
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 27, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Architecture for monitoring CDNSKEY records from multiple sites for automated DNSSEC

management in FRED system
 Student: Bc. Marina Shchavleva

 Supervisor: Ing. Jiří Šádek

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Information Security

 Validity: Until the end of summer semester 2020/21

Instructions

FRED is open-source software for running a domain and ENUM Registry, developed by CZ.NIC. Automated
DNSSEC management is implementation of two RFCs (RFC 7344 and RFC 8078) in the FRED system. Main
goal is to make initial trust setup for insecure domains more secure through monitoring records from
multiple vantage points in the network and enhance system robustness against network or nameserver
failures.
Become familiar with domain name system (DNS) and its security extension DNSSEC in general and also in
relation to FRED system. Study IETF documents related to automated DNSSEC management from parent
zone (RFC 7344, RFC 8078). Explore current implementation in FRED system. Redesign architecture to
enable monitoring of CDNSKEY records from multiple sites (design and implement scheduler algorithm for
multi-site scanning of CDNSKEY records, design and implement algorithm for result analysis with focus on
recovery from record retrieval failures, implement diagnostic interfaces).

References

Will be provided by the supervisor.

Master’s thesis

Architecture for monitoring CDNSKEY
records from multiple sites for automated
DNSSEC management in FRED system

Bc. Marina Shchavleva

Department of Information Security
Supervisor: Ing. Jǐŕı Šádek

May 28, 2020

Acknowledgements

I would like to express my gratitude to my supervisor Ing. Jǐŕı Šádek for his
valuable advises and help, and CZ.NIC z. s. p. o. for giving me the opportunity
to work on this project. I would also like to thank my family for their support
and understanding. Special thanks go to my partner Ladislav for his patience
and care.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 28, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Marina Shchavleva. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Shchavleva, Marina. Architecture for monitoring CDNSKEY records from
multiple sites for automated DNSSEC management in FRED system. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.

Abstrakt

Systém doménových jmen (zkráceně DNS) je kritickou infrastrukturou, a jej́ı
zabezpečeńı je d̊uležitý úkol. Existuje hodně r̊uzných útoku na DNS, např́ıklad
podvrh paket̊u a cache poisoning. Zabránit těmto útok̊um má bezpečnostńı
rozš́ı̌reńı DNSSEC, které poskytuj́ı autentizaci p̊uvodu dat a integritu dat.
DNSSEC použ́ıvá model řetězce d̊uvěry a asymetrickou kryptografii
pro podepsáńı záznamů v odpověd́ıch od nameserveru. Problematické mı́sto
tohoto př́ıstupu je složitý proces změny kĺıč̊u, protože majitel domény muśı
kontaktovat registr aby zaktualizoval kotvu d̊uvěry na straně rodiče přes kanál
mimo DNS. Byl vytvořen nový mechanizmus oznámeńı o změně kĺıč̊u na straně
potomka. Pomoćı tohoto mechanizmu majitel domény publikuje CDS/CDNSKEY
záznamy na autoritativńıch serverech pro doménu, aby potom automatický
monitorovaćı nástroj registru mohl zpracovat tyto záznamy a umı́stit výsledek
do své zóny. Slabina tohoto systému je v tom, jak se maj́ı zavádět do DNSSEC
ještě nezabezpečené domény. Jedna z několika metod, které se k tomu použ́ıvaj́ı,
spoč́ıvá v monitorováńı CDS/CDNSKEY záznamu během nějaké doby z několika
mı́st. Nástroj FRED-AKM vyvinutý CZ.NIC z. s. p. o. implementuje tuto
strategii, použ́ıvá akceptačńı dobu pro zavedeńı nezabezpečených domén.
Ćıl této práce je rozš́ı̌reńı funkcionality FRED-AKM tak, aby
podporoval skenováńı z v́ıce lokalit. Př́ınosem této práce je lepš́ı zabezpečeńı
procesu zaváděńı DNSSEC pro nezabezpečené domény.

Kĺıčová slova DNS, DNSSEC, CDNSKEY, automatická správa DNS key-
set̊u

vii

Abstract

Domain Name System (DNS) is a critical internet infrastructure, and securing
it is an important task. There are multiple attacks against DNS, such as packet
forgery and cache poisoning. In order to mitigate those attacks, Domain Name
System Security Extensions (DNSSEC) were added, that provide data origin
authentication and data integrity. It uses chain of trust model and asymmetric
cryptography to sign records in response messages from nameserver. The
problem of this approach is complicated key rollover procedure, since domain
owner should request registry to update domain’s trust anchor at parent’s site
through some out of bound method. New mechanism of notifying registry
about new keys through DNS was conceived. With that mechanism, domain
owner could publish CDS/CDNSKEY records at domain’s authoritative servers,
so automatic monitoring tool at registry could process those records and place
them into it’s zone. Weak point of this automation is setting up DNSSEC for
a domain that is not yet secured. One method of several that are used for
that suggests continuous monitoring of CDS/CDNSKEY records for some time
from multiple vantage points. FRED-AKM developed by CZ.NIC, z. s. p. o.
implements strategy, with acceptance period for insecure domains. The aim
of this work is to augment FRED-AKM so it will perform scans from multiple
locations. This work will contribute to overall security of the process of setting
up DNSSEC for insecure domains.

Keywords DNS, DNSSEC, CDNSKEY, automated DNS keyset manage-
ment

viii

Contents

Introduction 1

1 The Domain Name System and security 3
1.1 Main concepts behind Domain Name System 3
1.2 DNS security overview . 8
1.3 Securing DNS . 11
1.4 DNSSEC . 13
1.5 Automating key update at Parent’s site 19
1.6 CZ.NIC’s FRED-AKM . 22

2 Design 27
2.1 Requirements . 28
2.2 Architecture . 28
2.3 Master’s operation . 29
2.4 Worker’s operation . 32

3 Implementation 35
3.1 Communication . 35
3.2 Database . 41
3.3 Scanning process . 42
3.4 Evaluation . 44

Conclusion 45

Bibliography 47

A Acronyms 53

B Contents of enclosed CD 55

ix

List of Figures

1.1 Hierarchical structure of DNS. It also shows direction of delegation
of authority[1]. 4

1.2 Resolution of a domain name.[1] 6
1.3 Registry-Registrar-Registrant relationship. Image based on [1, p. 14],

with my extension of registrant. 7
1.4 Overview of security solutions in DNS. Image based on [1, p. 60],

with my extension of users and showing exactly where does each
solution belong. 11

1.5 Example of a tree structure of DNS in the context of DNSSEC and
relationships between DS and DNSKEY records. 15

2.1 General architecture of AKM Multi Scanner. 28
2.2 Process of importing domains for a scan. 30
2.3 Process of exporting scan results from Master. 31
2.4 Process of delegation of domains to Worker and receiving scan results. 33

3.1 Complete picture of exchanges and queues in RabbitMQ server for
AKM Multi Scanner . 40

3.2 Possible alternative to the way, how secured domains are handled
now: with a direct exchange with one queue, Workers could connect
to this queue and work would be distributed evenly across them
(with the assumption of a correct queue configuration). 41

3.3 Complete structure of communication between elements of a sys-
tem. Images for gRPC and RabbitMQ are taken from https:
//grpc.github.io/ and https://www.rabbitmq.com/ respectively. 42

3.4 Database schema for Master. 43

xi

https://grpc.github.io/
https://grpc.github.io/
https://www.rabbitmq.com/

List of Tables

1.1 Top level description of DNS message format[4]. 6
1.2 Description of DNSKEY RR[28]. 14
1.3 Description of DS RR[28]. 14

xiii

Introduction

Domain Name System (DNS) is a hierarchical system for assigning names to
physical entities. This thesis discusses DNS operations in more detail, de-
scribes concepts such as namespaces, nameservers and resolvers, zones and
resource records, authority and delegation. It also describes administrative
concepts, such as Registry-Registrar-Registrant model. DNS is a critical in-
frastructure and it is necessary to pay close attention to it’s security. Different
aspects of DNS security are discussed, and issues that DNS has. Thesis also
points toward solutions to those issues.

One such solution is DNS Security Extensions, or DNSSEC for short.
DNSSEC adds to DNS authentication of data origin and authenticated denial
of existence through use of asymmetric cryptography. It specifically doesn’t
provide confidentiality. Conceptual model of chain of trust is described, as
well as what DNSSEC adds to DNS from operational perspective, such as
new resource records and need to implement new validating software. Thesis
takes a closer look at what issues are solved by DNSSEC, what alternatives
are considered and also what criticisms DNSSEC faces.

At the core DNSSEC is complex to deploy, as periodic key updates need
to be done not only on a authoritative nameserver for a domain, but also at
parent’s nameserver. It means, that domain owner needs to contact owner of
parental domain in order to update keys. Many domain owners do not finish
procedure of key update, and so a lot of domains are not validated through a
complete chain of trust.

In order to ease key update process, automated solution was developed.
Now domain owner needs only to publish at their nameserver special record,
that tells parental domain owner that child wishes to update keys. Parent
now only needs to run periodic monitors of children’s nameservers in order to
know about those records. The biggest problem posed here is how to introduce
keys for domains, that are not yet secured by DNSSEC. Multiple strategies
exist, one of those is “Accept after Delay”, that recommends multiple scans
of those records from one or more locations in order to ensure, that records

1

Introduction

are unchanged over time, and then it is possible to include them into parent’s
zone. Some software exists that does that, but this automation is not yet
widely deployed by owners of Top Level Domains.

At the Top Level Domain .CZ update of keys at parental site is automated
by a tool called FRED-AKM. This tool is closely coupled with FRED system
for administering a Registry. It performs daily scan of children’s nameservers
in order to find new keys or update existing ones. This tool is also able to
notify technical contact for domain that keys are discovered and domain is in
the process of setting up DNSSEC or that keys are updated immediately if
domain is already secured. The scan is performed from one location.

The main goal of this thesis is to augment FRED-AKM so it is able to
scan from multiple locations, thus achieving greater security upon introducing
new keys for insecure domains. Secondary goals are decoupling AKM from
FRED, and from unrelated tasks such as notification. This project implements
two types of interfaces: operational (related to scan itself) and diagnostic. It
also redesigns scheduling, as current implementation is now scheduled through
other means rather than from the inside of an application. I consider possi-
bilities for recovery from scan result retrieval failures.

The thesis is organised in the following manner: Chapter 1 introduces
reader to the Domain Name System, it’s intricacies and security issues, fol-
lowing with description of DNSSEC, what it does and doesn’t solve and what
problems deployment of DNSSEC poses, how is DNSSEC could be automated
and finally, software solutions that implement this automation, and focus my
attention of FRED-AKM. Chapter 2 outlines design of a developed solution
called AKM Multi Scanner, what overall architecture of a system is and what
is role of each part of a system. Chapter 3 describes implementation of the
AKM Multi Scanner, what technology was used and what challenges I en-
countered.

2

Chapter 1
The Domain Name System and

security

This chapter will introduce reader to Domain Name System, it’s general princi-
ples, and will shortly discuss administration of DNS at a larger scale. Security
issues inherent to the DNS design will be presented, as well as attempts to
mitigate them. One of those is relevant to this work: DNSSEC.bis, com-
monly known as just DNSSEC. I will examine details of DNSSEC, what does
it solve, and what problems DNSSEC has. Major problem of DNSSEC is that
it is notoriously hard to deploy, and what was done to lessen this complexity.

1.1 Main concepts behind Domain Name System

The Domain Name System was created to tackle the problem of assigning
names to physical entities in the network to ease the access to them for hu-
mans. Overall aim of the system is to store, serve and administer attributes of
a named resource. As Ron Aitchison pointed out, “the problem of converting
names to physical addresses is as old as computer networking”[1], and RFCs,
that define DNS, date back to 1987 and remain largely intact, but updated
by newer RFCs.

The core ideas and concepts behind DNS are presented in RFC 1034,
and RFC 1035 digs more into details of formats and implementation. This
section relies heavily on those RFCs, but sometimes the language there could
be quite confusing and complicated, so at times this text would rely rather at
explanation of basics that could be found in [1].

RFC 1034 defines main components of DNS:

• Domain Name Space is thought of as a tree structured namespace, where
each node is labeled and contains a set of information associated with
it, which are called Resource Records

3

1. The Domain Name System and security

• Nameservers are units, that contain and serve information about domain
name space; nameserver is authority for a part of a namespace, when it
has complete information

• Resolvers are programs, which extract information from nameservers in
response to client requests[2].

