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Abstract 

Transmission line networks are becoming less linear and more meshed as time goes on. New 

algorithms for fault localization are needed to cater for the increasing complexity of line networks. A 

progressive algorithm using H matrices was described in this thesis. The algorithm and simulation of 

lines were realized using Mathematica® version 12. The types of faults that overhead lines have, their 

parameters and how to localize those faults were described first. The progressive algorithm used to 

localize the faults was analysed for all different types of faults. Accuracy of the algorithm was tested 

in different locations of faults. Influences of total vector error for the phasors used to calculate the H-

matrix were examined. 

Keywords: Overhead lines, localization, fault, synchrophasors, Mathematica, high voltage, 

transmission, algorithm, H matrix.  

 

 

 

 

 

 

 

 

 

 

Abstraktní 

 

Síť přenosových vedení se postupem času stává méně jednorozměrnou a více propojenou. Nové 

algoritmy pro lokalizaci poruch mohou pomoci zabezspečit provoz při rostoucí složitosti sítí. V této 

práci byl popsán progresivní algoritmus využívající H matice. Algoritmus a simulace linek byly 

realizovány pomocí Mathematica® verze 12. Nejprve byly popsány typy poruch, které se mohou 

přihodit na vedeních, parametry vedení a způsoby tyto poruchy lokalizovat. Navrhovaný algoritmus 

používaný k lokalizaci poruch byl analyzován většinu možných typů poruch. Přesnost algoritmu byla 

testována pro různá místa poruchy. Byly zkoumány vlivy chyb pro fázorů použitých pro výpočet H-

matic. 

 

Klíčová slova: Přenosové vedení, lokalizace, porucha, synchrofázory, Mathematica, vysoké 

napětí, přenos, algoritmus, H matice.  

 



Table of Contents 
 

1. Introduction ..................................................................................................................................... 1 

2. Overhead line faults ........................................................................................................................ 1 

3. Overhead line parameters................................................................................................................ 3 

4. Protection systems and apparatus ................................................................................................... 5 

4.1 Instrument transformer ............................................................................................................ 5 

4.2 Protection relay ....................................................................................................................... 5 

4.3 Distance protection relay ........................................................................................................ 6 

5. Synchrophasor standards................................................................................................................. 7 

6. Short-circuit parameters ................................................................................................................ 11 

6.1 Goodness-of-fit ........................................................................................................................... 12 

7. H-matrix ........................................................................................................................................ 14 

7.1 Modelling one phase overhead line with H-matrix ............................................................... 14 

7.2 H-matrix subdivisions ........................................................................................................... 15 

7.3 H-matrix segmentation and fault localization ....................................................................... 16 

8. Creating Z, Y and H matrices based on type of fault .................................................................... 18 

8.1 Z-matrix ................................................................................................................................ 18 

8.2 Y-matrix ................................................................................................................................ 19 

8.3 H-matrix of fault ................................................................................................................... 19 

9. Mathematical model ...................................................................................................................... 21 

9.1 Dimensions and parameters of lines ..................................................................................... 23 

9.2 Stead state model .................................................................................................................. 23 

9.3 Transient state ....................................................................................................................... 24 

10. H-matrix algorithm results ........................................................................................................ 25 

10.1 Perfect phasor accuracy ........................................................................................................ 26 

10.2 Phase-to-ground fault results ................................................................................................ 26 

10.3 Phase-to-phase fault results ................................................................................................... 29 

10.4 Double-phase-to-ground fault results .................................................................................... 31 

10.5 Three-phase fault results ....................................................................................................... 34 

11. Conclusion ................................................................................................................................ 36 

 

  



Table of Figures 

 

Fig.2.1. Three-phase ....................................... 2 

Fig.2.2 Phase-to-ground fault ......................... 2 

Fig.2.3. Phase-to-Phase fault .......................... 2 

Fig.2.4 Double-phase-to-ground fault ............. 3 

Fig.3.1 Overhead line parameters per unit 

length .......................................................... 3 

Fig.3.2. π model of transmission line .............. 4 

Fig.3.3. T model of transmission line ............. 4 

Fig.4.1. Time-distance characteristics of 

distance protection [3] ................................. 7 

Fig.4.2. Characteristics of a Three-Zone Offset 

Mho-Relaying Scheme. [2] ......................... 7 

Fig.5.1. description of expected inputs and 

outputs for a PMU [4] ................................. 8 

Fig.5.2. Visual representation of TVE .......... 10 

Fig.6.1 Far-from-generator short-circuit [5]. 12 

Fig.6.2 Near-of-generator short-circuit [5]. .. 12 

Fig.6.3. The sampled voltage (Actual) is 

compared to the modelled phasor (phasor) 

and the difference is calculated (residuals) 

[7]. ............................................................. 13 

Fig.6.4 The sampled current (Actual) is 

compared to the modelled phasor (phasor) 

using the GoF metric [7]. .......................... 14 

Fig.7.1. T-model of one phase line with 

currents and voltages marked .................... 15 

Fig.7.2. Visual representation of the divisions 

of H-matrix into Z-matrix and Y-matrix ... 16 

Fig.7.3. Cascaded n H-matrices .................... 16 

Fig.7.4. Visual representation of the H-matrix 

formula (7.7). ............................................ 17 

Fig.8.1. The impedance portion of the H-

matrix. ....................................................... 18 

Fig.8.2. The admittance portion of the H-

matrix ........................................................ 19 

Fig.8.3. H-matrix of fault for phase-to-ground 

fault on phase number 2. ........................... 20 

Fig.8.4. H-matrix of fault for a double-phase-

to-ground fault on phases number 1 and 2.

