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Abstract

This work proposes a system for seman-
tic surface segmentation for autonomous
driving control.

A fully convolutional neural network of
U-net architecture was trained for seman-
tic surface segmentation. Learning and
validation was performed on a manually
annotated data set, which was collected
within this work. A modified focal loss
function was used to improve the accu-
racy and robustness of the classification.
The modification includes weighting of
individual pixels according to their posi-
tion in the image. The resulting model
shows higher accuracy and robustness of
segmentation than the model trained with
cross-entropy, a common loss function.

The semantic segmentation system was
implemented into an existing subscale mo-
bile platform based on the RC model. To
verify the functionality of the proposed
solution, experiments were performed in
a real environment. The experiments con-
sisted of autonomous drive of the plat-
form on a selected surface. This was done
by processing the segmentation map by
simple algorithm resulting in heading ref-
erence. Having the reference computed,
P controller is used to control the velocity
and steering of the vehicle.

The performed experiments showed the
ability of the proposed solution to pro-
vide a segmentation map with sufficient
accuracy for autonomous driving of the
subscale vehicle.

Keywords: neural network, CNN,
semantic segmentation, UNet,
autonomous driving, surface
segmentation
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Abstrakt

Tato práce se zabývá návrhem systému
pro sémantickou segmentaci povrchu pro
autonomní řízení.

K sémantické segmentaci povrchu byla
natrénována plně konvoluční neuronová
síť U-net architectury. Učení a validace
proběhlo na ručně anotovaném datasetu,
který vznikl v rámci této práce. Za účelem
zlepšení přesnosti a robustnosti klasifikace
byla použita modifikovaná fokální ztrá-
tová funkce. Modifikace spočívá ve váho-
vání jednotlivých obrazových bodů podle
jejich pozice v obrazu. Výsledný model
pak vykazuje vyšší přesnost a robustnost
segmentace, než model natrénovaný s kří-
žovou entropií, běžně používanou ztráto-
vou funkcí.

Systém sémantické segmentace byl im-
plementován do již existující platformy
založené na modelu RC auta. K ověření
funkcionality byly provedeny experimenty
v reálném prostředí. Experimenty spočí-
valy v autonomní jízdě vozidla po předem
daném povrchu. Toho bylo docíleno zpra-
cováním segmentační mapy jednoduchým
algoritmem, jehož výstupem je směrová
reference. K řízení rychlosti a zatáčení
jsou použity P regulátory.

Provedené experimenty ukázaly schop-
nost navrženého řešení zajistit segmen-
tační mapu s dostatečnou přesností pro
autonomní jízdu vozidla.

Klíčová slova: neuronové sítě, CNN,
sémantická segmentace, UNet,
autonomní řízení

Překlad názvu: Sémantická segmentace
povrchu pro RC model auta
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Chapter 1

Introduction

For most of a robotic applications, environment sensing is an essential ability.
This is especially true for autonomously operating robots, including cars or
aerial vehicles. The development of both hardware and software in recent
years allowed the use of advanced and highly precise machine perception
techniques. A large area of machine perception is machine vision. Machine
vision may be described as a discipline of using computer vision in robotic
applications. With high resolution cameras, high performance computational
technologies (CPUs and GPUs) and advanced machine learning algorithms,
the machine vision is nowadays used in a huge variety of industry areas.
Examples can be found in medical diagnosis [RFB15b], agriculture [MLS18]
and of course in autonomous vehicles development ([SGA+18, YLCT20]). All
these applications require robust and reliable systems for tasks including
classification, recognition, identification, segmentation, regression and many
others.

With a focus on automotive industry, semantic segmentation plays a crucial
role in autonomous driving capabilities. In order to get information about a
type of objects around a vehicle, semantic segmentation of camera images is
used. Resulting the so called segmentation maps then hold information what
type of object (car, pedestrian, etc.) or surface (road, grass, pavement, etc.)
is located on each pixel (see Fig 1.1). Information about a surface in front
of a car may be used in large variety of practical applications. They include
autonomous driving systems or driver assistance systems [BFP+20].

The aim of this work is:
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1. Introduction .....................................

Figure 1.1: Example of car-mounted camera image semantic segmentation
reproduced from [BFC09]..1. To develop a reliable surface segmentation system relying on a front

camera, to analyse results and to integrate the system into a multi-sensor
sub-scale vehicle...2. To implement simple path tracking algorithm and perform autonomous
drive experiments in a real environment as a proof-of-concept.

The rest of the thesis is structured as follows: First, the TOMI platform
is introduced in Chap. 2. All on-board sensors and computing devices are
described and the architecture and functionality are covered. Chap. 3 reviews
current state-of-the-art semantic segmentation algorithms and presents ar-
chitecture selected for the purpose of this thesis. Then, data set used for
training, validating and testing is presented in Chap. 4, including synthesised
data. Neural network training process, including data preprocessing and
augmentation, loss function proposal and accuracy evaluation, is covered
in Chap. 5. In Chap. 6, all the modifications made to TOMI platform are
described. Results of semantic segmentation model training are presented
and analysed in Chap. 7. Chap. 8 presents autonomous drive experiments
and evaluates them. And finally, results are concluded in Chap. 9.

ctuthesis t1606152353 2



Chapter 2

TOMI Platform

Experimental drives are performed on a Toyota Mini (TOMI) sub-scale vehicle
platform. This multi-sensor platform built on an RC car model was developed
in Toyota Lab at the CTU. The author of this thesis was one of developers.
However, some modifications were necessary to be done for the purpose of
this work. All those adjustments are listed and described in Sec. 6 and were
done as a part of this work.

The TOMI platform was designed to be a multipurpose development
subscale vehicle platform for various experiments. Data from all sensors
(including RC throttle and steer signals) are logged. The on-board computer
with integrated GPU provides high computational power for machine learning
applications.