1.1.1 Namespace

DNS uses hierarchical structure of a tree, each node has a label. What we
usually call “domain name” is concatenation of names from some node in
the tree to the root divided by dots, for example fit.cvut.cz.. One could
notice dot at the end of this domain name, it happens because of the root
label which is an empty string; when domain name is written like this it is
called “Fully Qualified Domain Name” or FQDN for short. Organization, that
is responsible for management and operation of the node is called authority
for this part of namespace. Authority of some part of a namespace could be
delegated to some other authority, which allows finer management.

gTLD ccTLD

Root

.edu .com .us .ca

.qc .on .bc.a .b .c

Root
DNS

TLD
DNS

(User)
DNS

Domain

Delegation

Figure 1.1: Hierarchical structure of DNS. It also shows direction of delegation
of authority[1].

After root label there are another significant labels called Top Level Do-
mains or TLDs. Figure 1.1 shows two major groups of TLDs: generic TLDs
(gTLD) and country code TLDs (ccTLD). Authority for the root domains
lies with ICANN, which in turn delegates ccTLDs to local authorities. For
example, authority for .CZ is CZ.NIC, z. s. p. o (to which this text refers as
just CZ.NIC).

1.1.2 Nameservers

DNS acts as a database of domain names, pieces of that database scattered
conceptually in a tree and practically throughout nameservers. Those pieces
are called “zones”, and nameserver could be authoritative for multiple of
them. Every zone also has multiple authoritative nameservers (RFC 1034
recommends a minimum of two[2]); such redundancy improves availability of

4

1.1. Main concepts behind Domain Name System

the whole system. One of those nameservers is primary (it holds definitive
information about a zone), and other ones are secondary and zone data is
distributed to those from primary through a mechanism of a zone transfer.
Another type of nameserver is caching nameserver: it holds data about a zone
for a defined period of time and is not authoritative to this zone. Caching
nameservers exist to reduce load from authoritative nameservers, and gener-
ally they improve performance of a lookup. Nameserver’s job is to respond to
queries.

Zone is distinct part of domain namespace that was delegated to a single
authority. Zone includes all leaf nodes of a domain, except for those that are
delegated. Zone is described by a “zone file”, which contains vital information
about a zone, such as info about it’s nameservers, mailservers, physical ad-
dresses and subzones. Zone file also defines the way it will be processed, such
as “Time to Live” directives and expiration time for secondary nameservers.

Updating a zone manually – editing zone file and then restarting server
– could damage availability if server contains large amount of zone files or
change in a zone file is massive. The mechanism of “dynamic update” was
introduced in RFC 2136, where remote admin could edit zone files and updates
are propagated immediately[3].

1.1.3 Resource records

Resource record is a unit of information about a name, which defines a forward
mapping of hosts (domain name to address). There is a multitude of different
RRs, the most important are:

• SOA Start of Authority defines key features of a zone, like it’s primary
nameserver and secondary nameserver update parameters

• NS Nameserver records list authoritative nameservers for a zone

• A/AAAA Address is IPv4 (or IPv6 respectively) address of a host[2]

• DNSSEC relevant RRs will be listed at section that described DNSSEC.

When requester queries the nameserver, resource records is what is ex-
pected as an answer. DNS protocol and other details are described in RFC
1035. Both request and response use the same message format, described at
table 1.1.

Resource records correspond to particular name in the zone. It is possible
to omit the last dot in FQDN (which is done commonly in web browsers, for
example), but in the context of DNS those names are considered local: in a
zone cvut.cz there could be record for fit.cvut.cz. and fit – both relate
to the same entity.

5

1. The Domain Name System and security

Header Specifies which of remaining sections are present, for
example if it is a query or a response, if response is
authoritative, or if an error occurred.

Question Carries information about what is requested.
Answer RRs that answer the question.
Authority RRs that point towards authority if nameserver cannot

answer the question.
Additional RRs that hold additional information, data that is relevant

to original query.

Table 1.1: Top level description of DNS message format[4].

1.1.4 Resolvers

Resolver is a program, that performs domain name resolution through re-
questing nameservers. Resolution of a domain name is recursive: resolver
asks root nameserver if it knows this domain name. Root nameserver most
probably doesn’t have info about asked domain name, and points to TLD au-
thoritative nameserver. Resolver asks this nameserver, and it in turn receives
pointer to authoritative nameserver for second-level domain name, and so on
further down the tree until finally some nameserver is able to response with a
definitive answer.

As this tree traversal is rather lengthy and a lot of users visit similar
sites, it is useful to have some resolver in the network. Resolver would cache
query results and then answer fast to known questions, which largely improves
resolution speed and reduces network load in general. User now has to have
lightweight resolver on their machine called “stub resolver” and list of recursive
resolvers on the network.

DNS
root-servers

DNS
.com TLD

DNS
example.com

DNS
Resolver Resolver Browser

PC

Figure 1.2: Resolution of a domain name.[1]

6

1.1. Main concepts behind Domain Name System

1.1.5 Domain registration process

There are multiple models how one could register domain name under some
TLD, either generic or country code, for example through direct communi-
cation with authority. This authority is called Registry, and individual or
organization, that wishes to register a domain is Registrant. Another way
would be that in order to register a domain one doesn’t directly interact with
entity, that administers TLD’s zone, but with entity, to which authority on
registration process is delegated, which is called Registrar. Upon registering a
domain name, Registrant enters into legal relationship with Registrar, under
which both parties have rights and responsibilities. Registrant then manages
domain settings through Registrar. Registrar transmits data about registered
domains to Registry, which propagates those changes to zone file and, ulti-
mately, to the Internet[5]. Strictly speaking, Registry acts as a database for
domain names. This model is called Registry-Registrar-Registrant.

TLD servers
Zone file generation

Registrars

Registry operator

Registrants

(EPP)
at Registry

domain
(2) Register

(1) Request

(3) Generate zone file
from newly registered data

(4)

(4) Now TLD servers refer to Registrants’ servers
for newly registered domain

Registrants’
servers

domain registration

Figure 1.3: Registry-Registrar-Registrant relationship. Image based on [1,
p. 14], with my extension of registrant.

There might be some other parties in this scheme, for example, domain
managers. Domain owner (Registrant) outsources management of a domain
name to an organization. It is important to note, that domain managers
are not Registrars: in a situation, when domain owner needs to update it’s
registration information, it has to contact it’s Registrar. Domain management

7

1. The Domain Name System and security

services provide organizations such as Cloudflare, DNSimple and myriad of
others.

1.1.6 Common DNS server software

There is a number of DNS server implementations, and it might be hard to
talk about DNS and about real life usage without mentioning software. Most
notable server implementations include:

• BIND (Berkeley Internet Name Domain)[6] is an open source full fea-
tured DNS system and is one of the most widely used DNS software[1]

• Knot DNS[7] and Knot Resolver[8] are authoritative server and caching
DNS resolver respectively, are developed by CZ.NIC; Knot DNS is used
as authoritative DNS server for .CZ domain[9] and also for some of the
root servers[10]

• others, such as NSD, tinydns, djbdns, PowerDNS and Unbound.

1.2 DNS security overview

DNS is crucial infrastructure for enterprises and for the Internet as a whole,
it naturally follows that it might attract a lot of malicious attention. DNS
might be a primary target for an attack as well as just a mean to an end.

Performing a DDoS attack on business’ nameservers, or on DNS provider
(for example [11]), or even on a root servers (the alleged plan “Operation
Global Blackout”[12]) might make domains that are dependent on nameservers
under attack seem unreachable, which could significantly hurt the company,
or might be a simple show of force. In [13] reader can find a brief overview
of history of security breaches involving DNS. DDoS attacks in the context of
DNS do not end just there: DNS uses UDP and because there is no connection
established, it is easy to forge source IP address of DNS query to IP address
of a victim.

DNS packets could be used in message tunneling. Malware could communi-
cate with Command and Control center through subdomain names. Attacker
could register some domain, and communicate through subdomain names,
which could be binary data encoded by Base32, or through TXT records. Some
work has been done in an effort to detect such communication, reader could
refer to paper[14], which lists solutions to this problem and proposes it’s own.

1.2.1 Analysis of DNS structure in security context

For attacks on DNS itself, one should first consider the anatomy of DNS. DNS
is a complicated system, and [1] classifies following levels from closest to the
source of data to the furthest, where one must consider security of the system:

8

1.2. DNS security overview

1. Administrative security: through error or malicious actions zone file
might be corrupted; or any administration mischief not specific to DNS
protocol such as misconfigured ACLs, weak or all too eager firewall,
social engineering of registrar’s technical support or even missed bill
from a registrar[13]

2. Dynamic updates: it is possible to perform unauthorized updates
through lack of security measures

3. Zone transfers: zone updates could be forged to invalidate records
in the zone, and even to insert malicious data. Interception of a zone
transfer could even serve as reconnaissance source to attacker. Default
mechanism of zone transfer from Primary server to Secondary might
be weaker from a security standpoint than other methods of zone file
distribution, one might even consider running multiple Primary servers
rather than one Primary and multiple Secondaries

4. Zone integrity: integrity of the zone on the way from authoritative
nameserver to resolver and eventually, to the end user. For example,
cached queries might get poisoned through data interception or even
compromised nameserver, thus breaking the integrity.

1.2.2 Unauthenticated responses

One major problem at “Zone integrity” level is that there is no way to au-
thenticate origin of query response other than source IP address. It means
that virtually anyone could redirect end user to attacker controlled site and
user might remain oblivious to the fact. Here I will describe techniques used
by malicious actors that abuse this lack of authentication of server.

Response forgery

Requests are issued by resolvers. Request packet is identified by four things:
16 bit transaction ID, 16 bit source port, source IP address and the query
itself. Response is paired to those parameters, when those do not match,
resolver could reject it. Typically, when attacker is setting up the attack,
they’ve already picked target domain and a victim (more on that later). This
leaves only two variables: transaction ID and source port. In the early days,
many resolvers utilized same source ports for queries, even today BIND still
has a setting that allows hard-coded source port. This leaves only 16 bit of
transaction ID, and according to birthday paradox, only around 700 packets
with randomly picked transaction IDs is needed to match some request with
99% probability. This is called “blind forgery”, and under some circumstances,
attacker could just eavesdrop on DNS requests and reply with knowledge of
all of those variables. There are efforts to increase size of transaction ID, but
it still doesn’t protect against eavesdropping[15].

9

1. The Domain Name System and security

Cache poisoning

Through response forgery and other means, it is possible to poison the cache
of a resolver. Resolver saves already resolved records in cache for a limited
amount of time. If someone manages to insert false data into cache without
resolver actually resolving this name, and resolver then would server it’s users
false data.

In DNS terms, “in-bailiwick” data means “Data for which the server is ei-
ther authoritative, or else authoritative for an ancestor of the owner name”[16].
Example from relevant RFC: “the server for the parent zone example.com
might reply with glue records for ns.child.example.com. Because the
child.example.com zone is a descendant of the example.com zone, the glue
records are in-bailiwick”[16]. “Bailiwick rule” states, that resolver would not
accept responses from authoritative nameserver for, for example, example.com
that contain google.com. Without it, rogue server could insert in Additional
section of a response for, say, seznam.cz address of csas.cz, which points at
a attacker-controlled host.

Cache poisoning could happen in the following way:

1. Attacker issues a request for www.example.com.

2. Resolver, if it doesn’t already have cached entry for www.example.com,
sends requests to authoritative nameservers down the hierarchy.

3. Attacker at the same time issues responses for www.example.com with
forged transaction ID.

4. Now it’s a time race: which response will reach resolver first.

This severely limits possibility of forgery, since an attacker has one chance
a day (a common Time to Live for a record).

Dan Kaminsky in 2008 exposed a bug (commonly known as “Kaminsky
bug”) which is capable to overcome the “bailiwick rule”[17]. The exploit works
very similar to what was discussed earlier, but now attacker issues requests to
some nonexistent sister domain like sdfh34b.example.com. Since this domain
is almost certainly not in the cache of the resolver, it will initiate requests. At-
tacker requests more of those nonexistent domains thus elevating their chances
of hitting the target.

Interesting cache poisoning technique is mentioned in RFC 3833, called
“name chaining”, where the answer includes domain name (CNAME and NS for
example). Such name could lead to an attacker-controlled domain[18].

Another possible way to poison the cache of a victim, is targeting specific
workstations. It could be done by malware so it can redirect victim to attacker-
controlled sites, as well as a mean of protection, redirecting security related
websites to localhost[13]. Or, if the attacker is on the same network as a
victim, it could eavesdrop on the requests and serve malicious responses.