 .................................................................. 21 

Fig.8.5. H-matrix of fault for a phase-to-phase 

fault on phases number 1 and 2. ................ 21 

Fig.8.6. H-matrix of three-phase-to-ground 

fault. .......................................................... 21 

Fig.9.1. Complete wire configuration. .......... 22 

Fig.9.2. Dunaj type of overhead line mast. ... 23 

Fig.9.3. 3-Phase voltage model from 

Mathematica® (not all phases are visible 

since they overlap) .................................... 24 

Fig.10.1 Actual errors at different fault lengths 

for all four types of faults. ........................ 26 

Fig.10.2. Phase-to-ground fault at segment 

400. ........................................................... 27 

Fig.10.3 Phase-to-ground fault at segment 

1000. ......................................................... 27 

Fig.10.4. Phase-to-ground fault at segment 

1600. ......................................................... 28 

Fig.10.5. The percentage of error compared 

with the fault distance and type for ph-gr 

fault. .......................................................... 29 

Fig.10.6. phase-to-phase fault results at 

position 400. ............................................. 29 

Fig.10.7. phase-to-phase fault results at 

position 1000. ........................................... 30 

Fig.10.8. phase-to-phase fault results at 

position 1600. ........................................... 30 

Fig.10.9. The percentage of error compared 

with the fault distance and type for ph-ph 

fault. .......................................................... 31  

Fig.10.10. double-phase-to-ground fault 

results at position 400. .............................. 32 

Fig.10.11. double-phase-to-ground fault 

results at position 1000. ............................ 32 

Fig.10.12. double-phase-to-ground fault 

results at position 1600. ............................ 33 

Fig.10.13. The percentage of error compared 

with the fault distance and type for 2-ph-grd 

fault. .......................................................... 34 

Fig.10.14. three-phase fault results at position 

400. ........................................................... 34 

Fig.10.15.Three-phase fault results at position 

1000. ......................................................... 35 

Fig.10.16. three-phase fault results at position 

1600. ......................................................... 35 

Fig.10.17. The percentage of error compared 

with the fault distance and type for 3-ph 

fault. .......................................................... 36 

 

 

  



Table of tables 

Table 1. Steady state TVE requirements [4] . 10 

Table 10.1. The names given to each test case

 .................................................................. 25 

Table 10.2. Actual errors at different fault 

lengths for all four types of faults. ............ 26 

Table 10.3. Results of phase-to-ground fault.

 .................................................................. 28 

Table 10.4 Results of phase-to-phase fault. .. 31 

Table 10.5 Results of phase-to-phase fault. .. 33 

Table 10.6 Results of three-phase fault. ....... 36 

Table 2. RFE and FE steady state requirements 

[4] (Where Fs is reporting frequency.) ...... 11  

Table 3. The dimensions of the overhead lines

 .................................................................. 23 

 

 

  



1 

 

1. Introduction 
 

Overhead line faults are a major factor in transmission and distribution grid reliability and quality. 

While good planning and testing can decrease the amount of faults occurring significantly, it can 

never fully remove random faults or faults due to external factors. With overhead lines potentially 

being hundreds of kilometres long and faults occurring at random location and time, extensive work is 

required for localization and diagnostics of faults. 

Concurrent devices for fault localization only take into impedance values of the line and compare 

them with reference values. While this method is accurate enough on simple overhead line schematics 

and configurations, with the ever increasing complexity of today’s grids the method is found lacking. 

A progressive algorithm is proposed with the ability to keep up with the more complex grid 

schematics and specifications, which will allow transmission operators to more efficiently locate and 

diagnose faults which in turn leads to less downtime.  

The progressive algorithm works on the principles of the H-matrix which takes into account not only 

the impedance characteristics but also the self and mutual inductances, the types of conductor 

arrangements as well as parallel lines (even when unsymmetrical). 

 

2. Overhead line faults 
 

A fault occurring causes high currents to travel through the conductor, these high currents can lead to 

high temperatures in the conductors for which they were not designed for as well as causing 

instabilities in the voltage which can damage equipment [2]. Protection equipment must be carefully 

selected to cut the time of the fault down to as small as possible. 

Transmission line faults can be quantified in many ways. The simplest form is symmetrical and 

asymmetrical faults. Symmetrical faults are comprised of a three-phase short circuit fault which 

means that each phase has an equal amount of variation from the reference values. Asymmetrical 

faults are comprised by phase-to-ground, phase-to-phase and double-phase-to-ground faults. These 

faults have uneven currents in between the phases due to their nature. All 4 types of faults are 

described schematically in figs. 2.1-4. An important design note on protection systems is that 

symmetrical faults usually have the smallest short-circuit currents and therefore are not suitable for 

choosing protection equipment based on the currents these faults provide but rather a study should be 

done to find the highest short-circuit current and chose equipment based on that value. 

Another type of classification of faults is the cause of the faults such as: tree, lightning, insulator 

degradation, accident…etc. These classifications are mostly used to study fault occurrence and to try 

preventing the types of faults from occurring. 

In transmission lines the most frequent type of fault is phase-to-ground (~93%), followed by double-

phase-to-ground (~5%) and the other two faults (phase-to-phase and three-phase) with very low 

occurrences (~1%) each [10]. 
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Fig.2.1. Three-phase 

 

 

Fig.2.2 Phase-to-ground fault 

 

 

Fig.2.3. Phase-to-Phase fault 

 

 



3 

 

 

Fig.2.4 Double-phase-to-ground fault 

Where the arrows along the phases B-Y-R indicate a-c current flow and I 
``

3, I 
``

2, I 
``
 ,I 

``
k2E are all 

respective short-circuit currents. 

 

3. Overhead line parameters 
 

Accurate mathematical representation of overhead line parameters is essential for building a 

progressive algorithm that will be able to accurately represent the real life equipment and their 

specifications. The model for an overhead line takes into account the series resistance and inductance 

and the shunt capacitance and conductance. Overhead lines have the 4 mentioned parameters 

proportional to their length. Therefore to model the overhead line we must consider these parameters 

as per unit length or per kilometre (km). 

Rdx – resistance per kilometre (
Ω

𝐾𝑚
) 

Xdx – inductance per kilometre (
𝐿

𝐾𝑚
) 

Cdx – capacitance per kilometre (
𝐶

𝐾𝑚
)  

Gdx – conductance per kilometre (
𝑆

𝐾𝑚
) 

 

 

Fig.3.1 Overhead line parameters per unit length 

 



4 

 

These parameters can be modelled as lumped parameters in different ways, π and T models are the 

most common. The models are shown in the figs.3.2-3below.  

 

Fig.3.2. π model of transmission line 

 

 

Fig.3.3. T model of transmission line 

 

With the following formulas explaining the relationship of the former simple model with the lumped 

parameters models: 

𝑍 = 𝑅 + 𝑗𝑋 = 𝑅𝑑𝑥 ∗ 𝐷 + 𝑗𝑋𝑑𝑥 ∗ 𝐷  (3.1) 

𝑌 = 𝐺 + 𝑗𝐶 = 𝐺𝑑𝑥 ∗ 𝐷 + 𝐶𝑑𝑥 ∗ 𝐷  (3.2) 

 

Where Z is impedance (Ω), Y is admittance (S), D is length of overhead line (m), R is resistance (Ω), 

X is reactance (L), G is conductance (S) and C is capacitance (C).  
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4. Protection systems and apparatus 
 

Protection systems are crucial transmission apparatuses as they protect grids equipment from 

additional damage that can be caused by faults. Protection systems must disconnect faulty sections of 

the grid as soon as possible to prevent: overheating of the conductors by short-circuit currents, non-

nominal voltage levels and unbalanced three phase operation. This means that the protection system 

must be able to detect these fault conditions and act appropriately. 

