90x90x90
White die germandie 59x59x59
Pink die2 mpdie 75x75x75

Darkblue die sbdie 43x43x43
YCB object ycb 75x50x50
Yellow sponge yellowsponge 195x135x65

Table 2.5: Dimensions and labels of objects set.

The second set I focused on consists of polyurethane foams. Their names,
dimensions and parameters from datasheets are listed in Table 2.6. Figure 2.8
depicts the foams. Some of them (GV and V types) have a memory-foam-like
behavior — after compression, they return to their original dimensions very
slowly. Thanks to the datasheets provived to us along with the foams, I can
use their parameters as a ground truth for the experiments. I am going to
call Compression stress value at 40% (CV40) (defined in ISO standard [17])

12
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Figure 2.7: Objects.

elasticity for simplicity. Elasticity is closely related to stiffness. However,
stiffness takes into account both the material’s elasticity and geometry.

13
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Type Dimensions [mm] Density [kg ·m−3] Elasticity CV40 [kPa]
V4515 118x120x40 45 1.5
V5015 119x120x42 50 1.5
GV5030 118x119x40 50 3.0
GV5040 118x118x39 50 4.0
N4072 118x117x37 40 7.2
NF2140 105x100x50 21 4.0
T1820 125x125x50 18 2.0
T2030 125x120x40 20 3.0
T3240 123x123x50 32 4.0
T2545 125x125x50 25 4.5
RL3529 119x118x40 35 2.9
RL4040 117x120x40 40 4.0
RL5045 118x118x39 50 4.5
RP1725 118x120x41 17 2.5
RP2440 118x120x38 24 4.0
RP27045 117x119x39 270 4.5
RP30048 123x121x39 300 4.8
RP3555 117x119x39 35 5.5
RP2865 118x118x38 28 6.5
RP50080 121x118x39 500 8.0

Table 2.6: Properties of used polyurethane foams, CV40 stands for “compression
stress value at 40%”, [17].

Figure 2.8: Foams.
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..................2.4. Soft object classification and stiffness/density regression

2.4 Soft object classification and stiffness/density
regression

Using time-series of tactile and torque feedback from the Barrett Hand, I
will attempt to classify objects from different sets as well as determine their
stiffness/elasticity and density. To this end, the Long short-term memory
recurrent neural network will be employed.

To deal with variable-length time series measured on the Barrett Hand,
there are two options:..1. divide time series into a fixed number of sections and compute features

for each of them..2. use the time series itself as an input

In this section, I am going to focus on the second option. I created a
long short-term memory (LSTM) neural network using the PyTorch Python
library [18]. All of the codes mentioned in this section are available in [10].

2.4.1 Long short-term memory neural network

LSTM is a type of recurrent neural network (RNN) first introduced in [19]
and has been a popular option for sequence learning, such as text or even
speech recognition and translation. It tackles the vanishing gradient problem
present when learning very long dependencies with regular RNNs. The
general architecture of an LSTM cell is shown in Figure 2.9. There are many
variations, but I will be using this as a “black box” from the PyTorch library.

Figure 2.9: LSTM cell in detail, [20]. Yellow rectangles are learnable layers, pink
circles are pointwise operations, lines merging represent concatenation, forking
copies the data into two vectors.

In addition to the official PyTorch forums, my main sources were articles
[21] and [22]. To address the variable-length problem, I studied [23]. To load
the dataset, I wrote my own function create_dataset available in Barrett_
neural/lstm_utilities.py, which loads the .npz data files (NumPy file
format) and optionally can omit tactile or torque sensory channels — this
will be used in the ablation studies later on. Next, a loader is created
with a specified batch size in create_loader. In each batch, the data are
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2. Materials and methods ................................
padded with zeros to the length of the longest measurement, but information
about original length is kept. From the loader, the time series is passed into
the LSTM layer. According to the original length, the output of the last
LSTM cell (representing the LSTM-computed features) with non-zero input
is selected. The features are then passed into two linear layers to compute the
output. Then, one output is selected using the softmax layer in the case of
classification, or left untouched in the case of regression — more on that later.
The architecture of the network is in Barrett_neural/lstm_model.py.

Each sensory channel represents a single time series being analyzed. The
values are not modified in any way; I am relying on the neural network to
extract the features. Sensory channels are:..1. taxels3 from each tactile matrix (4 · 24 = 96)..2. joint coordinates (8)..3. fingertip joint torque (3)

During training, the PyTorch automatic differentiation engine is called
and used to backpropagate from the loss of the output and weights are
updated according to the set optimizer. Data are divided into the training
and validation set. Specific datasets will be introduced in Section 3.3.

2.4.2 Problem formulation

Given X = Rs×n represents the space of all possible measurements and Y = R
the space of labels, I am searching for a function f ,

f : X → Y, (2.3)

which will map an input X ∈ X to a label y ∈ Y . The input of the function
X is a specific measurements represented by a matrix of dimensions s× n,
where s is the number of sensory channels and n number of measurements.

