
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 4, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Automata Approach to Approximate Tree Pattern Matching

 Student: Bc. Lukáš Renc

 Supervisor: Ing. Eliška Šestáková

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2020/21

Instructions

Study methods for approximate tree pattern matching; see the automata approach for constrained
approximate subtree matching introduced in [1]. Based on this research, propose your own method for
approximate tree pattern matching that would support more general approximate distances than [1] (e.g.,
1-degree edit distance introduced by Selkow in [2]). The proposed method should be based on suitable
formal models from the theory of formal languages and automata. Discuss the theoretical time and space
complexities of your proposed method and implement it. Perform appropriate testing of your
implementation.

References

[1] ŠESTÁKOVÁ, Eliška; MELICHAR, Borivoj; JANOUŠEK, Jan. Constrained Approximate Subtree Matching by Finite
Automata. In: Prague Stringology Conference 2018. 2018. p. 79.

[2] SELKOW, Stanley M. The tree-to-tree editing problem. Information processing letters, 1977, 6.6: 184-186.

Master’s thesis

Automata Approach to Approximate Tree
Pattern Matching

Bc. Lukáš Renc

Department of Theoretical Computer Science
Supervisor: Ing. Eliška Šestáková

May 28, 2020

Acknowledgements

I would like to express my gratitude to my supervisor, Ing. Eliška Šestáková,
for sharing her knowledge, words of encouragement, and her guidance through
the program.

I would also like to thank my family: my parents and my brother. Last but
not least I am incredibly thankful to my partner Terezka for unconditionally
believing in me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 28, 2020 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Lukáš Renc. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Renc, Lukáš. Automata Approach to Approximate Tree Pattern Matching.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.

Abstract

This thesis is focused on approximate tree pattern matching via pushdown
automaton. It uses tree edit operations defined by Selkow in [1]. The thesis
studies methods of approximate tree pattern matching problem and propose
of a new method for searching occurrences of tree pattern in an input tree
with edit distance up to k and using pushdown automaton as a computa-
tional model. The method receives a tree pattern on the input and creates
a pushdown automat for it. The automaton is then used for processing an
input tree T— It searches occurrences of the tree pattern in the input tree.
This thesis consists of theoretical background, the proposal of the method,
implementation of the method, and its experimental testing. The method is
implemented in Java programming language. The last part of the thesis are
experiments that show the sensitivity of the method to the internal structure
of both input trees.

Keywords finite automaton, pushdown automaton, approximate tree pat-
tern matching, subtree matching, tree edit distance

vii

Abstrakt

Tato práce se zabývá přibližným vyhledáváním ve stromech pomocí zásob-
níkového automatu. Využívá edit operace pro stromy, které byly definovány
Selkowem v [1]. Práce v návaznosti na studium metod pro přibližné
vyhledávání ve stromech představuje návrh nové metody pro vyhledávaní
výskytů vzorového stromu uvnitř vstupního stromu s maximálně k chybami při
použití zásobníkového automatu jako výpočetního modelu. Metoda nejdříve
na vstupu dostane vzorový strom, jehož výskyt chceme vyhledávat. Dle něj
sestaví zásobníkový automat. Poté pomocí nově vzniklého zásobníkového au-
tomatu zpracuje vstupní strom, uvnitř kterého se vyhledají výskyty vzorového
stromu. Tato práce obsahuje popis stávajících metod a přístupů, návrh nové
metody, implementaci nové metody a její otestování pro funkčnost a rychlost.
Metoda je implementována v jazyce Java. Součástí práce jsou experimenty,
na kterých jde vidět citlivost metody na vnitřní strukturu obou vstupních
stromů.

Klíčová slova konečný automat, zásobníkový automat, přibližné vyhledávání,
strom, editační vzdálenost

viii

Contents

Introduction 1
Aim of the Thesis . 3
Structure of the Thesis . 3

1 Theoretical Background 5
1.1 Notations . 5
1.2 Basic Definitions . 6

1.2.1 Alphabet, String, Language 6
1.2.2 Graph . 6
1.2.3 Tree . 7
1.2.4 Finite and Pushdown Automaton 9

2 Related Work 13
2.1 Tree Comparison and Related Problems 13
2.2 String Pattern Matching . 17

2.2.1 Approximate Pattern Matching Automata 19
2.3 1-degree Edit Distance and Related Problems 20

2.3.1 Tree to Tree Editing Problem Algorithm 23

3 Using Pushdown Automata for Approximate Tree Pattern
Matching 29
3.1 Block Type Matching . 29
3.2 Approximate Block Type Matching 34
3.3 Pushdown Automata Apx. Block Type Matching Method . . . 39

3.3.1 Building ABTTPMA . 39
3.3.1.1 Base of an Automaton 40
3.3.1.2 Block Type Matching Construction 42
3.3.1.3 Common Features of Edit Op. Constructions . 47
3.3.1.4 Delete Edit Operation Construction 48

ix

3.3.1.5 Insert Edit Operation Construction 52
3.3.1.6 Relabel Edit Operation Construction 58
3.3.1.7 Complete ABTTPMA Construction 62

3.3.2 Searching via ABTTPMA 68
3.3.3 ABTTPMA Determinization 68

4 Implementation 71
4.1 Space Optimalisation . 71
4.2 Methods Description . 72
4.3 Implementation Usage . 72

5 Testing 75
5.1 Validation Testing . 75

5.1.1 Validation of Edit Operations 75
5.1.2 Validation of Block Type Matching 76

5.2 Performance Testing . 76

6 Conclusion 81
6.1 Goals Fulfillment . 81
6.2 Future Work . 82

Bibliography 83

A Acronyms 87

B Contents of Enclosed SD Card 89

x

List of Figures

1.1 Rooted, ordered, labeled tree T . 9

2.1 UML document—sample class diagram. 14
2.2 Class diagram from Fig. 2.1 extended with inheritance. 15
2.3 Class diagram of Fig. 2.2 extended with export functionality. . . . 15
2.4 Unified document showing the differences. 16
2.5 The result of the algorithm proposed in [26]. 16
2.6 Pattern matching automaton A1 for P = bab. 18
2.7 Pattern matching automaton for string P0 = bab. 19
2.8 Approximate pattern matching automaton for P = bab. 20
2.9 Sample tree A. 23
2.10 Selkow edit operation visualized: Insert. 23
2.11 Selkow edit operation visualized: Insert. 23
2.12 Selkow edit operation visualized: Insert. 24
2.13 Selkow edit operation visualized: Delete. 24
2.14 Selkow edit operation visualized: Delete. 24
2.15 Selkow edit operation visualized: Delete. 24
2.16 Selkow edit operation visualized: Relabel. 25
2.17 Selkow edit operation visualized: Relabel. 25
2.18 Sample trees used for simulation. 26

3.1 Tree pattern P . 30
3.2 Sample XML structure. 31
3.3 Real world auction data extracted into an XML tree. 32
3.4 Example of Block Type Matching. 34
3.5 Tree pattern P . 35
3.6 Block edit operation visualized: Insert. 36
3.7 Block edit operation visualized: Insert. 36
3.8 Block edit operation visualized: Insert. 36
3.9 Block edit operation visualized: Delete. 37

xi

3.10 Block edit operation visualized: Delete. 37
3.11 Block edit operation visualized: Delete. 37
3.12 Block edit operation visualized: Delete. 38
3.13 Block edit operation visualized: Relabel. 38
3.14 Block edit operation visualized: Relabel. 38
3.15 Tree pattern P . 41
3.16 Pattern matching automaton for prefbar(P). 42
3.17 Patern tree P . 45
3.18 Disallowed positions for redundant subtrees in T 45
3.19 Allowed positions for redundant subtrees in T 45
3.20 Construction to assure Block type matching. 47
3.21 Tree P used for Delete construction example. 50
3.22 The base of an ABTTPMA for P 50
3.23 k new levels added to the automaton of the tree pattern P 51
3.24 Vertex nx that is not eligible for Block Type matching. 51
3.25 Added transitions for vertices at position x on adjacent levels. . . . 52
3.26 Applied previous steps to all vertices. 52
3.27 Tree P used for Insert construction example. 55
3.28 The base of an ABTTPMA for P 56
3.29 k new levels added to the automaton of the tree pattern P 56
3.30 Found subtree 1. 57
3.31 Found subtree 2. 57
3.32 Found subtree 3. 57
3.33 Found subtree 4. 57
3.34 Found subtree 5. 57
3.35 Added transitions for every missing subtree. 58
3.36 Added transitions for every missing subtree. 58
3.37 Tree P used for Relabel construction example. 60
3.38 The base of an ABTTPMA for P 61
3.39 k new levels added to the automaton of the tree pattern P 61
3.40 All states of L1 without outgoing transition |, Z0/Z0. 61
3.41 Added transitions to the found states. 62
3.42 Applied previous steps to all levels where applicable. 62
3.43 Tree P used as input for build phase of ABTTPMA. 65
3.44 The base of an ABTTPMA for P 65
3.45 ABTTPMA for a tree pattern P . 67

4.1 Example input file. 73
4.2 Example run configuration. 73

5.1 Sample pair of P , T trees for testing. 76
5.2 Possible positions of occurences of P in T , k = 3. 76
5.3 Possible positions of occurences of tree pattern P in input tree T . . 77
5.4 Tree patterns P used for performance testing. 78

xii

5.5 Graph of elapsed time with max. edit dist. = 0. 79
5.6 Graph of elapsed time with max. edit dist. = 1. 79
5.7 Graph of elapsed time with max. edit dist. = 2. 80
5.8 Graph of elapsed time with max. edit dist. = 3. 80

xiii

List of Tables

2.1 Pattern matching automaton simulation—occurrence 1. 19
2.2 Pattern matching automaton simulation—occurrence 2. 19
2.3 Pattern matching automaton simulation—occurrence 3. 19
2.4 Pattern matching automaton simulation—all occurrences. 19
2.5 Matrix D in initiall state. 27
2.6 Matrix D fully computed. 27
2.7 Solution visualized in matrix D. 28

3.1 ABTTPM δ mapping. 66

5.1 Combinations of P and T used for testing. 78

xv

Introduction

Arbology is a computer science field that studies trees [2]. Arbology discipline
applies the well-known principles of algorithms from stringology to trees to
create effective analogous tree algorithms. The name arbology comes from a
Spanish word árbol (in English: a tree). Every tree can be represented in a
linear notation. In this thesis, we use a prefix bar notation, see [3]. Every
instance of prefix bar notation can be generated by a context free grammar.
Therefore, trees in prefix bar notation belong to context free languages. Hence
a pushdown automaton is used as a model of computation. Because of the
everyday need to compare, store, or search data, trees are used frequently. For
example, trees are used for:

• Representing hierarchical data such as abstract syntax trees used by
compilers [4].

• Storing data in a way that makes it efficiently searchable [5].

• Representing sorted lists of data [6].

• As a workflow for management systems [7].

• Storing Barnes-Hut trees used to simulate galaxies [8].

One of the fundamental tree problems is given two trees, show which
changes need to be done to the first tree to match the second. A typical
real-world example of the problem is: “Find approximately this data inside
this XML file” This example task cannot be achieved by simple byte to byte
comparison or hash value comparison. Text‐based comparison methods (such
as the UNIX utility diff) lack understanding of a rigid hierarchical structure
in tree-like documents. Because of that, they produce unsatisfactory compar-
isons or irrelevant differences. Therefore advanced methods are needed. For
example, Yang in [9] suggests possible solutions for program comparison. He

1

Introduction

makes use of the hierarchical structure of the programs. (Programming lan-
guage specifies a rigid hierarchical structure to a program.) Programs can be
seen as trees. In fact, they are trees—abstract syntax tree during the com-
pilation process. Therefore, the problem of two programs comparison can be
transformed into a tree to tree comparison problem. In most of the tree-like
documents, each block of data has a specified position in the document. Hence
in tree visualization, the order of vertices in a tree matter. Because of that,
we use ordered trees.

An ordered tree is one of the higher-dimensional generalization forms of
strings (others are, for example, graphs or webs). Therefore, a survey on string
edit distance provides knowledge that can be adapted to tree edit distance.
While string edit distance was studied five decades ago, tree edit distance was
studied in the late eighties. Selkow [1] and Tai [10] describe tree edit distance
as the minimum of specified edit operations (that apply changes to the first
or the second input tree) to make the two trees match each other. Different
sets of edit operations can be used.

Selkow in [1] works with labeled ordered trees and with three edit oper-
ations: insert a leaf, delete a leaf, relabel a vertex. There can be a specified
cost for each operation. Each of the edit operations may be used recursively,
so it is always possible to compute minimal edit distance. In literature, this
edit distance is called 1-degree edit distance or just Selkow distance. He pro-
posed a recursive algorithm to compute the edit distance between two trees.
The time complexity of the algorithm is O(n · m · d), where n and m are the
maximum numbers of children of any vertex in each of the trees, and d is the
maximum depth of the trees.

Let P and T be ordered trees and k a maximal 1-degree edit distance.
Šestáková, Melichar and Janoušek in [11] proposed a method for finding all
occurrences of the tree pattern P in the input tree T with up to k edit op-
erations between found occurrences and the tree pattern P . The method is
based on a concept of a finite automaton. Its edit distance for the tree to
tree comparison is based on the 1-degree edit distance. Firstly, it builds an
automaton for a given tree pattern P . Secondly, tree T is used as an input
to the automaton. Automaton outputs occurrences of the pattern P in the
searched tree T . Edit distances between occurrences and the tree pattern P
are up to k. However, this method does not support recursive deletion or
insertion of leaves. Therefore, it is not always possible to calculate the edit
distance between two trees via this method because of the finite automaton
schema’s limited computing power. The first phase of the method creates an
automaton with O(|A|k · mk+1) states where A is used alphabet, m = |T | and
k is maximum given distance.

This thesis proposes a new method for approximate tree pattern matching
based on automata theory and extends the paper [11]. The new method uses
the Selkow approach presented in the paper Tree to tree editing problem [1].

2

Aim of the Thesis

Aim of the Thesis
The aims of this thesis are:

• Study methods for approximate tree pattern matching and the automata
approach for constrained approximate subtree matching introduced in
[11].

• Propose a new method for approximate tree pattern matching using the
theory of formal languages and automata. For example, 1-degree edit
distance and edit operations defined in [1].

• Implement the proposed method.

• Discuss time and space complexities.

• Perform appropriate testing of the implementation.

Structure of the Thesis
A brief description of the chapters and sections follows.

Chapter 1 (Theoretical Background) consists of used basic notation and def-
initions on alphabet, string, graphs, trees, finite and pushdown au-
tomata. In the end, there is an observation of the pushdown automata
determinization problem.

Chapter 2 (Related Work) presents research done on related work to this
thesis. It covers articles and papers on string pattern matching, approx-
imate string pattern matching, tree to tree comparison problem, Selkow
edit operations, and edit distance.

Chapter 3 (Using Pushdown Automata for Approx. Tree Pattern Matching)
introduces a new approach to tree pattern matching and approximate
tree pattern matching problem. The chapter firstly shows how this ap-
proach works with Selkow edit operations, how it is built into a pattern
matching automaton, and how it is beneficial for approximate pattern
matching. Secondly, the chapter shows a description of a new method
that builds and uses a pushdown automaton for approximate pattern
matching.

Chapter 4 (Implementation) presents the implementation of the proposed
method. The implementation is meant as a Poc for the proposed method.
The chapter consists of three sections. Firstly, the used space optim-
ilisation is explained. Secondly, public methods of public classes are
described. The third section describes implementation usage and the
structure of an input file for the prepared run configuration.

3

Introduction

Chapter 5 (Testing) The chapter is split into two sections. The first section
tests correctness of the proposed method. It is focused on Block type
matching and edit operation function tests. The second section exam-
ines the method performance for various input trees with different inner
structures.

Chapter 6 (Conclusion) consists of a summary of this thesis, sums up ful-
filled goals, and suggests enhancements for future work.

4

Chapter 1
Theoretical Background

In this chapter, all the notations through this thesis are given along with basic
definitions and used terms.

1.1 Notations
Main notations used throughout this thesis are as follows:

• Σ for an alphabet,
• a, b, c for alphabet symbols,
• Σ, b/c for a labeled transition in a pushdown automaton. Σ is an input

symbol—every a from A, b is a stack top symbol to be popped from the
stack, c is a symbol to be pushed to the stack,

• w, x, y, z for strings,
• L for a language,
• M for both a finite and a pushdown automaton,
• p, q for states,
• δ for an automaton transition function,
• q0 for an initial state,
• F for a set of final states,
• R as a pushdown store alphabet,
• Z0 as an initial pushdown store symbol,
• G for a graph,
• V for a set of vertices in a graph,
• E for a set of lists of edges in a graph,
• T for an input tree,
• P for a tree pattern,
• Lx for a level at position x of an automaton.

5

1. Theoretical Background

1.2 Basic Definitions
This section presents definition of terms that are used throghout this thesis.
Section 1.2.1 defines terms in the same way as in [12]. Section 1.2.2 defines
terms in the same way as in [13]. Section 1.2.3 defines terms in the same way
as in [14] if not explicitly stated otherwise.

1.2.1 Alphabet, String, Language
Definition 1.1 (Alphabet). An alphabet is a finite nonempty set of symbols.

Definition 1.2 (Ranked alphabet). A ranked alphabet is an alphabet where
each symbol of a set has a unique nonnegative arity (or rank).

Definition 1.3 (Arity of a symbol). Given a ranked alphabet A, the arity of
a symbol a ∈ A is denoted arity(a).

Definition 1.4 (String). A string over a given alphabet A is a finite sequence
of symbols of A.

Definition 1.5 (Length of a string). A length of a string x, denoted by |x|,
is the number of its symbols.

Definition 1.6 (Empty string). An empty string is an empty sequence of
symbols denoted by ε.

Definition 1.7 (Prefix). A prefix of a string x = x1x2, . . . , xn is a string
y = x1x2, . . . , xm, where m ≤ n.

Definition 1.8 (Factor). A factor (substring) of a string x = x1x2, . . . , xn is
a string y = xixi+1, . . . , xj, where 1 ≤ i ≤ j ≤ n.