By the time of writing of this thesis, the TOMI platform was used for
experiments in several other diploma theses. Detailed description of the
platform can be found in [BFP+20].

2.1 Hardware

TOMI platform is based on an RC car model instrumented with several
on-board computers, various sensors and data drives. Extra battery packs
were mounted in order to provide independent and stable power supply for

3 ctuthesis t1606152353



2. TOMI Platform....................................

Figure 2.1: Side view on the TOMI platform.

all on-board computers and sensors.

2.1.1 RC Car Model

TOMI platform builds on a commercial RC car model Losi Desert Buggy
XL-E 1/5. This specific model has been selected since it satisfies following
requirements established for TOMI project:..1. Electric motor..2. Load-capacity and space for on-board computers and sensors..3. Replacement parts availability

Main criterion was internal space and load-capacity, since several on-board
computers (Jetson Xavier, Raspberry Pi and Arduino Mega), multiple sensors
(IMU, GPS module, . . . ) and extra battery pack for on-board computers
needed to be mounted inside of a model. Additional load to a platform due
to the instrumentation (including support constructions, circuitry, etc.) is
approximately 2.1 kg (original model weight is 13.8 kg).

2.1.2 On-board Computers

In early experiments, Jetson Nano was used as a central computation unit.
Later on, it was replaced by Jetson Xavier due to higher performance. Jetson

ctuthesis t1606152353 4



...................................... 2.1. Hardware

Figure 2.2: TOMI platform inside view

Xavier [Jet] is an embedded computing board with GPU running Ubuntu
Linux. The latter is especially convenient for deep learning applications de-
velopment, since machine learning frameworks (PyTorch, TensorFlow/Keras)
with Python API can be used for both development and experiments.

For a PWM reference control and sensor data acquisition, Raspberry Pi
with Navio shield was used. Raspberry Pi was chosen due to its Ubuntu-like
OS (convinient for scripting based development), GPIO pins (providing PWM,
USART) with drivers and LAN port (used for SSH connection from Jetson
Xavier).

Arduino Mega provides decoding of PWM signals (throttle and steer) from
remote control and providing numerical PWM characteristics to a Raspberry
Pi. Since very low computation power is required and short code was expected
for this application, embedded solution providing enough speed and low power
consumption was selected.

Jetson Xavier can be operated using standard hardware inputs and outputs
(external monitor, keyboard, mouse) or via SSH channel. This is especially
useful for outdoor development and experiments. Since Raspberry Pi is in
the same network, it can be accessed via SSH from Jetson Xavier.

Overall diagram of on-board computers can be found in Fig. 2.3.

5 ctuthesis t1606152353



2. TOMI Platform....................................

Figure 2.3: TOMI platform architecture block diagram. Full lines denote
USART, dashed PWM signal.

2.1.3 Sensors

TOMI platform was mounted with variety of different sensors. Most relevant
for this work is a ZED stereo-camera [ZED], but also IMU (with 6-axis
accelerometer and gyroscope), GPS module and Hall sensor RPM gauge. All
of sensor data logged in a file with a timestamp for synchronisation with
image data.

As the main visual sensor, ZED stereo-camera has been chosen. Basic
requirement was providing good image quality with real-time frequency. ZED
camera is capable of capturing 1080p at 30 FPS and due to the low lens
aperture (f /2.0), short exposition time can be used in order to minimise
motion blur. It also provides universal and fast connectivity (USB3) and
Python API. On top of that, ZED camera software Development Kit provides
depth computation and basic visual localisation.

2.2 Communication and Computation Distribution
Architecture

Distributed architecture was chosen for a TOMI platform in order to separate
higher level computations and control (machine learning, autonomous control,
data processing, etc.) and lower level control (motor and servo PWM control,
data acquisition). Simplified architecture with indicated data flows is in
Fig. 2.3.

Computation demanding operations like machine perception, navigation,
planning, data processing and acquisition are done on Jetson Xavier. Com-

ctuthesis t1606152353 6



................ 2.2. Communication and Computation Distribution Architecture

munication with Raspberry Pi is established via USART in both ways. PWM
commands for motor and servo control can be sent from Jetson Xavier to
Raspberry Pi. On the other side, Raspberry Pi collects data from all sensors
and sends it to Jetson Xavier. Moreover, Raspberry Pi reads throttle and
steer signals (decoded by Arduino Mega from remote control receiver) and
forwards them to the motor and steering servo.

7 ctuthesis t1606152353
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Chapter 3

Semantic Segmentation - State of the Art

Semantic segmentation is defined as a classification problem, where a class is to
be predicted for each pixel of an input image. Precise semantic segmentation
was hard to achieve with classical approaches. But thanks to recent advance
of deep neural networks and convolution layers, precision and robustness
improved up significantly. This development allowed semantic segmentation
to be used in many practical applications, including but not limiting to
autonomous driving or medical images analysis.

3.1 Fully Convolutional Networks

Fully convolutional networks (FCN) introduced a big step forward in the field
of semantic segmentation. As stated in [UA19], fully convulutional networks
were able to perform well with much less parameters, then previous deep
networks, while input image is not limited to a fixed size.

FCNs were improved by introducing various new approaches. As an
example, well-known and successful encoder-decoder architectures with skip
connections are presented.