I am going to list the possible use-cases. The network architecture is the
same for each of them, but the labels differ. The number of sensory channels
is automatically determined by the dataset_creation function mentioned
earlier.

Classification

. Training script: BarrettHand/neural/lstm_train_class.py. Benchmark: accuracy = number of correctly classified measurement /
total number of measurements

3Taxel is usually used as a tactile sensor synonym in robotics. The abbreviation comes
from TActile piXEL.
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..................2.4. Soft object classification and stiffness/density regression

. Input labels: specific objects.Output: specific objects’ labels

Classification into discrete intervals

. Training script: BarrettHand/neural/lstm_train_bin.py. Benchmark: accuracy = number of correctly classified measurement /
total number of measurements. Input labels: specific foams with their elasticity/density interval, which
is assigned based on the foam’s reference value, see Table 2.6.Output: elasticity/density intervals

Three intervals were created for elasticity, later for density. There are
always fewer of the stiffer/denser foams, so I incorporated weights calculation
to the create_dataset function to avoid skewing the weights in favor of the
class with the most training examples4. Furthermore, I tried to create the
borderline between the classes to maximize the region with no foams of such
elasticity/density, while roughly maintaining the balance between the number
of training examples.

To enable results for individual foams in the validation set, evaluation
process and some of the data loading components had to be changed. They
are defined along with the training script in the BarrettHand/neural/lstm_
train_bin.py script. That enables us to see individual foams in the confusion
matrix instead of just the class. Therefore, results and confusions can be
better understood — for example, when the foam is the same material as
another but has a higher density/elasticity.

Regression

. Training script: BarrettHand/neural/lstm_train_regression.py. Benchmark: mean absolute error (MAE). Input labels: specific foams with their elasticity/density reference value,
see Table 2.6.Output: continuous number representing elasticity/density

As accuracy could not be used because of the continuous output (even a
small difference such as 10−12 would indicate incorrect output), mean absolute
error was used instead. However, this can still be skewed by a few consistently
incorrect foams, function to plot the results were added. An example from
training is shown in Figure 2.10.

4This was not necessary for the ordinary classification, as the training sets were balanced.
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Figure 2.10: Elasticity regression output plot.
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Chapter 3
Data collection

This section is going to describe data measuring, their pre-processing and
visualization. Furthermore, they will be organized into datasets (available at
[24]), which can then be directly used to train the neural network mentioned
in the previous chapter.

3.1 ROS package

To begin with, I created a ROS package, which would enable me to measure
the process of squeezing an object. For all of the measurements, velocity
control is used, as it closes the hand at a constant speed. However, this also
means the internal hardware controller is used, and the joints’ force can not
be set explicitly.

By reverse-engineering Barrett Hand’s GUI controller [12] I was able to write
a script BarrettHand/bhand_gather/scripts/grasp_object.py available
at [10]. Its purpose is to make measuring simple: the user specifies the tactile
threshold, speed, finger configuration, object name and measurement number.
ROS bag is then started to save all the messages into a .bag file, which will
be processed later. Then, the hand closes at the set joint speed published to
the /joint_states topic for each joint (see Section 2.1.1), until one of the
three events occur:..1. joints reach their maximum position; therefore the hand can not close

any further..2. threshold is exceeded on any of the taxels..3. movement stops because of the object resistance

After one of those events, the measurement stops and the .bag file is saved in
a specified location. The location and default used-defined values, such as
speed, can be set in BarrettHand/bhand_gather/scripts/config.py.
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3. Data collection ....................................
The next step is to convert the .bag files to .npz files; a NumPy zipped

archive of .npy files, each containing and named after one of the saved variables.
As the rest of the work is written in Python, they are more convenient to work
with. Script BarrettHand/pre-processing/process_data.py is designed
to do precisely that.

3.2 Visualization

Although all of the data are measured at discrete time steps, I am going to
use the function matplotlib.pyplot.step instead of matplotlib.pyplot.
scatter. This keeps the last value until the next one is received. This is
especially useful for the tactile sensors, because, as mentioned in Section 2.1.4,
values appear to refresh faster than they do. Another reason is that there are
simply too many values and plotting it as a scatter appeared more confusing.

In Figure 3.1, activations of all taxels for each of the tactile surfaces while
squeezing an object are shown — each line represents one taxel. This is not
very clear; therefore, I will always show only one plot per tactile surface, such
as average in Fig. 3.2a, where F1, F2, F3 and PALM refer to the tactile
surfaces. Both in the original plots of all taxels and in the averaged plot,
we can notice they start at different values, although I would expect all the
values to be around zero and then going up at roughly 5.5 s when the gripper
started squeezing the object. This is because of uncalibrated tactile sensors.
Therefore, some data pre-processing was necessary.

All of the plots can be created by BarrettHand/pre-processing/plot_
data.py.