Definition 1.9 (Subsequence). A subsequence of a string x = x1x2, . . . , xn

is a string y obtained by deleting zero or more symbols from x.

Definition 1.10 (Language). A language L over an alphabet A is a set of
strings over A.

1.2.2 Graph
Definition 1.11 (Graph). A graph G is a pair (V, E), where V is a set of
vertices and E is a set of unordered pairs of vertices called edges. A pair [m, n]
indicates that there is an edge connecting vertices m and n.

Definition 1.12 (Path). A sequence of vertices (n0, n1, . . . , nm), where m ≥
1, is a path of length m from the vertex n0 to the vertex nm if ∀i ∈ {1, 2, . . . , m}
there is an edge connecting vertices ni−1 and ni.

Definition 1.13 (Cycle). A cycle is a path n0, n1, . . . nm, where n0 = nm.

6

1.2. Basic Definitions

Definition 1.14 (Connected graph). A graph G = (V, E) is connected when
there is a path between every pair of vertices.

Definition 1.15 (Directed graph). A directed graph G is a pair (V, E), where
V is a set of vertices and E is a set of ordered pairs of vertices called directed
edges. A pair (m, n) indicates that for the vertex m, there is an edge leaving
m and entering the vertex n.

Definition 1.16 (Directed path). A sequence of vertices (n0, n1, . . . nm),
where m ≥ 1, is a directed path of length m from the vertex n0 to the vertex
nm if ∀i ∈ {1, 2, . . . , m} there is a directed edge which leaves the vertex ni−1
and enters the vertex ni.

Definition 1.17 (Directed cycle). A directed cycle is a directed path
n0, n1, . . . nm, where n0 = nm.

Definition 1.18 (Acyclic graph). An acyclic graph is a graph that has no
cycle.

Definition 1.19 (Directed acyclic graph). A directed acyclic graph is a di-
rected graph that has no directed cycle.

Definition 1.20 (Labeling). A labeling of a graph G = (V, E) is a mapping
V into a set of labels.

Definition 1.21 (Out-degree, in-degree). Given a directed graph G = (V, E)
and a vertex n ∈ V , its out-degree is the number of distinct pairs (n, m) ∈ E,
where m ∈ V . By analogy, the in-degree of vertex n is the number of distinct
pairs (m, n) ∈ E where m ∈ V .

1.2.3 Tree
Definition 1.22 (Tree). A tree is an acyclic connected graph.

Definition 1.23 (Subtree). A Subtree of a tree T is a tree consisting of a
vertex in T and all of its descendants in T .

Definition 1.24 (Rooted directed tree). A rooted and directed tree T is a
directed graph T = (V, E) with a special vertex r ∈ V , called the root, such
that (1) r has in-degree 0, (2) all other vertices of T have in-degree 1, (3) there
is just one path from the root r to every vertex n ∈ V , where n ̸= r.

Definition 1.25 (Leaf). Let T = (V, E) be a rooted directed tree. Vertex
n ∈ V is called a leaf if it has out-degree 0.

Definition 1.26 (Child). Let T = (V, E) be a rooted directed tree with vertices
m, n ∈ V . A vertex n is a child of a vertex m if there is a directed edge
(m, n) ∈ E.

7

1. Theoretical Background

Definition 1.27 (Parent). Let T = (V, E) be a rooted directed tree with
vertices m, n ∈ V . A vertex m is a parent of a vertex n if there is a directed
edge (m, n) ∈ E. Notation parent(x) stands for “parent of vertex x”. For
example: parent(n) = m.

Definition 1.28 (Sibling). Let T = (V, E) be a rooted directed tree with
vertices m, n ∈ V . A vertex n is a sibling of a vertex m if parent(n) =
parent(m).

Definition 1.29 (Descendant). Let T = (V, E) be a rooted directed tree with
vertices m, n ∈ V . A vertex n is a descendant of a vertex m if there is a
directed path (m, . . . , n).

Definition 1.30 (Ancestor). Let T = (V, E) be a rooted directed tree with
vertices m, n ∈ N . A vertex m is an ancestor of a vertex n if there is a
directed path (m, . . . , n).

Definition 1.31 (Labeled tree). A labeled (rooted, directed) tree T is a
(rooted, directed) tree where every vertex n ∈ V is labeled by a symbol a
of an alphabet A; the label of a vertex n ∈ V is denoted label(n). Labeling
function is denoted as label(T), where T is a labeled rooted tree. The label of a
given tree T is the label of the root vertex of T . The labeling function returns
a label of a given tree.

Definition 1.32 (Ordered tree). An ordered (labeled, rooted, directed) tree is
a (labeled, rooted, directed) tree where children n1, n2, . . . , nm of a tree vertex
n with an out-degree m are ordered.

Definition 1.33 (Ranked tree). A ranked (rooted, directed) labeled tree is a
(rooted, directed) labeled tree labeled by symbols from a ranked alphabet and
out-degree of a vertex n labeled by symbol a ∈ A is arity(a).

Definition 1.34 (Prefix bar notation [3]). Prefix bar notation is a linear
notation of trees. It is defined as follows:

• prefbar(a) = a | if a is both the root and a leaf,

• prefbar(T) = a prefbar(b1) prefbar(b2) · · · prefbar(bn) | if a is the
root of the tree T and b1, b2, . . . , bn are children of a.

Example 1.1 (Prefix bar notation). Let T = (V, E) be an ordered labeled
rooted tree shown in Figure 1.1.

The prefix bar notation of T is as follows:

prefbar(T) = a b c | d e | | | f g | h i | | | |

.

8

1.2. Basic Definitions

a

b

c d

e

f

g h

i

Figure 1.1: Rooted, ordered, labeled tree T .

Folowing labels for trees are used:

• Input tree is an ordered labeled tree in which a tree pattern is searched,
• Tree pattern is an ordered labeled tree whose oocurences are searched

for in an input tree.
• Notation tree is used in the rest of this thesis as an ordered labeled

rooted tree unless explicitly stated otherwise.

1.2.4 Finite and Pushdown Automaton
Definition 1.35 (Deterministic finite automaton). A deterministic finite au-
tomaton (DFA) is a quintuple M = (Q, A, δ, q0, F), where

• Q is a finite set of states,
• A is an input alphabet,
• δ is a mapping from Q × A to Q,
• q0 is the initial state,
• F ⊆ Q is the set of final states.

Definition 1.36 (Nondeterministic finite automaton). A nondeterministic
finite automaton (NFA) is a quintuple M = (Q, A, δ, q0, F), where

• Q is a finite set of states,
• A is an input alphabet,
• δ is a mapping from Q × A into the set of subsets Q (denoted by 2Q),
• q0 is the initial state,
• F ⊆ Q is the set of final states.

Definition 1.37 (Nondeterministic pushdown automaton). A nondetermin-
istic pushdown automaton is a seven-tuple M = (Q, A, R, δ, q0, Z0, F), where

• Q is a finite set of states,
• A is an input alphabet,
• R is a pushdown store alphabet,
• δ is a mapping from Q×(A∪{ε})×R into a set finite subsets of Q×R∗,

9

1. Theoretical Background

• q0 ∈ Q is an initial state,
• Z0 ∈ R is the initial pushdown store symbol,
• F ⊆ Q is the set of final (accepting) states.

Definition 1.38 (Deterministic pushdown automaton). A pushdown automa-
ton M = (Q, A, R, δ, q0, Z0, F) is deterministic, if the following holds

• |δ(q, a, γ)| ≤ 1, ∀q, a, γ where q ∈ Q, a ∈ (A ∪ {ε}), γ ∈ R∗,
• If δ(q, a, α) ̸= ∅, δ(q, a, β) ≠ ∅ and α ̸= β, then α is not a suffix of β and

β is not a suffix of α (i.e., γα ̸= β, α ̸= γβ),
• If δ(q, a, α) ̸= ∅, δ(q, ε, β) ̸= ∅, then α is not a suffix of β and β is not a

suffix of α (i.e., γα ̸= β, α ̸= γβ).

Pushdown automaton is a theoretical, computational model. Pushdown
automata use the stack as computational memory with the following two
operations: Push & Pop. Nondeterministic pushdown automata recognize
context-free languages. There are some differences between finite and push-
down automata theories. For every non-deterministic finite automaton, there
is an equivalent deterministic finite automaton. However, this does not ap-
ply to a family of pushdown automata. Some non-deterministic pushdown
automata do not have their version of deterministic equivalent. Examples of
such pushdown automata might be a pushdown automaton accepting palin-
dromes written in the form like vvR. The reason is that an automaton reads
the palindrome from left to right, and the automaton cannot determine the
center of the palindrome for it. A solution to a decision problem, if there is or
not a deterministic version for a given nondeterministic pushdown automaton,
is an open problem [15]. There are three classes of pushdown automata for
which such a determinization is possible. These classes are called input-driven
[16], visible [17] and height-deterministic pushdown automata [18].

Input driven pushdown automata were introduced in [19]. The idea of
input driven pushdown automata is that the input symbols uniquely deter-
mine whether the automaton pushes a symbol, pops a symbol, or leaves the
pushdown unchanged. The papers [20] and [21] studied further features of the
class of input-driven pushdown automata languages. Deterministic and non-
deterministic input driven pushdown automata are equally powerful. Input
driven pushdown automaton is determinizable [22].

Visibly pushdown automaton is a pushdown automaton whose stack opera-
tions are determined by the input symbol it reads. Visibly pushdown automata
are connected to nested words. A nested word is a linear structure (word) with
a nesting relation formed by associating open-tags with their matching close-
tags. A visibly pushdown automaton can reconstruct the nesting relation by
pushing onto the stack on open-tags and popping from it close-tags [17]. Vis-
ibly pushdown automata, unlike pushdown automata, define a robust class of
languages. The class is closed under all boolean operations, admits decidable

10

1.2. Basic Definitions

procedures for problems such as inclusion and emptiness, and we can show
that it is precisely as powerful as regular tree languages accepting the tree
representation of the data. Visibly pushdown automata are determinizable
[23].

Class of height deterministic pushdown automata consists of automata
that, for any given input string, the stack height during any (nondeterminis-
tic) computation is a priori fixed. This class was introduced in [24]. Height
deterministic pushdown automaton is determinizable [25].

11

Chapter 2
Related Work

This thesis proposes a new method for approximate tree pattern matching (in
Chapter 3). The topics discussed in this chapter consists of fundamental ideas
that are combined for the new method. This chapter consists of commented
examples and illustrated explanations of concepts used in the newly proposed
method. The chapter is split into three sections. They are as follows: (1) Tree
Comparison and Related Problems, (2) String Pattern Matching, (3) 1-degree
Edit distance. The first section, Section 2.1, discusses approaches to tree com-
parison, shows differences between tree and string comparison, and presents
example usage of a hierarchical structure of trees for comparison purposes.
Section 2.2 discusses a string pattern matching automaton model. It is de-
scribed in detail. Also, a simulated run of the finite automaton on a sample
string is presented. The pattern matching automaton model is used as a base
in the proposed method. Section 2.3 presents Selkow’s findings on tree-to-
-tree matching problem in great detail. His algorithm for tree comparison is
presented with commented steps. Selkow’s paper is a starting point for this
thesis. His edit operations are used in the proposed method.

2.1 Tree Comparison and Related Problems
Tree to tree comparison problem is used in approximate tree pattern matching
to determine edit distance between two trees. This section sums up findings
from the field of tree theory and the usage of trees in practice. We focus
on ordered labeled rooted trees as this is where this thesis aims to propose
a new method. Because of the everyday need to compare or search data,
the theory of trees and tree matching is an essential field in computer sci-
ence. Yang in [9] further emphasizes the programmer’s need to identify the
differences between the two programs and suggests possible solutions. Two
features can be exploited in a program to a program comparison. Firstly, a
programming language specifies a rigid hierarchical structure to a program.

13

2. Related Work

Figure 2.1: The base UML document—sample class diagram. Source: [26]

Secondly, programs can be seen as trees. (In fact, they are trees—abstract
syntax tree during the compilation process.) Therefore, the problem of two
programs comparison can be transformed into a tree to tree comparison prob-
lem. If tree theory is not used, the comparison produces unsatisfactory re-
sults or irrelevant differences. For example, text‐based tools (such as the
UNIX utility diff) lacks understanding for a rigid hierarchical structure in
tree-like documents. Ohst in [26] sums up differences between string and
tree matching problem. Algorithms for finding differences between particular
kinds of structured documents like LATEX, XML, HTML files, or data in CAD
databases [27, 28] are often based on algorithms solving the tree-to-tree cor-
rection problem [29, 30, 10, 1]. These algorithms interpret documents as trees.
Algorithms on trees try to find a sequence of edit operations that transform
one tree into the other. Such sequences are called edit scripts (consisting of
edit operations). The algorithms are based on different sets of edit operations.
Every set includes basic operations for creating, deleting, or modifying a ver-
tex of a tree. To further illustrate the problem, we continue by enclosing an
example of finding differences between versions of a UML diagram.

UML diagram version The approach proposed by Ohst in [26] is based on
the assumption that software documents are modeled in a fine-grained
way, i.e., they are stored as syntax trees in XML files or a repository
system. He proposed a computation algorithm that detects structural
changes and enables their appropriate visualization. The example pre-
sented in [26] shows how to visualize changes to a document with a
tree-like structure. The first three Figures 2.1,2.2, and 2.3 show grad-
ual changes to an UML diagram. The base document is modified, see
Figure 2.1. Firstly, by extending with inheritance, see Figure 2.2. Sec-
ondly, by adding an export feature, see Figure 2.3. The fourth Figure
2.4 shows all submitted changes together to the base document with re-
spect to the hierarchical structure. The fifth Figure 2.5 shows the result
(visualization of gradual changes to a UML document) of Ohst paper.

14

2.1. Tree Comparison and Related Problems

Figure 2.2: Class diagram of Figure 2.1 extended with inheritance. Source:
[26]

Figure 2.3: Class diagram from Figure 2.2 extended with export functionality.
Source: [26]

Proposed solution in [26] results in the display shown in Figure 2.5.
There are systematically marked changes displayed in one picture. Green
color represents newly added features. On the contrary, in red are
deleted links of the base document (effectively replaced by the green
ones). In gray color is a standalone extension. Such a result cannot be
achieved only by simple string comparison. A deeper understanding of

15

2. Related Work

Figure 2.4: Unified document showing the differences between the base docu-
ments. Source: [26]

Figure 2.5: The result (visualisation of gradual changes to the base UML
document) of the algorithm proposed in [26].

data structure and the exploitation of features of trees are needed to
correctly calculate (and visualize) the difference.

Advanced Comparison Method Another example of tree usage used for
the aim of this thesis is presented in [31]. Oommen came up with an
advanced comparison method of the closeness of a target tree to other
trees. The method is called Noisy Sub-Sequence Tree Processing. It com-

16

2.2. String Pattern Matching

pares the closeness of a target tree to other trees located in a database of
trees. The method works in the following schema (as presented in [31]):

1. Calculate a constraint in respect of each tree in the database based
on an estimated number of edit operations and a characteristic of
the target tree.

2. Calculate a constrained tree edit distance between the target tree
and each tree in the database using the constraint obtained in
step (1)

3. Compare the calculated constrained tree edit distances.

Oommen proposed a method to compare the closeness of a tree pattern
to other trees.
By definition, every subtree is itself a tree. A tree can be seen as a
hierarchical data structure of subtrees. Therefore, Oommen’s research
can be adapted to a new method that searches for a given tree in all
of the subtrees of another tree. Concept of the Oomen’s algorithm is
applied to the new tree pattern matching method proposed in this thesis.

2.2 String Pattern Matching
Pattern matching automaton belongs to a family of finite state automata
(see Definition 1.2.4). In Example 2.6 there is a nondeterministic finite state
automaton that is used for string pattern matching. It parses all strings whose
suffix is “bab”. Pattern matching automata are built offline, meaning the
searched pattern P is known in advance. For each pattern P , there has to be
a standalone pattern matching automaton. (These standalone automata can
be joint later. [32, 12]) Pattern matching automata (especially determinized)
can be memory intensive. However, searching for pattern P in text T via
a pattern matching automaton runs in O(|T |). This is a typical space-time
tradeoff in computer science. Space-time tradeoff is a case when algorithm
trades increased space usage with decreased computational time.

The idea of pattern matching automaton is used for a new method that is
proposed by this thesis.

Example 2.1 (Simulated Run of a pattern matching automaton for pattern
P = bab). Figure 2.6 shows a nondeterministic pattern matching automaton.
For build construction details see [12, 33].

• Text T = bbabbabab

• Pattern P = bab

17

2. Related Work

0start 1 2 3

Σ

b a b

Figure 2.6: Pattern matching automaton A1 for P = bab.

In this section, we simulate how pattern matching automaton A1 that
accepts all strings whose suffix is equal to P = bab works with a text T =
bbabbabab

Because of the (see Definition 1.1) Σ transition at the state 0, the text T
is effectively split into these suffixes:

1. T1,...,|T | = bbabbabab

2. T2,...,|T | = babbabab

3. T3,...,|T | = abbabab

4. T4,...,|T | = bbabab

5. T5,...,|T | = babab

6. T6,...,|T | = abab

7. T7,...,|T | = bab

8. T8,...,|T | = ab

9. T|T | = b

These substrings are one by another, processed by A1. Iterations of the
automaton are counting. If any substring T1,...,|T |, . . . , T|T | ends up in the
state 3, the current count of iterations marks the position of an occurrence of
pattern P in the string T .

Tables 2.1, 2.2, and 2.3 show the process of finding all occurrences of
pattern P in the text T = bbabbabab. The first row of a table consists of
input text T . The last row of a table consists of numbers which, if present,
point to a position in text T where pattern P occurs. The remaining rows
(the second, third, and fourth) in Table 2.4 consists of the states reached in
the automaton by a substring of text T . Table 2.1 shows the first occur-
rence in text T =bbabbabab. Table 2.2 shows the second occurrence in text
T =bbabbabab. Table 2.3 shows the third occurrence in text T =bbababbab.
Table 2.41 sums up simulated work of the pattern matching automaton A1.