9 ctuthesis t1606152353



3. Semantic Segmentation - State of the Art ........................

Figure 3.1: U-net architecture (example for 32x32 pixels in the lowest resolution)
scheme reproduced from U-Net: Convolutional Networks for Biomedical Image
Segmentation [RFB15a]

3.2 U-net and Encoder-Decoder Architectures

Encoder-decoder architecture is a widely used design pattern. Whole archi-
tecture is divided to two parts: encoder and decoder. First, input is mapped
by encoder to a feature space and then decoded by decoder to an output
space. Softmax layer is then used as the last layer to predict class probability
scores for every pixel of an image and is defined as

σ(xi) = exi∑
j e

xj
, (3.1)

where xi (xj) is i-th (j-th) input to a Softmax layer. Length of x is equal
to the number of classes to be predicted. In other words, softmax layer
normalises signals into a probability scores distribution proportional to signal
strengths. All values are in range [0, 1] and sum to 1.

A prominent example of a encoder-decoder architecture is a U-net, presented
in [RFB15b]. It follows base encoder-decoder architecture, but introduces a
skip connections from encoder to decoder (see Fig. 3.1). According to authors,
this architecture is able to train and perform well even for a small training data
set and it is capable of real time segmentation. Originally, it was developed for
biomedical image classification, but it performed well in other segmentation
tasks, such as satellite imagery segmentation [WZL+19, RDN18].

Another advantage of this architecture is the fact, that is it fully convo-

ctuthesis t1606152353 10



..................................3.3. Other Architectures

Figure 3.2: SegNet architecture scheme reproduced from SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation [BKC17]

lutional. Therefore, the network can be trained on images of arbitrary size
without changing the architecture. Moreover, the trained network can be fed
with images of different size than it was trained for. This proves to be useful,
as described in Chap. 7.

Another example of encoder-decoder architecture with skip connections is
SegNet, presented in [BKC17]. Architecture is similar to U-net, but instead
of entire feature map, only polling indices are transferred in skip connections
(see Fig. 3.2). This also results in smaller memory requirements in comparison
with U-net.

Both U-net and SegNet are considered to be a good choice for a pixel-
wise segmentation architecture. In a paper [DGHC19] authors did not find
significant difference between performance of both architectures. Nevertheless,
U-net performed slightly better for smaller training data set, which is also
mentioned in original U-net paper [RFB15b].

Also, there is no suitable database of annotated surface images known
to the author of this work. All data need to be annotated manually and
thus, limited data set is available. Due to this fact, U-net architecture was
preferred, since it performs well even on smaller data sets [RFB15b].

3.3 Other Architectures

Early FCN architectures suffered from several drawbacks, such as inability to
process global context knowledge, or lack of multi-scaling processing abilities
(as described in [UA19]). There are many recently introduced architec-
tures aimed to improve early FCNs drawbacks. Some of those architectures
worth mentioning are Spatial Pyramid Pooling Network (SPP-Net [HZRS14]),
Recurrent Convolutional Networks (ReSeg [VRC+16]) and many others. Re-
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3. Semantic Segmentation - State of the Art ........................
cently many attention-based methods were presented with aim to improve
ability of global corelations [NSD+20, HWH+19, MHZ19].

However, those architectures do not introduce extraordinary performance
improvement and are not well established yet, so for the purpose of this work,
proven architectures are considered.

ctuthesis t1606152353 12



Chapter 4

Data Set

Data set used for training, validation and testing consists of two parts: man-
ually annotated real-world data and synthesised data. First, only manually
annotated data were used for training. Later on, various amounts of synthe-
sised images were used to extend the training data set.

4.1 Orthorectification

All images are rectified to the birds-eye view (orthographic rectification).
This warping assures that images are not dependent on a specific camera
point of view. This is especially useful, when camera position may change or
inputs from different cameras are processed. Since images are transformed
to the same ortho-plane, new homogpraphy mapping needs to be found, but
neural network does not need to be trained again. Transformed images are
also proportional to the metric plane map in font of the car. The full image
scale is approximately 1 cm px−1.

The warp transformation was found by capturing a planar rectangular
object in front of the car. Then, homography estimation H was computed
from the known object’s corner points positions in ortho-plane and object’s
corner points position in the image.
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Figure 4.1: Image from one lens taken on a test ride on the CTU ground.

4.2 Manually annotated real-world data

Several test drives were performed with the TOMI platform in real environ-
ment conditions and distinct images taken by camera were selected as training
data. Images were orthorectified and annotation maps were created manually
using PixelAnnotationTool [Bré17]. As an example of this process, original
picture form one lens is in Fig. 4.1. The same image after rectification and
manually annotated map can be seen in Fig. 4.2.

Data set consists of 276 annotated images and contains 6 surface types
(classes): Grass, interlocking pavement, cobblestone, gravel, asphalt and other.
Image cutouts, objects (benches, persons, . . . ) and other (or unrecognisable)
surfaces as labelled as other. Class distribution of manually annotated data
is in Fig. 4.4.

Our early experiments showed that images taken by camera suffered from
overexpose due to the presence of very bright areas (sky in upper part of the
image). This problem was effectively eliminated by improvised sun shield
mounted to the camera frame. This devalued upper part of the image (as seen
in Fig. 4.2), but did not affect resulting orthorectified image, since relevant
pixels are in lower part of the image.
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...........................4.2. Manually annotated real-world data

(a)

(b)

(c)

(d)

Figure 4.2: Image from camera (a) is rectified to birds-eye view (b) and then
manually annotated (c). RGB representation of annotation map is done according
to (d).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.3: Examples of various manually annotated images from data set.

4.3 Synthesised data

Since number of manually annotated images in data set is relatively small
(276 images), a data synthesis is proposed to increase data set size in order
to achieve better results of segmentation. Since resulting images are to be in
birds-eye view perspective, the synthesis is rather simple in comparison with
raw camera imaged, because it does not take the perspective into an account.