3.2.1 Data preprocessing

First, I created a new script to truncate data, available at [10] in BarrettHand/
preprocessing/truncate_data.py. It opens a .npz file created previously
and shows a plot such as Fig. 3.2b showing both the averaged tactile sensors
in relation to the right pressure y-axis and joint torque in relation to the left
torque y-axis. F1, F2, F3 and PALM pressure refer to the tactile surfaces,
F1_TIP, F2_TIP and F3_TIP torque refer to the fingertip joint torque
sensors. The user clicks on any of the torque plots and selects where the
gripper first touched the object.

An average of each individual taxel is computed from the last 100 samples
before the first contact and saved to a new .npz file, which includes only the

1We can notice the green taxel is moving in the opposite direction than all of the others.
I believe this is caused by the incorrect installation of the sensor onto the tactile matrix,
specifically in the opposite direction that all of the others. Because of this, I am going to
ignore this taxel in the detection of active taxels, but the neural network will still get its
data.
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(a) : Finger 1.1
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(b) : Finger 2.
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(c) : Finger 3.
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(d) : Palm.

Figure 3.1: Plots of all taxels on each of the tactile surfaces. Foam GV5030,
opposite finger configuration, speed 0.3 rad/s, non-truncated.

data after initial contact. It is not computed from the whole portion before
the contact, because I noticed changes in the values as the Barrett Hand’s
temperature increases while in operation, therefore, taking the most recent
values should, in a way, compensate the thermal drift. I considered some form
of automatic detection as well, but due to the uncalibrated tactile sensors
and the idle torque values being different for each speed, this proved rather
difficult, if not impossible.

The new .npz file with an average for each taxel enables us the active taxel
detection. A taxel is considered active when it crosses 130% of the average
value before the first contact — the additional 30% is to ignore the taxels’
noise. The average value is subtracted, therefore calibrating the taxel to
return values around zero when inactive. A new plot can be created, which
only computes the average of the active taxels. The updated plot is shown in
Fig. 3.3.

3.2.2 Object compression

To obtain information about the object’s compression, I use the forward
kinematics described in Section 2.1.6. Specifically, in configuration 3, when
the fingers are lateral and press against the palm. If c(t) is the compression
of the object at time t, d(t) is the orthogonal projection of distance from
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(a) : Averaged taxels for each of the
tactile surfaces.
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(b) : Averaged tactile surfaces with
joint torque.

Figure 3.2: Foam GV5030, opposite finger configuration, speed 0.3 rad/s, non-
truncated.
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(b) : Visualization of the active taxels.

Figure 3.3: Foam GV5030, opposite finger configuration, speed 0.3 rad/s,
truncated.

fingers to the palm along the z-axis (Fig. 2.5) at time t and t0 is the moment
of the first contact, then the compression function is:

c(t) = |d(t)− d(t0)|. (3.1)

However, the same is not applicable to configuration 1 with opposing fingers.
The distance component along the y-axis could be computed, but the fingers
can bend the object and even cross each other in some cases; thus, the
projection would not reflect the object’s deformation.

There are two types of compression plots. First, shown in Figure 3.4,
displays the compression of the object c(t) throughout the time. The second
type, Figure 3.5, assigns the compression to each time-step, sorts the torque
and pressure data in ascending order according to the compression and plots
it. As the compression can remain the same for some time while the torque
and pressure values change, there can be more than one value for one x-axis
compression value.
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Figure 3.4: Compression of V4515, lateral finger configuration, speed 0.3 rad/s,
truncated.
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Figure 3.5: Torque and pressure vs compression of V4515, lateral finger configu-
ration, speed 0.3 rad/s, truncated.

3.2.3 Overview of used plots

To complete the overview of plots, I am adding a joint coordinates plot in
Figure 3.6. This leaves us with the following plots:..1. pressure of all taxels for each tactile surface vs. time..2. pressure of active taxels2 for each tactile surface vs. time..3. average pressure of all taxels for each tactile surface vs. time..4. average pressure of active taxels2 for each tactile surface vs time..5. joint coordinates vs. time..6. joint torque vs. time

2Available for manually truncated measurements.
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3. Data collection ......................................7. joint torque and average pressure3 vs. time..8. joint torque and average pressure3 vs compression of the object4..9. compression of the object vs time4...10. active taxels map
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Figure 3.6: Joint coordinates vs time of GV5030, lateral fingers, speed 0.3 rad/s.

3Average pressure of active taxels if the measurement is truncated, the average pressure
of all taxels otherwise.

4Available for lateral finger configuration only.
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3.3 Datasets

To be able to train the neural network, various datasets for studying different
aspects of object parameters were created from the individual measurements
(specific measurement can be in more than one dataset, datasets available
at [24]). In Table 3.1, an overview of all datasets is presented, including the
parameters of training and validation sets.