1The table is a result of Basic Simulation Method, see [33]

18

2.2. String Pattern Matching

substring(T) • b a b b a b a b
Iteration counter 1 2 3 4 5 6 7 8 9

Table 2.1: Pattern matching automaton simulation—occurrence 1.

substring(T) • • • • b a b a b
Iteration counter 1 2 3 4 5 6 7 8 9

Table 2.2: Pattern matching automaton simulation—occurrence 2.

substring(T) • • • • • • b a b
Iteration counter 1 2 3 4 5 6 7 8 9

Table 2.3: Pattern matching automaton simulation—occurrence 3.

T - b b a b b a b a b
State 0 0 0 0 0 0 0 0 0 0

1 1 2 1 1 2 1 2 1
3 3 3

Position: 4 7 9

Table 2.4: Pattern matching automaton simulation—all occurrences.

0start 1 2 3b a b

Figure 2.7: Pattern matching automaton for string P0 = bab.

2.2.1 Approximate Pattern Matching Automata
Melichar in [34] proposes automata approach to approximate pattern match-
ing. He makes use of the theory of finite automaton for approximate pattern
matching. In this section, a variant of a finite automaton for approximate pat-
tern matching is discussed. Hamming edit distance is used in Example 2.2.
(The Hamming distance between two strings of equal length is the minimum
number of substitutions required to change one string into the other. This
edit distance has the only one edit operation—replace a symbol.)

Example 2.2. This example demonstrates automata usage for approximate
pattern matching. Consider the sample string from the previous Example 2.1
P = bab.

• Firstly, we create a pattern matching automaton as in Example 2.1. As
Hamming edit distance is specified for two strings with the same length,
there is no loop transition at the first state. See Figure 2.7.

19

2. Related Work

0start 1 2 3 edit distance=0

11 21 31 edit distance=1

22 32 edit distance=2

33 edit distance=3

b a b

Σ a b

Σ b

Σ

Figure 2.8: Approximate pattern matching automaton for P = bab.

• Secondly, we add a supported edit operation into the automaton. This
is done by connecting it to a pattern matching automatons for strings
P1 = ab and P2 = a. These are connected via Σ transitions
(Definition 1.1), see Figure 2.8.
Usage of additional levels works as a simple incremental counter. Every
level represents a value of the total edit distance. By every step to a
lower level in an automaton, edit distance is increased by one. (See [34]
for formal definition.)
Decision problem version of the automaton, with the specified maximal
edit distance equals to k (decide if edit distance between P and T is
smaller than k), can be easily created by allowing only k levels in the
automaton and checking if the automaton finishes in accepting state.

2.3 1-degree Edit Distance and Related Problems
This section sums up Selkow’s paper Tree to tree editing problem [1] in which
1-degree edit distance was introduced. Selkow proposes a method for the tree
to tree editing problem. The paper proposes a solution that compares two
trees and shows which changes need to be done, so the trees match. He works
with rooted labeled ordered trees. (For labeled ordered tree definition see
Definition 1.31 and 1.32.) Labeling function is denoted as label(X), where X
is a labeled rooted ordered tree. The labeling function returns a label of a
given tree. Selkow defines three different operations. They are: (1) Insert a
leaf (2) Delete a leaf (3) Relabel a vertex. Each of the edit operations may be
used recursively. Therefore, it is always possible to compute minimal 1-degree
edit distance. Only those three edit operations may be used to transform
trees to match each other. By applying this restriction to edit operations set,

20

2.3. 1-degree Edit Distance and Related Problems

the proposed method yields into an algorithm that is transparent and runs in
polynomial time. The algorithm in pseudocode is presented in Section 2.3.1.
Here, we present definitions used in Selkow’s approach, show how Selkow
manipulates via the edit operations with trees, and discuss three fundamental
theorems used by the Selkow method.

Formally edit operations are defined as follow:

Definition 2.1 (Relabel Operation). Given a tree with label(T) = sj and
subtrees T1, . . . , Tm: A label change operation Relabel(sj , sk) applied to T
yields the tree T ∗ with label(T ∗) = sk and subtrees T1, . . . , Tm.

In other words, the structure of the relabeled tree T remains the same,
only the label of the root vertex of the tree T changes from sj to sk.

Definition 2.2 (Insert Operation). Given a tree with label(T) = sj and
subtrees T1, . . . , Tm:
For 0 ≥ i ≥ m and tree A, an insert operation Insert(A) applied to T at i
yields the tree T ∗ with label(T ∗) = sj and subtrees T1, . . . , Ti, A, Ti+1, . . . , Tm.

In other words, the structure of the tree T is extended by adding a subtree
A into ith position between the subtrees of the tree T .As this operation is
only defined for leaves, it is always possible to perform such action without
affecting other vertices of the tree T .

Definition 2.3 (Delete Operation). Given a tree with label(T) = sj and
subtrees T1, . . . , Tm:
For 1 ≥ i ≥ m , a delete operation Delete(Ti) applied to T at i yields the tree
T ∗ with label(T ∗) = sj and subtrees T1, . . . , Ti−1, Ti+1, . . . , Tm.

In other words, the structure of the tree T is reduced by taking out the
ith subtree. As this operation is only defined for leaves, it is always possible
to perform such action without affecting other vertices of the tree T .

Definition 2.4 (Edit Operation). An edit operation is any of the above three
operations.

Definition 2.5 (Cost of edit operation). We associate a nonnegative cost with
each edit operation in the following manner. Associated with each pair of labels
(si, sj) is a cost CRelabel(si, sj) of applying the operation Relabel(si, si). For
each label si, we let CInsert(si) and CDelete(si) denote the costs of applying op-
erations Insert(T) and Delete(T) respectively, where T is a tree with one vertex
with label si. For an arbitrary tree T, let cInsert(T) =

∑
vϵT cInsert(labelOf(v))

and cDelete(T) =
∑

vϵT cDelete(labelOf(v)). For any three labels si, sj and
sk we assume CRelabel(si, si) = 0 and CRelabel(si, sj) ≥ CRelabel(si, sk) +
CRelabel(sk, sj).

21

2. Related Work

In other words, every edit operation has it’s specified cost. Cost is a non-
-negative numeric value. The cost of relabeling any vertex to its own label
is set to 0. It is not possible to decrease the total cost of edit operations by
repetitive relabeling vertices.

Definition 2.6 (Edit Tree distance). Given any trees A and B and the set of
sequences of edit operations which when applied to A yield a tree equal to B,
we let σ(A, B) denote the minimum of the sums of the costs of each sequence.
If tree A has subtrees A1, . . . , Am and tree B has subtrees B1, . . . , bn, then
σ(A, B) ≤ CRelabel(label(A), label(B)) +

∑m
i=1 CDelete(Ai) +

∑n
i=1 CDelete(Bi).

Selkow also shows the validity of theorems2 2.1, 2.2, and 2.3. The algorithm
is based on these theorems. The first two theorems show how to calculate total
cost when comparing a vertex to an arbitrary tree. The third theorem says
about comparing two arbitrary trees: A and B. The total cost value is at
maximum equal to relabeling the roots plus deleting all the vertices from the
first and inserting all the vertices from the second one.

Theorem 2.1. For any tree A with subtrees A1, . . . , Am (m ≥ 0) and tree B
with subtrees B1, . . . , Bn (n ≥ 0): σ(A(0), B(j)) = CRelabel(label(A), label(B))+∑i

k=1 CInsert(Bk).

Theorem 2.2. For any tree A with subtrees A1, . . . , Am (m ≥ 0) and tree B
with subtrees B1, . . . , Bn (n ≥ 0): σ(A(i), B(0)) = CRelabel(label(A), label(B))+∑i

k=1 CDelete(Ak)
for 0 ≤ j ≤ n and 0 ≤ i ≤ m.

Theorem 2.3. For any tree A with subtrees A1, . . . , Am (m ≥ 0) and tree B
with subtrees B1, . . . , Bn (n ≥ 0):

σ(A(0), B(j)) = min


σ(A(i − 1), B(j − 1)) + σ(A(i), B(j))
σ(A(i), B(j − 1)) + CInsert(B(j))
σ(A(i − 1), B(j − 1)) + CDelete(A(i))abc

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For better understanding, we present examples of 1-degree edit distance.
In all examples tree A illustrated in Figure 2.9 is considered. The examples
consist of pairs of trees. On the left side of each pair, there is a sample tree B.
An edit operation is applied to the tree B to match the tree A. On the right
side of each pair, there is the tree B after applying edit operation/operations.
Edited tree B (right side of a pair) matches the tree A. Each edit operation
is densely dotted and highlighted in a different color. Inserted vertices are
highlighted in the green color. Deleted vertices are highlighted in the red
color. Relabeled vertices are highlighted in the blue color.

2For proofs, see [1].

22

2.3. 1-degree Edit Distance and Related Problems

a

b

c

g

d

e f

Figure 2.9: Sample tree A.

a

b

c

g

d

f

Tree B1.

a

b

c

g

d

e f

Edited B1 matches A 2.9.

Figure 2.10: 1-degree edit distance = 1; Insert.

a

b

c

g

d

e

Tree B2.

a

b

c

g

d

e f

Edited B2 matches A 2.9.

Figure 2.11: 1-degree edit distance = 1; Insert.

Example 2.3. Insert edit operation is presented in multiple figures in this
example. See Figures 2.10, 2.11, and 2.12.

Example 2.4. Delete edit operation is presented in multiple figures in this
example. See Figures 2.13, 2.14, and 2.15.

Example 2.5. Relabel edit operation is presented in multiple figures in this
example. See Figures 2.16, and 2.17.

2.3.1 Tree to Tree Editing Problem Algorithm
Selkow’s algorithm computes the minimal edit distance between two trees.
It allows only leaf insertion, deletion, and relabel a vertex operation. By
applying these restrictions, the algorithm is straightforward yet effective (the
algorithm is polynomial in respect to the height of the input trees). The
algorithm is recursive; it outputs tree edit distance. Trees to be compared
are on the input. It starts with both root vertices of the two compared trees.

23

2. Related Work

a

b

d

e f

Tree B3.

a

b

c

g

d

e f

Edited B3 matches A 2.9.

Figure 2.12: 1-degree edit distance = 2; Insert.

a

b

c

g

d

e t f

Tree B4.

a

b

c

g

d

e t f

Edited B4 matches A 2.9.

Figure 2.13: 1-degree edit distance = 1; Delete.

a

b

c

g

d

e t

u

f

Tree B5.

a

b

c

g

d

e t

u

f

Edited B5 matches A 2.9.

Figure 2.14: 1-degree edit distance = 2; Delete.

a

b

c

g

d

z e t

u

f

Tree B6.

a

b

c

g

d

z e t

u

f

Edited B6 matches A 2.9.

Figure 2.15: 1-degree edit distance = 3; Delete.

The algorithm is then called with each child of the first root vertex and each
child of the other root. In each recursive step, it uses a temporary matrix in
which it stores intermediate results— minimum cost to edit the subtrees. The
time complexity of the algorithm is O(n · m · d), where n, m are the maximum
degree of the first tree, respectively the second and d is the maximum depth
of the trees.

24

2.3. 1-degree Edit Distance and Related Problems

q

b

c

g

d

e f

Tree B7.

a

b

c

g

d

e f

Edited B7 matches A 2.9.

Figure 2.16: 1-degree edit distance = 1; Relabel.

q

u

c

G

d

e t

Tree B8.

a

b

c

g

d

e f

Edited B8 matches A 2.9.

Figure 2.17: 1-degree edit distance = 3; Relabel.

Notation used in Example 2.6

• Let X be a vertex in an arbitrary tree A. Let Y be a vertex in arbitrary
tree B. Notation used in this example reflects this fact as XA and YB.

• Edit operation insertA(YB) returns the cost of inserting the vertex YB

from the tree B into the tree A. Insert edit operation always inserts a
vertex from the second tree into the first.

• Edit operation deleteA(XA) returns the cost of deleting the vertex XA

from the tree A. Delete edit operation always deletes a vertex from the
first tree.

• Edit operation relabel(XA, YB) returns the cost of relabeling the vertex
XA from the tree A to label of the vertex YB from the tree B.

• Notation slkwDst(XA, YB) is a recursive call of the algorithm itself with
the trees (XA, YB) as an input.

Example 2.6 (Simulated run of the algorithm). As input for Algorithm 1
a tree pattern P and an input tree T are used. Both of them are shown in
Figure 2.18. Tree T is edited to match the tree pattern P . (Edited tree T is
also shown in Figure 2.18.)

25

2. Related Work

Algorithm 1: 1-degree Edit Distance algorithm.
Data: Tree A, Tree B
Result: Edit distance between tree A and B

1 m = Degree(A);
2 n = Degree(B);
3 Matrix D[][] = new [0, . . . , m][0, . . . , n];
4 D[0][0] = cRelabel(label(A), label((B));
5 for i = 1; i ≤ m; i + + do
6 D[i][0] = D[i − 1][0] + cDelete(Ai);
7 end
8 for j = 1; j ≤ n; j + + do
9 D[0][j] = D[0][j − 1] + cInsert(Bj);

10 end
11 for i = 1; i ≤ m; i + + do
12 for j = 1; j ≤ n; j + + do
13 D[i][j] = min(D[i − 1][j − 1] + slkwDst(Ai, Bi), D[i][j − 1] +

cInsert(Bj), D[i − 1][j] + cDelete(Ai));
14 end
15 end
16 return D[m][n];

X

Y

T U

Z

Tree T.

X

Y K

T U

Z

Edited Tree T.

X

Y K

T U

Tree P.

Figure 2.18: Sample trees used for simulated run of the algorithm.

1. Create a matrix D[m][n]. The matrix is initilized with following values,
see Table 2.5.

• D[0][0] = relabel(rootT , rootP) = 0

• D[0][1] = deleteT (TT , UT , YT) = 3

• D[0][2] = deleteT ({TT , UT , YT } + ZT) = 4

• D[1][0] = insertT (YP) = 1

• D[2][0] = insertT (YP + {TP , UP , KP }) = 4

26

2.3. 1-degree Edit Distance and Related Problems

0 3 4
1
4

Table 2.5: Matrix D in initiall state.

0 3 4
1 2 3
4 2 3

Table 2.6: Matrix D fully computed.

2. Compute matrix D.

a) To make the example more transparent, we substitute reccurent
calls with precomputed results.

• slkwDst(YT , YP) = deleteT (TT) + delete(UT) = 2

• slkwDst(YT , KP) = relabel(YT , K) = 1

• slkwDst(ZT , YP) = relabel(YT , K) = 1

• slkwDst(ZT , KP) = relabel(YT , K) + ins(T) + ins(U) = 3

b) Fill matrix D with precomputed results, see Table 2.6.

• D[1][1] = min


D[0][0] + slkwDst(YT , YP) = 0 + 2
D[0][1] + insertT (YP) = 3 + 1
D[1][0] + deleteT (TT , UT , YT) = 1 + 3


• D[2][1] = min


D[1][0] + slkwDst(ZT , YP) = 1 + 1
D[1][1] + insertT (TP , UP , KP) = 2 + 3
D[2][0] + deleteT (TT , UT , YT) = 4 + 3


• D[1][2] = min


D[0][1] + slkwDst(YT , KP) = 3 + 1
D[0][2] + insertT (YP) = 4 + 1
D[1][1] + deleteT (ZT) = 2 + 1


• D[2][2] = min


D[1][1] + slkwDst(ZT , KP) = 2 + 3
D[1][2] + insertT (TP , UP , KP) = 3 + 3
D[2][1] + deleteT (ZT) = 2 + 1



27

2. Related Work

0 → 3 → 4
↓ ↘
1 2 → 3
↓ ↘
4 2 → 3

Table 2.7: Solution visualized in matrix D.

3. Return result.
Found sequence of edit operations is reflected in matrix D, see
Table 2.7.

insertT (YP), relabel(YT , KP), deleteT (ZT)

Return D[3][3] = 3.

28

Chapter 3
Using Pushdown Automata for

Approximate Tree Pattern
Matching

This chapter introduces a novel automata-based method for searching for
approximate matches of a tree pattern in an input tree. The problem of
edit distance between two trees is a subproblem to approximate tree pat-
tern matching problem. The proposed method uses Selkow edit operations,
see Section 2.3.

The first section (Section 3.1) in this chapter introduces and defines a new
approach for claiming a found pattern occurrence in the field of tree matching
problem. In the second section (Section 3.2), the approach from the first
section is further extended to the field of approximate tree searching problem.
The last section (Section 3.3) proposes a new method based on the approach
from Sections 3.2, 3.3. The proposed method creates a pushdown automaton
that is used for approximate tree pattern matching.

Similarly as in string matching we use the following notations:

• P for a tree pattern.
• T for an input tree.

3.1 Block Type Matching
There are several approaches for tree pattern matching that search an input
tree up to its leaves. However, these approaches do not solve problems pre-
sented in Examples 3.1, and 3.2. Therefore, we propose a new approach to tree
pattern matching to address such problems. We call it Tree block type pattern
matching that is throughout the rest of this thesis abbreviated to Block type
matching.

29

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

Root

Listing

SellerInfo

SName

ItemInfo

ID

Figure 3.1: Tree pattern P .

Definition 3.1 (Block edit operation). Let T = (V, E) be a labeled unranked
rooted ordered tree with label(T) = sj and subtrees T1, . . . , Tm:
For 1 ≥ i ≥ m, if Ti is a leaf and is either the left-most or the right-most child
of any vertex Ti then the block edit operation BlckEditOp(Ti) applied to T at i
yields the tree T ∗ with label(T ∗) = sj and subtrees T1, . . . , Ti−1, Ti+1, . . . , Tm.

In other words, Block edit operation works similarly to Delete operation,
see Definition 2.3. However, a vertex can be deleted via Block edit operation
only if the vertex is a leaf and is the left-most, respectively the right-most
descendant of its parent.

Definition 3.2 (Tree block type pattern matching). A tree pattern P =
(VP , EP) matches an input tree T = (VT , ET) in a vertex n ∈ NT if the
subtree of T rooted at n modified by block edit operations matches P .