10

1.3. Securing DNS

1.3 Securing DNS

With DNS being such a critical infrastructure, there is a lot of effort put to
secure it. Every solution aims at some part of the system, each has it’s strong
points as well as weak ones. Figure 1.4 overviews how solutions apply to the
parts of a system.

Master

Slave(s)

Zone files

Network
(remote)

Dynamic updates

Transfers

Queries

TSIG/SIG(0)

TSIG/SIG(0)
Administrative

security

DoH/DoT

DNSSEC

DoH/DoT
DNSSEC

Primary
Master

admin

Resolver

Users

Figure 1.4: Overview of security solutions in DNS. Image based on [1, p. 60],
with my extension of users and showing exactly where does each solution
belong.

1.3.1 Administrative security

Going from the level closest to the source of zone data to the farthest, complex-
ity grows. The easiest one to solve is administrative security: Ron Aitchison
in [1] suggests proper software updates, detailed attention to ACL and other
measures.

1.3.2 Zone transfers and dynamic updates

Defined in RFC 2845, mechanism of Transaction Signature (TSIG) allows
authentication of messages between two DNS entities. Message Authentication
code is derived from a shared secret, which in turn is set through out of
band distribution, or it could be established automatically through TKEY RR
and Diffie-Hellman key exchange. Similar technology is SIG(0), which uses
asymmetric cryptography to sign their messages. SIG(0) is more scalable
because it is easier to share public keys, but TSIG is considered to be less

11

1. The Domain Name System and security

expensive in the terms of server load[19]. TSIG is designed to be used for
dynamic updates, and it’s design makes it harder to use in the context of
transactions between nameserver and resolvers (resolver has to be trusted).
SIG(0) doesn’t particularly solve this either, as resolver has to trust the public
key of a nameserver through some other means than DNS.

1.3.3 Confidentiality

Plain DNS protocol transfers data in the plain text, so anyone could eavesdrop
on the traffic. This raises some privacy concerns, as stated in RFC 7626. There
are several proposals, that solve this problem.

Two such proposals are “DNS over TLS” defined in RFC 7858 and “DNS
over HTTPS” from RFC 8484. Those are similar in a sense, that both use TLS
as a carrier protocol, but differ in the details. DNS over TLS (called “DoT” for
short) is essentially original DNS, which uses TLS connections over TCP. It
proposes usage of a separate port for communication[20]. DNS over HTTPS
(DoH) uses HTTP servers and clients for communication, which results in
using same port as HTTPS and “allowing web applications to access DNS
information via existing browser APIs in a safe way consistent with Cross
Origin Resource Sharing (CORS)”[21]. Some major companies are providing
public DNS resolvers that support one or both those solutions[22][23].

Another noteworthy attempt at improving confidentiality (and availabil-
ity with integrity, according to the project’s page[24]) is DNSCurve. To put
it simply, DNSCurve is TLS for DNS, that uses elliptic curve based cryp-
tography and tunnels encrypted data over TXT records. Key are stored in
NS records using base32 encoding, and session key is derived using elliptic
curve Diffie-Hellman key agreement scheme. Similar protocol, DNSCrypt, is
essentially DNSCurve, with minor differences, including parties, which com-
municate through those protocols: DNSCurve for communication between
authoritative servers and resolvers, DNSCrypt is between resolvers and end
users[25].

1.3.4 Zone integrity

This work’s focus is on the last – “Zone integrity” – level of security issues
involving DNS. I will only mention, that security of dynamic updates and
zone transfers, also administrative security, is covered by [1] and [13] in more
length.

Major effort in securing the nameserver-resolver communication is DNSSEC.
Next section is paying more attention to it, reader will also find there com-
parison of DNSSEC and other technologies, that are partially aiming in the
same direction.

12

1.4. DNSSEC

1.4 DNSSEC

According to RFC 4033, aim of DNSSEC is to add data origin authentication
and data integrity to the DNS, including mechanisms for authenticated denial
of existence[26]. It does not aim at confidentiality of the data, which means
that DNS queries and responses are still sent in clear.

1.4.1 Main principles

DNSSEC uses asymmetric cryptography to authenticate data origin. DNSSEC
establishes chain of trust in DNS tree, and, in a way, is similar to Public Key
Infrastructure. The difference is that in PKI signature, created by Certificate
Authority is part of a certificate, and in DNSSEC infrastructure, signature of
a zone’s public key is located at the site of the “authority” (in the context
of DNS, at the parent zone). As I see it, this is done for consistency sake,
as public keys are part of DNS infrastructure itself, thus they have to be
distributed through DNS protocol. Every zone signs it’s own data, and having
a RR that is signed by some other entity breaks this consistency. As of 2010,
root zone is signed[27].

Zone is considered signed when it contains signed RRsets. RRset is a set
of RRs with the same type. RRset is signed by private key of a zone, and
at request, is sent along with a signature and a public key. In the iterative
nature of DNS requests, resolver already has information from parent about
this public key and can validate it against those data. With public key of a
zone that is verified to be legit, resolver could proceed to verify the RRset
against signature.

1.4.2 Keys

Authenticity of a key is ensured by the data about this key, stored at the
parental zone’s site. Through query of parental nameserver (which should be
done anyway) resolver could pair this data with a key in the child zone and
by this authenticate the child. Original RFCs about DNSSEC do not define
a way how data about a key is transferred to parent. It means it should be
done out of band, which makes key rollover quite complex procedure (more
on this later in section1.5).

To partially address this problem, the protocol introduces two set of keys,
though they could be the same:

• Zone Signing Key (ZSK) is used to sign RRsets

• Key Signing Key (KSK) is key that signs other keys, in this context
it signs ZSK.

Using this division, only KSK has to be mentioned at the parent, and ZSKs
are still secure to use. With ZSK signed by KSK administrator of a zone could

13

1. The Domain Name System and security

rollover ZSKs more often, increasing the security of signing process. Typically
ZSK and KSK have different operational parameters such as validity time. As
KSK is another RR in the zone, ZSK also signs KSK.

1.4.3 Resource Records

DNSSEC introduces new RRs, which are described in RFC 4034:

• DNSKEY: public key, which is used as KSK or ZSK; table 1.2 shows struc-
ture of DNSKEY RR.

• RRSIG RR signature: digital signature of RRset; it must have the same
class as RRset that it signs, it also has validity interval

• NSEC Next Secure: points to the next record in the zone; ensures
authenticated denial of existence

• DS Delegation Signer: hash of DNSKEY RR; unlike other RRs, resides
at the parental zone; table 1.3 shows structure of DS RR[28]

Field name Description
Flags 16 bit field that defines how the key is used, does this key

correspond to DS record at parent’s site, is this ZSK or any
other type of key.

Protocol Holds value 3, otherwise key is invalid.
Algorithm Identifies cryptographic algorithm of a public key,

determines the format of Public Key field
Public Key The public key material.

Table 1.2: Description of DNSKEY RR[28].

Field name Description
Key Tag Special value computed from DNSKEY it refers to.
Algorithm Refers to the algorithm of DNSKEY it refers to.
Digest Type Type of digest that is used to compute hash value of

DNSKEY
Digest Digest computed from DNSKEY owner name and DNSKEY

data itself

Table 1.3: Description of DS RR[28].

The chain of trust is alternating sequence of DNSKEY and DS records. With
DS record signed by delegating site, signature vouches for authenticity of
DNSKEY record at delegated site, allowing this DNSKEY to be used in signing.

14

1.4. DNSSEC

Lower links in the chain are then trusted through this cumulative process.
Figure 1.5 shows relationship between DS and DNSKEY records and how the
chain of trust is established through this. Useful tool for visualisation, that
uses real data about domains is DNSViz, available at https://dnsviz.net.

CZ.

CVUT.CZ.
hash

hash
FIT.CVUT.CZ.

hash

SUZ.CVUT.CZ.

hash

DNSKEY:
cvut.cz.

DS:
fit.cvut.cz.

DS:
suz.cvut.cz.

DNSKEY:
fit.cvut.cz.

DNSKEY:
suz.cvut.cz.

DNSKEY:
cz.

DS:
cvut.cz.

Figure 1.5: Example of a tree structure of DNS in the context of DNSSEC
and relationships between DS and DNSKEY records.

In classic DNSSEC, communication about new DNSKEY should be done
out of band. Most of the time, it is done by manually editing some settings
through domain name administration interface at Registrar’s site.

1.4.4 DNSSEC evaluation

RFC 3833 takes a work to list issues, that are solved, at least partially, by
DNSSEC. Discussed security problems, such as name chaining, packet forgery
and transaction ID guessing, are solved by signing the records. But this
document also raises concern about some possible weaknesses of DNSSEC[18].

Security issues of DNS Security Extensions

DNSSEC bloats response size, thus DNSSEC-aware servers are a prime target
for amplification. This is not problem of DNSSEC, but an inherited one from
DNS itself.

15

https://dnsviz.net

1. The Domain Name System and security

DNS is essentially public service, but there are necessary distinctions to
be made: first, requester has to know exactly what name it needs to re-
solve (i.e. nameserver doesn’t publish a list of available names), second, even
though domain name is public, the fact that somebody visits it shouldn’t be
(privacy)[29]. Second concern is explicitly out of scope of DNSSEC.

With NSEC it is possible to enumerate entire zone. There are solutions
(NSEC3 and NSEC5) that through hashing try to eliminate this leakage.

Issue that is relevant to DNSSEC is Shambles attack: in short, it is a
chosen-prefix collision on SHA-1 hash function. SHA-1 is long known to be an
insecure hash function and is deprecated, but is still used in DNSSEC. Article
at APNIC describes hypothetical attack scenario, that utilizes the fact that
some records could still be signed with algorithm that uses SHA-1[30].

Criticism

DNSSEC initially faced a lot of criticism, mainly because of a complexity it
adds. Offline key rollover (manual key generation and zone update) is complex
and it is an obstacle on a way to adopting DNSSEC. Now, one could configure
BIND[31] and Knot DNS[32] to automate keyset rollovers. Key rollover at
root is even harder: KSK was introduced into root in 2010 and first rollover
happened in 2018, and it was a complex procedure[33].

Another criticism that DNSSEC faces is that it increases traffic. NIST
mentions, that practical size for DNSKEY is 1500 bytes or less[34, p. 51]. Pre-
vious subsection mentioned increased response size due to inclusion of signa-
tures, which makes DNSSEC-aware server a perfect target for amplification.
Even for legitimate uses, to fully validate a domain, two additional queries
has to be done for each initial query: DS and DNSKEY records. This problem
is addressed by RFC 6605, which introduces Elliptic Curve Digital Signature
Algorithm to DNSSEC[35]. According to NIST, 256 bit key of ECC is com-
parable in complexity to 3072 key of, for example, RSA[36, p. 54-55], which
allows to drastically reduce size of responses and keep the security.

Previously I described domain name resolution process, which is done by
two parties: lightweight stub resolver, that requests resolution, and recursive
resolver, that performs majority of the work. It might happen, that recursive
resolver is not DNSSEC-aware, which means that stub resolver has to fallback
to performing recursive resolution itself in order to validate the domain. This
might be problematic, since stub resolver could reside at weak hardware, which
in turn could incapacitate the operation of this hardware[37].

DNSSEC is evolving: it started in 1993[18] and since then more than 50
RFCs relate to it, updating and obsoleting older ones. Some issues are already
addressed, some are yet to be solved, and work is still in progress 1.

1visit https://datatracker.ietf.org/doc/stats/newrevisiondocevent?name=
dnssec&sort=&rfcs=on&activedrafts=on&by=group&group= to see that work on DNSSEC
is pretty much consistent effort from community

16

https://datatracker.ietf.org/doc/stats/newrevisiondocevent?name=dnssec&sort=&rfcs=on&activedrafts=on&by=group&group=
https://datatracker.ietf.org/doc/stats/newrevisiondocevent?name=dnssec&sort=&rfcs=on&activedrafts=on&by=group&group=

1.4. DNSSEC

1.4.5 Comparison of DNSSEC and other solutions

Obvious question, that arises when reader encounter DNSSEC is: if it’s that
hard to deploy, why don’t we use something else? Some of those solutions
discussed earlier, provide confidentiality – does it substitute for DNSSEC?
Here I will compare it to other solutions that I noticed are quite often com-
pared to DNSSEC, namely DNS over TLS, DNS over HTTPS and DNSCurve.
There is no need to mention one obvious difference between those solutions
and DNSSEC (confidentiality thus better privacy), so I do not have to mention
it multiple times.