Dataset name Action Measurements
action1-03 trn (1, 0.3) 4–6

val (1, 0.3) 4
labels all objects

action3-03 trn (3, 0.3) 4–6
val (3, 0.3) 4

labels all objets except blue die, purple die
objects1 trn (1, 0.3) 8–10

val5 (1, 0.6) 8–10
labels all objects

objects2 trn (1, 0.3) 8–10
val5 (3, 0.3) 8–10
labels all objets except blue die, purple die

objects3 trn (1, 0.3), (3, 0.3) 8–10
val5 (1, 0.6), (3, 0.6) 8–10
labels all objects

objects4 trn (3, 0.3) 8–10
val5 (3, 0.6) 8–10
labels all objects

objects5 trn (1, 0.3) 8–10
val (1, 1.2) 8–10

labels all objects
objects6 trn (1, 0.6) 8–10

val (1, 1.2) 8–10
labels all objects

foams trn (1, 0.3), (3, 0.3) 14–16
val (1, 0.3), (3, 0.3) 4

labels all foams
stiffbin trn (1, 0.3), (3, 0.3) [127, 138, 48]

val (1, 0.3), (3, 0.3) [28, 40, 12]
labels elasticity intervals [15-30, 40-55, 65-80]

Table 3.1: Dataset overview. Trn is short for training set, val for validation
and labels. Measurements are examples per class, total number of examples for
regression datasets. Datasets which have ’s’ appended at the end of the name
have the training and validation set switched. Actions are in accordance with
the notation established in Section 2.2.
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Dataset name Action Measurements
stiffbin2 trn (1, 0.3), (3, 0.3) [120, 155, 40]

val5 (1, 0.3), (3, 0.3) [19, 39, 20]
labels elasticity intervals [15-30, 40-55, 65-80]

stiffbin3 trn (1, 0.3) [60, 79, 20]
val5 (1, 0.3) [10, 20, 10]
labels elasticity intervals [15-30, 40-55, 65-80]

stiffbin4 trn (3, 0.3) [60, 76, 20]
val5 (3, 0.3) [9, 19, 10]
labels elasticity intervals [15-30, 40-55, 65-80]

densebin trn (1, 0.3), (3, 0.3) [154, 111, 48]
val (1, 0.3), (3, 0.3) [40, 28, 12]

labels elasticity intervals [15-35, 40-50, 270-500]
densebin2 trn (1, 0.3), (3, 0.3) [154, 119, 40]

val5 (1, 0.3), (3, 0.3) [40, 20, 20]
labels density intervals [15-35, 40-50, 270-500]

densebin3 trn (1, 0.3) [79, 60, 20]
val5 (1, 0.3) [20, 10, 10]
labels density intervals [15-35, 40-50, 270-500]

densebin4 trn (3, 0.3) [75, 59, 20]
val5 (3, 0.3) [20, 10, 10]
labels density intervals [15-35, 40-50, 270-500]

stiffregress_old trn (1, 0.3), (3, 0.3) 334
val5 (1, 0.3), (3, 0.3) 61
labels continuous elasticity

stiffregres_new trn (1, 0.3), (3, 0.3) 275
val5 (1, 0.3), (3, 0.3) 61
labels continuous elasticity

experiment trn (1, 0.3), (3, 0.3) 395
val empty

labels continuous elasticity
experiment_a1 trn (1, 0.3) 200

val empty
labels continuous elasticity

experiment_a3 trn (3, 0.3) 195
val empty

labels continuous elasticity

Table 3.1: Dataset overview. Trn is short for training set, val for validation
and labels. Measurements are examples per class, total number of examples for
regression datasets. Datasets which have ’s’ appended at the end of the name
have the training and validation set switched. Actions are in accordance with
the notation established in Section 2.2.

5The validation dataset consists of never-before-seen objects.
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Chapter 4
Results

In this chapter, I am going to present the results of my work. I will refer to
the datasets from previous chapter, see Table 3.1 and Figures 2.7 and 2.8.
For action primitives and finger description, please refer to Section 2.2 and
Figure 2.5.

4.1 Data comparison

To get a qualitative idea of what the data look like, I am going to present
some plots of object compression.

In Figure 4.1, tactile and torque plots of two objects made of the same
material with the same density but different elasticity can be seen with their
active taxels maps. The repeated peaks are caused by the internal controller
of the Barrett Hand speed. From my understanding, it repeatedly readjusts
the maximum motor torque safety threshold, so the motor does not get
damaged, and during that time, the joint torque drops. This phenomenon is
visible even for some of the objects and for other foams as well.

Next presented in Fig. 4.2 are two foams with the same elasticity, but
different density and material. The scale of the pressure sensors is the same
for each figure, but the RL4040 reaches higher torque values. A human can
see the difference, but there is no specific trait in the curves which would
enable us to tell which is which with certainty. Furthermore, we do not know
which traits are related to the foam’s elasticity and which to density.

Foams with maximum and minimum elasticity are presented in Figures 4.3
and 4.4, the first one is for opposite finger configuration, the latter one for
lateral. We can see the difference between configurations. In Fig. 4.3 we can
once again see the repeating peaks caused by the controller.

Fig. 4.4, on the other hand, is much cleaner and the difference between
the stiffer and more flexible foams is observable by the human eye — the
gradient is larger for the stiffer object.
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(a) : Joint torque and active taxels
average of foam GV5030.
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(d) : Active taxels map of foam
GV5040.