4.3.1 Source data

As a source data, high resolution images of various surfaces are used. All
images were unified in resolution and scale, so a pixel corresponds to same
length in every image. Resulting images have approximately same scale as
real-world rectified images. All source images are of 4000 px × 4000 px.
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................................... 4.3. Synthesised data

.
Figure 4.4: Class distribution of manually annotated data set: Other 10.7 %,
grass 32.1 %, interlocking pavement 11.5 %, cobblestone 12.6 %, asphalt 10.5 %
and gravel 22.7 %

These images are randomly rotated and other surface is placed on top of it
(with random rotation and shift). Same operations are done with annotations,
so a large number of synthetic images with ground-truth annotation maps is
available.

To make synthesised data more authentic, resulting image is transformed
from bird’s eye view to camera perspective and back again. This generates
image degradation similar to the one on rectified images. Example of a
synthesised image is in Fig. 4.5.
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(a)

(b)

(c)

(d)

Figure 4.5: Synthesised images for train data set extension (a), (c) and corre-
sponding annotation maps (b), (d).
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Chapter 5

Neural Network Training, Testing and
Validation

5.1 Image preprocessing

After loading into a memory, all images are resized to fixed size. This size
can be specified and the effect of selected size on training process is discussed
in Chapter 7. Note that images are resized using bilinear interpolation,
while annotation maps are resized using nearest-neighbour interpolation.
This preserves annotation map consistency, but may introduce resampling
artefacts.

5.2 Data augmentation

When data set is not large enough or when greater accuracy is needed, data
augmentation may be performed to artificially inflate the data set. Com-
mon data augmentation techniques are affine or perspective transformations,
contrast and colour adjustments, noise perturbation, etc.

Because the degradation caused by rectification is not centro-symmetric,
images cannot be rotated, since training process expects the degradation in
the upper part of the image (see Sec. 5.3.1). Nevertheless, (random) horizontal
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flip is performed in order to augment the data set.

5.3 Loss function

As a default loss function, Negative Log-Likelihood (NLL) is used for training.
Since used neural network architecture has a Log-Softmax layer as a output
layer, training criterion is effectively Cross Entropy (see [Bis06]). However,
for the purpose of this work, NLL shall be considered to be a loss function in
the rest of the work.

NLL loss function for an image (one input sample) is defined as

L(p,y) = −ws
∑N
n=0 log(pn,yn)

N
, (5.1)

where p is a distribution of a probability score over classes, y is image labelling
ground-truth annotation map, N is number of image elements (pixels), pn,yn

is output value corresponding to n-th element for true class, ws is a sample
(image) weight. Note that for simplicity, images and annotation maps are
treated as a 1D vector of length N = width · height instead of 2D matrices.

After image rectification to bird’s eye view perspective, upper part of an
image suffers from a significant information loss due to lack of resolution
caused by camera viewpoint. Since the NLL loss function considers every
pixel to be equally important, missclassified pixels in the very top of the
image (where the image is strongly distorted) contributes to total loss the
same way, as pixels in the bottom (where the image is less distorted). In
other words, the network is learning on the heavily distorted parts of the
image the same as on less distorted parts. This may lead to worse accuracy
and capability of generalisation. Further, most of the time we are interested
mainly in the immediate proximity of the vehicle. Therefore pixel weighting
was proposed in order to favour pixels of the less distorted part of the image.

5.3.1 Pixel-wise area of interest weighting

In order to achieve more accurate segmentation in the important regions
closer to the vehicle, pixel-wise weighted NLL loss function is proposed:

L(p,y) = −ws
∑N
n=0wn log(pn,yn)∑N

n=0wn
, (5.2)
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.................................... 5.3. Loss function

(a)

(b)

Figure 5.1: Laplacian operator was applied to rectified image (a) to illustrate
the loss of resolution (b) due to camera perspective.

where wn is n-th pixel weight.

Weight of every element lies in interval [0; 1] and is computed using formula
given by:

w = 2− 1
e−kd , (5.3)

where w is a pixel weight, d is Euclidean distance of a pixel to the centre of
the bottom side of the image and k is weight decay coefficient. It is computed
as

k = log(2−m)
h

, (5.4)

where h is image height and m is desired minimal weight (in top left or right
corner). in Figure 5.2c, weight maps are visualised for different values of m.

5.3.2 Focal loss

Focal Loss [LGG+17] is a recent approach to handle unbalanced training
sets (classes are not distributed uniformely). It is a modification of NLL
loss function introducing weight, which decreases exponentially with growing
SoftMax layer output (predicted probability). Focal Loss for one pixel is
defined as
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(a)

(b)

(c): Visualisation of pixel weights for m = 0 (a), m = 0.2 (b) and m = 0.5 (c).

FL(pn, yn) = (1− pn,yn)γ − log(pn,yn). (5.5)

Intuitively, Focal Loss focuses more on pixels, where the prediction is
uncertain. This way it copes with unbalanced training set and improves
training convergence. The effect of a focusing parameter γ is evaluated in
Chapter 7.

Then, final loss function formula containing both Pixel-wise area of interest
weighting and Focal Loss is

L(p,y) = −ws
∑N
n=0(1− pn,yn)γwn log(pn,yn)∑N

n=0wn
. (5.6)
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...................................... 5.4. Optimiser

5.4 Optimiser

Adam [KB14] optimiser was used in all our experiments. It adapts learning
rate dynamically by using the first and second gradient moments. Thus it
is less sensitive to learning rate setting, than a vanilla Stochastic gradient
descent (SGD).

5.5 Accuracy evaluation

In order to reflect the effect of pixel-wise weight loss training, accuracy
function needs to be adjusted. To get a comparable accuracy metric, same
weights wn as proposed in Subsection 5.3.1 for loss function are used in
accuracy

A(ŷ,y) = ws

∑N
n=0wn[ŷn = yn]∑N

n=0wn
, (5.7)

where A is a image accuracy, ŷ is a segmentation map, ŷn is n-th pixel in an
segmented map, y is a ground-truth annotation map and yn is n-th pixel in
annotation map. Note that [.] stands for Inverson bracket.