DNS over TLS/HTTPS

For the purpose of this comparison, DNS over TLS and DNS over HTTPS
are very similar, so I will omit DoH and mention only DoT, but reader could
apply the same reasoning to DoH.

Mainly, DNSSEC is transitive, which means that any user could query
for public keys and signatures for RRsets and verify the correctness of name
resolution. Contrary to that, DoH provides only end-to-end protection: user
might query the resolver over TLS and be sure, that data between them are
protected both from confidentiality and integrity standpoint, but user can not
be certain, that resolver and authoritative nameservers communicate safely.
Analogous issue is if resolver betrays the user: without DNSSEC user cannot
really verify authenticity of the data[38].

Another significant difference is that DNS uses primarily UDP (it also can
use TCP), and TLS uses TCP. In a context of DNS, establishing a connection,
especially secure one is quite an overhead.

DNS over HTTPS issues

Interesting aspects, where difference between DoT and DoH comes into play
(namely, using the same port as HTTPS and channeling data over it) is the
fact, that DoH is much more criticized as a security hazard. Unlike DoT, DoH
passes data at the same port as HTTPS traffic, which might make impression
that DNS traffic is hidden in HTTPS traffic. Author at APNIC argues, that
much of metadata, including Server Name Indication, is leaked through TLS,
which renders DNS encryption pointless[39].

Another side of this hiding is that it is now harder to blocklist pages which
might seem like a good thing for privacy, but it in fact impairs the ability of
system administrator to block malicious (or otherwise unwanted) traffic[40].
DoH might also act as a covert channel[41].

17

1. The Domain Name System and security

DNSCurve

One crucial difference between DNSCurve and DNSSEC is that DNSCurve
does not introduce any new Resource Records, as it uses NS for public key
posting and TXT for encrypted communication. Another one is that DNSCurve
uses symmetric cryptography and connection is established through key agree-
ment.

DNSCurve is criticized[42][43], mainly because author positions it as a
direct competitor to DNSSEC[44]. Especially now some claims are obsolete,
but even at the time of creation some claims were dated (for example, that
DNSSEC requires offline signing[42].

Conclusion on comparison

All those solutions do not really provide authentication of data source. As
TLS, for example, is essentially out-of-band solution for security, it might so
happen that attacker obtained rogue certificate (legitimate certificate issued
by trusted certificate authority, but that has been compromised). Moreover,
it is possible to issue certificates with invalid Common Name[45], specifically,
with locally scoped one, which allows to impersonate organization, for which
certificate was issued in the first place. Here complexity of inserting DS record
at parent might be actually a benefit. This doesn’t mean that lack of confi-
dentiality in DNS is not a valid concern, and all of those solutions are com-
plementary to DNSSEC. At this moment, there is no viable alternative to
DNSSEC.

1.4.6 DNS-based Authentication of Named Entities

To address some issues stemming from PKI, RFC 6698 proposed solution
“DNS-based Authentication of Named Entities”, DANE for short[46]. It uti-
lizes the fact, that DNSSEC signs RRsets, thus proving, that DNS operator
is responsible for the nameserver. Majority of connections start with DNS
lookup of an IP associated with a name, so the idea of DANE is to among
with signed IP address of a domain, it is possible to pass signed information
about server’s certificate. The reason is that it is logical to assume, that if
DNS operator is authorized to give information about a zone, they might as
well make authoritative binding between a domain name and certificate that
host at that domain uses. Essentially, the job of PKI is placed at DNS chain
of trust from root to leaves, eliminating large net of Certificate Authorities.

Even though the proposal might be promising, for example in securing mail
services[47], it faces a lot of obstacles. One such obstacle is that, according
to [48], many TLDs use 1024 bit RSA as ZSK, possibly degrading security in
comparison to current certificate practices.

18

1.5. Automating key update at Parent’s site

1.5 Automating key update at Parent’s site

As mentioned earlier, DNSSEC key rollover and associated with it manual
update is a problematic part of a protocol. This makes for a weak point of
DNSSEC: any manual interaction is a potential point of failure, or simply an
annoyance so Operator will not go through steps needed to propagate key to
Parent. DNS is often though of as “set-and-forget” type of infrastructure[13,
p. 25] thus any regular (and key rollover should be regular) manual activity
associated with it could lead to a lot of pain and through a lack of experienced
personnel (which happens with “set-and-forget” technology) – to errors.

To address this, RFC 7344 introduces mechanism, how parent could au-
tomatically update DS records through DNS itself[49]. The main idea is, that
parent could update DS record on the basis of what is posted at child site.

There are three reasons, why child might want to change DS record at
parent:

• Child wants to roll over already present keys

• Child wants to enroll into DNSSEC as it doesn’t have yet any keys: it
wants to introduce a new DS RR

• Child wants to turn off DNSSEC validation: it wants to delete DS record

1.5.1 Resource Records

For the purpose of indication that the child wishes to update DS record at
parental zone, new RRs were introduced:

• CDNSKEY Child DNSKEY

• CDS Child DS

Both are essentially the same as their original counterparts, the only dif-
ference is names. It’s parent’s responsibility to decide, which one of those
records will be monitored, parent might as well check both of those.

Difference between DNSKEY and CDNSKEY is that RFC 8087 defines special
algorithm value (in a sense of DNSKEY RR field), that is used to delete DS
record at parent’s site[50]. This algorithm value (zero) is still reserved for
DNSKEY. For the purpose of deletion it is possible to use CDS too.

1.5.2 Detection of new keys by parent

Child posted new keys as CDS/CDNSKEY records. The RFC 7344 proposes two
methods of key detection at parent’s site:

19

1. The Domain Name System and security

• Push: Child through mechanisms of domain administration at some
third party (say, Registrar) notifies parent that new keys are present.
Parent then fetches those keys and updates it’s zone.

• Poll: Parent runs periodic checks child if there are new CDS/CDNSKEY.

“Push” strategy minimizes human error by fetching data directly though
DNS, yet it doesn’t utilize full automation protection that this mechanism of-
fers. The intent of updating keys is already expressed by posting CDS/CDNSKEY
in the first place. On the other hand, “Poll” strategy is fully automated, but
it creates more DNS traffic as periodic checks has to be run.

1.5.3 Enable DNSSEC through CDS/CDNSKEY

One major problem of “Poll” approach is that when DNSSEC is not enabled
yet by the domain, it might be difficult to check, that CDS/CDNSKEY are au-
thentic. RFC 8078 suggests multiple ways, how child could enable DNSSEC
through CDS/CDNSKEY RRs, which are described in the following text[50]. One
must note that monitoring of CDS/CDNSKEY records should happen at all name-
servers of a child, it means that those records should be consistent across
nameservers. Parent should make clear what method of acceptance it is us-
ing, as well as which RR is relevant for it.

Accept Policy via Authenticated Channel

Essentially, this is a “Push” strategy, where child notifies parent by some
authenticated out of band channel, that CDS/CDNSKEY exist.

Accept with Extra Checks

This policy is an expansion of the previous one, which addition of extra checks
performed by parent. RFC 8078 suggests checks such as if there were no other
changes in registration in the last few days, confirmation mails, etc.

Accept after Delay

This strategy could be a variation on “Extra checks” policy, as well as a fully
automated procedure. Parent monitors CDS/CDNSKEY RRsets at child’s name-
servers over some period of time to make sure nothing changes. Monitoring
could possibly happen from multiple vantage points in the network to mini-
mize threat of interception. After this period expires and CDS/CDNSKEY RRsets
were consistent through it, parent could update it’s DS record.

Setting of this acceptance period and frequency of requests is up to the
parent. From security standpoint, the longer domain is in the check process,
then parent could be more confident about child’s intent, but not only this
results in child’s discontent with the length of the process, it also stops child’s

20

1.5. Automating key update at Parent’s site

nameservers from securely serving it’s data. Another aspect is that network is
never faultless, and longer process might result in more false negatives due to
network failures, or some other accidents. Frequency is important too, as too
frequent requests could overload nameservers even though they are usually
designed to endure heavy loads.

Accept with Challenge

In this scenario, parent requests child to insert in it’s zone some specific record,
that will prove the ability of a child to control the nameservers. This one could
not be automated fully, as parent has to communicate securely what record
should it be. It add another record which parent has to monitor, and parent
can apply “Accept after delay” policy to this record as well.

Accept from Inception

When parent adds new child domain, which contains CDS/CDNSKEY, it could
add relevant DS record along with NS. This has the benefit that child domain
never enters insecure state in the first place. This, obviously, could not be
applied to already existing domains.

1.5.4 Existing solutions

To my knowledge, this approach is not widely adopted by TLDs, perhaps
because those RFCs are relatively new. Besides .CZ approach, which will be
discussed later in section 1.6, the only other ccTLDs that utilize CDS/CDNSKEY
I found were a TLD for .CH and .LI (Switzerland and Liechtenstein respec-
tively), which are operated by SWITCH. As described in their guidelines,
SWITCH monitors CDS record at child’s nameservers for the period of three
days[51]. They also provide method of checking at which stage of monitor-
ing domain name currently is[52]. Their solution is proprietary, so I cannot
discuss here any implementational details.

Several DNS managers offer CDS/CDNSKEY support, like DNSimple[53] and
Cloudflare[54]. It is important to remind reader, that DNS managers are not
registrars and do not have any direct contact with Registry. This means, that
unless TLD, under which domain is registered, supports CDS/CDNSKEY, those
records do not serve any particular purpose, only waiting when will the time
come.

Monitors

It might still be useful to automatically manage subdomains, even if TLD
doesn’t support CDS/CDNSKEY. For example, domain contains a lot of sub-
domains, which in turn manage a number of subdomains themselves (e.g.
cvut.cz).

21

1. The Domain Name System and security

I came into contact with only a couple of CDS/CDNSKEY monitors. One of
those is “CDNSKEY AutoDNS”, which works with another domain management
system AutoDNS (open source at https://github.com/InterNetX/cdnskey-
autodns). It is paired to AutoDNS account, and updates DS record through
it’s API. This tool checks only CDNSKEY and computes DS itself.

Second tool I encountered is “CDS/CDNSKEY Monitoring Prototype” made
by former CZ.NIC employee as an entry to a hackathon (open source at https:
//github.com/fcelda/cds-monitor). Currently it supports CDS record. It
fetches CDS, checks if parent zone contains same key, and if not, updates it.
This tool is connected directly to server software, and update happens through
Dynamic DNS mechanism.

1.6 CZ.NIC’s FRED-AKM

TLD .CZ implements CDNSKEY monitoring of domains in it’s zone, which is
run every day. If domain is not yet secured by DNSSEC, “Accept after De-
lay” strategy is applied, and if monitor had found consistent and CDNSKEY
records across all of the domain’s nameservers, domain becomes candidate for
DNSSEC and technical contact for this domain is informed. Now monitor for
seven consecutive days checks whether those keys are in exactly the same state
every time monitor scans the domain 2. If so, DS record at the .CZ zone is
updated and notification of technical contacts is issued. If during this period
key changes it’s state, then period is considered broken and starts all over
again, and technical contact is notified.

Tool, that performs it is called “FRED-AKM” and is actually part of a
bigger system called FRED. Following text is based on FRED documenta-
tion which could be found at https://fred.nic.cz/documentation/html/
index.html.

1.6.1 FRED

FRED (Free Registry for ENUM and Domains) the domain name registry
software developed by CZ.NIC as an open-source solution. It is structured
around the Registry-Registrar-Registrant model, allows automation of zone
file generation, notifications of contacts and a lot of other features. It is quite
complicated piece of software with multiple components.

2 I use words “monitoring” and “scan” interchangeably with the meaning “querying for
CDS/CDNSKEY records in order to analyze them for the possible update”. Relevant RFCs
prefer word “monitoring”, “scan” is an internal term for FRED-AKM.

22

https://github.com/InterNetX/cdnskey-autodns
https://github.com/InterNetX/cdnskey-autodns
https://github.com/fcelda/cds-monitor
https://github.com/fcelda/cds-monitor
https://fred.nic.cz/documentation/html/index.html
https://fred.nic.cz/documentation/html/index.html

1.6. CZ.NIC’s FRED-AKM

In the top-level view of the system, there are four classes of acting com-
ponents:

• User agents communicate with a system on behalf of the user and are
not part of FRED

• Clients perform actual work initiated by user through user agent, or
started as registry jobs

• Servers manipulate with database on the instructions from clients

• Database which holds information related to every feature.