 

4.1 Instrument transformer 

 

Detection and monitoring is done by instrument transformers. There are two types of such 

transformers: current type and potential type. The potential type in turn then can be separated into 3 

more types: electromagnetic, capacitive and optical. Instrument transformers must have as little a load 

as possible on the phase conductors while accurately measuring the voltage or current from that same 

phase. Instrument transformers used in protection systems are usually connected to monitoring 

systems, protections relays or both in the secondary winding. 

Current type instrument transformers step down the current in the measured conductor to a more 

suitable level for measuring, to do this the transformer has very few turns in the primary side but a 

large number of turns in the secondary side where the ammeter is directly connected. On the other 

hand voltage types, while also a stepping down the voltage, have large number of turns in the primary 

and a few number of turns in the secondary where the voltmeter is directly connected. The difference 

is due to the different impedances of the voltmeter and ammeter.  

 

4.2 Protection relay 

 

A protection relay is a device that opens or closes segments of the transmission system in abnormal 

conditions such as faults. Protection relays are classified in two groups: measuring and all-or-nothing 

relays. Measuring relays are triggered to turn on or off by certain values of current, voltage, power or 

phase. In turn all-or-nothing relays do not have a setting and are energized by certain quantity, when 

this quantity is too high or too low the relay switches on or off. All-or-nothing relays are rarely used 

nowadays with their inability to be adjusted [2]. 

Measuring relays are triggered by a various amount of measured quantities such as: 

 Current relays: Operate at a predetermined threshold value of current. 

 Voltage relays: Operate at a predetermined value of voltage. 

 Power relays: Operate at a predetermined value of power.  

 Differential relays: Operate according to the scalar or vectorial difference between two 

quantities such as current, voltage, etc. 

 Distance relays: Operate according to the “distance” between the relay’s current transformer 

and the fault. The “distance” is measured in terms of resistance, reactance, or impedance. 
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4.3 Distance protection relay 

 

Distance protection relay is an impedance based type of protection where the relay measures 

impedance using a two-input relay comparator. While there are other methods of impedance based 

protection they usually require measurements of voltage and current from both the ends of the line, 

this becomes uneconomical in regards to big interconnected grids, unlike the distance protection relay 

which only needs measurement from one end. 

A two-input relay comparator will have one input current proportional to the fault current while the 

other will be proportional to the fault loop voltage. This means that the impedance of the fault is 

calculated from these two values, this impedance is then compared to the nominal impedance. If the 

line impedance was found to be smaller than the nominal impedance then the comparator would 

trigger the distance protection relay. A mho relay is usually used in practise nowadays as it is 

naturally directional and has suitable settings that can be calibrated. 

Distance protection relays are a stepped type of protection, meaning there is discrete difference in the 

time of triggering which depends on the distance. Current practise sets the relay to trigger in the same 

time delay for the first 80-90% of the first section of the feeder line. Then for the second section a 0.5-

1 second delay is added. The second section overlaps another distance protection relay for at least an 

additional 20-50% of its first section i.e. 120-150% from the beginning of the line. The third section 

has an additional 0.5-1 second delay added to its trigger time and also the relay overlaps the second 

distance protection relay by an additional 20-50% i.e. 220-250% from the beginning of the line. This 

characteristic is graphically explained in the fig.4.1. The reason for the staggered overlapping zones is 

for backup protection. 

By changing the characteristics of the mho relay the measured distance of the protection relay is 

changed. This is graphically represented in fig.4.2. 

The distance protection relay can not only locate the fault in one of the three zones but also determine 

the type of fault. This is done by having additional mho relays for each zone with different 

characteristics on their respective PT (potential type) and CT (current type) transformers. This option 

obviously increases costs drastically. 
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Fig.4.1. Time-distance characteristics of distance protection [3] 

 

Fig.4.2. Characteristics of a Three-Zone Offset Mho-Relaying Scheme. [2 

 

5. Synchrophasor standards 
 

Synchrophasors standards define inputs and outputs for protective equipment used in power energy 

such as protection equipment and measuring relays, usually referred to as PMU (phasor measurement 

unit). The standard defines voltage and current synchronized phasors (synchrophasors) as well as 

frequency and rate of change of frequency (ROCOF). Also it describes the conditions needed to 

synchronize and time tag the three types of data provided [4]. The standardization of these values is 
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crucial when dealing with cross-country power energy connections as well as connections between 

different transmission/distribution companies, as difference in standards may result in problems. IEEE 

has developed a standard for just this purpose, called the C37.118 standard.  

This standard defines the accuracy of the voltage and current phasors as well as the reliability of the 

time input. The PMU that are used in power electronics must follow these accuracies. In Fig.5.1 you 

can see the visual representation of the input and output expectations of the standard. 

 

 

Fig.5.1. description of expected inputs and outputs for a PMU [4] 

 

Measurement time synchronization  

UTC time input must be from a reliable and accurate source such as global navigation satellite system. 

The UTC time input has an important job of synchronizing all the other inputs/outputs so slight 

deviations of errors can lead to serious issues.  A phase error of 0.01 radian or 0.057
o
 will cause a 1% 

TVE (total vector error). TVE will be defined later in this chapter (equation 5.7). 1% is the maximum 

allowed error with regard the time input. This corresponds to a time error of ± 26 µs for a 60 Hz 

system, and ± 31 µs for a 50 Hz system [4]. It is recommended that time input has 10 times better 

accuracy than that which creates 1% TVE. Each output will be time tagged using the UTC time input 

with a 1µs precision. 

 

Synchrophasors 

The voltage or current in an AC power grid is modelled with the following equation: 

(𝑡) = 𝑋m(𝑡)cos[𝜃(𝑡)] + 𝐷(𝑡)  (5.1) 

where t is time in seconds, where t = 0 is coincident with a UTC second rollover; Xm is the peak 

magnitude of the sinusoidal AC signal; θ is the angular position of the sinusoidal AC signal in 

radians; D is a disturbance signal that contains additive contributions to the signal, including, but not 

limited to harmonics, noise, DC offset and out-of-band interference. 