5.6 Training, validation and testing

Manually annotated data are randomly split to training (50 %), validation
(25 %) and testing set (25 %). Testing data set is fixed for all experiments
while the rest of the data is randomly split into training and validation data
before every training.

Evaluation on validation data is performed after every training epoch and
only model weights achieving the highest accuracy on the validation set are
saved. The trained model is evaluated on test data set to get the resulting
accuracy (see Chap. 7).

Additionally, synthesised data (see Section 4.3) were added to the training
set in order to improve the training process. Different proportions of manually
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5. Neural Network Training, Testing and Validation .....................
annotated and synthesised data were used in the training process and the
effect is evaluated later in Chapter 7.

Due to the model size (more than 2 millions parameters), batch size for
training was limited by hardware capability. For original image size after
bird’s eye transformation with size 424 px × 1280 px, the maximum possible
batch size is 2. In order to improve convergence speed, batch size was increased
to 5 by training on smaller images (resolution of 320 px × 960 px). Effects on
convergence and resulting accuracy using full size and half scale images are
discussed in Chapter 7.

5.7 Training on GPU

Training of neural networks was performed on GPU servers at CTU. Servers
are equipped with NVIDIA GeForce GTX 1080Ti GPUs. One training epoch
on 139 images (non-extended train data set) took in average 26 sec, while
validating on 71 images (validation or test data set) took in average 6 sec.
Average number of epochs was approximately 1100, which results in almost
10 hours of a total time spent on one training process of the neural network.
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Chapter 6

TOMI platform adjustments

In order to safely control steer and throttle of the TOMI platform from
on-board computer (Jetson Xavier), some adjustments needs to be done.

6.1 Autopilot Interface

For any kind of autonomous driving, there is a need for direct control over the
steering and throttle of the platform. An Autopilot interface was implemented
to simply set throttle and steer from anywhere in the code. These steering
and throttle set points are sent from Jetson Xavier to the Raspberry Pi, where
PWM signals for servo and motor are generated (see Fig. 2.3). Nevertheless,
remote control signals are still recieved and logged.

6.2 Fail-save systems

Failure of any crucial part of a control system may result in loss of control,
which may lead to a serious collision of a TOMI platform with the surrounding
environment. Since the platform weights almost 16 kg and maximum speed is
about 80 km h−1, such a collision can cause substantial damage to a platform
or property or injuries. Thus, fail-save systems must be implemented in order
to minimise potential risk of a collision.
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6. TOMI platform adjustments ..............................
6.2.1 Autopilot Interruption

Since the platform is designed to receive remote control signals independently
of a control mode (autopilot or manual control), the throttle signal was used
as a basic level fail-save system.

For the fail-save system to be as robust as possible, remote control signal
must be received. When the signal data are not available in the control loop
for any reason, autopilot is turned off and a neutral PWM signal (50 % duty
cycle) is fed to the motor and the steering servo controllers. Note that this
does not mean, that car will actively break. Reverse torque generated by the
motor is required for active breaking. However, reverse torque shall be applied
only, when vehicle is moving forward, otherwise it would result in backward
movement. Therefore after centring the throttle PWM signal, vehicle keeps
moving by inertia, until dissipation forces stop the vehicle movement.

When the remote signal is available, throttle signal is continuously analysed.
If breaking signal from the remote RC controller is detected, the autopilot is
disengaged and the control mode is changed to manual control, so full control
over the platform is granted back to the human pilot.

6.2.2 Watchdogs

In case of a failure of PWM generation and throttle control, watchdogs were
implemented as an additional safety mean. If one of crucial processes is not
alive, PWM signals are forced to neutral. When PWM control process itself
is not alive, PWM signal generation is stopped.

6.2.3 Remote relay kill switch

In order to provide independent motor kill switch, a relay with 433 MHz
remote control was inserted between Raspberry Pi and motor controller (see
Fig. 6.1). When a signal from the remote control is received, the relay opens
the motor controller PWM circuit and controller sets the current to the motor
to zero. However, as already explained above, this does not cause active
breaking. Moreover, a range of the remote control is limited to approximately
60 m, even with an external antenna.
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.................................. 6.3. Drive control loop

Figure 6.1: Remote relay was used to independently cut off PWM signal to the
motor.

6.3 Drive control loop

Integrating semantic segmentation, segmentation map analysis and the control
algorithm results in a closed-loop control shown in Fig. 6.2. When an image
from the front camera (ZED) is available, it is rectified and forwarded to
a neural network. Resulting segmentation map is then used for a surface
tracking. Surface tracking algorithm including steering and throttle regulation
is presented in the following section.

Figure 6.2: Block diagram of surface tracking control loop

6.3.1 Surface tracking

For a surface tracking, fast and simple algorithm based on geometrical centre
of area was implemented. Surface tracking intermediate steps are illustrated
on an example in Fig. 6.3 and the pseudo code is in Alg. 1.

First, the map is transformed into a binary image to separate tracked
surface from all the other surfaces. Only the biggest connected component
of a tracked surface is preserved. Then, morphological opening is applied
to segmentation map in order to remove small areas of misclassified pixels.
The result is used for computing geometrical centre of the area (in Fig.6.3b).
Resulting coordinate vector is used as heading (in Fig. 6.3c), in which the
platform should move. The difference (normalised to image size) from image
centre line (in x-axis) and the difference from bottom of the image are used as
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6. TOMI platform adjustments ..............................
controller references. P controllers were designed for regulation and resulting
control action is linearly mapped to PWM command.