Classes, that are part of FRED, contain components corresponding to each
feature, such as registrar interfaces, generation of a zone and so on 3. Basically,
every functionality is represented by group of programs: one is “Server” part,
other is “Client” part.

1.6.2 FRED-AKM

FRED-AKM stands for “FRED Automated Keyset Management” and it is a
program, that is designed to monitor CDNSKEY RR in the domains, registered
under TLD. It is divided into fred-akmd, CORBA server daemon, that com-
municates with database, fred-akm, command-line tool that initiates scans
and evaluates scan results and cdnskey-scanner, utility that performs scan
and evaluates state of a key (it’s immediate state: if the key is present, or was
scanner even able to connect to nameserver and so on). FRED-AKM serves
multiple functions:

• Performs a scan of given domains on all of their nameservers

• Evaluates results of a scan: was CDNSKEY RR present and if so, for
how long? Is this record signed and if not, was this presence consistent
throughout the acceptance period?

• Updates DS record at parent zone

• Notifies contacts about the state of a scan: when was acceptance period
initiated, was it disrupted by some error, and about DS record update.

In the following text I will describe fred-akm and cdnskey-scanner in
more length. I will not talk about fred-akmd daemon, as it is not as relevant
to this work.

3Detailed description of FRED is out of scope of this work, and for more information on
it visit https://fred.nic.cz/documentation/html/

23

https://fred.nic.cz/documentation/html/

1. The Domain Name System and security

cdnskey-scanner

Through standard tools, such as dig it is possible to get CDNSKEY record
of a domain. The problem is, that for the large number of domains and
nameservers such as .CZ TLD, this solution is not effective enough. Motivation
behind cdnskey-scanner is more efficient scan of a large number of domains.

This tool as an input takes list of nameservers and corresponding domains,
and outputs status of CDNSKEY record. To prevent flooding of DNS infrastruc-
ture, cdnskey-scanner implements simple scheduler, that, given a time limit
for running, spreads requests universally across this period. It is important,
as many domain owners delegate management of a domain to a third party,
so small number of nameservers hold authoritative data for a lot of domains.

cdnskey-scanner accepts two explicitly defined types of domains: secure
(that already have DS record at parent’s site) and insecure. Output has fol-
lowing types of results:

• insecure: at particular nameserver for insecure domain there was found
CDNSKEY included

• insecure-empty: at particular nameserver for insecure domain CDNSKEY
record was not found

• secure: for secured domain exists signed CDNSKEY included

• secure-empty: for secured domain no CDNSKEY was found

• untrustworthy: for secured domain it was not possible to verify exis-
tence or non-existence of CDNSKEY record

• unknown: tool was unable to acquire any information about secured
domain.

• unresolved: tool was unable to acquire any information about insecure
domain from particular nameserver

• unresolved-ip: tool was unable to get IP for nameserver.

fred-akm

fred-akm is a program, that performs most of the work in automated keyset
management. It is a CLI-tool, that runs a command and then exits. It has it’s
own operational database, where it stores intermediate scan results throughout
acceptance period (in the context of .CZ zone, it is seven days).

24

1.6. CZ.NIC’s FRED-AKM

There are five different commands:

• load loads list of domains, that need to be scanned, from database. On
practice, it loads all domains in the zone.

• scan initiates scan through running cdnskey-scanner as a subprocess,
giving it all domains inserted by “load” operation either in it’s entirety,
or in smaller batches

• notify takes last scan as current state of a domain, and, depending on
the latest notification regarding this domain, issues email to technical
contact

• update performs necessary evaluations about status of the key, and
updates main FRED database through remote procedure call at server
fred-akmd

• clean cleans scan results that are older than acceptance period.

Sequence of those commands is run periodically once a day.
This tool implements “Accept after Delay” strategy, but performs scanning

only from one location. The problem of this approach, is that someone in the
network could subvert responses from insecure domains. The aim of this
project is to correct this flaw.

Summary

DNS is a system, that translates domain names to respective IP addresses, it
also able to attach to those names other information, such as mail server. DNS
is hierarchical, with root servers serving addresses of nameservers of TLDs,
and TLDs serve names to second level domains and so on. One common way
to manage a TLD is Registry-Registrar-Registrant model, where Registry is
responsible for administering TLD, setting policies for this TLD and so on,
Registrar is an organization, to which Registry delegated the authority of do-
main registration, and Registrant, owner of a domain name. It is complicated
system, with lots of caveats, so there are many attack vectors against DNS.

Many RFCs defined security solutions for DNS, aiming at different sit-
uations and needs. One such solution is DNSSEC, which introduces data
origin authentication and authenticated denial of existence. It solves security
problems such as packet interception and cache poisoning. More than 90% of
TLDs are signed and have trust anchors at the root zone(DS records)[55]. Yet,
adoption of DNSSEC is still low and slow: major role in this play registrars,
even ones that support DNSSEC may not be able to update DS records at
parent’s site[56].

25

1. The Domain Name System and security

To the rescue comes new proposal, that will allow update of records at
parent site in semi- or fully-automated way. CDS/CDNSKEY records signal to
the parent, that child wishes to update trust anchor at parent. It is quite
new, and is not yet widely adopted, only a handful of TLDs perform such
zone scans in order to retrieve those records. There are a couple of software
projects, that implement this feature, but most of them are not applicable in
the TLD scale.

FRED-AKM is a tool, that provides such functionality as a part of big-
ger registry administration system, that follows “Accept after Delay” strategy
from RFC 8078. FRED-AKM is coupled closely with that system, so in order
to benefit from it, registry should use it in it’s entirety. It lacks some recom-
mended features, such as multiple scan points, and the point of this project is
to add those features.

26

Chapter 2
Design

This chapter outlines major ideas and motivations behind this project. It also
describes design and architecture of the program.

The project is aiming to provide a tool for CDNSKEY scan of a zone from
multiple locations; thus the name of a project AKM Multi Scanner. (from the
original, and, in many cases, parent project FRED-AKM by CZ.NIC). The
main goal is securing domains that are not yet DNSSEC-enabled by scan-
ning it’s CDNSKEY RRs from multiple locations, thus minimizing a chance for
spoofed packets. One of the major ideas of this project is to have independent
system for scanning and evaluation process. “Independent” in a sense that
it would not be a part of any particular registry administration system, also
flexible in a way user can locate scanning vantage points.

As mentioned, FRED-AKM is a project from which this work has risen.
Some of code and ideas were taken from it, as it’s not necessary to invent a
bike when already working solutions might be taken and improved on. Those
improvements include:

• Addition of multiple vantage points for more secure enrollment process

• Decoupling from registry administration system FRED

• Decluttering from unrelated tasks such as contact notification in a spirit
of UNIX philosophy

• Shift from “run and get result” to continuous daemon/server

• Migrate from SQLite to a better database solution

27

2. Design

2.1 Requirements

The system designed should comply with the following functional require-
ments:

• Import list of domains for a scan

• Scan nameservers corresponding to those domains for CDNSKEY RRs from
multiple vantage points

• Evaluate results of a scan

• Export results of a scan

• Provide system health checks.

System should also meet the following non-functional requirements:

• Be configurable to use any number of vantage points

• Use more suitable database solution for the amount of data scanner has
to manipulate

• Transport scan requests securely to avoid situation similar to zone-
walking, as domains that require scan from multiple points are the most
vulnerable ones.

2.2 Architecture

System uses Master-Worker pattern: Master provides interface to the system,
administers Workers and performs evaluations; Worker is the one who actually
scans domains, but does nothing else. The system is distributed; that is,
conceptually Master and Workers could be located in the different networks.

Internet

Registry Master
Workers

AKM Multi Scanner

Figure 2.1: General architecture of AKM Multi Scanner.

28

2.3. Master’s operation

The following text uses terms related to the scan operation listed and
explained below:

• Scan job is atomic structure that contains information needed to per-
form scan of one domain at one nameserver

• Scan queue scan jobs that are prepared for a scan iteration

• Scan task is collection of scan jobs, organised either by domain or by
nameserver

– Domain scan task reflects the fact that domains usually have more
than one nameserver;

– Nameserver scan task refers to the way domain information is
stored; nameserver might be responsible for containing more than
one domain.

• Scan request is one or more nameserver scan tasks, sent to Workers

• Scan result is paired to scan job and describes status of a scan: if
CDNSKEY is present or not, was scanner even able to connect and so on

• Domain status is evaluation of latest scan results regarding particular
domain across nameservers, time and workers for insecure domains, and
simply latest scan result for secure domains.

2.3 Master’s operation

2.3.1 Interface

Procedures, that are formally provided by Master, are:

• import of domains for a scan

• export of scan results

• diagnostics: request health of database or health of Workers.

One might notice the lack of a scan itself. While Master initiates scan pro-
cess, it doesn’t scan itself and outsources this work to Workers. The scanner
is meant to run as a daemon, making a scan everyday at fixed time. Job of
a registry is to provide domains that are planned for a scan for each planned
iteration.

29

2. Design

Import of domains for a scan

At import scan queue is created, it is assumed that each scan queue is prepared
for one scan iteration, for example if scan should happen once a day then each
queue corresponds to one day. Scan queue is then stored in a form of collection
of scan jobs.

The reason for creating new scan queue each time is that domain list
changes everyday: new domains are created, some are removed and others
might be re-registered (thus making it new domain with the same name).
Then interface for import is a collection of domain scan tasks.

Registry

Insert domains
into scanner

:collection
of domains

to scan

Master

scan queue
of domains into

Insert list

Figure 2.2: Process of importing domains for a scan.

Export scan results

It is unnecessary for a Master to perform extra job by evaluating results with-
out request for them, so evaluation would happen at the moment Registry
requests results. It means, that older (irrelevant) scan results would be wiped
no matter what, and Master will respond only with current results.

30

2.3. Master’s operation

Registry

Request
data for update

Receive collection
od data for update

Master

Retrieve scan results
previously received

from Workers

Evaluate if domain
status based on scan

result complies
for update

for update
:list of data

results
:list of scan

Figure 2.3: Process of exporting scan results from Master.

Diagnostics

There are two types of diagnostic commands:

• Worker health check: are all of the Workers still up and running?

• Database health check: is connection to the database still up?

Diagnostic commands are straightforward: upon receiving a diagnostic
request from Registry, Master performs necessary checks and returns result.
For database check it just checks if connection to database is still possible.
For Worker heath check Master issues “ping” messages to Workers and after
receiving “pong” (or not receiving anything for some time) Master replies to
Registry with results.

31

2. Design

2.3.2 Evaluation

For a secure domain, it’s enough to resolve query through a normal means of
DNS, i.e. request resolution from trusted DNSSEC-aware recursive resolver,
because CDNSKEY records would be signed just as any other record in this
zone. So evaluation process for those domains is just looking at the result of
a request if it contains correctly signed CDNSKEY record.

For insecure domains it is much more complicated. First, every nameserver
for this domain needs to be monitored in order to avoid introducing new
key from attacker-controlled nameserver. If the attacker took advantage of a
nameserver, it is not probable that they took advantage of all of them. Second,
it might so happen that attacker is capable of issuing forged responses directly
to the scanner (perhaps being in the same network). But it is hard to keep
it up for a long time without being noticed, and for this reason acceptance
period is implemented. Both of those measures are implemented in FRED-
AKM. To harden security even more, for the situations where an attacker was
able to forge responses for sufficient amount of time, was introduced scan from
multiple locations.

Essentially, for insecure domain all responses from every nameserver, every
Worker for enough amount of time should be the same so new keys could be
introduced into the parent zone. It is possible to reduce rigidness of this
system by utilising the idea of “quorum”. With quorum – minimal number of
valid responses from Workers – system could be more flexible in the context
of network errors. Consider a situation when one Worker was out because of
server maintenance, and for this reason without quorum every scan result in
iteration for this day is now invalid, breaking the acceptance period.

2.3.3 Scanning process

Scanning process starts with retrieving previously stored scan queue and trans-
forming it into two collections of nameserver scan tasks, one for domains that
are not yet secured by DNSSEC, and the other for domains that are secured.
This is done, because those groups need to be processed differently: domains
that are secured do not need to be scanned from multiple locations multiple
times. CDNSKEY records are already secured by a present key. This decreases
complexity and load on nameservers. Insecure domains are those that need
scanning from multiple locations.

Master sends those tasks, and upon receiving results from Workers, it saves
them for future evaluation.