Figure 4.1: Foams with different elasticity. Opposite finger configuration, speed
0.3 rad/s, truncated.
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(a) : Foam RP2440.
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(b) : Foam RL4040.

Figure 4.2: Two foams with same elasticity but different density and material.
Opposite finger configuration, speed 0.3 rad/s, truncated.
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(a) : Foam RP50080, elasticity 80.
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(b) : Foam V4515, elasticity 15.

Figure 4.3: Maximum and minimum elasticity. Opposite finger configuration,
speed 0.3 rad/s, truncated.
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(a) : Foam RP50080, elasticity 80.
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(b) : Foam V4515, elasticity 15.

Figure 4.4: Maximum and minimum elasticity. Lateral finger configuration,
speed 0.3 rad/s, trunacated.
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4.2 Object classification

In this section, a neural network I designed will try to classify the individual
objects, as described in Section 2.4.2. All experiments were run with Adam
optimizer with the amsgrad option enabled. Cross entropy loss was used as
the criterion function.

I will refer to the datasets from previous chapter, see Table 3.1 and Figures
2.7 and 2.8.

4.2.1 Classification on foam set

All measurements of the polyurethane foams were taken at the speed of 0.3
rad/s. To begin with, I examined their classification on foams with both finger
configurations. The experiment reached accuracy 91.25%; the classification
matrix is shown in Fig. 4.5.

Figure 4.5: Foam20 dataset, accuracy 91.25%. This represents the ability of
classifying each foam.

Next, I trained the same network but omitted data from either the torque
or the tactile sensors. Confusion matrices are shown in Fig. 4.6. The ablation
study showed the tactile sensors as superior over torque sensors. This is
interesting because from plots, we can notice the tactile sensors introduce
much noise compared to the torque ones. In my opinion, this is caused by
the position information conveyed by the taxels. Furthermore, during the
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................................. 4.2. Object classification

training, the ablation of torque data reached an accuracy of 80% around epoch
85 in contrast to ablation of tactile data, where barely 40% were roughly
reached at epoch 100 and presented models were saved at epoch 140 to effort
ablation and epoch 375 for tactile ablation.

(a) : Ablation of effort data – tactile
sensors only; accuracy 90.00%.

(b) : Ablation of tactile data – effort
sensors only; accuracy 62.50%.

Figure 4.6: Ablation study of foam20 dataset.

4.2.2 Individual actions on object set

To verify the ability to classify the objects, I created datasets for individual
actions, see Section 2.2 for more info. The results are shown in Figure 4.7,
both actions appear to lead to similar performance on this task.
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(a) : Dataset action1-03, accuracy
94.44%.
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(b) : Dataset action3-03, accuracy
92.85%.

Figure 4.7: Object classification by individual actions.

4.2.3 Knowledge transfer

In this section, I am going to examine whether or not a classifier trained on a
set of measurements gathered by specific action can be used to classify the
same parameters when exploring the object with a different action.
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4. Results .......................................
Different finger configuration

To start with, I looked into how the transfer from one configuration to the
other works at the same speed. Results are correct in most cases for both
directions, but there is no particular object that prevents the classifier from
reaching better accuracy—it differs from measurement to measurement. The
results are shown in Fig. 4.8.
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(a) : Objects2 dataset, accuracy
63.76%, configuration 1 → 3.
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(b) : Objects2s dataset, accuracy
71.42%, configuration 3 → 1.

Figure 4.8: Knowledge transfer from configuration 1 to configuration 3 and vice
versa at speed 0.3 rad/s.

Different speeds of squeezing

To address the question of whether the “knowledge” of object classification is
transferable to different speeds of squeezing, I experimented with datasets,
where training sets consist entirely of one speed and validation sets of another.

The first one consisted of both finger configurations and is shown in Fig.
4.9. When transferring from 0.3 to 0.6 rad/s, the only object incorrectly
classified in all cases is the YCB prism. A possible reason might be that
the prism is extremely heterogeneous because of the holes from one side,
which could have significantly distorted the measurement. Furthermore, the
material of the YCB prism feels very similar to the Kinova cube. When
transferring from 0.6 to 0.3 rad/s, accuracy is 14% lower.

However, better results can be obtained by separating the datasets of the
two configurations, as shown in Figure 4.10 for opposite configuration and
Figure 4.11 for lateral. The difference between the slower to faster and faster
to slower is much more significant this time and consistent between the two
finger configurations. From these results, I propose the idea that transfer is
more successful from lower to faster speed rather than the opposite way. We
can once again notice the incorrect classification of the YCB prism in Fig.
4.10a.

We might come to a conclusion, lateral finger configuration (3) is superior
to the opposite finger configuration (1). However, configuration 3 has an
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(a) : Objects3 dataset, accuracy
84.90%, 0.3 → 0.6 rad/s.
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(b) : Objects3s dataset, accuracy
71.06%, 0.6 → 0.3 rad/s.

Figure 4.9: Knowledge transfer from 0.3 to 0.6 rad/s and vice versa for both
finger configurations.

easier classification problem because the larger objects could not be grasped
in lateral finger configuration.