Algorithm 1 Control loop
1: procedure getControlPWM
2: segMap← binaryOpening(segMap)
3: segMap← biggestConnectedComponent(segMap)
4: CoM← centreOfMass(segMap)
5: headingX, headingY← getHeading(CoM)
6: ctrlSteer← PID(headingX)
7: ctrlThrottle← PID(headingY)
8: pwmSteer← tooPWM(ctrlSteer)
9: pwmThrottle← toPWM(ctrlThrottle)

10: return pwmSteer, pwmThrottle
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.................................. 6.3. Drive control loop

(a)

(b)

(c)

Figure 6.3: Tracked surface area is separated from a segmentation map (a).
Morphological opening is applied to a binary map of a tracked surface and the
centre of mass is computed (b). Heading vector (c) is computed from the centre
of mass and is forwarded to P regulators.
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Chapter 7

Semantic Segmentation Results

In this chapter, results of neural network training and surface tracking
drive experiments are shown and effects of proposed solutions on results are
analysed.

Major criterion for evaluating trained models was accuracy according
to Eq. (5.7). Models with different training settings were trained until
convergence and the model with highest accuracy on validation set was
chosen to be used in the drive experiment. Final model was also tested on the
test set. Note that model training was considered converged after 200 epochs
of no improvement of the validation data set accuracy. The training and
validation sets were randomly split for every learning process, but the test set
remained fixed for all experiments. Learning with each hyper-parameter set
was repeated for n = 5 trials with constant hyper-parameters. All weights of
convolutional layers were initialised randomly using uniform Kaiming (He)
initialisation [HZRS15]. The repeated experiment was necessary for a solid
result analysis, since the accuracy varied in some cases significantly. If not
stated otherwise, default hyper-parameters (see Tab. 7.1) were used for all
experiments.

Due to high computational time demands (see Sec. 5.7), exhaustive grid
search over all hyper-parameters was not possible. Instead, all hyper-
parameters were considered orthogonal and tuned independently.

In following sections, effects of different learning rate setting, batch size,
input image size, pixel-wise weight m parameter, focal loss γ parameter and
number of synthesised images added to training set are discussed. Note that
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Learning rate Batch size Image size m γ Synth. data

10−3 5 960 px × 320 px 1 0 0

Table 7.1: Default hyperparameters set: Learning rate, batch size, input
image size, pixel-wise weighting m parameter, focal loss γ parameter and
number of synthesised images added to training set.

all figures showing accuracy scores are boxplots depicting following statistics:
Box presents lower and upper quartile with a colour line at median. The
whiskers extend from box by value of Q1 − 1.5(Q3 −Q1) for lower whisker
and Q3 + 1.5(Q3 −Q1) fo upper whisker, where Qi is an i-th quartile. All
values outside whiskers range are plotted as outliers separately.

To provide further insight on the distribution of individual image accuracy,
cumulative histograms are provided. Histograms are computed on all images
from all trials (n = 5 repetitions) in the experiment trained with fixed hyper-
parameters. In another words, cumulative histograms present fraction of
images having lower or equal accuracy than given among all trials.

7.1 Learning rate

First, effect of the learning rate was evaluated. As Fig. 7.1 shows, values
close to default value (lr = 10−3) perform similarly. On the other hand, too
large or too low learning rates resulted in significant accuracy drop.

Since Adam optimiser adapts learning rate automatically based on data, it
was expected to be less sensitive to learning rate setting. In this experiment,
lr = 5 · 10−2 performed slightly better. However, in following experiments the
best results were achieved with the default value. Thus, default value is used
in following experiments.

7.2 Batch size

Due to model memory requirements, available training batch sizes are limited,
see Tab. 7.2. This experiment evaluates effect of a batch size (which is
dependent on the input image size) to the validation set accuracy.
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Figure 7.1: The effect of learning rate on validation set accuracy.

Input size Maximum batch size

1280 px × 424 px 2
960 px × 320 px 5
640 px × 216 px 12

Table 7.2: Maximum available batch size

Experiment results in Fig. 7.2 clearly shows, that increasing batch size
to 5, while sacrificing image resolution, improves accuracy. Since further
batch size increase (and inevitably decreasing image resolution) causes higher
variance, the resolution 960 px × 320 px with batch size 5 was chosen for
further experiments and final hyper-parameter set.

This experiment showed, that learning on smaller input data can achieve
higher accuracy due to larger batch size available, but only till some extent.
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Figure 7.2: The effect of an image size and batch size and input image size
on validation accuracy. Batch size mas set to maximum possible according to
Tab. 7.2.

7.3 Pixel-wise Weighting

As explained in Sec. 5.3.1, pixel-wise weighted loss was implemented in order
to improve segmentation in lower part of the image corresponding to the
surface close to car. In Fig. 7.3 there is measurable decrease or variance with
decreasing m parameter (defined in Eq. (5.4)), but no significant improvement
in overall accuracy was observed.

To provide an insight to the spatial distribution of accuracy, error maps
are presented. Error maps are the same size as validation (or testing) images
and each pixel is an average error over the training set images over the whole
batch, namely

e(Pred,True) = 1
M

M∑
n=0

[Truem = Predm], (7.1)

where e is error map pixel value, Pred is vector of predicted classes for pixel
of all images (vector length is M), True is vector of true classes for pixel of all
images (vector length is M) and M is number of validation (testing) images.
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Figure 7.3: The effect of a pixel-wise weighting parameter m on validation
accuracy. Lowerm decreases the accuracy variance, however does not significantly
increase mean.

On error maps in Fig. 7.4, the effect is clearly visible. The accuracy is
higher in the region closer to the vehicle with exponential weighting compared
to uniform weights.