2.4 Worker’s operation

Worker is designed to perform a single operation, that is running a scan, from
any place. In a sense, Worker acts as a RPC server: upon receiving request

32

2.4. Worker’s operation

Master

Store results

:scan task

Initiate
scan iteration

Request Worker
to perform scan

Worker

Perform scan

Send results
to Master

:scan result

Figure 2.4: Process of delegation of domains to Worker and receiving scan
results.

for a scan, worker runs scanner tool and returns results to Master as soon as
they are ready. System allows for a health check on Workers through Master.

Scanner tool is run as a subprocess, allowing user to choose scanning tool
of their liking. AKM Multi Scanner uses scanning tool cdnskey-scanner,
which is available at https://github.com/CZ-NIC/fred-cdnskey-scanner.
Worker uses it’s syntax for input and output parsing, so in order to use some
other tool, wrapper is needed that will mock the I/O of the cdnskey-scanner.

33

https://github.com/CZ-NIC/fred-cdnskey-scanner

2. Design

cdnskey-scanner also schedules scans of domains; generally scanner needs
to space queries in time in a way that will not trigger nameserver’s reaction
to sudden load spike. Strictly speaking, scheduling is not a mandatory func-
tionality of a scanner for the whole system to work, but without it it might
so happen that domain would be longer in enrollment or key change process
than necessary because nameserver would be overloaded and not be able to
provide responses to queries.

2.4.1 Recovery from record retrieval failures

Record retrieval failures could be analyzed by Master or by Worker. In order
to actually recover from those failures, either new query has to be issued
and Master is not conceptually capable of doing so thus it has to be done by
Worker, or if failure occurred in a comparatively small group of Workers, those
faulty results might be just discarded (as in quorum model described earlier).
The advantage of analysis at Master is that Worker gets to keep it’s simplicity,
but at the cost that Master does much more work and also in the case of new
requests, it has to distribute those requests again. The analysis is not really
that complex, so decision was to keep record retrieval failure analysis on the
Worker.

If nameserver for domain is unreachable because of the network failure, or
perhaps due to server maintenance, Worker wouldn’t send results to Master
and it might try querying it again multiple times later until it receives different
result, or until it exhausts all available attempts. It then send whichever result
to Master.

Summary

Responding to a need to perform CDNSKEY monitoring from multiple sites,
newly developed solution AKM Multi Scanner is a distributed application,
that follows Master-Workers pattern. It is based on original solution FRED-
AKM by CZ.NIC, yet it is decoupled from FRED itself. Master acts as an
interface for Registry: it imports domains for a scan, exports scan results, and
performs diagnostics. It is also a command center for Workers, it distributes
tasks for scans and evaluates scan results. Worker is expected to be located
in different networks, and it’s single task is to perform scans on demand of a
Master. Evaluation of scan results happens on demand issued by Registry.

34

Chapter 3
Implementation

This chapter is going to detail implementation of this project, mainly technol-
ogy that was used. The system is written in C++, thus technological solutions
to problems stated by this project should be compatible at least with C. I dis-
cuss current state of the implementation, as well as possibilities for future
improvements.

3.1 Communication

Communication is a core problem that must be solved by a distributed appli-
cation.

The system has two separate communication processes: between Registry
and Master (called in text “external”), and between Master and Workers (“in-
ternal”). There is no direct communication between Registry and Workers
during operation. The communication processes, while being quite similar (in
a sense that both Master for Registry and Worker for Master are akin to RPC
servers), are different in the timing of operations: Master is fast to store tasks
and evaluate results already present, but Worker is much slower as it has to
actually communicate with nameservers, accommodate for network failures
and so on.

On the early stages of design it was important to choose suitable commu-
nication framework for both of those processes. Due to a clear line in the sand
between internal and external communications, it is possible to use different
frameworks. This might have some advantages as well as drawbacks. Using
just one framework might be better, because programmer and administrator
of a system doesn’t have to care about all the different ways those technologies
function and how they have to be maintained. It also might improve consis-
tency of the system. The problem arises when one has to bend one framework
over the case, where some different framework might work better.

Due to slight difference between internal and external communications
discussed earlier, the choice was made to use different frameworks. For ex-

35

3. Implementation

ternal communication gRPC was chosen, for internal AMQP with RabbitMQ
message broker was picked as the most suitable. The reasoning behind these
choices is discussed in more length in the next two subsections, subsection
3.1.2 elaborates further on the decision to use different frameworks.

3.1.1 Registry-Master

Communication between Registry and Master is designed to follow RPC pat-
tern. RPC (or Remote Procedure Call) is model of distributed programming,
where program calls subroutine, which in fact is executed on the remote ma-
chine, just as if it was local subroutine. Here Master provides remote subrou-
tine for Registry: import of domains and export of results.

There is a number of frameworks available that provide such functionality,
and gRPC was chosen for a number of reasons. It is fairly easy to use and
setup. Other systems, such as CORBA, might provide richer set of features at
the expense of increased complexity. Since RPC is all that is needed, gRPC is a
perfect choice. Another reason is that gRPC is becoming standard at CZ.NIC,
and using some new technology creates more confusion and inconsistencies in
the projects. gRPC also natively supports C++.

The RPC server is binary on it’s own, running independently of scanner
itself. This design decision was made to increase reliability. Failure of RPC
server doesn’t impact scanner, and failure of a scanner is then detectable by
RPC server through diagnostics. It also provides clearer division between
functionalities.

Control interface

In current version control interface contains only two procedures: ImportTasks
and GetScanResults.

Interface definition for ImportTasks:

• Input data: List of Domain Scan Tasks. Each Domain Scan Task
contains following data:

– Domain information: UID, FQDN, and scan type: either secure or
insecure. Scan type is provided by Registry, as additional queries
to TLS’s nameservers would complicate the process and overload
nameservers even more.

– List of relevant nameservers names

• Output data: Id of a queue that was created from those tasks.

Interface definition for GetScanResults:

• Input data: doesn’t take any input.

36

3.1. Communication

• Output data: List Scan Results. Each Domain Scan Task contains
following data:

– Domain’s UID (as said earlier, to prevent newly registered domain
of the same name to enter acceptance period in the middle)

– CDNSKEY value, that was extracted. Contains every field for a
CDNSKEY as seen in 1.2.

Diagnostic interface

Diagnostic interface implements two simple features: check health of a worker
and health of a database (is it possible to connect). Both do not require any
input. WorkersHealth returns a list of messages, that contain Worker’s id
and boolean status ok. DatabaseHealth returns a message that contain just
boolean status ok.

3.1.2 Master-Worker

Communication between Master and Worker is spread in time. Master might
send entire scan queue to Workers in one message, or send it in batches.
Worker might as well process tasks in batches, especially in the context of
scheduling DNS queries across nameservers. This style of communication is
rather uncomfortable to implement using RPC, even though Worker is literally
performing subroutine for Master, mainly due to time required for response.

If I insisted on using gRPC, I would have to use asynchronous calls, which
are clumsy in C++ and require waiting on futures anyway, eliminating the
entire advantage of using them in the first place. To dodge asynchronous calls
architectural changes should be made to utilize either push or pull strategy,
both of which create unnecessary traffic. Push strategy in this context would
be making Worker RPC server, and after sending scan tasks, query Worker for
results in some time intervals. Pull strategy makes Master the server (which,
above all, is counter-intuitive in a design perspective), and while sending re-
sults is not a problem, task distribution is – Worker now needs to query Master
for work, which makes Worker the one who needs to schedule scans, breaking
the logic of Master-Worker dynamic. It is still possible to keep architecture
and use gRPC though: make both Master and Worker servers, where Worker
serves scan, and Master serves result saving. Such technique would massively
overcomplicate the program and at this point it is obvious, that both Master
and Worker should play equal roles in message sending.

It is possible to achieve what is needed with message-oriented middleware.
Message-oriented middleware (MOM) acts as a broker between system’s enti-
ties that need to pass messages, so entities actually communicate with broker
instead of each other. Then, broker is server and other entities are clients.
This model of communication is asynchronous. Broker solves for those parties

37

3. Implementation

tasks such as unicast, anycast, multicast and broadcast. Every client in the
context of communication with broker could publish a message, and subscribe
to receiving those messages.

AMQP (Advanced Message Queuing Protocol) is a messaging protocol that
enables communication with a message broker middleware. One middleware
that supports AMQP is RabbitMQ, open source message broker. One could
directly install RabbitMQ on their machine, or use a Docker image. There
are also “RabbitMQ as a Service” such as CloudAMQP. There is no official
client for C++, but there is a couple of decent implementations. I use the
“AMQP-CPP” library by Copernica Email Marketing Software, available at
https://github.com/CopernicaMarketingSoftware/AMQP-CPP. RabbitMQ
provides possibility of secure communication over TLS; AMQP protocol over
TLS is called AMQPS.

Some parts of gRPC are utilized here too, namely protobuf IDL. Though
both gRPC and AMQP are not dependent on any particular IDL, protobuf
seems like an optimal option as it is gRPC native and easy to serialize to use
in any transfer.

3.1.3 Internal layout of RabbitMQ server

Following text relies on RabbitMQ documentation, which explains basics of
AMQP model and RabbitMQ specialities. The documentation could be found
at https://www.rabbitmq.com/documentation.html.

AMQP has two basic types of resources: exchanges, which route messages
to queues, and queues, from which messages are then consumed. Both of
those entities are created independent on each other, and are identified by
their names (a simple string of characters). When message is published, it is
published to specific exchange. In order to consume message, queue has to
exist and be bound to exchange. There are multiple types of exchanges:

• Direct exchange routes message to specific queue based on message’s
routing key. Routing key is also a property of binding between exchange
and queue.

• Fanout exchange broadcasts message to all connected queues.

• Topic exchange routes one message to many queues, based on pattern
of routing which was used in binding.

• Headers exchange routes message to queues based on multiple at-
tributes, that are more easily put in message header, rather that the
routing key.

Queue is a “First-in-First-out” type of sequence, which could be bound on
one ore more exchanges in order for messages to be consumed. It is possible

38

https://github.com/CopernicaMarketingSoftware/AMQP-CPP
https://www.rabbitmq.com/documentation.html

3.1. Communication

to limit queue’s length by the number of messages, as well as by size in bytes.
If multiple consumers are connected to queue, then messages are distributed
between them. Queues have their own set of properties, such as:

• Durable queue is able to survive restart of a broker

• Exclusive queue could be used by only one connection, and will be
deleted after the connection is closed

• Auto-deletable is queue, that could serve more consumers, and when
the last one is gone, queue is deleted

• other properties, that might be used by broker and are implementation-
specific to a particular broker.

In order to logically separate applications that use the same RabbitMQ
server, there are Virtual Hosts or “vhosts”, which represent a logical group
of entities. RabbitMQ server allows setting up users, that could be given
different permissions. Permissions are granted to user regarding particular
vhost, include things like permission to write to particular exchange, to read
from queue, or to create/remove any of the resources.

RabbitMQ sports a wide range of configuration options with which user
could better adjust functionality of resources to suit their needs such as high
availability or throughput.

3.1.4 Layout of a vhost for AKM Multi Scanner

Layout preparation for this application should be done in configuration.
AKM Multi Scanner should use one vhost /akm-multi-scanner/, inside

of which other resources are defined. The main reason, why the distributed
application is needed in the first place, is to secure introduction of a new keys
for domains, that are not secured by DNSSEC yet. There are four exchanges:

• e-insecure is is a fanout exchange, that broadcasts scan tasks for in-
secure domains scanning from Master. To this exchange are connected
multiple queues, each corresponding to a Worker.

• e-secure is a direct exchange, that sends scan tasks for secure domains
from Master to one or more Workers through one queue. Current im-
plementation connects to this queue only one Worker, an it is assumed,
that this Worker is on the same machine/network as Master.

• e-diag is a fanout exchange, that sends a health check from Master to
Workers

• e-response is exchange, which Workers serves as a collective exchange
for every scan result, Master then through message metadata decides,
from which Worker result was sent.

39

3. Implementation

Figure 3.1 show entire architecture of AMQP resources. Diamonds depict
exchanges, long rectangles depict queues.

Master
Worker 1

Worker N

q-scan-worker-1

q-scan-worker-N

e-insecure

e-response
q-results

vhost: /akm-multi-scanner/

RabbitMQ

Path of a scan task

Path of a scan result

q-scan-securee-secure Worker:secure

q-diag-worker-1

q-diag-worker-N

e-diag

q-diag

q-diag-worker-s

Path of a diagnostic query

Path of a diagnostic response

Figure 3.1: Complete picture of exchanges and queues in RabbitMQ server
for AKM Multi Scanner

As mentioned in description of exchange e-secure, it is technically possi-
ble that more Workers could connect to the queue, that distributes scan tasks
for domains that are secured. It might benefit that those domains could be
scanned in parallel, which theoretically could improve efficiency. It is up for
evaluation, if this actually would be the case. Figure 3.2 shows how portion
of vhost for scanning secure domains would change.