(a) : Objects1 dataset, accuracy of
86.66%, 0.3 → 0.6 rad/s.

(b) : Objects1s dataset, accuracy
66.66%, 0.6 → 0.3 rad/s.

Figure 4.10: Object classifier knowledge transfer for speeds 0.3 and 0.6, opposite
finger configuration.

To verify this idea, more speeds need to be tested. In Fig. 4.12 speed
transfers 0.3 → 1.2 and 0.6 → 1.2 rad/s are portrayed. We are confronted
with lower accuracy at 0.6→ 1.2 transfer. Surprisingly, training at a much
lower speed appears to be better than training at a higher speed for the same
validation speed of 1.2 rad/s.

For completeness, Fig. 4.13 displays knowledge transfer from 1.2 to 0.3
and 0.6 rad/s. We can see the results are similar to the previous ones, that is
lower accuracy than from slower to faster. Difference between Fig. 4.13b and
Fig. 4.12b is more marginal but still noticeable.
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(a) : Objects4 dataset, accuracy
98.55%, 0.3 → 0.6 rad/s.

(b) : Objects4s dataset, accuracy
72.46%, 0.6 → 0.3 rad/s.

Figure 4.11: Object classifier knowledge transfer for speeds 0.3 and 0.6, lateral
finger configuration.
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(a) : Objects5, acc 83.54%, 0.3 → 1.2.
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(b) : Objects6, acc 67.08%, 0.6 → 1.2.

Figure 4.12: Object classifier knowledge transfer for speeds 0.3→ 1.2, 0.6→ 1.2,
opposite finger configuration.
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(a) : Objects5s, acc 65.55%.
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(b) : Objects6, acc 58.42%.

Figure 4.13: Object classifier knowledge transfer for speeds 0.3→ 1.2, 0.6→ 1.2,
opposite finger configuration.
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4.3 Classification into discrete intervals

In this section, foams will be sorted into intervals based on their elasticity or
density, as described in Section 2.4.2. For the datasets used, please refer to
Table 3.1. Adam optimizer and cross-entropy loss were used.

4.3.1 Elasticity

In Figure 4.14, confusion matrices of datasets created for elasticity interval
classification are shown. Subfigure on the stiffbin dataset contains training
data for all of the objects and four never before seen measurements are
used for validation. The accuracy of this experiment is 92.50 %, which was
expected, as the objects were the same in both training and validation sets,
validation set just consists of different measurements.

When some objects are completely separated1, as shown in the other
three confusion matrices, accuracy drops significantly. Stiffbin2 contains
the configurations mixed together, while stiffbin3 contains only opposite
finger configuration and stiffbin4 only lateral configuration. However, no
configuration appears to be superior in this task.

Later, my colleague Pavel Stoudek discovered during his master’s thesis that
some of the foams do not correspond to their rated elasticity or density values,
one of them being the N4072. This could explain its incorrect classification.
I am going to discuss this further in Chapter 5.

1Meaning the network didn’t see any of their measurements during the training phase.
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(a) : Stiffbin dataset, accuracy 92.50%.
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(b) : Stiffbin2 dataset, accuracy
70.51%.
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(c) : Stiffbin3 dataset, accuracy
72.50%.
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(d) : Stiffbin4 dataset, accuracy
73.68%.

Figure 4.14: Elasticity interval classification.

4.3.2 Density

To see whether the interval classification method will yield better results
when classifying by density, another four datasets were created with the same
measurement distribution as in the case of elasticity. Again, the dataset with
all of the foams partly in both training and validation sets reached almost
perfect accuracy, see Fig. 4.15a.

The accuracy was significantly lower when some of the foams were not in
the training datasets, as seen in 4.15b for densebin2. Although the accuracy
of densebin4 (lateral configuration only) was similar to densebin2, densebin3
exceeded that and reached 100% accuracy consistently around epoch 20. From
these results, we can deduce that the opposite finger configuration is better
at density classification.

Some of the accuracy differences compared to the stiffbin datasets could
result from different validation foams selection.

36



..................................4.4. Elasticity regression

15
-35
40

-50

27
0-5

00

Predicted

017 (rp1725)
018 (t1820)
020 (t2030)
021 (nf2140)
024 (rp2440)
025 (t2545)
028 (rp2865)
032 (t3240)
035 (rl3529)
035 (rp3555)
040 (n4072)
040 (rl4040)
045 (v4515)
050 (gv5030)
050 (gv5040)
050 (rl5045)
050 (v5015)
270 (rp27045)
300 (rp30048)
500 (rp50080)

Tr
ue

1

1

1

1

1

1

1

1

1

1

.25 .75

1

1

1

.25 .75

1

1

1

1

.50 .50

Confusion matrix of the classifier

0.0

0.2

0.4

0.6

0.8

1.0

(a) : Densebin dataset, accuracy 95%.
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(b) : Densebin2 dataset, accuracy
76.25%.
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(c) : Densebin3 dataset, accuracy
100%.
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(d) : Densebin4 dataset, accuracy
72.50%.