The block edit operation deletes a vertex in the same way as Delete opera-
tion, but the cost of the Block edit operation is zero. Therefore, the Block edit
operation does not require an occurrence of a searched pattern in an arbitrary
tree T to be a subtree of T .

When we search for an occurrence with a minimal edit distance k, we
prefer using the Block edit operation rather than the Delete operation because
the cost of Block edit operation is lower than the Delete edit operation cost.
Therefore, the set of vertices with Block edit operation applied to them is
disjoint with the set of vertices with Delete operation applied to them. These
relaxations are useful for everyday search requirements. Typically, when a
user searches for particular information and does not know the whole context
of it.

Example 3.1. An example use-case of Block type matching is searching in an
XML document. The structure shown in Figure 3.2 of an XML document is
from a real-world data from eBay auctions.

Let suppose a user is only interested in all vertices labeled as ID and SName.
This query can be represented as a tree, see Figure 3.1. The information the
user is searching for is the tree pattern P . The input tree T is the struc-
ture of the whole document presented in Figure 3.2. The goal is to find all
occurrences of P in T . There are many other categories in the input tree T

30

3.1. Block Type Matching

Root
Listing...........................First listing-root vertex of an offer

Seller Info Infomartion about a seller
SName .. Seller’s name

GivenN...Given name
SurN...Surname

SRating ... Seller’s rating
Item Info.....................Information obout an offered item

ID...Identication number
Battery.........................Description of offerred battery

Capacity...........................Capacity of offered item
Payment...............................Supported type of payment

Listing.........................Second listing-root vertex of an offer
Seller Info Infomartion about a seller

SName .. Seller’s name
GivenN...Given name
SurN...Surname

SRating Info Seller’s rating
Item Info.....................Information obout an offered item

CPU.......................................Type of offered CPU
Vendor..................................Vendor of the CPU

ID...Identication number
Payment...............................Supported type of payment

Listing..........................Third listing-root vertex of an offer
Payment...............................Supported type of payment
Seller Info Infomartion about a seller

SRating Info Seller’s rating
SName .. Seller’s name

GivenN...Given name
SurN...Surname

Item Info.....................Information obout an offered item
ID...Identication number
Color.....................................Color of offered item

Figure 3.2: Sample XML structure.

that the user is not interested in (labels were truncated). For example, item
info contains different subtrees for each product. The result of the example
for the occurrences of the tree pattern P in the input tree T is shown in
Figure 3.3. The searched information is highlighted in blue. The vertices
deleted by Block type operation are crossed out.

31

3.
U

sing
P

ushdow
n

A
utom

ata
for

A
pproxim

ate
T

ree
Pattern

M
atching

Root

Listing

SellerInfo

SName

GivenN SurN

SRating

ItemInfo

ID Battery

Capacity

Payment

Listing

SellerInfo

SName

GivenN SurN

SRating

ItemInfo

CPU

Vendor

ID

Payment

Listing

Payment SellerInfo

SRating SName

GivenN SurN.

ItemInfo

ID Color

Figure 3.3: Real world auction data. Input tree T with highlighted occurrences of tree pattern P from Figure 3.1.

32

3.1. Block Type Matching

Example 3.2. Another example use-case of Block type matching is search-
ing in an HTML document for specific tags. If the users wants to find all
paragraphs <p> which contain two sections in bold . We do not want to
specify:

• which specific elements are in bold sections,

• which element is the paragraph <p> enclosed in,

• if paragraph <p> has any other descendant element next to the the
wanted two bold sections.

Theorem 3.1. Let P = (VP , EP) and T = (VT , ET) be two labeled unranked
rooted ordered trees, respectively. Let O = {(VO1, EO1), · · · , (VOn, EOn)} be a
set of all occurences of P in T . Let VR = VT \ {VO1, · · · , VOn} be a set of
vertices. Block type matching allows any occurence Oi ∈ O to have a vertex
v ∈ VR as a descendant of any vertex u ∈ VOi.

In other words, an occurrence of P in T found via Block type matching can
have additional subtrees below itself.

Proof. Let P = (VP , EP) and T = (VT , ET) be two isomorfic labeled unranked
rooted ordered trees, respectively. Let X be an arbitrary labeled unranked
rooted ordered tree. Let T2 be a tree that is created by adding X as a de-
scendant to any leaf a ∈ NT . Theorem 3.1 says that there is a Block type
matching occurrence of P in T2. Definition 3.2 allows repetetive deleting of
either the left-most, or the right-most leaf in the input tree. Therefore, it is
always possible to recursively delete all vertices of X in T2. T2 \X is isomorfic
to T , T is isomorfic to P . Occurrence of P in T is claimed.

Theorem 3.2. Let P = (VP , EP) be a labeled unranked rooted ordered tree.
Let T = (VT , ET), where VT = VP and ET = EP be a labeled unranked rooted
ordered tree. For each vertex v ∈ VT : u1 . . . un ∈ VT , {v, u1}, . . . , {v, un} ∈ EP

(u1 …un are ordered children of v) add vertices u0 and un+1 :
{v, u0}, {v, u1}, . . . , {v, un}, {v, un+1} ∈ ET of the tree T as the new left-most,
respectively right-most children of vertex v. Block type matching finds an
occurence of P in the modified T .

In other words, Block type matching occurrence of P in T can have an
additional sibling on the left/right side.

Proof. Let P = (VP , EP) and T = (VT , ET) be two isomorfic labeled unranked
rooted ordered trees, respectively. Let X be an arbitrary labeled unranked
rooted ordered tree. Let T2 be a tree that is created by adding X as the left-
most descendant to any vertex a ∈ NT , the right-most descendant respectively.
Theorem 3.2 says that there is a Block type matching occurrence of P in
T2. Definition 3.2 allows repetetive deleting of either the left-most, or the

33

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

a

b

c

g

d

e f

Tree pattern P .

u

a

b

c

g

h

d

e f t

x

Found exact occurrence of P in T .

Figure 3.4: Example of Block Type Matching.

right-most descendant in the input tree. Therefore, it is always possible to
recursively delete all the vertices of X in T2. T2 \ X is isomorfic to T , T is
isomorfic to P . Occurrence of P in T is claimed.

Example 3.3. The example shows a concrete case of applying Block type
matching to a tree-search problem. Figure 3.4 consists of a pair of trees. On
the left side, there is a sample tree pattern P we search for. On the right
side, there is an input tree T in which we search. The Block type matching is
applied. Exact matching is used. The occurrence of tree pattern P found in
the input tree T is highlighted in a light blue color in Figure 3.4.

3.2 Approximate Block Type Matching
The goal of this thesis is to propose a method for approximate tree pattern
matching. We combine Block type matching and Selkow edit operations to
achieve the goal. This combination is called Approximate block type match-
ing. Concept and implementation of Block type matching provide a possibil-
ity to use Selkow edit operation Delete instead of it. Therefore the proposed
method in this thesis is functional and useful even without Block type match-
ing. Approximate block type matching uses the Selkow’s edit operations (as
presented in 2.3). Because Block type matching only specifies conditions un-
der which an occurrence is claimed to be found, the effects of the Selkow’s
operations remain the same.

Definition 3.3 (Block edit distance). Let P = (VP , EP) and T = (VT , ET)
be two labeled unranked rooted ordered trees. Block edit distance is a function
BlckDist(P, T) that returns minimal cost of edit operations in total to trans-
form T to P . Tree T is modified by Selkow edit operations, see Definition 2.3,
and by the block edit operation, see Definition 3.1. Block edit operation cost
value equals to zero.

34

3.2. Approximate Block Type Matching

a

b

c

g

d

e f

Figure 3.5: Tree pattern P .

Definition 3.4 (Approximate tree block type pattern matching with max-
imum of k errors). A tree pattern P = (VP , EP) matches an input tree
T = (VT , ET) in a vertex n ∈ NT if the block edit distance (BlckDist) between
the pattern P and the subtree of T rooted at n is less than or equal to k, block
type matching is applied. i.e., BlckDist(P, Tn) ≤ k.

Examples 3.4, 3.5, and 3.6 show Approximate tree block type pattern
matching with k errors. In other words these examples show combinations of
Block type matching and Selkow edit operations. In all of the examples below,
the tree pattern P from Figure 3.5 is searched in various input trees.

The examples are divided into three categories by an edit operation. Mul-
tiple examples of a specific edit operation and Block type matching is presented
in each of them. Each edit operation is highlighted in a different color. Inserted
vertices are highlighted in the green color. Deleted vertices are highlighted in
the red color. Relabeled vertices are highlighted in the blue color. The occur-
rence of the tree pattern P found in an edited input tree Ti (i is an index) is
highlighted in a light blue color.

Example 3.4 (Insert edit operation combined with Block type matching).
The edit operation is presented here in multiple examples. See Figures 3.6,
3.7, and 3.8.

Example 3.5 (Delete edit operation combined with Block type matching).
The edit operation is presented here in multiple examples. Figures 3.9, and
3.10 show difference in input tree that results in using Delete edit operation
instead of Block type matching. See Figures 3.9, 3.10, 3.11, and 3.12.

Example 3.6 (Relabel edit operation combined with Block type matching).
The edit operation is presented here in multiple examples. See Figures 3.13,
and 3.14.

35

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

u

a

b

c

g

h

d

f

x

Tree T1.

u

a

b

c

g

h

d

e f

x

Edited T1 block matches P from
Figure 3.5.

BlckDist(P, T1) = 1; Editscript = Ins(e).

Figure 3.6: Pattern P is in T1 at vertex a, edit distance = 1.

u

a

b

c

g

h

d

e

x

Tree T2.

u

a

b

c

g

h

d

e f

x

Edited T2 block matches P from
Figure 3.5.

BlckDist(P, T2) = 1; Editscript = Ins(f).

Figure 3.7: Pattern P is in T2 at vertex a, edit distance = 1.

u

a

b

d

e f

x

Tree T3.

u

a

b

c

g

d

e f

x

Edited T3 block matches P from
Figure 3.5.

BlckDist(P, T3) = 2; Editscript = Ins(c), Ins(g).

Figure 3.8: Pattern P is in T3 at vertex a, edit distance = 2.

36

3.2. Approximate Block Type Matching

u

a

b

c

g

h

d Y

e f t

x

Tree T4.

u

a

b

c

g

h

d Y

e f t

x

T4 block matches P from Figure 3.5.

BlckDist(P, T4) = 0.

Figure 3.9: Pattern P is in T4 at vertex a, edit distance = 0.

u

a

b

c

g

h

d

e t f

x

Tree T5.

u

a

b

c

g

h

d

e t f

x

Edited T5 block matches P from
Figure 3.5.

BlckDist(P, T5) = 1; Editscript = Del(t).

Figure 3.10: Pattern P is in T5 at vertex a, edit distance = 1.

u

a

b

c

g

h

d

e t

u

f

x

Tree T6.

u

a

b

c

g

h

d

e t

u

f

x

Edited T6 block matches P from
Figure 3.5.

BlckDist(P, T6) = 2; Editscript = Del(u), Del(t).

Figure 3.11: Pattern P is in T6 at vertex a, edit distance = 2.

37

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

a

b

c

g

h

d

z e t

u

f

Tree T7.

a

b

c

g

h

d

z e t

u

f

Edited T7 block matches P from
Figure 3.5.

BlckDist(P, T7) = 3; Editscript = Del(z), Del(u), Del(t).

Figure 3.12: Pattern P is in T7 at vertex a, edit distance = 3.

u

q

b

c

g

d

e f

x

Tree T8.

u

a

b

c

g

d

e f

x

Edited T8 block matches P from
Figure 3.5.

BlckDist(P, T8) = 1; Editscript = Rel(a).

Figure 3.13: Pattern P is in T8 at vertex q, edit distance = 1.

u

q

u

c

g

d

e t

x

Tree T9.

u

a

b

c

g

d

e f

x

Edited T9 block matches P from
Figure 3.5.

BlckDist(P, T9) = 3; Editscript = Rel(a), Rel(b), Rel(f).

Figure 3.14: Pattern P is in T9 at vertex q, edit distance = 3.

38

3.3. Pushdown Automata Apx. Block Type Matching Method

3.3 Pushdown Automata Approximate Block Type
Matching Method

In this section, we present a new pushdown automata-based method for an
approximate block type matching. The method combines the theory of pat-
tern matching automata, 1-degree edit distance, and Block type matching all
together.

The method consists of two phases. The first phase is to build an automa-
ton for a specific tree pattern P = (VP , EP). In the second phase, perform
the searching via the automaton—parse an input tree T = (VT , ET) by the
automaton. A user of the method is supposed to submit only valid prefix bar
notation of both the tree pattern P and the input tree T . Tree pattern P
in prefix bar notation is an input for the first phase, a pushdown automaton
M is the output. The second phase takes the automaton M and a searched
input tree T in prefix bar notation as the input and outputs the location of
all occurrences P in T .

3.3.1 Building ABTTPMA
A resulting approximate block type tree pattern matching automaton
(ABTTPMA) is built together from several independent parts. We call these
parts constructions. Each of the constructions brings another functionality to
the automaton. These constructions are needed for ABTPTMA:

• Base of an automaton,

• Block type matching construction,

• Insert edit operation construction,

• Delete edit operation construction,

• Relabel edit operation construction.

This modularity is useful for possible customization of the resulting au-
tomaton. If any edit operation or Block type matching construction is not at-
tached, the automaton works without it. However, edit distance computation
cannot use the detached edit operation. Therefore, the edit distance compu-
tation is modified. For example, if the Block type matching is not desired, its
construction can be swapped with Delete construction in the ABTTPMA. An-
other example is detaching the Relabel construction from ABTTPMA. Then
the automaton is modified to calculate with edit distance similar to Indel
edit distance. See Sections 3.3.1.1 — 3.3.1.6 for detailed explanation of each
construction.

39

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

Pseudocode Notation Algorithm in pseudocode is presented for each of
the constructions. Used methods are described here.

• newInitialState() A method that creates a new initial state and re-
turns it.

• State.addLoopTransitiion(a,b,c) A method that adds a loop tran-
sition with label a, b/c to the state itself,

• State.add(Transition t) A method that adds transition t. Transition
t is an object with specified to, from states, cost, and label.

• Base.add(State s) A method that adds state s to the base of
ABTTPMA.

• prefbar(Tree t) A method that returns t in prefix bar notation.
• Base.getStateAt(int i) A method that returns ith state of the base

of ABTTPMA.
• createBase(Tree P) A method that returns a base of ABTTPMA for

tree P .
• Base.addBlockTypeMatchingConstruction() A method that adds a

Block type matching construction to the base of ABTTPMA.
• Base.addDeleteConstruction() A method that adds Delete construc-

tion to the base ABTTPMA.
• Base.addInsertConstruction() A method that adds Insert construc-

tion to the base ABTTPMA.
• Base.addRelabelConstruction() A method that adds Realabel con-

struction to the base ABTTPMA.

3.3.1.1 Base of an Automaton

Label base of an automaton is used for a pattern matching automaton whose
input is a linearized tree pattern P in prefix bar notation. This base serves
as a spine of the resulting ABTTPMA. Other automata structures are added
to the base. As defined in Notation 1.1, the Σ, Z0/Z0 transition accepts every
symbol, puts the initial stack symbol to the stack, and pops the initial symbol
from the stack.

Algorithm For algorithm in pseudocode creation of the base of ABTTPMA,
see Algorithm 2.

Theorem 3.3 (Correctness of Algorithm 2). Base created by Algorithm 2
works correctly (i.e., it creates the base of ABTTPMA).

Proof. Algorithm 2 is supposed to create a pattern matching automaton. This
is done by creating an initial state, and then for each symbol c of prefix bar
notation P , create a new state and c, Z0/Z0 transition to it. The transitions

40

3.3. Pushdown Automata Apx. Block Type Matching Method

Algorithm 2: Algorithm for base of ABTTPMA creation.
Data: Tree pattern in prefix bar prefbar(P)
Result: Base of ABTTPMA

1 prev = newInitialState() ;
2 prev.addLoopTransition(Σ, ϵ/ϵ);
3 for i = 0; i < prefbar(P).length(); i + + do
4 c = prefbar(P).at(i);
5 to = newState() ;
6 prev.add(new Trans(to : to, cost : 0, label : c, Z0/Z0);
7 base.add(prev);
8 prev = to;
9 end

10 return base;

a

b

c

g

d

e f

Figure 3.15: Tree pattern P .

require an empty stack. (They pop the initial stack symbol “Z0” from the
stack.)

Theorem 3.4 (Time and space complexities of the build phase of the base of
ABTTPMA). The build phase of base of ABTTPMA runs in O(|prefbar(P)|)
and takes space of O(|prefbar(P)|).

Proof. The algorithm for building the base of ABTTPMA once iterates over
all symbols in prefix bar notation of P . In each iteration, there are four
operations. Each takes O(1) time. Each iteration consists of allocating space
for one transition object and one state object. Both of these allocations are
in O(1) space. Therefore, the build phase of base of ABTTPMA runs in
O(|prefbar(P)|) and takes space of O(|prefbar(P)|).

Example 3.7. Visualization of creation of the base of an ABTTPMA.

• Consider an example tree pattern P (see Figure 3.15) :

• Prefix bar notation of P :

prefbar(P) = a b c g | | d | | e| f | |

41

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

0start 1 2 3 4 5 6

7891011121314

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 g, Z0/Z0 |, Z0/Z0 |, Z0/Z0

d, Z0/Z0

|, Z0/Z0|, Z0/Z0e, Z0/Z0|, Z0/Z0f, Z0/Z0|, Z0/Z0|, Z0/Z0

Figure 3.16: Pattern matching automaton for prefbar(P).

• Pattern matching automaton for prefbar(P) is shown in Figure 3.16.

Pattern matching automaton is the base of an ABTTPMA. All other con-
structions are attached to it or extend it.