40

3.2. Database

Master Worker 1

Worker N

q-scan-securee-secure

e-responseq-results

vhost: /akm-multi-scanner/

RabbitMQ

Path of a scan task

Path of a scan result

Figure 3.2: Possible alternative to the way, how secured domains are handled
now: with a direct exchange with one queue, Workers could connect to this
queue and work would be distributed evenly across them (with the assumption
of a correct queue configuration).

Overview of a communication infrastructure

With the knowledge of technologies used here is presented the overall commu-
nication infrastructure. Master is in fact two entities: a scanning daemon, and
a RPC server interface between Registry and the system. Both of those enti-
ties communicate with the database. Worker is a simple daemon that listens
to the requests from Master. Both Master and Worker communicate through
message broker, and are clients in the context of this relationship. Graphical
representation of this relationship could be found in the figure 3.3.

3.2 Database

For Worker, it is enough to keep scan tasks in memory, since it’s only job is to
perform a scan and nothing more. Master, on the other hand, needs to keep
results for some amount of time (for example, for .CZ domain it has to keep
for seven days). Original FRED-AKM used SQLite, and practice shows, that
for the amount of data that it saves, it is not a suitable solution, so a change
must be made. For this project was chosen PostgreSQL. PostgreSQL is open
source relational database, and is also used in FRED. To communicate with
database in code I use C++ library libpg, a thin C++ wrapper around a
C-language PostgreSQL library libpq that’s written at CZ.NIC.

I use a very simple schema with only four main tables (and two enum
tables, that define state of a domain and type of result of a scan). Figure 3.4

41

3. Implementation

RabbitMQ broker

cdnskey-scanner

Master
communicator

Worker
communicator

Worker
communicator

Control interface

Diagnostic interface

Diagnostic
communicator

Master

cdnskey-scanner

Diagnostics

Scanning daemon

Figure 3.3: Complete structure of communication between elements of
a system. Images for gRPC and RabbitMQ are taken from https://
grpc.github.io/ and https://www.rabbitmq.com/ respectively.

shows relationships between tables.

3.3 Scanning process

After Worker received Nameserver Scan Tasks from Master, it translates this
data to text format used by cdnskey-scanner and run it as a subprocess.
Current implementation doesn’t allow any other tool, but it is planned to
change this to some configurable option. At the current stage Worker should
leave scheduling between queries onto cdnskey-scanner, so Worker passes
entirety of request from Master to it. cdnskey-scanner takes input from
stdin and puts output on stdout in text format. Worker than translates this
result from text to internal representation.

In the context of Worker, job is a sequence of scanning and sending re-
sults. Worker never really analyses the results, but it checks for unknown,
unresolved and unresolved-ip results, that collectively tell that scan was
unsuccessful perhaps because of some network failure or unavailability of any
node in the chain of resolver and nameservers. Worker collects results that
ended with any other status and sends those to Master. Jobs with faulty
results are performed again multiple times (currently it is three, but in the

42

https://grpc.github.io/
https://grpc.github.io/
https://www.rabbitmq.com/

3.3. Scanning process

scan queue

scan job

scan result

enum scan type

worker

enum cdnskey status

PK id NOT NULL

PK id NOT NULL

import at NOT NULL

finished at

FK scan queue id NOT NULL

nameserver NOT NULL

domain uid NOT NULL

domain fqdn NOT NULL

FK scan type id NOT NULL

PK id NOT NULL

FK scan job id NOT NULL

FK worker id NOT NULL

scan at NOT NULL

nameserver ip

FK cdnskey status id NOT NULL

cdnskey flags

cdnskey proto

cdnskey alg

cdnskey public key

PK id NOT NULL

PK id NOT NULL

PK id NOT NULL

name NOT NULL

name NOT NULL

Figure 3.4: Database schema for Master.

future this amount would be configurable), each time analysing if faulty re-
sults are present again and sending results that resolved with any other valid
status. If after multiple retries faulty result stays, it is sent as it is to the
Master.

43

3. Implementation

3.4 Evaluation

Evaluation is performed directly through SQL query. For secure domains it is
the latest result from latest closed queue, for insecure domains it will compare
all of the results from every worker, every nameserver from seven latest queues.
At this point, this evaluation strategy is very weak: it assumes that every
reply from every Worker was received (that is, if some Worker didn’t returned
result of a scan task, this failure doesn’t count as failure of evaluation). More
reliable approach would be to check if every scan job has sufficient amount of
results, otherwise scan job is considered failed and existing results for it could
be wiped.

Summary

The system uses complex tools for communication. To communicate with
Registry, it implements RPC interface through gRPC, to pass scan requests
and results between Master and Workers it uses AMQP with RabbitMQ bro-
ker. As history is needed for evaluation of scan results for insecure domains,
PostgreSQL database is used. While top-level view of the system is pretty
simple and straightforward, there a lot of intricacies of algorithm and tech-
nology that needs to be considered. The result of this thesis is more of a
“proof of concept” than finished product. With that being said, work on this
project will be continued with the hopes of eventually reaching easy to setup
and robust state of this software.

44

Conclusion

This thesis described operational and administrative details of DNS, it’s se-
curity issues and how those issues could be mitigated. The main focus was
DNSSEC, how complicated it could be to roll over keys at parent’s site and
how to ease this complexity by automation. In order to automate key rollovers
new resource records should be introduced: CDS and CDNSKEY. There are not
much done in this field, and analysis of software solutions for CDS/CDNSKEY
scanning and zone updates is presented. Most of those solutions are not suit-
able for TLD scale. One such solution – FRED-AKM – is specifically designed
for the scale of TLD, but lacks scanning from multiple vantage points.

New scanning tool was designed based on FRED-AKM: AKM Multi Scan-
ner, which allows scanning from multiple locations and could also be used
in any system through API. It uses Master-Workers pattern, where Master
manages workers, responds to API calls and evaluated results of a scan, and
Worker is a simple scanner with a network interface. Scheduling was moved
from outer means such as cron to the inside of a system, so it could be run
as a daemon. This work attempted at reducing false negatives by introduc-
ing redundant scans. It also implements simple diagnostic tool, which allows
health checks of Workers and Master’s database. This solution uses multiple
different technologies for communication, for Registry-Master communication
gRPC was chosen, and for Master-Workers it was more suitable to switch to
AMQP.

Even though the main goals are met, this work is far from done, as time to
work on this fairly big project was very limited. I had to get familiar with tech-
nologies that were new to me, and learn to use them to the extent necessary for
this project. First of all, it is yet to be tested, and testing of such application
is out of my competence and out of scope of this thesis. This means that a lot
of edge cases are waiting to be discovered and covered. Second, there is a lot of
space for improvement, from the logical stand point, as well as technical one.
Configuration of Master and Workers as RabbitMQ clients received very little
coverage, text merely pointed out possibility of detailed permission settings

45

Conclusion

for them. The whole area of administering such a system was not properly
discussed, such as management of certificates used in RabbitMQ communica-
tion, or a necessity for configuration distribution (for example, should some
configurations of a Worker be distributed by some out of band means, or could
it be done through message broker). As already mentioned, work distribution
is up for improvement too: as number of secured domains grows4, grows time
needed to scan those as well, so work might be distributed among Workers
and not be delegated to just one selected Worker. Scheduling of scans in the
context of a single iteration could also change, currently this solution relies
solely on scheduling mechanism present at cdnskey-scanner. Even though it
is out of the scope of this thesis, from a practical point of view, there needs
to be agent, that connects AKM Multi Scanner with the Registry.

All in all, work on this project is not ending with this thesis, so development
will continue and improvements are coming.

4Which is the reason why this project exists in the first place

46

Bibliography

[1] Aitchison, R. Pro DNS and BIND 10. Apress, second edition, 2011, ISBN
1430230487,9781430230489.

[2] Mockapetris, P. Domain names - concepts and facilities. STD 13, RFC
Editor, November 1987. Available from: https://tools.ietf.org/html/
rfc1034

[3] Vixie, P.; Thomson, S.; et al. Dynamic Updates in the Domain Name
System (DNS UPDATE). RFC 2136, RFC Editor, April 1997. Available
from: https://tools.ietf.org/html/rfc2136

[4] Mockapetris, P. Domain names - implementation and specification.
STD 13, RFC Editor, November 1987. Available from: https://
tools.ietf.org/html/rfc1035

[5] ICANN. Information for Domain Name Registrants. Available from:
https://www.icann.org/registrants

[6] Internet Systems Consortium, I. BIND. 2020. Available from: https:
//www.isc.org/bind/

[7] CZ.NIC. Knot DNS. 2020. Available from: https://www.knot-dns.cz/

[8] CZ.NIC. Knot Resolver. 2020. Available from: https://www.knot-
resolver.cz/

[9] CZ.NIC. Projekty pro odbornou veřejnost. 2020. Available from: https:
//www.nic.cz/page/2049/projekty-pro-odbornou-verejnost/

[10] ICANN. ICANN Managed Root Server. 2020. Available from: https:
//www.dns.icann.org/imrs/

47

https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc2136
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://www.icann.org/registrants
https://www.isc.org/bind/
https://www.isc.org/bind/
https://www.knot-dns.cz/
https://www.knot-resolver.cz/
https://www.knot-resolver.cz/
https://www.nic.cz/page/2049/projekty-pro-odbornou-verejnost/
https://www.nic.cz/page/2049/projekty-pro-odbornou-verejnost/
https://www.dns.icann.org/imrs/
https://www.dns.icann.org/imrs/

Bibliography

[11] Hilton, S. Dyn Analysis Summary Of Friday October 21 Attack. 2016.
Available from: https://dyn.com/blog/dyn-analysis-summary-of-
friday-october-21-attack/

[12] Danchev, D. Anonymous launches ’Operation Global Blackout’,
aims to DDoS the Root Internet servers. 2012. Available from:
https://www.zdnet.com/article/anonymous-launches-operation-
global-blackout-aims-to-ddos-the-root-internet-servers/

[13] Allan Liska, G. S. DNS Security. Defending the Domain Name Sys-
tem. Syngress, first edition, 2016, ISBN 0128033061,978-0-12-803306-
7,9780128033395,0128033398.

[14] Cejka, T.; Rosa, Z.; et al. Stream-wise detection of surreptitious traf-
fic over DNS. In 2014 IEEE 19th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CA-
MAD), 2014, pp. 300–304.

[15] Son, S.; Shmatikov, V. The Hitchhiker’s Guide to DNS Cache Poisoning.
In Security and Privacy in Communication Networks, edited by S. Jajo-
dia; J. Zhou, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, ISBN
978-3-642-16161-2, pp. 466–483.

[16] Hoffman, P.; Sullivan, A.; et al. DNS Terminology. RFC 7719, RFC Edi-
tor, December 2015.

[17] Wright, C. Understanding Kaminsky’s DNS Bug. 2008. Avail-
able from: https://www.linuxjournal.com/content/understanding-
kaminskys-dns-bug

[18] Atkins, D.; Austein, R. Threat Analysis of the Domain Name System
(DNS). RFC 3833, RFC Editor, August 2004. Available from: https:
//tools.ietf.org/html/rfc3833

[19] Wellington, B. Secure Domain Name System (DNS) Dynamic Update.
RFC 3007, RFC Editor, November 2000.

[20] Hu, Z.; Zhu, L.; et al. Specification for DNS over Transport Layer Security
(TLS). RFC 7858, RFC Editor, May 2016.

[21] Hoffman, P.; McManus, P. DNS Queries over HTTPS (DoH). RFC 8484,
RFC Editor, October 2018.