Figure 4.15: Densebin datasets.

4.4 Elasticity regression

Unlike the previous neural networks, this one was trained with SGD with
momentum. SmoothL1Loss was used as the criterion function.

The goal of the elasticity regression network was to output a number
corresponding to the elasticity coefficient for any object grasped. Training
dataset had discreet labels, which were the elasticity of the foams in hPa.
The best model was evaluated based on mean average error (MAE). A
few incorrectly classified measurements can significantly distort this metric,
therefore I also created a plot to show the goal, average and all of the
measurements. Best training is shown in Figure 4.16. Foam with elasticity 30
is rated similarly as the foam with elasticity 40. When looking at the same
plot for the training dataset, we can see some of the foams’ elasticity values
are not correct even there.

I am again going to refer to the information from my colleague Pavel
Stoudek, who found out some of the foams are incorrectly labeled [25]. I
decided to try to determine which ones are off and by how much by only
training the neural network on all foams. From the previous experiment, I
knew that after cca. 200th epoch, the model starts to overlearn and loses the
ability to generalize. However, I have to assume the majority of the references
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(b) : Training.

Figure 4.16: Dataset stiffregres_old, MAE 3.90.

are correct, otherwise, this approach will not yield correct results.
Figure 4.17 shows training on both finger configurations. N4072 is classified

roughly at elasticity 40 instead of 72 hPa, T1820 is classified as stiffer than the
stated value, RP50080 has a similar elasticity to RP2865. All of these findings
are consistent with Pavel Stoudek’s measurements. The other two subfigures
show the same network, but they are trained only on specific configurations.
The results are consistent across the configurations as well, so there is not
much added value to these specific experiments. This does not mean all of
the other references are correct, however.
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Figure 4.17: All foams in the dataset trained in elasticity regression network,
epoch 200, both configurations, MAE 4.73.
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(a) : Only opposite finger configura-
tion, MAE 4.17.

15
 (v

45
15

)
15

 (v
50

15
)

20
 (t

18
20

)
25

 (r
p1

72
5)

29
 (r

l3
52

9)
30

 (g
v5

03
0)

30
 (t

20
30

)
40

 (g
v5

04
0)

40
 (n

f2
14

0)
40

 (r
l4

04
0)

40
 (r

p2
44

0)
40

 (t
32

40
)

45
 (r

l5
04

5)
45

 (r
p2

70
45

)
45

 (t
25

45
)

48
 (r

p3
00

48
)

55
 (r

p3
55

5)
65

 (r
p2

86
5)

72
 (n

40
72

)
80

 (r
p5

00
80

)

True stiffness [hPa]

20

30

40

50

60

70

80

Pr
ed

ict
ed

 st
iff

ne
ss

 [h
Pa

]

Average
Reference
Measurement

(b) : Only lateral finger configura-
tion, MAE 4.40.

Figure 4.18: All foams in the dataset trained in elasticity regression network,
epoch 200.

I executed the training for the elasticity regression network again, but this
time without the N4072, T1820 and RP50080, results are in Figure 4.19.
Unfortunately, no noticeable improvement can be seen in the validation set,
although the training set noticeably improved. A possible reason could be
that other foams have incorrect reference values as well or that the overall
diversity of the dataset is too low.
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(b) : Training.

Figure 4.19: Dataset stiffregres_new, MAE 4.41.

4.5 Pressure reference calculation

An attempt to fix the incorrect references for polyurethane stated in Table 2.6
foams was made. According to the accompanying datasheets, the reference
elasticity value is the pressure measured at 40% compression of the foam.

The calculation script with manual selection of the 40% compression
is presented in BarrettHand/preprocessing/pressure_calculation_demo.
py, [10]. The initial idea is as follows: let’s call pij (N/cm2) the pressure of
taxel j on tactile matrix i, Sij (cm2) its surface area and Fij (N) the force
applied to it. Then we can calculate the total force F and total surface area
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4. Results .......................................
S as:

F =
3∑
i=0

23∑
j=0

pij · Sij (4.1)

S =
3∑
i=0

23∑
j=0

Sij (4.2)

and the total pressure p is
p = F

S
. (4.3)

However, this only accounts for part of the contact area and contact forces
between the object and the gripper. In other places, we can know neither the
contact area nor the force applied. For example, foam GV5030 gives us 705
Pa instead of 3000 Pa. This is unlike any of the parallel grippers used in [25],
where the contact area is the same throughout the grasp. To the best of my
knowledge, there’s no way of calculating the elasticity of an object.

4.6 Action selection

The action selection part of my work proved to be more difficult than expected.
In most tasks, it is not clear which action performs better. I am going to list
the cases where a significant difference in the performance between actions
could be seen.

For density classification, configuration 3 at speed 0.3 rad/s performed
with 100% accuracy, unlike configuration 1.

For classification, training data should be collected at a lower speed. The
neural network trained at a lower speed can be applied to the same objects
at higher speeds while maintaining roughly the same accuracy.