The synchrophasor phase angle ϕ(t) is defined as the phase difference between the angular position 

θ(t) and phase due to the nominal frequency f0:  
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𝜙(𝑡)  =  𝜃(𝑡)  −  2𝜋𝑓0  (5.2) 

 

The phasors for current and voltage can be expressed in two different ways, as polar coordinates:  

X(t) = (
Xm(t)

√2
, ϕ(t))  (5.3) 

 

Or alternatively as real and complex components: 

𝑋𝑅(t) = (
Xm(t)

√2
cos [ϕ(t)])  (5.4) 

𝑋𝐼(t) = (
Xm(t)

√2
sin[ϕ(t)])  (5.5) 

 

Where XR (t) is the real component, XI (t) is the imaginary component, Xm(t) is the peak amplitude of 

the signal and ϕ(t) is the phase angle.  

 

Rate of change of frequency  

The ROCOF measurand is the angular acceleration of the AC power system signal in units of Hz/s. It 

relates to the angular velocity of the power system signal  

𝑅𝑂𝐶𝑂𝐹(𝑡) =
𝑑𝑓(𝑡)

𝑑𝑡
= 

1

2𝜋

𝑑2𝜃(𝑡)

𝑑𝑡2 = 
1

2𝜋

𝑑2𝜙(𝑡)

𝑑𝑡2   (5.6) 

 

TVE (total vector error) 

The measurement of the TVE for each of the components in the PMU is very vital for establishing the 

accuracy limits. The TVE determines the differences between a PMUs estimates of the signal and the 

reference values calculated according to models provided. 

The TVE describes both magnitude and phase angle errors in its calculations. This means that all the 

possible errors are covered, be it: magnitude error, noise, time un-synchronization and phase 

difference.  

TVE is defined as follows: 

𝑇𝑉𝐸(𝑛) = √
(ϒ𝑅(n)−𝑋𝑅(n))2+(ϒ𝐼(n)−𝑋𝐼(n))2

𝑋𝑅(n)2+𝑋𝐼(n)2
  (5.7) 
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where ϒ R (n) and ϒ I (n) are the real and imaginary PMU estimates at report time n, XR (n) and XI (n) 

are the real and imaginary reference values at report time n; n is the report number representing the 

report time (the nth report in a series of discrete reports). 

The visual representation of what the TVE measurement means can be seen in the Fig.5.2. The figure 

depicts a circle drawn at the tip of the phasor with radius 1% of the amplitude of the phasor. The 

reference phasor would be the line on the circumference of the circle. The angle between the two 

phasors would be 0.573
o
. 

 

Fig.5.2. Visual representation of TVE 

 

Table 1. Steady state TVE requirements [4] 

 

Frequency and ROCOF errors  

Frequency and ROCOF measurements shall be evaluated as was the TVE by the difference between 

the measured values provided by the PMU (measured) and the reference values (ref).  
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Frequency measurement error:  𝐹𝐸(𝑛)  =  𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑛)  − 𝑓𝑟𝑒𝑓 (𝑛)  (5.8) 

ROCOF error:  𝑅𝐹𝐸(𝑛) =  (
𝑑𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑑𝑡
) (𝑛)– (

𝑑𝑓𝑟𝑒𝑓

𝑑𝑡
) (𝑛)  (5.9) 

 

 

Table 2. RFE and FE steady state requirements [4] (Where Fs is reporting frequency.) 

 

6. Short-circuit parameters 
 

3-phase a-c short-circuit models must take into consideration two scenarios: “far-from-generator” and 

“near-to-generator” [5]. Near-to-generator scenario has to take into account short-circuit sub-transient 

and transient influences from the generator itself. The far-from-generator scenarios do not need to 

take into account these phenomena as the a-c component of the short circuit stays constant and is not 

influenced by the changing reactance of the generator. 

Short-circuits have a decaying d-c component which is a combination of the reactive and ohmic 

values coupled with the instant of the short-circuit initiation [6]. This d-c component has to be 

properly modelled and taken into account when obtaining fault location as it could severely affect the 

end result. 

In Figures 6.1 and 6.2 it is shown the difference between the two scenarios. While the long term short-

circuit current might eventually stabilize in both cases it is imperative that the model values fit the real 

time currents and voltages of the real life scenario.  
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Fig.6.1 Far-from-generator short-circuit [5]. 

 

 

Fig.6.2 Near-of-generator short-circuit [5].  

 

The d-c component is be modelled by: 

𝑖𝑑𝑐  =  √ 2 ∗  𝐼𝑘
′′  ∗  𝑒−2𝜋𝑓𝑡∗(𝑅/𝑋)   (6.1) 

 

Where Ik
’’
 is the initial symmetrical short-circuit current, f is the power system frequency, t is the time 

parameter and R, X are the resistance and reactance of the short-circuit impedance [6]. 

 

6.1 Goodness-of-fit 

 

The reason for accurate modelling can be explained by comparing the “goodness-of-fit” between the 

modelled short-circuit and the real time synchrophasors. The goodness-of-fit value is expressed in 

Decibels [Db] and it is a measurement of the how well the model compares to the synchrophasors [7].   

The Goodness-of-fit is evaluated by this equation:  

GoF = 20log
𝑋𝑚

√
1

(𝑁−𝑚)
∑ (𝑢𝑘−𝑣𝑘)2𝑁

𝑘=1

  (6.2) 
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Where N is the number of samples and m is the number of parameters being estimated. The difference 

N – m indicates the remaining degrees of freedom. Xm is the signal amplitude, uk is the signal sample 

value and vk is the estimated sample value. 

This metric evaluates the signals as having a good match when it evaluates +40Dbs while a bad match 

would have a significantly smaller value such as ~20Dbs. 

By the use of real life transient events (short-circuits) and modelled synchrophasors a study on the 

accuracy of the models can be realized using the G.o.F. metric.  The highlight results of such a study 

can be seen in the fig.6.3 and fig.6.4. 

 

 

Fig.6.3. The sampled voltage (Actual) is compared to the modelled phasor (phasor) and the difference 

is calculated (residuals) [7]. 

 

Voltage synchrophasors and modelled values, at transient events, seem to have small variances with 

acceptable levels of difference: pre-transient event (~45Db) and post-transient event (~43Db) G.o.F. 

values.  
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Fig.6.4 The sampled current (Actual) is compared to the modelled phasor (phasor) using the GoF 

metric [7]. 

The current synchrophasors show drastic differences with the G.o.F. metric changing from ~40Db to 

~15Db [7]. This is most likely due to the d-c component of the current synchrophasor.  

 

7. H-matrix 
 

Fault location has mostly been done by only calculating the impedance of affected lines and then 

approximating the distance to the fault. In very simple line configurations this could result in 

acceptable errors, when it came to the actual point of the fault, but when the lines have other 

influences such as parallel lines or un-transposed lines, the errors would be much greater. 

Using H-matrices for fault location can be used to decrease the burden of computing data while at the 

same time increase accuracy due to the inclusion of mutual effects between the phases and other lines. 