3.3.1.2 Block Type Matching Construction

Let P = (VP , EP) be a tree pattern and T = (VT , ET) an input tree. Block
type matching relaxes conditions for finding occurrences of P in T by allowing
an occurrence of P in T to have some redundant subtrees. This is explained in
Section 3.1. The construction of Block type matching works by parsing redun-
dant subtrees of possible occurrences of a tree pattern P in an input tree T .
It aims to “consume” all of the symbols of prefix bar notation of a redundant
subtree. Trees in prefix bar notation have a rigid structure. Therefore, we can
rely on the fact that all of the subtrees are closed by an appropriate number of
closing symbols, i.e., “|”. The method uses a stack of a pushdown automaton
to parse each of the closing symbols for every “consumed” vertex correctly.
We propose a non-deterministic structure that is to be attached to each of the
locations where a redundant subtree of a P occurrence is acceptable.

Positioning The positioning of the construction is dependant on the pre-
fix bar notation characteristics. Every two arbitrary trees share the same
characteristics of prefix bar notation. Theorems 3.5, 3.6, and 3.7 clarify the
conclusions arising from Definition 1.34.

Theorem 3.5 (Prefix bar notation—Descendants). When immersing from a
parent A to it’s first child B, symbols “A” and “B” are concurrent in prefix
bar notation.

Theorem 3.6 (Prefix bar notation—Parent). When going up in a tree from
a child B to it’s parent A, symbols “|B” and “|A” are concurrent in prefix bar
notation if B is the right-most child of A.

Theorem 3.7 (Prefix bar notation—Siblings). Two sibling leaves A and B
are represented by a string “A|AB|B” in prefix bar notation.

42

3.3. Pushdown Automata Apx. Block Type Matching Method

Proof. Theorems 3.5, 3.6, 3.7 conclude from Definition 1.34.

Let P = (VP , EP) be a tree pattern whose occurrences are wanted to be
found in an input tree T = (VT , ET). The observation in Section 3.1 suggests
a few positions where found occurrences of the tree pattern P are allowed to
have redundant subtrees. These positions are specified to an arbitrary vertex
n, ∀n ∈ VP . The positions are:

1. the left-most child of n, ∀n ∈ VP

2. the right-most child of n, ∀n ∈ VP

Block type matching does not allow any redundant trees in between arbi-
trary siblings in a search pattern. Therefore, the goal is to detect the siblings
in prefix bar notation. Theorem 3.5 results in Theorems 3.8 — 3.12. The-
orems 3.8, 3.9, and 3.10 show where a redundant tree can be positioned in
order to be parsed by Block type matching. Theorems 3.11, and 3.12 show
where a redundant tree cannot be positioned in order to be parsed by Block
type matching.

Theorem 3.8 (Allowed position for a redundant subtree—next to the
left-most descendant). Let a and b be two vertices in an arbitrary tree T .
Let prefix bar notation of the tree T be (prefbar(T) = . . . a b . . .)— symbols a
and b are concurrent. Then a redundant subtree can be placed in between the
vertices a and b.

Proof. The sequence of the tree T in prefix bar notation means that the vertex
b is the left-most child of a parent a. Therefore, a subtree can be placed to
the left of the vertex b.

Theorem 3.9 (Allowed position for a redundant subtree—next to the
right-most descendant). Let L1 and L2 be two concurrent levels in a tree
T . Let a be a vertex in L1 that is a parent to a vertex b ∈ L2. Let
|a and |b be two concurrent symbols in the prefix bar notation of tree T—
prefbar(T) =, . . . , |b |a . . . ,. Then, a redundant subtree can be placed in be-
tween |b and |a.

Proof. The sequence of the tree T in prefix bar notation means that the vertex
b is the right-most child of a parent a. Therefore, a subtree can be placed to
the right of the vertex b.

Theorem 3.10 (Allowed position for a redundant subtree—as a new descen-
dant). Let a be a leave in an arbitrary tree T . Let |a be a closing symbol of
the vertex a in the prefix bar notation of the tree T . Then, prefix bar notation
of the tree T is prefbar(T) = . . . , a|a, . . .) Then, a redundant subtree can be
placed as a new descendant to the vertex a— in between a and |a.

43

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

Proof. The sequence of the tree T in prefix bar notation means that the vertex
a is a leaf. Therefore, a subtree can be placed as a new descendant to the
vertex a.

Theorem 3.11 (Disallowed position for a redundant subtree—In the begin-
ning of prefix bar notation). Redundant subtree cannot be placed at the very
beginning of the whole prefix bar notation.

Proof. The first symbol in the prefix bar notation is always the root of an
arbitrary tree T . Therefore, adding a subtree there would mean creating an
entirely new tree in parallel to the T , and ABTTPMA accepts on the input
only one tree.

Theorem 3.12 (Disallowed position for a redundant subtree in respect to the
prefix bar representation—in between siblings). Let a and b be two vertices
in an arbitrary tree T . Let |a and |b be closing symbols in the prefix bar
notation of an arbitrary tree T . Let prefix bar notation of the tree T be
prefbar(T) = . . . , |a b, . . .) Redundant subtree cannot be placed in between
concurrent symbols |a and b.

Proof. Sequence in the T tree prefix bar means that the vertex a is a sibling to
the vertex b. Block type matching does not allow redundant trees in between
siblings of a searched pattern.

Example 3.8. The example discusses the essence of possible positions prob-
lem. Figure 3.17 shows a sample tree pattern P whose occurrences we would
search for in an input trees Tallowed and Tdisallowed. Figure 3.19 shows the
input tree Tallowed with all of the possible redundant subtrees. Each of the
allowed positions is symbolized by a green triangle and labeled with a number
(1—the left-most child, 2—the right-most child). If this tree is searched for
tree pattern P , than Block type matching claims an occurrence of the tree pat-
tern P in the input tree Tallowed. Figure 3.18 shows the input tree Tdisallowed

with all of the possible disallowed positions for redundant subtrees. These
positions are crossed out in the red color. If the tree Tdisallowed is searched
for tree pattern P , than Block type matching claims no occurrence of the tree
pattern P in the input tree Tdisallowed.

Example 3.9. This example shows graphical visualization of the allowed
and disallowed positions for redundant subtrees in input trees Tallowed and
Tdisallowed in respect to the prefix bar notation of the tree pattern P that is
searched by Block type matching. Figure 3.17 shows tree pattern P .

• Prefix bar notation of the tree P :
prefbar(P) = a b | c f | g i | | h | | d | e | |.

44

3.3. Pushdown Automata Apx. Block Type Matching Method

a

b c

f g

i

h

d e

Figure 3.17: Patern tree P .

a

b c

f g

i

h

d e

Figure 3.18: Disallowed positions for redundant subtrees in T .

a

1
b

1 2

c

1
f

1 2

g

1
i

1 2

2

h

1 2

2

d

1 2

e

1 2

2

Figure 3.19: Allowed positions for redundant subtrees in T .

• Prefix bar notation of the input tree Tallowed with highlighted allowed
positions for redundant subtrees. (Prefix bar notation of an arbitrary
subtree is labeled as ✓.):

prefbar(Tallowed) = a✓ b✓ | c✓ f ✓ | g ✓ i✓ |✓ | h✓ |✓ | d✓ | e✓ |✓ |.

• Prefix bar notation of the input tree Tdisallowed with highlighted dis-
allowed positions for redundant subtrees. (Prefix bar notation of an
arbitrary subtree is labeled as ×.):

prefbar(Tdisallowed) = a b | × c f | × g i | | × h | | × d | × e | |.

45

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

Algorithm 3: Algorithm for base extension by Block type matching
construction.

Data: Tree pattern in prefix bar notation prefbar(P), Base of the
automaton base

Result: Base of the automaton extended by Block type matching
construction.

1 for i = 1; i < prefbar(P).length(); i + + do
2 previousChar = prefbar(P).at(i − 1);
3 char = prefbar(P).at(i);
4 if !(prevChar == ′|′ && char! = ′|′) then
5 n = base.getStateAt(i);
6 n.add(new Trans(to : n, cost : 0, label : Σ/{|}, ϵ/|);
7 n.add(new Trans(to : n, cost : 0, label : |, |/ϵ);
8 end
9 end

10 return base;

Construction Details Block type matching construction behaves similarly
to delete edit operation. It is needed to parse the input tree T (in prefix
bar notation) without advancing in the ABTTPMA. This is done by adding
two transitions. The first transition parses anything but the unique symbol
| from the input and puts the special symbol to the stack. While the second
transition does the exact opposite, it parses only the special symbol “|” and
pops one from the stack. The construction is presented in Figure 3.20.

Algorithm For algorithm in pseudocode for attaching a Block type matching
construction construction see Algorithm 3.

Theorem 3.13 (Correctness of Algorithm 3). Block type matching construc-
tion created by Algorithm 3 works correctly, i.e., it builds Block type matching
construction to parse redundant trees.

Proof. Algorithm 3 is supposed to create a construction that parses a prefix
bar notation of redundant subtree X. The prefix bar notation of X consists of
symbols from the alphabet and the special symbol “|”. In prefix bar notation,
each symbol (opening symbol of a subtree) is in pair with the “|” (closing
symbol of a subtree). Whenever a loop transition Σ/{|}, ϵ/| is added a tran-
sition |, |/ϵ is added too (see lines 6 and 7). Therefore, for every opening
symbol, a closing symbol is parsed as well. Both of the transitions operate
with the stack of an automaton by putting a mark for every opening symbol,
respectively deleting one for every closing symbol. Therefore, only pairs of
a symbol and the closing symbol can be parsed. Valid location for a Block

46

3.3. Pushdown Automata Apx. Block Type Matching Method

base base base

Σ/{|}, ϵ/|

|, |/ϵ

Figure 3.20: Construction to assure Block type matching.

Type matching construction is described in Section 3.3.1.2. Shortly, the for-
bidden position is between symbols “|” and “a”, where a is any symbol from
the alphabet. Condition on line 4 checks it.

Theorem 3.14 (Time and space complexities of the build phase of Block type
matching construction). Build phase of Block type matching construction runs
in O(|prefbar(P)|) and takes space of O(|prefbar(P)|).

Proof. Algorithm for building Block type matching construction once iterates
over all symbols in prefix bar notation of P . If the condition is met (line 4)
there are three operations to be executed. Each takes O(1) time. In these
three operations, there are two alocations of space for a transition object. Both
of these allocations are in O(1) space. Therefore, the build phase of delete
construction runs in O(|prefbar(P)|) and takes space of O(|prefbar(P)|).

Example 3.10. This example illustrates the design of the construction. See
Figure 3.20. It consists of two-loop transitions, highlighted in the black color.
These are added to the base of an automaton. The base is in the gray color.

3.3.1.3 Shared Features of Edit Operations Constructions

This section discusses the shared features of constructions of all edit opera-
tions. These constructions are based on the approach presented by Melichar
in [34]. However, there are new requirements for an ABTTPMA because of
parsing trees.

• Trees are in prefix bar notation on the input.

• Only leaves can be deleted or inserted.

• Approach from Section 2.2.1 is used.

There is a need to have some counter that should be incremented to in-
dicate the number of edit operations while the constructions handle the edit
operation. The counter feature is implemented via multiple separate levels.
In the same manner as in Section 2.2.1. Each level indicates different (increas-
ing by one) value of edit distance. As ABTTPMA is created for a maximal

47

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

edit distance—specific number k, it is always possible to pre-generate an au-
tomaton with k + 1 levels. (The first level is the base of the automaton + k
different levels for each edit distance value.) Each of the three edit operation
constructions starts by expanding the base (see Section 3.3.1.1) with addi-
tional k levels of an automaton. Then they add various transitions between
these levels.

3.3.1.4 Delete Edit Operation Construction

Let P = (VP , EP) and T = (VT , ET) be two labeled unranked rooted ordered
trees. Occurrences of a tree pattern P are searched for in an input tree T . T
is an input tree we search in for occurrences of a tree pattern P . The search
is conducted with Block type matching specifications. Delete edit operation
deletes a leaf or multiple leaves that form a subtree in the input tree T . The
idea of the Delete edit operation is that there are redundant leaves in the input
tree T . Therefore, there is a need to parse these redundant leaves without
effectively advancing in the pattern matching automaton and increment by
one the sum of edit operations for each deleted vertex.

Positioning Delete edit operation is applied wherever Block type matching
can not be applied, but at the first state of the base, see
Theorems 3.11, and 3.12. Transitions described below are added to every
state of an ABTTPMA without Block type matching construction.

Construction Details The parsing of a redundant tree is done by construc-
tion that is created similarly as a Block type matching construction. Also, the
counter is implemented here. See detailed steps:

1. Create k new levels (L1, . . . , Lk) by cloning the base of an automaton.

2. Repeat the following until there are no appropriate vertices in level L1:

a) Find a vertex nx at position x that is not eligible for Block Type
matching construction on level L1, nx,1 ∈ L1.

i. Connect nx,1 with the vertex nx,2 ∈ L2 (the same position in
the next level).

ii. The connection is a new transition for every symbol except the
one used to hop on to the state to the right of the vertex at
position x. Symbol “|” is added to the automaton stack.

iii. Add a loop |, |/ϵ transition to a vertex n2 that pops a symbol
“|” from the automaton stack.

b) Repeat the second step k-times (for every pair of levels.) → connect
all pairs of vertices at position x ((nx,1, nx,2), . . . , (nx,k−1, nx,k)).

48

3.3. Pushdown Automata Apx. Block Type Matching Method

Algorithm 4: Algorithm for base extension by delete construction.
Data: Tree pattern in prefix bar prefbar(P), Base of the automaton

base
Result: Base of the automaton extended by delete construction.

1 for i = 1; i < prefbar(P).length(); i + + do
2 previousChar = prefbar(P).at(i − 1);
3 char = prefbar(P).at(i);
4 if prevChar == ′|′ && char! = ′|′ then
5 n = base.getStateAt(i);
6 n.add(new Trans(to : n, cost : 1, label : Σ/{|}, ϵ/|);
7 n.add(new Trans(to : n, cost : 0, label : |, |/ϵ);
8 end
9 end

10 return base;

Algorithm For algorithm in pseudocode for attaching a delete construction,
see Algorithm 4.

Theorem 3.15 (Correctness of Algorithm 4). Delete construction created by
Algorithm 4 works as intended, i.e., it builds Delete construction to parses
redundant trees and increment the edit distance counter.

Proof. Algorithm 4 is supposed to create a construction that parses a prefix
bar notation of a tree X. The prefix bar notation of X consists of symbols and
the special character “|”. In prefix bar notation, each symbol (opening symbol
of a vertex) is in pair with the “|” (closing symbol of a vertex). Whenever
a loop transition Σ/{|}, ϵ/| is added a transition |, |/ϵ is added too (see lines
6 and 7). Therefore, for every opening symbol, a closing symbol is parsed
as well. Both of the transitions operate with the stack of an automaton by
putting a mark for every opening symbol, respectively deleting one for every
closing symbol. Therefore, only pairs of a symbol and the closing symbol can
be parsed. Each deleted leaf/subtree X (multiple nested leaves form a subtree)
has it’s cost costX . This value is a sum of all vertices of X. Therefore, for every
opening symbol, the cost of value one is added to the transition signature.
Valid location for delete construction concludes from the fact that a set of
states with Block type matching construction and a set of states with delete
construction are disjoint. Section 3.3.1.2 describes positions where Block type
matching is not allowed. Therefore, these positions are exactly the ones where
delete construction is attached. Condition on line 4 checks for the specified
position (negation of condition used in Block type matching).

Theorem 3.16 (Time and space complexities of the build phase of delete
construction). Build phase of delete construction runs in O(|prefbar(P)|)
and takes space of O(|prefbar(P)|).

49

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

a

b

c d

e

Figure 3.21: Tree P used for Delete construction example.

0start 1 2 3 4 5 6 7 8 9 10

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.22: The base of an ABTTPMA for P .

Proof. Algorithm for building delete construction once iterates over all sym-
bols in prefix bar notation of P . If the condition is met (line 4), there are three
operations to be executed. Each takes O(1) time. In these three operations,
there are two allocations of space for a transition object. Both of these allo-
cations are in O(1) space. Therefore, the build phase of delete construction
runs in O(|prefbar(P)|) and takes space of O(|prefbar(P)|).

Example 3.11 (Delete edit operation construction). This examples demon-
strates idea presented in Section 3.3.1.4.

• Sample input that is to be extended with Delete construction.

– Input paramater k: max edit distance.

k = 3

– The tree pattern P is considered, see Figure 3.21.
– Tree P in prefix bar notation:

prefbar(P) = a b c | d | | e | |

– The base of an automaton for tree P , see Figure 3.22.

• Construction details
The example follows instructions in Section 3.3.1.4.

– Create k new levels (L1, . . . , Lk), see Figure 3.23.
– Find a vertex nx at position x that is not eligible for Block Type

matching construction on level L1, nx,1 ∈ L1, see Figure 3.24.

50

3.3. Pushdown Automata Apx. Block Type Matching Method

0start 1 2 3 4 5 6 7 8 9 10

01 11 21 31 41 51 61 71 81 91 101

02 12 22 32 42 52 62 72 82 92 102

03 13 23 33 43 53 63 73 83 93 103

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.23: k new levels added to the automaton of the tree pattern P .

0start 1 2 3 4 5 6 7 8 9 10

01 11 21 31 41 51 61 71 81 91 101

02 12 22 32 42 52 62 72 82 92 102

03 13 23 33 43 53 63 73 83 93 103

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.24: Vertex nx at position x that is not eligible for Block Type matching
construction on level L1, nx,1 ∈ L1.

– Added transitions for vertices at position x on adjacent levels, see
Figure 3.25.

– Apply previous steps to all vertices not eligible for Block type match-
ing construction. see Figure 3.26.

We are aware of some unusable redundant states and transitions that are
produced by this idea. This problem is addressed in the implementation of
the method.

51

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

0start 1 2 3 4 5 6 7 8 9 10

01 11 21 31 41 51 61 71 81 91 101

02 12 22 32 42 52 62 72 82 92 102

03 13 23 33 43 53 63 73 83 93 103

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Σ/{|}, ϵ/|

Σ/{|}, ϵ/|

Σ/{|}, ϵ/|

|, |/ϵ

|, |/ϵ

|, |/ϵ

Figure 3.25: Added transitions for vertices at position x on adjacent levels.