For Young modulus estimation, I suggest using the torque data. There is
much noise in the tactile data, not to mention the sensors are not calibrated. I
attempted to correct their behavior by detecting the active taxels as described
above, but no such thing had to be done with the joint torque sensors.

For objects with the smallest dimension longer than 70 mm, lateral finger
configuration can not be used as the object will fall out. Use the opposite
finger configuration instead.

40



Chapter 5
Conclusion, discussion and future work

5.1 Conclusion

My work focused on learning object properties from haptic exploration.
First, I defined action primitives for the used gripper as a tuple of finger
configuration and speed. A ROS package was implemented to simplify the
measuring process, conversion of data from ROS bag to NumPy array for later
visualization. Over 1000 measurements were collected for different objects
and organized into datasets for extracting different object properties. An
LSTM neural network capable of handling variable-length time series was
built for classification and material property (elasticity/stiffness, density)
extraction purposes. Both the measurements and datasets are available in
[24], the ROS package and LSTM network with its utilities are in [10].

Measured data were visualized using the written Python scripts. A method
to detect active taxels and calibrate them was proposed and the new data
were visualized again with a map of the active taxels. The approximate object
compression plot was created with the use of the gripper’s forward kinematics
for lateral configuration.

Deviations in the reference values of the polyurethane foams were dis-
covered and taken into account. Ablation studies showed that despite the
noisiness of the tactile data, they are more important than the joint torque
data for classification performance. I also proposed an idea, that when the
classification network is trained on lower speed measurements, the model
performs with similar accuracy on higher speed measurements as well without
any modifications. This was repeatedly reproduced and, therefore, can be
considered verified. According to the prior assumptions, it was discovered
that non-homogeneous objects are difficult to classify. Where applicable, the
preference of action for a specific task was introduced.

In addition to all of the above, I documented the Barrett Hand gripper; its
drawbacks are further discussed in the next section. In collaboration with
Bc. Pavel Stoudek, we collected numerous measurements of soft objects and,
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through that, contributed to the creation of a dataset, which can be further
studied.

5.2 Discussion and future work

In this section, I am going to discuss the results, limitations of the taken
approach and possible future work.

One of the major drawbacks I had to deal with was the lack of reliable
reference data, which is further discussed in [25]. Although the polyurethane
foams we received included a datasheet with specific values, the allowed
deviation of ±15% skews the data significantly in the case of object properties
extraction (classification tasks were not affected). Neural networks can not
be expected to perform well when training data are incorrect and even more
so when their quantity is small. Arrangements were made to measure both
the objects and PU foams accurately by Ing. Hynek Chlup, Ph.D., from
the Faculty of Mechanical Engineering, FEE, CTU, but due to the Covid-
19 outbreak and limitations during the quarantine, measurements were not
finished before the deadline of the thesis. However, once the correct reference
values are obtained, labels can be changed and training can be run again
without making any modifications to the datasets.

I am aware that better local minima could possibly be found by fine-tuning
SGD with momentum. However, due to time limitations and so many datasets
to be evaluated, I did not spend time with that approach. Better accuracy
could also be reached by decreasing the dimensionality of the data. In the
results section, ablation was mentioned with the outcome that tactile data are
more important than those from joint torque sensors. This only decreases the
dimensionality by 3 (one joint torque sensor for each finger). Future research
could try to combine raw data from taxels to reduce the dimensionality more
significantly.

Polyurethane foams should be measured at different speeds. This was
planned but was not completed due to time limitations and the fact that
other parts of the thesis were more complicated than expected.

The action selection part of the work proved to be much more intricate
than expected, as in most cases, the performance on the task was similar for
the actions studied. A reinforcement learning algorithm could be used in the
future to select the action. However, such a complex task needs a way to
evaluate the results and, therefore, correct validation data. That was not
possible because of the reasons mentioned.

The model-free approach taken in this work enables us to use raw data
directly from the sensors. On the other hand, due to the Barrett Hand’s
uncalibrated taxel readings and even possible temperature effect on them,
the network may have to be trained again for specific hardware, possibly even
for another Barrett Hand. Retraining includes collecting the training data
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.............................. 5.2. Discussion and future work

and creating the datasets. Pre-processing the data, calibrating the sensors,
taking temperature drifting into account or all of those as mentioned above
could lead to better transferability between the hardware of the same kind.

During the experiments, I focused on homogeneous objects with simple
geometry, such as cubes and rectangular prisms. Future work should take
into account more complicated geometric shapes, including numerous prisms,
balls and even non-homogeneous objects.

Finally, when estimating stiffness/elasticity from measurements made with
Barrett Hand, torque sensors are less noisy than taxels and more similar
to the plots from other grippers mentioned in [25]. However, Barrett Hand
gripper is not at all suitable for scientific measuring of the objects because
of the noise of the taxels and it’s complicated kinematics. For example,
we can guarantee neither the contact surface with the object nor reliably
calculate objects’ compression, which is crucial for precise material property
measurements.
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