 

7.1 Modelling one phase overhead line with H-matrix 

 

The model used to represent a one phase overhead line is a T-model as discussed in chapter 3.  
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Fig.7.1. T-model of one phase line with currents and voltages marked 

 

We define the H-matrix to satisfy the following equation: 

[
Û2

Î2
] = 𝐻̂ ∗ [

Û1

Î1
]  (7.1) 

 

When solving circuit equations without admittance voltage we get the following result: 

𝐻̂ = [
1 +

𝑌̂∗𝑍̂

2
𝑍̂ +

𝑌̂∗𝑍̂
2

2
  

𝑌̂ 1 +
𝑌̂∗𝑍̂

2
  

]  (7.2) 

 

7.2 H-matrix subdivisions 

 

When there is a large number of conductors the computations required to solve standard H matrix is 

too high, however if the H matrix is split into individual parts then the computations are much easier. 

This is done by not taking into account the whole of the T model at once but by subdividing it into 3 

matrices: the Y matrix and 2 Z matrices. After calculating each matrix individually then by using dot 

product on the matrices in the correct order you once again get the same H-matrix. The subdivisions 

are made in such a way that: 

𝐻 − 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝑍𝑚𝑎𝑡𝑟𝑖𝑥 . 𝑌𝑚𝑎𝑡𝑟𝑖𝑥 . 𝑍𝑚𝑎𝑡𝑟𝑖𝑥  (7.3) 
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Fig.7.2. Visual representation of the divisions of H-matrix into Z-matrix and Y-matrix 

 

7.3 H-matrix segmentation and fault localization 

 

H-matrices are rather versatile due to the nature of how they segment and cascade those segments. 

Cascading 2 H-matrices where the output of the first matrix (denoted by 1) is the input for the second 

matrix (denoted by 2) and the output of the second matrix is the final value (denoted by 3) the 

equation (7.3)  shown below holds. 

[
Û3

Î3
] = 𝐻̂ ∗ [

Û2

Î2
] = 𝐻̂2 ∗ [

Û1

Î1
]  (7.4) 

 

This can be used to cascade as many H-matrices as needed to the n
th
 power. 

 

 

 

Fig.7.3. Cascaded n H-matrices 

 

If we consider infinitely small sections which are then cascaded the difference between the wave 

description of the line and the lumped parameters such as the telegraph equation disappears. This is a 

method of solving the telegraph equation. If we also take into account the properties of matrix rooting, 

then once we have the parameters of the entire line one can segment the line as needed. 
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To segment an H-matrix into X parts, simply apply an inverse power of X to the H-matrix as so: 𝐻̂
1

𝑋. 

This is done with the function “MatrixPower[]”. This enables the segmentation of an entire overhead 

line and then by cascading segment by segment we can apply the H-matrix to any point on the 

overhead line. 

For example applying the H-matrix at the n
th
 segment of the line and the line is divided into m 

segments it would look like this: 

[
Û𝑛

Î𝑛
] = 𝐻̂

𝑚−𝑛

𝑚 ∗ [
Û1

Î1
]  (7.5) 

 

The reason we want to apply the H-matrix on specific segments of the overhead line is to be able to 

accurately represent faults when they occur. Consider a fault occurring at the m
th
 segment of the 

overhead line. Then the H-matrix is divided into 3 sections: 

𝐻̂
𝑚

 .  𝐻̂
𝐹𝑎𝑢𝑙𝑡

 .  𝐻̂
𝑛−𝑚−1

= 𝐻̂
𝑚−𝑛

𝑚   (7.6) 

 

[
Û𝑛

Î𝑛
] = 𝐻̂

𝑚
 .  𝐻̂

𝐹𝑎𝑢𝑙𝑡
 .  𝐻̂

𝑛−𝑚−1
∗ [

Û1

Î1
]  (7.7) 

 

 

Fig.7.4. Visual representation of the H-matrix formula (7.7). 

 

In real life situation the position ‘m’ would not be known and the type fault matrix must be 

determined beforehand. The 𝐻̂
𝐹𝑎𝑢𝑙𝑡

 is determined by taking into account the type of fault we are 
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dealing with as will be discussed in chapter 8. Once we find the 𝐻̂
𝐹𝑎𝑢𝑙𝑡

 matrix we can solve for the 

location of the fault.  

To solve for the correct ‘m’ segment, and therefore the location, iterate equation (7.7) over the entire 

overhead line. Compare the synchrophasors of each iteration of the equation (7.7) with those already 

known from measurements. By using a ‘FindMinimum[]’ function on the compared results we can 

find the most probable location of the fault. 

 

8. Creating Z, Y and H matrices based on type of fault 
 

The previous chapter covered the H-matrix theory but this chapter covers a more detailed procedure 

for subdividing the H-matrix and the creation of the fault H-matrix from equation (7.7) 

 

8.1 Z-matrix 

 

To create the Z-matrix the following equations were solved using the ‘CoefficientArrays[]’ function 

for all uIn and iIn: 

⁠ ∑ [uOut𝑖 == uIn𝑖 − ∑ [iIn𝑖𝑍𝑗,𝑖
𝑛
𝑗 ]]𝑛

𝑖 ⁠  (8.1) 

∑ [iOut𝑖 == iIn𝑖]
𝑛
𝑖   (8.2) 

Where n is the number of conductors [-], uOut/uIn are voltages [V], iOut/iIn are currents [A] and Z is 

the impedance [Ω] at the respective position. These equations were made from the fig.8.1 and 

extrapolated for multiple conductors and their mutual inductance. It should be mentioned that every 

impedance (Z) in the equations was already halved unlike the figure shows. 

 

Fig.8.1. The impedance portion of the H-matrix. 
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8.2 Y-matrix 

 

To create the Y-matrix the following equations were solved using the ‘CoefficientArrays[]’ function 

for all uIn and iIn: 

 

∑ iOut𝑖 == iIn𝑖 − Y0𝑖 ∗ uIn𝑖 − ∑ [𝑌𝑖,𝑗 ∗ (uIn𝑖 − uIn𝑗)]
𝑛
𝑗

𝑛
𝑖   (8.3) 

∑ [uOut𝑖 == uIn𝑖]
𝑛
𝑖   (8.4) 

 

Where n is the number of conductors [-], uOut/uIn are voltages [V], iOut/iIn are currents [A], Y is the 

admittance [S] at the respective position and Y0 is the phase to ground admittance [S] at the 

respective position. These equations were made from the fig.8.2 and extrapolated for multiple 

conductors and their mutual admittances.  