0start 1 2 3 4 5 6 7 8 9 10

01 11 21 31 41 51 61 71 81 91 101

02 12 22 32 42 52 62 72 82 92 102

03 13 23 33 43 53 63 73 83 93 103

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Σ/{|}, ϵ/|

Σ/{|}, ϵ/|

Σ/{|}, ϵ/|

|, |/ϵ

|, |/ϵ

|, |/ϵ

Σ/{|}, ϵ/|

Σ/{|}, ϵ/|

Σ/{|}, ϵ/|

|, |/ϵ

|, |/ϵ

|, |/ϵ

Figure 3.26: Applied previous steps to all vertices not eligible for Block type
matching construction.

3.3.1.5 Insert Edit Operation Construction

Let P = (VP , EP) and T = (VT , ET) be two labeled unranked rooted ordered
trees. Occurrences of a tree pattern P are searched for in an input tree T .
T is an input tree we search in for occurrences of a tree pattern P via Block
type matching. Insert edit operation inserts a leaf or multiple leaves (these
leaves form a subtree) into the input tree T . The idea of Insert edit operation
is that there are missing leaves (or subtrees) in the input tree T . The Insert
construction is added to the base of an ABTTPMA created from the tree
pattern P . As leaves are missing in the input tree T (they are to be inserted),
there is a need to advance in the ABTTPMA without parsing the input tree

52

3.3. Pushdown Automata Apx. Block Type Matching Method

T . Of course, the counter has to be incremented for every added leaf. These
ideas suggest the following:

• ϵ, Z0/Z0 transitions are used to advance further in the automaton with-
out parsing the input tree T .

• Implement edit distance counter via multiple levels of the automaton.
Each level represents a value of edit distance.

Positioning Let S be an arbitrary subtree whose total number of vertices
is x, where 1 ≤ x ≤ k (k — maximal edit distance). S can be inserted
into an input tree T . There has to be an ϵ, Z0/Z0 transition for each S in
an ABTTPMA. As the Insert edit operation recursively inserts only leaves,
every subtree (made up by those leaves) in the prefix bar is written in one
block. Therefore, for every subtree, there is only one ϵ, Z0/Z0 transition. Let
P = (V, E) be a tree pattern. Let n1 be a node, n1 ∈ V .

Let B be a subtree whose root is n1. If 1 ≤ numberOfV ertices(B) ≤ k,
than there should be an transition:

• from the state a ∈ Lx, where a has the outgoing transition with label
n1, Z0/Z0.

• to a state b ∈ Lx+numberOfV ertices(B), where b has incoming transition
with label |n1 , Z0/Z0.

Construction Details The insert edit operation is done by construction
that is created in the following manner:

1. Create k new levels (L1, . . . , Lk) by cloning the base of an automaton.
Each level represents an edit distance value.

2. Search for subtrees with the number of descendants less than k. →
Search backwards the prefix bar notation of P for symbols “|”.

3. For every “|” search for all nested “|”. These nested “|” symbols represent
nested vertices (these form a subtree). Find all subtrees with the number
of vertices up to the value of k.
For example:

• Sequence “x1 |”, x1 ∈ Σ is a subtree with one vertex.
• Sequence “x1 x2 | |”, x1 ∈ Σ is a subtree with two vertices.
• Sequence “x1 x2 x3 | | |”, x1 ∈ Σ is a subtree with three vertices.
• Sequence “x1 x2 | x3 | |”, x1 ∈ Σ is a subtree with two siblings and a

parent.

53

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

Algorithm 5: Algorithm for base extension by insert construction.
Data: Tree pattern in prefix bar notation prefbar(P), Base of the

automaton base, Max edit distance k
Result: Base of the automaton extended by insert construction.

1 for i = prefbar(P).length() − 1; i ≥ 0; i − − do
2 if prefbar(P).at(i) == ′|′ then
3 depth = 1;
4 cost = 1;
5 for j = i − 1; j ≥ 0; j − − do
6 if prefbar(P).at(j) == ′|′ then
7 depth + +;
8 cost + +;
9 end

10 else
11 depth − −;
12 end
13 if cost > k then
14 break;
15 end
16 if depth == 0 then
17 to = base.getStateAt(i);
18 from = base.getStateAt(j);
19 from.add(new Trans(to : to, cost : cost, label :

ϵ, Z0/Z0;
20 end
21 end
22 end
23 end
24 return base;

4. Add ϵ, Z0/Z0 transition for every missing subtree. The transition starts
from a state just before the missing subtree on the level L0 and goes to
the vertex just after the subtree on the level Lx where x is a number of
vertices of the missing subtree.

5. Clone all the transitions created from the previous step to other levels.

Algorithm For algorithm in pseudocode for attaching an insert construc-
tion, see Algorithm 5.

Theorem 3.17 (Correctness of Algorithm 5). Insert construction created by
Algorithm 5 works correctly, i.e., it creates Insert construction to simulate
parsing of an arbitrary tree and increment the edit distance counter.

54

3.3. Pushdown Automata Apx. Block Type Matching Method

a

b

c d

e

f

Figure 3.27: Tree P used for Insert construction example.

Proof. Algorithm 5 is supposed to create a construction that simulates parsing
of an arbitrary tree X when such a subtree is missing. This is done by adding
an ϵ, Z0/Z0 transition to bypass block of states where the X would be parsed.
The prefix bar notation of a missing subtree is always in one block of symbols.
See Definition 1.34. Insert edit operation recursively adds leaves. Therefore,
only the whole subtrees of P can be considered for insertation. The algorithm
computes positions of all of the possible subtrees of the tree pattern P whose
number of vertices is up to maximal edit distance. For every closing symbol
“|” (line 2), its opening symbol is found (line 16)—beginning and end of a new
transition. If the cost is at most maximal edit distance (line 13), a transition
is created (line 19). It requires an empty stack. (Pops the initial stack symbol
“Z0” from the stack.)

Theorem 3.18 (Time and space complexities of the build phase of insert
construction). Build phase of insert construction runs in O(|prefbar(P)|2)
and takes space of O(|prefbar(P)|2).

Proof. The algorithm for building Insert construction iterates over all symbols
in prefix bar notation of P . If the condition is met (line 5), a new iteration
starts. This iteration has O(|prefbar(P)|) steps. Inside the inner iteration, if
conditions are met, there are five operations to be executed. Each operation
runs in O(1) time. In these five operations, there is only one allocation of
space for transition object. Therefore, the build phase of insert construction
runs in O(|prefbar(P)|2) and takes space of O(|prefbar(P)|2).

Example 3.12 (Insert edit operation construction). This examples demon-
strates idea presented in Section 3.3.1.5.

• Sample input that is to be extended with Insert construction.

– Input paramater k: max edit distance.

k = 3

– The tree pattern P is considered, see Figure 3.27.

55

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

0start 1 2 3 4 5 6 7 8 9 10 11 12

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.28: The base of an ABTTPMA for P .

0start 1 2 3 4 5 6 7 8 9 10 11 12

01 11 21 31 41 51 61 71 81 91 101 111 121

02 12 22 32 42 52 62 72 82 92 102 112 122

03 13 23 33 43 53 63 73 83 93 103 113 123

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.29: k new levels added to the automaton of the tree pattern P .

– Tree P in prefix bar notation:

prefbar(P) = a b c | d | | e f | | |

– The base of an automaton for tree P , see Figure 3.28.

• Construction details

The example follows instructions in Section 3.3.1.5.

– Create k new levels (L1, . . . , Lk), see Figure 3.29.

– Search for subtrees with the number of vertices up to k, see
Figures 3.30, 3.31, 3.32, 3.33, and 3.34.

56

3.3. Pushdown Automata Apx. Block Type Matching Method

a

b

c d

e

f

prefbar(P) = a b c | d | | e f | | |.

Figure 3.30: Found subtree 1.

a

b

c d

e

f

prefbar(P) = a b c | d | | e f | | |.

Figure 3.31: Found subtree 2.

a

b

c d

e

f

prefbar(P) = a b c | d | | e f | | |.

Figure 3.32: Found subtree 3.

a

b

c d

e

f

prefbar(P) = a b c | d | | e f | | |.

Figure 3.33: Found subtree 4.

a

b

c d

e

f

prefbar(P) = a b c | d | | e | |.

Figure 3.34: Found subtree 5.

– Add ϵ, Z0/Z0 transition for every missing subtree, see Figure 3.35.
– Apply previous steps to all levels where applicable. See Figure 3.36.

57

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

0start 1 2 3 4 5 6 7 8 9 10 11 12

01 11 21 31 41 51 61 71 81 91 101 111 121

02 12 22 32 42 52 62 72 82 92 102 112 122

03 13 23 33 43 53 63 73 83 93 103 113 123

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

ϵ, Z0/Z0 ϵ, Z0/Z0 ϵ, Z0/Z0

ϵ, Z0/Z0

ϵ, Z0/Z0

Figure 3.35: Added transitions for every missing subtree.

0start 1 2 3 4 5 6 7 8 9 10 11 12

01 11 21 31 41 51 61 71 81 91 101 111 121

02 12 22 32 42 52 62 72 82 92 102 112 122

03 13 23 33 43 53 63 73 83 93 103 113 123

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 f, Z0/Z0 |, Z0/Z0 |, Z0/Z0 |, Z0/Z0

ϵ, Z0/Z0 ϵ, Z0/Z0 ϵ, Z0/Z0

ϵ, Z0/Z0

ϵ, Z0/Z0

ϵ, Z0/Z0 ϵ, Z0/Z0 ϵ, Z0/Z0

ϵ, Z0/Z0

ϵ, Z0/Z0 ϵ, Z0/Z0 ϵ, Z0/Z0

Figure 3.36: Added transitions for every missing subtree.

We are aware of some unusable redundant states and transitions that are
produced by this idea. This problem is addressed in the implementation of
the method.

3.3.1.6 Relabel Edit Operation Construction

Let P = (VP , EP) and T = (VT , ET) be two labeled unranked rooted ordered
trees. Occurrences of a tree pattern P are searched for in an input tree T . T
is an input tree we search in for occurrences of a tree pattern P via Block type
matching. Relabel edit operation relabels a vertex in the input tree T . The
relabel operation solves a problem where there is a correctly placed vertex
(nodes) but with a wrong label. This means that the inner structure of the
tree is correct, only badly labeled. Therefore, the idea is to parse the wrong
label and increment the edit distance counter. There is no need to manipulate

58

3.3. Pushdown Automata Apx. Block Type Matching Method

Algorithm 6: Algorithm for base extension by relabel construction.
Data: Tree pattern in prefix bar notation prefbar(P), Base of the

automaton base
Result: Base of the automaton extended by relabel construction.

1 prev = base.getRoot() ;
2 for i = 0; i < prefbar(P).length(); i + + do
3 to = base.getStateAt(i + 1);
4 if prefbar(P).at(i) ! = ′|′ then
5 prev.add(new Trans(to : to, cost : 1, label : Σ/{|}, Z0/Z0);
6 end
7 prev = to;
8 end
9 return base;

with “|” symbols (these only handle the structure of a tree). This is done
by creating new k levels, where k is the maxim edit distance, and adding
transitions on Σ/{|}, Z0/Z0 level Li to Li+1.

Positioning These transitions are added to all states of an ABTTPMA
whose base transition is not set to label |, Z0/Z0.

Construction Details These transitions are created in the following way.

1. Create k new levels (L1, . . . , Lk) by cloning the base of an automaton.
Each level represents an edit distance value.

2. Search for all states in the automaton that does not have transition on
label |, Z0/Z0

3. For each of them, add a transition on Σ, Z0/Z0 to the next lower level
and one state further.

4. Clone all the transitions created from the previous step to other levels
where possible.

Algorithm For algorithm in pseudocode for attaching a relabel construc-
tion, see Algorithm 6.

Theorem 3.19 (Correctness of Algorithm 6). Relabel construction created by
Algorithm 6 works as intended, i.e., it builds Relabel construction to simulate
the relabeling of a vertex and increment the edit distance counter.

59

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

a

b

c d

e

Figure 3.37: Tree P used for Relabel construction example.

Proof. Algorithm 6 is supposed to create a construction that simulates the
relabeling of a vertex. The structure of a tree is left intact. Relabel con-
struction consists of a transition with the cost of value one that is added to
every state of the base of ABTTPMA whose base transition label is a symbol
(line 4). See Section 3.3.1.6. Algorithm 6 loops through all states and add a
transition (line 5) to those that meet the condition (line 4). Added transitions
simulate relabeling in an input tree. These transitions parse any symbol (line
5). It requires an empty stack. (Pops the initial stack symbol “Z0” from the
stack.)

Theorem 3.20 (Time and space complexities of the build phase of relabel
construction). Build phase of relabel construction runs in O(|prefbar(P)|)
and takes space of O(|prefbar(P)|).

Proof. Algorithm for building relabel construction once iterates over all sym-
bols in prefix bar notation of P . If the condition is met (line 4), there is one
allocation of space for a transition object. Therefore, the build phase of delete
construction runs in O(|prefbar(P)|) and takes space of O(|prefbar(P)|).

Example 3.13 (Relabel edit operation construction). This examples demon-
strates idea presented in Section 3.3.1.6.

• Sample input that is to be extended with Relabel construction.

– Input paramater k: max edit distance.

k = 3

– The tree pattern P is considered, see Figure 3.37.
– Tree pattern P in prefix bar notation:

prefbar(P) = a b c | d | | e | |

– The base of an automaton for tree P , see Figure 3.38.

• Construction details
The example follows instructions in Section 3.3.1.6.

60

3.3. Pushdown Automata Apx. Block Type Matching Method

0start 1 2 3 4 5 6 7 8 9 10

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.38: The base of an ABTTPMA for P .

0start 1 2 3 4 5 6 7 8 9 10

01 11 21 31 41 51 61 71 81 91 101

02 12 22 32 42 52 62 72 82 92 102

03 13 23 33 43 53 63 73 83 93 103

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.39: k new levels added to the automaton of the tree pattern P .

0start 1 2 3 4 5 6 7 8 9 10

01 11 21 31 41 51 61 71 81 91 101

02 12 22 32 42 52 62 72 82 92 102

03 13 23 33 43 53 63 73 83 93 103

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.40: All states of L1 of the automaton without outgoing transition
|, Z0/Z0.

– Create k new levels (L1, . . . , Lk), see Figure 3.39.
– Search for all states of L1 of the automaton without outgoing tran-

sition on a |, Z0/Z0 label, see Figure 3.40.
– Added transitions to the found states, see Figure 3.41.

61

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

0start 1 2 3 4 5 6 7 8 9 10

01 11 21 31 41 51 61 71 81 91 101

02 12 22 32 42 52 62 72 82 92 102

03 13 23 33 43 53 63 73 83 93 103

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0

|, Z0/Z0

d, Z0/Z0

|, Z0/Z0 |, Z0/Z0

e, Z0/Z0

|, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0

|, Z0/Z0

d, Z0/Z0

|, Z0/Z0 |, Z0/Z0

e, Z0/Z0

|, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0

|, Z0/Z0

d, Z0/Z0

|, Z0/Z0 |, Z0/Z0

e, Z0/Z0

|, Z0/Z0 |, Z0/Z0

Σ/{|, a}, Z0/Z0
Σ/{|, b}, Z0/Z0

Σ/{|.c}, Z0/Z0 Σ/{|, d}, Z0/Z0 Σ/{|, e}, Z0/Z0

Figure 3.41: Added transitions to the found states.

0start 1 2 3 4 5 6 7 8 9 10

01 11 21 31 41 51 61 71 81 91 101

02 12 22 32 42 52 62 72 82 92 102

03 13 23 33 43 53 63 73 83 93 103

Σ, Z0/Z0
a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0 e, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0

|, Z0/Z0

d, Z0/Z0

|, Z0/Z0 |, Z0/Z0

e, Z0/Z0

|, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0

|, Z0/Z0

d, Z0/Z0

|, Z0/Z0 |, Z0/Z0

e, Z0/Z0

|, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0

|, Z0/Z0

d, Z0/Z0

|, Z0/Z0 |, Z0/Z0

e, Z0/Z0

|, Z0/Z0 |, Z0/Z0

Σ/{|, a}, Z0/Z0
Σ/{|, b}, Z0/Z0

Σ/{|, c}, Z0/Z0 Σ/{|, d}, Z0/Z0 Σ/{|, e}, Z0/Z0

Σ/{|, a}, Z0/Z0
Σ/{|, b}, Z0/Z0

Σ/{|, c}, Z0/Z0 Σ/{|, d}, Z0/Z0 Σ/{|, e}, Z0/Z0

Σ/{|, a}, Z0/Z0
Σ/{|, b}, Z0/Z0

Σ/{|, c}, Z0/Z0 Σ/{|, d}, Z0/Z0 Σ/{|, e}, Z0/Z0

Figure 3.42: Applied previous steps to all levels where applicable.

– Apply previous steps to all levels, see Figure 3.42.

We are aware of some unusable redundant states and transitions that are
produced by this idea. This problem is addressed in the implementation of
the method.

3.3.1.7 Complete ABTTPMA Construction

Here we present the whole process of building an ABTTPMA. The process
consists of creating the base of ABTTPMA, adding Block type matching con-
struction, and all three edit operation constructions. This modularity has an
advantage of possible customization of ABTTPMA by omitting any construc-
tion.

62

3.3. Pushdown Automata Apx. Block Type Matching Method

Algorithm 7: Algorithm for ABTTPMA.
Data: Tree pattern in prefix bar prefbar(P)
Result: ABTTPMA

1 Base base = createBase (P);
2 base.addBlockTypeMatchingConstruction();
3 base.addDeleteConstruction();
4 base.addInsertConstruction();
5 base.addRelabelConstruction();
6 return base;

Algorithm For algorithm in pseudocode for ABTTPMA, see Algorithm 7.

Theorem 3.21 (Block type matching and delete construction’s function do
not affect each other). Each state from ABTTPMA can attach either Block
type matching construction, or delete construction.

Proof. Let B and D be a set of states where Block type matching construction,
respectively delete construction is attached. Set B is disjoint to set D and
vice-versa, see Sections 3.3.1.4. Therefore, in ABTTPMA two states cannot
have both Block type matching construction, and delete construction. Insert
construction, Relabel construction, and base transitions require empty stack—
they pop the initial stack symbol “Z0” from the stack. Therefore, Block type
matching and delete constructions cannot alter their stack operations between
each other.