Cumulative histograms are presented in Fig. 7.6. It is seen that the model
trained with uniform weights (corresponding to m = 1) has higher occurrence
of images of very low accuracy compared to exponential weights. As an
example, for model trained with uniform weights 6.5 % of images achieved
50 % or lower validation accuracy. On the other hand, there is only about
3 % of images with validation accuracy 50 % or lower for model trained with
exponential weights (m = 0.2)

Since parameter m = 0.2 caused the lowest fraction of poorly classified
images in comparison with other parameters (see detail in Fig. 7.6), it was
used further in learning process.
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(a): Uniform weights (m = 1.0)
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(b): Exponential weights (m = 0.1)

Figure 7.4: Error maps of two m parameters showing the effect of pixel-wise
weighting.
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Figure 7.6: Effect of pixel-wise weighting m parameter on poorly classified
images. Comparing to uniform weights, exponential weights showed lower
fraction of poorly classified images.
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7.4 Synthesised data

Train set was extended with various number of synthesised images to improve
learning process. Fig. 7.7 shows, that extending train set by a large number
of synthesised images has negative effect on accuracy. Similarly, extending
the train set has negative impact on number of poorly classified images (see
Fig. 7.8).
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Figure 7.7: Validation accuracy of a models trained with train set extended by
various number of synthesised images.
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Figure 7.8: Accuracy cumulative histogram of a models trained with train set
extended by various number of synthesised images. .

7.5 Focal Loss γ

As seen in Fig. 7.9, introduction of Focal Loss did not improve accuracy
significantly on validation data, but there is noticeable increase of low accuracy
outliers for larger γ.
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Figure 7.9: Validation accuracy boxplot for Focal Loss γ
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On cumulative histogram of image accuracies (in Fig. 7.10) there is a slight

effect of elimination of poorly classified images. Especially on detailed look,
there is a noticeable decrease of images with classification accuracy under
approximately 35 % for γ = 2. Interestingly, γ = 2 was also recommended in
the original paper [LGG+17] for a different problem (object detection).
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Figure 7.10: Cumulative histogram of validation accuracies for Focal Loss γ
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7.6 Final model

Final model was selected among all models trained in experiments with
respect to accuracy, but considering also performance on poorly classified
images. The best model was trained with parameters listed in Tab. 7.3 and
achieved 94.4 % accuracy on validation set and 92.7 % accuracy on the test
set.

In order to show effect of pixel-wise weighting and focal loss, final model is
compared with baseline model trained with default parameters (see Fig. 7.1).
Both models were evaluated using pixel-wise weighted accuracy as defined in
Eq. (5.7) with parameter m = 0.2 (same as the final model).

As shown in Fig. 7.11, the final model performed significantly better in
terms of accuracy than model trained with default hyper-parameters.
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Figure 7.11: Test data set accuracy of base and final model

The final model also performed better on poorly segmented images. There
is a significantly lower occurrence of poorly classified images in whole accuracy
range, as can be seen in Fig. 7.12.

It is clear from error maps in Fig. 7.13, that final model makes less errors
in classification of pixels corresponding to the front of the car, than base
model. It illustrates well the effect of pixel-wise weighting loss function.
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Figure 7.12: Test data set cumulative histogram of base and final model.
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Figure 7.13: Test data set error maps of model with default hyperparameters
(a) and final model (b).

Confusion map (see Fig. 7.14) was computed using the same spatial weights
as used for training the final model (m = 0.2). There is some noticeable
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..................................... 7.6. Final model

Figure 7.14: Confusion matrix of test data computed for the final model. Matrix
is weighted by a weight map for m = 0.2 and normalised to percents.

Learning rate Batch size Image size m γ Synth. data

10−3 5 960 px × 320 px 0.2 2.0 -

Table 7.3: Final hyperparameters set

correspondence between class distribution and class true positive rate (grass
and gravel classes). However, asphalt class was the least represented and
still reached above average true positive rate. This suggests, that dataset
distribution disbalance was compensated for some classes (asphalt) by focal
loss. However, cobblestone and interlocking pavement classes were frequently
confused despite focal loss, probably due to their similar appearance.

On Fig. 7.15, there are examples of images and corresponding segmentation
maps taken and segmented during experiment drives. The final model was
used for segmentation in all experiments.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.15: Example images corresponding annotation maps taken and seg-
mented with the final model during experimental drives.
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Chapter 8

Autonomous Driving Experiment

In order to present reliability and usability of the proposed semantic surface
segmentation in a real-world application, autonomous surface tracking ex-
periment was performed on TOMI platform. The experiment was designed
to show near real-time capability of reliable surface semantic segmentation.
All experiments took place at the yard of the CTU at Karlovo náměstí (see
Fig. 8.1).

8.1 Description

Basic idea of the experiment is to follow a path of a given surface and avoid
moving over other surfaces. Target surface is determined after the system
starts according to the surface right in front of the platform. Several paths of
a specific surface were chosen and obstacles (benches) were placed on paths.

Following goals were achieved:..1. Autopilot is disengaged, if fail safe initiated..2. Platform is not exceed maximum speed..3. Platform may slow down temporarily..4. Platform moves over selected surface only
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Figure 8.1: Experiments were performed on the university yard. Pavement path
was tracked in several route variants.

Image size Average inference time FPS

1280 px × 424 px 451 ms 2.2
960 px × 320 px 367 ms 2.7
640 px × 216 px 214 ms 4.7

Table 8.1: Average neural network inference and FPS on Jetson Xavier during
the test drive...5. Platform stops, if movement forward on a selected surface is not possible

8.2 Semantic segmentation and tracking on
Jetson Xavier

Both semantic segmentation and surface tracking were performed on Jetson
Xavier in all experiments. Average segmentation inference (see Tab. 8.2)
did not satisfy real-time requirements for image segmentation. Image size
640 px × 216 px was selected due to its segmentation speed. Including also
tracking time (20 ms) and core code, resulting control loop period was approx-
imately 250 ms (4 Hz). That was enough for basic vehicle control at low speed.
However, for control at higher speeds, more computational performance or
simpler neural network architecture is necessary.