[22] Vale, M. Google Public DNS now supports DNS-over-TLS. 2019.
Available from: https://security.googleblog.com/2019/01/google-
public-dns-now-supports-dns-over.html

48

https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.zdnet.com/article/anonymous-launches-operation-global-blackout-aims-to-ddos-the-root-internet-servers/
https://www.zdnet.com/article/anonymous-launches-operation-global-blackout-aims-to-ddos-the-root-internet-servers/
https://www.linuxjournal.com/content/understanding-kaminskys-dns-bug
https://www.linuxjournal.com/content/understanding-kaminskys-dns-bug
https://tools.ietf.org/html/rfc3833
https://tools.ietf.org/html/rfc3833
https://security.googleblog.com/2019/01/google-public-dns-now-supports-dns-over.html
https://security.googleblog.com/2019/01/google-public-dns-now-supports-dns-over.html

Bibliography

[23] Cloudflare. DNS over TLS. Available from: https://
developers.cloudflare.com/1.1.1.1/dns-over-tls/

[24] DNSCurve: Usable security for DNS. Available from: https://
dnscurve.org/

[25] CZ.NIC. DNSCurve FAQ. 2020. Available from: https://dnscurve.io/
faq/

[26] Arends, R.; Austein, R.; et al. DNS Security Introduction and Require-
ments. RFC 4033, RFC Editor, March 2005. Available from: https:
//tools.ietf.org/html/rfc4033

[27] Names, I. C. F. A.; Numbers. Root DNSSEC Status Update, 2010-07-14.
Available from: https://www.root-dnssec.org/2010/07/16/status-
update-2010-07-16/

[28] Arends, R.; Austein, R.; et al. Resource Records for the DNS Security
Extensions. RFC 4034, RFC Editor, March 2005.

[29] Bortzmeyer, S. DNS Privacy Considerations. RFC 7626, RFC Editor,
August 2015.

[30] Finch, T. SHA-1 chosen prefix collisions and DNSSEC. 2020. Available
from: https://blog.apnic.net/2020/01/17/sha-1-chosen-prefix-
collisions-and-dnssec/

[31] Consortium, I. S. Automatic DNSSEC Zone Signing Key rollover ex-
plained. 2018. Available from: https://kb.isc.org/docs/aa-00822

[32] DNS, K. Knot DNS 2.6.9 documentation. 2018. Available from:
https://www.knot-dns.cz/docs/2.6/html/operation.html#dnssec-
key-rollovers

[33] of the CTO, I. O. Review of the 2018 DNSSEC KSK Rollover. 2019. Avail-
able from: https://www.icann.org/en/system/files/files/review-
2018-dnssec-ksk-rollover-04mar19-en.pdf

[34] Barker, E. B.; Dang, Q. H. Recommendation for Key Management
Part 3:. Technical report, National Institute of Standards and Technol-
ogy, Jan. 2015, doi:10.6028/nist.sp.800-57pt3r1. Available from: https:
//doi.org/10.6028/nist.sp.800-57pt3r1

[35] Hoffman, P.; Wijngaards, W. Elliptic Curve Digital Signature Algorithm
(DSA) for DNSSEC. RFC 6605, RFC Editor, April 2012.

49

https://developers.cloudflare.com/1.1.1.1/dns-over-tls/
https://developers.cloudflare.com/1.1.1.1/dns-over-tls/
https://dnscurve.org/
https://dnscurve.org/
https://dnscurve.io/faq/
https://dnscurve.io/faq/
https://tools.ietf.org/html/rfc4033
https://tools.ietf.org/html/rfc4033
https://www.root-dnssec.org/2010/07/16/status-update-2010-07-16/
https://www.root-dnssec.org/2010/07/16/status-update-2010-07-16/
https://blog.apnic.net/2020/01/17/sha-1-chosen-prefix-collisions-and-dnssec/
https://blog.apnic.net/2020/01/17/sha-1-chosen-prefix-collisions-and-dnssec/
https://kb.isc.org/docs/aa-00822
https://www.knot-dns.cz/docs/2.6/html/operation.html#dnssec-key-rollovers
https://www.knot-dns.cz/docs/2.6/html/operation.html#dnssec-key-rollovers
https://www.icann.org/en/system/files/files/review-2018-dnssec-ksk-rollover-04mar19-en.pdf
https://www.icann.org/en/system/files/files/review-2018-dnssec-ksk-rollover-04mar19-en.pdf
https://doi.org/10.6028/nist.sp.800-57pt3r1
https://doi.org/10.6028/nist.sp.800-57pt3r1

Bibliography

[36] Barker, E. Recommendation for key management Part 1:. Technical re-
port, National Institute of Standards and Technology, May 2020, doi:
10.6028/nist.sp.800-57pt1r5. Available from: https://doi.org/10.6028/
nist.sp.800-57pt1r5

[37] Overeinder, B. Bringing DNS security and privacy to the end user. 2018.
Available from: https://blog.apnic.net/2018/02/07/bringing-dns-
security-privacy-end-user/

[38] Huston, G. DNSSEC ‘and’ DNS over TLS. 2018. Available from: https:
//blog.apnic.net/2018/08/20/dnssec-and-dns-over-tls/

[39] Hubert, B. Opinion: Centralized DoH is bad for privacy, in 2019 and
beyond. 2019. Available from: https://blog.apnic.net/2019/10/
03/opinion-centralized-doh-is-bad-for-privacy-in-2019-and-
beyond/

[40] Martin, A. J. Google’s Chrome browser plans ’risk undermining
fight against online child abuse’, govt warned. 2019. Available from:
https://news.sky.com/story/googles-chrome-browser-plans-
risk-undermining-fight-against-online-child-abuse-govt-
warned-11734166

[41] Jacobs, L. Waiting for goDoH, or DNS exfiltration over DNS over HTTPS
(DoH) with godoh. 2018. Available from: https://sensepost.com/blog/
2018/waiting-for-godoh/

[42] Kaminsky, D. DNSSEC Interlude 2: DJB@CCC. 2011. Available from:
https://dankaminsky.com/2011/01/05/djb-ccc/

[43] Surý, O. DNSCurve – alternativńı návrh k DNSSECu. 2008. Available
from: https://blog.nic.cz/2008/09/01/dnscurve-alternativni-
navrh-k-dnssecu/

[44] Differences between DNSCurve and DNSSEC. Available from: https://
dnscurve.io/faq/differences-between-dnscurve-and-dnssec.html

[45] Durumeric, Z.; Kasten, J.; et al. Analysis of the HTTPS Certificate
Ecosystem. In Proceedings of the 2013 Conference on Internet Mea-
surement Conference, IMC ’13, New York, NY, USA: Association for
Computing Machinery, 2013, ISBN 9781450319539, p. 291–304, doi:
10.1145/2504730.2504755. Available from: https://doi.org/10.1145/
2504730.2504755

[46] Hoffman, P.; Schlyter, J. The DNS-Based Authentication of Named En-
tities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698, RFC Editor, August 2012.

50

https://doi.org/10.6028/nist.sp.800-57pt1r5
https://doi.org/10.6028/nist.sp.800-57pt1r5
https://blog.apnic.net/2018/02/07/bringing-dns-security-privacy-end-user/
https://blog.apnic.net/2018/02/07/bringing-dns-security-privacy-end-user/
https://blog.apnic.net/2018/08/20/dnssec-and-dns-over-tls/
https://blog.apnic.net/2018/08/20/dnssec-and-dns-over-tls/
https://blog.apnic.net/2019/10/03/opinion-centralized-doh-is-bad-for-privacy-in-2019-and-beyond/
https://blog.apnic.net/2019/10/03/opinion-centralized-doh-is-bad-for-privacy-in-2019-and-beyond/
https://blog.apnic.net/2019/10/03/opinion-centralized-doh-is-bad-for-privacy-in-2019-and-beyond/
https://news.sky.com/story/googles-chrome-browser-plans-risk-undermining-fight-against-online-child-abuse-govt-warned-11734166
https://news.sky.com/story/googles-chrome-browser-plans-risk-undermining-fight-against-online-child-abuse-govt-warned-11734166
https://news.sky.com/story/googles-chrome-browser-plans-risk-undermining-fight-against-online-child-abuse-govt-warned-11734166
https://sensepost.com/blog/2018/waiting-for-godoh/
https://sensepost.com/blog/2018/waiting-for-godoh/
https://dankaminsky.com/2011/01/05/djb-ccc/
https://blog.nic.cz/2008/09/01/dnscurve-alternativni-navrh-k-dnssecu/
https://blog.nic.cz/2008/09/01/dnscurve-alternativni-navrh-k-dnssecu/
https://dnscurve.io/faq/differences-between-dnscurve-and-dnssec.html
https://dnscurve.io/faq/differences-between-dnscurve-and-dnssec.html
https://doi.org/10.1145/2504730.2504755
https://doi.org/10.1145/2504730.2504755

Bibliography

[47] Dukhovni, V.; Hardaker, W. SMTP Security via Opportunistic DNS-
Based Authentication of Named Entities (DANE) Transport Layer Secu-
rity (TLS). RFC 7672, RFC Editor, October 2015.

[48] Huque, S. Whither DANE? 2019. Available from: https://
blog.apnic.net/2019/07/05/whither-dane/

[49] Kumari, W.; Gudmundsson, O.; et al. Automating DNSSEC Delegation
Trust Maintenance. RFC 7344, RFC Editor, September 2014. Available
from: https://tools.ietf.org/html/rfc7344

[50] Gudmundsson, O.; Wouters, P. Managing DS Records from the Parent
via CDS/CDNSKEY. RFC 8078, RFC Editor, March 2017. Available
from: https://tools.ietf.org/html/rfc8078

[51] SWITCH. Automated DNSSEC Provisioning. 2018. Available from:
https://www.nic.ch/export/shared/.content/files/SWITCH_CDS_
Manual_en.pdf

[52] SWITCH. CDS Status Check. 2018. Available from: https://
www.nic.ch/security/cds/index.html

[53] Eden, A. Announcing CDS/CDNSKEY Support. 2019. Available from:
https://blog.dnsimple.com/2019/02/cds_cdnskey/

[54] Isasi, S.; Shrestha, V. Expanding DNSSEC Adoption. 2018. Avail-
able from: https://blog.cloudflare.com/automatically-provision-
and-maintain-dnssec/

[55] ICANN. TLD DNSSEC Report (2020-05-21 00:02:49). 2020. Available
from: http://stats.research.icann.org/dns/tld_report/

[56] Chung, T.; van Rijswijk-Deij, R.; et al. Understanding the Role of Reg-
istrars in DNSSEC Deployment. In Proceedings of the 2017 Internet
Measurement Conference, IMC ’17, New York, NY, USA: Association
for Computing Machinery, 2017, ISBN 9781450351188, p. 369–383, doi:
10.1145/3131365.3131373. Available from: https://doi.org/10.1145/
3131365.3131373

51

https://blog.apnic.net/2019/07/05/whither-dane/
https://blog.apnic.net/2019/07/05/whither-dane/
https://tools.ietf.org/html/rfc7344
https://tools.ietf.org/html/rfc8078
https://www.nic.ch/export/shared/.content/files/SWITCH_CDS_Manual_en.pdf
https://www.nic.ch/export/shared/.content/files/SWITCH_CDS_Manual_en.pdf
https://www.nic.ch/security/cds/index.html
https://www.nic.ch/security/cds/index.html
https://blog.dnsimple.com/2019/02/cds_cdnskey/
https://blog.cloudflare.com/automatically-provision-and-maintain-dnssec/
https://blog.cloudflare.com/automatically-provision-and-maintain-dnssec/
http://stats.research.icann.org/dns/tld_report/
https://doi.org/10.1145/3131365.3131373
https://doi.org/10.1145/3131365.3131373

Appendix A
Acronyms

API Application Programming Interface

CDNSKEY Child DNSKEY

CDS Child DS RR

CLI Command Line

DDoS Distributed Denial of Service

DNS Domain Name System

DNSKEY DNS KEY RR

DNSSEC DNS Security Extensions

DS Delegation Signer RR

gRPC google RPC

FQDN Fully Qualified Domain Name

IDL Interface Definition Language

KSK Key Signing Key

RFC Requet For Comments

RPC Remote Procedure Call

RR Resource Record

SQL Structured Query Language

UID Unique Identifier

ZSK Zone Signing Key

53

Appendix B
Contents of enclosed CD

DP Shchavleva Marina 2020
readme.txt....................the file with CD contents description
akm-multi-scanner....................AKM Multi Scanner sources

protos......definitions of protobuf messages and gRPC interfaces
schema..................................database schema scripts
src..............................implementation sources in C++
Makefile.....................................compilation script

thesis..............the directory of LATEX source codes of the thesis
sources ... LATEX .tex files

Makefile..................................compilation script
thesis.pdf........................the thesis text in PDF format

55

	Introduction
	The Domain Name System and security
	Main concepts behind Domain Name System
	DNS security overview
	Securing DNS
	DNSSEC
	Automating key update at Parent's site
	CZ.NIC's FRED-AKM

	Design
	Requirements
	Architecture
	Master's operation
	Worker's operation

	Implementation
	Communication
	Database
	Scanning process
	Evaluation

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