Theorem 3.22 (Construction’s functions do not influence each other). Each
symbol c ∈ prefbar(T) is handled only by one construction.

Proof. Block type matching construction function cannot be affected by delete
construction, see Theorem 3.21. Let T = (V, E) be an arbitrary labeled un-
ranked rooted ordered tree with the root vertex r. The prefix bar notation
of T is written in one block. The first symbol of prefix bar notation of T is
r, and the last one is |r-closing symbol of r. Block type matching construc-
tion cannot be affected by any other construction or base transition as these
require an empty stack. The stack is empty only if Block type matching con-
struction parses an equal number of opening symbols and closing symbols “|”.
Therefore, Block type matching construction must parse the whole block of
prefix bar notation of an arbitrary subtree before any other construction or
base transition can be used.

In the same manner, as Block type matching construction delete edit con-
struction function is not affected by any other construction or base transition.
Therefore, delete construction must parse the whole block of a prefix bar no-
tation of an arbitrary subtree before any other construction or base transition
can be used.

63

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

Insert construction inserts subtrees by precomputed transitions that by-
pass a whole block of transitions that correspond to a whole block of the prefix
bar notation of an arbitrary subtree. It requires an empty stack. (Pops the
initial stack symbol “Z0” from the stack.) The function of relabel construction
only changes a label; the structure of an arbitrary tree is always untouched.
Transitions of the base of ABTTPMA correspond to the prefix bar notation
of the tree pattern. Every transition requires an empty stack. (Pop the initial
stack symbol “Z0” from the stack.) Therefore, adding all constructions to
ABTTPMA does not create a risk of constructions being influenced by each
other.

Theorem 3.23 (Correctness of Algorithm 7). ABTTPMA created by Algo-
rithm 7 works as intended, i.e., it builds ABTTPMA.

Proof. On the first line, the algorithm creates the base of ABTTPMA. On
the next lines, all of the constructions are added to the base. The functions
of constructions are not influenced by each other. See Theorem 3.22.

Theorem 3.24 (Time and space complexities of build phase of ABTTPMA).
Build phase of ABTTPMA runs in O(|prefbar(P)|2) and takes space of
O(|prefbar(P)|2).

Proof. Algorithm for building ABTTPMA calls build operation of each con-
struction once. These operations are called sequentially. The most both time
and space consuming is insert construction. It runs in O(|prefbar(P)|2) takes
space of O(|prefbar(P)|2). Therefore, the build phase ABTTPMA runs in
O(|prefbar(P)|2) and takes space of O(|prefbar(P)|2).

Example 3.14. The example presents the build phase of ABTTPMA. A
small tree pattern P and parameter k set to k = 2 is used to make the
automaton schema transparent. See Section 3.3.1 for detailed ilustrations of
each construction. Every construction is highlighted in a unique color. The
following coloring is used:

• Block type matching construction is in the black color.

• Base of an automaton and its clones (addtional levels in the automaton)
are in the gray color.

• Delete edit operation is in the red color.

• Insert edit operation is in the green color.

• Relabel edit operation is in the blue color.

• Input paramater k: max edit distance.

k = 2

64

3.3. Pushdown Automata Apx. Block Type Matching Method

a

b

c

d

Figure 3.43: Tree P used as input for build phase of ABTTPMA.

0start 1 2 3 4 5 6 7 8

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Figure 3.44: The base of an ABTTPMA for P .

• The tree pattern P is considered, see Figure 3.43.

• The tree pattern P in prefix bar notation:

prefbar(P) = a b c | | d | |

• The base of an automaton for tree P , see Figure 3.44.

Result Let n = |prefbar(P)|, k = max edit distance. The resulting
ABTTPMA for the tree pattern P is a seven-tuple

(
k∪

j=0

n∪
i=0

ij , A, {|, Z0}, δ, 00, Z0,
k∪

j=0
nj), where mapping δ is shown in Table 3.1.

ABTTPMA is visualized in Figure 3.45. Notation used in Table 3.1 is:

• k for a maximal edit distance,
• n for length of prefix bar notation of tree pattern P ,
• A for unique symbols from prefbar(P),
• pb(X)[i] for an symbol at position i in prefix bar notation of an arbitrary

tree X,
• {Subt(X) < i} for a set of all subtrees S = (VS , ES) of an arbitrary tree

X where |VS | < i,
• BlckV alid(v) for a function that returns true if a vertex v is suitable

for Block type matching construction,
• DelV alid(v) for a function that returns true if a vertex v is suitable for

Delete construction,
• InsV alid(v) for a function that returns true if a vertex v is suitable for

Insert construction,
• RelV alid(v) for a function that returns true if a vertex v is suitable for

Relabel construction.

65

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

Comment Condition From
(start
state)

Edge label To (target
state)

Base j ∈ {0, · · · , k}, ij pb(P)[i], Z0/Z0 i + 1j

i ∈ {0, · · · , n}
Block type j ∈ {0, · · · , k}, ij {|}, |/ϵ ij

matching 1 i ∈ {0, · · · , n},
BlckV alid(ij)

Block type j ∈ {0, · · · , k}, ij Σ/{|}, ϵ/| ij ,
matching 2 i ∈ {0, · · · , n},

BlckV alid(ij)
Delete 1 j ∈ {1, · · · , k}, ij {|}, |/ϵ ij

i ∈ {0, · · · , n},
DelV alid(ij−1)

Delete 2 j ∈ {1, · · · , k}, ij−1 Σ/{|}, ϵ/| ij

i ∈ {0, · · · , n},
DelV alid(ij−1)

Relabel j ∈ {1, · · · , k}, ij−1 Σ{|, pb(P)[i]}, Z0/Z0 i + 1j

i ∈ {0, · · · , n − 1},
RelV alid(ij−1)

Insert j ∈ {0, · · · , k}, ij ϵ, Z0/Z0 i + |S|j+|S|
i ∈ {0, · · · , n − 1},
s ∈ {Subt(P) < k},

i + |S|j+|S| ∈ Q,

InsV alid(ij)

Table 3.1: ABTTPM δ mapping.

66

3.3.
Pushdow

n
A

utom
ata

A
px.

Block
Type

M
atching

M
ethod

0start 1 2 3 4 5 6 7 8

01 11 21 31 41 51 61 71 81

02 12 22 32 42 52 62 72 82

Σ, ϵ/ϵ

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0

a, Z0/Z0 b, Z0/Z0 c, Z0/Z0 |, Z0/Z0 |, Z0/Z0 d, Z0/Z0 |, Z0/Z0 |, Z0/Z0

Σ/{|, a}, Z0/Z0
Σ/{|, b}, Z0/Z0

Σ/{|, c}, Z0/Z0 Σ/{|, d}, Z0/Z0

Σ/{|, a}, Z0/Z0
Σ/{|, b}, Z0/Z0

Σ/{|, c}, Z0/Z0 Σ/{|, d}, Z0/Z0

ϵ, Z0/Z0 ϵ, Z0/Z0

ϵ, Z0/Z0 ϵ, Z0/Z0

ϵ, Z0/Z0

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Σ/{|}, ϵ/|

|, |/ϵ

Figure 3.45: ABTTPMA for a tree pattern P .

67

3. Using Pushdown Automata for Approximate Tree Pattern
Matching

3.3.2 Searching via ABTTPMA

ABTTPMA is a nondeterministic pushdown automaton. Therefore, using it
for searching in an input tree T = (VT , ET) for tree pattern P = (VP , EP) is
a typical parsing procedure of T by the ABTTPMA.

Theorem 3.25 (Time and space complexities of the search phase of ABTTPMA).
Let n = |prefbar(T)| and K is the maximal edit distance. Search phase of
ABTTPMA runs in O(k · n · 5k · 2n−k) and takes space of O(n).

Proof. Because of the Σ loop transition at state 0 of ABTTPMA, there are
O(n) sequences (formed by all suffixes of prefix bar notation of tree pattern)
to be parsed by the ABTTPMA. ABTTPMA consists of k · n states. For each
sequence, there are k states that have up to 5 available outgoing transitions
(There are five possibilities: parse, Block type matching operation, delete,
relabel, insert.) and n − k states that have up to two available outgoing tran-
sitions (There are two possibilities: parse, Block type matching operation.).
Therefore, the time complexity is O(k · n · 5k · 2n−k).

ABTTPMA uses its stack. Up to one item is added to the stack for each
opening symbol in the input sequence. Therefore there can be up to O(n)
items in the stack. Therefore, the space complexity is O(n)

3.3.3 ABTTPMA Determinization

Some pushdown automaton belong to pushdown automata classes that consist
of determinizable automata, see Observation 1.2.4. These classes of pushdown
automata are :

• Input driven
• Visibly pushdown
• Height deterministic

Theorem 3.26 (ABTTPMA determinization 1). ABTTPMA does not belong
to Input driven class.

Proof. The idea of input driven pushdown automata is that the input symbols
uniquely determine whether the automaton pushes a symbol, pops a symbol,
or leaves the pushdown unchanged. This does not apply to ABTTPMA. For
example, the state with label 1 in Figure 3.45 for symbol a has two transitions
with different stack operation—Block type matching loop transition adds “|”
symbol to the stack or the base transition does not modify the stack.

68

3.3. Pushdown Automata Apx. Block Type Matching Method

Theorem 3.27 (ABTTPMA determinization 2). ABTTPMA does not belong
to Height deterministic class.

Proof. Class of height deterministic pushdown automata consists of automata
that, for any given input string, the stack height during any (nondeterministic)
computation is a priori fixed. This does not apply to ABTTPMA. Up to one
item is added to the stack for each opening symbol in the input sequence.
Therefore, there can be up to O(n) items in the stack.

Theorem 3.28 (ABTTPMA determinization 3). ABTTPMA belongs to Vis-
ibly pushdown class.

Proof. Visibly Pushdown automaton is a pushdown automaton whose stack
operations are determined by the input symbol it reads. Nested word is a
linear structure with a nesting relation formed by associating open-symbols
(i.e., Σ/{|}) with their matching close-symbols (i.e., |). A visibly pushdown
automaton can reconstruct the nesting relation by pushing onto the stack
on open-tags and popping from it close-tags. This applies to ABTTPMA.
ABTTPMA uses stack only for Block type matching and Delete operation.
Both of these operations push and pop an item to the ABTTPMA’s stack in a
way that represents the nesting of the input tree. Let S be a set of all transition
except those from Block type matching and Delete operation. Transitions from
the set S push the initial stack symbol Z0 to the stack. They pop the initial
symbol from the stack. If ABTTPMA consists only of transitions from the
set S, then ABTTPMA is a finite automaton. Therefore ABTTPMA can be
determinized.

69

Chapter 4
Implementation

This chapter describes a Java implementation of the proof of concept for the
proposed method. As stated, it is implemented in Java — SDK11. Follow-
ing Java libraries from java.utils were used: ArrayList, Collections, HashSet,
Objects. Principles of object-oriented programming—polymorphism, abstrac-
tion, and inheritance are applied.

The implemented method (Proof of Concept of the proposed method) is
split into two phases, similar to the proposed method. These phases are built
the automaton and use the automaton for searching. The automaton is built
in a way that states recursively immerse into itself while searching via the
automaton is performed. This approach has the advantage that the principle
of Branch and bounds can be applied to speed up the computation. Recurrent
computation approach makes code more transparent, and easy-to-read too.

4.1 Space Optimalisation

Each construction proposed in Section 3.3 is space-intensive as it requires
both cloning the base of ABTTPMA and cloning transitions. These clonings
happen only because the accumulative counter of edit distance cost is needed.
However, if the counter is implemented as a number that cannot overcome a
particular value, there is no need to have multiple levels and multiple cloned
transitions in the ABTTPMA. Therefore, the counter itself is implemented
as an integer, that in every moment, represent the total cost of used edit
operations. To proceed from a state to another, To proceed from a state to
another, the counter’s value must be less or equal to the value of the maximal
edit distance. The value of the counter is recursively passed from a state to
the next state, as ABTTPMA is searching. By this optimization, we save
memory resources because:

71

4. Implementation

• there are no unreachable states,

• states are not cloned, they can be repeatedly visited during one search
phase,

• transitions are not cloned; they can be repeatedly used during one search
phase.

4.2 Methods Description
A user can create a new ABTTPMA by calling a constructor
ABTTPMA(String P, int k) of class ABTTPMA. As an input, a valid prefix bar
notation of tree pattern and maximal edit distance is required. The construc-
tor creates an object of type ABTTPMA. This object can call
search(String T) method. As input, the method requires a valid input
tree in prefix bar notation. The output of this method is a collection of pos-
sible results. Results are also accessible from a public static class Globals
via it’s public method getResults(). User can benefit from the overridden
toString() method for instances of class Tree. This method returns a tree
rendered as an ASCII art.

4.3 Implementation Usage
Running our java Main.class requires a path to an input file. The file name
should have “.in” extension. The file consists of three lines. The first line starts
with sequence of two symbols “P ”. This sequence is appended by prefix bar no-
tation of a tree pattern P . The second line starts with sequence of two symbols
“T ”. This sequence is appended by prefix bar notation of an input tree T . The
third line starts with sequence of two symbols “k ”. This sequence is appended
by an integer number that represents maximal edit distance. See Figure 4.1 for
an example input file. See Figure 4.2 for example run configuration for running
the PoC (Main.class file). The output is saved into a file named filename.out.
The output file consists of visualization and statics of both trees, edit scripts
for each found occurrence, and measured time for build and search phase. See
the files in the attached SD card for example datasets. The project source files,
run configurations (for IntelliJ Idea project), and test data are also available
on Gitlab—https://gitlab.fit.cvut.cz/rencluka/dpimplementace.

72

4.3. Implementation Usage

Figure 4.1: Example input file.

Figure 4.2: Example run configuration.

73

Chapter 5
Testing

For the conducted tests, we used a ThinkPad laptop with i5-7200U CPU @
2.50GHz with TurboBoost up to 3.1Hz, 16 GB of DDR4 RAM with Debian
10 “Buster”. Presented results are calculated averages from 50 runs of each
test.

5.1 Validation Testing

Validation tests are conducted to prove the correctness of the implementation.
These tests cover all of the possible cases that can occur in input data for
Approximate Block Type Matching.

5.1.1 Validation of Edit Operations

To test if all edit opearation work together as intended a special pair of a tree
pattern P and an input tree T was created. See Figure 5.1 for this pair. All
three edit operations and Block type matching are engaged while searching for
P in T . This sample pair also shows that there can multiple valid different
occurences of P in T where BlckDist(P, T) = k. See Figure 5.2. Every test
run (both validation and performance tests) was carefully examined if the
result is correct. See the files in the attached SD card for complete tests data.
Each edit operation is highlighted in a different color.

• Inserted vertices are highlighted in the green color.

• Deleted vertices are highlighted in the red color.

• Relabeled vertices are highlighted in the blue color.

75

5. Testing

X

Y

T L U

Z

Input tree T .

X

Y K

T U

Tree pattern P .

Figure 5.1: Sample pair of trees P , T for edit operation testing purpose.

X

Y K

T U L U

Z

X

Y K

T L U

Z

X

Y K

T U L U

Z

X

Y K

T T U

Z

X

Y K

T U U

Z

X

Y

T L U

K

T U

Z

X

Y

T L U

K

T U

Figure 5.2: All occurences of tree pattern P in input tree T from Figure 5.1
with maximal edit distance = 3.

5.1.2 Validation of Block Type Matching
There are ten primary samples with different positions of occurrences of tree
pattern P in an input tree T . As the samples represent basic structures of
trees, any other input tree T can be created by adding subtrees to one of
these. Therefore, these samples can test if the implementation of Block type
matching works correctly. See Figure 5.3 for the prepared samples. The
implementation correctly recognized every occurrence of tree pattern P in all
ten primary samples presented in Figure 5.3 with block edit distance equal to
zero. Therefore, we assume the implementation of Block type matching works
correctly. See the files in the attached SD card of this thesis for raw test data
inputs/outputs.

5.2 Performance Testing
Performance tests measure elapsed time during the search phase for a specific
combination of tree pattern P , input tree T , and max edit distance k. Number
of vertices in both trees is the same in all tests: |P | = 7, |T | = 140. Also, the
number of occurrences of tree pattern P in the input tree T with edit distance
equal to zero is equal to 10. Performance tests experimentally show if elapsed

76

5.2. Performance Testing

B0:

P

T
B1:

T

P
B2:

P

P
B3:

T

P T
B4:

T

T P

B5:

T

P P
B6:

P

T T
B7:

P

P T
B8:

P

T P
B9:

P

P P

Figure 5.3: Possible positions of occurences of tree pattern P in input tree T .

time for a specific value of max edit distance k is affected by the depth of tree
pattern P and input tree T and/or by the inner structure of trees. There are
two types and four categories of combinations of P and T . Combinations are
split into two types.

• The first type consists of combinations whose tree P has unique vertices.
• The second type consists of combinations whose tree P has repetetive

vertices.

Abbreviation u stands for “unique”. Abbreviation r stands for “repetetive”.
Categories are considered in respect to depth of P and T .

• Tree P is labeled as shallow if the depth(P) ≤ 3.
• Tree P is labeled as deep if the depth(P) ≥ 6.

• Tree T is labeled as shallow if the depth(T) ≤ 7.
• Tree T is labeled as deep if the depth(T) ≥ 30.

Abbreviation s stands for “shallow”. Abbreviation d stands for “deep”. The
category name is created by the abbreviated label of the tree P appended
by the abbreviated label of the tree T . Categories are: ss, sd, ds, dd. See
Table 5.1 for transparent visualisation. Tree patterns were created to meet
specific criteria of different categories. Figure 5.4 shows tree patterns P used
for performance testing. Shallow & unique tree pattern is used with categories
ss and sd. Shallow & repetetive tree pattern P is used with categories ss and
sd. Deep & unique is used with categories ds and dd. Deep & repetetive is
used with categories ds and dd.