 

 

Fig.8.2. The admittance portion of the H-matrix 

 

8.3 H-matrix of fault 

 

An H-matrix of a fault depends on the type of fault that occurred. Every fault has a different matrix 

and conditions. Since the fault is of no length then it has no impedance or admittance except for the 

location of the fault. Therefore this matrix has only non-zero variables on the parts of the line that are 

faulty. It should also be mentioned that since the procedure requires a dot product between this matrix 

and another matrix like in equation (7.7) there is a requirement for the H-matrix of fault to be an 

identity matrix with also including the fault variables. It should be noted that although only 

admittances of faults are shown, the matrices shown are results of Z-matrix dot product with Y-matrix 
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and then dot product with another Z-matrix. This is the reason for the matrices having a distinct 

quarter for the fault admittances.  

The ‘RofFault’ shown in graphical representation of the H-matrices of fault below are the resistance 

of the fault. The reason for choosing only a resistive character for the fault is due to the way electric 

arcs were modelled. The fault characteristics are slightly different in regards to which type of fault 

occurs [8]. However to keep the homogeneity, when studying the accuracy of the H-matrix method 

for fault localization, an average resistance of 20Ω was chosen. 

 

Phase-to-ground fault 

For phase-to-ground faults the fault matrix will have only phase to ground admittance (Y0x) of the 

faulted phase as a non-zero variable. An example of the matrix is shown in pic 8.3. For the graphical 

representation a smaller 3 phase overhead line was used and the fault was placed at the phase number 

2. 

⌊
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 −
1

RofFault
0 0 1 0

0 0 0 0 0 1⌋
 
 
 
 
 
 
 
 
 
 

 

Fig.8.3. H-matrix of fault for phase-to-ground fault on phase number 2. 

 

Double-phase-to-ground fault 

Similarly as in the phase-to-ground fault the phase to ground admittance (Y0x) is going to be a non-

zero variable but also we have phase to phase admittances that are non-zero. The phase to phase 

admittances depend on which of the phases have come into contact. If phase 1 and 2 are faulty then 

the mutual admittances Y1,2 and Y2,1 as well as the phase to ground admittances Y01 and Y02 are non-

zero variables. A graphical representation is shown in the fig.8.4.  

⌊
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−
3

RofFault

2

RofFault
0 1 0 0

2

RofFault
−

3

RofFault
0 0 1 0

0 0 0 0 0 1⌋
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Fig.8.4. H-matrix of fault for a double-phase-to-ground fault on phases number 1 and 2. 

 

Phase-to-phase fault 

In phase-to-phase faults matrix we only have the faulted phases admittances. If phases 1 and 2 are in 

contact then the admittances Y1,2 and Y2,1 are non-zero. A graphical representation is shown in fig.8.5. 

⌊
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−
2

RofFault

2

RofFault
0 1 0 0

2

RofFault
−

2

RofFault
0 0 1 0

0 0 0 0 0 1⌋
 
 
 
 
 
 
 
 
 
 

 

Fig.8.5. H-matrix of fault for a phase-to-phase fault on phases number 1 and 2. 

 

Three-phase-to-ground fault 

The three phase fault has symmetric admittances over all 3 phases. All phases have an equal 

admittance and the resulting matrix is shown in the fig.8.4. 

 

⌊
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−
3

RofFault

1

RofFault

1

RofFault
1 0 0

1

RofFault
−

3

RofFault

1

RofFault
0 1 0

1

RofFault

1

RofFault
−

3

RofFault
0 0 1⌋

 
 
 
 
 
 
 
 
 
 
 

 

Fig.8.6. H-matrix of three-phase-to-ground fault.  

 

9. Mathematical model 
 

To create a mathematical model of overhead lines a software is required, I chose Mathematica® 

version 12.0.  
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The mathematical model consists of 2 parallel lines. Which consist of 6 phase conductors and 2 

earthing lines, which equals to a total of 8 conducting lines. The modelled lines are between two 

substations. The mathematical model must simulate the parameters of these lines in both steady state 

and when transient events occur.  
A

B
l v

 

Fig.9.1. Complete wire configuration. 

Fig.9.1 shows the entire wiring diagram between the two substations A and B where the length 

between them is indicated by lv. Mutual inductances by the lines are represented by M, it would be 

impractical to show all the mutual inductances and therefore only the adjacent inductions are shown 

but all of the necessary inductances were taken into account when calculating the models. All 

variables denoted with ‘Tr1-6’ are simply parameters of the respective transformers. On the other 

hand all other variables are parameters of their respective lines.  
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9.1 Dimensions and parameters of lines 

 

A very important aspect is the dimensioning of the overhead lines. This affects all types of mutual 

interactions between the lines. The dimensions of the lines can be seen in Table 3 below and a visual 

representation of the overhead lines is depicted in fig.9.2. 

 

1
st
 Line 

Phase (1) Phase (2) Phase (3) Ground line  (7) 

Δ x (m)  y (m)  Δ x (m) Δ y (m) Δ x (m) Δ y (m) Δ x (m) Δ y (m) 

-10,7 31 -14,5 19,5 -7,5 19,5 -6 41 

2
nd

 Line 

Phase (4) Phase (5) Phase (6) Ground line  (8) 

Δ x (m) Δ y (m) Δ x (m) Δ y (m) Δ x (m) Δ y (m) Δ x (m) Δ y (m) 

10,7 31 14,5 19,5 7,5 19,5 6 41 

Table 3. The dimensions of the overhead lines 

 

 

Fig.9.2. Dunaj type of overhead line mast. 

 

9.2  Stead state model 

 

Steady state condition refers to the periodic nature of the state. Periodicity is an expression of a 

repeating value or pattern. So in our case this state is when there is no change in either the input or 

2 x 400 kV 2 x N Dunaj

1

2 3

4

5 6

7 8
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output values for some time and most importantly no changes to the impedance and admittances of 

the wires during that time. This state was modelled by the following equation: 

u(t) = 𝑈𝑚 ∗ sin(𝜔𝑡 + 𝜑)  (9.1) 

 

Where u(t) is the instantaneous voltage value (V), Um is the amplitude (V),  ω is the angular frequency 

(rad* s
-1

) and φ is the phase angle (rad). From these sinusoidal waves of voltage we acquire their 

phasor values respectively.  

 

 

Fig.9.3. 3-Phase voltage model from Mathematica® (not all phases are visible since they overlap) 

 

9.3 Transient state 

 

Usually another set of equations would model the transient state however we can immediately use the 

H-matrix in a way such as described in equation (7.5). Since we are the ones simulating the fault, we 

can choose the unknown variable m and impedance of the fault. This means that we effectively model 

a faulted overhead line using H-matrices and there is no need for equations and considerations of d-c 

components. When solving the transient state using H-matrix we directly get the vector forms of the 

synchrophasors for current and voltage. 