As stated before, segmentation itself causes considerable latency by itself.
To estimate total latency from the time of image capture to the time of PWM
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Image size Total latency estimate

1280 px × 424 px 567 ms to 601 ms
960 px × 320 px 483 ms to 517 ms
640 px × 216 px 330 ms to 364 ms

Table 8.2: Total estimated latency from the image capture to PWM signal
generation.

generation, following delays need to be considered: Tracking algorithm takes
approximately 20 ms. According to the ZED API reference, communication
time introduces additional 2 or 3 frame-time delay (for 30 FPS 66 to 100 ms).
Additional delays from various sources (rectification, USART communication,
process sleep time, . . . ) were empirically estimated to 30 ms. Note that image
capturing runs in separate thread and thus delay time contributes to latency,
but does not affect control loop period, which is shorter.

In our experiment, maximum speed was limited to approximately 1 m s−1.
But for control at higher speeds, latency becomes more important factor to
be considered.

8.3 Results

Unfortunately, mounted GPS modules do not provide sufficient accuracy for
experimental drive evaluation. Therefore, experiment evaluation is limited
only to recorded visual data and sensor data logs.

Example of an experimental drive is illustrated on superimposed motion
picture in Fig. 8.2. Recording of selected experiment from different points
of view is attached to this work (see Appendix A). Data logs on Fig. 8.3
show steer and throttle PWM pulse duration and heading γ estimated from
gyroscope data.

All experiments were repeated several times. Fig. 8.4 contains logged data
from three drives on the same route. Note that neutral PWM pulse duration
is 1419 ns for steering and 1520 ns for throttle.

Fig.8.5 shows data logged during an experiment while performing 90-
degree turn. There is clear throttle signal decrease, resulting in lower speed.
However, during the experiment car stopped completely for a moment (as
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Figure 8.2: Autonomous drive experiment. The TOMI platform captured every
5 s and composed into a picture from a video (by Jan Čech). See attached video
of the experiment.

seen on attached video). Author believes, it was caused due to the motor
control. During low speed steering, more torque is needed to maintain the
same speed, in comparison with forward movement. But currently, there is
no velocity regulator implemented, because RPM sensor does not provide
reliable data in low speeds. This causes undesired velocity decrease while
steering.

Note that the control frequency of about 4 Hz is visible, especially on the
steer PWM reference graph.

Examples of computed centre of mass and heading vector from experimental
drives are shown in Fig. 7.15.
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Figure 8.3: Example of data logged during experimental drive. Steer and
throttle PWM reference signals and γ estimation is selected.

(a) (b)

(c)

Figure 8.4: Data logged during repeated experiment on the same path.
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Figure 8.5: Data logged during 90 degree turn.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.6: Examples of computed centre of mass and heading vector. Images
and segmentation maps were captured and segmented using the final model
during experimental drives and are identical to 7.15
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Chapter 9

Conclusion/Summary

As presented in Chap. 7, reliable semantic segmentation system was proposed
and tested in experimental autonomous drives. The experiment showed, that
semantic segmentation performed well enough to enable segmentation-based
navigation.

This was achieved mainly due to pixel-wise weighting, which improved
system spatial accuracy on important areas (closer to the vehicle) while
keeping overall accuracy. Secondly, poorly segmented images were partially
eliminated by using the Focal loss. This is another feature increasing ro-
bustness. Altogether, proposed system showed its perspective in surface
semantic segmentation applications. On the other hand, training with data
set extended by synthesised data did not introduce noticeable accuracy im-
provement. Author of this work suspects that synthesised images were not
authentic enough.

Surface tracking drive experiments show the segmentation system was
reliable enough to provide data necessary for autonomous surface tracking on
known surfaces in known environment. This holds true even for lower image
resolution (for experiments 640 px × 216 px image size was used). Platform
was able to follow a target surface with certain imperfections. Temporary
crossings onto other surfaces were caused mainly by trivial planing algorithm
and suboptimal control.

However, it was not analysed, how different weather conditions or different
environments affect segmentation. Data set of manually annotated images is
limited to a small number of locations and basically lacks variance in weather
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or ambient conditions. This is a limitation, which may require additional
work to be done on further development of the system.

Camera is fixed to the vehicle top cage. This may cause significant camera
tilt during accelerating and decelerating, resulting in camera point of view
change. Homography used for rectification is then inaccurate. This problem
can be eliminated by using a gimbal.

Segmentation accuracy was showed high enough to be used for autonomous
vehicle drive. However, inference speed is far from real-time. In order to
speed up inference while keeping accuracy, other neural network architecture
may be used. Promising option is also converting trained model to a format
supporting NVIDIA TensorRT library [Ten].

As drive experiments showed, tracking algorithm lacks the ability to avoid
obstacles. This causes algorithm to ignore small obstacles in the path, if
they are not large enough to move the centre of mass. Better results may be
accomplished by using advanced planing algorithm in combination with more
advanced control technique (predictive regulators, . . . ). Necessary first step
is to implement proper inner-loop speed regulator, as mentioned in Sec. 8.3.

As a future improvement, independent RC transceiver and receiver system
is proposed as a kill switch to replace current 444 MHz short range remote
control relay. To eliminate risk of out-of-range failure, kill switch should be
also activated whenever signal is not being received for any reason.
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Appendix A

Attachments

Following files are attached to this work:

. Source code (in one archive). Video from the experiment
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