All graphs show the dependency of elapsed time of search phase on input
data. As input data to the method, trees of different categories and types were
used. Results visualized by blue column used as input data a tree pattern P
with unique vertices. Results visualized by red column used as input data
a tree pattern P with repetetive vertices. Tests of all combinations of cate-
gories and types were conducted with increasing k value—max edit distance.

77

5. Testing

shallow T deep T

Unique vertices shallow P t: u cat: ss t: u cat: sd
deep P t: u cat: ds t: u cat: dd

Repetetive vertices shallow P t: r cat: ss t: r cat: sd
deep P t: r cat: ds t: r cat: dd

Table 5.1: Combinations of tree pattern P and input tree T used for testing.
There are two types (t:) of trees: With unique (u) vertices and with repetetive
(r) vertices. Each type has four categories (cat:). The category is an unique
combination of shallow (s) or deep (d) tree pattern P and input tree T . The
types and the categories form eight unique combinations of input data for
testing purposes.

A

B

C D

E

F G

Shallow & unique.

A

B

A C

C

B A

Shallow & repetetive.

A

B

C

D

E

F

G

Deep &
unique.

A

B

A

B

C

C

C

Deep &
repetetive.

Figure 5.4: Tree patterns P used for performance testing.

Figure 5.5 presents result with k set to k = 0. Figure 5.6 presents result with
k set to k = 1. Figure 5.7 presents result with k set to k = 2. Figure 5.8
presents result with k set to k = 3.

The results show that the algorithm is sensitive to the structure of the
input data. The trees of repetitive type seemed to be more time-consuming
to process from all of the possible input data. As labels of the vertices repeat,
the algorithm processes more sequences of subtrees that almost match the tree
pattern. Therefore, it takes more computation before finding out that such a
sequence does not match.

78

5.2. Performance Testing

ss sd ds dd

1

2

3

4

1.4
1

2.2

1.1

3.8
3.4 3.3

2.2

Category of input combination

El
ap

se
d

tim
e

in
se

co
nd

s

type: Unique type: Repetetive

Figure 5.5: Graph of elapsed time with max. edit dist. = 0.

ss sd ds dd

2

4

6

3.3

1.5

2.4
1.7

5.9
5.5

3.4
3.1

Category of input combination

El
ap

se
d

tim
e

in
se

co
nd

s

type: Unique type: Repetetive

Figure 5.6: Graph of elapsed time with max. edit dist. = 1.

79

5. Testing

ss sd ds dd
0

5

10

15

20

6.7

3.1 3.6 2.6

9.3

18.2

8.2
6.9

Category of input combination

El
ap

se
d

tim
e

in
se

co
nd

s

type: Unique type: Repetetive

Figure 5.7: Graph of elapsed time with max. edit dist. = 2.

ss sd ds dd

0

10

20

30

40

18.5

4.2 6.5
3.4

39

32.3

5.5 7.5

Category of input combination

El
ap

se
d

tim
e

in
se

co
nd

s

type: Unique type: Repetetive

Figure 5.8: Graph of elapsed time with max. edit dist. = 3.

80

Chapter 6
Conclusion

It is shown that determinizable pushdown automata can be used to solve
approximate pattern matching problems. The proposed method creates a
pushdown automaton for a given tree pattern P that can find all occurrences
of the tree pattern P in an input tree T with maximal edit distance k. Selkow
edit operations are used to determine edit distance. The searching phase of
the method runs in O(k ·n·5k ·2n−k), where n = |prefbar(T)|. We showed that
the resulting automaton belongs to the class of Visisbly pushdown automata.
These automata are known to be determinizable.

Furthermore, this thesis defines a new type for searching called Block type
matching. It is implemented into the method. Because of the modular design
of the proposed method, the Block type matching can be easily substituted
with Selkow edit operation Delete.

The implementation of the method involves space optimalization to lower
space consumption. Performance tests showed that the method is sensitive to
the inner structure of input data.

The thesis LATEX source code is available at
https://gitlab.fit.cvut.cz/rencluka/DP. The implementation source
codes, test data, and run configurations are available at
https://gitlab.fit.cvut.cz/rencluka/dpimplementace.

6.1 Goals Fulfillment
The goals were the following:

• Study methods for approximate tree pattern matching and the automata
approach for constrained approximate subtree matching introduced in
[11].

• Propose a new method for approximate tree pattern matching using the
theory of formal languages and automata.

81

6. Conclusion

• Implement the proposed method.

• Discuss time and space complexities.

• Perform appropriate testing of the implementation.

We proposed a new method based on the previous studies of approximate
tree pattern matching. Chapter 2 sums up conducted research on related
work. The newly proposed method combines 1-degree edit distance, pattern
matching automata theory, and pushdown automata theory. Additionally, it
is extended with our own approach to approximate pattern matching. Imple-
mentation of the method is in Java programming language. Object-oriented
programming principles make the implementation easy to read and debug.
The attached code consists of not only the implemented method itself but
also of a class for tree visualization and tree parameters viewer. Time and
space complexities are discussed in Chapter 3. As the method consists of mul-
tiple parts, the time and space complexities are discussed for each part. At
the end of the chapter, time complexities are evaluated for the whole method.
The testing of the method is presented in Chapter 5. It is split into two parts.
Firstly, the function of the method is tested. These tests shall show the cor-
rectness of the method. Secondly, performance testing is conducted. These
tests are focused on showing if the method behaves differently for various in-
put trees. The results of the conducted tests are evaluated and presented in
this thesis. See attached SD card for raw test data.

We state that all goals were fulfilled.

6.2 Future Work
This thesis introduced a new comprehensive method for approximate tree pat-
tern matching. The modular design of its build phase can be easily extended
in multiple ways. Firstly, the method can support a new edit operation. As
this thesis works with ordered rooted trees, we thought about edit operation
called swap(T1, T2), where T1 and T2 are subtrees of an arbitrary tree T . It
would swap the position of two subtrees in a tree. Secondly, the implemen-
tation part can be enhanced, as well. This thesis showed that ABTTPMA
belongs to Visibly pushdown automata class that is known to be determiniz-
able. The implementation can be extended by ABTTPMA determinization.
In addition, the experimental test environment can be transformed into an
application with GUI.

82

Bibliography

1. SELKOW, Stanley M. The tree-to-tree editing problem. Information pro-
cessing letters. 1977, vol. 6, no. 6, pp. 184–186.

2. JANOUŠEK, Jan; MELICHAR, Bořivoj. On regular tree languages and
deterministic pushdown automata. Acta Informatica. 2009, vol. 46, no.
7, pp. 533. Available from DOI: 10.1007/s00236-009-0104-9.

3. STOKLASA, J; JANOUŠEK, J; MELICHAR, B. Subtree pushdown au-
tomata for trees in bar notation, 2010. London Stringology Days. 2010.

4. BAXTER, Ira D; YAHIN, Andrew; MOURA, Leonardo; SANT’ANNA,
Marcelo; BIER, Lorraine. Clone detection using abstract syntax trees. In:
Proceedings. International Conference on Software Maintenance (Cat.
No. 98CB36272). 1998, pp. 368–377. Available from DOI: 10 . 1109 /
ICSM.1998.738528.

5. BROWNE, Cameron B et al. A survey of monte carlo tree search meth-
ods. IEEE Transactions on Computational Intelligence and AI in games.
2012, vol. 4, no. 1, pp. 1–43. Available from DOI: 10.1109/TCIAIG.
2012.2186810.

6. HUDDLESTON, Scott; MEHLHORN, Kurt. A new data structure for
representing sorted lists. Acta informatica. 1982, vol. 17, no. 2, pp. 157–
184. Available from DOI: 10.1007/BF00288968.

7. BRÜNING, Jens; FORBRIG, Peter. TTMS: A task tree based workflow
management system. In: Enterprise, Business-Process and Information
Systems Modeling. Springer, 2011, pp. 186–200. Available from DOI: 10.
1007/978-3-642-21759-3_14.

8. BURTSCHER, Martin; PINGALI, Keshav. An efficient CUDA imple-
mentation of the tree-based barnes hut n-body algorithm. In: GPU com-
puting Gems Emerald edition. Elsevier, 2011, pp. 75–92. Available from
DOI: 10.1016/B978-0-12-384988-5.00006-1.

83

http://dx.doi.org/10.1007/s00236-009-0104-9
http://dx.doi.org/10.1109/ICSM.1998.738528
http://dx.doi.org/10.1109/ICSM.1998.738528
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1007/BF00288968
http://dx.doi.org/10.1007/978-3-642-21759-3_14
http://dx.doi.org/10.1007/978-3-642-21759-3_14
http://dx.doi.org/10.1016/B978-0-12-384988-5.00006-1

Bibliography

9. YANG, Wuu. Identifying syntactic differences between two programs.
Software: Practice and Experience. 1991, vol. 21, no. 7, pp. 739–755.
Available from DOI: 10.1002/spe.4380210706.

10. TAI, Kuo-Chung. The tree-to-tree correction problem. Journal of the
ACM (JACM). 1979, vol. 26, no. 3, pp. 422–433. Available from DOI:
10.1145/322139.322143.

11. ŠESTÁKOVÁ, Eliška; MELICHAR, Borivoj; JANOUŠEK, Jan. Con-
strained Approximate Subtree Matching by Finite Automata. In: Prague
Stringology Conference 2018. 2018, p. 79.

12. HOPCROFT, John E; MOTWANI, Rajeev; ULLMAN, Jeffrey D. Intro-
duction to automata theory, languages, and computation. Acm Sigact
News. 2001, vol. 32, no. 1, pp. 60–65. Available from DOI: 10.1145/
568438.568455.

13. CORMEN, Thomas H; LEISERSON, Charles E; RIVEST, Ronald L;
STEIN, Clifford. Introduction to algorithms. MIT press, 2009. ISBN 978-
0-262-03384-8.

14. KNUTH, Donald Ervin. The art of computer programming. Pearson Ed-
ucation, 1997. ISBN 0-201-03801-3.

15. VAN TANG, Nguyen. A tighter bound for the determinization of visibly
pushdown automata. arXiv preprint arXiv:0911.3275. 2009. Available
from DOI: 10.4204/EPTCS.10.5.

16. OKHOTIN, Alexander; SALOMAA, Kai. Complexity of input-driven
pushdown automata. ACM SIGACT News. 2014, vol. 45, no. 2, pp. 47–
67. Available from DOI: 10.1145/2636805.2636821.

17. ALUR, Rajeev; MADHUSUDAN, Parthasarathy. Visibly pushdown lan-
guages. In: Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing. 2004, pp. 202–211. Available from DOI: 10.1145/
1007352.1007390.

18. NOWOTKA, Dirk; SRBA, Jiřı́. Height-deterministic pushdown automata.
In: International Symposium on Mathematical Foundations of Computer
Science. 2007, pp. 125–134. Available from DOI: 10.1007/978-3-540-
74456-6_13.

19. MEHLHORN, Kurt. Pebbling mountain ranges and its application to
DCFL-recognition. In: International Colloquium on Automata, Languages,
and Programming. 1980, pp. 422–435. Available from DOI: 10.1007/3-
540-10003-2_89.

20. BRAUNMÜHL, Burchard von; VERBEEK, Rutger. Input-driven lan-
guages are recognized in log n space. In: International Conference on
Fundamentals of Computation Theory. 1983, pp. 40–51. Available from
DOI: 10.1007/3-540-12689-9_92.

84

http://dx.doi.org/10.1002/spe.4380210706
http://dx.doi.org/10.1145/322139.322143
http://dx.doi.org/10.1145/568438.568455
http://dx.doi.org/10.1145/568438.568455
http://dx.doi.org/10.4204/EPTCS.10.5
http://dx.doi.org/10.1145/2636805.2636821
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1007/978-3-540-74456-6_13
http://dx.doi.org/10.1007/978-3-540-74456-6_13
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/3-540-12689-9_92

Bibliography

21. DYMOND, Patrick W. Input-driven languages are in log n depth. In-
formation processing letters. 1988, vol. 26, no. 5, pp. 247–250. Available
from DOI: 10.1016/0020-0190(88)90148-2.

22. HOLZER, Markus; KUTRIB, Martin; MALCHER, Andreas; WEND-
LANDT, Matthias. Input-Driven Double-Head Pushdown Automata. EPTCS
252, pp. 128. Available from DOI: 10.4204/EPTCS.252.14.

23. ALUR, Rajeev; MADHUSUDAN, Parthasarathy. Visibly pushdown lan-
guages. In: Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing. 2004, pp. 202–211. Available from DOI: 10.1145/
1007352.1007390.

24. NOWOTKA, Dirk; SRBA, Jiřı́. Height-deterministic pushdown automata.
In: International Symposium on Mathematical Foundations of Computer
Science. 2007, pp. 125–134. Available from DOI: 10.1007/978-3-540-
74456-6_13.

25. POLÁCH, Radomı́r; TRÁVNÍČEK, Jan; JANOUŠEK, Jan; MELICHAR,
Bořivoj. Efficient determinization of visibly and height-deterministic push-
down automata. Computer Languages, Systems & Structures. 2016, vol. 46,
pp. 91–105. Available from DOI: 10.1016/j.cl.2016.07.005.

26. OHST, Dirk; WELLE, Michael; KELTER, Udo. Differences between ver-
sions of UML diagrams. In: ACM SIGSOFT Software Engineering Notes.
2003, vol. 28, pp. 227–236. No. 5. Available from DOI: 10.1145/940071.
940102.

27. CHAWATHE, Sudarshan S; RAJARAMAN, Anand; GARCIA-MOLINA,
Hector; WIDOM, Jennifer. Change detection in hierarchically structured
information. Acm Sigmod Record. 1996, vol. 25, no. 2, pp. 493–504. Avail-
able from DOI: 10.1145/235968.233366.

28. CHAWATHE, Sudarshan S; GARCIA-MOLINA, Hector. Meaningful change
detection in structured data. ACM SIGMOD Record. 1997, vol. 26, no.
2, pp. 26–37. Available from DOI: 10.1145/253262.253266.

29. BARNARD, David T; CLARKE, Gwen; DUNCAN, Nicolas. Tree-to-tree
correction for document trees. 1995. Available from DOI: 10.1.1.29.
5248.

30. ZHANG, Kaizhong; SHASHA, Dennis. Simple fast algorithms for the
editing distance between trees and related problems. SIAM journal on
computing. 1989, vol. 18, no. 6, pp. 1245–1262. Available from DOI: 10.
1137/0218082.

31. OOMMEN, John B. Method of comparing the closeness of a target tree
to other trees using noisy sub-sequence tree processing. Google Patents,
2007. US Patent 7,287,026.

85

http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.4204/EPTCS.252.14
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1007/978-3-540-74456-6_13
http://dx.doi.org/10.1007/978-3-540-74456-6_13
http://dx.doi.org/10.1016/j.cl.2016.07.005
http://dx.doi.org/10.1145/940071.940102
http://dx.doi.org/10.1145/940071.940102
http://dx.doi.org/10.1145/235968.233366
http://dx.doi.org/10.1145/253262.253266
http://dx.doi.org/10.1.1.29.5248
http://dx.doi.org/10.1.1.29.5248
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1137/0218082

Bibliography

32. MARTIN-VIDE, Carlos; MATEESCU, Alexandru; MITRANA, Victor.
Parallel finite automata systems communicating by states. International
Journal of Foundations of Computer Science. 2002, vol. 13, no. 05, pp.
733–749. Available from DOI: 10.1142/S0129054102001424.

33. MELICHAR, Bořivoj. Arbology: Trees and pushdown automata. In: In-
ternational Conference on Language and Automata Theory and Appli-
cations. 2010, pp. 32–49. ISBN 978-3-642-13088-5. Available from DOI:
10.1007/978-3-642-13089-2_3.

34. MELICHAR, Bořivoj. Approximate string matching by finite automata.
In: International Conference on Computer Analysis of Images and Pat-
terns. 1995, pp. 342–349. Available from DOI: 10.1007/3-540-60268-
2_315.

86

http://dx.doi.org/10.1142/S0129054102001424
http://dx.doi.org/10.1007/978-3-642-13089-2_3
http://dx.doi.org/10.1007/3-540-60268-2_315
http://dx.doi.org/10.1007/3-540-60268-2_315

Appendix A
Acronyms

ABTTPMA Approximate block type tree pattern matching automaton

PoC Proof of concept

SDK Software development kit

ASCII American standard code for information interchange

XML Extensible markup language

HTML Hypertext markup language

CAD Computer-aided design

UML Unified Modeling Language

Apx Approximate

CPU Central processing unit

RAM Random-access memory

GUI Graphical user interface

87

Appendix B
Contents of Enclosed SD Card

readme.txt....................the file with SD card contents description
thesis..the directory of thesis

thesis.pdf................................thesis text in PDF format
src..................the directory of LATEX source codes of the thesis

implementation................................ the thesis text directory
src................ the directory with source codes of implementation
tests.............................the directory with tests input data.

89

	Introduction
	Aim of the Thesis
	Structure of the Thesis

	Theoretical Background
	Notations
	Basic Definitions
	Alphabet, String, Language
	Graph
	Tree
	Finite and Pushdown Automaton

	Related Work
	Tree Comparison and Related Problems
	String Pattern Matching
	Approximate Pattern Matching Automata

	1-degree Edit Distance and Related Problems
	Tree to Tree Editing Problem Algorithm

	Using Pushdown Automata for Approximate Tree Pattern Matching
	Block Type Matching
	Approximate Block Type Matching
	Pushdown Automata Apx. Block Type Matching Method
	Building ABTTPMA
	Base of an Automaton
	Block Type Matching Construction
	Common Features of Edit Op. Constructions
	Delete Edit Operation Construction
	Insert Edit Operation Construction
	Relabel Edit Operation Construction
	Complete ABTTPMA Construction

	Searching via ABTTPMA
	ABTTPMA Determinization

	Implementation
	Space Optimalisation
	Methods Description
	Implementation Usage

	Testing
	Validation Testing
	Validation of Edit Operations
	Validation of Block Type Matching

	Performance Testing

	Conclusion
	Goals Fulfillment
	Future Work

	Bibliography
	Acronyms
	Contents of Enclosed SD Card