Considering these are real lines a load is usually present at the end of the line as consumers. We 

consider this load to be 300 MW with a power factor of 0.95.  

𝑍𝑙𝑜𝑎𝑑 =
4002

300∗106 (1 − 𝑖 ∗ Tan[0.95])  (9.2) 

This load permits us to establish another set of equations: 

∑ [iOut𝑖 ∗ 𝑍𝑙𝑜𝑎𝑑 == uOut𝑖]
𝑛
𝑖   (9.3) 
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This set of equations combined with H-matrix of fault from chapter 8 and knowing the values of the 

uInx phasors Considering these are real lines a load is usually present at the end of the line as 

consumers. We consider this load to be 300 MW with a power factor of 0.95.  

𝑍𝑙𝑜𝑎𝑑 =
4002

300∗106 (1 − 𝑖 ∗ Tan[0.95])  (9.2) 

This load permits us to establish another set of equations: 

∑ [iOut𝑖 ∗ 𝑍𝑙𝑜𝑎𝑑 == uOut𝑖]
𝑛
𝑖   (9.3) 

This set of equations combined with H-matrix of fault from chapter 8 and knowing the values of the 

uInx, phasors iOuti and uOuti can be solved using the Mathematica® formula ‘Solve[]’. 

 

10.  H-matrix algorithm results 
 

An important aspect of the H-matrix method is that it delivers accurate results with a finite algorithm. 

Testing the extent of this accuracy is a crucial part of developing this algorithm. Firstly the algorithm 

was run with so called “perfect phasors”. Meaning that the phasors were perfect sinusoidal waves and 

also there was no inaccuracy when reading the phasors. These were the ideal conditions for the 

algorithm. However this does not represent real life situations. Further testing with errors introduced 

to all the phasors needed to calculate the results were introduced. As discussed in chapter 5, the 

synchrophasors had limitations to their respective inaccuracies. 1% of the TVE only was allowed 

(even though the recommended amount is lower but we assume a worst case scenario).  

Out of the rule for 1% TVE four worst cases were assumed. The four cases consisted of the minimum 

and maximum of the phasor magnitude error equal to 1% and the minimum and maximum of the 

phasor angle equal to 1%.  

 

Test 1 Test 2 Test 3 Test 4 

+ 1% phase angle -1% phase angle +1% magnitude -1% magnitude 

Table 10.1. The names given to each test case 

 

Another basis that needed to be tested in algorithms that deal with distribution is the effect the 

distance where the fault occurs has. For that we tested each of the four fault types on each of the four 

worst case scenarios at 25%, 50% and 75% of the length of the overhead line respectively.  

Since we do not know in which phase the fault has occurred the H-matrix algorithm tests all possible 

phases in a similar way as described in chapter 7. Then the choice of the correct phase is made by 

checking which phase has the minimum difference between the calculated H-matrix and the actual H-

matrix. 
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10.1  Perfect phasor accuracy 

 

The algorithm predicted the fault location segment correctly for every fault type and fault distance 

when provided with the ideal phasors. However this only means that when given ideal phasors the 

algorithm has an accuracy of +/- 0.0005 when it comes to the accuracy of fault location. This is due to 

the choice of segments and the length of the line. We chose 2000 segments with the length of the line 

100km. This translates to each segment being 50m. The algorithm was able to choose exactly which 

segment there was a fault when presented with ideal phasors. 

However testing of the perfect phasors is still crucial as it gives indication of the accuracy of the 

algorithm in terms of difference between the calculated H-matrix and the actual H-matrix. While this 

does not represent real life situation it does indicate how the algorithm handles each of the four 

different types of faults.  

 

Table 10.2. Actual errors at different fault lengths for all four types of faults.  

 

Fig.10.1 Actual errors at different fault lengths for all four types of faults. 

 

The ‘actual error’ referred to in the previous figure and table was calculated as the difference between 

the calculated H-matrix and the actual H-matrix we simulated. It should be noted that this graph only 

puts into perspective the difference between the fault types and their respective fault distance. 

The faults phase-to-ground (ph-gr) and double-phase-to-ground (2ph-gr) seem to have the largest 

errors amongst the four types. It seems that the influences of the ground parameters are important in 

the algorithm. The fault distance also plays a factor with higher errors appearing with longer 

distances. 

 

10.2  Phase-to-ground fault results 

Perfect phasors ph-gr ph-ph 2ph-gr 3-ph

Fault at 400 0.000566541 0.000408405 0.000827 0.000236

Fault at 1000 0.0248028 0.00185744 0.012096 0.002627

Fault at 1600 0.206794 0.006432 0.174779 0.008026
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The phase-to-ground fault is the fault that most likely occurs in distribution systems [10]. Results for 

the ideal phasors were perfect when it came to accurately pinpointing the position of the fault. 

However that is not a real life situation. Testing for all cases for the type of fault ground-to-phase is 

shown below. 

Firstly the algorithm is run through all the phases to test which phase is the faulty one.  

 

Fig.10.2. Phase-to-ground fault at segment 400. 

 

 

Fig.10.3 Phase-to-ground fault at segment 1000. 
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Fig.10.4. Phase-to-ground fault at segment 1600. 

The previous graphs show the difference between the H-matrix that was calculated with the actual H-

matrix on the Y axis (min) and the respective position of the calculated H-matrix. 

The algorithm clearly shows that phase 1 is the phase that has the fault. The difference between the 

second closest candidate (phase 4) is several orders (~10
6
) of magnitude larger. It should be noted that 

some phases do not show as they overlap however mainly on the top of the graph and no overlap 

occurs with the phase 1. 

Table 10.2 shows the algorithm results of phase 1. 

 

 

Table 10.3. Results of phase-to-ground fault. 

 

fault at position: 400 calculated position calculated distance error in percentage error in metres

perfect phasors 400 20000 0 0

test 1 416 20800 0.8 800

test 2 383 19150 0.85 850

test 3 410 20500 0.5 500

test 4 390 19500 0.5 500

fault at position: 1000 calculated position calculated distance error in percentage error in metres

perfect phasors 1000 50000 0 0

test 1 1007 50350 0.35 350

test 2 994 49700 0.3 300

test 3 1006 50300 0.3 300

test 4 994 49700 0.3 300

fault at position: 1600 calculated position calculated distance error in percentage error in metres

perfect phasors 1600 80000 0 0

test 1 1604 80200 0.2 200

test 2 1596 79800 0.2 200

test 3 1603 80150 0.15 150

test 4 1597 79850 0.15 150
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Fig.10.5. The percentage of error compared with the fault distance and type for ph-gr fault. 

10.3  Phase-to-phase fault results 

 

The faulty phases were chosen to be phases 4 and 6. From the figures below it is clearly seen that the 

algorithm correctly assessed this. 

 

 

Fig.10.6. phase-to-phase fault results at position 400. 
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Fig.10.7. phase-to-phase fault results at position 1000. 

 

 

Fig.10.8. phase-to-phase fault results at position 1600. 

 

The previous graphs show the difference between the H-matrix that was calculated with the actual H-

matrix on the Y axis (min) and the respective position of the calculated H-matrix. 

 



31 

 

 

Table 10.4 Results of phase-to-phase fault. 

 

 

Fig.10.9. The percentage of error compared with the fault distance and type for ph-ph fault. 

 

10.4  Double-phase-to-ground fault results 

 

The faulty lines were chosen to be phases 2 and 3 with a short circuit to the ground. 

 

fault at position: 400 calculated position calculated distance error in percentage error in metres

perfect phasors 400 20000 0 0

test 1 425 21250 1.25 1250

test 2 377 18850 1.15 1150

test 3 408 20400 0.4 400

test 4 393 19650 0.35 350

fault at position: 1000 calculated position calculated distance error in percentage error in metres

perfect phasors 1000 50000 0 0

test 1 1008 50400 0.4 400

test 2 992 49600 0.4 400

test 3 1009 50450 0.45 450

test 4 991 49550 0.45 450

fault at position: 1600 calculated position calculated distance error in percentage error in metres

perfect phasors 1600 80000 0 0

test 1 1604 80200 0.2 200

test 2 1596 79800 0.2 200

test 3 1603 80150 0.15 150

test 4 1603 80150 0.15 150
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Fig.10.10. double-phase-to-ground fault results at position 400. 

 

 

 

Fig.10.11. double-phase-to-ground fault results at position 1000. 
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Fig.10.12. double-phase-to-ground fault results at position 1600. 

 

It should be noted that on the third graph (figure 10.9) the difference between the phases 2-3 and 

phases 5-6 was still in the order of ~10
6
  larger. 

 

Table 10.5 Results of phase-to-phase fault. 

 

fault at position: 400 calculated position calculated distance error in percentage error in metres

perfect phasors 400 20000 0 0

test 1 412 20600 0.6 600

test 2 388 19400 0.6 600

test 3 410 20500 0.5 500

test 4 390 19500 0.5 500

fault at position: 1000 calculated position calculated distance error in percentage error in metres

perfect phasors 1000 50000 0 0

test 1 1004 50200 0.2 200

test 2 996 49800 0.2 200

test 3 1006 50300 0.3 300

test 4 994 49700 0.3 300

fault at position: 1600 calculated position calculated distance error in percentage error in metres

perfect phasors 1600 80000 0 0

test 1 1603 80150 0.15 150

test 2 1597 79850 0.15 150

test 3 1603 80150 0.15 150

test 4 1597 79850 0.15 150
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Fig.10.13. The percentage of error compared with the fault distance and type for 2-ph-grd fault. 

 

10.5  Three-phase fault results 

 

The faulty phases were chosen to be 4,5 and 6. 

 

 

Fig.10.14. three-phase fault results at position 400. 
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Fig.10.15.Three-phase fault results at position 1000. 

 

Fig.10.16. three-phase fault results at position 1600. 
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Table 10.6 Results of three-phase fault. 

 

 

Fig.10.17. The percentage of error compared with the fault distance and type for 3-ph fault. 

 

11.  Conclusion 
 

From the results it seems that overall the fault distance plays a major role. The farther the fault 

location is the better the accuracy. This could be due to the phenomena discussed in the beginning of 

chapter 6. However this also contradicts the observed behaviour in chapter 10.1. 

fault at position: 400 calculated position calculated distance error in percentage error in metres

perfect phasors 400 20000 0 0

test 1 425 21250 1.25 1250

test 2 377 18850 1.15 1150

test 3 408 20400 0.4 400

test 4 393 19650 0.35 350

fault at position: 1000 calculated position calculated distance error in percentage error in metres

perfect phasors 1000 50000 0 0

test 1 1008 50400 0.4 400

test 2 992 49600 0.4 400

test 3 1008 50400 0.4 400

test 4 991 49550 0.45 450

fault at position: 1600 calculated position calculated distance error in percentage error in metres

perfect phasors 1600 80000 0 0

test 1 1604 80200 0.2 200

test 2 1596 79800 0.2 200

test 3 1603 80150 0.15 150

test 4 1597 79850 0.15 150



37 

 

In chapter 10.1 it was observed that the algorithm handles better shorter distances with ideal phasors 

however when tested with degrees of errors in the phasors the shorter distance faults have larger 

errors. This same format where shorter distances give larger errors keeps on appearing at every type 

of fault. 

Also in contradiction to the chapter 10.1, the types of faults that performed better were the faults with 

short-circuit to the ground. This shows the importance of fully testing an algorithm as counter-

intuitive data like this could show up. 

It should also be noted that the overall difference between the calculated H-matrix and the actual H-

matrix decreases with shorter distance of faults. This makes sense as the actual H-matrix itself is 

smaller when the distance is shorter. 

The graphs shown in figures 2-4, 6-8, 10-12 and 14-16 were all recorded when the algorithm was 

given perfect phasors. These graphs always show a massive order of magnitude difference between 

the non-faulty and the faulty phases. However when tested under the worst case scenarios the 

difference between the faulty and non-faulty phases shrunk. At times the difference was only 1 order 

of magnitude large (10
1
). For example the phase-to-phase fault at position 400. The difference 

between the actual H-matrix and the calculated H-matrix was around 50,000 when not on the right 

phases or position and the error was almost zero at the correct position and phase. When this was 

repeated with errors in the phases, the minimum error for the correct phase and position rose to 

~4000. 

With all this said, the error of the correct faulty phase was always at least 1 order of magnitude 

smaller than the rest and this is taking into account the worst case scenarios in regards to the TVE.  

The accuracy of the algorithm was fairly high considering the length of the line and the small errors it 

gave for localization of faults in all worst case scenarios. However there still are multiple factors that 

could hinder the accuracy of the results shown. Different RFE and FE testing as discussed in chapter 5 

should be done on the algorithm to assess the extent of which the accuracy would be affected. 

Different types of fault resistances should also be assessed and results gathered. Then obviously a 

combination of all the different aspects should be tested. 
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